fbpx
Wikipedia

Pollen

Pollen is a powdery substance produced by flowers of seed plants. It consists of pollen grains (highly reduced microgametophytes), which produce male gametes (sperm cells). Pollen grains have a hard coat made of sporopollenin that protects the gametophytes during the process of their movement from the stamens to the pistil of flowering plants, or from the male cone to the female cone of gymnosperms. If pollen lands on a compatible pistil or female cone, it germinates, producing a pollen tube that transfers the sperm to the ovule containing the female gametophyte. Individual pollen grains are small enough to require magnification to see detail. The study of pollen is called palynology and is highly useful in paleoecology, paleontology, archaeology, and forensics. Pollen in plants is used for transferring haploid male genetic material from the anther of a single flower to the stigma of another in cross-pollination.[1] In a case of self-pollination, this process takes place from the anther of a flower to the stigma of the same flower.[1]

Colorized scanning electron microscope image of pollen grains from a variety of common plants: sunflower (Helianthus annuus), morning glory (Ipomoea purpurea), prairie hollyhock (Sidalcea malviflora), oriental lily (Lilium auratum), evening primrose (Oenothera fruticosa), and castor bean (Ricinus communis).
Pollen Tube Diagram

Pollen is infrequently used as food and food supplement. Because of agricultural practices, it is often contaminated by agricultural pesticides.[2]

Structure and formation

Pollen itself is not the male gamete.[3] It is a gametophyte, something that could be considered an entire organism, which then produces the male gamete. Each pollen grain contains vegetative (non-reproductive) cells (only a single cell in most flowering plants but several in other seed plants) and a generative (reproductive) cell. In flowering plants the vegetative tube cell produces the pollen tube, and the generative cell divides to form the two sperm nuclei.

Formation

Pollen is produced in the microsporangia in the male cone of a conifer or other gymnosperm or in the anthers of an angiosperm flower. Pollen grains come in a wide variety of shapes, sizes, and surface markings characteristic of the species (see electron micrograph, right). Pollen grains of pines, firs, and spruces are winged. The smallest pollen grain, that of the forget-me-not (Myosotis spp.),[which?] is 2.5-5 µm (0.005 mm) in diameter.[4] Corn pollen grains are large, about 90–100 µm.[5] Most grass pollen is around 20-25 µm.[4]

 
Pollen microspores of Lycopersicon esculentum at coenocytic tetrad stage of development observed through oil immersion microscope; the chromosomes of what will become four pollen grains can be seen.

In angiosperms, during flower development the anther is composed of a mass of cells that appear undifferentiated, except for a partially differentiated dermis. As the flower develops, four groups of sporogenous cells form within the anther. The fertile sporogenous cells are surrounded by layers of sterile cells that grow into the wall of the pollen sac. Some of the cells grow into nutritive cells that supply nutrition for the microspores that form by meiotic division from the sporogenous cells.

In a process called microsporogenesis, four haploid microspores are produced from each diploid sporogenous cell (microsporocyte, pollen mother cell or meiocyte), after meiotic division. After the formation of the four microspores, which are contained by callose walls, the development of the pollen grain walls begins. The callose wall is broken down by an enzyme called callase and the freed pollen grains grow in size and develop their characteristic shape and form a resistant outer wall called the exine and an inner wall called the intine. The exine is what is preserved in the fossil record. Two basic types of microsporogenesis are recognised, simultaneous and successive. In simultaneous microsporogenesis meiotic steps I and II are completed before cytokinesis, whereas in successive microsporogenesis cytokinesis follows. While there may be a continuum with intermediate forms, the type of microsporogenesis has systematic significance. The predominant form amongst the monocots is successive, but there are important exceptions.[6]

During microgametogenesis, the unicellular microspores undergo mitosis and develop into mature microgametophytes containing the gametes.[7] In some flowering plants,[which?] germination of the pollen grain may begin even before it leaves the microsporangium, with the generative cell forming the two sperm cells.

Structure

 
Tulip anther with many grains of pollen
 
Closeup image of a cactus flower and its stamens

Except in the case of some submerged aquatic plants, the mature pollen grain has a double wall. The vegetative and generative cells are surrounded by a thin delicate wall of unaltered cellulose called the endospore or intine, and a tough resistant outer cuticularized wall composed largely of sporopollenin called the exospore or exine. The exine often bears spines or warts, or is variously sculptured, and the character of the markings is often of value for identifying genus, species, or even cultivar or individual. The spines may be less than a micron in length (spinulus, plural spinuli) referred to as spinulose (scabrate), or longer than a micron (echina, echinae) referred to as echinate. Various terms also describe the sculpturing such as reticulate, a net like appearance consisting of elements (murus, muri) separated from each other by a lumen (plural lumina). These reticulations may also be referred to as brochi.

The pollen wall protects the sperm while the pollen grain is moving from the anther to the stigma; it protects the vital genetic material from drying out and solar radiation. The pollen grain surface is covered with waxes and proteins, which are held in place by structures called sculpture elements on the surface of the grain. The outer pollen wall, which prevents the pollen grain from shrinking and crushing the genetic material during desiccation,[citation needed] is composed of two layers. These two layers are the tectum and the foot layer, which is just above the intine. The tectum and foot layer are separated by a region called the columella, which is composed of strengthening rods. The outer wall is constructed with a resistant biopolymer called sporopollenin.

Pollen apertures are regions of the pollen wall that may involve exine thinning or a significant reduction in exine thickness.[8] They allow shrinking and swelling of the grain caused by changes in moisture content. The process of shrinking the grain is called harmomegathy.[9] Elongated apertures or furrows in the pollen grain are called colpi (singular: colpus) or sulci (singular: sulcus). Apertures that are more circular are called pores. Colpi, sulci and pores are major features in the identification of classes of pollen.[10] Pollen may be referred to as inaperturate (apertures absent) or aperturate (apertures present). The aperture may have a lid (operculum), hence is described as operculate.[11] However the term inaperturate covers a wide range of morphological types, such as functionally inaperturate (cryptoaperturate) and omniaperturate.[6] Inaperaturate pollen grains often have thin walls, which facilitates pollen tube germination at any position.[8] Terms such as uniaperturate and triaperturate refer to the number of apertures present (one and three respectively). Spiraperturate refers to one or more apertures being spirally shaped.

The orientation of furrows (relative to the original tetrad of microspores) classifies the pollen as sulcate or colpate. Sulcate pollen has a furrow across the middle of what was the outer face when the pollen grain was in its tetrad.[12] If the pollen has only a single sulcus, it is described as monosulcate, has two sulci, as bisulcate, or more, as polysulcate.[13][14] Colpate pollen has furrows other than across the middle of the outer faces, and similarly may be described as polycolpate if more than two. Syncolpate pollen grains have two or more colpi that are fused at the ends.[15][12] Eudicots have pollen with three colpi (tricolpate) or with shapes that are evolutionarily derived from tricolpate pollen.[16] The evolutionary trend in plants has been from monosulcate to polycolpate or polyporate pollen.[12]

Additionally, gymnosperm pollen grains often have air bladders, or vesicles, called sacci. The sacci are not actually balloons, but are sponge-like, and increase the buoyancy of the pollen grain and help keep it aloft in the wind, as most gymnosperms are anemophilous. Pollen can be monosaccate, (containing one saccus) or bisaccate (containing two sacci). Modern pine, spruce, and yellowwood trees all produce saccate pollen.[17]

Pollination

 
European honey bee carrying pollen in a pollen basket back to the hive
 
Marmalade hoverfly, pollen on its face and legs, sitting on a rockrose.
 
Diadasia bee straddles flower carpels while visiting yellow Opuntia engelmannii cactus

The transfer of pollen grains to the female reproductive structure (pistil in angiosperms) is called pollination. Pollen transfer is frequently portrayed as a sequential process that begins with placement on the vector, moves through travel, and ends with deposition.[18] This transfer can be mediated by the wind, in which case the plant is described as anemophilous (literally wind-loving). Anemophilous plants typically produce great quantities of very lightweight pollen grains, sometimes with air-sacs. Non-flowering seed plants (e.g., pine trees) are characteristically anemophilous. Anemophilous flowering plants generally have inconspicuous flowers. Entomophilous (literally insect-loving) plants produce pollen that is relatively heavy, sticky and protein-rich, for dispersal by insect pollinators attracted to their flowers. Many insects and some mites are specialized to feed on pollen, and are called palynivores.

In non-flowering seed plants, pollen germinates in the pollen chamber, located beneath the micropyle, underneath the integuments of the ovule. A pollen tube is produced, which grows into the nucellus to provide nutrients for the developing sperm cells. Sperm cells of Pinophyta and Gnetophyta are without flagella, and are carried by the pollen tube, while those of Cycadophyta and Ginkgophyta have many flagella.

