fbpx
Wikipedia

Evolution

Evolution is change in the heritable characteristics of biological populations over successive generations.[1][2] These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation tends to exist within any given population as a result of genetic mutation and recombination.[3] Evolution occurs when evolutionary processes such as natural selection (including sexual selection) and genetic drift act on this variation, resulting in certain characteristics becoming more common or more rare within a population.[4] The evolutionary pressures that determine whether a characteristic is common or rare within a population constantly change, resulting in a change in heritable characteristics arising over successive generations. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms, and molecules.[5][6]

The theory of evolution by natural selection was conceived independently by Charles Darwin and Alfred Russel Wallace in the mid-19th century and was set out in detail in Darwin's book On the Origin of Species.[7] Evolution by natural selection is established by observable facts about living organisms: (1) more offspring are often produced than can possibly survive (2) traits vary among individuals with respect to their morphology, physiology, and behaviour (phenotypic variation); (3) different traits confer different rates of survival and reproduction (differential fitness); and (4) traits can be passed from generation to generation (heritability of fitness).[8] In successive generations, members of a population are therefore more likely to be replaced by the offspring of parents with favourable characteristics. In the early 20th century, other competing ideas of evolution such as mutationism and orthogenesis were refuted as the modern synthesis concluded Darwinian evolution acts on Mendelian genetic variation.[9]

All life on Earth shares a last universal common ancestor (LUCA),[10][11][12] which lived approximately 3.5–3.8 billion years ago.[13] The fossil record includes a progression from early biogenic graphite[14] to microbial mat fossils[15][16][17] to fossilised multicellular organisms. Existing patterns of biodiversity have been shaped by repeated formations of new species (speciation), changes within species (anagenesis), and loss of species (extinction) throughout the evolutionary history of life on Earth.[18] Morphological and biochemical traits are more similar among species that share a more recent common ancestor, and these traits can be used to reconstruct phylogenetic trees.[19][20]

Evolutionary biologists have continued to study various aspects of evolution by forming and testing hypotheses as well as constructing theories based on evidence from the field or laboratory and on data generated by the methods of mathematical and theoretical biology. Their discoveries have influenced not just the development of biology but numerous other scientific and industrial fields, including agriculture, medicine, and computer science.[21]

Heredity

 
DNA structure. Bases are in the centre, surrounded by phosphate–sugar chains in a double helix.

Evolution in organisms occurs through changes in heritable traits—the inherited characteristics of an organism. In humans, for example, eye colour is an inherited characteristic and an individual might inherit the "brown-eye trait" from one of their parents.[22] Inherited traits are controlled by genes and the complete set of genes within an organism's genome (genetic material) is called its genotype.[23]

The complete set of observable traits that make up the structure and behaviour of an organism is called its phenotype. These traits come from the interaction of its genotype with the environment.[24] As a result, many aspects of an organism's phenotype are not inherited. For example, suntanned skin comes from the interaction between a person's genotype and sunlight; thus, suntans are not passed on to people's children. However, some people tan more easily than others, due to differences in genotypic variation; a striking example are people with the inherited trait of albinism, who do not tan at all and are very sensitive to sunburn.[25]

Heritable traits are passed from one generation to the next via DNA, a molecule that encodes genetic information.[23] DNA is a long biopolymer composed of four types of bases. The sequence of bases along a particular DNA molecule specifies the genetic information, in a manner similar to a sequence of letters spelling out a sentence. Before a cell divides, the DNA is copied, so that each of the resulting two cells will inherit the DNA sequence. Portions of a DNA molecule that specify a single functional unit are called genes; different genes have different sequences of bases. Within cells, the long strands of DNA form condensed structures called chromosomes. The specific location of a DNA sequence within a chromosome is known as a locus. If the DNA sequence at a locus varies between individuals, the different forms of this sequence are called alleles. DNA sequences can change through mutations, producing new alleles. If a mutation occurs within a gene, the new allele may affect the trait that the gene controls, altering the phenotype of the organism.[26] However, while this simple correspondence between an allele and a trait works in some cases, most traits are more complex and are controlled by quantitative trait loci (multiple interacting genes).[27][28]

