fbpx
Wikipedia

Insect

Insects (from Latin insectum) are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body (head, thorax and abdomen), three pairs of jointed legs, compound eyes and one pair of antennae. Their blood is not totally contained in vessels; some circulates in an open cavity known as the haemocoel. Insects are the most diverse group of animals; they include more than a million described species and represent more than half of all known living organisms.[1][2] The total number of extant species is estimated at between six and ten million;[1][3][4] potentially over 90% of the animal life forms on Earth are insects.[4][5] Insects may be found in nearly all environments, although only a small number of species reside in the oceans, which are dominated by another arthropod group, crustaceans, which recent research has indicated insects are nested within.

Insect
Temporal range: Carboniferous–Present
Common scorpionflyBlue emperorCoffee locustEuropean earwigVinegar flyGerman waspMarch brown mayflyDouble drummerDog fleaOld World swallowtailEuropean mantisPhyllium philippinicumHead louseSilverfishChrysopa perlaEuropean stag beetleNorthern harvester termiteDichrostigma flavipes
Diversity of insects from different orders.
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Clade: Pancrustacea
Subphylum: Hexapoda
Class: Insecta
Linnaeus, 1758
Subgroups

See text.

Synonyms
  • Ectognatha
  • Entomida

Nearly all insects hatch from eggs. Insect growth is constrained by the inelastic exoskeleton and development involves a series of molts. The immature stages often differ from the adults in structure, habit and habitat, and can include a usually immobile pupal stage in those groups that undergo four-stage metamorphosis. Insects that undergo three-stage metamorphosis lack a pupal stage and adults develop through a series of nymphal stages.[6] The higher level relationship of the insects is unclear. Fossilized insects of enormous size have been found from the Paleozoic Era, including giant dragonflies with wingspans of 55 to 70 cm (22 to 28 in). The most diverse insect groups appear to have coevolved with flowering plants.

Adult insects typically move about by walking, flying, or sometimes swimming. As it allows for rapid yet stable movement, many insects adopt a tripedal gait in which they walk with their legs touching the ground in alternating triangles, composed of the front and rear on one side with the middle on the other side. Insects are the only invertebrate group with members able to achieve sustained powered flight, and all flying insects derive from one common ancestor. Many insects spend at least part of their lives under water, with larval adaptations that include gills, and some adult insects are aquatic and have adaptations for swimming. Some species, such as water striders, are capable of walking on the surface of water. Insects are mostly solitary, but some, such as certain bees, ants and termites, are social and live in large, well-organized colonies. Some insects, such as earwigs, show maternal care, guarding their eggs and young. Insects can communicate with each other in a variety of ways. Male moths can sense the pheromones of female moths over great distances. Other species communicate with sounds: crickets stridulate, or rub their wings together, to attract a mate and repel other males. Lampyrid beetles communicate with light.

Humans regard certain insects as pests, and attempt to control them using insecticides, and a host of other techniques. Some insects damage crops by feeding on sap, leaves, fruits, or wood. Some species are parasitic, and may vector diseases. Some insects perform complex ecological roles; blow-flies, for example, help consume carrion but also spread diseases. Insect pollinators are essential to the life cycle of many flowering plant species on which most organisms, including humans, are at least partly dependent; without them, the terrestrial portion of the biosphere would be devastated.[7] Many insects are considered ecologically beneficial as predators and a few provide direct economic benefit. Silkworms produce silk and honey bees produce honey and both have been domesticated by humans. Insects are consumed as food in 80% of the world's nations, by people in roughly 3000 ethnic groups.[8][9] Human activities also have effects on insect biodiversity.

Etymology

The word insect comes from the Latin word insectum, meaning "with a notched or divided body", or literally "cut into", from the neuter singular perfect passive participle of insectare, "to cut into, to cut up", from in- "into" and secare from seco "to cut";[10][11] because insects appear "cut into" three sections. The Latin word was introduced by Pliny the Elder who calqued the Ancient Greek word ἔντομον éntomon "insect" (as in entomology) from ἔντομος éntomos "cut into sections" or "cut in pieces";[12] éntomon was Aristotle's term for this class of life, also in reference to their "notched" bodies. The English word insect first appears documented in 1601 in Holland's translation of Pliny. Translations of Aristotle's term also form the usual word for insect in Welsh (trychfil, from trychu "to cut" and mil, "animal"), Serbo-Croatian (zareznik, from rezati, "to cut"), Russian (насекомое [nasekomoje], from seč'/-sekat, "to cut"), etc.[10][13]

In common parlance, insects are also called bugs, though this term usually includes all terrestrial arthropods.[a] The term is also occasionally extended to colloquial names for freshwater or marine crustaceans (e.g. Balmain bug, Moreton Bay bug, mudbug) and used by physicians and bacteriologists for disease-causing germs (e.g. superbugs), but entomologists to some extent reserve this term for a narrow category of "true bugs", insects of the order Hemiptera, such as cicadas and shield bugs.[16]

Definitions

The precise definition of the taxon Insecta and the equivalent English name "insect" varies; three alternative definitions are shown in the table.

Definition of Insecta
Group Alternative definitions
Collembola (springtails) Insecta sensu lato
= Hexapoda
"Entognatha" "Apterygota"
(wingless hexapods)
Protura (coneheads)
Diplura (two-pronged bristletails)
Archaeognatha (jumping bristletails) Insecta sensu stricto
= Ectognatha
Zygentoma (silverfish)
Pterygota (winged insects) Insecta sensu strictissimo

In the broadest circumscription, Insecta sensu lato consists of all hexapods.[17][18] Traditionally, insects defined in this way were divided into "Apterygota" (the first five groups in the table)—the wingless insects—and Pterygota—the winged and secondarily wingless insects.[19] However, modern phylogenetic studies have shown that "Apterygota" is not monophyletic,[20] and so does not form a good taxon. A narrower circumscription restricts insects to those hexapods with external mouthparts, and comprises only the last three groups in the table. In this sense, Insecta sensu stricto is equivalent to Ectognatha.[17][20] In the narrowest circumscription, insects are restricted to hexapods that are either winged or descended from winged ancestors. Insecta sensu strictissimo is then equivalent to Pterygota.[21] For the purposes of this article, the middle definition is used; insects consist of two wingless taxa, Archaeognatha (jumping bristletails) and Zygentoma (silverfish), plus the winged or secondarily wingless Pterygota.

Phylogeny and evolution

External phylogeny

Although traditionally grouped with millipedes and centipedes,[22] more recent analysis indicates closer evolutionary ties with crustaceans. In the Pancrustacea theory, insects, together with Entognatha, Remipedia, and Cephalocarida, form a clade, the Pancrustacea.[23] Insects form a single clade, closely related to crustaceans and myriapods.[24]

Other terrestrial arthropods, such as centipedes, millipedes, scorpions, spiders, woodlice, mites, and ticks are sometimes confused with insects since their body plans can appear similar, sharing (as do all arthropods) a jointed exoskeleton. However, upon closer examination, their features differ significantly; most noticeably, they do not have the six-legged characteristic of adult insects.[25]

A phylogenetic tree of the arthropods places the insects in the context of other hexapods and the crustaceans, and the more distantly-related myriapods and chelicerates.[26]

Panarthropoda

Onychophora (velvet worms)

Tactopoda

Tardigrada (water bears)

Euarthropoda

Chelicerata (spiders and allies)

Mandibulata

Myriapoda (millipedes and centipedes)

Pancrustacea

Oligostraca (ostracods and allies)

Copepods and allies

Malacostraca (crabs, lobsters)

Branchiopoda (fairy shrimps)

Hexapoda

Collembola (springtails)

Protura (coneheads)

Diplura (bristletails)

Insecta

six legs
 
Evolution has produced enormous variety in insects. Pictured are some possible shapes of antennae.

Four large-scale radiations of insects have occurred: beetles (from about 300 million years ago), flies (from about 250 million years ago), moths and wasps (both from about 150 million years ago).[27] These four groups account for the majority of described species.

The origins of insect flight remain obscure, since the earliest winged insects currently known appear to have been capable fliers. Some extinct insects had an additional pair of winglets attaching to the first segment of the thorax, for a total of three pairs. As of 2009, no evidence suggests the insects were a particularly successful group of animals before they evolved to have wings.[28]

Late Carboniferous and Early Permian insect orders include both extant groups, their stem groups,[29] and a number of Paleozoic groups, now extinct. During this era, some giant dragonfly-like forms reached wingspans of 55 to 70 cm (22 to 28 in), making them far larger than any living insect. This gigantism may have been due to higher atmospheric oxygen levels that allowed increased respiratory efficiency relative to today. The lack of flying vertebrates could have been another factor. Most extinct orders of insects developed during the Permian period that began around 270 million years ago. Many of the early groups became extinct during the Permian-Triassic extinction event, the largest mass extinction in the history of the Earth, around 252 million years ago.[30] In 2008, researchers at Tufts University uncovered what they believe is the world's oldest known full-body impression of a primitive flying insect, a 300-million-year-old specimen from the Carboniferous period.[31] The oldest insect fossil was considered to be the Devonian Rhyniognatha hirsti, from the 396-million-year-old Rhynie chert.[32] However, other analyses have disputed this placement, finding it to be more likely a myriapod.[33]

The remarkably successful Hymenoptera (wasps, bees, and ants) appeared as long as 200 million years ago in the Triassic period, but achieved their wide diversity more recently in the Cenozoic era, which began 66 million years ago. Some highly successful insect groups evolved in conjunction with flowering plants, a powerful illustration of coevolution.[34]

Internal phylogeny

The internal phylogeny is based on the works of Sroka, Staniczek & Bechly 2014,[35] Prokop et al. 2017[36] and Wipfler et al. 2019.[37]

Insecta
Monocondylia

Archaeognatha (hump-backed/jumping bristletails)

Dicondylia

Zygentoma (silverfish, firebrats, fishmoths)

Paranotalia

†Carbotriplurida

Pterygota
Hydropalaeoptera

†Bojophlebiidae

Odonatoptera (dragonflies)

Panephemeroptera (mayflies)

Neoptera
Polyneoptera
Haplocercata

Zoraptera (angel insects)

Dermaptera (earwigs)

Plecoptera (stoneflies)

Orthoptera (grasshoppers, crickets, katydids)

Dictyoptera

Mantodea (mantises)

Blattodea (cockroaches & termites)

Notoptera

Grylloblattodea (ice crawlers)

Mantophasmatodea (gladiators)

("Xenonomia")
Eukinolabia

Phasmatodea (stick insects)

Embioptera (webspinners)

Eumetabola
Acercaria

Psocodea (book lice, barklice & sucking lice)

Hemiptera (true bugs)

Thysanoptera (thrips)

Holometabola
Hymenopterida

Hymenoptera (sawflies, wasps, bees, ants)

Aparaglossata
Neuropteriforma
Panorpida
Amphiesmenoptera

Lepidoptera (butterflies & moths)

Trichoptera (caddisflies)

Antliophora

Diptera (true flies)

Nannomecoptera

Mecoptera (scorpionflies)

Neomecoptera (winter scorpionflies)

Siphonaptera (fleas)

larvae, pupae
wings flex over abdomen
wings

Taxonomy

Traditional morphology-based or appearance-based systematics have usually given the Hexapoda the rank of superclass,[38]: 180  and identified four groups within it: insects (Ectognatha), springtails (Collembola), Protura, and Diplura, the latter three being grouped together as the Entognatha on the basis of internalized mouth parts. Supraordinal relationships have undergone numerous changes with the advent of methods based on evolutionary history and genetic data. A recent theory is that the Hexapoda are polyphyletic (where the last common ancestor was not a member of the group), with the entognath classes having separate evolutionary histories from the Insecta.[39] Many of the traditional appearance-based taxa are paraphyletic, so rather than using ranks like subclass, superorder, and infraorder, it has proved better to use monophyletic groupings (in which the last common ancestor is a member of the group). The following represents the best-supported monophyletic groupings for the Insecta.

Insects can be divided into two groups historically treated as subclasses: wingless insects, known as Apterygota, and winged insects, known as Pterygota. The Apterygota consisted of the primitively wingless orders Archaeognatha (jumping bristletails) and Zygentoma (silverfish). However, Apterygota is not a monophyletic group, as Archaeognatha are the sister group to all other insects, based on the arrangement of their mandibles, while Zygentoma and Pterygota are grouped together as Dicondylia. It was originally believed that Archaeognatha possessed a single phylogenetically primitive condyle each (thus the name "Monocondylia"), where all more derived insects have two, but this has since been shown to be incorrect; all insects, including Archaeognatha, have dicondylic mandibles, but archaeognaths possess two articulations that are homologous to those in other insects, though slightly different.[40] The Zygentoma themselves possibly are not monophyletic, with the family Lepidotrichidae being a sister group to the Dicondylia (Pterygota and the remaining Zygentoma).[41][42][clarification needed]

Paleoptera and Neoptera are the winged orders of insects differentiated by the presence of hardened body parts called sclerites, and in the Neoptera, muscles that allow their wings to fold flatly over the abdomen. Neoptera can further be divided into incomplete metamorphosis-based (Polyneoptera and Paraneoptera) and complete metamorphosis-based groups. It has proved difficult to clarify the relationships between the orders in Polyneoptera because of constant new findings calling for revision of the taxa. For example, the Paraneoptera have turned out to be more closely related to the Endopterygota than to the rest of the Exopterygota. The recent molecular finding that the traditional louse orders Mallophaga and Anoplura are derived from within Psocoptera has led to the new taxon Psocodea.[43] Phasmatodea and Embiidina have been suggested to form the Eukinolabia.[44] Mantodea, Blattodea, and Isoptera are thought to form a monophyletic group termed Dictyoptera.[45]

The Exopterygota likely are paraphyletic in regard to the Endopterygota. The Neuropterida are often lumped or split on the whims of the taxonomist. Fleas are now thought to be closely related to boreid mecopterans.[46] Many questions remain in the basal relationships among endopterygote orders, particularly the Hymenoptera.

Evolutionary relationships

Insects are prey for a variety of organisms, including terrestrial vertebrates. The earliest vertebrates on land existed 400 million years ago and were large amphibious piscivores. Through gradual evolutionary change, insectivory was the next diet type to evolve.[47]

Insects were among the earliest terrestrial herbivores and acted as major selection agents on plants.[34] Plants evolved chemical defenses against this herbivory and the insects, in turn, evolved mechanisms to deal with plant toxins. Many insects make use of these toxins to protect themselves from their predators. Such insects often advertise their toxicity using warning colors.[48] This successful evolutionary pattern has also been used by mimics. Over time, this has led to complex groups of coevolved species. Conversely, some interactions between plants and insects, like pollination, are beneficial to both organisms. Coevolution has led to the development of very specific mutualisms in such systems.

Diversity

 
A pie chart of described eukaryote species, showing just over half of these to be insects

Estimates of the total number of insect species, or those within specific orders, often vary considerably. Globally, averages of these estimates suggest there are around 1.5 million beetle species and 5.5 million insect species, with about 1 million insect species currently found and described.[49] E. O. Wilson has estimated that the number of insects living at any one time are around 10 quintillion (10 billion billion).[50]

Between 950,000 and 1,000,000 of all described species are insects, so over 50% of all described eukaryotes (1.8 million) are insects (see illustration). With only 950,000 known non-insects, if the actual number of insects is 5.5 million, they may represent over 80% of the total. As only about 20,000 new species of all organisms are described each year, most insect species may remain undescribed, unless the rate of species descriptions greatly increases. Of the 24 orders of insects, four dominate in terms of numbers of described species; at least 670,000 identified species belong to Coleoptera, Diptera, Hymenoptera or Lepidoptera.

 
Insects with population trends documented by the International Union for Conservation of Nature, for orders Collembola, Hymenoptera, Lepidoptera, Odonata, and Orthoptera. Of 203 insect species that had such documented population trends in 2013, 33% were in decline.[51]

As of 2017, at least 66 insect species extinctions had been recorded in the previous 500 years, generally on oceanic islands.[52] Declines in insect abundance have been attributed to artificial lighting,[53] land use changes such as urbanization or agricultural use,[54][55] pesticide use,[56] and invasive species.[57] Studies summarized in a 2019 review suggested that a large proportion of insect species is threatened with extinction in the 21st century.[58] The ecologist Manu Sanders notes that the 2019 review was biased by mostly excluding data showing increases or stability in insect population, with the studies limited to specific geographic areas and specific groups of species.[59] A larger 2020 meta-study, analyzing data from 166 long-term surveys, suggested that populations of terrestrial insects are decreasing rapidly, by about 9% per decade.[60][61] Claims of pending mass insect extinctions or "insect apocalypse" based on a subset of these studies have been popularized in news reports, but often extrapolate beyond the study data or hyperbolize study findings.[62] Other areas have shown increases in some insect species, although trends in most regions are currently unknown. It is difficult to assess long-term trends in insect abundance or diversity because historical measurements are generally not known for many species. Robust data to assess at-risk areas or species is especially lacking for arctic and tropical regions and a majority of the southern hemisphere.[62]

Number of described extant insect species[49]
Order Extant species described
Archaeognatha 513
Zygentoma 560
Ephemeroptera 3,240
Odonata 5,899
Orthoptera 23,855
Neuroptera 5,868
Phasmatodea 3,014
Embioptera 463
Notoptera 54
Plecoptera 3,743
Dermaptera 1,978
Zoraptera 37
Mantodea 2,400
Blattodea 7,314
Psocoptera 5,720
Phthiraptera 5,102
Thysanoptera 5,864
Hemiptera 103,590
Hymenoptera 116,861
Strepsiptera 609
Coleoptera 386,500
Megaloptera 354
Raphidioptera 254
Trichoptera 14,391
Lepidoptera 157,338
Diptera 155,477
Siphonaptera 2,075
Mecoptera 757

Morphology and physiology

External

 
Insect morphology
A- Head B- Thorax C- Abdomen
  1. antenna
  2. ocellus (lower)
  3. ocellus (upper)
  4. compound eye
  5. brain (cerebral ganglia)
  6. prothorax
  7. dorsal blood vessel
  8. tracheal tubes (trunk with spiracle)
  9. mesothorax
  10. metathorax
  11. forewing
  12. hindwing
  13. midgut (stomach)
  14. dorsal tube (Heart)
  15. ovary
  16. hindgut (intestine, rectum, anus)
  17. anus
  18. oviduct
  19. nerve cord (abdominal ganglia)
  20. Malpighian tubules
  21. tarsal pads
  22. claws
  23. tarsus
  24. tibia
  25. femur
  26. trochanter
  27. foregut (crop, gizzard)
  28. thoracic ganglion
  29. coxa
  30. salivary gland
  31. subesophageal ganglion
  32. mouthparts

Insects have segmented bodies supported by exoskeletons, the hard outer covering made mostly of chitin. The segments of the body are organized into three distinctive but interconnected units, or tagmata: a head, a thorax and an abdomen.[63] The head supports a pair of sensory antennae, a pair of compound eyes, zero to three simple eyes (or ocelli) and three sets of variously modified appendages that form the mouthparts. The thorax is made up of three segments: the prothorax, mesothorax and the metathorax. Each thoracic segment supports one pair of legs. The meso- and metathoracic segments may each have a pair of wings, depending on the insect. The abdomen consists of eleven segments, though in a few species of insects, these segments may be fused together or reduced in size. The abdomen also contains most of the digestive, respiratory, excretory and reproductive internal structures.[38]: 22–48  Considerable variation and many adaptations in the body parts of insects occur, especially wings, legs, antenna and mouthparts.

Segmentation

The head is enclosed in a hard, heavily sclerotized, unsegmented, exoskeletal head capsule, or epicranium, which contains most of the sensing organs, including the antennae, ocellus or eyes, and the mouthparts. Of all the insect orders, Orthoptera displays the most features found in other insects, including the sutures and sclerites.[64] Here, the vertex, or the apex (dorsal region), is situated between the compound eyes for insects with a hypognathous and opisthognathous head. In prognathous insects, the vertex is not found between the compound eyes, but rather, where the ocelli are normally. This is because the primary axis of the head is rotated 90° to become parallel to the primary axis of the body. In some species, this region is modified and assumes a different name.[64]: 13 

The thorax is a tagma composed of three sections, the prothorax, mesothorax and the metathorax. The anterior segment, closest to the head, is the prothorax, with the major features being the first pair of legs and the pronotum. The middle segment is the mesothorax, with the major features being the second pair of legs and the anterior wings. The third and most posterior segment, abutting the abdomen, is the metathorax, which features the third pair of legs and the posterior wings. Each segment is delineated by an intersegmental suture. Each segment has four basic regions. The dorsal surface is called the tergum (or notum) to distinguish it from the abdominal terga.[38] The two lateral regions are called the pleura (singular: pleuron) and the ventral aspect is called the sternum. In turn, the notum of the prothorax is called the pronotum, the notum for the mesothorax is called the mesonotum and the notum for the metathorax is called the metanotum. Continuing with this logic, the mesopleura and metapleura, as well as the mesosternum and metasternum, are used.[64]

The abdomen is the largest tagma of the insect, which typically consists of 11–12 segments and is less strongly sclerotized than the head or thorax. Each segment of the abdomen is represented by a sclerotized tergum and sternum. Terga are separated from each other and from the adjacent sterna or pleura by membranes. Spiracles are located in the pleural area. Variation of this ground plan includes the fusion of terga or terga and sterna to form continuous dorsal or ventral shields or a conical tube. Some insects bear a sclerite in the pleural area called a laterotergite. Ventral sclerites are sometimes called laterosternites. During the embryonic stage of many insects and the postembryonic stage of primitive insects, 11 abdominal segments are present. In modern insects there is a tendency toward reduction in the number of the abdominal segments, but the primitive number of 11 is maintained during embryogenesis. Variation in abdominal segment number is considerable. If the Apterygota are considered to be indicative of the ground plan for pterygotes, confusion reigns: adult Protura have 12 segments, Collembola have 6. The orthopteran family Acrididae has 11 segments, and a fossil specimen of Zoraptera has a 10-segmented abdomen.[64]

Exoskeleton

The insect outer skeleton, the cuticle, is made up of two layers: the epicuticle, which is a thin and waxy water resistant outer layer and contains no chitin, and a lower layer called the procuticle. The procuticle is chitinous and much thicker than the epicuticle and has two layers: an outer layer known as the exocuticle and an inner layer known as the endocuticle. The tough and flexible endocuticle is built from numerous layers of fibrous chitin and proteins, criss-crossing each other in a sandwich pattern, while the exocuticle is rigid and hardened.[38]: 22–24  The exocuticle is greatly reduced in many insects during their larval stages, e.g., caterpillars. It is also reduced in soft-bodied adult insects.

During growth insects goes through a various number of instars where the old exoskeleton is shed, but once they reach sexual maturity, they stop molting. The exceptions are apterygote (primary wingless) insects. Mayflies are the only insects with a sexually immature instar with functional wings, called subimago.[65]

Insects are the only invertebrates to have developed active flight capability, and this has played an important role in their success.[38]: 186  Their flight muscles are able to contract multiple times for each single nerve impulse, allowing the wings to beat faster than would ordinarily be possible.

Having their muscles attached to their exoskeletons is efficient and allows more muscle connections.

Internal

Nervous system

The nervous system of an insect can be divided into a brain and a ventral nerve cord. The head capsule is made up of six fused segments, each with either a pair of ganglia, or a cluster of nerve cells outside of the brain. The first three pairs of ganglia are fused into the brain, while the three following pairs are fused into a structure of three pairs of ganglia under the insect's esophagus, called the subesophageal ganglion.[38]: 57 

The thoracic segments have one ganglion on each side, which are connected into a pair, one pair per segment. This arrangement is also seen in the abdomen but only in the first eight segments. Many species of insects have reduced numbers of ganglia due to fusion or reduction.[66] Some cockroaches have just six ganglia in the abdomen, whereas the wasp Vespa crabro has only two in the thorax and three in the abdomen. Some insects, like the house fly Musca domestica, have all the body ganglia fused into a single large thoracic ganglion. [67]

At least some insects have nociceptors, cells that detect and transmit signals responsible for the sensation of pain.[68][failed verification][69] This was discovered in 2003 by studying the variation in reactions of larvae of the common fruit-fly Drosophila to the touch of a heated probe and an unheated one. The larvae reacted to the touch of the heated probe with a stereotypical rolling behavior that was not exhibited when the larvae were touched by the unheated probe.[70] Although nociception has been demonstrated in insects, there is no consensus that insects feel pain consciously[71]

Insects are capable of learning.[72]

Digestive system

An insect uses its digestive system to extract nutrients and other substances from the food it consumes.[73] Most of this food is ingested in the form of macromolecules and other complex substances like proteins, polysaccharides, fats and nucleic acids. These macromolecules must be broken down by catabolic reactions into smaller molecules like amino acids and simple sugars before being used by cells of the body for energy, growth, or reproduction. This break-down process is known as digestion.