When placed on the stigma of a flowering plant, under favorable circumstances, a pollen grain puts forth a pollen tube, which grows down the tissue of the style to the ovary, and makes its way along the placenta, guided by projections or hairs, to the micropyle of an ovule. The nucleus of the tube cell has meanwhile passed into the tube, as does also the generative nucleus, which divides (if it hasn't already) to form two sperm cells. The sperm cells are carried to their destination in the tip of the pollen tube. Double-strand breaks in DNA that arise during pollen tube growth appear to be efficiently repaired in the generative cell that carries the male genomic information to be passed on to the next plant generation.[19] However, the vegetative cell that is responsible for tube elongation appears to lack this DNA repair capability.[19]

In the fossil record

The sporopollenin outer sheath of pollen grains affords them some resistance to the rigours of the fossilisation process that destroy weaker objects; it is also produced in huge quantities. There is an extensive fossil record of pollen grains, often disassociated from their parent plant. The discipline of palynology is devoted to the study of pollen, which can be used both for biostratigraphy and to gain information about the abundance and variety of plants alive — which can itself yield important information about paleoclimates. Also, pollen analysis has been widely used for reconstructing past changes in vegetation and their associated drivers.[20] Pollen is first found in the fossil record in the late Devonian period,[21][22] but at that time it is indistinguishable from spores.[21] It increases in abundance until the present day.

Allergy to pollen

Nasal allergy to pollen is called pollinosis, and allergy specifically to grass pollen is called hay fever. Generally, pollens that cause allergies are those of anemophilous plants (pollen is dispersed by air currents.) Such plants produce large quantities of lightweight pollen (because wind dispersal is random and the likelihood of one pollen grain landing on another flower is small), which can be carried for great distances and are easily inhaled, bringing it into contact with the sensitive nasal passages.

Pollen allergies are common in polar and temperate climate zones, where production of pollen is seasonal. In the tropics pollen production varies less by the season, and allergic reactions less. In northern Europe, common pollens for allergies are those of birch and alder, and in late summer wormwood and different forms of hay. Grass pollen is also associated with asthma exacerbations in some people, a phenomenon termed thunderstorm asthma.[23]

In the US, people often mistakenly blame the conspicuous goldenrod flower for allergies. Since this plant is entomophilous (its pollen is dispersed by animals), its heavy, sticky pollen does not become independently airborne. Most late summer and fall pollen allergies are probably caused by ragweed, a widespread anemophilous plant.[24]

Arizona was once regarded as a haven for people with pollen allergies, although several ragweed species grow in the desert. However, as suburbs grew and people began establishing irrigated lawns and gardens, more irritating species of ragweed gained a foothold and Arizona lost its claim of freedom from hay fever.

Anemophilous spring blooming plants such as oak, birch, hickory, pecan, and early summer grasses may also induce pollen allergies. Most cultivated plants with showy flowers are entomophilous and do not cause pollen allergies.

Symptoms of pollen allergy include sneezing, itchy, or runny nose, nasal congestion, red, itchy, and watery eyes. Substances, including pollen, that cause allergies can trigger asthma. A study found a 54% increased chance of asthma attacks when exposed to pollen.[25]

The number of people in the United States affected by hay fever is between 20 and 40 million, including around 6.1 million children[26][27] and such allergy has proven to be the most frequent allergic response in the nation. Hay fever affects about 20% of Canadians and the prevalence is increasing.[28] There are certain evidential suggestions pointing out hay fever and similar allergies to be of hereditary origin. Individuals who suffer from eczema or are asthmatic tend to be more susceptible to developing long-term hay fever.[29]

Since 1990, pollen seasons have gotten longer and more pollen-filled, and climate change is responsible, according to a new study.[30] The researchers attributed roughly half of the lengthening pollen seasons and 8% of the trend in pollen concentrations to climate changes driven by human activity.[31]

In Denmark, decades of rising temperatures cause pollen to appear earlier and in greater amounts, exacerbated by the introduction of new species such as ragweed.[32]

The most efficient way to handle a pollen allergy is by preventing contact with the material. Individuals carrying the ailment may at first believe that they have a simple summer cold, but hay fever becomes more evident when the apparent cold does not disappear. The confirmation of hay fever can be obtained after examination by a general physician.[33]

Treatment

Antihistamines are effective at treating mild cases of pollinosis; this type of non-prescribed drugs includes loratadine, cetirizine and chlorpheniramine. They do not prevent the discharge of histamine, but it has been proven that they do prevent a part of the chain reaction activated by this biogenic amine, which considerably lowers hay fever symptoms.

Decongestants can be administered in different ways such as tablets and nasal sprays.

Allergy immunotherapy (AIT) treatment involves administering doses of allergens to accustom the body to pollen, thereby inducing specific long-term tolerance.[34] Allergy immunotherapy can be administered orally (as sublingual tablets or sublingual drops), or by injections under the skin (subcutaneous). Discovered by Leonard Noon and John Freeman in 1911, allergy immunotherapy represents the only causative treatment for respiratory allergies.

Nutrition

Most major classes of predatory and parasitic arthropods contain species that eat pollen, despite the common perception that bees are the primary pollen-consuming arthropod group. Many Hymenoptera other than bees consume pollen as adults, though only a small number feed on pollen as larvae (including some ant larvae). Spiders are normally considered carnivores but pollen is an important source of food for several species, particularly for spiderlings, which catch pollen on their webs. It is not clear how spiderlings manage to eat pollen however, since their mouths are not large enough to consume pollen grains.[citation needed] Some predatory mites also feed on pollen, with some species being able to subsist solely on pollen, such as Euseius tularensis, which feeds on the pollen of dozens of plant species. Members of some beetle families such as Mordellidae and Melyridae feed almost exclusively on pollen as adults, while various lineages within larger families such as Curculionidae, Chrysomelidae, Cerambycidae, and Scarabaeidae are pollen specialists even though most members of their families are not (e.g., only 36 of 40,000 species of ground beetles, which are typically predatory, have been shown to eat pollen—but this is thought to be a severe underestimate as the feeding habits are only known for 1,000 species). Similarly, Ladybird beetles mainly eat insects, but many species also eat pollen, as either part or all of their diet. Hemiptera are mostly herbivores or omnivores but pollen feeding is known (and has only been well studied in the Anthocoridae). Many adult flies, especially Syrphidae, feed on pollen, and three UK syrphid species feed strictly on pollen (syrphids, like all flies, cannot eat pollen directly due to the structure of their mouthparts, but can consume pollen contents that are dissolved in a fluid).[35] Some species of fungus, including Fomes fomentarius, are able to break down grains of pollen as a secondary nutrition source that is particularly high in nitrogen.[36] Pollen may be valuable diet supplement for detritivores, providing them with nutrients needed for growth, development and maturation.[37] It was suggested that obtaining nutrients from pollen, deposited on the forest floor during periods of pollen rains, allows fungi to decompose nutritionally scarce litter.[37]

Some species of Heliconius butterflies consume pollen as adults, which appears to be a valuable nutrient source, and these species are more distasteful to predators than the non-pollen consuming species.[38][39]

Although bats, butterflies and hummingbirds are not pollen eaters per se, their consumption of nectar in flowers is an important aspect of the pollination process.

In humans

Bee pollen for human consumption is marketed as a food ingredient and as a dietary supplement. The largest constituent is carbohydrates, with protein content ranging from 7 to 35 percent depending on the plant species collected by bees.[40]

Honey produced by bees from natural sources contains pollen derived p-coumaric acid,[41] an antioxidant and natural bactericide that is also present in a wide variety of plants and plant-derived food products.[42]

The U.S. Food and Drug Administration (FDA) has not found any harmful effects of bee pollen consumption, except from the usual allergies. However, FDA does not allow bee pollen marketers in the United States to make health claims about their produce, as no scientific basis for these has ever been proven. Furthermore, there are possible dangers not only from allergic reactions but also from contaminants such as pesticides[2] and from fungi and bacteria growth related to poor storage procedures. A manufacturers's claim that pollen collecting helps the bee colonies is also controversial.[43]

Pine pollen (송화가루; Songhwa Garu) is traditionally consumed in Korea as an ingredient in sweets and beverages.[44]

Parasites

The growing industries in pollen harvesting for human and bee consumption rely on harvesting pollen baskets from honey bees as they return to their hives using a pollen trap.[45] When this pollen has been tested for parasites, it has been found that a multitude of viruses and eukaryotic parasites are present in the pollen.[46][47] It is currently unclear if the parasites are introduced by the bee that collected the pollen or if it is from the flower.[47][48] Though this is not likely to pose a risk to humans, it is a major issue for the bumblebee rearing industry that relies on thousands of tonnes of honey bee collected pollen per year.[49] Several sterilization methods have been employed, though no method has been 100% effective at sterilisation without reducing the nutritional value of the pollen [50]

Forensic palynology

 
An SEM micrograph of redbud pollen. Scanning electron microscopes are major instruments in palynology.