Some heritable changes cannot be explained by changes to the sequence of nucleotides in the DNA. These phenomena are classed as epigenetic inheritance systems.[29] DNA methylation marking chromatin, self-sustaining metabolic loops, gene silencing by RNA interference and the three-dimensional conformation of proteins (such as prions) are areas where epigenetic inheritance systems have been discovered at the organismic level.[30] Developmental biologists suggest that complex interactions in genetic networks and communication among cells can lead to heritable variations that may underlay some of the mechanics in developmental plasticity and canalisation.[31] Heritability may also occur at even larger scales. For example, ecological inheritance through the process of niche construction is defined by the regular and repeated activities of organisms in their environment. This generates a legacy of effects that modify and feed back into the selection regime of subsequent generations. Descendants inherit genes plus environmental characteristics generated by the ecological actions of ancestors.[32] Other examples of heritability in evolution that are not under the direct control of genes include the inheritance of cultural traits and symbiogenesis.[33][34]

Sources of variation

 

Evolution can occur if there is genetic variation within a population. Variation comes from mutations in the genome, reshuffling of genes through sexual reproduction and migration between populations (gene flow). Despite the constant introduction of new variation through mutation and gene flow, most of the genome of a species is identical in all individuals of that species.[35] However, even relatively small differences in genotype can lead to dramatic differences in phenotype: for example, chimpanzees and humans differ in only about 5% of their genomes.[36]

An individual organism's phenotype results from both its genotype and the influence of the environment it has lived in. A substantial part of the phenotypic variation in a population is caused by genotypic variation.[28] The modern evolutionary synthesis defines evolution as the change over time in this genetic variation. The frequency of one particular allele will become more or less prevalent relative to other forms of that gene. Variation disappears when a new allele reaches the point of fixation—when it either disappears from the population or replaces the ancestral allele entirely.[37]

Before the discovery of Mendelian genetics, one common hypothesis was blending inheritance. But with blending inheritance, genetic variation would be rapidly lost, making evolution by natural selection implausible. The Hardy–Weinberg principle provides the solution to how variation is maintained in a population with Mendelian inheritance. The frequencies of alleles (variations in a gene) will remain constant in the absence of selection, mutation, migration and genetic drift.[38]

Mutation

 
Duplication of part of a chromosome

Mutations are changes in the DNA sequence of a cell's genome and are the ultimate source of genetic variation in all organisms.[3] When mutations occur, they may alter the product of a gene, or prevent the gene from functioning, or have no effect. Based on studies in the fly Drosophila melanogaster, it has been suggested that if a mutation changes a protein produced by a gene, this will probably be harmful, with about 70% of these mutations having damaging effects, and the remainder being either neutral or weakly beneficial.[39]

Mutations can involve large sections of a chromosome becoming duplicated (usually by genetic recombination), which can introduce extra copies of a gene into a genome.[40] Extra copies of genes are a major source of the raw material needed for new genes to evolve.[41] This is important because most new genes evolve within gene families from pre-existing genes that share common ancestors.[42] For example, the human eye uses four genes to make structures that sense light: three for colour vision and one for night vision; all four are descended from a single ancestral gene.[43]

New genes can be generated from an ancestral gene when a duplicate copy mutates and acquires a new function. This process is easier once a gene has been duplicated because it increases the redundancy of the system; one gene in the pair can acquire a new function while the other copy continues to perform its original function.[44][45] Other types of mutations can even generate entirely new genes from previously noncoding DNA, a phenomenon termed de novo gene birth.[46][47]

The generation of new genes can also involve small parts of several genes being duplicated, with these fragments then recombining to form new combinations with new functions (exon shuffling).[48][49] When new genes are assembled from shuffling pre-existing parts, domains act as modules with simple independent functions, which can be mixed together to produce new combinations with new and complex functions.[50] For example, polyketide synthases are large enzymes that make antibiotics; they contain up to one hundred independent domains that each catalyse one step in the overall process, like a step in an assembly line.[51]

One example of mutation is wild boar piglets. They are camouflage colored and show a characteristic pattern of dark and light longitudinal stripes. However, mutations in melanocortin 1 receptor (MC1R) disrupt the pattern. The majority of pig breeds carry MC1R mutations disrupting wild-type color and different mutations causing dominant black color of the pigs.[52]