There is extensive variation among different orders, life stages, and even castes in the digestive system of insects.[74] This is the result of extreme adaptations to various lifestyles. The present description focuses on a generalized composition of the digestive system of an adult orthopteroid insect, which is considered basal to interpreting particularities of other groups.

The main structure of an insect's digestive system is a long enclosed tube called the alimentary canal, which runs lengthwise through the body. The alimentary canal directs food unidirectionally from the mouth to the anus. It has three sections, each of which performs a different process of digestion. In addition to the alimentary canal, insects also have paired salivary glands and salivary reservoirs. These structures usually reside in the thorax, adjacent to the foregut.[38]: 70–77  The salivary glands (element 30 in numbered diagram) in an insect's mouth produce saliva. The salivary ducts lead from the glands to the reservoirs and then forward through the head to an opening called the salivarium, located behind the hypopharynx. By moving its mouthparts (element 32 in numbered diagram) the insect can mix its food with saliva. The mixture of saliva and food then travels through the salivary tubes into the mouth, where it begins to break down.[75][76] Some insects, like flies, have extra-oral digestion. Insects using extra-oral digestion expel digestive enzymes onto their food to break it down. This strategy allows insects to extract a significant proportion of the available nutrients from the food source.[77]: 31  The gut is where almost all of insects' digestion takes place. It can be divided into the foregut, midgut and hindgut.

Foregut
 
Stylized diagram of insect digestive tract showing malpighian tubule, from an insect of the order Orthoptera

The first section of the alimentary canal is the foregut (element 27 in numbered diagram), or stomodaeum. The foregut is lined with a cuticular lining made of chitin and proteins as protection from tough food. The foregut includes the buccal cavity (mouth), pharynx, esophagus and crop and proventriculus (any part may be highly modified), which both store food and signify when to continue passing onward to the midgut.[38]: 70 

Digestion starts in buccal cavity (mouth) as partially chewed food is broken down by saliva from the salivary glands. As the salivary glands produce fluid and carbohydrate-digesting enzymes (mostly amylases), strong muscles in the pharynx pump fluid into the buccal cavity, lubricating the food like the salivarium does, and helping blood feeders, and xylem and phloem feeders.

From there, the pharynx passes food to the esophagus, which could be just a simple tube passing it on to the crop and proventriculus, and then onward to the midgut, as in most insects. Alternately, the foregut may expand into a very enlarged crop and proventriculus, or the crop could just be a diverticulum, or fluid-filled structure, as in some Diptera species.[77]: 30–31 

Midgut

Once food leaves the crop, it passes to the midgut (element 13 in numbered diagram), also known as the mesenteron, where the majority of digestion takes place. Microscopic projections from the midgut wall, called microvilli, increase the surface area of the wall and allow more nutrients to be absorbed; they tend to be close to the origin of the midgut. In some insects, the role of the microvilli and where they are located may vary. For example, specialized microvilli producing digestive enzymes may more likely be near the end of the midgut, and absorption near the origin or beginning of the midgut.[77]: 32 

Hindgut

In the hindgut (element 16 in numbered diagram), or proctodaeum, undigested food particles are joined by uric acid to form fecal pellets. The rectum absorbs 90% of the water in these fecal pellets, and the dry pellet is then eliminated through the anus (element 17), completing the process of digestion. Envaginations at the anterior end of the hindgut form the Malpighian tubules, which form the main excretory system of insects.

Excretory system

Insects may have one to hundreds of Malpighian tubules (element 20). These tubules remove nitrogenous wastes from the hemolymph of the insect and regulate osmotic balance. Wastes and solutes are emptied directly into the alimentary canal, at the junction between the midgut and hindgut.[38]: 71–72, 78–80 

Reproductive system

The reproductive system of female insects consist of a pair of ovaries, accessory glands, one or more spermathecae, and ducts connecting these parts. The ovaries are made up of a number of egg tubes, called ovarioles, which vary in size and number by species. The number of eggs that the insect is able to make vary by the number of ovarioles with the rate that eggs can develop being also influenced by ovariole design. Female insects are able make eggs, receive and store sperm, manipulate sperm from different males, and lay eggs. Accessory glands or glandular parts of the oviducts produce a variety of substances for sperm maintenance, transport and fertilization, as well as for protection of eggs. They can produce glue and protective substances for coating eggs or tough coverings for a batch of eggs called oothecae. Spermathecae are tubes or sacs in which sperm can be stored between the time of mating and the time an egg is fertilized.[64]: 880 

For males, the reproductive system is the testis, suspended in the body cavity by tracheae and the fat body. Most male insects have a pair of testes, inside of which are sperm tubes or follicles that are enclosed within a membranous sac. The follicles connect to the vas deferens by the vas efferens, and the two tubular vasa deferentia connect to a median ejaculatory duct that leads to the outside. A portion of the vas deferens is often enlarged to form the seminal vesicle, which stores the sperm before they are discharged into the female. The seminal vesicles have glandular linings that secrete nutrients for nourishment and maintenance of the sperm. The ejaculatory duct is derived from an invagination of the epidermal cells during development and, as a result, has a cuticular lining. The terminal portion of the ejaculatory duct may be sclerotized to form the intromittent organ, the aedeagus. The remainder of the male reproductive system is derived from embryonic mesoderm, except for the germ cells, or spermatogonia, which descend from the primordial pole cells very early during embryogenesis.[64]: 885 

Respiratory system

 
The tube-like heart (green) of the mosquito Anopheles gambiae extends horizontally across the body, interlinked with the diamond-shaped wing muscles (also green) and surrounded by pericardial cells (red). Blue depicts cell nuclei.

Insect respiration is accomplished without lungs. Instead, the insect respiratory system uses a system of internal tubes and sacs through which gases either diffuse or are actively pumped, delivering oxygen directly to tissues that need it via their trachea (element 8 in numbered diagram). In most insects, air is taken in through openings on the sides of the abdomen and thorax called spiracles.

The respiratory system is an important factor that limits the size of insects. As insects get larger, this type of oxygen transport is less efficient and thus the heaviest insect currently weighs less than 100 g. However, with increased atmospheric oxygen levels, as were present in the late Paleozoic, larger insects were possible, such as dragonflies with wingspans of more than two feet (60 cm).[78]

There are many different patterns of gas exchange demonstrated by different groups of insects. Gas exchange patterns in insects can range from continuous and diffusive ventilation, to discontinuous gas exchange.[38]: 65–68  During continuous gas exchange, oxygen is taken in and carbon dioxide is released in a continuous cycle. In discontinuous gas exchange, however, the insect takes in oxygen while it is active and small amounts of carbon dioxide are released when the insect is at rest.[79] Diffusive ventilation is simply a form of continuous gas exchange that occurs by diffusion rather than physically taking in the oxygen. Some species of insect that are submerged also have adaptations to aid in respiration. As larvae, many insects have gills that can extract oxygen dissolved in water, while others need to rise to the water surface to replenish air supplies, which may be held or trapped in special structures.[80][81]

Circulatory system

Because oxygen is delivered directly to tissues via tracheoles, the circulatory system is not used to carry oxygen, and is therefore greatly reduced. The insect circulatory system is open; it has no veins or arteries, and instead consists of little more than a single, perforated dorsal tube that pulses peristaltically. This dorsal blood vessel (element 14) is divided into two sections: the heart and aorta. The dorsal blood vessel circulates the hemolymph, arthropods' fluid analog of blood, from the rear of the body cavity forward.[38]: 61–65 [82] Hemolymph is composed of plasma in which hemocytes are suspended. Nutrients, hormones, wastes, and other substances are transported throughout the insect body in the hemolymph. Hemocytes include many types of cells that are important for immune responses, wound healing, and other functions. Hemolymph pressure may be increased by muscle contractions or by swallowing air into the digestive system to aid in molting.[83] Hemolymph is also a major part of the open circulatory system of other arthropods, such as spiders and crustaceans.[84][85]

Reproduction and development

 
A pair of Simosyrphus grandicornis hoverflies mating in flight.
 
A pair of grasshoppers mating.

The majority of insects hatch from eggs. The fertilization and development takes place inside the egg, enclosed by a shell (chorion) that consists of maternal tissue. In contrast to eggs of other arthropods, most insect eggs are drought resistant. This is because inside the chorion two additional membranes develop from embryonic tissue, the amnion and the serosa. This serosa secretes a cuticle rich in chitin that protects the embryo against desiccation. In Schizophora however the serosa does not develop, but these flies lay their eggs in damp places, such as rotting matter.[86] Some species of insects, like the cockroach Blaptica dubia, as well as juvenile aphids and tsetse flies, are ovoviviparous. The eggs of ovoviviparous animals develop entirely inside the female, and then hatch immediately upon being laid.[6] Some other species, such as those in the genus of cockroaches known as Diploptera, are viviparous, and thus gestate inside the mother and are born alive.[38]: 129, 131, 134–135  Some insects, like parasitic wasps, show polyembryony, where a single fertilized egg divides into many and in some cases thousands of separate embryos.[38]: 136–137  Insects may be univoltine, bivoltine or multivoltine, i.e. they may have one, two or many broods (generations) in a year.[87]

 
The different forms of the male (top) and female (bottom) tussock moth Orgyia recens is an example of sexual dimorphism in insects.

Other developmental and reproductive variations include haplodiploidy, polymorphism, paedomorphosis or peramorphosis, sexual dimorphism, parthenogenesis and more rarely hermaphroditism.[38]: 143 [88] In haplodiploidy, which is a type of sex-determination system, the offspring's sex is determined by the number of sets of chromosomes an individual receives. This system is typical in bees and wasps.[89] Polymorphism is where a species may have different morphs or forms, as in the oblong winged katydid, which has four different varieties: green, pink and yellow or tan. Some insects may retain phenotypes that are normally only seen in juveniles; this is called paedomorphosis. In peramorphosis, an opposite sort of phenomenon, insects take on previously unseen traits after they have matured into adults. Many insects display sexual dimorphism, in which males and females have notably different appearances, such as the moth Orgyia recens as an exemplar of sexual dimorphism in insects.

Some insects use parthenogenesis, a process in which the female can reproduce and give birth without having the eggs fertilized by a male. Many aphids undergo a form of parthenogenesis, called cyclical parthenogenesis, in which they alternate between one or many generations of asexual and sexual reproduction.[90][91] In summer, aphids are generally female and parthenogenetic; in the autumn, males may be produced for sexual reproduction. Other insects produced by parthenogenesis are bees, wasps and ants, in which they spawn males. However, overall, most individuals are female, which are produced by fertilization. The males are haploid and the females are diploid.[6]

Insect life-histories show adaptations to withstand cold and dry conditions. Some temperate region insects are capable of activity during winter, while some others migrate to a warmer climate or go into a state of torpor.[92] Still other insects have evolved mechanisms of diapause that allow eggs or pupae to survive these conditions.[93]

Metamorphosis

Metamorphosis in insects is the biological process of development all insects must undergo. There are two forms of metamorphosis: incomplete metamorphosis and complete metamorphosis.

Incomplete metamorphosis

Hemimetabolous insects, those with incomplete metamorphosis, change gradually by undergoing a series of molts. An insect molts when it outgrows its exoskeleton, which does not stretch and would otherwise restrict the insect's growth. The molting process begins as the insect's epidermis secretes a new epicuticle inside the old one. After this new epicuticle is secreted, the epidermis releases a mixture of enzymes that digests the endocuticle and thus detaches the old cuticle. When this stage is complete, the insect makes its body swell by taking in a large quantity of water or air, which makes the old cuticle split along predefined weaknesses where the old exocuticle was thinnest.[38]: 142 [94]

Immature insects that go through incomplete metamorphosis are called nymphs or in the case of dragonflies and damselflies, also naiads. Nymphs are similar in form to the adult except for the presence of wings, which are not developed until adulthood. With each molt, nymphs grow larger and become more similar in appearance to adult insects.

 
This southern hawker dragonfly molts its exoskeleton several times during its life as a nymph; shown is the final molt to become a winged adult (eclosion).

Complete metamorphosis

 
Gulf fritillary life cycle, an example of holometabolism.

Holometabolism, or complete metamorphosis, is where the insect changes in four stages, an egg or embryo, a larva, a pupa and the adult or imago. In these species, an egg hatches to produce a larva, which is generally worm-like in form. This worm-like form can be one of several varieties: eruciform (caterpillar-like), scarabaeiform (grub-like), campodeiform (elongated, flattened and active), elateriform (wireworm-like) or vermiform (maggot-like). The larva grows and eventually becomes a pupa, a stage marked by reduced movement and often sealed within a cocoon. There are three types of pupae: obtect, exarate or coarctate. Obtect pupae are compact, with the legs and other appendages enclosed. Exarate pupae have their legs and other appendages free and extended. Coarctate pupae develop inside the larval skin.[38]: 151  Insects undergo considerable change in form during the pupal stage, and emerge as adults. Butterflies are a well-known example of insects that undergo complete metamorphosis, although most insects use this life cycle. Some insects have evolved this system to hypermetamorphosis.

Complete metamorphosis is a trait of the most diverse insect group, the Endopterygota.[38]: 143  Endopterygota includes 11 Orders, the largest being Diptera (flies), Lepidoptera (butterflies and moths), and Hymenoptera (bees, wasps, and ants), and Coleoptera (beetles). This form of development is exclusive to insects and not seen in any other arthropods.

Senses and communication

Many insects possess very sensitive and specialized organs of perception. Some insects such as bees can perceive ultraviolet wavelengths, or detect polarized light, while the antennae of male moths can detect the pheromones of female moths over distances of many kilometers.[95] The yellow paper wasp (Polistes versicolor) is known for its wagging movements as a form of communication within the colony; it can waggle with a frequency of 10.6±2.1 Hz (n=190). These wagging movements can signal the arrival of new material into the nest and aggression between workers can be used to stimulate others to increase foraging expeditions.[96] There is a pronounced tendency for there to be a trade-off between visual acuity and chemical or tactile acuity, such that most insects with well-developed eyes have reduced or simple antennae, and vice versa. There are a variety of different mechanisms by which insects perceive sound; while the patterns are not universal, insects can generally hear sound if they can produce it. Different insect species can have varying hearing, though most insects can hear only a narrow range of frequencies related to the frequency of the sounds they can produce. Mosquitoes have been found to hear up to 2 kHz, and some grasshoppers can hear up to 50 kHz.[97] Certain predatory and parasitic insects can detect the characteristic sounds made by their prey or hosts, respectively. For instance, some nocturnal moths can perceive the ultrasonic emissions of bats, which helps them avoid predation.[38]: 87–94  Insects that feed on blood have special sensory structures that can detect infrared emissions, and use them to home in on their hosts.

Some insects display a rudimentary sense of numbers,[98] such as the solitary wasps that prey upon a single species. The mother wasp lays her eggs in individual cells and provides each egg with a number of live caterpillars on which the young feed when hatched. Some species of wasp always provide five, others twelve, and others as high as twenty-four caterpillars per cell. The number of caterpillars is different among species, but always the same for each sex of larva. The male solitary wasp in the genus Eumenes is smaller than the female, so the mother of one species supplies him with only five caterpillars; the larger female receives ten caterpillars in her cell.

Light production and vision

 
Most insects have compound eyes and two antennae.

A few insects, such as members of the families Poduridae and Onychiuridae (Collembola), Mycetophilidae (Diptera) and the beetle families Lampyridae, Phengodidae, Elateridae and Staphylinidae are bioluminescent. The most familiar group are the fireflies, beetles of the family Lampyridae. Some species are able to control this light generation to produce flashes. The function varies with some species using them to attract mates, while others use them to lure prey. Cave dwelling larvae of Arachnocampa (Mycetophilidae, fungus gnats) glow to lure small flying insects into sticky strands of silk.[99] Some fireflies of the genus Photuris mimic the flashing of female Photinus species to attract males of that species, which are then captured and devoured.[100] The colors of emitted light vary from dull blue (Orfelia fultoni, Mycetophilidae) to the familiar greens and the rare reds (Phrixothrix tiemanni, Phengodidae).[101]

Most insects, except some species of cave crickets, are able to perceive light and dark. Many species have acute vision capable of detecting minute movements. The eyes may include simple eyes or ocelli as well as compound eyes of varying sizes. Many species are able to detect light in the infrared, ultraviolet and visible light wavelengths. Color vision has been demonstrated in many species and phylogenetic analysis suggests that UV-green-blue trichromacy existed from at least the Devonian period between 416 and 359 million years ago.[102]

The individual lenses in compound eyes are immobile, and it was therefore presumed that insects were not able to focus. But research on fruit flies, which is the only insects studied so far, has shown that photoreceptor cells underneath each lens move rapidly in and out of focus in a series of movements called photoreceptor microsaccades. This gives them a much clearer image of the world than previously assumed.[103]

Sound production and hearing

Insects were the earliest organisms to produce and sense sounds. Hearing has evolved independently at least 19 times in different insect groups.[104] Insects make sounds mostly by mechanical action of appendages. In grasshoppers and crickets, this is achieved by stridulation. Cicadas make the loudest sounds among the insects by producing and amplifying sounds with special modifications to their body to form tymbals and associated musculature. The African cicada Brevisana brevis has been measured at 106.7 decibels at a distance of 50 cm (20 in).[105] Some insects, such as the Helicoverpa zea moths, hawk moths and Hedylid butterflies, can hear ultrasound and take evasive action when they sense that they have been detected by bats.[106][107] Some moths produce ultrasonic clicks that were once thought to have a role in jamming bat echolocation. The ultrasonic clicks were subsequently found to be produced mostly by unpalatable moths to warn bats, just as warning colorations are used against predators that hunt by sight.[108] Some otherwise palatable moths have evolved to mimic these calls.[109] More recently, the claim that some moths can jam bat sonar has been revisited. Ultrasonic recording and high-speed infrared videography of bat-moth interactions suggest the palatable tiger moth really does defend against attacking big brown bats using ultrasonic clicks that jam bat sonar.[110]

Very low sounds are also produced in various species of Coleoptera, Hymenoptera, Lepidoptera, Mantodea and Neuroptera. These low sounds are simply the sounds made by the insect's movement. Through microscopic stridulatory structures located on the insect's muscles and joints, the normal sounds of the insect moving are amplified and can be used to warn or communicate with other insects. Most sound-making insects also have tympanal organs that can perceive airborne sounds. Some species in Hemiptera, such as the corixids (water boatmen), are known to communicate via underwater sounds.[111] Most insects are also able to sense vibrations transmitted through surfaces.

Cricket in garage with familiar call.

Communication using surface-borne vibrational signals is more widespread among insects because of size constraints in producing air-borne sounds.[112] Insects cannot effectively produce low-frequency sounds, and high-frequency sounds tend to disperse more in a dense environment (such as foliage), so insects living in such environments communicate primarily using substrate-borne vibrations.[113] The mechanisms of production of vibrational signals are just as diverse as those for producing sound in insects.

Some species use vibrations for communicating within members of the same species, such as to attract mates as in the songs of the shield bug Nezara viridula.[114] Vibrations can also be used to communicate between entirely different species; lycaenid (gossamer-winged butterfly) caterpillars, which are myrmecophilous (living in a mutualistic association with ants) communicate with ants in this way.[115] The Madagascar hissing cockroach has the ability to press air through its spiracles to make a hissing noise as a sign of aggression;[116] the death's-head hawkmoth makes a squeaking noise by forcing air out of their pharynx when agitated, which may also reduce aggressive worker honey bee behavior when the two are close.[117]

Chemical communication

Chemical communications in animals rely on a variety of aspects including taste and smell. Chemoreception is the physiological response of a sense organ (i.e. taste or smell) to a chemical stimulus where the chemicals act as signals to regulate the state or activity of a cell. A semiochemical is a message-carrying chemical that is meant to attract, repel, and convey information. Types of semiochemicals include pheromones and kairomones. One example is the butterfly Phengaris arion which uses chemical signals as a form of mimicry to aid in predation.[118]

In addition to the use of sound for communication, a wide range of insects have evolved chemical means for communication. These semiochemicals are often derived from plant metabolites including those meant to attract, repel and provide other kinds of information. Pheromones, a type of semiochemical, are used for attracting mates of the opposite sex, for aggregating conspecific individuals of both sexes, for deterring other individuals from approaching, to mark a trail, and to trigger aggression in nearby individuals. Allomones benefit their producer by the effect they have upon the receiver. Kairomones benefit their receiver instead of their producer. Synomones benefit the producer and the receiver. While some chemicals are targeted at individuals of the same species, others are used for communication across species. The use of scents is especially well-developed in social insects.[38]: 96–105  Cuticular hydrocarbons are nonstructural materials produced and secreted to the cuticle surface to fight desiccation and pathogens. They are important, too, as pheromones, especially in social insects.[119]

Social behavior

 
A cathedral mound created by termites (Isoptera).

Social insects, such as termites, ants and many bees and wasps, are the most familiar species of eusocial animals.[120] They live together in large well-organized colonies that may be so tightly integrated and genetically similar that the colonies of some species are sometimes considered superorganisms. It is sometimes argued that the various species of honey bee are the only invertebrates (and indeed one of the few non-human groups) to have evolved a system of abstract symbolic communication where a behavior is used to represent and convey specific information about something in the environment. In this communication system, called dance language, the angle at which a bee dances represents a direction relative to the sun, and the length of the dance represents the distance to be flown.[38]: 309–311  Though perhaps not as advanced as honey bees, bumblebees also potentially have some social communication behaviors. Bombus terrestris, for example, exhibit a faster learning curve for visiting unfamiliar, yet rewarding flowers, when they can see a conspecific foraging on the same species.[121]

Only insects that live in nests or colonies demonstrate any true capacity for fine-scale spatial orientation or homing. This can allow an insect to return unerringly to a single hole a few millimeters in diameter among thousands of apparently identical holes clustered together, after a trip of up to several kilometers' distance. In a phenomenon known as philopatry, insects that hibernate have shown the ability to recall a specific location up to a year after last viewing the area of interest.[122] A few insects seasonally migrate large distances between different geographic regions (e.g., the overwintering areas of the monarch butterfly).[38]: 14 

Care of young

The eusocial insects build nests, guard eggs, and provide food for offspring full-time. Most insects, however, lead short lives as adults, and rarely interact with one another except to mate or compete for mates. A small number exhibit some form of parental care, where they will at least guard their eggs, and sometimes continue guarding their offspring until adulthood, and possibly even feeding them. Another simple form of parental care is to construct a nest (a burrow or an actual construction, either of which may be simple or complex), store provisions in it, and lay an egg upon those provisions. The adult does not contact the growing offspring, but it nonetheless does provide food. This sort of care is typical for most species of bees and various types of wasps.[123]

Locomotion

Flight

 
Basic motion of the insect wing in insect with an indirect flight mechanism scheme of dorsoventral cut through a thorax segment with a wings, b joints, c dorsoventral muscles, d longitudinal muscles.

Insects are the only group of invertebrates to have developed flight. The evolution of insect wings has been a subject of debate. Some entomologists suggest that the wings are from paranotal lobes, or extensions from the insect's exoskeleton called the nota, called the paranotal theory. Other theories are based on a pleural origin. These theories include suggestions that wings originated from modified gills, spiracular flaps or as from an appendage of the epicoxa. The epicoxal theory suggests the insect wings are modified epicoxal exites, a modified appendage at the base of the legs or coxa.[124] In the Carboniferous age, some of the Meganeura dragonflies had as much as a 50 cm (20 in) wide wingspan. The appearance of gigantic insects has been found to be consistent with high atmospheric oxygen. The respiratory system of insects constrains their size, however the high oxygen in the atmosphere allowed larger sizes.[125] The largest flying insects today are much smaller, with the largest wingspan belonging to the white witch moth (Thysania agrippina), at approximately 28 cm (11 in).[126]

Insect flight has been a topic of great interest in aerodynamics due partly to the inability of steady-state theories to explain the lift generated by the tiny wings of insects. But insect wings are in motion, with flapping and vibrations, resulting in churning and eddies, and the misconception that physics says "bumblebees can't fly" persisted throughout most of the twentieth century.

Unlike birds, many small insects are swept along by the prevailing winds[127] although many of the larger insects are known to make migrations. Aphids are known to be transported long distances by low-level jet streams.[128] As such, fine line patterns associated with converging winds within weather radar imagery, like the WSR-88D radar network, often represent large groups of insects.[129] Radar can also be deliberately used to monitor insects.[130]

Walking

Spatial and temporal stepping pattern of walking desert ants performing an alternating tripod gait. Recording rate: 500 fps, Playback rate: 10 fps.