In forensic biology, pollen can tell a lot about where a person or object has been, because regions of the world, or even more particular locations such a certain set of bushes, will have a distinctive collection of pollen species.[51] Pollen evidence can also reveal the season in which a particular object picked up the pollen.[52] Pollen has been used to trace activity at mass graves in Bosnia,[53] catch a burglar who brushed against a Hypericum bush during a crime,[54] and has even been proposed as an additive for bullets to enable tracking them.[55]

Spiritual purposes

In some Native American religions, pollen was used in prayers and rituals to symbolize life and renewal by sanctifying objects, dancing grounds, trails, and sandpaintings. It may also be sprinkled over heads or in mouths. Many Navajo people believed the body became holy when it traveled over a trail sprinkled with pollen.[56]

Pollen grain staining

For agricultural research purposes, assessing the viability of pollen grains can be necessary and illuminating. A very common, efficient method to do so is known as Alexander's stain. This differential stain consists of ethanol, malachite green, distilled water, glycerol, phenol, chloral hydrate, acid fuchsin, orange G, and glacial acetic acid.[57] (A less-toxic variation omits the phenol and chloral hydrate[58].) In angiosperms and gymnosperms non-aborted pollen grain will appear red or pink, and aborted pollen grains will appear blue or slightly green.

See also

References

  1. ^ a b Chisholm, Hugh, ed. (1911). "Pollination" . Encyclopædia Britannica. Vol. 22 (11th ed.). Cambridge University Press. pp. 2–5.
  2. ^ a b Tosi, S.; Costa, C.; Vesco, U.; Quaglia, G.; Guido, G. (2018). "A survey of honey bee-collected pollen reveals widespread contamination by agricultural pesticides". The Science of the Total Environment. 615: 208–218. doi:10.1016/j.scitotenv.2017.09.226. PMID 28968582. S2CID 19956612.
  3. ^ Johnstone, Adam (2001). Biology: facts & practice for A level. Oxford University Press. p. 95. ISBN 978-0-19-914766-3.
  4. ^ a b "Spores and Pollens".
  5. ^ Pleasants, J. M.; Hellmich, R. L.; Dively, G. P.; Sears, M. K.; Stanley-Horn, D. E.; Mattila, H. R.; Foster, J. E.; Clark, P.; Jones, G. D. (2001). "Corn pollen deposition on milkweeds in and near cornfields". Proceedings of the National Academy of Sciences of the United States of America. 98 (21): 11919–24. Bibcode:2001PNAS...9811919P. doi:10.1073/pnas.211287498. PMC 59743. PMID 11559840.
  6. ^ a b Furness, Carol A.; Rudall, Paula J. (January 2001). "Pollen and anther characters in monocot systematics". Grana. 40 (1–2): 17–25. doi:10.1080/00173130152591840.
  7. ^ Pollen Development — University of Leicester
  8. ^ a b Furness, Carol A.; Rudall, Paula J. (2004-03-01). "Pollen aperture evolution--a crucial factor for eudicot success?". Trends in Plant Science. 9 (3): 154–158. CiteSeerX 10.1.1.462.5084. doi:10.1016/j.tplants.2004.01.001. PMID 15003239.
  9. ^ Katifori, Eleni; Alben, Silas; Cerda, Enrique; Nelson, David R.; Dumais, Jacques (27 April 2010). "Foldable structures and the natural design of pollen grains". Proceedings of the National Academy of Sciences. 107 (17): 7635–7639. Bibcode:2010PNAS..107.7635K. doi:10.1073/pnas.0911223107. PMC 2867878. PMID 20404200.
  10. ^ Davis, Owen. . geo.arizona.edu. Archived from the original on 2009-02-03. Retrieved 2009-02-16.
  11. ^ Furness, Carol A.; Rudall, Paula J. (November 2003). "Apertures with Lids: Distribution and Significance of Operculate Pollen in Monocotyledons". International Journal of Plant Sciences. 164 (6): 835–854. doi:10.1086/378656. S2CID 84766627.
  12. ^ a b c Sporne, Kenneth R. (1972). "Some Observations on the Evolution of Pollen Types in Dicotyledons". New Phytologist. 71 (1): 181–185. doi:10.1111/j.1469-8137.1972.tb04826.x.
  13. ^ Simpson, Michael G. (2011). "Palynology". Plant Systematics. Academic Press. pp. 453–464. ISBN 978-0-08-051404-8. Retrieved 6 January 2014.
  14. ^ Singh, Gurcharan (2004). "Palynology". Plant Systematics: An Integrated Approach. p. 142. ISBN 9781578083510. Retrieved 23 January 2014.
  15. ^ Kaltenrieder & von Ballmoos 2003.
  16. ^ Judd, Walter S. & Olmstead, Richard G. (2004). "A survey of tricolpate (eudicot) phylogenetic relationships". American Journal of Botany. 91 (10): 1627–1644. doi:10.3732/ajb.91.10.1627. PMID 21652313.
  17. ^ Traverse, Alfred (1988). Paleopalynology. Unwin Hyman. ISBN 978-0045610013. OCLC 17674795.
  18. ^ Minnaar, Corneile; Anderson, Bruce; de Jager, Marinus L; Karron, Jeffrey D (2019-01-23). "Plant–pollinator interactions along the pathway to paternity". Annals of Botany. 123 (2): 225–245. doi:10.1093/aob/mcy167. ISSN 0305-7364. PMC 6344347. PMID 30535041.
  19. ^ a b Hirano T, Takagi K, Hoshino Y, Abe T (2013). "DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth". AoB Plants. 5: plt004. doi:10.1093/aobpla/plt004. PMC 3583183. PMID 23550213.
  20. ^ Franco-Gaviria, Felipe; Caballero-Rodríguez, Dayenari; Correa-Metrio, Alexander; Pérez, Liseth; Schwalb, Antje; Cohuo, Sergio; Macario-González, Laura (6 April 2018). "The human impact imprint on modern pollen spectra of the Maya lands". Boletín de la Sociedad Geológica Mexicana. 70 (1): 61–78. doi:10.18268/bsgm2018v70n1a4.
  21. ^ a b Traverse, Alfred (2007). "Chapter 8: Devonian Palynology". Paleopalynology. Topics in Geobiology, 28. Vol. 28. Dordrecht: Springer. pp. 199–227. doi:10.1007/978-1-4020-5610-9_8. ISBN 978-1-4020-6684-9.
  22. ^ Wang, De-Ming; Meng, Mei-Cen; Guo, Yun (2016). "Pollen Organ Telangiopsis sp. of Late Devonian Seed Plant and Associated Vegetative Frond". PLOS ONE. 11 (1): e0147984. Bibcode:2016PLoSO..1147984W. doi:10.1371/journal.pone.0147984. PMC 4725745. PMID 26808271.
  23. ^ Erbas, B.; Jazayeri, M.; Lambert, K. A.; Katelaris, C. H.; Prendergast, L. A.; Tham, R.; Parrodi, M. J.; Davies, J.; Newbigin, E.; Abramson, M. J.; Dharmage, S. C. (August 2018). "Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: A systematic review and meta-analysis". Allergy. 73 (8): 1632–1641. doi:10.1111/all.13407. PMID 29331087.
  24. ^ Oder, Tom. "Dear allergy sufferers: Don't blame goldenrod". mnn.com. Mother Nature Network. Retrieved 18 July 2016.
  25. ^ Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Baïz, N.; Simoni, M.; Annesi-Maesano, I.; Viegi, G.; HEALS Study (2015-09-01). "Allergy and asthma: Effects of the exposure to particulate matter and biological allergens". Respiratory Medicine. 109 (9): 1089–1104. doi:10.1016/j.rmed.2015.05.017. ISSN 0954-6111. PMID 26073963. S2CID 205000320.
  26. ^ "Allergy Facts | AAFA.org". www.aafa.org. Retrieved 2021-07-12.
  27. ^ Skoner, David P. (July 2001). "Allergic rhinitis: Definition, epidemiology, pathophysiology, detection, and diagnosis". Journal of Allergy and Clinical Immunology. 108 (1): S2–S8. doi:10.1067/mai.2001.115569. PMID 11449200.
  28. ^ Sierra-Heredia, Cecilia; North, Michelle; Brook, Jeff; Daly, Christina; Ellis, Anne K.; Henderson, Dave; Henderson, Sarah B.; Lavigne, Éric; Takaro, Tim K. (August 2018). "Aeroallergens in Canada: Distribution, Public Health Impacts, and Opportunities for Prevention". International Journal of Environmental Research and Public Health. 15 (8): 1577. doi:10.3390/ijerph15081577. PMC 6121311. PMID 30044421.
  29. ^ Allergies and Hay Fever WebMD. Retrieved on 2010-03-09
  30. ^ Anderegg, William R. L.; Abatzoglou, John T.; Anderegg, Leander D. L.; Bielory, Leonard; Kinney, Patrick L.; Ziska, Lewis (2021-02-16). "Anthropogenic climate change is worsening North American pollen seasons". Proceedings of the National Academy of Sciences. 118 (7): e2013284118. Bibcode:2021PNAS..11813284A. doi:10.1073/pnas.2013284118. ISSN 0027-8424. PMC 7896283. PMID 33558232.
  31. ^ Boston, 677 Huntington Avenue; Ma 02115 +1495‑1000 (2021-02-18). "Pollen seasons are getting longer, driven by climate change". News. Retrieved 2021-07-12.
  32. ^ Siewertsen, Bjarne. "Hård nyser for allergikere i varm fremtid 2015-04-19 at the Wayback Machine" (English: Hard sneeze for allergic people in warm future) Danish Meteorological Institute, 18 April 2015. Retrieved: 19 April 2015.
  33. ^ Bee, grass pollen allergy symptoms 2009-10-10 at the Wayback Machine. allergiesandtreatments.com. Retrieved on 2010-03-09
  34. ^ Moingeon, P.; Batard, T.; Fadel, R.; Frati, F.; Sieber, J.; Overtvelt, L. (February 2006). "Immune mechanisms of allergen-specific sublingual immunotherapy". Allergy. 61 (2): 151–165. doi:10.1111/j.1398-9995.2006.01002.x. PMID 16409190. S2CID 36043612.
  35. ^ Lundgren, Jonathan G. (2009). "The Pollen Feeders". Relationships of Natural Enemies and Non-Prey Foods. Vol. 7. pp. 87–116. doi:10.1007/978-1-4020-9235-0_6. ISBN 978-1-4020-9234-3.
  36. ^ Schwarze, Francis W. M. R.; Engels, Julia & Mattheck, Claus (2000). Fungal Strategies of Wood Decay in Trees. Springer. p. 61. ISBN 978-3-540-67205-0.
  37. ^ a b Filipiak, Michał (15 December 2016). "Pollen Stoichiometry May Influence Detrital Terrestrial and Aquatic Food Webs". Frontiers in Ecology and Evolution. 4. doi:10.3389/fevo.2016.00138.
  38. ^ Salcedo, C. (1 June 2010). "Evidence of pollen digestion at nocturnal aggregations of Heliconius sara in Costa Rica (Lepidoptera: Nymphalidae)". Tropical Lepidoptera Research: 35–37.
  39. ^ Cardoso MZ, Gilbert LE (June 2013). "Pollen feeding, resource allocation and the evolution of chemical defence in passion vine butterflies". Journal of Evolutionary Biology. 26 (6): 1254–60. doi:10.1111/jeb.12119. PMID 23662837. S2CID 206046558.
  40. ^ Sanford, Malcolm T. . Archived from the original on January 13, 2007. Retrieved 2015-07-15., University of Florida, Institute of Food and Agricultural Sciences; citing P. Witherell, "Other Products of the Hive," Chapter XVIII, The Hive and the Honey Bee, Dadant & Sons, Inc., Hamilton, IL, 1975.
  41. ^ Mao W, Schuler MA, Berenbaum MR (May 2013). "Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera". Proceedings of the National Academy of Sciences of the United States of America. 110 (22): 8842–6. Bibcode:2013PNAS..110.8842M. doi:10.1073/pnas.1303884110. PMC 3670375. PMID 23630255.
  42. ^ Lou, Zaixiang; Wang, Hongxin; Rao, Shengqi; Sun, Juntao; Ma, Chaoyang; Li, Jing (2012). "p-Coumaric acid kills bacteria through dual damage mechanisms". Food Control. 25 (2): 550–554. doi:10.1016/j.foodcont.2011.11.022.
  43. ^ Sanford, Malcolm T. . University of Florida, Institute of Food and Agricultural Sciences. Archived from the original on 2001-04-29. Retrieved 2007-08-30. Document ENY118. Original publication date November 1, 1994. Revised February 1, 1995. Reviewed May 1, 2003.
  44. ^ "Source". Aarongilbreath's Blog. 2013-05-31.
  45. ^ "How a Pollen Trap Works (Bee Pollen)". YouTube. Archived from the original on 2021-11-04.
  46. ^ Graystock, Peter; Yates, Kathryn; Evison, Sophie E. F.; Darvill, Ben; Goulson, Dave; Hughes, William O. H. (July 2013). "The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies". Journal of Applied Ecology. 50 (5): 1207–1215. doi:10.1111/1365-2664.12134. S2CID 3937352.
  47. ^ a b Singh, Rajwinder; Levitt, Abby L.; Rajotte, Edwin G.; Holmes, Edward C.; Ostiguy, Nancy; vanEngelsdorp, Dennis; Lipkin, W. Ian; dePamphilis, Claude W.; Toth, Amy L.; Cox-Foster, Diana L.; Traveset, Anna (22 December 2010). "RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species". PLOS ONE. 5 (12): e14357. Bibcode:2010PLoSO...514357S. doi:10.1371/journal.pone.0014357. PMC 3008715. PMID 21203504.
  48. ^ Graystock, Peter; Goulson, Dave; Hughes, William O. H. (5 August 2015). "Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species". Proceedings of the Royal Society B: Biological Sciences. 282 (1813): 20151371. doi:10.1098/rspb.2015.1371. PMC 4632632. PMID 26246556.
  49. ^ Graystock, Peter; Blane, Edward J.; McFrederick, Quinn S.; Goulson, Dave; Hughes, William O.H. (October 2015). "Do managed bees drive parasite spread and emergence in wild bees?". International Journal for Parasitology: Parasites and Wildlife. 5 (1): 64–75. doi:10.1016/j.ijppaw.2015.10.001. PMC 5439461. PMID 28560161.
  50. ^ Graystock, P.; Jones, J.C.; Pamminger, T.; Parkinson, J.F.; Norman, V.; Blane, E.J.; Rothstein, L.; Wäckers, F.; Goulson, D.; Hughes, W.O.H. (May 2016). "Hygienic food to reduce pathogen risk to bumblebees". Journal of Invertebrate Pathology. 136: 68–73. doi:10.1016/j.jip.2016.03.007. PMID 26970260.
  51. ^ Bryant, Vaughn M. . crimeandclues.com. Archived from the original on 2007-02-03.
  52. ^ Stackhouse, Robert (17 April 2003). . The Battalion. Archived from the original on 2013-04-23.
  53. ^ Wood, Peter (9 September 2004). "Pollen helps war crime forensics". BBC News.
  54. ^ D. Mildenhall (2006). "Hypericum pollen determines the presence of burglars at the scene of a crime: An example of forensic palynology". Forensic Science International. 163 (3): 231–235. doi:10.1016/j.forsciint.2005.11.028. PMID 16406430.
  55. ^ Wolf, Lauren K. (18 August 2008). "Newscripts". Chemical & Engineering News. 86 (33): 88. doi:10.1021/cen-v086n033.p088.
  56. ^ Hirshfelder, Arlene (2000). Encyclopedia of Native American Religions. Facts on File, Inc. p. 225. ISBN 978-0816039494.
  57. ^ Alexander, M. P. (1 January 1969). "Differential Staining of Aborted and Nonaborted Pollen". Stain Technology. 44 (3): 117–122. doi:10.3109/10520296909063335. PMID 4181665.
  58. ^ Peterson, Ross; Slovin, Janet P.; Chen, Changbin (23 July 2010). "A Simplified Method for Differential Staining of Aborted and Non-Aborted Pollen Grains". International Journal of Plant Biology. 1 (2): e13. doi:10.4081/pb.2010.e13. eISSN 2037-0164.

