fbpx
Wikipedia

Pain in animals

Pain negatively affects the health and welfare of animals.[1] "Pain" is defined by the International Association for the Study of Pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage."[2] Only the animal experiencing the pain can know the pain's quality and intensity, and the degree of suffering. It is harder, if even possible, for an observer to know whether an emotional experience has occurred, especially if the sufferer cannot communicate.[3] Therefore, this concept is often excluded in definitions of pain in animals, such as that provided by Zimmerman: "an aversive sensory experience caused by actual or potential injury that elicits protective motor and vegetative reactions, results in learned avoidance and may modify species-specific behaviour, including social behaviour."[4] Nonhuman animals cannot report their feelings to language-using humans in the same manner as human communication, but observation of their behaviour provides a reasonable indication as to the extent of their pain. Just as with doctors and medics who sometimes share no common language with their patients, the indicators of pain can still be understood.

A Galapagos shark hooked by a fishing boat

According to the U.S. National Research Council Committee on Recognition and Alleviation of Pain in Laboratory Animals, pain is experienced by many animal species, including mammals and possibly all vertebrates.[5] Overview of anatomy of the nervous system across animal kingdom indicates that, not only vertebrates, but also most of invertebrates have the capacity to feel pain.[6]

The experience of pain edit

Although there are numerous definitions of pain, almost all involve two key components. First, nociception is required.[7] This is the ability to detect noxious stimuli which evoke a reflex response that rapidly moves the entire animal, or the affected part of its body, away from the source of the stimulus. The concept of nociception does not imply any adverse, subjective "feeling" – it is a reflex action. An example in humans would be the rapid withdrawal of a finger that has touched something hot – the withdrawal occurs before any sensation of pain is actually experienced.

The second component is the experience of "pain" itself, or suffering – the internal, emotional interpretation of the nociceptive experience. Again in humans, this is when the withdrawn finger begins to hurt, moments after the withdrawal. Pain is therefore a private, emotional experience. Pain cannot be directly measured in other animals, including other humans; responses to putatively painful stimuli can be measured, but not the experience itself. To address this problem when assessing the capacity of other species to experience pain, argument-by-analogy is used. This is based on the principle that if an animal responds to a stimulus in a similar way to ourselves, it is likely to have had an analogous experience.

Reflex response to painful stimuli edit

 
Reflex arc of a dog when its paw is stuck with a pin. The spinal cord responds to signals from receptors in the paw, producing a reflex withdrawal of the paw. This localized response does not involve brain processes that might mediate a consciousness of pain, though these might also occur.

Nociception usually involves the transmission of a signal along nerve fibers from the site of a noxious stimulus at the periphery to the spinal cord. Although this signal is also transmitted on to the brain, a reflex response, such as flinching or withdrawal of a limb, is produced by return signals originating in the spinal cord. Thus, both physiological and behavioral responses to nociception can be detected, and no reference need be made to a conscious experience of pain. Based on such criteria, nociception has been observed in all major animal taxa.[7]

Awareness of pain edit

Nerve impulses from nociceptors may reach the brain, where information about the stimulus (e.g. quality, location, and intensity), and effect (unpleasantness) are registered. Though the brain activity involved has been studied, the brain processes underlying conscious awareness are not well known.[citation needed]

Adaptive value edit

The adaptive value of nociception is obvious; an organism detecting a noxious stimulus immediately withdraws the limb, appendage or entire body from the noxious stimulus and thereby avoids further (potential) injury. However, a characteristic of pain (in mammals at least) is that pain can result in hyperalgesia (a heightened sensitivity to noxious stimuli) and allodynia (a heightened sensitivity to non-noxious stimuli). When this heightened sensitisation occurs, the adaptive value is less clear. First, the pain arising from the heightened sensitisation can be disproportionate to the actual tissue damage caused. Second, the heightened sensitisation may also become chronic, persisting well beyond the tissues healing. This can mean that rather than the actual tissue damage causing pain, it is the pain due to the heightened sensitisation that becomes the concern. This means the sensitisation process is sometimes termed maladaptive. It is often suggested hyperalgesia and allodynia assist organisms to protect themselves during healing, but experimental evidence to support this has been lacking.[8][9]

In 2014, the adaptive value of sensitisation due to injury was tested using the predatory interactions between longfin inshore squid (Doryteuthis pealeii) and black sea bass (Centropristis striata) which are natural predators of this squid. If injured squid are targeted by a bass, they began their defensive behaviours sooner (indicated by greater alert distances and longer flight initiation distances) than uninjured squid. If anaesthetic (1% ethanol and MgCl2) is administered prior to the injury, this prevents the sensitisation and blocks the behavioural effect. The authors claim this study is the first experimental evidence to support the argument that nociceptive sensitisation is actually an adaptive response to injuries.[10]

Argument-by-analogy edit

To assess the capacity of other species to consciously suffer pain we resort to argument-by-analogy. That is, if an animal responds to a stimulus the way a human does, it is likely to have had an analogous experience. If we stick a pin in a chimpanzee's finger and she rapidly withdraws her hand, we use argument-by-analogy and infer that like us, she felt pain. It might be argued that consistency requires us to infer, also, that a cockroach experiences conscious pain when it writhes after being stuck with a pin. The usual counter-argument is that although the physiology of consciousness is not understood, it clearly involves complex brain processes not present in relatively simple organisms.[11] Other analogies have been pointed out. For example, when given a choice of foods, rats[12] and chickens[13] with clinical symptoms of pain will consume more of an analgesic-containing food than animals not in pain. Additionally, the consumption of the analgesic carprofen in lame chickens was positively correlated to the severity of lameness, and consumption resulted in an improved gait. Such anthropomorphic arguments face the criticism that physical reactions indicating pain may be neither the cause nor result of conscious states, and the approach is subject to criticism of anthropomorphic interpretation. For example, a single-celled organism such as an amoeba may writhe after being exposed to noxious stimuli despite the absence of nociception.

History edit

The idea that animals might not experience pain or suffering as humans do traces back at least to the 17th-century French philosopher, René Descartes, who argued that animals lack consciousness.[14][15][16] Researchers remained unsure into the 1980s as to whether animals experience pain, and veterinarians trained in the U.S. before 1989 were simply taught to ignore animal pain.[17] In his interactions with scientists and other veterinarians, Bernard Rollin was regularly asked to "prove" that animals are conscious, and to provide "scientifically acceptable" grounds for claiming that they feel pain.[17] Some authors say that the view that animals feel pain differently is now a minority view.[14] Academic reviews of the topic are more equivocal, noting that, although it is likely that some animals have at least simple conscious thoughts and feelings,[18] some authors continue to question how reliably animal mental states can be determined.[15][19]

In different species edit

The ability to experience pain in an animal, or another human for that matter, cannot be determined directly but it may be inferred through analogous physiological and behavioral reactions.[20] Although many animals share similar mechanisms of pain detection to those of humans, have similar areas of the brain involved in processing pain, and show similar pain behaviours, it is notoriously difficult to assess how animals actually experience pain.[21]

Nociception edit

Nociceptive nerves, which preferentially detect (potential) injury-causing stimuli, have been identified in a variety of animals, including invertebrates. The medicinal leech, Hirudo medicinalis, and sea slug are classic model systems for studying nociception.[21] Many other vertebrate and invertebrate animals also show nociceptive reflex responses similar to our own.