Many adult insects use six legs for walking, with an alternating tripod gait. This allows for rapid walking while always having a stable stance; it has been studied extensively in cockroaches and ants. For the first step, the middle right leg and the front and rear left legs are in contact with the ground and move the insect forward, while the front and rear right leg and the middle left leg are lifted and moved forward to a new position. When they touch the ground to form a new stable triangle the other legs can be lifted and brought forward in turn and so on.[131] The purest form of the tripedal gait is seen in insects moving at high speeds. However, this type of locomotion is not rigid and insects can adapt a variety of gaits. For example, when moving slowly, turning, avoiding obstacles, climbing or slippery surfaces, four (tetrapod) or more feet (wave-gait[132]) may be touching the ground. Insects can also adapt their gait to cope with the loss of one or more limbs.

Cockroaches are among the fastest insect runners and, at full speed, adopt a bipedal run to reach a high velocity in proportion to their body size. As cockroaches move very quickly, they need to be video recorded at several hundred frames per second to reveal their gait. More sedate locomotion is seen in the stick insects or walking sticks (Phasmatodea). A few insects have evolved to walk on the surface of the water, especially members of the Gerridae family, commonly known as water striders. A few species of ocean-skaters in the genus Halobates even live on the surface of open oceans, a habitat that has few insect species.[133]

Insect walking is of particular interest as practical form of robot locomotion. The study of insects and bipeds has a significant impact on possible robotic methods of transport. This may allow new hexapod robots to be designed that can traverse terrain that robots with wheels may be unable to handle.[131]

Swimming

 
The backswimmer Notonecta glauca underwater, showing its paddle-like hindleg adaptation

A large number of insects live either part or the whole of their lives underwater. In many of the more primitive orders of insect, the immature stages are spent in an aquatic environment. Some groups of insects, like certain water beetles, have aquatic adults as well.[80]

Many of these species have adaptations to help in under-water locomotion. Water beetles and water bugs have legs adapted into paddle-like structures. Dragonfly naiads use jet propulsion, forcibly expelling water out of their rectal chamber.[134] Some species like the water striders are capable of walking on the surface of water. They can do this because their claws are not at the tips of the legs as in most insects, but recessed in a special groove further up the leg; this prevents the claws from piercing the water's surface film.[80] Other insects such as the Rove beetle Stenus are known to emit pygidial gland secretions that reduce surface tension making it possible for them to move on the surface of water by Marangoni propulsion (also known by the German term Entspannungsschwimmen).[135][136]

Ecology

Insect ecology is the scientific study of how insects, individually or as a community, interact with the surrounding environment or ecosystem.[137]: 3  Insects play one of the most important roles in their ecosystems, which includes many roles, such as soil turning and aeration, dung burial, pest control, pollination and wildlife nutrition. An example is the beetles, which are scavengers that feed on dead animals and fallen trees and thereby recycle biological materials into forms found useful by other organisms.[138] These insects, and others, are responsible for much of the process by which topsoil is created.[38]: 3, 218–228 

Defense and predation

 
Perhaps one of the most well-known examples of mimicry, the viceroy butterfly (top) appears very similar to the monarch butterfly (bottom).[139]

Insects are mostly soft bodied, fragile and almost defenseless compared to other, larger lifeforms. The immature stages are small, move slowly or are immobile, and so all stages are exposed to predation and parasitism. Insects then have a variety of defense strategies to avoid being attacked by predators or parasitoids. These include camouflage, mimicry, toxicity and active defense.[140]

Camouflage is an important defense strategy, which involves the use of coloration or shape to blend into the surrounding environment.[141] This sort of protective coloration is common and widespread among beetle families, especially those that feed on wood or vegetation, such as many of the leaf beetles (family Chrysomelidae) or weevils. In some of these species, sculpturing or various colored scales or hairs cause the beetle to resemble bird dung or other inedible objects. Many of those that live in sandy environments blend in with the coloration of the substrate.[140] Most phasmids are known for effectively replicating the forms of sticks and leaves, and the bodies of some species (such as O. macklotti and Palophus centaurus) are covered in mossy or lichenous outgrowths that supplement their disguise. Very rarely, a species may have the ability to change color as their surroundings shift (Bostra scabrinota). In a further behavioral adaptation to supplement crypsis, a number of species have been noted to perform a rocking motion where the body is swayed from side to side that is thought to reflect the movement of leaves or twigs swaying in the breeze. Another method by which stick insects avoid predation and resemble twigs is by feigning death (catalepsy), where the insect enters a motionless state that can be maintained for a long period. The nocturnal feeding habits of adults also aids Phasmatodea in remaining concealed from predators.[142]

Another defense that often uses color or shape to deceive potential enemies is mimicry. A number of longhorn beetles (family Cerambycidae) bear a striking resemblance to wasps, which helps them avoid predation even though the beetles are in fact harmless.[140] Batesian and Müllerian mimicry complexes are commonly found in Lepidoptera. Genetic polymorphism and natural selection give rise to otherwise edible species (the mimic) gaining a survival advantage by resembling inedible species (the model). Such a mimicry complex is referred to as Batesian. One of the most famous examples, where the viceroy butterfly was long believed to be a Batesian mimic of the inedible monarch, was later disproven, as the viceroy is more toxic than the monarch, and this resemblance is now considered to be a case of Müllerian mimicry.[139] In Müllerian mimicry, inedible species, usually within a taxonomic order, find it advantageous to resemble each other so as to reduce the sampling rate by predators who need to learn about the insects' inedibility. Taxa from the toxic genus Heliconius form one of the most well known Müllerian complexes.[143]

Chemical defense is another important defense found among species of Coleoptera and Lepidoptera, usually being advertised by bright colors, such as the monarch butterfly. They obtain their toxicity by sequestering the chemicals from the plants they eat into their own tissues. Some Lepidoptera manufacture their own toxins. Predators that eat poisonous butterflies and moths may become sick and vomit violently, learning not to eat those types of species; this is actually the basis of Müllerian mimicry. A predator who has previously eaten a poisonous lepidopteran may avoid other species with similar markings in the future, thus saving many other species as well.[144] Some ground beetles of the family Carabidae can spray chemicals from their abdomen with great accuracy, to repel predators.[140]

Pollination

 
European honey bee carrying pollen in a pollen basket back to the hive

Pollination is the process by which pollen is transferred in the reproduction of plants, thereby enabling fertilisation and sexual reproduction. Most flowering plants require an animal to do the transportation. While other animals are included as pollinators, the majority of pollination is done by insects.[145] Because insects usually receive benefit for the pollination in the form of energy rich nectar it is a grand example of mutualism. The various flower traits (and combinations thereof) that differentially attract one type of pollinator or another are known as pollination syndromes. These arose through complex plant-animal adaptations. Pollinators find flowers through bright colorations, including ultraviolet, and attractant pheromones. The study of pollination by insects is known as anthecology.

Parasitism

Many insects are parasites of other insects such as the parasitoid wasps. These insects are known as entomophagous parasites. They can be beneficial due to their devastation of pests that can destroy crops and other resources. Many insects have a parasitic relationship with humans such as the mosquito. These insects are known to spread diseases such as malaria and yellow fever and because of such, mosquitoes indirectly cause more deaths of humans than any other animal.

Relationship to humans

As pests

 

Many insects are considered pests by humans. Insects commonly regarded as pests include those that are parasitic (e.g. lice, bed bugs), transmit diseases (mosquitoes, flies), damage structures (termites), or destroy agricultural goods (locusts, weevils). Many entomologists are involved in various forms of pest control, as in research for companies to produce insecticides, but increasingly rely on methods of biological pest control, or biocontrol. Biocontrol uses one organism to reduce the population density of another organism—the pest—and is considered a key element of integrated pest management.[146][147]

Despite the large amount of effort focused at controlling insects, human attempts to kill pests with insecticides can backfire. If used carelessly, the poison can kill all kinds of organisms in the area, including insects' natural predators, such as birds, mice and other insectivores. The effects of DDT's use exemplifies how some insecticides can threaten wildlife beyond intended populations of pest insects.[148][149]

In beneficial roles

 
Because they help flowering plants to cross-pollinate, some insects are critical to agriculture. This European honey bee is gathering nectar while pollen collects on its body.
 
A robberfly with its prey, a hoverfly. Insectivorous relationships such as these help control insect populations.

Although pest insects attract the most attention, many insects are beneficial to the environment and to humans. Some insects, like wasps, bees, butterflies and ants, pollinate flowering plants. Pollination is a mutualistic relationship between plants and insects. As insects gather nectar from different plants of the same species, they also spread pollen from plants on which they have previously fed. This greatly increases plants' ability to cross-pollinate, which maintains and possibly even improves their evolutionary fitness. This ultimately affects humans since ensuring healthy crops is critical to agriculture. As well as pollination ants help with seed distribution of plants. This helps to spread the plants, which increases plant diversity. This leads to an overall better environment.[150] A serious environmental problem is the decline of populations of pollinator insects, and a number of species of insects are now cultured primarily for pollination management in order to have sufficient pollinators in the field, orchard or greenhouse at bloom time.[151]: 240–243  Another solution, as shown in Delaware, has been to raise native plants to help support native pollinators like L. vierecki.[152]

The economic value of pollination by insects has been estimated to be about $34 billion in the US alone.[153]

Products made by insects. Insects also produce useful substances such as honey, wax, lacquer and silk. Honey bees have been cultured by humans for thousands of years for honey, although contracting for crop pollination is becoming more significant for beekeepers. The silkworm has greatly affected human history, as silk-driven trade established relationships between China and the rest of the world.

Pest control. Insectivorous insects, or insects that feed on other insects, are beneficial to humans if they eat insects that could cause damage to agriculture and human structures. For example, aphids feed on crops and cause problems for farmers, but ladybugs feed on aphids, and can be used as a means to significantly reduce pest aphid populations. While birds are perhaps more visible predators of insects, insects themselves account for the vast majority of insect consumption. Ants also help control animal populations by consuming small vertebrates.[154] Without predators to keep them in check, insects can undergo almost unstoppable population explosions.[38]: 328–348 [38]: 400 [155][156]

Medical uses. Insects are also used in medicine, for example fly larvae (maggots) were formerly used to treat wounds to prevent or stop gangrene, as they would only consume dead flesh. This treatment is finding modern usage in some hospitals. Recently insects have also gained attention as potential sources of drugs and other medicinal substances.[157] Adult insects, such as crickets and insect larvae of various kinds, are also commonly used as fishing bait.[158]

In research

 
The common fruit fly Drosophila melanogaster is one of the most widely used organisms in biological research.

Insects play important roles in biological research. For example, because of its small size, short generation time and high fecundity, the common fruit fly Drosophila melanogaster is a model organism for studies in the genetics of eukaryotes. D. melanogaster has been an essential part of studies into principles like genetic linkage, interactions between genes, chromosomal genetics, development, behavior and evolution. Because genetic systems are well conserved among eukaryotes, understanding basic cellular processes like DNA replication or transcription in fruit flies can help to understand those processes in other eukaryotes, including humans.[159] The genome of D. melanogaster was sequenced in 2000, reflecting the organism's important role in biological research. It was found that 70% of the fly genome is similar to the human genome, supporting the evolution theory.[160]

As food

In some cultures, insects form part of the normal diet. In Africa, for instance, locally abundant species of both locusts and termites are a common traditional human food source.[161] Some, especially deep-fried cicadas, are considered to be delicacies. Insects have a high protein content for their mass, and some authors suggest their potential as a major source of protein in human nutrition.[38]: 10–13  In most first-world countries, however, entomophagy (the eating of insects), is taboo.[162] They are also recommended by militaries as a survival food for troops in adversity.[163] Since it is impossible to eliminate pest insects from the human food chain, insects are inadvertently present in many foods, especially grains. Food safety laws in many countries do not prohibit insect parts in food, but rather limit their quantity. According to cultural materialist anthropologist Marvin Harris, the eating of insects is taboo in cultures that have other protein sources such as fish or livestock.

Because of the abundance of insects and a worldwide concern of food shortages, the Food and Agriculture Organization of the United Nations considers that the world may have to, in the future, regard the prospects of eating insects as a food staple. Insects are noted for their nutrients, having a high content of protein, minerals and fats and are eaten by one-third of the global population.[164]

As feed

Several insect species such as the black soldier fly or the housefly in their maggot forms, as well as beetle larvae such as mealworms can be processed and used as feed for farmed animals such as chicken, fish and pigs.[165]

In other products

Black soldier fly larvae can provide protein, fats for use in cosmetics,[166] and chitin.

Also, insect cooking oil, insect butter and fatty alcohols can be made from such insects as the superworm (Zophobas morio).[167][168]

As pets

Many species of insects are sold and kept as pets. There are special hobbyist magazines such as "Bugs" (now discontinued).[169]

In culture

Scarab beetles held religious and cultural symbolism in Old Egypt, Greece and some shamanistic Old World cultures. The ancient Chinese regarded cicadas as symbols of rebirth or immortality. In Mesopotamian literature, the epic poem of Gilgamesh has allusions to Odonata that signify the impossibility of immortality. Among the Aborigines of Australia of the Arrernte language groups, honey ants and witchetty grubs served as personal clan totems. In the case of the 'San' bush-men of the Kalahari, it is the praying mantis that holds much cultural significance including creation and zen-like patience in waiting.[38]: 9 

See also

Notes

  1. ^ The Museum of New Zealand notes that "in everyday conversation", bug "refers to land arthropods with at least six legs, such as insects, spiders, and centipedes".[14] In a chapter on "Bugs That Are Not Insects", entomologist Gilbert Walbauer specifies centipedes, millipedes, arachnids (spiders, daddy longlegs, scorpions, mites, chiggers and ticks) as well as the few terrestrial crustaceans (sowbugs and pillbugs), [15] but argues that "including legless creatures such as worms, slugs, and snails among the bugs stretches the word too much".[16]