Bibliography

  • Simpson, Michael G. (2011). Plant Systematics. Academic Press. ISBN 978-0-08-051404-8. Retrieved 12 February 2014.
  • Singh, Gurcharan (2004). Plant Systematics: An Integrated Approach. Science Publishers. ISBN 978-1-57808-351-0. Retrieved 23 January 2014.
  • Furness, Carol A.; Rudall, Paula J. (1999). "Inaperturate Pollen in Monocotyledons". International Journal of Plant Sciences. 160 (2): 395–414. doi:10.1086/314129. JSTOR 314129. S2CID 83903452.
  • "Pollen Grain Surface Pattern Terminology" (PDF). Quick Reference Glossary with Illustrations. Florida Institute of Technology: Center for Applied Biogeography. October 2014. (PDF) from the original on 2019-08-11. Retrieved 11 August 2019.
  • Society for the Promotion of Palynological Research in Austria (2021). "Illustrated Pollen Terms". PalDat - Palynological Database. University of Vienna. Division of Structural and Functional Botany. Retrieved 16 January 2021.
  • Davis, Owen (1999). . University of Arizona. Department of Geosciences. Archived from the original on 2005-12-22. Retrieved 2009-02-19.
  • Kaltenrieder, Petra; von Ballmoos, Peter (2003). "Types of Apertures in microspores". Introduction to pollen analysis. Institute of Plant Sciences, University of Bern. Retrieved 28 June 2021.

External links

  • PalDat (database comprising palynological data from a variety of plant families)
  • Pollen-Wiki - A digital Pollen-Atlas, retrieved 9 February 2018.
  • YouTube video of pollen clouds from Juncus gerardii plants