Sex and recombination

In asexual organisms, genes are inherited together, or linked, as they cannot mix with genes of other organisms during reproduction. In contrast, the offspring of sexual organisms contain random mixtures of their parents' chromosomes that are produced through independent assortment. In a related process called homologous recombination, sexual organisms exchange DNA between two matching chromosomes.[53] Recombination and reassortment do not alter allele frequencies, but instead change which alleles are associated with each other, producing offspring with new combinations of alleles.[54] Sex usually increases genetic variation and may increase the rate of evolution.[55][56]

 
This diagram illustrates the twofold cost of sex. If each individual were to contribute to the same number of offspring (two), (a) the sexual population remains the same size each generation, where the (b) Asexual reproduction population doubles in size each generation.[image reference needed]

The two-fold cost of sex was first described by John Maynard Smith.[57] The first cost is that in sexually dimorphic species only one of the two sexes can bear young. This cost does not apply to hermaphroditic species, like most plants and many invertebrates. The second cost is that any individual who reproduces sexually can only pass on 50% of its genes to any individual offspring, with even less passed on as each new generation passes.[58] Yet sexual reproduction is the more common means of reproduction among eukaryotes and multicellular organisms. The Red Queen hypothesis has been used to explain the significance of sexual reproduction as a means to enable continual evolution and adaptation in response to coevolution with other species in an ever-changing environment.[58][59][60][61] Another hypothesis is that sexual reproduction is primarily an adaptation for promoting accurate recombinational repair of damage in germline DNA, and that increased diversity is a byproduct of this process that may sometimes be adaptively beneficial.[62][63]

Gene flow

Gene flow is the exchange of genes between populations and between species.[64] It can therefore be a source of variation that is new to a population or to a species. Gene flow can be caused by the movement of individuals between separate populations of organisms, as might be caused by the movement of mice between inland and coastal populations, or the movement of pollen between heavy-metal-tolerant and heavy-metal-sensitive populations of grasses.

Gene transfer between species includes the formation of hybrid organisms and horizontal gene transfer. Horizontal gene transfer is the transfer of genetic material from one organism to another organism that is not its offspring; this is most common among bacteria.[65] In medicine, this contributes to the spread of antibiotic resistance, as when one bacteria acquires resistance genes it can rapidly transfer them to other species.[66] Horizontal transfer of genes from bacteria to eukaryotes such as the yeast Saccharomyces cerevisiae and the adzuki bean weevil Callosobruchus chinensis has occurred.[67][68] An example of larger-scale transfers are the eukaryotic bdelloid rotifers, which have received a range of genes from bacteria, fungi and plants.[69] Viruses can also carry DNA between organisms, allowing transfer of genes even across biological domains.[70]

Large-scale gene transfer has also occurred between the ancestors of eukaryotic cells and bacteria, during the acquisition of chloroplasts and mitochondria. It is possible that eukaryotes themselves originated from horizontal gene transfers between bacteria and archaea.[71]

Evolutionary processes

 
Mutation followed by natural selection results in a population with darker colouration.[image reference needed]

From a neo-Darwinian perspective, evolution occurs when there are changes in the frequencies of alleles within a population of interbreeding organisms,[38] for example, the allele for black colour in a population of moths becoming more common. Mechanisms that can lead to changes in allele frequencies include natural selection, genetic drift, gene flow and mutation bias.

Natural selection

Evolution by natural selection is the process by which traits that enhance survival and reproduction become more common in successive generations of a population. It embodies three principles:[8]

  • Variation exists within populations of organisms with respect to morphology, physiology and behaviour (phenotypic variation).
  • Different traits confer different rates of survival and reproduction (differential fitness).
  • These traits can be passed from generation to generation (heritability of fitness).

More offspring are produced than can possibly survive, and these conditions produce competition between organisms for survival and reproduction. Consequently, organisms with traits that give them an advantage over their competitors are more likely to pass on their traits to the next generation than those with traits that do not confer an advantage.[72] This teleonomy is the quality whereby the process of natural selection creates and preserves traits that are seemingly fitted for the functional roles they perform.[73] Consequences of selection include nonrandom mating[74] and genetic hitchhiking.