References

  1. ^ a b Chapman, A. D. (2006). Numbers of living species in Australia and the World. Canberra: Australian Biological Resources Study. ISBN 978-0-642-56850-2. Archived from the original on 30 November 2012.
  2. ^ Wilson, E. O. . Archived from the original on 20 February 2015. Retrieved 17 May 2009.
  3. ^ Novotny, Vojtech; Basset, Yves; Miller, Scott E.; Weiblen, George D.; Bremer, Birgitta; Cizek, Lukas; Drozd, Pavel (2002). "Low host specificity of herbivorous insects in a tropical forest". Nature. 416 (6883): 841–844. Bibcode:2002Natur.416..841N. doi:10.1038/416841a. PMID 11976681. S2CID 74583.
  4. ^ a b Erwin, Terry L. (1997). Biodiversity at its utmost: Tropical Forest Beetles (PDF). pp. 27–40. (PDF) from the original on 9 November 2018. Retrieved 16 December 2017. In: Reaka-Kudla, M.L.; Wilson, D. E.; Wilson, E. O., eds. (1997). Biodiversity II. Joseph Henry Press, Washington, D.C. ISBN 9780309052276.
  5. ^ Erwin, Terry L. (1982). "Tropical forests: their richness in Coleoptera and other arthropod species" (PDF). The Coleopterists Bulletin. 36: 74–75. (PDF) from the original on 23 September 2015. Retrieved 16 September 2018.
  6. ^ a b c "insect physiology" McGraw-Hill Encyclopedia of Science and Technology, Ch. 9, p. 233, 2007
  7. ^ Wigglesworth, Vincent Brian. "Insect". Encyclopædia Britannica online. from the original on 4 May 2012. Retrieved 19 April 2012.
  8. ^ "Insects could be the key to meeting food needs of growing global population". the Guardian. 31 July 2010. Retrieved 13 January 2022.
  9. ^ Ramos-Elorduy, Julieta; Menzel, Peter (1998). Creepy crawly cuisine: the gourmet guide to edible insects. Inner Traditions / Bear & Company. p. 44. ISBN 978-0-89281-747-4. Retrieved 23 April 2014.
  10. ^ a b Harper, Douglas; McCormack, Dan (November 2001). "Online Etymological Dictionary". LogoBee.com. p. 1. from the original on 11 January 2012. Retrieved 1 November 2011.
  11. ^ Lewis, Charlton T.; Short, Charles (1879). "insĕco". A Latin Dictionary. Perseus Digital Library.
  12. ^ Liddell, Henry George; Scott, Robert (1940). "ἔντομος". A Greek-English Lexicon. Perseus Digital Library.
  13. ^ "Insect translations".
  14. ^ "What is a bug? Insects, arachnids, and myriapods" at Museum of New Zealand Te Papa Tongarewa website. Accessed 10 March 2022.
  15. ^ Gilbert Waldbauer. The Handy Bug Answer Book. Visible Ink, 1998. pp. 5-26. ISBN 9781578590490
  16. ^ a b Gilbert Waldbauer. The Handy Bug Answer Book. Visible Ink, 1998. p. 1. ISBN 9781578590490
  17. ^ a b Sasaki, Go; Sasaki, Keisuke; Machida, Ryuichiro; Miyata, Takashi; Su, Zhi-Hui (2013). "Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha". BMC Evolutionary Biology. 13: 236. doi:10.1186/1471-2148-13-236. PMC 4228403. PMID 24176097.
  18. ^ Chinery 1993, p. 10.
  19. ^ Chinery, Michael (1993). Insects of Britain & Northern Europe (3rd ed.). London: HarperCollins. pp. 34–35. ISBN 978-0-00-219918-6.
  20. ^ a b Kjer, Karl M.; Simon, Chris; Yavorskaya, Margarita & Beutel, Rolf G. (2016). "Progress, pitfalls and parallel universes: a history of insect phylogenetics". Journal of the Royal Society Interface. 13 (121): 121. doi:10.1098/rsif.2016.0363. PMC 5014063. PMID 27558853.
  21. ^ Hughes, Joseph & Longhorn, Stuart (2016). "The role of next generation sequencing technologies in shaping the future of insect molecular systematics". In Olson, Peter D.; Hughes, Joseph & Cotton, James A. (eds.). Next Generation Systematics. Cambridge University Press. pp. 28–61. ISBN 978-1-139-23635-5. Retrieved 27 July 2017., pp. 29–30
  22. ^ Garwood, Russell; Edgecombe, Gregory (2011). "Early terrestrial animals, evolution and uncertainty". Evolution: Education and Outreach. 4 (3): 489–501. doi:10.1007/s12052-011-0357-y.
  23. ^ . Palaeos Invertebrates. 3 May 2002. Archived from the original on 15 February 2009. Retrieved 6 May 2009.
  24. ^ Misof, Bernhard; et al. (7 November 2014). "Phylogenomics resolves the timing and pattern of insect evolution". Science. 346 (6210): 763–767. Bibcode:2014Sci...346..763M. doi:10.1126/science.1257570. PMID 25378627. S2CID 36008925. from the original on 18 October 2009. Retrieved 17 October 2009.
  25. ^ "Evolution of insect flight". Malcolm W. Browne. 25 October 1994. from the original on 18 February 2007. Retrieved 6 May 2009.
  26. ^ Dunn, C. W.; Hejnol, A.; Matus, D. Q.; et al. (10 April 2008). "Broad phylogenomic sampling improves resolution of the animal tree of life". Nature. 452 (7188): 745–749. Bibcode:2008Natur.452..745D. doi:10.1038/nature06614. PMID 18322464. S2CID 4397099.
  27. ^ Wiegmann, Brian M.; Trautwein, Michelle D.; Winkler, Isaac S.; Barr, Norman B.; Kim, Jung-Wook; Lambkin, Christine; Bertone, Matthew A.; Cassel, Brian K.; Bayless, Keith M.; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Pape, Thomas; Sinclair, Bradley J.; Skevington, Jeffrey H.; Blagoderov, Vladimir; Caravas, Jason; Kutty, Sujatha Narayanan; Schmidt-Ott, Urs; Kampmeier, Gail E.; Thompson, F. Christian; Grimaldi, David A.; Beckenbach, Andrew T.; Courtney, Gregory W.; Friedrich, Markus; Meier, Rudolf; Yeates, David K. (14 March 2011). "Episodic radiations in the fly tree of life". Proceedings of the National Academy of Sciences. 108 (14): 5690–5695. doi:10.1073/pnas.1012675108. PMC 3078341. PMID 21402926.
  28. ^ Grimaldi, D.; Engel, M. S. (2005). Evolution of the Insects. Cambridge University Press. ISBN 978-0-521-82149-0.
  29. ^ Garwood, Russell J.; Sutton, Mark D. (2010). "X-ray micro-tomography of Carboniferous stem-Dictyoptera: New insights into early insects". Biology Letters. 6 (5): 699–702. doi:10.1098/rsbl.2010.0199. PMC 2936155. PMID 20392720.
  30. ^ Rasnitsyn, A. P.; Quicke, D. L. J. (2002). History of Insects. Kluwer Academic Publishers. ISBN 978-1-4020-0026-3.
  31. ^ "Researchers Discover Oldest Fossil Impression of a Flying Insect". Newswise. 14 October 2008. from the original on 10 November 2014. Retrieved 21 September 2014.
  32. ^ Engel, Michael S.; Grimaldi, David A. (2004). "New light shed on the oldest insect". Nature. 427 (6975): 627–630. Bibcode:2004Natur.427..627E. doi:10.1038/nature02291. PMID 14961119. S2CID 4431205.
  33. ^ Haug, Carolin; Haug, Joachim (2017). "The presumed oldest flying insect: more likely a myriapod?". PeerJ. 5: e3402. doi:10.7717/peerj.3402. PMC 5452959. PMID 28584727.
  34. ^ a b Carter, J. Stein (29 March 2005). . University of Cincinnati. Archived from the original on 30 April 2009. Retrieved 9 May 2009.
  35. ^ Sroka, Günter; Staniczek, Arnold H.; Bechly (December 2014). "Revision of the giant pterygote insect Bojophlebia prokopi Kukalová-Peck 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects". Journal of Systematic Palaeontology. 13 (11): 963–982. doi:10.1080/14772019.2014.987958. S2CID 84037275. Retrieved 21 May 2019.
  36. ^ Prokop, Jakub (2017). "Redefining the extinct orders Miomoptera & Hypoperlida as stem acercarian insects". BMC Evolutionary Biology. 17 (1): 205. doi:10.1186/s12862-017-1039-3. PMC 5574135. PMID 28841819.
  37. ^ Wipfler, B. (February 2019). "Evolutionary history of Polyneoptera & its implications for our understanding of early winged insects". Proceedings of the National Academy of Sciences. 116 (8): 3024–3029. doi:10.1073/pnas.1817794116. PMC 6386694. PMID 30642969.
  38. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Gullan, P. J.; Cranston, P. S. (2005). The Insects: An Outline of Entomology (3rd ed.). Oxford: Blackwell Publishing. ISBN 978-1-4051-1113-3.
  39. ^ Kendall, David A. (2009). . Archived from the original on 20 May 2009. Retrieved 9 May 2009.
  40. ^ Blanke, A., Machida, R., Szucsich, N.U., Wilde, F. and Misof, B. (2015) Mandibles with two joints evolved much earlier in the history of insects: dicondyly is a synapomorphy of bristletails, silverfish and winged insects. Syst. Entomol. 40: 357-364. https://doi.org/10.1111/syen.12107
  41. ^ Gilliott, Cedric (1995). Entomology (2nd ed.). Springer-Verlag New York, LLC. p. 96. ISBN 978-0-306-44967-3.
  42. ^ Kapoor, V.C.C. (1998). Principles and Practices of Animal Taxonomy. Vol. 1 (1st ed.). Science Publishers. p. 48. ISBN 978-1-57808-024-3.
  43. ^ Johnson, K. P.; Yoshizawa, K.; Smith, V. S. (2004). "Multiple origins of parasitism in lice". Proceedings of the Royal Society of London. 271 (1550): 1771–1776. doi:10.1098/rspb.2004.2798. PMC 1691793. PMID 15315891.
  44. ^ Terry, M. D.; Whiting, M. F. (2005). "Mantophasmatodea and phylogeny of the lower neopterous insects". Cladistics. 21 (3): 240–257. doi:10.1111/j.1096-0031.2005.00062.x. S2CID 86259809.
  45. ^ Lo, Nathan; Tokuda, Gaku; Watanabe, Hirofumi; et al. (2000). "Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches". Current Biology. 10 (13): 801–804. doi:10.1016/S0960-9822(00)00561-3. PMID 10898984. S2CID 14059547.
  46. ^ Whiting, M. F. (2002). "Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera". Zoologica Scripta. 31 (1): 93–104. doi:10.1046/j.0300-3256.2001.00095.x. S2CID 56100681.
  47. ^ Sahney, S.; Benton, M. J.; Falcon-Lang, H. J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica". Geology. 38 (12): 1079–1082. Bibcode:2010Geo....38.1079S. doi:10.1130/G31182.1. S2CID 128642769.
  48. ^ . University of Cincinnati. Archived from the original on 30 April 2009. Retrieved 9 May 2009.
  49. ^ a b Stork, Nigel E. (7 January 2018). "How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?". Annual Review of Entomology. 63 (1): 31–45. doi:10.1146/annurev-ento-020117-043348. PMID 28938083. S2CID 23755007.
  50. ^ . 7 February 2015. Archived from the original on 7 February 2015. Retrieved 19 July 2021.
  51. ^ Dirzo, Rodolfo; Young, Hillary; Galetti, Mauro; Ceballos, Gerardo; Isaac, Nick; Collen, Ben (25 July 2014), "Defaunation in the Anthropocene" (PDF), Science, 345 (6195): 401–406, Bibcode:2014Sci...345..401D, doi:10.1126/science.1251817, PMID 25061202, S2CID 206555761, (PDF) from the original on 22 September 2017, retrieved 28 April 2019
  52. ^ Briggs, John C (October 2017). "Emergence of a sixth mass extinction?". Biological Journal of the Linnean Society. 122 (2): 243–248. doi:10.1093/biolinnean/blx063.
  53. ^ Owens, Avalon C. S.; Lewis, Sara M. (November 2018). "The impact of artificial light at night on nocturnal insects: A review and synthesis". Ecology and Evolution. 8 (22): 11337–11358. doi:10.1002/ece3.4557. PMC 6262936. PMID 30519447.
  54. ^ Tscharntke, Teja; Klein, Alexandra M.; Kruess, Andreas; Steffan-Dewenter, Ingolf; Thies, Carsten (August 2005). "Landscape perspectives on agricultural intensification and biodiversity and ecosystem service management". Ecology Letters. 8 (8): 857–874. doi:10.1111/j.1461-0248.2005.00782.x. S2CID 54532666.
  55. ^ Insect-plant interactions in a crop protection perspective. 19 January 2017. pp. 313–320. ISBN 978-0-12-803324-1.
  56. ^ Braak, Nora; Neve, Rebecca; Jones, Andrew K.; Gibbs, Melanie; Breuker, Casper J. (November 2018). "The effects of insecticides on butterflies – A review". Environmental Pollution. 242 (Pt A): 507–518. doi:10.1016/j.envpol.2018.06.100. PMID 30005263. S2CID 51625489.
  57. ^ Wagner, David L.; Van Driesche, Roy G. (January 2010). "Threats Posed to Rare or Endangered Insects by Invasions of Nonnative Species". Annual Review of Entomology. 55 (1): 547–568. doi:10.1146/annurev-ento-112408-085516. PMID 19743915.
  58. ^ Sánchez-Bayo, Francisco; Wyckhuys, Kris A.G. (April 2019). "Worldwide decline of the entomofauna: A review of its drivers". Biological Conservation. 232: 8–27. doi:10.1016/j.biocon.2019.01.020.
  59. ^ Saunders, Manu (16 February 2019). "Insectageddon is a great story. But what are the facts?". Ecology is not a dirty word. from the original on 25 February 2019. Retrieved 24 February 2019.
  60. ^ van Klink, Roel (24 April 2020), "Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances", Science, 368 (6489): 417–420, Bibcode:2020Sci...368..417V, doi:10.1126/science.aax9931, PMID 32327596, S2CID 216106896
  61. ^ McGrath, Matt (23 April 2020). "'Insect apocalypse' more complex than thought". BBC News. Retrieved 24 April 2020.
  62. ^ a b "Global Insect Biodiversity: Frequently Asked Questions" (PDF). Entomological Society of America. Retrieved 6 March 2019.
  63. ^ . The University of Nebraska Department of Entomology. Archived from the original on 2 June 2009. Retrieved 3 May 2009.
  64. ^ a b c d e f Resh, Vincent H.; Carde, Ring T. (2009). Encyclopedia of Insects (2 ed.). U.S.: Academic Press. ISBN 978-0-12-374144-8.
  65. ^ The innovation of the final moult and the origin of insect metamorphosis
  66. ^ Schneiderman, Howard A. (1960). "Discontinuous respiration in insects: role of the spiracles". The Biological Bulletin. 119 (3): 494–528. doi:10.2307/1539265. JSTOR 1539265. from the original on 25 June 2009. Retrieved 22 May 2009.
  67. ^ "insect - Nervous system | Britannica". www.britannica.com. Retrieved 13 July 2022.
  68. ^ Eisemann, C.H.; Jorgensen, W. K.; Merritt, D. J.; Rice, M. J.; Cribb, B. W.; Webb, P. D.; Zalucki, M. P. (1984). "Do insects feel pain? – A biological view". Cellular and Molecular Life Sciences. 40 (2): 1420–1423. doi:10.1007/BF01963580. S2CID 3071.
  69. ^ Gibbons, Matilda; Sarlak, Sajedeh; Chittka, Lars (13 July 2022). "Descending control of nociception in insects?". Proceedings of the Royal Society B: Biological Sciences. 289 (1978): 20220599. doi:10.1098/rspb.2022.0599. PMC 9257290. PMID 35858073. S2CID 250284130.
  70. ^ Tracey, J.; Wilson, R. I.; Laurent, G.; Benzer, S. (2003). "painless, a Drosophila gene essential for nociception". Cell. 113 (2): 261–273. doi:10.1016/S0092-8674(03)00272-1. PMID 12705873. S2CID 1424315.
  71. ^ Sømme, L. S. (14 January 2005). "Sentience and pain in invertebrates" (PDF). Norwegian Scientific Committee for Food Safety. (PDF) from the original on 17 October 2011. Retrieved 30 September 2009.
  72. ^ Dukas, Reuven (1 January 2008). "Evolutionary Biology of Insect Learning". Annual Review of Entomology. 53 (1): 145–160. doi:10.1146/annurev.ento.53.103106.093343. PMID 17803459.
  73. ^ "General Entomology – Digestive and Excritory system". NC state University. from the original on 23 May 2009. Retrieved 3 May 2009.
  74. ^ Bueno, Odair Correa; Tanaka, Francisco André Ossamu; de Lima Nogueira, Neusa; Fox, Eduardo Gonçalves Paterson; Rossi, Mônica Lanzoni; Solis, Daniel Russ (1 January 2013). "On the morphology of the digestive system of two Monomorium ant species". Journal of Insect Science. 13 (1): 70. doi:10.1673/031.013.7001. PMC 3835044. PMID 24224520.
  75. ^ "General Entomology – Digestive and Excretory system". NC state University. from the original on 23 May 2009. Retrieved 3 May 2009.
  76. ^ Duncan, Carl D. (1939). A Contribution to The Biology of North American Vespine Wasps (1st ed.). Stanford: Stanford University Press. pp. 24–29.
  77. ^ a b c Nation, James L. (2001). "Digestion". Insect Physiology and Biochemistry (1st ed.). CRC Press. ISBN 978-0-8493-1181-9.
  78. ^ . Argonne National Laboratory. 8 August 2007. Archived from the original on 14 May 2017. Retrieved 15 July 2013.
  79. ^ Chown, S. L.; S. W. Nicholson (2004). Insect Physiological Ecology. New York: Oxford University Press. ISBN 978-0-19-851549-4.
  80. ^ a b c Richard W. Merritt; Kenneth W. Cummins; Martin B. Berg, eds. (2007). An Introduction to the Aquatic Insects of North America (4th ed.). Kendall Hunt Publishers. ISBN 978-0-7575-5049-2.
  81. ^ Merritt, R. W.; K. W. Cummins; M. B. Berg (2007). An Introduction To The Aquatic Insects Of North America. Kendall Hunt Publishing Company. ISBN 978-0-7575-4128-5.
  82. ^ Meyer, John R. (17 February 2006). . NC State University: Department of Entomology, NC State University. p. 1. Archived from the original on 27 September 2009. Retrieved 11 October 2009.
  83. ^ Triplehorn, Charles (2005). Borror and DeLong's introduction to the study of insects. Johnson, Norman F., Borror, Donald J. (7th ed.). Belmont, California: Thompson Brooks/Cole. pp. 27–28. ISBN 978-0030968358. OCLC 55793895.
  84. ^ Chapman, R. F. (1998). The Insects; Structure and Function (4th ed.). Cambridge, UK: Cambridge University Press. ISBN 978-0521578905.
  85. ^ Wyatt, G. R. (1961). "The Biochemistry of Insect Hemolymph". Annual Review of Entomology. 6: 75–102. doi:10.1146/annurev.en.06.010161.000451. S2CID 218693.
  86. ^ Jacobs, C. G.; Rezende, G. L.; Lamers, G. E.; van der Zee, M. (2013). "The extraembryonic serosa protects the insect egg against desiccation". Proceedings of the Royal Society of London B. 280 (1764): 20131082. doi:10.1098/rspb.2013.1082. PMC 3712428. PMID 23782888.
  87. ^ "Glossary of Lepidopteran and Odonate anatomy". Rare species atlas. Virginia Department of Conservation and Recreation. 2013. from the original on 4 October 2013. Retrieved 14 June 2013.
  88. ^ Judson, Olivia (14 August 2002). Dr. Tatiana's Sex Advice to All Creation: The Definitive Guide to the Evolutionary Biology of Sex. Macmillan. p. 198. ISBN 978-0-8050-6331-8.
  89. ^ Hughes, William O. H.; Oldroyd, Benjamin P.; Beekman, Madeleine; Ratnieks, Francis L. W. (2008). "Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality". Science. 320 (5880): 1213–1216. Bibcode:2008Sci...320.1213H. doi:10.1126/science.1156108. PMID 18511689. S2CID 20388889.
  90. ^ Nevo, E.; Coll, M. (2001). "Effect of nitrogen fertilization on Aphis gossypii (Homoptera: Aphididae): variation in size, color, and reproduction". Journal of Economic Entomology. 94 (1): 27–32. doi:10.1603/0022-0493-94.1.27. PMID 11233124. S2CID 25758038.
  91. ^ Jahn, G. C.; Almazan, L .P.; Pacia, J. (2005). "Effect of nitrogen fertilizer on the intrinsic rate of increase of the rusty plum aphid, Hysteroneura setariae (Thomas) (Homoptera: Aphididae) on rice (Oryza sativa L.)" (PDF). Environmental Entomology. 34 (4): 938–943. doi:10.1603/0046-225X-34.4.938. S2CID 1941852. Archived from the original (PDF) on 9 September 2010.
  92. ^ Hadley, Debbie. "Where do insects go in winter?". About.com. from the original on 18 January 2012. Retrieved 19 April 2012.
  93. ^ Lee, Richard E. Jr. (1989). "Insect Cold-Hardiness: To Freeze or Not to Freeze" (PDF). BioScience. 39 (5): 308–313. doi:10.2307/1311113. JSTOR 1311113. (PDF) from the original on 10 January 2011. Retrieved 2 December 2009.
  94. ^ Ruppert, E. E.; Fox, R. S.; Barnes, R. D. (2004). Invertebrate Zoology (7th ed.). Brooks / Cole. pp. 523–524. ISBN 978-0-03-025982-1.
  95. ^ "Insects" (PDF). Alien Life Forms. p. 4. (PDF) from the original on 8 July 2011. Retrieved 17 May 2009.
  96. ^ Esch, Harald (1971). "Wagging Movements in the Wasp Polistes versicolor Vulgaris Bequaert". Zeitschrift für Vergleichende Physiologie. 72 (3): 221–225. doi:10.1007/bf00297781. S2CID 46240291.
  97. ^ Cator, L.J.; Arthur, B.J.; Harrington, L.C.; Hoy, R.R. (2009). "Harmonic convergence in the love songs of the dengue vector mosquito". Science. 323 (5917): 1077–1079. Bibcode:2009Sci...323.1077C. doi:10.1126/science.1166541. PMC 2847473. PMID 19131593.
  98. ^ Möller, R. (2002). A Biorobotics Approach to the Study of Insect Visual Homing Strategies (PDF) (in German). p. 11. (PDF) from the original on 10 January 2011. Retrieved 23 April 2009.
  99. ^ Pugsley, Chris W. (1983). (PDF). New Zealand Entomologist. 7 (4): 419–424. doi:10.1080/00779962.1983.9722435. Archived from the original (PDF) on 20 October 2007.
  100. ^ Lloyd, James E. (1984). "Occurrence of Aggressive Mimicry in Fireflies". The Florida Entomologist. 67 (3): 368–376. doi:10.2307/3494715. JSTOR 3494715. S2CID 86502129.
  101. ^ Lloyd, James E.; Gentry, Erin C. (2003). The Encyclopedia of Insects. Academic Press. pp. 115–120. ISBN 978-0-12-586990-4.
  102. ^ Briscoe, A. D.; Chittka, L. (2001). "The evolution of color vision in insects". Annual Review of Entomology. 46: 471–510. doi:10.1146/annurev.ento.46.1.471. PMID 11112177. S2CID 20894534.
  103. ^ Binocular mirror–symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision | PNAS
  104. ^ Bridging the Gap Between Mammal and Insect Ears – A Comparative and Evolutionary View of Sound-Reception
  105. ^ "The University of Florida Book of Insect Records". entnemdept.ufl.edu. Department of Entomology & Nematology, UF/IFAS. Retrieved 13 January 2022.
  106. ^ Kay, Robert E. (1969). "Acoustic signalling and its possible relationship to assembling and navigation in the moth, Heliothis zea". Journal of Insect Physiology. 15 (6): 989–1001. doi:10.1016/0022-1910(69)90139-5.
  107. ^ Spangler, Hayward G. (1988). "Moth hearing, defense, and communication". Annual Review of Entomology. 33 (1): 59–81. doi:10.1146/annurev.ento.33.1.59.
  108. ^ Hristov, N. I.; Conner, William E. (2005). "Sound strategy: acoustic aposematism in the bat–tiger moth arms race". Naturwissenschaften. 92 (4): 164–169. Bibcode:2005NW.....92..164H. doi:10.1007/s00114-005-0611-7. PMID 15772807. S2CID 18306198.
  109. ^ Barber, J. R.; Conner, W. E. (2007). "Acoustic mimicry in a predator–prey interaction". Proceedings of the National Academy of Sciences. 104 (22): 9331–9334. Bibcode:2007PNAS..104.9331B. doi:10.1073/pnas.0703627104. PMC 1890494. PMID 17517637.
  110. ^ Corcoran, Aaron J.; Barber, Jesse R.; Conner, William E. (2009). "Tiger Moth Jams Bat Sonar". Science. 325 (5938): 325–327. Bibcode:2009Sci...325..325C. doi:10.1126/science.1174096. PMID 19608920. S2CID 206520028.
  111. ^ Theiss, Joachim (1982). "Generation and radiation of sound by stridulating water insects as exemplified by the corixids". Behavioral Ecology and Sociobiology. 10 (3): 225–235. doi:10.1007/BF00299689. S2CID 10338592.
  112. ^ Virant-Doberlet, M.; Čokl, Andrej (2004). "Vibrational communication in insects". Neotropical Entomology. 33 (2): 121–134. doi:10.1590/S1519-566X2004000200001.
  113. ^ Bennet-Clark, H.C. (1998). "Size and scale effects as constraints in insect sound communication". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 353 (1367): 407–419. doi:10.1098/rstb.1998.0219. PMC 1692226.
  114. ^ Miklas, Nadège; Stritih, Nataša; Čokl, Andrej; Virant-Doberlet, Meta; Renou, Michel (2001). "The Influence of Substrate on Male Responsiveness to the Female Calling Song in Nezara viridula". Journal of Insect Behavior. 14 (3): 313–332. doi:10.1023/A:1011115111592. S2CID 11369425.
  115. ^ DeVries, P.J. (1990). "Enhancement of symbiosis between butterfly caterpillars and ants by vibrational communication". Science. 248 (4959): 1104–1106. Bibcode:1990Sci...248.1104D. doi:10.1126/science.248.4959.1104. PMID 17733373. S2CID 35812411.
  116. ^ Nelson, Margaret C.; Fraser, Jean (1980). "Sound production in the cockroach, Gromphadorhina portentosa: evidence for communication by hissing". Behavioral Ecology and Sociobiology. 6 (4): 305–314. doi:10.1007/BF00292773. S2CID 9637568.
  117. ^ Moritz, R. F. A.; Kirchner, W. H.; Crewe, R. M. (1991). "Chemical camouflage of the death's head hawkmoth (Acherontia atropos L.) in honeybee colonies". Naturwissenschaften. 78 (4): 179–182. Bibcode:1991NW.....78..179M. doi:10.1007/BF01136209. S2CID 45597312.
  118. ^ Thomas, Jeremy; Schönrogge, Karsten; Bonelli, Simona; Barbero, Francesca; Balletto, Emilio (2010). "Corruption of ant acoustical signals by mimetic social parasites". Communicative and Integrative Biology. 3 (2): 169–171. doi:10.4161/cib.3.2.10603. PMC 2889977. PMID 20585513.
  119. ^ Yan, Hua; Liebig, Jürgen (1 April 2021). "Genetic basis of chemical communication in eusocial insects". Genes & Development. Cold Spring Harbor Laboratory Press & The Genetics Society. 35 (7–8): 470–482. doi:10.1101/gad.346965.120. PMC 8015721. PMID 33861721.
  120. ^ Brewer, Gary. . North Dakota State University. Archived from the original on 21 March 2008. Retrieved 6 May 2009.
  121. ^ Leadbeater, E.; Chittka, L. (2007). "The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris)". Behavioral Ecology and Sociobiology. 61 (11): 1789–1796. doi:10.1007/s00265-007-0412-4. S2CID 569654.
  122. ^ Salt, R. W. (1961). "Principles of Insect Cold-Hardiness". Annual Review of Entomology. 6: 55–74. doi:10.1146/annurev.en.06.010161.000415.
  123. ^ . North Dakota State University. Archived from the original on 21 March 2008. Retrieved 12 October 2009.
  124. ^ Jockusch, EL; Ober, KA (September 2004). "Hypothesis testing in evolutionary developmental biology: a case study from insect wings". Journal of Heredity. 95 (5): 382–396. doi:10.1093/jhered/esh064. PMID 15388766.
  125. ^ Dudley, R (1998). "Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance" (PDF). Journal of Experimental Biology. 201 (8): 1043–1050. doi:10.1242/jeb.201.8.1043. PMID 9510518. (PDF) from the original on 24 January 2013. Retrieved 8 December 2012.
  126. ^ "Chapter 32: Largest Lepidopteran Wing Span | The University of Florida Book of Insect Records | Department of Entomology & Nematology | UF/IFAS". entnemdept.ufl.edu. Retrieved 13 January 2022.
  127. ^ Yates, Diana. "Birds migrate together at night in dispersed flocks, new study indicates". news.illinois.edu. Retrieved 13 January 2022.
  128. ^ Drake, V. A.; Farrow, R. A. (1988). "The Influence of Atmospheric Structure and Motions on Insect Migration". Annual Review of Entomology. 33: 183–210. doi:10.1146/annurev.en.33.010188.001151.
  129. ^ Bart Geerts and Dave Leon (2003). P5A.6 "Fine-Scale Vertical Structure of a Cold Front As Revealed By Airborne 95 GHZ Radar" 7 October 2008 at the Wayback Machine. University of Wyoming. Retrieved on 26 April 2009.
  130. ^ Long, Teng; Hu, Cheng; Wang, Rui; Zhang, Tianran; Kong, Shaoyang; Li, Weidong; Cai, Jiong; Tian, Weiming; Zeng, Tao (1 January 2020). "Entomological Radar Overview: System and Signal Processing". IEEE Aerospace & Electronic Systems Magazine. 35 (1): 20–32. doi:10.1109/maes.2019.2955575. S2CID 216536583.
  131. ^ a b Biewener, Andrew A. (2003). Animal Locomotion. Oxford University Press. ISBN 978-0-19-850022-3.[page needed]
  132. ^ Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia (2012). "Quadrupedal gaits in hexapod animals – inter-leg coordination in free-walking adult stick insects". Journal of Experimental Biology. 215 (24): 4255–4266. doi:10.1242/jeb.073643. PMID 22972892.
  133. ^ Ikawa, Terumi; Okabe, Hidehiko; Hoshizaki, Sugihiko; Kamikado, Takahiro; Cheng, Lanna (2004). "Distribution of the oceanic insects Halobates (Hemiptera: Gerridae) off the south coast of Japan". Entomological Science. 7 (4): 351–357. doi:10.1111/j.1479-8298.2004.00083.x. S2CID 85017400.
  134. ^ Mill, P. J.; Pickard, R. S. (1975). "Jet-propulsion in anisopteran dragonfly larvae". Journal of Comparative Physiology A. 97 (4): 329–338. doi:10.1007/BF00631969. S2CID 45066664.
  135. ^ Linsenmair, K.; Jander, R. (1976). "Das "entspannungsschwimmen" von Velia and Stenus". Naturwissenschaften. 50 (6): 231. Bibcode:1963NW.....50..231L. doi:10.1007/BF00639292. S2CID 40832917.
  136. ^ Bush, J. W. M.; Hu, David L. Hu (2006). (PDF). Annual Review of Fluid Mechanics. 38 (1): 339–369. Bibcode:2006AnRFM..38..339B. doi:10.1146/annurev.fluid.38.050304.092157. Archived from the original (PDF) on 10 July 2007.
  137. ^ Schowalter, Timothy Duane (2006). Insect ecology: an ecosystem approach (2nd (illustrated) ed.). Academic Press. p. 572. ISBN 978-0-12-088772-9. from the original on 3 June 2016. Retrieved 27 October 2015.
  138. ^ Losey, John E.; Vaughan, Mace (2006). "The Economic Value of Ecological Services Provided by Insects". BioScience. 56 (4): 311–323(13). doi:10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2. from the original on 12 January 2012. Retrieved 8 November 2011.
  139. ^ a b Ritland, D. B.; L. P. Brower (1991). "The viceroy butterfly is not a Batesian mimic". Nature. 350 (6318): 497–498. Bibcode:1991Natur.350..497R. doi:10.1038/350497a0. S2CID 28667520. Viceroys are as unpalatable as monarchs, and significantly more unpalatable than queens from representative Florida populations.
  140. ^ a b c d Evans, Arthur V.; Charles Bellamy (2000). An Inordinate Fondness for Beetles. University of California Press. ISBN 978-0-520-22323-3.
  141. ^ "Photos: Masters of Disguise – Amazing Insect Camouflage". 24 March 2014. from the original on 12 June 2015. Retrieved 11 June 2015.
  142. ^ Bedford, Geoffrey O. (1978). "Biology and Ecology of the Phasmatodea". Annual Review of Entomology. 23: 125–149. doi:10.1146/annurev.en.23.010178.001013.
  143. ^ Meyer, A. (2006). "Repeating Patterns of Mimicry". PLOS Biology. 4 (10): e341. doi:10.1371/journal.pbio.0040341. PMC 1617347. PMID 17048984.
  144. ^ Kricher, John (1999). "6". A Neotropical Companion. Princeton University Press. pp. 157–158. ISBN 978-0-691-00974-2.
  145. ^ (PDF). United States Forest Service. Archived from the original (PDF) on 10 April 2008. Retrieved 19 April 2012.
  146. ^ Bale, J. S.; van Lenteren, J. C.; Bigler, F. (27 February 2008). "Biological control and sustainable food production". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363 (1492): 761–776. doi:10.1098/rstb.2007.2182. PMC 2610108. PMID 17827110.
  147. ^ Davidson, E. (2006). Big Fleas Have Little Fleas: How Discoveries of Invertebrate Diseases Are Advancing Modern Science. Tucson, Ariz.: University of Arizona Press. ISBN 978-0-8165-2544-7.
  148. ^ Colborn, T.; vom Saal, F. S.; Soto, A. M. (October 1993). "Developmental effects of endocrine-disrupting chemicals in wildlife and humans". Environmental Health Perspectives. 101 (5): 378–384. doi:10.2307/3431890. JSTOR 3431890. PMC 1519860. PMID 8080506.
  149. ^ Nakamaru, M.; Iwasab, Y.; Nakanishic, J. (October 2003). "Extinction risk to bird populations caused by DDT exposure". Chemosphere. 53 (4): 377–387. Bibcode:2003Chmsp..53..377N. doi:10.1016/S0045-6535(03)00010-9. PMID 12946395.
  150. ^ Holldobler, Wilson (1994). Journey to the ants: a story of scientific exploration. Cambridge, Massachusetts: Belknap Press of Haravard University Press. pp. 196–199. ISBN 978-0-674-48525-9.
  151. ^ Smith, Deborah T. (1991). Agriculture and the Environment: The 1991 Yearbook of Agriculture (1991 ed.). United States Government Printing. ISBN 978-0-16-034144-1.
  152. ^ "Farming for native bees - SARE Grant Management System". projects.sare.org. Retrieved 13 January 2022.
  153. ^ Jordan, Alex; Patch, Harland M.; Grozinger, Christina M.; Khanna, Vikas (26 January 2021). "Economic Dependence and Vulnerability of United States Agricultural Sector on Insect-Mediated Pollination Service". Environmental Science & Technology. 55 (4): 2243–2253. Bibcode:2021EnST...55.2243J. doi:10.1021/acs.est.0c04786. PMID 33496588. S2CID 231710967.
  154. ^ Camargo, Rafael; Oliveira, Paulo (2011). "Natural history of the Neotrobical arboreal ant, Odontomachus hastatus: Nest sites, foraging schedule, and diet". Journal of Insect Science. 12 (18): 48. doi:10.1673/031.012.4801. PMC 3476954. PMID 22957686.
  155. ^ "Biocontrol Network – Beneficial Insects". Biocontrol Network. from the original on 28 February 2009. Retrieved 9 May 2009.
  156. ^ Davidson, R. H.; Lyon, William F. (1979). Insect Pests of Farm, Garden, and Orchard. Wiley, John & Sons. p. 38. ISBN 978-0-471-86314-4.
  157. ^ Dossey, Aaron T. (December 2010). "Insects and their chemical weaponry: New potential for drug discovery". Natural Product Reports. 27 (12): 1737–1757. doi:10.1039/c005319h. PMID 20957283.
  158. ^ Sherman, Ronald A.; Pechter, Edward A. (1987). "Maggot therapy: a review of the therapeutic applications of fly larvae in human medicine, especially for treating osteomyelitis". Medical and Veterinary Entomology. 2 (3): 225–230. doi:10.1111/j.1365-2915.1988.tb00188.x. PMID 2980178. S2CID 44543735.
  159. ^ Pierce, B. A. (2006). Genetics: A Conceptual Approach (2nd ed.). New York: W.H. Freeman and Company. p. 87. ISBN 978-0-7167-8881-2.
  160. ^ Adams, M. D.; Celniker, S. E.; Holt, R. A.; et al. (24 March 2000). "The genome sequence of Drosophila melanogaster". Science. 287 (5461): 2185–2195. Bibcode:2000Sci...287.2185.. CiteSeerX 10.1.1.549.8639. doi:10.1126/science.287.5461.2185. PMID 10731132.
  161. ^ "Insects as Food for Humans". Retrieved 14 September 2022.
  162. ^ Michels, John (1880). John Michels (ed.). Science. Vol. 1. New York: American Association for the Advance of Science. p. 69.
  163. ^ "Insects as Food for Humans". Retrieved 14 September 2022.
  164. ^ Maierbrugger, Arno (14 May 2013). "UN: Insects are 'food of the future' (video)". Inside Investor. from the original on 10 September 2013. Retrieved 17 May 2013.
  165. ^ "How AgriProtein makes chicken food from maggots". Wired UK. Retrieved 13 January 2022.
  166. ^ Verheyen, Geert; Ooms, Tom; Vogels, Liesbeth; Vreysen, Steven; Bovy, Ann; Van Miert, Sabine; Meersman, Filip (1 May 2018). "Insects as an Alternative Source for the Production of Fats for Cosmetics". Journal of Cosmetic Science. 69 (3): 187–202. PMID 30052193.
  167. ^ "Biteback". Biteback. Retrieved 13 January 2022.
  168. ^ "From Pest to Pot: Can Insects Feed the World?". Culture. 15 August 2016. Retrieved 13 January 2022.
  169. ^ Bugs. "Bugs – das Wirbellosenmagazin". NTV Verlag. Retrieved 7 March 2021.