Pain edit

Many animals also exhibit more complex behavioural and physiological changes indicative of the ability to experience pain: they eat less food, their normal behaviour is disrupted, their social behaviour is suppressed, they may adopt unusual behaviour patterns, they may emit characteristic distress calls, experience respiratory and cardiovascular changes, as well as inflammation and release of stress hormones.[21]

Some criteria that may indicate the potential of another species to feel pain include:[22]

  1. Has a suitable nervous system and sensory receptors
  2. Physiological changes to noxious stimuli
  3. Displays protective motor reactions that might include reduced use of an affected area such as limping, rubbing, holding or autotomy
  4. Has opioid receptors and shows reduced responses to noxious stimuli when given analgesics and local anaesthetics
  5. Shows trade-offs between stimulus avoidance and other motivational requirements
  6. Shows avoidance learning
  7. High cognitive ability and sentience

Vertebrates edit

Fish edit

A typical human cutaneous nerve contains 83% C type trauma receptors (the type responsible for transmitting signals described by humans as excruciating pain); the same nerves in humans with congenital insensitivity to pain have only 24-28% C type receptors.[23] The rainbow trout has about 5% C type fibres, while sharks and rays have 0%.[24] Nevertheless, fish have been shown to have sensory neurons that are sensitive to damaging stimuli and are physiologically identical to human nociceptors.[25] Behavioural and physiological responses to a painful event appear comparable to those seen in amphibians, birds, and mammals, and administration of an analgesic drug reduces these responses in fish.[26]

Animal welfare advocates have raised concerns about the possible suffering of fish caused by angling. Some countries, e.g. Germany, have banned specific types of fishing, and the British RSPCA now formally prosecutes individuals who are cruel to fish.[27]

Invertebrates edit

Though it has been argued that most invertebrates do not feel pain,[28][29][30] there is some evidence that invertebrates, especially the decapod crustaceans (e.g. crabs and lobsters) and cephalopods (e.g. octopuses), exhibit behavioural and physiological reactions indicating they may have the capacity for this experience.[11][31][32]Nociceptors have been found in nematodes, annelids and mollusks.[33] Most insects do not possess nociceptors,[34][35][36] one known exception being the fruit fly.[37] In vertebrates, endogenous opioids are neurochemicals that moderate pain by interacting with opiate receptors. Opioid peptides and opiate receptors occur naturally in nematodes,[38][39] mollusks,[40][41] insects[42][43] and crustaceans.[44][45] The presence of opioids in crustaceans has been interpreted as an indication that lobsters may be able to experience pain, although it has been claimed "at present no certain conclusion can be drawn".[46]

One suggested reason for rejecting a pain experience in invertebrates is that invertebrate brains are too small. However, brain size does not necessarily equate to complexity of function.[47] Moreover, weight for body-weight, the cephalopod brain is in the same size bracket as the vertebrate brain, smaller than that of birds and mammals, but as big as or bigger than most fish brains.[48][49] Remarkably, as demonstrated by cognitive tests, intelligence of cephalopods is comparable to that of five-year-old human children.[50]

Since September 2010, all cephalopods being used for scientific purposes in the EU are protected by EU Directive 2010/63/EU which states "...there is scientific evidence of their [cephalopods] ability to experience pain, suffering, distress and lasting harm.[51] In the UK, animal protection legislation[52] means that cephalopods used for scientific purposes must be killed humanely, according to prescribed methods (known as "Schedule 1 methods of euthanasia") known to minimise suffering.[53]

In medicine and research edit

Veterinary medicine edit

Veterinary medicine uses, for actual or potential animal pain, the same analgesics and anesthetics as used in humans.[54]

Dolorimetry edit

Dolorimetry (dolor: Latin: pain, grief) is the measurement of the pain response in animals, including humans. It is practiced occasionally in medicine, as a diagnostic tool, and is regularly used in research into the basic science of pain, and in testing the efficacy of analgesics.

The intense sociality of humans and the readiness with which they perceive, and identify with, manifestations of physical pain in others have made the study of pain notoriously difficult to quantify. Indeed, many investigators of animal pain shy away from use of the word "pain" in published research. They consider the term to be unscientific and grounded in human emotion, preferring others such as "stress" or "avoidance". As the subjective experience of animals is very resistant to rational assessment, the subjective difference between their painless reflex responses to noxious stimuli (nociception) and pain as humans understand it has been nearly impossible to determine conclusively.

For this reason essentially all scientific research into the nature of animal pain has depended upon so-called pain proxies. These include obvious behavioral changes—shying away, stamping, vocalization, ear cues etc.— as well as subtler changes, as when injured chickens or rats choose feed that has been laced with an analgesic over feed that has not. Most prized by scientists are the quantifiable physiological changes such as elevated heart rate or stress hormone serum concentrations. These physiological proxies are valued because their assessments are carried out by machines and do not rely on humans to determine the magnitude of the variable under study. This is seldom the case for behavioral pain proxies, which are most often scored by a researcher on some numerical scale ranging from "no response" to "intense response".[55]

Dolormetric methods in animals edit

Nonhuman animal pain measurement techniques include the paw pressure test, tail flick test, hot plate test and grimace scales. Grimace scales are used to assess post-operative and disease pain in mammals. Scales have been developed for ten mammalian species such as mice, rats, and rabbits.[56] Dale Langford established and published the Mouse Grimace Scale in 2010,[57] with Susana Sotocinal inventing the Rat Grimace Scale a year later in 2011.[58] Using video stills from recorders, researchers can track changes in an animal's the positioning of ears and whiskers, orbital tightening, and bulging or flattening of the nose area, and match these images against the images in the grimace scale.[59] Laboratory researcher and veterinarians may use the grimace scales to evaluate when to administer analgesia to an animal or whether severity of pain warrants a humane endpoint (euthanasia) or the animal in a study.

Laboratory animals edit

Animals are kept in laboratories for a wide range of reasons, some of which may involve pain, suffering or distress, whilst others (e.g. many of those involved in breeding) will not. The extent to which animal testing causes pain and suffering in laboratory animals is the subject of much debate.[60] Marian Stamp Dawkins defines "suffering" in laboratory animals as the experience of one of "a wide range of extremely unpleasant subjective (mental) states."[61] The U.S. National Research Council has published guidelines on the care and use of laboratory animals,[62] as well as a report on recognizing and alleviating pain in vertebrates.[63] The United States Department of Agriculture defines a "painful procedure" in an animal study as one that would "reasonably be expected to cause more than slight or momentary pain or distress in a human being to which that procedure was applied."[64] Some critics argue that, paradoxically, researchers raised in the era of increased awareness of animal welfare may be inclined to deny that animals are in pain simply because they do not want to see themselves as people who inflict it.[65] PETA however argues that there is no doubt about animals in laboratories being inflicted with pain.[66] In the UK, animal research likely to cause "pain, suffering, distress or lasting harm" is regulated by the Animals (Scientific Procedures) Act 1986 and research with the potential to cause pain is regulated by the Animal Welfare Act of 1966 in the US.

In the U.S., researchers are not required to provide laboratory animals with pain relief if the administration of such drugs would interfere with their experiment. Laboratory animal veterinarian Larry Carbone writes, "Without question, present public policy allows humans to cause laboratory animals unalleviated pain. The AWA, the Guide for the Care and Use of Laboratory Animals, and current Public Health Service policy all allow for the conduct of what are often called 'Category E' studies – experiments in which animals are expected to undergo significant pain or distress that will be left untreated because treatments for pain would be expected to interfere with the experiment."[67]

Severity scales edit

Eleven countries have national classification systems of pain and suffering experienced by animals used in research: Australia, Canada, Finland, Germany, The Republic of Ireland, The Netherlands, New Zealand, Poland, Sweden, Switzerland, and the UK. The US also has a mandated national scientific animal-use classification system, but it is markedly different from other countries in that it reports on whether pain-relieving drugs were required and/or used.[68] The first severity scales were implemented in 1986 by Finland and the UK. The number of severity categories ranges between 3 (Sweden and Finland) and 9 (Australia). In the UK, research projects are classified as "mild", "moderate", and "substantial" in terms of the suffering the researchers conducting the study say they may cause; a fourth category of "unclassified" means the animal was anesthetized and killed without recovering consciousness. It should be remembered that in the UK system, many research projects (e.g. transgenic breeding, feeding distasteful food) will require a license under the Animals (Scientific Procedures) Act 1986, but may cause little or no pain or suffering. In December 2001, 39 percent (1,296) of project licenses in force were classified as "mild", 55 percent (1,811) as "moderate", two percent (63) as "substantial", and 4 percent (139) as "unclassified".[69] In 2009, of the project licenses issued, 35 percent (187) were classified as "mild", 61 percent (330) as "moderate", 2 percent (13) as "severe" and 2 percent (11) as unclassified.[70]

In the US, the Guide for the Care and Use of Laboratory Animals defines the parameters for animal testing regulations. It states, "The ability to experience and respond to pain is widespread in the animal kingdom...Pain is a stressor and, if not relieved, can lead to unacceptable levels of stress and distress in animals."[71] The Guide states that the ability to recognize the symptoms of pain in different species is essential for the people caring for and using animals. Accordingly, all issues of animal pain and distress, and their potential treatment with analgesia and anesthesia, are required regulatory issues for animal protocol approval.