The central concept of natural selection is the evolutionary fitness of an organism.[75] Fitness is measured by an organism's ability to survive and reproduce, which determines the size of its genetic contribution to the next generation.[75] However, fitness is not the same as the total number of offspring: instead fitness is indicated by the proportion of subsequent generations that carry an organism's genes.[76] For example, if an organism could survive well and reproduce rapidly, but its offspring were all too small and weak to survive, this organism would make little genetic contribution to future generations and would thus have low fitness.[75]

If an allele increases fitness more than the other alleles of that gene, then with each generation this allele will become more common within the population. These traits are said to be "selected for." Examples of traits that can increase fitness are enhanced survival and increased fecundity. Conversely, the lower fitness caused by having a less beneficial or deleterious allele results in this allele becoming rarer—they are "selected against."[77] Importantly, the fitness of an allele is not a fixed characteristic; if the environment changes, previously neutral or harmful traits may become beneficial and previously beneficial traits become harmful.[26] However, even if the direction of selection does reverse in this way, traits that were lost in the past may not re-evolve in an identical form (see Dollo's law).[78][79] However, a re-activation of dormant genes, as long as they have not been eliminated from the genome and were only suppressed perhaps for hundreds of generations, can lead to the re-occurrence of traits thought to be lost like hindlegs in dolphins, teeth in chickens, wings in wingless stick insects, tails and additional nipples in humans etc. "Throwbacks" such as these are known as atavisms.[80]

 
These charts depict the different types of genetic selection. On each graph, the x-axis variable is the type of phenotypic trait and the y-axis variable is the number of organisms.[image reference needed] Group A is the original population and Group B is the population after selection.
· Graph 1 shows directional selection, in which a single extreme phenotype is favoured.
· Graph 2 depicts stabilizing selection, where the intermediate phenotype is favoured over the extreme traits.
· Graph 3 shows disruptive selection, in which the extreme phenotypes are favoured over the intermediate.

Natural selection within a population for a trait that can vary across a range of values, such as height, can be categorised into three different types. The first is directional selection, which is a shift in the average value of a trait over time—for example, organisms slowly getting taller.[81] Secondly, disruptive selection is selection for extreme trait values and often results in two different values becoming most common, with selection against the average value. This would be when either short or tall organisms had an advantage, but not those of medium height. Finally, in stabilising selection there is selection against extreme trait values on both ends, which causes a decrease in variance around the average value and less diversity.[72][82] This would, for example, cause organisms to eventually have a similar height.

Natural selection most generally makes nature the measure against which individuals and individual traits, are more or less likely to survive. "Nature" in this sense refers to an ecosystem, that is, a system in which organisms interact with every other element, physical as well as biological, in their local environment. Eugene Odum, a founder of ecology, defined an ecosystem as: "Any unit that includes all of the organisms...in a given area interacting with the physical environment so that a flow of energy leads to clearly defined trophic structure, biotic diversity, and material cycles (i.e., exchange of materials between living and nonliving parts) within the system...."[83] Each population within an ecosystem occupies a distinct niche, or position, with distinct relationships to other parts of the system. These relationships involve the life history of the organism, its position in the food chain and its geographic range. This broad understanding of nature enables scientists to delineate specific forces which, together, comprise natural selection.

Natural selection can act at different levels of organisation, such as genes, cells, individual organisms, groups of organisms and species.[84][85][86] Selection can act at multiple levels simultaneously.[87] An example of selection occurring below the level of the individual organism are genes called transposons, which can replicate and spread throughout a genome.[88] Selection at a level above the individual, such as group selection, may allow the evolution of cooperation.[89]

Genetic hitchhiking

Recombination allows alleles on the same strand of DNA to become separated. However, the rate of recombination is low (approximately two events per chromosome per generation). As a result, genes close together on a chromosome may not always be shuffled away from each other and genes that are close together tend to be inherited together, a phenomenon known as linkage.[90] This tendency is measured by finding how often two alleles occur together on a single chromosome compared to expectations, which is called their linkage disequilibrium. A set of alleles that is usually inherited in a group is called a haplotype. This can be important when one allele in a particular haplotype is strongly beneficial: natural selection can drive a selective sweep that will also cause the other alleles in the haplotype to become more common in the population; this effect is called genetic hitchhiking or genetic draft.[91] Genetic draft caused by the fact that some neutral genes are genetically linked to others that are under selection can be partially captured by an appropriate effective population size.[92]

Sexual selection

 
Male moor frogs become blue during the height of mating season. Blue reflectance may be a form of intersexual communication. It is hypothesized that males with brighter blue coloration may signal greater sexual and genetic fitness.[93]