External links

Listen to this article (5 minutes)
 
This audio file was created from a revision of this article dated 30 October 2010 (2010-10-30), and does not reflect subsequent edits.
  • Insect species and observations on iNaturalist
  • Insects of North America
  • Overview of Orders of Insects
  • "Insect" at the Encyclopedia of Life  
  • SPC
  • Tree of Life Project – Insecta, Insecta Movies
  • Overview of insect external and internal anatomy
  • Fossil Insect Database International Palaeoentological Society
  • UF Book of Insect Records
  • InsectImages.org 24,000 high resolution insect photographs
  • BBC Nature: Insect news, and video clips from BBC programmes past and present.
  • The Nature Explorers Many insect video clips.

insect, other, uses, disambiguation, from, latin, insectum, pancrustacean, hexapod, invertebrates, class, they, largest, group, within, arthropod, phylum, have, chitinous, exoskeleton, three, part, body, head, thorax, abdomen, three, pairs, jointed, legs, comp. For other uses see Insect disambiguation Insects from Latin insectum are pancrustacean hexapod invertebrates of the class Insecta They are the largest group within the arthropod phylum Insects have a chitinous exoskeleton a three part body head thorax and abdomen three pairs of jointed legs compound eyes and one pair of antennae Their blood is not totally contained in vessels some circulates in an open cavity known as the haemocoel Insects are the most diverse group of animals they include more than a million described species and represent more than half of all known living organisms 1 2 The total number of extant species is estimated at between six and ten million 1 3 4 potentially over 90 of the animal life forms on Earth are insects 4 5 Insects may be found in nearly all environments although only a small number of species reside in the oceans which are dominated by another arthropod group crustaceans which recent research has indicated insects are nested within InsectTemporal range Carboniferous Present PreꞒ Ꞓ O S D C P T J K Pg NDiversity of insects from different orders Scientific classificationKingdom AnimaliaPhylum ArthropodaClade PancrustaceaSubphylum HexapodaClass InsectaLinnaeus 1758SubgroupsSee text SynonymsEctognatha EntomidaNearly all insects hatch from eggs Insect growth is constrained by the inelastic exoskeleton and development involves a series of molts The immature stages often differ from the adults in structure habit and habitat and can include a usually immobile pupal stage in those groups that undergo four stage metamorphosis Insects that undergo three stage metamorphosis lack a pupal stage and adults develop through a series of nymphal stages 6 The higher level relationship of the insects is unclear Fossilized insects of enormous size have been found from the Paleozoic Era including giant dragonflies with wingspans of 55 to 70 cm 22 to 28 in The most diverse insect groups appear to have coevolved with flowering plants Adult insects typically move about by walking flying or sometimes swimming As it allows for rapid yet stable movement many insects adopt a tripedal gait in which they walk with their legs touching the ground in alternating triangles composed of the front and rear on one side with the middle on the other side Insects are the only invertebrate group with members able to achieve sustained powered flight and all flying insects derive from one common ancestor Many insects spend at least part of their lives under water with larval adaptations that include gills and some adult insects are aquatic and have adaptations for swimming Some species such as water striders are capable of walking on the surface of water Insects are mostly solitary but some such as certain bees ants and termites are social and live in large well organized colonies Some insects such as earwigs show maternal care guarding their eggs and young Insects can communicate with each other in a variety of ways Male moths can sense the pheromones of female moths over great distances Other species communicate with sounds crickets stridulate or rub their wings together to attract a mate and repel other males Lampyrid beetles communicate with light Humans regard certain insects as pests and attempt to control them using insecticides and a host of other techniques Some insects damage crops by feeding on sap leaves fruits or wood Some species are parasitic and may vector diseases Some insects perform complex ecological roles blow flies for example help consume carrion but also spread diseases Insect pollinators are essential to the life cycle of many flowering plant species on which most organisms including humans are at least partly dependent without them the terrestrial portion of the biosphere would be devastated 7 Many insects are considered ecologically beneficial as predators and a few provide direct economic benefit Silkworms produce silk and honey bees produce honey and both have been domesticated by humans Insects are consumed as food in 80 of the world s nations by people in roughly 3000 ethnic groups 8 9 Human activities also have effects on insect biodiversity Contents 1 Etymology 2 Definitions 3 Phylogeny and evolution 3 1 External phylogeny 3 2 Internal phylogeny 3 3 Taxonomy 3 4 Evolutionary relationships 4 Diversity 5 Morphology and physiology 5 1 External 5 2 Segmentation 5 2 1 Exoskeleton 5 3 Internal 5 3 1 Nervous system 5 3 2 Digestive system 5 3 2 1 Foregut 5 3 2 2 Midgut 5 3 2 3 Hindgut 5 3 3 Excretory system 5 3 4 Reproductive system 5 3 5 Respiratory system 5 3 6 Circulatory system 6 Reproduction and development 6 1 Metamorphosis 6 1 1 Incomplete metamorphosis 6 1 2 Complete metamorphosis 7 Senses and communication 7 1 Light production and vision 7 2 Sound production and hearing 7 3 Chemical communication 8 Social behavior 8 1 Care of young 9 Locomotion 9 1 Flight 9 2 Walking 9 3 Swimming 10 Ecology 10 1 Defense and predation 10 2 Pollination 10 3 Parasitism 11 Relationship to humans 11 1 As pests 11 2 In beneficial roles 11 3 In research 11 4 As food 11 5 As feed 11 6 In other products 11 7 As pets 11 8 In culture 12 See also 13 Notes 14 References 15 External linksEtymologyThe word insect comes from the Latin word insectum meaning with a notched or divided body or literally cut into from the neuter singular perfect passive participle of insectare to cut into to cut up from in into and secare from seco to cut 10 11 because insects appear cut into three sections The Latin word was introduced by Pliny the Elder who calqued the Ancient Greek word ἔntomon entomon insect as in entomology from ἔntomos entomos cut into sections or cut in pieces 12 entomon was Aristotle s term for this class of life also in reference to their notched bodies The English word insect first appears documented in 1601 in Holland s translation of Pliny Translations of Aristotle s term also form the usual word for insect in Welsh trychfil from trychu to cut and mil animal Serbo Croatian zareznik from rezati to cut Russian nasekomoe nasekomoje from sec sekat to cut etc 10 13 In common parlance insects are also called bugs though this term usually includes all terrestrial arthropods a The term is also occasionally extended to colloquial names for freshwater or marine crustaceans e g Balmain bug Moreton Bay bug mudbug and used by physicians and bacteriologists for disease causing germs e g superbugs but entomologists to some extent reserve this term for a narrow category of true bugs insects of the order Hemiptera such as cicadas and shield bugs 16 DefinitionsThe precise definition of the taxon Insecta and the equivalent English name insect varies three alternative definitions are shown in the table Definition of Insecta Group Alternative definitionsCollembola springtails Insecta sensu lato Hexapoda Entognatha Apterygota wingless hexapods Protura coneheads Diplura two pronged bristletails Archaeognatha jumping bristletails Insecta sensu stricto EctognathaZygentoma silverfish Pterygota winged insects Insecta sensu strictissimoIn the broadest circumscription Insecta sensu lato consists of all hexapods 17 18 Traditionally insects defined in this way were divided into Apterygota the first five groups in the table the wingless insects and Pterygota the winged and secondarily wingless insects 19 However modern phylogenetic studies have shown that Apterygota is not monophyletic 20 and so does not form a good taxon A narrower circumscription restricts insects to those hexapods with external mouthparts and comprises only the last three groups in the table In this sense Insecta sensu stricto is equivalent to Ectognatha 17 20 In the narrowest circumscription insects are restricted to hexapods that are either winged or descended from winged ancestors Insecta sensu strictissimo is then equivalent to Pterygota 21 For the purposes of this article the middle definition is used insects consist of two wingless taxa Archaeognatha jumping bristletails and Zygentoma silverfish plus the winged or secondarily wingless Pterygota Phylogeny and evolutionMain article Evolution of insects External phylogeny Although traditionally grouped with millipedes and centipedes 22 more recent analysis indicates closer evolutionary ties with crustaceans In the Pancrustacea theory insects together with Entognatha Remipedia and Cephalocarida form a clade the Pancrustacea 23 Insects form a single clade closely related to crustaceans and myriapods 24 Other terrestrial arthropods such as centipedes millipedes scorpions spiders woodlice mites and ticks are sometimes confused with insects since their body plans can appear similar sharing as do all arthropods a jointed exoskeleton However upon closer examination their features differ significantly most noticeably they do not have the six legged characteristic of adult insects 25 A phylogenetic tree of the arthropods places the insects in the context of other hexapods and the crustaceans and the more distantly related myriapods and chelicerates 26 Panarthropoda Onychophora velvet worms Tactopoda Tardigrada water bears Euarthropoda Chelicerata spiders and allies Mandibulata Myriapoda millipedes and centipedes Pancrustacea Oligostraca ostracods and allies Copepods and alliesMalacostraca crabs lobsters Branchiopoda fairy shrimps Hexapoda Collembola springtails Protura coneheads Diplura bristletails Insectasix legs Evolution has produced enormous variety in insects Pictured are some possible shapes of antennae Four large scale radiations of insects have occurred beetles from about 300 million years ago flies from about 250 million years ago moths and wasps both from about 150 million years ago 27 These four groups account for the majority of described species The origins of insect flight remain obscure since the earliest winged insects currently known appear to have been capable fliers Some extinct insects had an additional pair of winglets attaching to the first segment of the thorax for a total of three pairs As of 2009 no evidence suggests the insects were a particularly successful group of animals before they evolved to have wings 28 Late Carboniferous and Early Permian insect orders include both extant groups their stem groups 29 and a number of Paleozoic groups now extinct During this era some giant dragonfly like forms reached wingspans of 55 to 70 cm 22 to 28 in making them far larger than any living insect This gigantism may have been due to higher atmospheric oxygen levels that allowed increased respiratory efficiency relative to today The lack of flying vertebrates could have been another factor Most extinct orders of insects developed during the Permian period that began around 270 million years ago Many of the early groups became extinct during the Permian Triassic extinction event the largest mass extinction in the history of the Earth around 252 million years ago 30 In 2008 researchers at Tufts University uncovered what they believe is the world s oldest known full body impression of a primitive flying insect a 300 million year old specimen from the Carboniferous period 31 The oldest insect fossil was considered to be the Devonian Rhyniognatha hirsti from the 396 million year old Rhynie chert 32 However other analyses have disputed this placement finding it to be more likely a myriapod 33 The remarkably successful Hymenoptera wasps bees and ants appeared as long as 200 million years ago in the Triassic period but achieved their wide diversity more recently in the Cenozoic era which began 66 million years ago Some highly successful insect groups evolved in conjunction with flowering plants a powerful illustration of coevolution 34 Internal phylogeny The internal phylogeny is based on the works of Sroka Staniczek amp Bechly 2014 35 Prokop et al 2017 36 and Wipfler et al 2019 37 Insecta Monocondylia Archaeognatha hump backed jumping bristletails Dicondylia Zygentoma silverfish firebrats fishmoths Paranotalia CarbotripluridaPterygota Hydropalaeoptera BojophlebiidaeOdonatoptera dragonflies Panephemeroptera mayflies Neoptera Polyneoptera Haplocercata Zoraptera angel insects Dermaptera earwigs Plecoptera stoneflies Orthoptera grasshoppers crickets katydids Dictyoptera Mantodea mantises Blattodea cockroaches amp termites Notoptera Grylloblattodea ice crawlers Mantophasmatodea gladiators Xenonomia Eukinolabia Phasmatodea stick insects Embioptera webspinners Eumetabola Acercaria Psocodea book lice barklice amp sucking lice Hemiptera true bugs Thysanoptera thrips Holometabola Hymenopterida Hymenoptera sawflies wasps bees ants Aparaglossata Neuropteriforma Coleopterida StrepsipteraColeoptera beetles Neuropterida RhaphidiopteraNeuroptera lacewings MegalopteraPanorpida Amphiesmenoptera Lepidoptera butterflies amp moths Trichoptera caddisflies Antliophora Diptera true flies NannomecopteraMecoptera scorpionflies Neomecoptera winter scorpionflies Siphonaptera fleas larvae pupaewings flex over abdomenwingsTaxonomy See also Category Insect orders and Category Insect families Traditional morphology based or appearance based systematics have usually given the Hexapoda the rank of superclass 38 180 and identified four groups within it insects Ectognatha springtails Collembola Protura and Diplura the latter three being grouped together as the Entognatha on the basis of internalized mouth parts Supraordinal relationships have undergone numerous changes with the advent of methods based on evolutionary history and genetic data A recent theory is that the Hexapoda are polyphyletic where the last common ancestor was not a member of the group with the entognath classes having separate evolutionary histories from the Insecta 39 Many of the traditional appearance based taxa are paraphyletic so rather than using ranks like subclass superorder and infraorder it has proved better to use monophyletic groupings in which the last common ancestor is a member of the group The following represents the best supported monophyletic groupings for the Insecta Insects can be divided into two groups historically treated as subclasses wingless insects known as Apterygota and winged insects known as Pterygota The Apterygota consisted of the primitively wingless orders Archaeognatha jumping bristletails and Zygentoma silverfish However Apterygota is not a monophyletic group as Archaeognatha are the sister group to all other insects based on the arrangement of their mandibles while Zygentoma and Pterygota are grouped together as Dicondylia It was originally believed that Archaeognatha possessed a single phylogenetically primitive condyle each thus the name Monocondylia where all more derived insects have two but this has since been shown to be incorrect all insects including Archaeognatha have dicondylic mandibles but archaeognaths possess two articulations that are homologous to those in other insects though slightly different 40 The Zygentoma themselves possibly are not monophyletic with the family Lepidotrichidae being a sister group to the Dicondylia Pterygota and the remaining Zygentoma 41 42 clarification needed Paleoptera and Neoptera are the winged orders of insects differentiated by the presence of hardened body parts called sclerites and in the Neoptera muscles that allow their wings to fold flatly over the abdomen Neoptera can further be divided into incomplete metamorphosis based Polyneoptera and Paraneoptera and complete metamorphosis based groups It has proved difficult to clarify the relationships between the orders in Polyneoptera because of constant new findings calling for revision of the taxa For example the Paraneoptera have turned out to be more closely related to the Endopterygota than to the rest of the Exopterygota The recent molecular finding that the traditional louse orders Mallophaga and Anoplura are derived from within Psocoptera has led to the new taxon Psocodea 43 Phasmatodea and Embiidina have been suggested to form the Eukinolabia 44 Mantodea Blattodea and Isoptera are thought to form a monophyletic group termed Dictyoptera 45 The Exopterygota likely are paraphyletic in regard to the Endopterygota The Neuropterida are often lumped or split on the whims of the taxonomist Fleas are now thought to be closely related to boreid mecopterans 46 Many questions remain in the basal relationships among endopterygote orders particularly the Hymenoptera Evolutionary relationships Insects are prey for a variety of organisms including terrestrial vertebrates The earliest vertebrates on land existed 400 million years ago and were large amphibious piscivores Through gradual evolutionary change insectivory was the next diet type to evolve 47 Insects were among the earliest terrestrial herbivores and acted as major selection agents on plants 34 Plants evolved chemical defenses against this herbivory and the insects in turn evolved mechanisms to deal with plant toxins Many insects make use of these toxins to protect themselves from their predators Such insects often advertise their toxicity using warning colors 48 This successful evolutionary pattern has also been used by mimics Over time this has led to complex groups of coevolved species Conversely some interactions between plants and insects like pollination are beneficial to both organisms Coevolution has led to the development of very specific mutualisms in such systems Diversity A pie chart of described eukaryote species showing just over half of these to be insects Main article Insect biodiversity Estimates of the total number of insect species or those within specific orders often vary considerably Globally averages of these estimates suggest there are around 1 5 million beetle species and 5 5 million insect species with about 1 million insect species currently found and described 49 E O Wilson has estimated that the number of insects living at any one time are around 10 quintillion 10 billion billion 50 Between 950 000 and 1 000 000 of all described species are insects so over 50 of all described eukaryotes 1 8 million are insects see illustration With only 950 000 known non insects if the actual number of insects is 5 5 million they may represent over 80 of the total As only about 20 000 new species of all organisms are described each year most insect species may remain undescribed unless the rate of species descriptions greatly increases Of the 24 orders of insects four dominate in terms of numbers of described species at least 670 000 identified species belong to Coleoptera Diptera Hymenoptera or Lepidoptera Insects with population trends documented by the International Union for Conservation of Nature for orders Collembola Hymenoptera Lepidoptera Odonata and Orthoptera Of 203 insect species that had such documented population trends in 2013 33 were in decline 51 As of 2017 at least 66 insect species extinctions had been recorded in the previous 500 years generally on oceanic islands 52 Declines in insect abundance have been attributed to artificial lighting 53 land use changes such as urbanization or agricultural use 54 55 pesticide use 56 and invasive species 57 Studies summarized in a 2019 review suggested that a large proportion of insect species is threatened with extinction in the 21st century 58 The ecologist Manu Sanders notes that the 2019 review was biased by mostly excluding data showing increases or stability in insect population with the studies limited to specific geographic areas and specific groups of species 59 A larger 2020 meta study analyzing data from 166 long term surveys suggested that populations of terrestrial insects are decreasing rapidly by about 9 per decade 60 61 Claims of pending mass insect extinctions or insect apocalypse based on a subset of these studies have been popularized in news reports but often extrapolate beyond the study data or hyperbolize study findings 62 Other areas have shown increases in some insect species although trends in most regions are currently unknown It is difficult to assess long term trends in insect abundance or diversity because historical measurements are generally not known for many species Robust data to assess at risk areas or species is especially lacking for arctic and tropical regions and a majority of the southern hemisphere 62 Number of described extant insect species 49 Order Extant species describedArchaeognatha 513Zygentoma 560Ephemeroptera 3 240Odonata 5 899Orthoptera 23 855Neuroptera 5 868Phasmatodea 3 014Embioptera 463Notoptera 54Plecoptera 3 743Dermaptera 1 978Zoraptera 37Mantodea 2 400Blattodea 7 314Psocoptera 5 720Phthiraptera 5 102Thysanoptera 5 864Hemiptera 103 590Hymenoptera 116 861Strepsiptera 609Coleoptera 386 500Megaloptera 354Raphidioptera 254Trichoptera 14 391Lepidoptera 157 338Diptera 155 477Siphonaptera 2 075Mecoptera 757Morphology and physiologyMain articles Insect morphology and Insect physiology External Insect morphology A Head B Thorax C Abdomen antennaocellus lower ocellus upper compound eyebrain cerebral ganglia prothoraxdorsal blood vesseltracheal tubes trunk with spiracle mesothoraxmetathoraxforewinghindwingmidgut stomach dorsal tube Heart ovaryhindgut intestine rectum anus anusoviductnerve cord abdominal ganglia Malpighian tubulestarsal padsclawstarsustibiafemurtrochanterforegut crop gizzard thoracic ganglioncoxasalivary glandsubesophageal ganglionmouthparts Insects have segmented bodies supported by exoskeletons the hard outer covering made mostly of chitin The segments of the body are organized into three distinctive but interconnected units or tagmata a head a thorax and an abdomen 63 The head supports a pair of sensory antennae a pair of compound eyes zero to three simple eyes or ocelli and three sets of variously modified appendages that form the mouthparts The thorax is made up of three segments the prothorax mesothorax and the metathorax Each thoracic segment supports one pair of legs The meso and metathoracic segments may each have a pair of wings depending on the insect The abdomen consists of eleven segments though in a few species of insects these segments may be fused together or reduced in size The abdomen also contains most of the digestive respiratory excretory and reproductive internal structures 38 22 48 Considerable variation and many adaptations in the body parts of insects occur especially wings legs antenna and mouthparts Segmentation The head is enclosed in a hard heavily sclerotized unsegmented exoskeletal head capsule or epicranium which contains most of the sensing organs including the antennae ocellus or eyes and the mouthparts Of all the insect orders Orthoptera displays the most features found in other insects including the sutures and sclerites 64 Here the vertex or the apex dorsal region is situated between the compound eyes for insects with a hypognathous and opisthognathous head In prognathous insects the vertex is not found between the compound eyes but rather where the ocelli are normally This is because the primary axis of the head is rotated 90 to become parallel to the primary axis of the body In some species this region is modified and assumes a different name 64 13 The thorax is a tagma composed of three sections the prothorax mesothorax and the metathorax The anterior segment closest to the head is the prothorax with the major features being the first pair of legs and the pronotum The middle segment is the mesothorax with the major features being the second pair of legs and the anterior wings The third and most posterior segment abutting the abdomen is the metathorax which features the third pair of legs and the posterior wings Each segment is delineated by an intersegmental suture Each segment has four basic regions The dorsal surface is called the tergum or notum to distinguish it from the abdominal terga 38 The two lateral regions are called the pleura singular pleuron and the ventral aspect is called the sternum In turn the notum of the prothorax is called the pronotum the notum for the mesothorax is called the mesonotum and the notum for the metathorax is called the metanotum Continuing with this logic the mesopleura and metapleura as well as the mesosternum and metasternum are used 64 The abdomen is the largest tagma of the insect which typically consists of 11 12 segments and is less strongly sclerotized than the head or thorax Each segment of the abdomen is represented by a sclerotized tergum and sternum Terga are separated from each other and from the adjacent sterna or pleura by membranes Spiracles are located in the pleural area Variation of this ground plan includes the fusion of terga or terga and sterna to form continuous dorsal or ventral shields or a conical tube Some insects bear a sclerite in the pleural area called a laterotergite Ventral sclerites are sometimes called laterosternites During the embryonic stage of many insects and the postembryonic stage of primitive insects 11 abdominal segments are present In modern insects there is a tendency toward reduction in the number of the abdominal segments but the primitive number of 11 is maintained during embryogenesis Variation in abdominal segment number is considerable If the Apterygota are considered to be indicative of the ground plan for pterygotes confusion reigns adult Protura have 12 segments Collembola have 6 The orthopteran family Acrididae has 11 segments and a fossil specimen of Zoraptera has a 10 segmented abdomen 64 Exoskeleton The insect outer skeleton the cuticle is made up of two layers the epicuticle which is a thin and waxy water resistant outer layer and contains no chitin and a lower layer called the procuticle The procuticle is chitinous and much thicker than the epicuticle and has two layers an outer layer known as the exocuticle and an inner layer known as the endocuticle The tough and flexible endocuticle is built from numerous layers of fibrous chitin and proteins criss crossing each other in a sandwich pattern while the exocuticle is rigid and hardened 38 22 24 The exocuticle is greatly reduced in many insects during their larval stages e g caterpillars It is also reduced in soft bodied adult insects During growth insects goes through a various number of instars where the old exoskeleton is shed but once