See also edit

References edit

  1. ^ Mathews, Karol; Kronen, Peter W; Lascelles, Duncan; Nolan, Andrea; Robertson, Sheilah; Steagall, Paulo VM; Wright, Bonnie; Yamashita, Kazuto (20 May 2014). "Guidelines for Recognition, Assessment and Treatment of Pain". Journal of Small Animal Practice. 55 (6): E10–E68. doi:10.1111/jsap.12200. ISSN 0022-4510. PMID 24841489.
  2. ^ . iasp-pain.org. Archived from the original on 9 November 2017. Retrieved 3 May 2018.
  3. ^ Wright, Andrew. "A Criticism of the IASP's Definition of Pain". from the original on 22 August 2016. Retrieved 30 October 2017. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ Zimmerman, M (1986). "Physiological mechanisms of pain and its treatment". Klinische Anaesthesiol Intensivether. 32: 1–19.
  5. ^ National Research Council (US) Committee on Recognition and Alleviation of Pain in Laboratory Animals (2009). "Recognition and Alleviation of Pain in Laboratory Animals". National Center for Biotechnology Information. from the original on 24 June 2017. Retrieved 14 February 2015.
  6. ^ Ermak, Gennady (2022). Plant-Based, Meat-Based and Between: Ways of Eating for Your Health and Our World. KDP. pp. 55–65. ISBN 979-8785908680.
  7. ^ a b Sneddon, L.U. (2004). "Evolution of nociception in vertebrates: comparative analysis of lower vertebrates". Brain Research Reviews. 46 (2): 123–130. doi:10.1016/j.brainresrev.2004.07.007. PMID 15464201. S2CID 16056461.
  8. ^ Price, T.J. & Dussor, G. (2014). "Evolution: the advantage of 'maladaptive'pain plasticity". Current Biology. 24 (10): R384–R386. doi:10.1016/j.cub.2014.04.011. PMC 4295114. PMID 24845663.
  9. ^ "Maladaptive pain". Oxford Reference. from the original on 15 May 2016. Retrieved 16 May 2016. {{cite journal}}: Cite journal requires |journal= (help)
  10. ^ Crook, R.J., Dickson, K., Hanlon, R.T. and Walters, E.T. (2014). "Nociceptive sensitization reduces predation risk". Current Biology. 24 (10): 1121–1125. doi:10.1016/j.cub.2014.03.043. PMID 24814149.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ a b Sherwin, C.M. (2001). Can invertebrates suffer? Or, how robust is argument-by-analogy? Animal Welfare, 10(supplement): 103-118
  12. ^ Colpaert, F.C.; Tarayre, J.P.; Alliaga, M.; Slot, L.A.B.; Attal, N.; Koek, W. (2001). "Opiate self-administration as a measure of chronic nociceptive pain in arthritic rats". Pain. 91 (1–2): 33–45. doi:10.1016/s0304-3959(00)00413-9. PMID 11240076. S2CID 24858615.
  13. ^ Danbury, T.C.; Weeks, C.A.; Chambers, J.P.; Waterman-Pearson, A.E.; Kestin, S.C. (2000). "Self-selection of the analgesic drug carprofen by lame broiler chickens". Veterinary Record. 146 (11): 307–311. doi:10.1136/vr.146.11.307. PMID 10766114. S2CID 35062797.
  14. ^ a b Carbone, Larry. '"What Animal Want: Expertise and Advocacy in Laboratory Animal Welfare Policy. Oxford University Press, 2004, p. 149.
  15. ^ a b The Ethics of research involving animals Nuffield Council on Bioethics, Accessed 27 February 2008 27 February 2008 at the Wayback Machine
  16. ^ Talking Point on the use of animals in scientific research, EMBO Reports 8, 6, 2007, pp. 521–525
  17. ^ a b Rollin, Bernard. The Unheeded Cry: Animal Consciousness, Animal Pain, and Science. New York: Oxford University Press, 1989, pp. xii, 117-118, cited in Carbone 2004, p. 150.
  18. ^ Griffin, DR; Speck, GB (2004). (PDF). Animal Cognition. 7 (1): 5–18. doi:10.1007/s10071-003-0203-x. PMID 14658059. S2CID 8650837. Archived from the original (PDF) on 21 January 2013.
  19. ^ Allen C (1998). "Assessing animal cognition: ethological and philosophical perspectives" (PDF). J. Anim. Sci. 76 (1): 42–7. doi:10.2527/1998.76142x. PMID 9464883.[permanent dead link]
  20. ^ Abbott FV, Franklin KB, Westbrook RF (January 1995). "The formalin test: scoring properties of the first and second phases of the pain response in rats". Pain. 60 (1): 91–102. doi:10.1016/0304-3959(94)00095-V. PMID 7715946. S2CID 35448280.
  21. ^ a b c Sneddon, Lynne. . PAIN. Archived from the original on 13 April 2012. Retrieved 18 March 2012.
  22. ^ Elwood, R.W.; Barr, S.; Patterson, L. (2009). "Pain and stress in crustaceans?". Applied Animal Behaviour Science. 118 (3): 128–136. doi:10.1016/j.applanim.2009.02.018.
  23. ^ Rose, JD; Arlinghaus, R; Cooke, SJ; Diggles, BK; Sawynok, W; Stevens, ED; Wynne, CDL (2012). "Can fish really feel pain?" (PDF). Fish and Fisheries. 15 (1): 97–133. doi:10.1111/faf.12010. (PDF) from the original on 4 March 2016.
  24. ^ Snow, P.J.; Plenderleith, M.B.; Wright, L.L. (1993). "Quantitative study of primary sensory neurone populations of three species of elasmobranch fish". Journal of Comparative Neurology. 334 (1): 97–103. doi:10.1002/cne.903340108. PMID 8408762. S2CID 32762031.
  25. ^ L.U. Sneddon; et al. (2003). "Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system". Proc Biol Sci. 270 (1520): 1115–21. doi:10.1098/rspb.2003.2349. PMC 1691351. PMID 12816648.
  26. ^ Sneddon L (2009). "Pain and Distress in Fish". Ilar J. 50 (4): 338–342. doi:10.1093/ilar.50.4.338. PMID 19949250.
  27. ^ Leake, J. (14 March 2004). . The Sunday Times. Archived from the original on 23 September 2015. Retrieved 15 September 2015.
  28. ^ Eisemann C, Jorgensen W, Rice D, Cribb M, Zalucki M, Merritt B, Webb P (1984). (PDF). Experientia. 40 (2): 164–167. doi:10.1007/bf01963580. S2CID 3071. Archived from the original (PDF) on 13 June 2013.
  29. ^ "Do Invertebrates Feel Pain?" 6 January 2010 at the Wayback Machine, The Senate Standing Committee on Legal and Constitutional Affairs, The Parliament of Canada Web Site, accessed 11 June 2008.
  30. ^ Jane A. Smith (1991). "A question of pain in invertebrates". ILAR Journal. 33 (1–2). from the original on 8 October 2011.
  31. ^ Elwood, R.W. (2011). (PDF). Institute of Laboratory Animal Resources Journal. 52 (2): 175–84. doi:10.1093/ilar.52.2.175. PMID 21709310. Archived from the original (PDF) on 7 April 2012.
  32. ^ Fiorito, G. (1986). "Is there pain in invertebrates?". Behavioural Processes. 12 (4): 383–388. doi:10.1016/0376-6357(86)90006-9. PMID 24924695. S2CID 26181117.
  33. ^ St John Smith, E.; Lewin, G.R. (2009). "Nociceptors: a phylogenetic view". Journal of Comparative Physiology A. 195 (12): 1089–1106. doi:10.1007/s00359-009-0482-z. PMC 2780683. PMID 19830434.
  34. ^ DeGrazia D, Rowan A (1991). "Pain, suffering, and anxiety in animals and humans". Theoretical Medicine and Bioethics. 12 (3): 193–211. doi:10.1007/BF00489606. PMID 1754965. S2CID 34920699.
  35. ^ Lockwood JA (1987). "The moral standing of insects and the ethics of extinction". The Florida Entomologist. 70 (1): 70–89. doi:10.2307/3495093. JSTOR 3495093.
  36. ^ Eisemann C. H.; Jorgensen W. K.; Merritt D. J.; Rice M. J.; Cribb B. W.; Webb P. D.; Zalucki M. P. (1984). "Do insects feel pain? — A biological view". Experientia. 40 (2): 164–7. doi:10.1007/bf01963580. S2CID 3071.
  37. ^ Tracey, J., W. Daniel, R. I. Wilson, G. Laurent, and S. Benzer. (2003). "painless, a Drosophila gene essential for nociception". Cell. 113 (2): 261–273. doi:10.1016/S0092-8674(03)00272-1. PMID 12705873. S2CID 1424315.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ Wittenburg, N.; Baumeister, R. (1999). "Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception". Proceedings of the National Academy of Sciences USA. 96 (18): 10477–10482. Bibcode:1999PNAS...9610477W. doi:10.1073/pnas.96.18.10477. PMC 17914. PMID 10468634.