A special case of natural selection is sexual selection, which is selection for any trait that increases mating success by increasing the attractiveness of an organism to potential mates.[94] Traits that evolved through sexual selection are particularly prominent among males of several animal species. Although sexually favoured, traits such as cumbersome antlers, mating calls, large body size and bright colours often attract predation, which compromises the survival of individual males.[95][96] This survival disadvantage is balanced by higher reproductive success in males that show these hard-to-fake, sexually selected traits.[97]

Genetic drift

 
Simulation of genetic drift of 20 unlinked alleles in populations of 10 (top) and 100 (bottom). Drift to fixation is more rapid in the smaller population.[image reference needed]

Genetic drift is the random fluctuation of allele frequencies within a population from one generation to the next.[98] When selective forces are absent or relatively weak, allele frequencies are equally likely to drift upward or downward[clarification needed] in each successive generation because the alleles are subject to sampling error.[99] This drift halts when an allele eventually becomes fixed, either by disappearing from the population or by replacing the other alleles entirely. Genetic drift may therefore eliminate some alleles from a population due to chance alone. Even in the absence of selective forces, genetic drift can cause two separate populations that begin with the same genetic structure to drift apart into two divergent populations with different sets of alleles.[100]

According to the now largely abandoned neutral theory of molecular evolution most evolutionary changes are the result of the fixation of neutral mutations by genetic drift.[101] In this model, most genetic changes in a population are thus the result of constant mutation pressure and genetic drift.[102] This form of the neutral theory is now largely abandoned since it does not seem to fit the genetic variation seen in nature.[103][104] A better-supported version of this model is the nearly neutral theory, according to which a mutation that would be effectively neutral in a small population is not necessarily neutral in a large population.[72] Other theories propose that genetic drift is dwarfed by other stochastic forces in evolution, such as genetic hitchhiking, also known as genetic draft.[99][92][105] Another concept is constructive neutral evolution (CNE), which explains that complex systems can emerge and spread into a population through neutral transitions due to the principles of excess capacity, presuppression, and ratcheting,[106][107][108] and it has been applied in areas ranging from the origins of the spliceosome to the complex interdependence of microbial communities.[109][110][111]

The time it takes a neutral allele to become fixed by genetic drift depends on population size; fixation is more rapid in smaller populations.[112] The number of individuals in a population is not critical, but instead a measure known as the effective population size.[113] The effective population is usually smaller than the total population since it takes into account factors such as the level of inbreeding and the stage of the lifecycle in which the population is the smallest.[113] The effective population size may not be the same for every gene in the same population.[114]

It is usually difficult to measure the relative importance of selection and neutral processes, including drift.[115] The comparative importance of adaptive and non-adaptive forces in driving evolutionary change is an area of current research.[116]

Gene flow

Gene flow involves the exchange of genes between populations and between species.[64] The presence or absence of gene flow fundamentally changes the course of evolution. Due to the complexity of organisms, any two completely isolated populations will eventually evolve genetic incompatibilities through neutral processes, as in the Bateson-Dobzhansky-Muller model, even if both populations remain essentially identical in terms of their adaptation to the environment.[citation needed]

If genetic differentiation between populations develops, gene flow between populations can introduce traits or alleles which are disadvantageous in the local population and this may lead to organisms within these populations evolving mechanisms that prevent mating with genetically distant populations, eventually resulting in the appearance of new species. Thus, exchange of genetic information between individuals is fundamentally important for the development of the Biological Species Concept.[citation needed]

During the development of the modern synthesis, Sewall Wright developed his shifting balance theory, which regarded gene flow between partially isolated populations as an important aspect of adaptive evolution.[117] However, recently there has been substantial criticism of the importance of the shifting balance theory.[118]

Mutation bias

Mutation bias is usually conceived as a difference in expected rates for two different kinds of mutation, e.g., transition-transversion bias, GC-AT bias, deletion-insertion bias. This is related to the idea of developmental bias. Haldane[119] and Fisher[120] argued that, because mutation is a weak pressure easily overcome by selection, tendencies of mutation would be ineffectual except under conditions of neutral evolution or extraordinarily high mutation rates. This opposing-pressures argument was long used to dismiss the possibility of internal tendencies in evolution,[121] until the molecular era prompted renewed interest in neutral evolution.