they reach sexual maturity they stop molting The exceptions are apterygote primary wingless insects Mayflies are the only insects with a sexually immature instar with functional wings called subimago 65 Insects are the only invertebrates to have developed active flight capability and this has played an important role in their success 38 186 Their flight muscles are able to contract multiple times for each single nerve impulse allowing the wings to beat faster than would ordinarily be possible Having their muscles attached to their exoskeletons is efficient and allows more muscle connections Internal Nervous system The nervous system of an insect can be divided into a brain and a ventral nerve cord The head capsule is made up of six fused segments each with either a pair of ganglia or a cluster of nerve cells outside of the brain The first three pairs of ganglia are fused into the brain while the three following pairs are fused into a structure of three pairs of ganglia under the insect s esophagus called the subesophageal ganglion 38 57 The thoracic segments have one ganglion on each side which are connected into a pair one pair per segment This arrangement is also seen in the abdomen but only in the first eight segments Many species of insects have reduced numbers of ganglia due to fusion or reduction 66 Some cockroaches have just six ganglia in the abdomen whereas the wasp Vespa crabro has only two in the thorax and three in the abdomen Some insects like the house fly Musca domestica have all the body ganglia fused into a single large thoracic ganglion 67 At least some insects have nociceptors cells that detect and transmit signals responsible for the sensation of pain 68 failed verification 69 This was discovered in 2003 by studying the variation in reactions of larvae of the common fruit fly Drosophila to the touch of a heated probe and an unheated one The larvae reacted to the touch of the heated probe with a stereotypical rolling behavior that was not exhibited when the larvae were touched by the unheated probe 70 Although nociception has been demonstrated in insects there is no consensus that insects feel pain consciously 71 Insects are capable of learning 72 Digestive system An insect uses its digestive system to extract nutrients and other substances from the food it consumes 73 Most of this food is ingested in the form of macromolecules and other complex substances like proteins polysaccharides fats and nucleic acids These macromolecules must be broken down by catabolic reactions into smaller molecules like amino acids and simple sugars before being used by cells of the body for energy growth or reproduction This break down process is known as digestion There is extensive variation among different orders life stages and even castes in the digestive system of insects 74 This is the result of extreme adaptations to various lifestyles The present description focuses on a generalized composition of the digestive system of an adult orthopteroid insect which is considered basal to interpreting particularities of other groups The main structure of an insect s digestive system is a long enclosed tube called the alimentary canal which runs lengthwise through the body The alimentary canal directs food unidirectionally from the mouth to the anus It has three sections each of which performs a different process of digestion In addition to the alimentary canal insects also have paired salivary glands and salivary reservoirs These structures usually reside in the thorax adjacent to the foregut 38 70 77 The salivary glands element 30 in numbered diagram in an insect s mouth produce saliva The salivary ducts lead from the glands to the reservoirs and then forward through the head to an opening called the salivarium located behind the hypopharynx By moving its mouthparts element 32 in numbered diagram the insect can mix its food with saliva The mixture of saliva and food then travels through the salivary tubes into the mouth where it begins to break down 75 76 Some insects like flies have extra oral digestion Insects using extra oral digestion expel digestive enzymes onto their food to break it down This strategy allows insects to extract a significant proportion of the available nutrients from the food source 77 31 The gut is where almost all of insects digestion takes place It can be divided into the foregut midgut and hindgut Foregut Stylized diagram of insect digestive tract showing malpighian tubule from an insect of the order Orthoptera The first section of the alimentary canal is the foregut element 27 in numbered diagram or stomodaeum The foregut is lined with a cuticular lining made of chitin and proteins as protection from tough food The foregut includes the buccal cavity mouth pharynx esophagus and crop and proventriculus any part may be highly modified which both store food and signify when to continue passing onward to the midgut 38 70 Digestion starts in buccal cavity mouth as partially chewed food is broken down by saliva from the salivary glands As the salivary glands produce fluid and carbohydrate digesting enzymes mostly amylases strong muscles in the pharynx pump fluid into the buccal cavity lubricating the food like the salivarium does and helping blood feeders and xylem and phloem feeders From there the pharynx passes food to the esophagus which could be just a simple tube passing it on to the crop and proventriculus and then onward to the midgut as in most insects Alternately the foregut may expand into a very enlarged crop and proventriculus or the crop could just be a diverticulum or fluid filled structure as in some Diptera species 77 30 31 Midgut Once food leaves the crop it passes to the midgut element 13 in numbered diagram also known as the mesenteron where the majority of digestion takes place Microscopic projections from the midgut wall called microvilli increase the surface area of the wall and allow more nutrients to be absorbed they tend to be close to the origin of the midgut In some insects the role of the microvilli and where they are located may vary For example specialized microvilli producing digestive enzymes may more likely be near the end of the midgut and absorption near the origin or beginning of the midgut 77 32 Hindgut In the hindgut element 16 in numbered diagram or proctodaeum undigested food particles are joined by uric acid to form fecal pellets The rectum absorbs 90 of the water in these fecal pellets and the dry pellet is then eliminated through the anus element 17 completing the process of digestion Envaginations at the anterior end of the hindgut form the Malpighian tubules which form the main excretory system of insects Excretory system Insects may have one to hundreds of Malpighian tubules element 20 These tubules remove nitrogenous wastes from the hemolymph of the insect and regulate osmotic balance Wastes and solutes are emptied directly into the alimentary canal at the junction between the midgut and hindgut 38 71 72 78 80 Reproductive system Main article Insect reproductive system The reproductive system of female insects consist of a pair of ovaries accessory glands one or more spermathecae and ducts connecting these parts The ovaries are made up of a number of egg tubes called ovarioles which vary in size and number by species The number of eggs that the insect is able to make vary by the number of ovarioles with the rate that eggs can develop being also influenced by ovariole design Female insects are able make eggs receive and store sperm manipulate sperm from different males and lay eggs Accessory glands or glandular parts of the oviducts produce a variety of substances for sperm maintenance transport and fertilization as well as for protection of eggs They can produce glue and protective substances for coating eggs or tough coverings for a batch of eggs called oothecae Spermathecae are tubes or sacs in which sperm can be stored between the time of mating and the time an egg is fertilized 64 880 For males the reproductive system is the testis suspended in the body cavity by tracheae and the fat body Most male insects have a pair of testes inside of which are sperm tubes or follicles that are enclosed within a membranous sac The follicles connect to the vas deferens by the vas efferens and the two tubular vasa deferentia connect to a median ejaculatory duct that leads to the outside A portion of the vas deferens is often enlarged to form the seminal vesicle which stores the sperm before they are discharged into the female The seminal vesicles have glandular linings that secrete nutrients for nourishment and maintenance of the sperm The ejaculatory duct is derived from an invagination of the epidermal cells during development and as a result has a cuticular lining The terminal portion of the ejaculatory duct may be sclerotized to form the intromittent organ the aedeagus The remainder of the male reproductive system is derived from embryonic mesoderm except for the germ cells or spermatogonia which descend from the primordial pole cells very early during embryogenesis 64 885 Respiratory system The tube like heart green of the mosquito Anopheles gambiae extends horizontally across the body interlinked with the diamond shaped wing muscles also green and surrounded by pericardial cells red Blue depicts cell nuclei Insect respiration is accomplished without lungs Instead the insect respiratory system uses a system of internal tubes and sacs through which gases either diffuse or are actively pumped delivering oxygen directly to tissues that need it via their trachea element 8 in numbered diagram In most insects air is taken in through openings on the sides of the abdomen and thorax called spiracles The respiratory system is an important factor that limits the size of insects As insects get larger this type of oxygen transport is less efficient and thus the heaviest insect currently weighs less than 100 g However with increased atmospheric oxygen levels as were present in the late Paleozoic larger insects were possible such as dragonflies with wingspans of more than two feet 60 cm 78 There are many different patterns of gas exchange demonstrated by different groups of insects Gas exchange patterns in insects can range from continuous and diffusive ventilation to discontinuous gas exchange 38 65 68 During continuous gas exchange oxygen is taken in and carbon dioxide is released in a continuous cycle In discontinuous gas exchange however the insect takes in oxygen while it is active and small amounts of carbon dioxide are released when the insect is at rest 79 Diffusive ventilation is simply a form of continuous gas exchange that occurs by diffusion rather than physically taking in the oxygen Some species of insect that are submerged also have adaptations to aid in respiration As larvae many insects have gills that can extract oxygen dissolved in water while others need to rise to the water surface to replenish air supplies which may be held or trapped in special structures 80 81 Circulatory system Because oxygen is delivered directly to tissues via tracheoles the circulatory system is not used to carry oxygen and is therefore greatly reduced The insect circulatory system is open it has no veins or arteries and instead consists of little more than a single perforated dorsal tube that pulses peristaltically This dorsal blood vessel element 14 is divided into two sections the heart and aorta The dorsal blood vessel circulates the hemolymph arthropods fluid analog of blood from the rear of the body cavity forward 38 61 65 82 Hemolymph is composed of plasma in which hemocytes are suspended Nutrients hormones wastes and other substances are transported throughout the insect body in the hemolymph Hemocytes include many types of cells that are important for immune responses wound healing and other functions Hemolymph pressure may be increased by muscle contractions or by swallowing air into the digestive system to aid in molting 83 Hemolymph is also a major part of the open circulatory system of other arthropods such as spiders and crustaceans 84 85 Reproduction and development A pair of Simosyrphus grandicornis hoverflies mating in flight A pair of grasshoppers mating The majority of insects hatch from eggs The fertilization and development takes place inside the egg enclosed by a shell chorion that consists of maternal tissue In contrast to eggs of other arthropods most insect eggs are drought resistant This is because inside the chorion two additional membranes develop from embryonic tissue the amnion and the serosa This serosa secretes a cuticle rich in chitin that protects the embryo against desiccation In Schizophora however the serosa does not develop but these flies lay their eggs in damp places such as rotting matter 86 Some species of insects like the cockroach Blaptica dubia as well as juvenile aphids and tsetse flies are ovoviviparous The eggs of ovoviviparous animals develop entirely inside the female and then hatch immediately upon being laid 6 Some other species such as those in the genus of cockroaches known as Diploptera are viviparous and thus gestate inside the mother and are born alive 38 129 131 134 135 Some insects like parasitic wasps show polyembryony where a single fertilized egg divides into many and in some cases thousands of separate embryos 38 136 137 Insects may be univoltine bivoltine or multivoltine i e they may have one two or many broods generations in a year 87 The different forms of the male top and female bottom tussock moth Orgyia recens is an example of sexual dimorphism in insects Other developmental and reproductive variations include haplodiploidy polymorphism paedomorphosis or peramorphosis sexual dimorphism parthenogenesis and more rarely hermaphroditism 38 143 88 In haplodiploidy which is a type of sex determination system the offspring s sex is determined by the number of sets of chromosomes an individual receives This system is typical in bees and wasps 89 Polymorphism is where a species may have different morphs or forms as in the oblong winged katydid which has four different varieties green pink and yellow or tan Some insects may retain phenotypes that are normally only seen in juveniles this is called paedomorphosis In peramorphosis an opposite sort of phenomenon insects take on previously unseen traits after they have matured into adults Many insects display sexual dimorphism in which males and females have notably different appearances such as the moth Orgyia recens as an exemplar of sexual dimorphism in insects Some insects use parthenogenesis a process in which the female can reproduce and give birth without having the eggs fertilized by a male Many aphids undergo a form of parthenogenesis called cyclical parthenogenesis in which they alternate between one or many generations of asexual and sexual reproduction 90 91 In summer aphids are generally female and parthenogenetic in the autumn males may be produced for sexual reproduction Other insects produced by parthenogenesis are bees wasps and ants in which they spawn males However overall most individuals are female which are produced by fertilization The males are haploid and the females are diploid 6 Insect life histories show adaptations to withstand cold and dry conditions Some temperate region insects are capable of activity during winter while some others migrate to a warmer climate or go into a state of torpor 92 Still other insects have evolved mechanisms of diapause that allow eggs or pupae to survive these conditions 93 Metamorphosis Metamorphosis in insects is the biological process of development all insects must undergo There are two forms of metamorphosis incomplete metamorphosis and complete metamorphosis Incomplete metamorphosis Main article Hemimetabolism Hemimetabolous insects those with incomplete metamorphosis change gradually by undergoing a series of molts An insect molts when it outgrows its exoskeleton which does not stretch and would otherwise restrict the insect s growth The molting process begins as the insect s epidermis secretes a new epicuticle inside the old one After this new epicuticle is secreted the epidermis releases a mixture of enzymes that digests the endocuticle and thus detaches the old cuticle When this stage is complete the insect makes its body swell by taking in a large quantity of water or air which makes the old cuticle split along predefined weaknesses where the old exocuticle was thinnest 38 142 94 Immature insects that go through incomplete metamorphosis are called nymphs or in the case of dragonflies and damselflies also naiads Nymphs are similar in form to the adult except for the presence of wings which are not developed until adulthood With each molt nymphs grow larger and become more similar in appearance to adult insects This southern hawker dragonfly molts its exoskeleton several times during its life as a nymph shown is the final molt to become a winged adult eclosion Complete metamorphosis Main article Holometabolism Gulf fritillary life cycle an example of holometabolism Holometabolism or complete metamorphosis is where the insect changes in four stages an egg or embryo a larva a pupa and the adult or imago In these species an egg hatches to produce a larva which is generally worm like in form This worm like form can be one of several varieties eruciform caterpillar like scarabaeiform grub like campodeiform elongated flattened and active elateriform wireworm like or vermiform maggot like The larva grows and eventually becomes a pupa a stage marked by reduced movement and often sealed within a cocoon There are three types of pupae obtect exarate or coarctate Obtect pupae are compact with the legs and other appendages enclosed Exarate pupae have their legs and other appendages free and extended Coarctate pupae develop inside the larval skin 38 151 Insects undergo considerable change in form during the pupal stage and emerge as adults Butterflies are a well known example of insects that undergo complete metamorphosis although most insects use this life cycle Some insects have evolved this system to hypermetamorphosis Complete metamorphosis is a trait of the most diverse insect group the Endopterygota 38 143 Endopterygota includes 11 Orders the largest being Diptera flies Lepidoptera butterflies and moths and Hymenoptera bees wasps and ants and Coleoptera beetles This form of development is exclusive to insects and not seen in any other arthropods Senses and communicationMany insects possess very sensitive and specialized organs of perception Some insects such as bees can perceive ultraviolet wavelengths or detect polarized light while the antennae of male moths can detect the pheromones of female moths over distances of many kilometers 95 The yellow paper wasp Polistes versicolor is known for its wagging movements as a form of communication within the colony it can waggle with a frequency of 10 6 2 1 Hz n 190 These wagging movements can signal the arrival of new material into the nest and aggression between workers can be used to stimulate others to increase foraging expeditions 96 There is a pronounced tendency for there to be a trade off between visual acuity and chemical or tactile acuity such that most insects with well developed eyes have reduced or simple antennae and vice versa There are a variety of different mechanisms by which insects perceive sound while the patterns are not universal insects can generally hear sound if they can produce it Different insect species can have varying hearing though most insects can hear only a narrow range of frequencies related to the frequency of the sounds they can produce Mosquitoes have been found to hear up to 2 kHz and some grasshoppers can hear up to 50 kHz 97 Certain predatory and parasitic insects can detect the characteristic sounds made by their prey or hosts respectively For instance some nocturnal moths can perceive the ultrasonic emissions of bats which helps them avoid predation 38 87 94 Insects that feed on blood have special sensory structures that can detect infrared emissions and use them to home in on their hosts Some insects display a rudimentary sense of numbers 98 such as the solitary wasps that prey upon a single species The mother wasp lays her eggs in individual cells and provides each egg with a number of live caterpillars on which the young feed when hatched Some species of wasp always provide five others twelve and others as high as twenty four caterpillars per cell The number of caterpillars is different among species but always the same for each sex of larva The male solitary wasp in the genus Eumenes is smaller than the female so the mother of one species supplies him with only five caterpillars the larger female receives ten caterpillars in her cell Light production and vision Most insects have compound eyes and two antennae A few insects such as members of the families Poduridae and Onychiuridae Collembola Mycetophilidae Diptera and the beetle families Lampyridae Phengodidae Elateridae and Staphylinidae are bioluminescent The most familiar group are the fireflies beetles of the family Lampyridae Some species are able to control this light generation to produce flashes The function varies with some species using them to attract mates while others use them to lure prey Cave dwelling larvae of Arachnocampa Mycetophilidae fungus gnats glow to lure small flying insects into sticky strands of silk 99 Some fireflies of the genus Photuris mimic the flashing of female Photinus species to attract males of that species which are then captured and devoured 100 The colors of emitted light vary from dull blue Orfelia fultoni Mycetophilidae to the familiar greens and the rare reds Phrixothrix tiemanni Phengodidae 101 Most insects except some species of cave crickets are able to perceive light and dark Many species have acute vision capable of detecting minute movements The eyes may include simple eyes or ocelli as well as compound eyes of varying sizes Many species are able to detect light in the infrared ultraviolet and visible light wavelengths Color vision has been demonstrated in many species and phylogenetic analysis suggests that UV green blue trichromacy existed from at least the Devonian period between 416 and 359 million years ago 102 The individual lenses in compound eyes are immobile and it was therefore presumed that insects were not able to focus But research on fruit flies which is the only insects studied so far has shown that photoreceptor cells underneath each lens move rapidly in and out of focus in a series of movements called photoreceptor microsaccades This gives them a much clearer image of the world than previously assumed 103 Sound production and hearing Insects were the earliest organisms to produce and sense sounds Hearing has evolved independently at least 19 times in different insect groups 104 Insects make sounds mostly by mechanical action of appendages In grasshoppers and crickets this is achieved by stridulation Cicadas make the loudest sounds among the insects by producing and amplifying sounds with special modifications to their body to form tymbals and associated musculature The African cicada Brevisana brevis has been measured at 106 7 decibels at a distance of 50 cm 20 in 105 Some insects such as the Helicoverpa zea moths hawk moths and Hedylid butterflies can hear ultrasound and take evasive action when they sense that they have been detected by bats 106 107 Some moths produce ultrasonic clicks that were once thought to have a role in jamming bat echolocation The ultrasonic clicks were subsequently found to be produced mostly by unpalatable moths to warn bats just as warning colorations are used against predators that hunt by sight 108 Some otherwise palatable moths have evolved to mimic these calls 109 More recently the claim that some moths can jam bat sonar has been revisited Ultrasonic recording and high speed infrared videography of bat moth interactions suggest the palatable tiger moth really does defend against attacking big brown bats using ultrasonic clicks that jam bat sonar 110 Grasshopper stridulation source source Several unidentified grasshoppers stridulating Problems playing this file See media help Very low sounds are also produced in various species of Coleoptera Hymenoptera Lepidoptera Mantodea and Neuroptera These low sounds are simply the sounds made by the insect s movement Through microscopic stridulatory structures located on the insect s muscles and joints the normal sounds of the insect moving are amplified and can be used to warn or communicate with other insects Most sound making insects also have tympanal organs that can perceive airborne sounds Some species in Hemiptera such as the corixids water boatmen are known to communicate via underwater sounds 111 Most insects are also able to sense vibrations transmitted through surfaces source source track Cricket in garage with familiar call Communication using surface borne vibrational signals is more widespread among insects because of size constraints in producing air borne sounds 112 Insects cannot effectively produce low frequency sounds and high frequency sounds tend to disperse more in a dense environment such as foliage so insects living in such environments communicate primarily using substrate borne vibrations 113 The mechanisms of production of vibrational signals are just as diverse as those for producing sound in insects Some species use vibrations for communicating within members of the same species such as to attract mates as in the songs of the shield bug Nezara viridula 114 Vibrations can also be used to communicate between entirely different species lycaenid gossamer winged butterfly caterpillars which are myrmecophilous living in a mutualistic association with ants communicate with ants in this way 115 The Madagascar hissing cockroach has the ability to press air through its spiracles to make a hissing noise as a sign of aggression 116 the death s head hawkmoth makes a squeaking noise by forcing air out of their pharynx when agitated which may also reduce aggressive worker honey bee behavior when the two are close 117 Chemical communication Main article Chemical communication in insects Chemical communications in animals rely on a variety of aspects including taste and smell Chemoreception is the physiological response of a sense organ i e taste or smell to a chemical stimulus where the chemicals act as signals to regulate the state or activity of a cell A semiochemical is a message carrying chemical that is meant to attract repel and convey information Types of semiochemicals include pheromones and kairomones One example is the butterfly Phengaris arionwhich uses chemical signals as a form of mimicry to aid in predation 118 In addition to the use of sound for communication a wide range of insects have evolved chemical means for communication These semiochemicals are often derived from plant metabolites including those meant to attract repel and provide other kinds of information Pheromones a type of semiochemical are used for attracting mates of the opposite