  39. ^ Pryor, S.C., Nieto, F., Henry, S. and Sarfo, J. (2007). "The effect of opiates and opiate antagonists on heat latency response in the parasitic nematode Ascaris suum". Life Sciences. 80 (18): 1650–1655. doi:10.1016/j.lfs.2007.01.011. PMID 17363006.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ Dalton, L.M.; Widdowson, P.S. (1989). "The involvement of opioid peptides in stress-induced analgesia in the slug Arion ater". Peptides. 10 (1): 9–13. doi:10.1016/0196-9781(89)90067-3. PMID 2568626. S2CID 26432057.
  41. ^ Kavaliers, M.; Ossenkopp, K.-P. (1991). "Opioid systems and magnetic field effects in the land snail, Cepaea nemoralis". Biological Bulletin. 180 (2): 301–309. doi:10.2307/1542401. JSTOR 1542401. PMID 29304689.
  42. ^ Dyakonova, V.E.; Schurmann, F.; Sakharov, D.A. (1999). "Effects of serotonergic and opioidergic drugs on escape behaviors and social status of male crickets". Naturwissenschaften. 86 (9): 435–437. Bibcode:1999NW.....86..435D. doi:10.1007/s001140050647. PMID 10501691. S2CID 9466150.
  43. ^ Zabala, N.; Gomez, M. (1991). "Morphine analgesia, tolerance and addiction in the cricket, Pteronemobius". Pharmacology Biochemistry and Behavior. 40 (4): 887–891. doi:10.1016/0091-3057(91)90102-8. PMID 1816576. S2CID 24429475.
  44. ^ Lozada, M.; Romano, A.; Maldonado, H. (1988). "Effect of morphine and naloxone on a defensive response of the crab Chasmagnathus granulatus". Pharmacology Biochemistry and Behavior. 30 (3): 635–640. doi:10.1016/0091-3057(88)90076-7. PMID 3211972. S2CID 45083722.
  45. ^ Maldonado, H.; Miralto, A. (1982). "Effects of morphine and naloxone on a defensive response of the mantis shrimp (Squilla mantis)". Journal of Comparative Physiology A. 147 (4): 455–459. doi:10.1007/bf00612010. S2CID 3013237.
  46. ^ L. Sømme (2005). "Sentience and pain in invertebrates: Report to Norwegian Scientific Committee for Food Safety". Norwegian University of Life Sciences, Oslo.
  47. ^ Chittka, L.; Niven, J. (2009). "Are Bigger Brains Better?". Current Biology. 19 (21): R995–R1008. doi:10.1016/j.cub.2009.08.023. PMID 19922859. S2CID 7247082.
  48. ^ "Cephalopod brain size". malankazlev.com. Retrieved 8 April 2020.
  49. ^ Packard, A (1972). "Cephalopods and fish: the limits of convergence". Biological Reviews. 47 (2): 241–307 [266–7]. doi:10.1111/j.1469-185X.1972.tb00975.x. S2CID 85088231.
  50. ^ Ermak, Gennady (2022). Plant-Based, Meat-Based and Between: Ways of Eating for Your Health and Our World. KDP. p. 62. ISBN 979-8785908680.
  51. ^ "Directive 2010/63/EU of the European Parliament and of the Council". Official Journal of the European Union. Article 1, 3(b). Retrieved 17 April 2016.
  52. ^ "Animals (Scientific Protection) Act 1986". from the original on 12 April 2016. Retrieved 18 April 2016.
  53. ^ "The Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012". from the original on 11 February 2016. Retrieved 15 April 2016.
  54. ^ Viñuela-Fernández I, Jones E, Welsh EM, Fleetwood-Walker SM (September 2007). "Pain mechanisms and their implication for the management of pain in farm and companion animals". Vet. J. 174 (2): 227–39. doi:10.1016/j.tvjl.2007.02.002. PMID 17553712.
  55. ^ Danbury, T. C.; Weeks, C. A.; Waterman-Pearson, A. E.; Kestin, S. C.; Chambers, J. P. (March 2000). "Self-selection of the analgesic drug carprofen by lame broiler chickens". Veterinary Record. 146 (11): 307–311. doi:10.1136/vr.146.11.307. PMID 10766114. S2CID 35062797.
  56. ^ Mogil, Jeffrey S.; Pang, Daniel S. J.; Silva Dutra, Gabrielle Guanaes; Chambers, Christine T. (1 September 2020). "The development and use of facial grimace scales for pain measurement in animals". Neuroscience & Biobehavioral Reviews. 116: 480–493. doi:10.1016/j.neubiorev.2020.07.013. ISSN 0149-7634. PMID 32682741. S2CID 220575703.
  57. ^ Langford, Dale J.; Bailey, Andrea L.; Chanda, Mona Lisa; Clarke, Sarah E.; Drummond, Tanya E.; Echols, Stephanie; Glick, Sarah; Ingrao, Joelle; Klassen-Ross, Tammy; LaCroix-Fralish, Michael L.; Matsumiya, Lynn (2010). "Coding of facial expressions of pain in the laboratory mouse". Nature Methods. 7 (6): 447–449. doi:10.1038/nmeth.1455. ISSN 1548-7105. PMID 20453868. S2CID 16703705.
  58. ^ Sotocina, Susana G; Sorge, Robert E; Zaloum, Austin; Tuttle, Alexander H; Martin, Loren J; Wieskopf, Jeffrey S; Mapplebeck, Josiane CS; Wei, Peng; Zhan, Shu; Zhang, Shuren; McDougall, Jason J (5 August 2011). "The Rat Grimace Scale: A Partially Automated Method for Quantifying Pain in the Laboratory Rat via Facial Expressions". Molecular Pain. 7: 1744–8069–7-55. doi:10.1186/1744-8069-7-55. ISSN 1744-8069. PMC 3163602. PMID 21801409.
  59. ^ "Grimace scales". National Centre for the Replacement Refinement and Reduction of Animals in Research (NC3Rs). Retrieved 10 December 2020.
  60. ^ Duncan, IJ; Petherick, JC (December 1991). "The implications of cognitive processes for animal welfare". J. Anim. Sci. 69 (12): 5017–22. doi:10.2527/1991.69125017x. PMID 1808195.[permanent dead link]; Curtis, SE; Stricklin, WR (1991). "The importance of animal cognition in agricultural animal production systems: an overview". J. Anim. Sci. 69 (12): 5001–7. doi:10.2527/1991.69125001x. PMID 1808193.[permanent dead link]
  61. ^ Stamp Dawkins, Marian. "Scientific Basis for Assessing Suffering in Animals," in Singer, Peter. In Defense of Animals: The Second Wave. Blackwell, 2006. p. 28.
  62. ^ Committee for the Update of the Guide for the Care and Use of Laboratory Animals, ed. (2011). Guide for the Care and Use of Laboratory Animals (Report) (8th ed.). The National Academies Press. from the original on 1 August 2013.
  63. ^ National Research Council, Division on Earth and Life Studies, Committee on Recognition and Alleviation of Pain in Laboratory Animals (2009). (PDF) (Report). The National Academies Press. Archived from the original (PDF) on 3 November 2013.{{cite report}}: CS1 maint: multiple names: authors list (link)
  64. ^ Animal Welfare; Definitions for and Reporting of Pain and Distress" 6 October 2014 at the Wayback Machine, Animal Welfare Information Center Bulletin, Summer 2000, Vol. 11 No. 1-2, United States Department of Agriculture.
  65. ^ Carbone 2004, p. 151.
  66. ^ "Cruelty to Animals in Laboratories". peta.org. 22 June 2010. from the original on 2 November 2013. Retrieved 3 May 2018.
  67. ^ Carbone, L (7 September 2011). "Pain in Laboratory Animals: The Ethical and Regulatory Imperatives". PLOS ONE. 6 (9): e21578. Bibcode:2011PLoSO...621578C. doi:10.1371/journal.pone.0021578. PMC 3168441. PMID 21915253.
  68. ^ Fenwick, N.; Ormandy, E.; Gauthier, C.; Griffin, G. (2011). "Classifying the severity of scientific animal use: a review of international systems". Animal Welfare. 20 (2): 281–301. doi:10.1017/S0962728600002761. S2CID 70934694.
  69. ^ Ryder, Richard D. "Speciesism in the laboratory, " in Singer, Peter. In Defense of Animals: The Second Wave. Blackwell, 2006. p. 99.
  70. ^ "Home Office Statistics". Archived from the original on 22 September 2011. Retrieved 31 October 2011.
  71. ^ Guide for the Care and Use of Laboratory Animals, ILAR, National Research Council, 1996 copyright, p. 64