Noboru Sueoka[122] and Ernst Freese[123] proposed that systematic biases in mutation might be responsible for systematic differences in genomic GC composition between species. The identification of a GC-biased E. coli mutator strain in 1967,[124] along with the proposal of the neutral theory, established the plausibility of mutational explanations for molecular patterns, which are now common in the molecular evolution literature.

For instance, mutation biases are frequently invoked in models of codon usage.[125] Such models also include effects of selection, following the mutation-selection-drift model,[126] which allows both for mutation biases and differential selection based on effects on translation. Hypotheses of mutation bias have played an important role in the development of thinking about the evolution of genome composition, including isochores.[127] Different insertion vs. deletion biases in different taxa can lead to the evolution of different genome sizes.[128][129] The hypothesis of Lynch regarding genome size relies on mutational biases toward increase or decrease in genome size.

However, mutational hypotheses for the evolution of composition suffered a reduction in scope when it was discovered that (1) GC-biased gene conversion makes an important contribution to composition in diploid organisms such as mammals[130] and (2) bacterial genomes frequently have AT-biased mutation.[131]

Contemporary thinking about the role of mutation biases reflects a different theory from that of Haldane and Fisher. More recent work[121] showed that the original "pressures" theory assumes that evolution is based on standing variation: when evolution depends on the introduction of new alleles, mutational and developmental biases in the introduction can impose biases on evolution without requiring neutral evolution or high mutation rates.[citation needed]

Several studies report that the mutations implicated in adaptation reflect common mutation biases[132][133][134] though others dispute this interpretation.[135]

Applications

Concepts and models used in evolutionary biology, such as natural selection, have many applications.[136]

Artificial selection is the intentional selection of traits in a population of organisms. This has been used for thousands of years in the domestication of plants and animals.[137] More recently, such selection has become a vital part of genetic engineering, with selectable markers such as antibiotic resistance genes being used to manipulate DNA. Proteins with valuable properties have evolved by repeated rounds of mutation and selection (for example modified enzymes and new antibodies) in a process called directed evolution.[138]

Understanding the changes that have occurred during an organism's evolution can reveal the genes needed to construct parts of the body, genes which may be involved in human genetic disorders.[139] For example, the Mexican tetra is an albino cavefish that lost its eyesight during evolution. Breeding together different populations of this blind fish produced some offspring with functional eyes, since different mutations had occurred in the isolated populations that had evolved in different caves.[140] This helped identify genes required for vision and pigmentation.[141]

Evolutionary theory has many applications in medicine. Many human diseases are not static phenomena, but capable of evolution. Viruses, bacteria, fungi and cancers evolve to be resistant to host immune defences, as well as to pharmaceutical drugs.[142][143][144] These same problems occur in agriculture with pesticide[145] and herbicide[146] resistance. It is possible that we are facing the end of the effective life of most of available antibiotics[147] and predicting the evolution and evolvability[148] of our pathogens and devising strategies to slow or circumvent it is requiring deeper knowledge of the complex forces driving evolution at the molecular level.[149]

In computer science, simulations of evolution using evolutionary algorithms and artificial life started in the 1960s and were extended with simulation of artificial selection.[150] Artificial evolution became a widely recognised optimisation method as a result of the work of Ingo Rechenberg in the 1960s. He used evolution strategies to solve complex engineering problems.[151] Genetic algorithms in particular became popular through the writing of John Henry Holland.[152] Practical applications also include automatic evolution of computer programmes.[153] Evolutionary algorithms are now used to solve multi-dimensional problems more efficiently than software produced by human designers and also to optimise the design of systems.[154]

Natural outcomes

A visual demonstration of rapid antibiotic resistance evolution by E. coli growing across a plate with increasing concentrations of trimethoprim[155]