sex for aggregating conspecific individuals of both sexes for deterring other individuals from approaching to mark a trail and to trigger aggression in nearby individuals Allomones benefit their producer by the effect they have upon the receiver Kairomones benefit their receiver instead of their producer Synomones benefit the producer and the receiver While some chemicals are targeted at individuals of the same species others are used for communication across species The use of scents is especially well developed in social insects 38 96 105 Cuticular hydrocarbons are nonstructural materials produced and secreted to the cuticle surface to fight desiccation and pathogens They are important too as pheromones especially in social insects 119 Social behavior A cathedral mound created by termites Isoptera Social insects such as termites ants and many bees and wasps are the most familiar species of eusocial animals 120 They live together in large well organized colonies that may be so tightly integrated and genetically similar that the colonies of some species are sometimes considered superorganisms It is sometimes argued that the various species of honey bee are the only invertebrates and indeed one of the few non human groups to have evolved a system of abstract symbolic communication where a behavior is used to represent and convey specific information about something in the environment In this communication system called dance language the angle at which a bee dances represents a direction relative to the sun and the length of the dance represents the distance to be flown 38 309 311 Though perhaps not as advanced as honey bees bumblebees also potentially have some social communication behaviors Bombus terrestris for example exhibit a faster learning curve for visiting unfamiliar yet rewarding flowers when they can see a conspecific foraging on the same species 121 Only insects that live in nests or colonies demonstrate any true capacity for fine scale spatial orientation or homing This can allow an insect to return unerringly to a single hole a few millimeters in diameter among thousands of apparently identical holes clustered together after a trip of up to several kilometers distance In a phenomenon known as philopatry insects that hibernate have shown the ability to recall a specific location up to a year after last viewing the area of interest 122 A few insects seasonally migrate large distances between different geographic regions e g the overwintering areas of the monarch butterfly 38 14 Care of young The eusocial insects build nests guard eggs and provide food for offspring full time Most insects however lead short lives as adults and rarely interact with one another except to mate or compete for mates A small number exhibit some form of parental care where they will at least guard their eggs and sometimes continue guarding their offspring until adulthood and possibly even feeding them Another simple form of parental care is to construct a nest a burrow or an actual construction either of which may be simple or complex store provisions in it and lay an egg upon those provisions The adult does not contact the growing offspring but it nonetheless does provide food This sort of care is typical for most species of bees and various types of wasps 123 LocomotionFlight Main articles Insect flight and Insect wing Basic motion of the insect wing in insect with an indirect flight mechanism scheme of dorsoventral cut through a thorax segment with a wings b joints c dorsoventral muscles d longitudinal muscles Insects are the only group of invertebrates to have developed flight The evolution of insect wings has been a subject of debate Some entomologists suggest that the wings are from paranotal lobes or extensions from the insect s exoskeleton called the nota called the paranotal theory Other theories are based on a pleural origin These theories include suggestions that wings originated from modified gills spiracular flaps or as from an appendage of the epicoxa The epicoxal theory suggests the insect wings are modified epicoxal exites a modified appendage at the base of the legs or coxa 124 In the Carboniferous age some of the Meganeura dragonflies had as much as a 50 cm 20 in wide wingspan The appearance of gigantic insects has been found to be consistent with high atmospheric oxygen The respiratory system of insects constrains their size however the high oxygen in the atmosphere allowed larger sizes 125 The largest flying insects today are much smaller with the largest wingspan belonging to the white witch moth Thysania agrippina at approximately 28 cm 11 in 126 Insect flight has been a topic of great interest in aerodynamics due partly to the inability of steady state theories to explain the lift generated by the tiny wings of insects But insect wings are in motion with flapping and vibrations resulting in churning and eddies and the misconception that physics says bumblebees can t fly persisted throughout most of the twentieth century Unlike birds many small insects are swept along by the prevailing winds 127 although many of the larger insects are known to make migrations Aphids are known to be transported long distances by low level jet streams 128 As such fine line patterns associated with converging winds within weather radar imagery like the WSR 88D radar network often represent large groups of insects 129 Radar can also be deliberately used to monitor insects 130 Walking source source source source source source source source source source source source Spatial and temporal stepping pattern of walking desert ants performing an alternating tripod gait Recording rate 500 fps Playback rate 10 fps Further information Terrestrial locomotion Many adult insects use six legs for walking with an alternating tripod gait This allows for rapid walking while always having a stable stance it has been studied extensively in cockroaches and ants For the first step the middle right leg and the front and rear left legs are in contact with the ground and move the insect forward while the front and rear right leg and the middle left leg are lifted and moved forward to a new position When they touch the ground to form a new stable triangle the other legs can be lifted and brought forward in turn and so on 131 The purest form of the tripedal gait is seen in insects moving at high speeds However this type of locomotion is not rigid and insects can adapt a variety of gaits For example when moving slowly turning avoiding obstacles climbing or slippery surfaces four tetrapod or more feet wave gait 132 may be touching the ground Insects can also adapt their gait to cope with the loss of one or more limbs Cockroaches are among the fastest insect runners and at full speed adopt a bipedal run to reach a high velocity in proportion to their body size As cockroaches move very quickly they need to be video recorded at several hundred frames per second to reveal their gait More sedate locomotion is seen in the stick insects or walking sticks Phasmatodea A few insects have evolved to walk on the surface of the water especially members of the Gerridae family commonly known as water striders A few species of ocean skaters in the genus Halobates even live on the surface of open oceans a habitat that has few insect species 133 Insect walking is of particular interest as practical form of robot locomotion The study of insects and bipeds has a significant impact on possible robotic methods of transport This may allow new hexapod robots to be designed that can traverse terrain that robots with wheels may be unable to handle 131 Swimming Main article Aquatic insects The backswimmer Notonecta glauca underwater showing its paddle like hindleg adaptation A large number of insects live either part or the whole of their lives underwater In many of the more primitive orders of insect the immature stages are spent in an aquatic environment Some groups of insects like certain water beetles have aquatic adults as well 80 Many of these species have adaptations to help in under water locomotion Water beetles and water bugs have legs adapted into paddle like structures Dragonfly naiads use jet propulsion forcibly expelling water out of their rectal chamber 134 Some species like the water striders are capable of walking on the surface of water They can do this because their claws are not at the tips of the legs as in most insects but recessed in a special groove further up the leg this prevents the claws from piercing the water s surface film 80 Other insects such as the Rove beetle Stenus are known to emit pygidial gland secretions that reduce surface tension making it possible for them to move on the surface of water by Marangoni propulsion also known by the German term Entspannungsschwimmen 135 136 EcologyMain article Insect ecology Insect ecology is the scientific study of how insects individually or as a community interact with the surrounding environment or ecosystem 137 3 Insects play one of the most important roles in their ecosystems which includes many roles such as soil turning and aeration dung burial pest control pollination and wildlife nutrition An example is the beetles which are scavengers that feed on dead animals and fallen trees and thereby recycle biological materials into forms found useful by other organisms 138 These insects and others are responsible for much of the process by which topsoil is created 38 3 218 228 Defense and predation See also Defense in insects Perhaps one of the most well known examples of mimicry the viceroy butterfly top appears very similar to the monarch butterfly bottom 139 Insects are mostly soft bodied fragile and almost defenseless compared to other larger lifeforms The immature stages are small move slowly or are immobile and so all stages are exposed to predation and parasitism Insects then have a variety of defense strategies to avoid being attacked by predators or parasitoids These include camouflage mimicry toxicity and active defense 140 Camouflage is an important defense strategy which involves the use of coloration or shape to blend into the surrounding environment 141 This sort of protective coloration is common and widespread among beetle families especially those that feed on wood or vegetation such as many of the leaf beetles family Chrysomelidae or weevils In some of these species sculpturing or various colored scales or hairs cause the beetle to resemble bird dung or other inedible objects Many of those that live in sandy environments blend in with the coloration of the substrate 140 Most phasmids are known for effectively replicating the forms of sticks and leaves and the bodies of some species such as O macklotti and Palophus centaurus are covered in mossy or lichenous outgrowths that supplement their disguise Very rarely a species may have the ability to change color as their surroundings shift Bostra scabrinota In a further behavioral adaptation to supplement crypsis a number of species have been noted to perform a rocking motion where the body is swayed from side to side that is thought to reflect the movement of leaves or twigs swaying in the breeze Another method by which stick insects avoid predation and resemble twigs is by feigning death catalepsy where the insect enters a motionless state that can be maintained for a long period The nocturnal feeding habits of adults also aids Phasmatodea in remaining concealed from predators 142 Another defense that often uses color or shape to deceive potential enemies is mimicry A number of longhorn beetles family Cerambycidae bear a striking resemblance to wasps which helps them avoid predation even though the beetles are in fact harmless 140 Batesian and Mullerian mimicry complexes are commonly found in Lepidoptera Genetic polymorphism and natural selection give rise to otherwise edible species the mimic gaining a survival advantage by resembling inedible species the model Such a mimicry complex is referred to as Batesian One of the most famous examples where the viceroy butterfly was long believed to be a Batesian mimic of the inedible monarch was later disproven as the viceroy is more toxic than the monarch and this resemblance is now considered to be a case of Mullerian mimicry 139 In Mullerian mimicry inedible species usually within a taxonomic order find it advantageous to resemble each other so as to reduce the sampling rate by predators who need to learn about the insects inedibility Taxa from the toxic genus Heliconius form one of the most well known Mullerian complexes 143 Chemical defense is another important defense found among species of Coleoptera and Lepidoptera usually being advertised by bright colors such as the monarch butterfly They obtain their toxicity by sequestering the chemicals from the plants they eat into their own tissues Some Lepidoptera manufacture their own toxins Predators that eat poisonous butterflies and moths may become sick and vomit violently learning not to eat those types of species this is actually the basis of Mullerian mimicry A predator who has previously eaten a poisonous lepidopteran may avoid other species with similar markings in the future thus saving many other species as well 144 Some ground beetles of the family Carabidae can spray chemicals from their abdomen with great accuracy to repel predators 140 Pollination Main article Pollination European honey bee carrying pollen in a pollen basket back to the hive Pollination is the process by which pollen is transferred in the reproduction of plants thereby enabling fertilisation and sexual reproduction Most flowering plants require an animal to do the transportation While other animals are included as pollinators the majority of pollination is done by insects 145 Because insects usually receive benefit for the pollination in the form of energy rich nectar it is a grand example of mutualism The various flower traits and combinations thereof that differentially attract one type of pollinator or another are known as pollination syndromes These arose through complex plant animal adaptations Pollinators find flowers through bright colorations including ultraviolet and attractant pheromones The study of pollination by insects is known as anthecology Parasitism Many insects are parasites of other insects such as the parasitoid wasps These insects are known as entomophagous parasites They can be beneficial due to their devastation of pests that can destroy crops and other resources Many insects have a parasitic relationship with humans such as the mosquito These insects are known to spread diseases such as malaria and yellow fever and because of such mosquitoes indirectly cause more deaths of humans than any other animal Relationship to humansAs pests See also Pest insect Aedes aegypti a parasite is the vector of dengue fever and yellow fever Many insects are considered pests by humans Insects commonly regarded as pests include those that are parasitic e g lice bed bugs transmit diseases mosquitoes flies damage structures termites or destroy agricultural goods locusts weevils Many entomologists are involved in various forms of pest control as in research for companies to produce insecticides but increasingly rely on methods of biological pest control or biocontrol Biocontrol uses one organism to reduce the population density of another organism the pest and is considered a key element of integrated pest management 146 147 Despite the large amount of effort focused at controlling insects human attempts to kill pests with insecticides can backfire If used carelessly the poison can kill all kinds of organisms in the area including insects natural predators such as birds mice and other insectivores The effects of DDT s use exemplifies how some insecticides can threaten wildlife beyond intended populations of pest insects 148 149 In beneficial roles See also Economic entomology Beneficial insects Because they help flowering plants to cross pollinate some insects are critical to agriculture This European honey bee is gathering nectar while pollen collects on its body A robberfly with its prey a hoverfly Insectivorous relationships such as these help control insect populations Although pest insects attract the most attention many insects are beneficial to the environment and to humans Some insects like wasps bees butterflies and ants pollinate flowering plants Pollination is a mutualistic relationship between plants and insects As insects gather nectar from different plants of the same species they also spread pollen from plants on which they have previously fed This greatly increases plants ability to cross pollinate which maintains and possibly even improves their evolutionary fitness This ultimately affects humans since ensuring healthy crops is critical to agriculture As well as pollination ants help with seed distribution of plants This helps to spread the plants which increases plant diversity This leads to an overall better environment 150 A serious environmental problem is the decline of populations of pollinator insects and a number of species of insects are now cultured primarily for pollination management in order to have sufficient pollinators in the field orchard or greenhouse at bloom time 151 240 243 Another solution as shown in Delaware has been to raise native plants to help support native pollinators like L vierecki 152 The economic value of pollination by insects has been estimated to be about 34 billion in the US alone 153 Products made by insects Insects also produce useful substances such as honey wax lacquer and silk Honey bees have been cultured by humans for thousands of years for honey although contracting for crop pollination is becoming more significant for beekeepers The silkworm has greatly affected human history as silk driven trade established relationships between China and the rest of the world Pest control Insectivorous insects or insects that feed on other insects are beneficial to humans if they eat insects that could cause damage to agriculture and human structures For example aphids feed on crops and cause problems for farmers but ladybugs feed on aphids and can be used as a means to significantly reduce pest aphid populations While birds are perhaps more visible predators of insects insects themselves account for the vast majority of insect consumption Ants also help control animal populations by consuming small vertebrates 154 Without predators to keep them in check insects can undergo almost unstoppable population explosions 38 328 348 38 400 155 156 Medical uses Insects are also used in medicine for example fly larvae maggots were formerly used to treat wounds to prevent or stop gangrene as they would only consume dead flesh This treatment is finding modern usage in some hospitals Recently insects have also gained attention as potential sources of drugs and other medicinal substances 157 Adult insects such as crickets and insect larvae of various kinds are also commonly used as fishing bait 158 In research The common fruit fly Drosophila melanogaster is one of the most widely used organisms in biological research Insects play important roles in biological research For example because of its small size short generation time and high fecundity the common fruit fly Drosophila melanogaster is a model organism for studies in the genetics of eukaryotes D melanogaster has been an essential part of studies into principles like genetic linkage interactions between genes chromosomal genetics development behavior and evolution Because genetic systems are well conserved among eukaryotes understanding basic cellular processes like DNA replication or transcription in fruit flies can help to understand those processes in other eukaryotes including humans 159 The genome of D melanogaster was sequenced in 2000 reflecting the organism s important role in biological research It was found that 70 of the fly genome is similar to the human genome supporting the evolution theory 160 As food Main articles Insects as food and Entomophagy In some cultures insects form part of the normal diet In Africa for instance locally abundant species of both locusts and termites are a common traditional human food source 161 Some especially deep fried cicadas are considered to be delicacies Insects have a high protein content for their mass and some authors suggest their potential as a major source of protein in human nutrition 38 10 13 In most first world countries however entomophagy the eating of insects is taboo 162 They are also recommended by militaries as a survival food for troops in adversity 163 Since it is impossible to eliminate pest insects from the human food chain insects are inadvertently present in many foods especially grains Food safety laws in many countries do not prohibit insect parts in food but rather limit their quantity According to cultural materialist anthropologist Marvin Harris the eating of insects is taboo in cultures that have other protein sources such as fish or livestock Because of the abundance of insects and a worldwide concern of food shortages the Food and Agriculture Organization of the United Nations considers that the world may have to in the future regard the prospects of eating insects as a food staple Insects are noted for their nutrients having a high content of protein minerals and fats and are eaten by one third of the global population 164 As feed Main article Insects as feed Several insect species such as the black soldier fly or the housefly in their maggot forms as well as beetle larvae such as mealworms can be processed and used as feed for farmed animals such as chicken fish and pigs 165 In other products Further information Biorefinery Black soldier fly larvae can provide protein fats for use in cosmetics 166 and chitin Also insect cooking oil insect butter and fatty alcohols can be made from such insects as the superworm Zophobas morio 167 168 As pets Many species of insects are sold and kept as pets There are special hobbyist magazines such as Bugs now discontinued 169 In culture Main article Insects in culture Scarab beetles held religious and cultural symbolism in Old Egypt Greece and some shamanistic Old World cultures The ancient Chinese regarded cicadas as symbols of rebirth or immortality In Mesopotamian literature the epic poem of Gilgamesh has allusions to Odonata that signify the impossibility of immortality Among the Aborigines of Australia of the Arrernte language groups honey ants and witchetty grubs served as personal clan totems In the case of the San bush men of the Kalahari it is the praying mantis that holds much cultural significance including creation and zen like patience in waiting 38 9 See alsoChemical ecology Defense in insects Entomology Ethnoentomology Flying and gliding animals Insect biodiversity Insect ecology Insect borne diseases Prehistoric insects Pain in invertebrates Adipokinetic hormoneNotes The Museum of New Zealand notes that in everyday conversation bug refers to land arthropods with at least six legs such as insects spiders and centipedes 14 In a chapter on Bugs That Are Not Insects entomologist Gilbert Walbauer specifies centipedes millipedes arachnids spiders daddy longlegs scorpions mites chiggers and ticks as well as the few terrestrial crustaceans sowbugs and pillbugs 15 but argues that including legless creatures such as worms slugs and snails among the bugs stretches the word too much 16 References a b Chapman A D 2006 Numbers of living species in Australia and the World Canberra Australian Biological Resources Study ISBN 978 0 642 56850 2 Archived from the original on 30 November 2012 Wilson E O Threats to Global Diversity Archived from the original on 20 February 2015 Retrieved 17 May 2009 Novotny Vojtech Basset Yves Miller Scott E Weiblen George D Bremer Birgitta Cizek Lukas Drozd Pavel 2002 Low host specificity of herbivorous insects in a tropical forest Nature 416 6883 841 844 Bibcode 2002Natur 416 841N doi 10 1038 416841a PMID 11976681 S2CID 74583 a b Erwin Terry L 1997 Biodiversity at its utmost Tropical Forest Beetles PDF pp 27 40 Archived PDF from the original on 9 November 2018 Retrieved 16 December 2017 In Reaka Kudla M L Wilson D E Wilson E O eds 1997 Biodiversity II Joseph Henry Press Washington D C ISBN 9780309052276 Erwin Terry L 1982 Tropical forests their richness in Coleoptera and other arthropod species PDF The Coleopterists Bulletin 36 74 75 Archived PDF from the original on 23 September 2015 Retrieved 16 September 2018 a b c insect physiology McGraw Hill Encyclopedia of Science and Technology Ch 9 p 233 2007 Wigglesworth Vincent Brian Insect Encyclopaedia Britannica online Archived from the original on 4 May 2012 Retrieved 19 April 2012 Insects could be the key to meeting food needs of growing global population the Guardian 31 July 2010 Retrieved 13 January 2022 Ramos Elorduy Julieta Menzel Peter 1998 Creepy crawly cuisine the gourmet guide to edible insects Inner Traditions Bear amp Company p 44 ISBN 978 0 89281 747 4 Retrieved 23 April 2014 a b Harper Douglas McCormack Dan November 2001 Online Etymological Dictionary LogoBee com p 1 Archived from the original on 11 January 2012 Retrieved 1 November 2011 Lewis Charlton T Short Charles 1879 insĕco A Latin Dictionary Perseus Digital Library Liddell Henry George Scott Robert 1940 ἔntomos A Greek English Lexicon Perseus Digital Library Insect translations What is a bug Insects arachnids and myriapods at Museum of New Zealand Te Papa Tongarewa website Accessed 10 March 2022 Gilbert Waldbauer The Handy Bug Answer Book Visible Ink 1998 pp 5 26 ISBN 9781578590490 a b Gilbert Waldbauer The Handy Bug Answer Book Visible Ink 1998 p 1 ISBN 9781578590490 a b Sasaki Go Sasaki Keisuke Machida Ryuichiro Miyata Takashi Su Zhi Hui 2013 Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha BMC Evolutionary Biology 13 236 doi 10 1186 1471 2148 13 236 PMC 4228403 PMID 24176097 Chinery 1993 p 10 Chinery Michael 1993 Insects of Britain amp Northern Europe 3rd ed London HarperCollins pp 34 35 ISBN 978 0 00 219918 6 a b Kjer Karl M Simon Chris Yavorskaya Margarita amp Beutel Rolf G 2016 Progress pitfalls and parallel universes a history of insect phylogenetics Journal of the Royal Society Interface 13 121 121 doi 10 1098 rsif 2016 0363 PMC 5014063 PMID 27558853 Hughes Joseph amp Longhorn Stuart 2016 The role of next generation sequencing technologies in shaping the future of insect molecular systematics In Olson Peter D Hughes Joseph amp Cotton James A eds Next Generation Systematics Cambridge University Press pp 28 61 ISBN 978 1 139 23635 5 Retrieved 27 July 2017 pp 29 30 Garwood Russell Edgecombe Gregory 2011 Early terrestrial animals evolution and uncertainty Evolution Education and Outreach 4 3 489 501 doi 10 1007 s12052 011 0357 y Palaeos invertebrates Arthropoda Palaeos Invertebrates 3 May 2002 Archived from the original on 15 February 2009 Retrieved 6 May 2009 Misof Bernhard et al 7 November 2014 Phylogenomics resolves the timing and pattern of insect evolution Science 346 6210 763 767 Bibcode 2014Sci 346 763M doi 10 1126 science 1257570 