External links edit

  • Animal Ethics "Indicators of animal suffering" 17 January 2022 at the Wayback Machine, Animal Sentience.
  • Kent, J. E. & Molony, V. Guidelines on the Recognition and Assessment of Pain in Animals
  • Crawford, R. , United States Department of Agriculture.
  • Recognition and Assessment [of Pain], Animal Welfare Information Center (USDA)

pain, animals, pain, negatively, affects, health, welfare, animals, pain, defined, international, association, study, pain, unpleasant, sensory, emotional, experience, associated, with, actual, potential, tissue, damage, described, terms, such, damage, only, a. Pain negatively affects the health and welfare of animals 1 Pain is defined by the International Association for the Study of Pain as an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage 2 Only the animal experiencing the pain can know the pain s quality and intensity and the degree of suffering It is harder if even possible for an observer to know whether an emotional experience has occurred especially if the sufferer cannot communicate 3 Therefore this concept is often excluded in definitions of pain in animals such as that provided by Zimmerman an aversive sensory experience caused by actual or potential injury that elicits protective motor and vegetative reactions results in learned avoidance and may modify species specific behaviour including social behaviour 4 Nonhuman animals cannot report their feelings to language using humans in the same manner as human communication but observation of their behaviour provides a reasonable indication as to the extent of their pain Just as with doctors and medics who sometimes share no common language with their patients the indicators of pain can still be understood A Galapagos shark hooked by a fishing boatAccording to the U S National Research Council Committee on Recognition and Alleviation of Pain in Laboratory Animals pain is experienced by many animal species including mammals and possibly all vertebrates 5 Overview of anatomy of the nervous system across animal kingdom indicates that not only vertebrates but also most of invertebrates have the capacity to feel pain 6 Contents 1 The experience of pain 1 1 Reflex response to painful stimuli 1 2 Awareness of pain 2 Adaptive value 3 Argument by analogy 4 History 5 In different species 5 1 Nociception 5 2 Pain 6 Vertebrates 6 1 Fish 7 Invertebrates 8 In medicine and research 8 1 Veterinary medicine 8 2 Dolorimetry 8 2 1 Dolormetric methods in animals 8 3 Laboratory animals 8 3 1 Severity scales 9 See also 10 References 11 External linksThe experience of pain editAlthough there are numerous definitions of pain almost all involve two key components First nociception is required 7 This is the ability to detect noxious stimuli which evoke a reflex response that rapidly moves the entire animal or the affected part of its body away from the source of the stimulus The concept of nociception does not imply any adverse subjective feeling it is a reflex action An example in humans would be the rapid withdrawal of a finger that has touched something hot the withdrawal occurs before any sensation of pain is actually experienced The second component is the experience of pain itself or suffering the internal emotional interpretation of the nociceptive experience Again in humans this is when the withdrawn finger begins to hurt moments after the withdrawal Pain is therefore a private emotional experience Pain cannot be directly measured in other animals including other humans responses to putatively painful stimuli can be measured but not the experience itself To address this problem when assessing the capacity of other species to experience pain argument by analogy is used This is based on the principle that if an animal responds to a stimulus in a similar way to ourselves it is likely to have had an analogous experience Reflex response to painful stimuli edit nbsp Reflex arc of a dog when its paw is stuck with a pin The spinal cord responds to signals from receptors in the paw producing a reflex withdrawal of the paw This localized response does not involve brain processes that might mediate a consciousness of pain though these might also occur Nociception usually involves the transmission of a signal along nerve fibers from the site of a noxious stimulus at the periphery to the spinal cord Although this signal is also transmitted on to the brain a reflex response such as flinching or withdrawal of a limb is produced by return signals originating in the spinal cord Thus both physiological and behavioral responses to nociception can be detected and no reference need be made to a conscious experience of pain Based on such criteria nociception has been observed in all major animal taxa 7 Awareness of pain edit Nerve impulses from nociceptors may reach the brain where information about the stimulus e g quality location and intensity and effect unpleasantness are registered Though the brain activity involved has been studied the brain processes underlying conscious awareness are not well known citation needed Adaptive value editThe adaptive value of nociception is obvious an organism detecting a noxious stimulus immediately withdraws the limb appendage or entire body from the noxious stimulus and thereby avoids further potential injury However a characteristic of pain in mammals at least is that pain can result in hyperalgesia a heightened sensitivity to noxious stimuli and allodynia a heightened sensitivity to non noxious stimuli When this heightened sensitisation occurs the adaptive value is less clear First the pain arising from the heightened sensitisation can be disproportionate to the actual tissue damage caused Second the heightened sensitisation may also become chronic persisting well beyond the tissues healing This can mean that rather than the actual tissue damage causing pain it is the pain due to the heightened sensitisation that becomes the concern This means the sensitisation process is sometimes termed maladaptive It is often suggested hyperalgesia and allodynia assist organisms to protect themselves during healing but experimental evidence to support this has been lacking 8 9 In 2014 the adaptive value of sensitisation due to injury was tested using the predatory interactions between longfin inshore squid Doryteuthis pealeii and black sea bass Centropristis striata which are natural predators of this squid If injured squid are targeted by a bass they began their defensive behaviours sooner indicated by greater alert distances and longer flight initiation distances than uninjured squid If anaesthetic 1 ethanol and MgCl2 is administered prior to the injury this prevents the sensitisation and blocks the behavioural effect The authors claim this study is the first experimental evidence to support the argument that nociceptive sensitisation is actually an adaptive response to injuries 10 Argument by analogy editTo assess the capacity of other species to consciously suffer pain we resort to argument by analogy That is if an animal responds to a stimulus the way a human does it is likely to have had an analogous experience If we stick a pin in a chimpanzee s finger and she rapidly withdraws her hand we use argument by analogy and infer that like us she felt pain It might be argued that consistency requires us to infer also that a cockroach experiences conscious pain when it writhes after being stuck with a pin The usual counter argument is that although the physiology of consciousness is not understood it clearly involves complex brain processes not present in relatively simple organisms 11 Other analogies have been pointed out For example when given a choice of foods rats 12 and chickens 13 with clinical symptoms of pain will consume more of an analgesic containing food than animals not in pain Additionally the consumption of the analgesic carprofen in lame chickens was positively correlated to the severity of lameness and consumption resulted in an improved gait Such anthropomorphic arguments face the criticism that physical reactions indicating pain may be neither the cause nor result of conscious states and the approach is subject to criticism of anthropomorphic interpretation For example a single celled organism such as an amoeba may writhe after being exposed to noxious stimuli despite the absence of nociception History editSee also Animal consciousness The idea that animals might not experience pain or suffering as humans do traces back at least to the 17th century French philosopher Rene Descartes who argued that animals lack consciousness 14 15 16 Researchers remained unsure into the 1980s as to whether animals experience pain and veterinarians trained in the U S before 1989 were simply taught to ignore animal pain 17 In his interactions with scientists and other veterinarians Bernard Rollin was regularly asked to prove