Evolution influences every aspect of the form and behaviour of organisms. Most prominent are the specific behavioural and physical adaptations that are the outcome of natural selection. These adaptations increase fitness by aiding activities such as finding food, avoiding predators or attracting mates. Organisms can also respond to selection by cooperating with each other, usually by aiding their relatives or engaging in mutually beneficial symbiosis. In the longer term, evolution produces new species through splitting ancestral populations of organisms into new groups that cannot or will not interbreed. These outcomes of evolution are distinguished based on time scale as macroevolution versus microevolution. Macroevolution refers to evolution that occurs at or above the level of species, in particular speciation and extinction; whereas microevolution refers to smaller evolutionary changes within a species or population, in particular shifts in allele frequency and adaptation.[156] Macroevolution the outcome of long periods of microevolution.[157] Thus, the distinction between micro- and macroevolution is not a fundamental one—the difference is simply the time involved.[158] However, in macroevolution, the traits of the entire species may be important. For instance, a large amount of variation among individuals allows a species to rapidly adapt to new habitats, lessening the chance of it going extinct, while a wide geographic range increases the chance of speciation, by making it more likely that part of the population will become isolated. In this sense, microevolution and macroevolution might involve selection at different levels—with microevolution acting on genes and organisms, versus macroevolutionary processes such as species selection acting on entire species and affecting their rates of speciation and extinction.[159][160][161]

A common misconception is that evolution has goals, long-term plans, or an innate tendency for "progress", as expressed in beliefs such as orthogenesis and evolutionism; realistically however, evolution has no long-term goal and does not necessarily produce greater complexity.[162][163][164] Although complex species have evolved, they occur as a side effect of the overall number of organisms increasing and simple forms of life still remain more common in the biosphere.[165] For example, the overwhelming majority of species are microscopic prokaryotes, which form about half the world's biomass despite their small size,[166] and constitute the vast majority of Earth's biodiversity.[167] Simple organisms have therefore been the dominant form of life on Earth throughout its history and continue to be the main form of life up to the present day, with complex life only appearing more diverse because it is more noticeable.[168] Indeed, the evolution of microorganisms is particularly important to evolutionary research, since their rapid reproduction allows the study of experimental evolution and the observation of evolution and adaptation in real time.[169][170]

Adaptation

 
Homologous bones in the limbs of tetrapods. The bones of these animals have the same basic structure, but have been adapted for specific uses.[image reference needed]

Adaptation is the process that makes organisms better suited to their habitat.[171][172] Also, the term adaptation may refer to a trait that is important for an organism's survival. For example, the adaptation of horses' teeth to the grinding of grass. By using the term adaptation for the evolutionary process and adaptive trait for the product (the bodily part or function), the two senses of the word may be distinguished. Adaptations are produced by natural selection.[173] The following definitions are due to Theodosius Dobzhansky:

  1. Adaptation is the evolutionary process whereby an organism becomes better able to live in its habitat or habitats.[174]
  2. Adaptedness is the state of being adapted: the degree to which an organism is able to live and reproduce in a given set of habitats.[175]
  3. An adaptive trait is an aspect of the developmental pattern of the organism which enables or enhances the probability of that organism surviving and reproducing.[176]

Adaptation may cause either the gain of a new feature, or the loss of an ancestral feature. An example that shows both types of change is bacterial adaptation to antibiotic selection, with genetic changes causing antibiotic resistance by both modifying the target of the drug, or increasing the activity of transporters that pump the drug out of the cell.[177] Other striking examples are the bacteria Escherichia coli evolving the ability to use citric acid as a nutrient in a long-term laboratory experiment,[178] Flavobacterium evolving a novel enzyme that allows these bacteria to grow on the by-products of nylon manufacturing,[179][180] and the soil bacterium Sphingobium evolving an entirely new metabolic pathway that degrades the synthetic pesticide pentachlorophenol.[181][182] An interesting but still controversial idea is that some adaptations might increase the ability of organisms to generate genetic diversity and adapt by natural selection (increasing organisms' evolvability).[183][184][185][186]

 
A baleen whale skeleton. Letters a and b label flipper bones, which were adapted from front leg bones, while c indicates vestigial leg bones, both suggesting an adaptation from land to sea.[187]

Adaptation occurs through the gradual modification of existing structures. Consequently, structures with similar internal organisation may have different functions in related organisms. This is the result of a single ancestral structure being adapted to function in different ways. The bones within bat wings, for example, are very similar to those in mice feet and primate hands, due to the descent of all these structures from a common mammalian ancestor.[188] However, since all living organisms are related to some extent,[189] even organs that appear to have little or no structural similarity, such as arthropod, squid and vertebrate eyes, or the limbs and wings of arthropods and vertebrates, can depend on a common set of homologous genes that control their assembly and function; this is called deep homology.[190][191]