pollen, other, uses, disambiguation, exine, redirects, here, confused, with, exene, powdery, substance, produced, flowers, seed, plants, consists, pollen, grains, highly, reduced, microgametophytes, which, produce, male, gametes, sperm, cells, grains, have, ha. For other uses see Pollen disambiguation Exine redirects here Not to be confused with Exene Pollen is a powdery substance produced by flowers of seed plants It consists of pollen grains highly reduced microgametophytes which produce male gametes sperm cells Pollen grains have a hard coat made of sporopollenin that protects the gametophytes during the process of their movement from the stamens to the pistil of flowering plants or from the male cone to the female cone of gymnosperms If pollen lands on a compatible pistil or female cone it germinates producing a pollen tube that transfers the sperm to the ovule containing the female gametophyte Individual pollen grains are small enough to require magnification to see detail The study of pollen is called palynology and is highly useful in paleoecology paleontology archaeology and forensics Pollen in plants is used for transferring haploid male genetic material from the anther of a single flower to the stigma of another in cross pollination 1 In a case of self pollination this process takes place from the anther of a flower to the stigma of the same flower 1 Colorized scanning electron microscope image of pollen grains from a variety of common plants sunflower Helianthus annuus morning glory Ipomoea purpurea prairie hollyhock Sidalcea malviflora oriental lily Lilium auratum evening primrose Oenothera fruticosa and castor bean Ricinus communis Pollen Tube Diagram Pollen is infrequently used as food and food supplement Because of agricultural practices it is often contaminated by agricultural pesticides 2 Contents 1 Structure and formation 1 1 Formation 1 2 Structure 2 Pollination 3 In the fossil record 4 Allergy to pollen 4 1 Treatment 5 Nutrition 5 1 In humans 5 2 Parasites 6 Forensic palynology 7 Spiritual purposes 8 Pollen grain staining 9 See also 10 References 11 Bibliography 12 External linksStructure and formation EditPollen itself is not the male gamete 3 It is a gametophyte something that could be considered an entire organism which then produces the male gamete Each pollen grain contains vegetative non reproductive cells only a single cell in most flowering plants but several in other seed plants and a generative reproductive cell In flowering plants the vegetative tube cell produces the pollen tube and the generative cell divides to form the two sperm nuclei Triporate pollen of Oenothera speciosa Pollen of Lilium auratum showing single sulcus monosulcate Arabis pollen has three colpi and prominent surface structure Apple pollen under microscopy Pollen of Lilium bulbiferum on an insect s hair under microscopeFormation Edit Pollen is produced in the microsporangia in the male cone of a conifer or other gymnosperm or in the anthers of an angiosperm flower Pollen grains come in a wide variety of shapes sizes and surface markings characteristic of the species see electron micrograph right Pollen grains of pines firs and spruces are winged The smallest pollen grain that of the forget me not Myosotis spp which is 2 5 5 µm 0 005 mm in diameter 4 Corn pollen grains are large about 90 100 µm 5 Most grass pollen is around 20 25 µm 4 Pollen microspores of Lycopersicon esculentum at coenocytic tetrad stage of development observed through oil immersion microscope the chromosomes of what will become four pollen grains can be seen In angiosperms during flower development the anther is composed of a mass of cells that appear undifferentiated except for a partially differentiated dermis As the flower develops four groups of sporogenous cells form within the anther The fertile sporogenous cells are surrounded by layers of sterile cells that grow into the wall of the pollen sac Some of the cells grow into nutritive cells that supply nutrition for the microspores that form by meiotic division from the sporogenous cells In a process called microsporogenesis four haploid microspores are produced from each diploid sporogenous cell microsporocyte pollen mother cell or meiocyte after meiotic division After the formation of the four microspores which are contained by callose walls the development of the pollen grain walls begins The callose wall is broken down by an enzyme called callase and the freed pollen grains grow in size and develop their characteristic shape and form a resistant outer wall called the exine and an inner wall called the intine The exine is what is preserved in the fossil record Two basic types of microsporogenesis are recognised simultaneous and successive In simultaneous microsporogenesis meiotic steps I and II are completed before cytokinesis whereas in successive microsporogenesis cytokinesis follows While there may be a continuum with intermediate forms the type of microsporogenesis has systematic significance The predominant form amongst the monocots is successive but there are important exceptions 6 During microgametogenesis the unicellular microspores undergo mitosis and develop into mature microgametophytes containing the gametes 7 In some flowering plants which germination of the pollen grain may begin even before it leaves the microsporangium with the generative cell forming the two sperm cells Structure Edit Tulip anther with many grains of pollen Closeup image of a cactus flower and its stamens Except in the case of some submerged aquatic plants the mature pollen grain has a double wall The vegetative and generative cells are surrounded by a thin delicate wall of unaltered cellulose called the endospore or intine and a tough resistant outer cuticularized wall composed largely of sporopollenin called the exospore or exine The exine often bears spines or warts or is variously sculptured and the character of the markings is often of value for identifying genus species or even cultivar or individual The spines may be less than a micron in length spinulus plural spinuli referred to as spinulose scabrate or longer than a micron echina echinae referred to as echinate Various terms also describe the sculpturing such as reticulate a net like appearance consisting of elements murus muri separated from each other by a lumen plural lumina These reticulations may also be referred to as brochi The pollen wall protects the sperm while the pollen grain is moving from the anther to the stigma it protects the vital genetic material from drying out and solar radiation The pollen grain surface is covered with waxes and proteins which are held in place by structures called sculpture elements on the surface of the grain The outer pollen wall which prevents the pollen grain from shrinking and crushing the genetic material during desiccation citation needed is composed of two layers These two layers are the tectum and the foot layer which is just above the intine The tectum and foot layer are separated by a region called the columella which is composed of strengthening rods The outer wall is constructed with a resistant biopolymer called sporopollenin Pollen apertures are regions of the pollen wall that may involve exine thinning or a significant reduction in exine thickness 8 They allow shrinking and swelling of the grain caused by changes in moisture content The process of shrinking the grain is called harmomegathy 9 Elongated apertures or furrows in the pollen grain are called colpi singular colpus or sulci singular sulcus Apertures that are more circular are called pores Colpi sulci and pores are major features in the identification of classes of pollen 10 Pollen may be referred to as inaperturate apertures absent or aperturate apertures present The aperture may have a lid operculum hence is described as operculate 11 However the term inaperturate covers a wide range of morphological types such as functionally inaperturate cryptoaperturate and omniaperturate 6 Inaperaturate pollen grains often have thin walls which facilitates pollen tube germination at any position 8 Terms such as uniaperturate and triaperturate refer to the number of apertures present one and three respectively Spiraperturate refers to one or more apertures being spirally shaped The orientation of furrows relative to the original tetrad of microspores classifies the pollen as sulcate or colpate Sulcate pollen has a furrow across the middle of what was the outer face when the pollen grain was in its tetrad 12 If the pollen has only a single sulcus it is described as monosulcate has two sulci as bisulcate or more as polysulcate 13 14 Colpate pollen has furrows other than across the middle of the outer faces and similarly may be described as polycolpate if more than two Syncolpate pollen grains have two or more colpi that are fused at the ends 15 12 Eudicots have pollen with three colpi tricolpate or with shapes that are evolutionarily derived from tricolpate pollen 16 The evolutionary trend in plants has been from monosulcate to polycolpate or polyporate pollen 12 Additionally gymnosperm pollen grains often have air bladders or vesicles called sacci The sacci are not actually balloons but are