that animals are conscious and to provide scientifically acceptable grounds for claiming that they feel pain 17 Some authors say that the view that animals feel pain differently is now a minority view 14 Academic reviews of the topic are more equivocal noting that although it is likely that some animals have at least simple conscious thoughts and feelings 18 some authors continue to question how reliably animal mental states can be determined 15 19 In different species editThe ability to experience pain in an animal or another human for that matter cannot be determined directly but it may be inferred through analogous physiological and behavioral reactions 20 Although many animals share similar mechanisms of pain detection to those of humans have similar areas of the brain involved in processing pain and show similar pain behaviours it is notoriously difficult to assess how animals actually experience pain 21 Nociception edit Nociceptive nerves which preferentially detect potential injury causing stimuli have been identified in a variety of animals including invertebrates The medicinal leech Hirudo medicinalis and sea slug are classic model systems for studying nociception 21 Many other vertebrate and invertebrate animals also show nociceptive reflex responses similar to our own Pain edit Many animals also exhibit more complex behavioural and physiological changes indicative of the ability to experience pain they eat less food their normal behaviour is disrupted their social behaviour is suppressed they may adopt unusual behaviour patterns they may emit characteristic distress calls experience respiratory and cardiovascular changes as well as inflammation and release of stress hormones 21 Some criteria that may indicate the potential of another species to feel pain include 22 Has a suitable nervous system and sensory receptors Physiological changes to noxious stimuli Displays protective motor reactions that might include reduced use of an affected area such as limping rubbing holding or autotomy Has opioid receptors and shows reduced responses to noxious stimuli when given analgesics and local anaesthetics Shows trade offs between stimulus avoidance and other motivational requirements Shows avoidance learning High cognitive ability and sentienceVertebrates editFish edit Main article Pain in fish A typical human cutaneous nerve contains 83 C type trauma receptors the type responsible for transmitting signals described by humans as excruciating pain the same nerves in humans with congenital insensitivity to pain have only 24 28 C type receptors 23 The rainbow trout has about 5 C type fibres while sharks and rays have 0 24 Nevertheless fish have been shown to have sensory neurons that are sensitive to damaging stimuli and are physiologically identical to human nociceptors 25 Behavioural and physiological responses to a painful event appear comparable to those seen in amphibians birds and mammals and administration of an analgesic drug reduces these responses in fish 26 Animal welfare advocates have raised concerns about the possible suffering of fish caused by angling Some countries e g Germany have banned specific types of fishing and the British RSPCA now formally prosecutes individuals who are cruel to fish 27 Invertebrates editMain article Pain in invertebrates Further information Pain in crustaceans Though it has been argued that most invertebrates do not feel pain 28 29 30 there is some evidence that invertebrates especially the decapod crustaceans e g crabs and lobsters and cephalopods e g octopuses exhibit behavioural and physiological reactions indicating they may have the capacity for this experience 11 31 32 Nociceptors have been found in nematodes annelids and mollusks 33 Most insects do not possess nociceptors 34 35 36 one known exception being the fruit fly 37 In vertebrates endogenous opioids are neurochemicals that moderate pain by interacting with opiate receptors Opioid peptides and opiate receptors occur naturally in nematodes 38 39 mollusks 40 41 insects 42 43 and crustaceans 44 45 The presence of opioids in crustaceans has been interpreted as an indication that lobsters may be able to experience pain although it has been claimed at present no certain conclusion can be drawn 46 One suggested reason for rejecting a pain experience in invertebrates is that invertebrate brains are too small However brain size does not necessarily equate to complexity of function 47 Moreover weight for body weight the cephalopod brain is in the same size bracket as the vertebrate brain smaller than that of birds and mammals but as big as or bigger than most fish brains 48 49 Remarkably as demonstrated by cognitive tests intelligence of cephalopods is comparable to that of five year old human children 50 Since September 2010 all cephalopods being used for scientific purposes in the EU are protected by EU Directive 2010 63 EU which states there is scientific evidence of their cephalopods ability to experience pain suffering distress and lasting harm 51 In the UK animal protection legislation 52 means that cephalopods used for scientific purposes must be killed humanely according to prescribed methods known as Schedule 1 methods of euthanasia known to minimise suffering 53 In medicine and research editVeterinary medicine edit Veterinary medicine uses for actual or potential animal pain the same analgesics and anesthetics as used in humans 54 Dolorimetry edit Dolorimetry dolor Latin pain grief is the measurement of the pain response in animals including humans It is practiced occasionally in medicine as a diagnostic tool and is regularly used in research into the basic science of pain and in testing the efficacy of analgesics The intense sociality of humans and the readiness with which they perceive and identify with manifestations of physical pain in others have made the study of pain notoriously difficult to quantify Indeed many investigators of animal pain shy away from use of the word pain in published research They consider the term to be unscientific and grounded in human emotion preferring others such as stress or avoidance As the subjective experience of animals is very resistant to rational assessment the subjective difference between their painless reflex responses to noxious stimuli nociception and pain as humans understand it has been nearly impossible to determine conclusively For this reason essentially all scientific research into the nature of animal pain has depended upon so called pain proxies These include obvious behavioral changes shying away stamping vocalization ear cues etc as well as subtler changes as when injured chickens or rats choose feed that has been laced with an analgesic over feed that has not Most prized by scientists are the quantifiable physiological changes such as elevated heart rate or stress hormone serum concentrations These physiological proxies are valued because their assessments are carried out by machines and do not rely on humans to determine the magnitude of the variable under study This is seldom the case for behavioral pain proxies which are most often scored by a researcher on some numerical scale ranging from no response to intense response 55 Dolormetric methods in animals edit Nonhuman animal pain measurement techniques include the paw pressure test tail flick test hot plate test and grimace scales Grimace scales are used to assess post operative and disease pain in mammals Scales have been developed for ten mammalian species such as mice rats and rabbits 56 Dale Langford established and published the Mouse Grimace Scale in 2010 57 with Susana Sotocinal inventing the Rat Grimace Scale a year later in 2011 58 Using video stills from recorders researchers can track changes in an animal s the positioning of ears and whiskers orbital tightening and bulging or flattening of the nose area and match these images against the images in the grimace scale 59 Laboratory researcher and veterinarians may use the grimace scales to evaluate when to administer analgesia to an animal or whether severity of pain warrants a humane endpoint euthanasia or the animal in a study Laboratory animals edit See also Animal testing regulations Animals are kept in laboratories for a wide range of reasons some of which may involve pain suffering or distress whilst others e g many of those involved in breeding will not The extent to which animal testing causes pain and suffering in laboratory animals is the subject of much debate 60 Marian Stamp Dawkins defines suffering in laboratory animals as the experience of one of a wide range of extremely unpleasant subjective mental states 61 The U S National Research Council has published guidelines on the care and use of laboratory animals 62 as well as a report on recognizing and alleviating pain in vertebrates 63 The United States Department of Agriculture defines a painful procedure