PMID 25378627 S2CID 36008925 Archived from the original on 18 October 2009 Retrieved 17 October 2009 Evolution of insect flight Malcolm W Browne 25 October 1994 Archived from the original on 18 February 2007 Retrieved 6 May 2009 Dunn C W Hejnol A Matus D Q et al 10 April 2008 Broad phylogenomic sampling improves resolution of the animal tree of life Nature 452 7188 745 749 Bibcode 2008Natur 452 745D doi 10 1038 nature06614 PMID 18322464 S2CID 4397099 Wiegmann Brian M Trautwein Michelle D Winkler Isaac S Barr Norman B Kim Jung Wook Lambkin Christine Bertone Matthew A Cassel Brian K Bayless Keith M Heimberg Alysha M Wheeler Benjamin M Peterson Kevin J Pape Thomas Sinclair Bradley J Skevington Jeffrey H Blagoderov Vladimir Caravas Jason Kutty Sujatha Narayanan Schmidt Ott Urs Kampmeier Gail E Thompson F Christian Grimaldi David A Beckenbach Andrew T Courtney Gregory W Friedrich Markus Meier Rudolf Yeates David K 14 March 2011 Episodic radiations in the fly tree of life Proceedings of the National Academy of Sciences 108 14 5690 5695 doi 10 1073 pnas 1012675108 PMC 3078341 PMID 21402926 Grimaldi D Engel M S 2005 Evolution of the Insects Cambridge University Press ISBN 978 0 521 82149 0 Garwood Russell J Sutton Mark D 2010 X ray micro tomography of Carboniferous stem Dictyoptera New insights into early insects Biology Letters 6 5 699 702 doi 10 1098 rsbl 2010 0199 PMC 2936155 PMID 20392720 Rasnitsyn A P Quicke D L J 2002 History of Insects Kluwer Academic Publishers ISBN 978 1 4020 0026 3 Researchers Discover Oldest Fossil Impression of a Flying Insect Newswise 14 October 2008 Archived from the original on 10 November 2014 Retrieved 21 September 2014 Engel Michael S Grimaldi David A 2004 New light shed on the oldest insect Nature 427 6975 627 630 Bibcode 2004Natur 427 627E doi 10 1038 nature02291 PMID 14961119 S2CID 4431205 Haug Carolin Haug Joachim 2017 The presumed oldest flying insect more likely a myriapod PeerJ 5 e3402 doi 10 7717 peerj 3402 PMC 5452959 PMID 28584727 a b Carter J Stein 29 March 2005 Coevolution and Pollination University of Cincinnati Archived from the original on 30 April 2009 Retrieved 9 May 2009 Sroka Gunter Staniczek Arnold H Bechly December 2014 Revision of the giant pterygote insect Bojophlebia prokopi Kukalova Peck 1985 Hydropalaeoptera Bojophlebiidae from the Carboniferous of the Czech Republic with the first cladistic analysis of fossil palaeopterous insects Journal of Systematic Palaeontology 13 11 963 982 doi 10 1080 14772019 2014 987958 S2CID 84037275 Retrieved 21 May 2019 Prokop Jakub 2017 Redefining the extinct orders Miomoptera amp Hypoperlida as stem acercarian insects BMC Evolutionary Biology 17 1 205 doi 10 1186 s12862 017 1039 3 PMC 5574135 PMID 28841819 Wipfler B February 2019 Evolutionary history of Polyneoptera amp its implications for our understanding of early winged insects Proceedings of the National Academy of Sciences 116 8 3024 3029 doi 10 1073 pnas 1817794116 PMC 6386694 PMID 30642969 a b c d e f g h i j k l m n o p q r s t u v w x y z Gullan P J Cranston P S 2005 The Insects An Outline of Entomology 3rd ed Oxford Blackwell Publishing ISBN 978 1 4051 1113 3 Kendall David A 2009 Classification of Insect Archived from the original on 20 May 2009 Retrieved 9 May 2009 Blanke A Machida R Szucsich N U Wilde F and Misof B 2015 Mandibles with two joints evolved much earlier in the history of insects dicondyly is a synapomorphy of bristletails silverfish and winged insects Syst Entomol 40 357 364 https doi org 10 1111 syen 12107 Gilliott Cedric 1995 Entomology 2nd ed Springer Verlag New York LLC p 96 ISBN 978 0 306 44967 3 Kapoor V C C 1998 Principles and Practices of Animal Taxonomy Vol 1 1st ed Science Publishers p 48 ISBN 978 1 57808 024 3 Johnson K P Yoshizawa K Smith V S 2004 Multiple origins of parasitism in lice Proceedings of the Royal Society of London 271 1550 1771 1776 doi 10 1098 rspb 2004 2798 PMC 1691793 PMID 15315891 Terry M D Whiting M F 2005 Mantophasmatodea and phylogeny of the lower neopterous insects Cladistics 21 3 240 257 doi 10 1111 j 1096 0031 2005 00062 x S2CID 86259809 Lo Nathan Tokuda Gaku Watanabe Hirofumi et al 2000 Evidence from multiple gene sequences indicates that termites evolved from wood feeding cockroaches Current Biology 10 13 801 804 doi 10 1016 S0960 9822 00 00561 3 PMID 10898984 S2CID 14059547 Whiting M F 2002 Mecoptera is paraphyletic multiple genes and phylogeny of Mecoptera and Siphonaptera Zoologica Scripta 31 1 93 104 doi 10 1046 j 0300 3256 2001 00095 x S2CID 56100681 Sahney S Benton M J Falcon Lang H J 2010 Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica Geology 38 12 1079 1082 Bibcode 2010Geo 38 1079S doi 10 1130 G31182 1 S2CID 128642769 Coevolution and Pollination University of Cincinnati Archived from the original on 30 April 2009 Retrieved 9 May 2009 a b Stork Nigel E 7 January 2018 How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth Annual Review of Entomology 63 1 31 45 doi 10 1146 annurev ento 020117 043348 PMID 28938083 S2CID 23755007 Frequently Asked Questions on Entomology Entomological Society of America ESA 7 February 2015 Archived from the original on 7 February 2015 Retrieved 19 July 2021 Dirzo Rodolfo Young Hillary Galetti Mauro Ceballos Gerardo Isaac Nick Collen Ben 25 July 2014 Defaunation in the Anthropocene PDF Science 345 6195 401 406 Bibcode 2014Sci 345 401D doi 10 1126 science 1251817 PMID 25061202 S2CID 206555761 archived PDF from the original on 22 September 2017 retrieved 28 April 2019 Briggs John C October 2017 Emergence of a sixth mass extinction Biological Journal of the Linnean Society 122 2 243 248 doi 10 1093 biolinnean blx063 Owens Avalon C S Lewis Sara M November 2018 The impact of artificial light at night on nocturnal insects A review and synthesis Ecology and Evolution 8 22 11337 11358 doi 10 1002 ece3 4557 PMC 6262936 PMID 30519447 Tscharntke Teja Klein Alexandra M Kruess Andreas Steffan Dewenter Ingolf Thies Carsten August 2005 Landscape perspectives on agricultural intensification and biodiversity and ecosystem service management Ecology Letters 8 8 857 874 doi 10 1111 j 1461 0248 2005 00782 x S2CID 54532666 Insect plant interactions in a crop protection perspective 19 January 2017 pp 313 320 ISBN 978 0 12 803324 1 Braak Nora Neve Rebecca Jones Andrew K Gibbs Melanie Breuker Casper J November 2018 The effects of insecticides on butterflies A review Environmental Pollution 242 Pt A 507 518 doi 10 1016 j envpol 2018 06 100 PMID 30005263 S2CID 51625489 Wagner David L Van Driesche Roy G January 2010 Threats Posed to Rare or Endangered Insects by Invasions of Nonnative Species Annual Review of Entomology 55 1 547 568 doi 10 1146 annurev ento 112408 085516 PMID 19743915 Sanchez Bayo Francisco Wyckhuys Kris A G April 2019 Worldwide decline of the entomofauna A review of its drivers Biological Conservation 232 8 27 doi 10 1016 j biocon 2019 01 020 Saunders Manu 16 February 2019 Insectageddon is a great story But what are the facts Ecology is not a dirty word Archived from the original on 25 February 2019 Retrieved 24 February 2019 van Klink Roel 24 April 2020 Meta analysis reveals declines in terrestrial but increases in freshwater insect abundances Science 368 6489 417 420 Bibcode 2020Sci 368 417V doi 10 1126 science aax9931 PMID 32327596 S2CID 216106896 McGrath Matt 23 April 2020 Insect apocalypse more complex than thought BBC News Retrieved 24 April 2020 a b Global Insect Biodiversity Frequently Asked Questions PDF Entomological Society of America Retrieved 6 March 2019 O Orkin Insect zoo The University of Nebraska Department of Entomology Archived from the original on 2 June 2009 Retrieved 3 May 2009 a b c d e f Resh Vincent H Carde Ring T 2009 Encyclopedia of Insects 2 ed U S Academic Press ISBN 978 0 12 374144 8 The innovation of the final moult and the origin of insect metamorphosis Schneiderman Howard A 1960 Discontinuous respiration in insects role of the spiracles The Biological Bulletin 119 3 494 528 doi 10 2307 1539265 JSTOR 1539265 Archived from the original on 25 June 2009 Retrieved 22 May 2009 insect Nervous system Britannica www britannica com Retrieved 13 July 2022 Eisemann C H Jorgensen W K Merritt D J Rice M J Cribb B W Webb P D Zalucki M P 1984 Do insects feel pain A biological view Cellular and Molecular Life Sciences 40 2 1420 1423 doi 10 1007 BF01963580 S2CID 3071 Gibbons Matilda Sarlak Sajedeh Chittka Lars 13 July 2022 Descending control of nociception in insects Proceedings of the Royal Society B Biological Sciences 289 1978 20220599 doi 10 1098 rspb 2022 0599 PMC 9257290 PMID 35858073 S2CID 250284130 Tracey J Wilson R I Laurent G Benzer S 2003 painless a Drosophila gene essential for nociception Cell 113 2 261 273 doi 10 1016 S0092 8674 03 00272 1 PMID 12705873 S2CID 1424315 Somme L S 14 January 2005 Sentience and pain in invertebrates PDF Norwegian Scientific Committee for Food Safety Archived PDF from the original on 17 October 2011 Retrieved 30 September 2009 Dukas Reuven 1 January 2008 Evolutionary Biology of Insect Learning Annual Review of Entomology 53 1 145 160 doi 10 1146 annurev ento 53 103106 093343 PMID 17803459 General Entomology Digestive and Excritory system NC state University Archived from the original on 23 May 2009 Retrieved 3 May 2009 Bueno Odair Correa Tanaka Francisco Andre Ossamu de Lima Nogueira Neusa Fox Eduardo Goncalves Paterson Rossi Monica Lanzoni Solis Daniel Russ 1 January 2013 On the morphology of the digestive system of two Monomorium ant species Journal of Insect Science 13 1 70 doi 10 1673 031 013 7001 PMC 3835044 PMID 24224520 General Entomology Digestive and Excretory system NC state University Archived from the original on 23 May 2009 Retrieved 3 May 2009 Duncan Carl D 1939 A Contribution to The Biology of North American Vespine Wasps 1st ed Stanford Stanford University Press pp 24 29 a b c Nation James L 2001 Digestion Insect Physiology and Biochemistry 1st ed CRC Press ISBN 978 0 8493 1181 9 What Keeps Bugs from Being Bigger Argonne National Laboratory 8 August 2007 Archived from the original on 14 May 2017 Retrieved 15 July 2013 Chown S L S W Nicholson 2004 Insect Physiological Ecology New York Oxford University Press ISBN 978 0 19 851549 4 a b c Richard W Merritt Kenneth W Cummins Martin B Berg eds 2007 An Introduction to the Aquatic Insects of North America 4th ed Kendall Hunt Publishers ISBN 978 0 7575 5049 2 Merritt R W K W Cummins M B Berg 2007 An Introduction To The Aquatic Insects Of North America Kendall Hunt Publishing Company ISBN 978 0 7575 4128 5 Meyer John R 17 February 2006 Circulatory System NC State University Department of Entomology NC State University p 1 Archived from the original on 27 September 2009 Retrieved 11 October 2009 Triplehorn Charles 2005 Borror and DeLong s introduction to the study of insects Johnson Norman F Borror Donald J 7th ed Belmont California Thompson Brooks Cole pp 27 28 ISBN 978 0030968358 OCLC 55793895 Chapman R F 1998 The Insects Structure and Function 4th ed Cambridge UK Cambridge University Press ISBN 978 0521578905 Wyatt G R 1961 The Biochemistry of Insect Hemolymph Annual Review of Entomology 6 75 102 doi 10 1146 annurev en 06 010161 000451 S2CID 218693 Jacobs C G Rezende G L Lamers G E van der Zee M 2013 The extraembryonic serosa protects the insect egg against desiccation Proceedings of the Royal Society of London B 280 1764 20131082 doi 10 1098 rspb 2013 1082 PMC 3712428 PMID 23782888 Glossary of Lepidopteran and Odonate anatomy Rare species atlas Virginia Department of Conservation and Recreation 2013 Archived from the original on 4 October 2013 Retrieved 14 June 2013 Judson Olivia 14 August 2002 Dr Tatiana s Sex Advice to All Creation The Definitive Guide to the Evolutionary Biology of Sex Macmillan p 198 ISBN 978 0 8050 6331 8 Hughes William O H Oldroyd Benjamin P Beekman Madeleine Ratnieks Francis L W 2008 Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality Science 320 5880 1213 1216 Bibcode 2008Sci 320 1213H doi 10 1126 science 1156108 PMID 18511689 S2CID 20388889 Nevo E Coll M 2001 Effect of nitrogen fertilization on Aphis gossypii Homoptera Aphididae variation in size color and reproduction Journal of Economic Entomology 94 1 27 32 doi 10 1603 0022 0493 94 1 27 PMID 11233124 S2CID 25758038 Jahn G C Almazan L P Pacia J 2005 Effect of nitrogen fertilizer on the intrinsic rate of increase of the rusty plum aphid Hysteroneura setariae Thomas Homoptera Aphididae on rice Oryza sativa L PDF Environmental Entomology 34 4 938 943 doi 10 1603 0046 225X 34 4 938 S2CID 1941852 Archived from the original PDF on 9 September 2010 Hadley Debbie Where do insects go in winter About com Archived from the original on 18 January 2012 Retrieved 19 April 2012 Lee Richard E Jr 1989 Insect Cold Hardiness To Freeze or Not to Freeze PDF BioScience 39 5 308 313 doi 10 2307 1311113 JSTOR 1311113 Archived PDF from the original on 10 January 2011 Retrieved 2 December 2009 Ruppert E E Fox R S Barnes R D 2004 Invertebrate Zoology 7th ed Brooks Cole pp 523 524 ISBN 978 0 03 025982 1 Insects PDF Alien Life Forms p 4 Archived PDF from the original on 8 July 2011 Retrieved 17 May 2009 Esch Harald 1971 Wagging Movements in the Wasp Polistes versicolor Vulgaris Bequaert Zeitschrift fur Vergleichende Physiologie 72 3 221 225 doi 10 1007 bf00297781 S2CID 46240291 Cator L J Arthur B J Harrington L C Hoy R R 2009 Harmonic convergence in the love songs of the dengue vector mosquito Science 323 5917 1077 1079 Bibcode 2009Sci 323 1077C doi 10 1126 science 1166541 PMC 2847473 PMID 19131593 Moller R 2002 A Biorobotics Approach to the Study of Insect Visual Homing Strategies PDF in German p 11 Archived PDF from the original on 10 January 2011 Retrieved 23 April 2009 Pugsley Chris W 1983 Literature review of the New Zealand glowworm Arachnocampa luminosa Diptera Keroplatidae and related cave dwelling Diptera PDF New Zealand Entomologist 7 4 419 424 doi 10 1080 00779962 1983 9722435 Archived from the original PDF on 20 October 2007 Lloyd James E 1984 Occurrence of Aggressive Mimicry in Fireflies The Florida Entomologist 67 3 368 376 doi 10 2307 3494715 JSTOR 3494715 S2CID 86502129 Lloyd James E Gentry Erin C 2003 The Encyclopedia of Insects Academic Press pp 115 120 ISBN 978 0 12 586990 4 Briscoe A D Chittka L 2001 The evolution of color vision in insects Annual Review of Entomology 46 471 510 doi 10 1146 annurev ento 46 1 471 PMID 11112177 S2CID 20894534 Binocular mirror symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision PNAS Bridging the Gap Between Mammal and Insect Ears A Comparative and Evolutionary View of Sound Reception The University of Florida Book of Insect Records entnemdept ufl edu Department of Entomology amp Nematology UF IFAS Retrieved 13 January 2022 Kay Robert E 1969 Acoustic signalling and its possible relationship to assembling and navigation in the moth Heliothis zea Journal of Insect Physiology 15 6 989 1001 doi 10 1016 0022 1910 69 90139 5 Spangler Hayward G 1988 Moth hearing defense and communication Annual Review of Entomology 33 1 59 81 doi 10 1146 annurev ento 33 1 59 Hristov N I Conner William E 2005 Sound strategy acoustic aposematism in the bat tiger moth arms race Naturwissenschaften 92 4 164 169 Bibcode 2005NW 92 164H doi 10 1007 s00114 005 0611 7 PMID 15772807 S2CID 18306198 Barber J R Conner W E 2007 Acoustic mimicry in a predator prey interaction Proceedings of the National Academy of Sciences 104 22 9331 9334 Bibcode 2007PNAS 104 9331B doi 10 1073 pnas 0703627104 PMC 1890494 PMID 17517637 Corcoran Aaron J Barber Jesse R Conner William E 2009 Tiger Moth Jams Bat Sonar Science 325 5938 325 327 Bibcode 2009Sci 325 325C doi 10 1126 science 1174096 PMID 19608920 S2CID 206520028 Theiss Joachim 1982 Generation and radiation of sound by stridulating water insects as exemplified by the corixids Behavioral Ecology and Sociobiology 10 3 225 235 doi 10 1007 BF00299689 S2CID 10338592 Virant Doberlet M Cokl Andrej 2004 Vibrational communication in insects Neotropical Entomology 33 2 121 134 doi 10 1590 S1519 566X2004000200001 Bennet Clark H C 1998 Size and scale effects as constraints in insect sound communication Philosophical Transactions of the Royal Society of London Series B Biological Sciences 353 1367 407 419 doi 10 1098 rstb 1998 0219 PMC 1692226 Miklas Nadege Stritih Natasa Cokl Andrej Virant Doberlet Meta Renou Michel 2001 The Influence of Substrate on Male Responsiveness to the Female Calling Song in Nezara viridula Journal of Insect Behavior 14 3 313 332 doi 10 1023 A 1011115111592 S2CID 11369425 DeVries P J 1990 Enhancement of symbiosis between butterfly caterpillars and ants by vibrational communication Science 248 4959 1104 1106 Bibcode 1990Sci 248 1104D doi 10 1126 science 248 4959 1104 PMID 17733373 S2CID 35812411 Nelson Margaret C Fraser Jean 1980 Sound production in the cockroach Gromphadorhina portentosa evidence for communication by hissing Behavioral Ecology and Sociobiology 6 4 305 314 doi 10 1007 BF00292773 S2CID 9637568 Moritz R F A Kirchner W H Crewe R M 1991 Chemical camouflage of the death s head hawkmoth Acherontia atropos L in honeybee colonies Naturwissenschaften 78 4 179 182 Bibcode 1991NW 78 179M doi 10 1007 BF01136209 S2CID 45597312 Thomas Jeremy Schonrogge Karsten Bonelli Simona Barbero Francesca Balletto Emilio 2010 Corruption of ant acoustical signals by mimetic social parasites Communicative and Integrative Biology 3 2 169 171 doi 10 4161 cib 3 2 10603 PMC 2889977 PMID 20585513 Yan Hua Liebig Jurgen 1 April 2021 Genetic basis of chemical communication in eusocial insects Genes amp Development Cold Spring Harbor Laboratory Press amp The Genetics Society 35 7 8 470 482 doi 10 1101 gad 346965 120 PMC 8015721 PMID 33861721 Brewer Gary Social insects North Dakota State University Archived from the original on 21 March 2008 Retrieved 6 May 2009 Leadbeater E Chittka L 2007 The dynamics of social learning in an insect model the bumblebee Bombus terrestris Behavioral Ecology and Sociobiology 61 11 1789 1796 doi 10 1007 s00265 007 0412 4 S2CID 569654 Salt R W 1961 Principles of Insect Cold Hardiness Annual Review of Entomology 6 55 74 doi 10 1146 annurev en 06 010161 000415 Social Insects North Dakota State University Archived from the original on 21 March 2008 Retrieved 12 October 2009 Jockusch EL Ober KA September 2004 Hypothesis testing in evolutionary developmental biology a case study from insect wings Journal of Heredity 95 5 382 396 doi 10 1093 jhered esh064 PMID 15388766 Dudley R 1998 Atmospheric oxygen giant Paleozoic insects and the evolution of aerial locomotor performance PDF Journal of Experimental Biology 201 8 1043 1050 doi 10 1242 jeb 201 8 1043 PMID 9510518 Archived PDF from the original on 24 January 2013 Retrieved 8 December 2012 Chapter 32 Largest Lepidopteran Wing Span The University of Florida Book of Insect Records Department of Entomology amp Nematology UF IFAS entnemdept ufl edu Retrieved 13 January 2022 Yates Diana Birds migrate together at night in dispersed flocks new study indicates news illinois edu Retrieved 13 January 2022 Drake V A Farrow R A 1988 The Influence of Atmospheric Structure and Motions on Insect Migration Annual Review of Entomology 33 183 210 doi 10 1146 annurev en 33 010188 001151 Bart Geerts and Dave Leon 2003 P5A 6 Fine Scale Vertical Structure of a Cold Front As Revealed By Airborne 95 GHZ Radar Archived 7 October 2008 at the Wayback Machine University of Wyoming Retrieved on 26 April 2009 Long Teng Hu Cheng Wang Rui Zhang Tianran Kong Shaoyang Li Weidong Cai Jiong Tian Weiming Zeng Tao 1 January 2020 Entomological Radar Overview System and Signal Processing IEEE Aerospace amp Electronic Systems Magazine 35 1 20 32 doi 10 1109 maes 2019 2955575 S2CID 216536583 a b Biewener Andrew A 2003 Animal Locomotion Oxford University Press ISBN 978 0 19 850022 3 page needed Grabowska Martyna Godlewska Elzbieta Schmidt Joachim Daun Gruhn Silvia 2012 Quadrupedal gaits in hexapod animals inter leg coordination in free walking adult stick insects Journal of Experimental Biology 215 24 4255 4266 doi 10 1242 jeb 073643 PMID 22972892 Ikawa Terumi Okabe Hidehiko Hoshizaki Sugihiko Kamikado Takahiro Cheng Lanna 2004 Distribution of the oceanic insects Halobates Hemiptera Gerridae off the south coast of Japan Entomological Science 7 4 351 357 doi 10 1111 j 1479 8298 2004 00083 x S2CID 85017400 Mill P J Pickard R S 1975 Jet propulsion in anisopteran dragonfly larvae Journal of Comparative Physiology A 97 4 329 338 doi 10 1007 BF00631969 S2CID 45066664 Linsenmair K Jander R 1976 Das entspannungsschwimmen von Velia and Stenus Naturwissenschaften 50 6 231 Bibcode 1963NW 50 231L doi 10 1007 BF00639292 S2CID 40832917 Bush J W M Hu David L Hu 2006 Walking on Water Biolocomotion at the Interface PDF Annual Review of Fluid Mechanics 38 1 339 369 Bibcode 2006AnRFM 38 339B doi 10 1146 annurev fluid 38 050304 092157 Archived from the original PDF on 10 July 2007 Schowalter Timothy Duane 2006 Insect ecology an ecosystem approach 2nd illustrated ed Academic Press p 572 ISBN 978 0 12 088772 9 Archived from the original on 3 June 2016 Retrieved 27 October 2015 Losey John E Vaughan Mace 2006 The Economic Value of Ecological Services Provided by Insects BioScience 56 4 311 323 13 doi 10 1641 0006 3568 2006 56 311 TEVOES 2 0 CO 2 Archived from the original on 12 January 2012 Retrieved 8 November 2011 a b Ritland D B L P Brower 1991 The viceroy butterfly is not a Batesian mimic Nature 350 6318 497 498 Bibcode 1991Natur 350 497R doi 10 1038 350497a0 S2CID 28667520 Viceroys are as unpalatable as monarchs and significantly more unpalatable than queens from representative Florida populations a b c d Evans Arthur V Charles Bellamy 2000 An Inordinate Fondness for Beetles University of California Press ISBN 978 0 520 22323 3 Photos Masters of Disguise Amazing Insect Camouflage 24 March 2014 Archived from the original on 12 June 2015 Retrieved 11 June 2015 Bedford Geoffrey O 1978 Biology and Ecology of the Phasmatodea Annual Review of Entomology 23 125 149 doi 10 1146 annurev en 23 010178 001013 Meyer A 2006 Repeating Patterns of Mimicry PLOS Biology 4 10 e341 doi 10 1371 journal pbio 0040341 PMC 1617347 PMID 17048984 Kricher John 1999 6 A Neotropical Companion Princeton University Press pp 157 158 ISBN 978 0 691 00974 2 Pollinator Factsheet PDF United States Forest Service Archived from the original PDF on 10 April 2008 Retrieved 19 April 2012 Bale J S van Lenteren J C Bigler F 27 February 2008 Biological control and sustainable food production Philosophical Transactions of the Royal Society of London Series B Biological Sciences 363 1492 761 776 doi 10 1098 rstb 2007 2182 PMC 2610108 PMID 17827110 Davidson E 2006 Big Fleas Have Little Fleas How Discoveries of Invertebrate Diseases Are Advancing Modern Science Tucson Ariz University of Arizona Press ISBN 978 0 8165 2544 7 Colborn T vom Saal F S Soto A M October 1993 Developmental effects of endocrine disrupting chemicals in wildlife and humans Environmental Health Perspectives 101 5 378 384 doi 10 2307 3431890 JSTOR 3431890 PMC 1519860 PMID 8080506 Nakamaru M Iwasab Y Nakanishic J October 2003 Extinction risk to bird populations caused by DDT exposure Chemosphere 53 4 377 387 Bibcode 2003Chmsp 53 377N doi 10 1016 S0045 6535 03 00010 9 PMID 12946395 Holldobler Wilson 1994 Journey to the ants a story of scientific exploration Cambridge Massachusetts Belknap Press of Haravard University Press pp 196 199 ISBN 978 0 674 48525 9 Smith Deborah T 1991 Agriculture and the Environment The 1991 Yearbook of Agriculture 1991 ed United States Government Printing ISBN 978 0 16 034144 1 Farming for native bees SARE Grant Management System projects sare org Retrieved 13 January 2022 Jordan Alex Patch Harland M Grozinger Christina M Khanna Vikas 26 January 2021 Economic Dependence and Vulnerability of United States Agricultural Sector on Insect Mediated Pollination Service Environmental Science amp Technology 55 4 2243 2253 Bibcode 2021EnST 55 2243J doi 10 1021 acs est 0c04786 PMID 33496588 S2CID 231710967 Camargo Rafael Oliveira Paulo 2011 Natural history of the Neotrobical arboreal ant Odontomachus hastatus Nest sites foraging schedule and diet Journal of Insect Science 12 18 48 doi 10 1673 031 012 4801 PMC 3476954 PMID 22957686 Biocontrol Network Beneficial Insects Biocontrol Network Archived from the original on 28 February 2009 Retrieved 9 May 2009 Davidson R H Lyon William F 1979 Insect Pests of Farm Garden and Orchard Wiley John amp Sons p 38 ISBN 978 0 471 86314 4 Dossey Aaron T December 2010 Insects and their chemical weaponry New potential for drug discovery Natural Product Reports 27 12 1737 1757 doi 10 1039 c005319h PMID 20957283 Sherman Ronald A Pechter Edward A 1987 Maggot therapy a review of the therapeutic applications of fly larvae in human medicine especially for treating osteomyelitis Medical and Veterinary Entomology 2 3 225 230 doi 10 1111 j 1365 2915 1988 tb00188 x PMID 2980178 S2CID 44543735 Pierce B A 2006 Genetics A Conceptual Approach 2nd ed New York W H Freeman and Company p 87 ISBN 978 0 7167 8881 2 Adams M D Celniker S E Holt R A et al 24 March 2000 The genome sequence of Drosophila melanogaster Science 287 5461 2185 2195 Bibcode 2000Sci 287 2185 CiteSeerX 10 1 1 549 8639 doi 10 1126 science 287 5461 2185 PMID 10731132 Insects as Food for Humans Retrieved 14 September 2022 Michels John 1880 John Michels ed Science Vol 1 New York American Association for the Advance of Science p 69 Insects as Food for Humans Retrieved 14 September 2022 Maierbrugger Arno 14 May 2013 UN Insects are food of the future video Inside Investor Archived from the original on 10 September 2013 Retrieved 17 May 2013 How AgriProtein makes chicken food from maggots Wired UK Retrieved 13 January 2022 Verheyen Geert Ooms Tom Vogels Liesbeth Vreysen Steven Bovy Ann Van Miert Sabine Meersman Filip 1 May 2018 Insects as an Alternative Source for the Production of Fats for Cosmetics Journal of Cosmetic Science 69 3 187 202 PMID 30052193 Biteback Biteback Retrieved 13 January 2022 From Pest to Pot Can Insects Feed the World Culture 15 August 2016 Retrieved 13 January 2022 Bugs Bugs das Wirbellosenmagazin NTV Verlag Retrieved 7 March 2021 External linksListen to this article 5 minutes source source This audio file was created from a revision of this article dated 30 October 2010 2010 10 30 and does not reflect subsequent edits Audio help More spoken articles Insect species and observations on iNaturalist Insects of North America Overview of Orders of Insects Insect at the Encyclopedia of Life A Safrinet Manual for Entomology and Arachnology SPC Tree of Life Project Insecta Insecta Movies Insect Morphology Overview of insect external and internal anatomy Fossil Insect Database International Palaeoentological Society UF Book of Insect Records InsectImages org 24 000 high resolution insect photographs BBC Nature Insect news and video clips from BBC programmes past and present The Nature Explorers Many insect video clips Retrieved from https en wikipedia org w index php title Insect amp oldid 1132219202, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.