sponge like and increase the buoyancy of the pollen grain and help keep it aloft in the wind as most gymnosperms are anemophilous Pollen can be monosaccate containing one saccus or bisaccate containing two sacci Modern pine spruce and yellowwood trees all produce saccate pollen 17 Pollination EditMain article Pollination European honey bee carrying pollen in a pollen basket back to the hive Marmalade hoverfly pollen on its face and legs sitting on a rockrose Diadasia bee straddles flower carpels while visiting yellow Opuntia engelmannii cactus The transfer of pollen grains to the female reproductive structure pistil in angiosperms is called pollination Pollen transfer is frequently portrayed as a sequential process that begins with placement on the vector moves through travel and ends with deposition 18 This transfer can be mediated by the wind in which case the plant is described as anemophilous literally wind loving Anemophilous plants typically produce great quantities of very lightweight pollen grains sometimes with air sacs Non flowering seed plants e g pine trees are characteristically anemophilous Anemophilous flowering plants generally have inconspicuous flowers Entomophilous literally insect loving plants produce pollen that is relatively heavy sticky and protein rich for dispersal by insect pollinators attracted to their flowers Many insects and some mites are specialized to feed on pollen and are called palynivores In non flowering seed plants pollen germinates in the pollen chamber located beneath the micropyle underneath the integuments of the ovule A pollen tube is produced which grows into the nucellus to provide nutrients for the developing sperm cells Sperm cells of Pinophyta and Gnetophyta are without flagella and are carried by the pollen tube while those of Cycadophyta and Ginkgophyta have many flagella When placed on the stigma of a flowering plant under favorable circumstances a pollen grain puts forth a pollen tube which grows down the tissue of the style to the ovary and makes its way along the placenta guided by projections or hairs to the micropyle of an ovule The nucleus of the tube cell has meanwhile passed into the tube as does also the generative nucleus which divides if it hasn t already to form two sperm cells The sperm cells are carried to their destination in the tip of the pollen tube Double strand breaks in DNA that arise during pollen tube growth appear to be efficiently repaired in the generative cell that carries the male genomic information to be passed on to the next plant generation 19 However the vegetative cell that is responsible for tube elongation appears to lack this DNA repair capability 19 In the fossil record EditMain article Palynology The sporopollenin outer sheath of pollen grains affords them some resistance to the rigours of the fossilisation process that destroy weaker objects it is also produced in huge quantities There is an extensive fossil record of pollen grains often disassociated from their parent plant The discipline of palynology is devoted to the study of pollen which can be used both for biostratigraphy and to gain information about the abundance and variety of plants alive which can itself yield important information about paleoclimates Also pollen analysis has been widely used for reconstructing past changes in vegetation and their associated drivers 20 Pollen is first found in the fossil record in the late Devonian period 21 22 but at that time it is indistinguishable from spores 21 It increases in abundance until the present day Allergy to pollen EditSee also Allergy season This section has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages The examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject You may improve this article discuss the issue on the talk page or create a new article as appropriate September 2010 Learn how and when to remove this template message This section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed March 2013 Learn how and when to remove this template message This section needs expansion with information about allergies not in the nose e g skin reactions You can help by adding to it March 2013 Learn how and when to remove this template message Nasal allergy to pollen is called pollinosis and allergy specifically to grass pollen is called hay fever Generally pollens that cause allergies are those of anemophilous plants pollen is dispersed by air currents Such plants produce large quantities of lightweight pollen because wind dispersal is random and the likelihood of one pollen grain landing on another flower is small which can be carried for great distances and are easily inhaled bringing it into contact with the sensitive nasal passages Pollen allergies are common in polar and temperate climate zones where production of pollen is seasonal In the tropics pollen production varies less by the season and allergic reactions less In northern Europe common pollens for allergies are those of birch and alder and in late summer wormwood and different forms of hay Grass pollen is also associated with asthma exacerbations in some people a phenomenon termed thunderstorm asthma 23 In the US people often mistakenly blame the conspicuous goldenrod flower for allergies Since this plant is entomophilous its pollen is dispersed by animals its heavy sticky pollen does not become independently airborne Most late summer and fall pollen allergies are probably caused by ragweed a widespread anemophilous plant 24 Arizona was once regarded as a haven for people with pollen allergies although several ragweed species grow in the desert However as suburbs grew and people began establishing irrigated lawns and gardens more irritating species of ragweed gained a foothold and Arizona lost its claim of freedom from hay fever Anemophilous spring blooming plants such as oak birch hickory pecan and early summer grasses may also induce pollen allergies Most cultivated plants with showy flowers are entomophilous and do not cause pollen allergies Symptoms of pollen allergy include sneezing itchy or runny nose nasal congestion red itchy and watery eyes Substances including pollen that cause allergies can trigger asthma A study found a 54 increased chance of asthma attacks when exposed to pollen 25 The number of people in the United States affected by hay fever is between 20 and 40 million including around 6 1 million children 26 27 and such allergy has proven to be the most frequent allergic response in the nation Hay fever affects about 20 of Canadians and the prevalence is increasing 28 There are certain evidential suggestions pointing out hay fever and similar allergies to be of hereditary origin Individuals who suffer from eczema or are asthmatic tend to be more susceptible to developing long term hay fever 29 Since 1990 pollen seasons have gotten longer and more pollen filled and climate change is responsible according to a new study 30 The researchers attributed roughly half of the lengthening pollen seasons and 8 of the trend in pollen concentrations to climate changes driven by human activity 31 In Denmark decades of rising temperatures cause pollen to appear earlier and in greater amounts exacerbated by the introduction of new species such as ragweed 32 The most efficient way to handle a pollen allergy is by preventing contact with the material Individuals carrying the ailment may at first believe that they have a simple summer cold but hay fever becomes more evident when the apparent cold does not disappear The confirmation of hay fever can be obtained after examination by a general physician 33 Treatment Edit Main article Allergic rhinitis treatment Antihistamines are effective at treating mild cases of pollinosis this type of non prescribed drugs includes loratadine cetirizine and chlorpheniramine They do not prevent the discharge of histamine but it has been proven that they do prevent a part of the chain reaction activated by this biogenic amine which considerably lowers hay fever symptoms Decongestants can be administered in different ways such as tablets and nasal sprays Allergy immunotherapy AIT treatment involves administering doses of allergens to accustom the body to pollen thereby inducing specific long term tolerance 34 Allergy immunotherapy can be administered orally as sublingual tablets or sublingual drops or by injections under the skin subcutaneous Discovered by Leonard Noon and John Freeman in 1911 allergy immunotherapy represents the only causative treatment for respiratory allergies Nutrition EditMost major classes of predatory and parasitic arthropods contain species that eat pollen despite the common perception that bees are the primary pollen consuming arthropod group Many Hymenoptera other than bees consume pollen as adults though only a small number feed on pollen as larvae including some ant larvae Spiders are normally considered carnivores but pollen is an important source of food for several species particularly for spiderlings which catch pollen on their webs It is not clear how spiderlings manage to eat pollen however since their mouths are not large enough to consume pollen grains citation needed Some predatory mites also feed on pollen with some