in an animal study as one that would reasonably be expected to cause more than slight or momentary pain or distress in a human being to which that procedure was applied 64 Some critics argue that paradoxically researchers raised in the era of increased awareness of animal welfare may be inclined to deny that animals are in pain simply because they do not want to see themselves as people who inflict it 65 PETA however argues that there is no doubt about animals in laboratories being inflicted with pain 66 In the UK animal research likely to cause pain suffering distress or lasting harm is regulated by the Animals Scientific Procedures Act 1986 and research with the potential to cause pain is regulated by the Animal Welfare Act of 1966 in the US In the U S researchers are not required to provide laboratory animals with pain relief if the administration of such drugs would interfere with their experiment Laboratory animal veterinarian Larry Carbone writes Without question present public policy allows humans to cause laboratory animals unalleviated pain The AWA the Guide for the Care and Use of Laboratory Animals and current Public Health Service policy all allow for the conduct of what are often called Category E studies experiments in which animals are expected to undergo significant pain or distress that will be left untreated because treatments for pain would be expected to interfere with the experiment 67 Severity scales edit Eleven countries have national classification systems of pain and suffering experienced by animals used in research Australia Canada Finland Germany The Republic of Ireland The Netherlands New Zealand Poland Sweden Switzerland and the UK The US also has a mandated national scientific animal use classification system but it is markedly different from other countries in that it reports on whether pain relieving drugs were required and or used 68 The first severity scales were implemented in 1986 by Finland and the UK The number of severity categories ranges between 3 Sweden and Finland and 9 Australia In the UK research projects are classified as mild moderate and substantial in terms of the suffering the researchers conducting the study say they may cause a fourth category of unclassified means the animal was anesthetized and killed without recovering consciousness It should be remembered that in the UK system many research projects e g transgenic breeding feeding distasteful food will require a license under the Animals Scientific Procedures Act 1986 but may cause little or no pain or suffering In December 2001 39 percent 1 296 of project licenses in force were classified as mild 55 percent 1 811 as moderate two percent 63 as substantial and 4 percent 139 as unclassified 69 In 2009 of the project licenses issued 35 percent 187 were classified as mild 61 percent 330 as moderate 2 percent 13 as severe and 2 percent 11 as unclassified 70 In the US the Guide for the Care and Use of Laboratory Animals defines the parameters for animal testing regulations It states The ability to experience and respond to pain is widespread in the animal kingdom Pain is a stressor and if not relieved can lead to unacceptable levels of stress and distress in animals 71 The Guide states that the ability to recognize the symptoms of pain in different species is essential for the people caring for and using animals Accordingly all issues of animal pain and distress and their potential treatment with analgesia and anesthesia are required regulatory issues for animal protocol approval See also edit nbsp Animals portalAnimal ethics Animal cognition Animal welfare Animal welfare science Bridge locus Animal consciousness Cruelty to animals Emotion in animals Ethics of uncertain sentience List of mutilatory procedures on animals Psychology of eating meat Moral status of animals in the ancient world Neural correlates of consciousness Philosophy of mind Three Rs animal research Wild animal sufferingReferences edit Mathews Karol Kronen Peter W Lascelles Duncan Nolan Andrea Robertson Sheilah Steagall Paulo VM Wright Bonnie Yamashita Kazuto 20 May 2014 Guidelines for Recognition Assessment and Treatment of Pain Journal of Small Animal Practice 55 6 E10 E68 doi 10 1111 jsap 12200 ISSN 0022 4510 PMID 24841489 IASP Pain Terminology iasp pain org Archived from the original on 9 November 2017 Retrieved 3 May 2018 Wright Andrew A Criticism of the IASP s Definition of Pain Archived from the original on 22 August 2016 Retrieved 30 October 2017 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Zimmerman M 1986 Physiological mechanisms of pain and its treatment Klinische Anaesthesiol Intensivether 32 1 19 National Research Council US Committee on Recognition and Alleviation of Pain in Laboratory Animals 2009 Recognition and Alleviation of Pain in Laboratory Animals National Center for Biotechnology Information Archived from the original on 24 June 2017 Retrieved 14 February 2015 Ermak Gennady 2022 Plant Based Meat Based and Between Ways of Eating for Your Health and Our World KDP pp 55 65 ISBN 979 8785908680 a b Sneddon L U 2004 Evolution of nociception in vertebrates comparative analysis of lower vertebrates Brain Research Reviews 46 2 123 130 doi 10 1016 j brainresrev 2004 07 007 PMID 15464201 S2CID 16056461 Price T J amp Dussor G 2014 Evolution the advantage of maladaptive pain plasticity Current Biology 24 10 R384 R386 doi 10 1016 j cub 2014 04 011 PMC 4295114 PMID 24845663 Maladaptive pain Oxford Reference Archived from the original on 15 May 2016 Retrieved 16 May 2016 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Crook R J Dickson K Hanlon R T and Walters E T 2014 Nociceptive sensitization reduces predation risk Current Biology 24 10 1121 1125 doi 10 1016 j cub 2014 03 043 PMID 24814149 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Sherwin C M 2001 Can invertebrates suffer Or how robust is argument by analogy Animal Welfare 10 supplement 103 118 Colpaert F C Tarayre J P Alliaga M Slot L A B Attal N Koek W 2001 Opiate self administration as a measure of chronic nociceptive pain in arthritic rats Pain 91 1 2 33 45 doi 10 1016 s0304 3959 00 00413 9 PMID 11240076 S2CID 24858615 Danbury T C Weeks C A Chambers J P Waterman Pearson A E Kestin S C 2000 Self selection of the analgesic drug carprofen by lame broiler chickens Veterinary Record 146 11 307 311 doi 10 1136 vr 146 11 307 PMID 10766114 S2CID 35062797 a b Carbone Larry What Animal Want Expertise and Advocacy in Laboratory Animal Welfare Policy Oxford University Press 2004 p 149 a b The Ethics of research involving animals Nuffield Council on Bioethics Accessed 27 February 2008 Archived 27 February 2008 at the Wayback Machine Talking Point on the use of animals in scientific research EMBO Reports 8 6 2007 pp 521 525 a b Rollin Bernard The Unheeded Cry Animal Consciousness Animal Pain and Science New York Oxford University Press 1989 pp xii 117 118 cited in Carbone 2004 p 150 Griffin DR Speck GB 2004 New evidence of animal consciousness PDF Animal Cognition 7 1 5 18 doi 10 1007 s10071 003 0203 x PMID 14658059 S2CID 8650837 Archived from the original PDF on 21 January 2013 Allen C 1998 Assessing animal cognition ethological and philosophical perspectives PDF J Anim Sci 76 1 42 7 doi 10 2527 1998 76142x PMID 9464883 permanent dead link Abbott FV Franklin KB Westbrook RF January 1995 The formalin test scoring properties of the first and second phases of the pain response in rats Pain 60 1 91 102 doi 10 1016 0304 3959 94 00095 V PMID 7715946 S2CID 35448280 a b c Sneddon Lynne Can animals feel pain PAIN Archived from the original on 13 April 2012 Retrieved 18 March 2012 Elwood R W Barr S Patterson L 2009 Pain and stress in crustaceans Applied Animal Behaviour Science 118 3 128 136 doi 10 1016 j applanim 2009 02 018 Rose JD Arlinghaus R Cooke SJ Diggles BK Sawynok W Stevens ED Wynne CDL 2012 Can fish really feel pain PDF Fish and Fisheries 15 1 97 133 doi 10 1111 faf 12010 Archived PDF from the original on 4 March 2016 Snow P J Plenderleith M B Wright L L 1993 Quantitative study of primary sensory neurone populations of three species of elasmobranch fish Journal of Comparative Neurology 334 1 97 103 doi 10 1002 cne 903340108 PMID 8408762 S2CID 32762031 L U Sneddon et al 2003 Do fishes have nociceptors Evidence for the evolution of a vertebrate sensory system Proc Biol Sci 270 1520 1115 21 doi 10 1098 rspb 2003 2349 PMC 1691351 PMID 12816648 Sneddon L 2009 Pain and Distress in Fish Ilar J 50 4 338 342 doi 10 1093 ilar 50 4 338 PMID 19949250 Leake J 14 March 2004 Anglers to Face RSPCA Check The Sunday Times Archived from the original on 23 September 2015 Retrieved 15 September 2015 Eisemann C Jorgensen W Rice D Cribb M Zalucki M Merritt B Webb P 1984 Do insects feel pain A biological view PDF Experientia 40 2 164 167 doi 10 1007 bf01963580 S2CID 3071 Archived from the original PDF on 13 June 2013 Do Invertebrates Feel Pain Archived 6 January 2010 at the Wayback Machine The Senate Standing Committee on Legal and Constitutional Affairs The Parliament of Canada Web Site accessed 11 June 2008 Jane A Smith 1991 A question of pain in invertebrates ILAR Journal 33 1 2 Archived from the original on 8 October 2011 Elwood R W 2011 Pain and suffering in invertebrates PDF Institute of Laboratory Animal Resources Journal 52 2 175 84 doi 10 1093 ilar 52 2 175 PMID 21709310 Archived from the original PDF on 7 April 2012 Fiorito G 1986 Is there pain in invertebrates Behavioural Processes 12 4 383 388 doi 10 1016 0376 6357 86 90006 9 PMID 24924695 S2CID 26181117 St John Smith E Lewin G R 2009 Nociceptors a phylogenetic view Journal of Comparative Physiology A 195 12 1089 1106 doi 10 1007 s00359 009 0482 z PMC 2780683 PMID 19830434 DeGrazia D Rowan A 1991 Pain suffering and anxiety in animals and humans Theoretical Medicine and Bioethics 12 3 193 211 doi 10 1007 BF00489606 PMID 1754965 S2CID 34920699 Lockwood JA 1987 The moral standing of insects and the ethics of extinction The Florida Entomologist 70 1 70 89 doi 10 2307 3495093 JSTOR 3495093 Eisemann C H Jorgensen W K Merritt D J Rice M J Cribb B W Webb P D Zalucki M P 1984 Do insects feel pain A biological view Experientia 40 2 164 7 doi 10 1007 bf01963580 S2CID 3071 Tracey J W Daniel R I Wilson G Laurent and S Benzer 2003 painless a Drosophila gene essential for nociception Cell 113 2 261 273 doi 10 1016 S0092 8674 03 00272 1 PMID 12705873 S2CID 1424315 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Wittenburg N Baumeister R 1999 Thermal avoidance in Caenorhabditis elegans an approach to the study of nociception Proceedings of the National Academy of Sciences USA 96 18 10477 10482 Bibcode 1999PNAS 9610477W doi 10 1073 pnas 96 18 10477 PMC 17914 PMID 10468634 Pryor S C Nieto F Henry S and Sarfo J 2007 The effect of opiates and opiate antagonists on heat latency response in the parasitic nematode Ascaris suum Life Sciences 80 18 1650 1655 doi 10 1016 j lfs 2007 01 011 PMID 17363006 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Dalton L M Widdowson P S 1989 The involvement of opioid peptides in stress induced analgesia in the slug Arion ater Peptides 10 1 9 13 doi 10 1016 0196 9781 89 90067 3 PMID 2568626 S2CID 26432057 Kavaliers M Ossenkopp K P 1991 Opioid systems and magnetic field effects in the land snail Cepaea nemoralis Biological Bulletin 180 2 301 309 doi 10 2307 1542401 JSTOR 1542401 PMID 29304689 Dyakonova V E Schurmann F Sakharov D A 1999 Effects of serotonergic and opioidergic drugs on escape behaviors and social status of male crickets Naturwissenschaften 86 9 435 437 Bibcode 1999NW 86 435D doi 10 1007 s001140050647 PMID 10501691 S2CID 9466150 Zabala N Gomez M 1991 Morphine analgesia tolerance and addiction in the cricket Pteronemobius Pharmacology Biochemistry and Behavior 40 4 887 891 doi 10 1016 0091 3057 91 90102 8 PMID 1816576 S2CID 24429475 Lozada M Romano A Maldonado H 1988 Effect of morphine and naloxone on a defensive response of the crab Chasmagnathus granulatus Pharmacology Biochemistry and Behavior 30 3 635 640 doi 10 1016 0091 3057 88 90076 7 PMID 3211972 S2CID 45083722 Maldonado H Miralto A 1982 Effects of morphine and naloxone on a defensive response of the mantis shrimp Squilla mantis Journal of Comparative Physiology A 147 4 455 459 doi 10 1007 bf00612010 S2CID 3013237 L Somme 2005 Sentience and pain in invertebrates Report to Norwegian Scientific Committee for Food Safety Norwegian University of Life Sciences Oslo Chittka L Niven J 2009 Are Bigger Brains Better Current Biology 19 21 R995 R1008 doi 10 1016 j cub 2009 08 023 PMID 19922859 S2CID 7247082 Cephalopod brain size malankazlev com Retrieved 8 April 2020 Packard A 1972 Cephalopods and fish the limits of convergence Biological Reviews 47 2 241 307 266 7 doi 10 1111 j 1469 185X 1972 tb00975 x S2CID 85088231 Ermak Gennady 2022 Plant Based Meat Based and Between Ways of Eating for Your Health and Our World KDP p 62 ISBN 979 8785908680 Directive 2010 63 EU of the European Parliament and of the Council Official Journal of the European Union Article 1 3 b Retrieved 17 April 2016 Animals Scientific Protection Act 1986 Archived from the original on 12 April 2016 Retrieved 18 April 2016 The Animals Scientific Procedures Act 1986 Amendment Regulations 2012 Archived from the original on 11 February 2016 Retrieved 15 April 2016 Vinuela Fernandez I Jones E Welsh EM Fleetwood Walker SM September 2007 Pain mechanisms and their implication for the management of pain in farm and companion animals Vet J 174 2 227 39 doi 10 1016 j tvjl 2007 02 002 PMID 17553712 Danbury T C Weeks C A Waterman Pearson A E Kestin S C Chambers J P March 2000 Self selection of the analgesic drug carprofen by lame broiler chickens Veterinary Record 146 11 307 311 doi 10 1136 vr 146 11 307 PMID 10766114 S2CID 35062797 Mogil Jeffrey S Pang Daniel S J Silva Dutra Gabrielle Guanaes Chambers Christine T 1 September 2020 The development and use of facial grimace scales for pain measurement in animals Neuroscience amp Biobehavioral Reviews 116 480 493 doi 10 1016 j neubiorev 2020 07 013 ISSN 0149 7634 PMID 32682741 S2CID 220575703 Langford Dale J Bailey Andrea L Chanda Mona Lisa Clarke Sarah E Drummond Tanya E Echols Stephanie Glick Sarah Ingrao Joelle Klassen Ross Tammy LaCroix Fralish Michael L Matsumiya Lynn 2010 Coding of facial expressions of pain in the laboratory mouse Nature Methods 7 6 447 449 doi 10 1038 nmeth 1455 ISSN 1548 7105 PMID 20453868 S2CID 16703705 Sotocina Susana G Sorge Robert E Zaloum Austin Tuttle Alexander H Martin Loren J Wieskopf Jeffrey S Mapplebeck Josiane CS Wei Peng Zhan Shu Zhang Shuren McDougall Jason J 5 August 2011 The Rat Grimace Scale A Partially Automated Method for Quantifying Pain in the Laboratory Rat via Facial Expressions Molecular Pain 7 1744 8069 7 55 doi 10 1186 1744 8069 7 55 ISSN 1744 8069 PMC 3163602 PMID 21801409 Grimace scales National Centre for the Replacement Refinement and Reduction of Animals in Research NC3Rs Retrieved 10 December 2020 Duncan IJ Petherick JC December 1991 The implications of cognitive processes for animal welfare J Anim Sci 69 12 5017 22 doi 10 2527 1991 69125017x PMID 1808195 permanent dead link Curtis SE Stricklin WR 1991 The importance of animal cognition in agricultural animal production systems an overview J Anim Sci 69 12 5001 7 doi 10 2527 1991 69125001x PMID 1808193 permanent dead link Stamp Dawkins Marian Scientific Basis for Assessing Suffering in Animals in Singer Peter In Defense of Animals The Second Wave Blackwell 2006 p 28 Committee for the Update of the Guide for the Care and Use of Laboratory Animals ed 2011 Guide for the Care and Use of Laboratory Animals Report 8th ed The National Academies Press Archived from the original on 1 August 2013 National Research Council Division on Earth and Life Studies Committee on Recognition and Alleviation of Pain in Laboratory Animals 2009 Recognition and Alleviation of Pain in Laboratory Animals PDF Report The National Academies Press Archived from the original PDF on 3 November 2013 a href Template Cite report html title Template Cite report cite report a CS1 maint multiple names authors list link Animal Welfare Definitions for and Reporting of Pain and Distress Archived 6 October 2014 at the Wayback Machine Animal Welfare Information Center Bulletin Summer 2000 Vol 11 No 1 2 United States Department of Agriculture Carbone 2004 p 151 Cruelty to Animals in Laboratories peta org 22 June 2010 Archived from the original on 2 November 2013 Retrieved 3 May 2018 Carbone L 7 September 2011 Pain in Laboratory Animals The Ethical and Regulatory Imperatives PLOS ONE 6 9 e21578 Bibcode 2011PLoSO 621578C doi 10 1371 journal pone 0021578 PMC 3168441 PMID 21915253 Fenwick N Ormandy E Gauthier C Griffin G 2011 Classifying the severity of scientific animal use a review of international systems Animal Welfare 20 2 281 301 doi 10 1017 S0962728600002761 S2CID 70934694 Ryder Richard D Speciesism in the laboratory in Singer Peter In Defense of Animals The Second Wave Blackwell 2006 p 99 Home Office Statistics Archived from the original on 22 September 2011 Retrieved 31 October 2011 Guide for the Care and Use of Laboratory Animals ILAR National Research Council 1996 copyright p 64External links editAnimal Ethics Indicators of animal suffering Archived 17 January 2022 at the Wayback Machine Animal Sentience Kent J E amp Molony V Guidelines on the Recognition and Assessment of Pain in Animals Crawford R A Reference Source for the Recognition amp Alleviation of Pain amp Distress in Animals United States Department of Agriculture Recognition and Assessment of Pain Animal Welfare Information Center USDA Retrieved from https en wikipedia org w index php title Pain in animals amp oldid 1201428095, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.