species being able to subsist solely on pollen such as Euseius tularensis which feeds on the pollen of dozens of plant species Members of some beetle families such as Mordellidae and Melyridae feed almost exclusively on pollen as adults while various lineages within larger families such as Curculionidae Chrysomelidae Cerambycidae and Scarabaeidae are pollen specialists even though most members of their families are not e g only 36 of 40 000 species of ground beetles which are typically predatory have been shown to eat pollen but this is thought to be a severe underestimate as the feeding habits are only known for 1 000 species Similarly Ladybird beetles mainly eat insects but many species also eat pollen as either part or all of their diet Hemiptera are mostly herbivores or omnivores but pollen feeding is known and has only been well studied in the Anthocoridae Many adult flies especially Syrphidae feed on pollen and three UK syrphid species feed strictly on pollen syrphids like all flies cannot eat pollen directly due to the structure of their mouthparts but can consume pollen contents that are dissolved in a fluid 35 Some species of fungus including Fomes fomentarius are able to break down grains of pollen as a secondary nutrition source that is particularly high in nitrogen 36 Pollen may be valuable diet supplement for detritivores providing them with nutrients needed for growth development and maturation 37 It was suggested that obtaining nutrients from pollen deposited on the forest floor during periods of pollen rains allows fungi to decompose nutritionally scarce litter 37 Some species of Heliconius butterflies consume pollen as adults which appears to be a valuable nutrient source and these species are more distasteful to predators than the non pollen consuming species 38 39 Although bats butterflies and hummingbirds are not pollen eaters per se their consumption of nectar in flowers is an important aspect of the pollination process In humans Edit Bee pollen for human consumption is marketed as a food ingredient and as a dietary supplement The largest constituent is carbohydrates with protein content ranging from 7 to 35 percent depending on the plant species collected by bees 40 Honey produced by bees from natural sources contains pollen derived p coumaric acid 41 an antioxidant and natural bactericide that is also present in a wide variety of plants and plant derived food products 42 The U S Food and Drug Administration FDA has not found any harmful effects of bee pollen consumption except from the usual allergies However FDA does not allow bee pollen marketers in the United States to make health claims about their produce as no scientific basis for these has ever been proven Furthermore there are possible dangers not only from allergic reactions but also from contaminants such as pesticides 2 and from fungi and bacteria growth related to poor storage procedures A manufacturers s claim that pollen collecting helps the bee colonies is also controversial 43 Pine pollen 송화가루 Songhwa Garu is traditionally consumed in Korea as an ingredient in sweets and beverages 44 Parasites Edit The growing industries in pollen harvesting for human and bee consumption rely on harvesting pollen baskets from honey bees as they return to their hives using a pollen trap 45 When this pollen has been tested for parasites it has been found that a multitude of viruses and eukaryotic parasites are present in the pollen 46 47 It is currently unclear if the parasites are introduced by the bee that collected the pollen or if it is from the flower 47 48 Though this is not likely to pose a risk to humans it is a major issue for the bumblebee rearing industry that relies on thousands of tonnes of honey bee collected pollen per year 49 Several sterilization methods have been employed though no method has been 100 effective at sterilisation without reducing the nutritional value of the pollen 50 Forensic palynology EditMain article Forensic palynology An SEM micrograph of redbud pollen Scanning electron microscopes are major instruments in palynology In forensic biology pollen can tell a lot about where a person or object has been because regions of the world or even more particular locations such a certain set of bushes will have a distinctive collection of pollen species 51 Pollen evidence can also reveal the season in which a particular object picked up the pollen 52 Pollen has been used to trace activity at mass graves in Bosnia 53 catch a burglar who brushed against a Hypericum bush during a crime 54 and has even been proposed as an additive for bullets to enable tracking them 55 Spiritual purposes EditIn some Native American religions pollen was used in prayers and rituals to symbolize life and renewal by sanctifying objects dancing grounds trails and sandpaintings It may also be sprinkled over heads or in mouths Many Navajo people believed the body became holy when it traveled over a trail sprinkled with pollen 56 Pollen grain staining EditFor agricultural research purposes assessing the viability of pollen grains can be necessary and illuminating A very common efficient method to do so is known as Alexander s stain This differential stain consists of ethanol malachite green distilled water glycerol phenol chloral hydrate acid fuchsin orange G and glacial acetic acid 57 A less toxic variation omits the phenol and chloral hydrate 58 In angiosperms and gymnosperms non aborted pollen grain will appear red or pink and aborted pollen grains will appear blue or slightly green See also EditEuropean Pollen Database Evolution of sex Honeybee starvation Pollen calendar Pollen count Pollen DNA barcoding Pollen source Polyphenol antioxidantReferences Edit a b Chisholm Hugh ed 1911 Pollination Encyclopaedia Britannica Vol 22 11th ed Cambridge University Press pp 2 5 a b Tosi S Costa C Vesco U Quaglia G Guido G 2018 A survey of honey bee collected pollen reveals widespread contamination by agricultural pesticides The Science of the Total Environment 615 208 218 doi 10 1016 j scitotenv 2017 09 226 PMID 28968582 S2CID 19956612 Johnstone Adam 2001 Biology facts amp practice for A level Oxford University Press p 95 ISBN 978 0 19 914766 3 a b Spores and Pollens Pleasants J M Hellmich R L Dively G P Sears M K Stanley Horn D E Mattila H R Foster J E Clark P Jones G D 2001 Corn pollen deposition on milkweeds in and near cornfields Proceedings of the National Academy of Sciences of the United States of America 98 21 11919 24 Bibcode 2001PNAS 9811919P doi 10 1073 pnas 211287498 PMC 59743 PMID 11559840 a b Furness Carol A Rudall Paula J January 2001 Pollen and anther characters in monocot systematics Grana 40 1 2 17 25 doi 10 1080 00173130152591840 Pollen Development University of Leicester a b Furness Carol A Rudall Paula J 2004 03 01 Pollen aperture evolution a crucial factor for eudicot success Trends in Plant Science 9 3 154 158 CiteSeerX 10 1 1 462 5084 doi 10 1016 j tplants 2004 01 001 PMID 15003239 Katifori Eleni Alben Silas Cerda Enrique Nelson David R Dumais Jacques 27 April 2010 Foldable structures and the natural design of pollen grains Proceedings of the National Academy of Sciences 107 17 7635 7639 Bibcode 2010PNAS 107 7635K doi 10 1073 pnas 0911223107 PMC 2867878 PMID 20404200 Davis Owen Aperture geo arizona edu Archived from the original on 2009 02 03 Retrieved 2009 02 16 Furness Carol A Rudall Paula J November 2003 Apertures with Lids Distribution and Significance of Operculate Pollen in Monocotyledons International Journal of Plant Sciences 164 6 835 854 doi 10 1086 378656 S2CID 84766627 a b c Sporne Kenneth R 1972 Some Observations on the Evolution of Pollen Types in Dicotyledons New Phytologist 71 1 181 185 doi 10 1111 j 1469 8137 1972 tb04826 x Simpson Michael G 2011 Palynology Plant Systematics Academic Press pp 453 464 ISBN 978 0 08 051404 8 Retrieved 6 January 2014 Singh Gurcharan 2004 Palynology Plant Systematics An Integrated Approach p 142 ISBN 9781578083510 Retrieved 23 January 2014 Kaltenrieder amp von Ballmoos 2003 Judd Walter S amp Olmstead Richard G 2004 A survey of tricolpate eudicot phylogenetic relationships American Journal of Botany 91 10 1627 1644 doi 10 3732 ajb 91 10 1627 PMID 21652313 Traverse Alfred 1988 Paleopalynology Unwin Hyman ISBN 978 0045610013 OCLC 17674795 Minnaar Corneile Anderson Bruce de Jager Marinus L Karron Jeffrey D 2019 01 23 Plant pollinator interactions along the pathway to paternity Annals of Botany 123 2 225 245 doi 10 1093 aob mcy167 ISSN 0305 7364 PMC 6344347 PMID 30535041 a b Hirano T Takagi K Hoshino Y Abe T 2013 DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth AoB Plants 5 plt004 doi 10 1093 aobpla plt004 PMC 3583183 PMID 23550213 Franco Gaviria Felipe Caballero Rodriguez Dayenari Correa Metrio Alexander Perez Liseth Schwalb Antje Cohuo Sergio Macario Gonzalez Laura 6 April 2018 The human impact imprint on modern pollen spectra of the Maya lands Boletin de la Sociedad Geologica Mexicana 70 1 61 78 doi 10 18268 bsgm2018v70n1a4 a b Traverse Alfred 2007 Chapter 8 Devonian Palynology Paleopalynology Topics in Geobiology 28 Vol 28 Dordrecht Springer pp 199 227 doi 10 1007 978 1 4020 5610 9 8 ISBN 978 1 4020 6684 9 Wang De Ming Meng Mei Cen Guo Yun 2016 Pollen Organ Telangiopsis sp of Late Devonian Seed Plant and Associated Vegetative Frond PLOS ONE 11 1 e0147984 Bibcode 2016PLoSO 1147984W doi 10 1371 journal pone 0147984 PMC 4725745 PMID 26808271 Erbas B Jazayeri M Lambert K A Katelaris C H Prendergast L A Tham R Parrodi M J Davies J Newbigin E Abramson M J Dharmage S C August 2018 Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations A systematic review and meta analysis Allergy 73 8 1632 1641 doi 10 1111 all 13407 PMID 29331087 Oder Tom Dear allergy sufferers Don t blame goldenrod mnn com Mother Nature Network Retrieved 18 July 2016 Baldacci S Maio S Cerrai S Sarno G Baiz N Simoni M Annesi Maesano I Viegi G HEALS Study 2015 09 01 Allergy and asthma Effects of the exposure to particulate matter and biological allergens Respiratory Medicine 109 9 1089 1104 doi 10 1016 j rmed 2015 05 017 ISSN 0954 6111 PMID 26073963 S2CID 205000320 Allergy Facts AAFA org www aafa org Retrieved 2021 07 12 Skoner David P July 2001 Allergic rhinitis Definition epidemiology pathophysiology detection and diagnosis Journal of Allergy and Clinical Immunology 108 1 S2 S8 doi 10 1067 mai 2001 115569 PMID 11449200 Sierra Heredia Cecilia North Michelle Brook Jeff Daly Christina Ellis Anne K Henderson Dave Henderson Sarah B Lavigne Eric Takaro Tim K August 2018 Aeroallergens in Canada Distribution Public Health Impacts and Opportunities for Prevention International Journal of Environmental Research and Public Health 15 8 1577 doi 10 3390 ijerph15081577 PMC 6121311 PMID 30044421 Allergies and Hay Fever WebMD Retrieved on 2010 03 09 Anderegg William R L Abatzoglou John T Anderegg Leander D L Bielory Leonard Kinney Patrick L Ziska Lewis 2021 02 16 Anthropogenic climate change is worsening North American pollen seasons Proceedings of the National Academy of Sciences 118 7 e2013284118 Bibcode 2021PNAS 11813284A doi 10 1073 pnas 2013284118 ISSN 0027 8424 PMC 7896283 PMID 33558232 Boston 677 Huntington Avenue Ma 02115 1495 1000 2021 02 18 Pollen seasons are getting longer driven by climate change News Retrieved 2021 07 12 Siewertsen Bjarne Hard nyser for allergikere i varm fremtid Archived 2015 04 19 at the Wayback Machine English Hard sneeze for allergic people in warm future Danish Meteorological Institute 18 April 2015 Retrieved 19 April 2015 Bee grass pollen allergy symptoms Archived 2009 10 10 at the Wayback Machine allergiesandtreatments com Retrieved on 2010 03 09 Moingeon P Batard T Fadel R Frati F Sieber J Overtvelt L February 2006 Immune mechanisms of allergen specific sublingual immunotherapy Allergy 61 2 151 165 doi 10 1111 j 1398 9995 2006 01002 x PMID 16409190 S2CID 36043612 Lundgren Jonathan G 2009 The Pollen Feeders Relationships of Natural Enemies and Non Prey Foods Vol 7 pp 87 116 doi 10 1007 978 1 4020 9235 0 6 ISBN 978 1 4020 9234 3 Schwarze Francis W M R Engels Julia amp Mattheck Claus 2000 Fungal Strategies of Wood Decay in Trees Springer p 61 ISBN 978 3 540 67205 0 a b Filipiak Michal 15 December 2016 Pollen Stoichiometry May Influence Detrital Terrestrial and Aquatic Food Webs Frontiers in Ecology and Evolution 4 doi 10 3389 fevo 2016 00138 Salcedo C 1 June 2010 Evidence of pollen digestion at nocturnal aggregations of Heliconius sara in Costa Rica Lepidoptera Nymphalidae Tropical Lepidoptera Research 35 37 Cardoso MZ Gilbert LE June 2013 Pollen feeding resource allocation and the evolution of chemical defence in passion vine butterflies Journal of Evolutionary Biology 26 6 1254 60 doi 10 1111 jeb 12119 PMID 23662837 S2CID 206046558 Sanford Malcolm T Producing Pollen Archived from the original on January 13 2007 Retrieved 2015 07 15 University of Florida Institute of Food and Agricultural Sciences citing P Witherell Other Products of the Hive Chapter XVIII The Hive and the Honey Bee Dadant amp Sons Inc Hamilton IL 1975 Mao W Schuler MA Berenbaum MR May 2013 Honey constituents up regulate detoxification and immunity genes in the western honey bee Apis mellifera Proceedings of the National Academy of Sciences of the United States of America 110 22 8842 6 Bibcode 2013PNAS 110 8842M doi 10 1073 pnas 1303884110 PMC 3670375 PMID 23630255 Lou Zaixiang Wang Hongxin Rao Shengqi Sun Juntao Ma Chaoyang Li Jing 2012 p Coumaric acid kills bacteria through dual damage mechanisms Food Control 25 2 550 554 doi 10 1016 j foodcont 2011 11 022 Sanford Malcolm T Producing Pollen University of Florida Institute of Food and Agricultural Sciences Archived from the original on 2001 04 29 Retrieved 2007 08 30 Document ENY118 Original publication date November 1 1994 Revised February 1 1995 Reviewed May 1 2003 Source Aarongilbreath s Blog 2013 05 31 How a Pollen Trap Works Bee Pollen YouTube Archived from the original on 2021 11 04 Graystock Peter Yates Kathryn Evison Sophie E F Darvill Ben Goulson Dave Hughes William O H July 2013 The Trojan hives pollinator pathogens imported and distributed in bumblebee colonies Journal of Applied Ecology 50 5 1207 1215 doi 10 1111 1365 2664 12134 S2CID 3937352 a b Singh Rajwinder Levitt Abby L Rajotte Edwin G Holmes Edward C Ostiguy Nancy vanEngelsdorp Dennis Lipkin W Ian dePamphilis Claude W Toth Amy L Cox Foster Diana L Traveset Anna 22 December 2010 RNA Viruses in Hymenopteran Pollinators Evidence of Inter Taxa Virus Transmission via Pollen and Potential Impact on Non Apis Hymenopteran Species PLOS ONE 5 12 e14357 Bibcode 2010PLoSO 514357S doi 10 1371 journal pone 0014357 PMC 3008715 PMID 21203504 Graystock Peter Goulson Dave Hughes William O H 5 August 2015 Parasites in bloom flowers aid dispersal and transmission of pollinator parasites within and between bee species Proceedings of the Royal Society B Biological Sciences 282 1813 20151371 doi 10 1098 rspb 2015 1371 PMC 4632632 PMID 26246556 Graystock Peter Blane Edward J McFrederick Quinn S Goulson Dave Hughes William O H October 2015 Do managed bees drive parasite spread and emergence in wild bees International Journal for Parasitology Parasites and Wildlife 5 1 64 75 doi 10 1016 j ijppaw 2015 10 001 PMC 5439461 PMID 28560161 Graystock P Jones J C Pamminger T Parkinson J F Norman V Blane E J Rothstein L Wackers F Goulson D Hughes W O H May 2016 Hygienic food to reduce pathogen risk to bumblebees Journal of Invertebrate Pathology 136 68 73 doi 10 1016 j jip 2016 03 007 PMID 26970260 Bryant Vaughn M Forensic Palynology A New Way to Catch Crooks crimeandclues com Archived from the original on 2007 02 03 Stackhouse Robert 17 April 2003 Forensics studies look to pollen The Battalion Archived from the original on 2013 04 23 Wood Peter 9 September 2004 Pollen helps war crime forensics BBC News D Mildenhall 2006 Hypericum pollen determines the presence of burglars at the scene of a crime An example of forensic palynology Forensic Science International 163 3 231 235 doi 10 1016 j forsciint 2005 11 028 PMID 16406430 Wolf Lauren K 18 August 2008 Newscripts Chemical amp Engineering News 86 33 88 doi 10 1021 cen v086n033 p088 Hirshfelder Arlene 2000 Encyclopedia of Native American Religions Facts on File Inc p 225 ISBN 978 0816039494 Alexander M P 1 January 1969 Differential Staining of Aborted and Nonaborted Pollen Stain Technology 44 3 117 122 doi 10 3109 10520296909063335 PMID 4181665 Peterson Ross Slovin Janet P Chen Changbin 23 July 2010 A Simplified Method for Differential Staining of Aborted and Non Aborted Pollen Grains International Journal of Plant Biology 1 2 e13 doi 10 4081 pb 2010 e13 eISSN 2037 0164 Bibliography EditSimpson Michael G 2011 Plant Systematics Academic Press ISBN 978 0 08 051404 8 Retrieved 12 February 2014 Singh Gurcharan 2004 Plant Systematics An Integrated Approach Science Publishers ISBN 978 1 57808 351 0 Retrieved 23 January 2014 Furness Carol A Rudall Paula J 1999 Inaperturate Pollen in Monocotyledons International Journal of Plant Sciences 160 2 395 414 doi 10 1086 314129 JSTOR 314129 S2CID 83903452 Pollen Grain Surface Pattern Terminology PDF Quick Reference Glossary with Illustrations Florida Institute of Technology Center for Applied Biogeography October 2014 Archived PDF from the original on 2019 08 11 Retrieved 11 August 2019 Society for the Promotion of Palynological Research in Austria 2021 Illustrated Pollen Terms PalDat Palynological Database University of Vienna Division of Structural and Functional Botany Retrieved 16 January 2021 Davis Owen 1999 Palynology Pollen University of Arizona Department of Geosciences Archived from the original on 2005 12 22 Retrieved 2009 02 19 Kaltenrieder Petra von Ballmoos Peter 2003 Types of Apertures in microspores Introduction to pollen analysis Institute of Plant Sciences University of Bern Retrieved 28 June 2021 External links Edit Wikimedia Commons has media related to Pollen Scholia has a topic profile for Pollen Pollen and Spore Identification Literature Pollen micrographs at SEM and confocal microscope The flight of a pollen cloud PalDat database comprising palynological data from a variety of plant families Pollen Wiki A digital Pollen Atlas retrieved 9 February 2018 YouTube video of pollen clouds from Juncus gerardii plants Retrieved from https en wikipedia org w index php title Pollen amp oldid 1155650851, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.