During evolution, some structures may lose their original function and become vestigial structures.[192] Such structures may have little or no function in a current species, yet have a clear function in ancestral species, or other closely related species. Examples include pseudogenes,[193] the non-functional remains of eyes in blind cave-dwelling fish,[194] wings in flightless birds,[195] the presence of hip bones in whales and snakes,[187] and sexual traits in organisms that reproduce via asexual reproduction.[196] Examples of vestigial structures in humans include wisdom teeth,[197] the coccyx,[192] the vermiform appendix,[192] and other behavioural vestiges such as goose bumps[198][199] and primitive reflexes.[200][201][202]

However, many traits that appear to be simple adaptations are in fact exaptations: structures originally adapted for one function, but which coincidentally became somewhat useful for some other function in the process.[203] One example is the African lizard Holaspis guentheri, which developed an extremely flat head for hiding in crevices, as can be seen by looking at its near relatives. However, in this species, the head has become so flattened that it assists in gliding from tree to tree—an exaptation.[203] Within cells, molecular machines such as the bacterial flagella[204] and protein sorting machinery[205] evolved by the recruitment of several pre-existing proteins that previously had different functions.[156] Another example is the recruitment of enzymes from glycolysis and xenobiotic metabolism to serve as structural proteins called crystallins within the lenses of organisms' eyes.[206][207]

An area of current investigation in evolutionary developmental biology is the developmental basis of adaptations and exaptations.[208] This research addresses the origin and evolution of embryonic development and how modifications of development and developmental processes produce novel features.[209] These studies have shown that evolution can alter development to produce new structures, such as embryonic bone structures that develop into the jaw in other animals instead forming part of the middle ear in mammals.[210] It is also possible for structures that have been lost in evolution to reappear due to changes in developmental genes, such as a mutation in chickens causing embryos to grow teeth similar to those of crocodiles.[211] It is now becoming clear that most alterations in the form of organisms are due to changes in a small set of conserved genes.[212]

Coevolution

 
The common garter snake has evolved resistance to the defensive substance tetrodotoxin in its amphibian prey.

Interactions between organisms can produce both conflict and cooperation. When the interaction is between pairs of species, such as a pathogen and a host, or a predator and its prey, these species can develop matched sets of adaptations. Here, the evolution of one species causes adaptations in a second species. These changes in the second species then, in turn, cause new adaptations in the first species. This cycle of selection and response is called coevolution.[213] An example is the production of tetrodotoxin in the rough-skinned newt and the evolution of tetrodotoxin resistance in its predator, the common garter snake. In this predator-prey pair, an evolutionary arms race has produced high levels of toxin in the newt and correspondingly high levels of toxin resistance in the snake.[214]

Cooperation

Not all co-evolved interactions between species involve conflict.[215] Many cases of mutually beneficial interactions have evolved. For instance, an extreme cooperation exists between plants and the mycorrhizal fungi that grow on their roots and aid the plant in absorbing nutrients from the soil.[216] This is a reciprocal relationship as the plants provide the fungi with sugars from photosynthesis. Here, the fungi actually grow inside plant cells, allowing them to exchange nutrients with their hosts, while sending signals that suppress the plant immune system.[217]

Coalitions between organisms of the same species have also evolved. An extreme case is the eusociality found in social insects, such as bees, termites and ants, where sterile insects feed and guard the small number of organisms in a colony that are able to reproduce. On an even smaller scale, the somatic cells that make up the body of an animal limit their reproduction so they can maintain a stable organism, which then supports a small number of the animal's germ cells to produce offspring. Here, somatic cells respond to specific signals that instruct them whether to grow, remain as they are, or die. If cells ignore these signals and multiply inappropriately, their uncontrolled growth causes cancer.[218]

Such cooperation within species may have evolved through the process of kin selection, which is where one organism acts to help raise a relative's offspring.[219] This activity is selected for because if the helping individual contains alleles which promote the helping activity, it is likely that its kin will also contain these alleles and thus those alleles will be passed on.[220] Other processes that may promote cooperation include group selection, where cooperation provides benefits to a group of organisms.[221]

Speciation

 
The four geographic modes of speciation

Speciation is the process where a species diverges into two or more descendant species.[222]

There are multiple ways to define the concept of "species." The choice of definition is dependent on the particularities of the species concerned.[223] For example, some species concepts apply more readily toward sexually reproducing organisms while others lend themselves better toward asexual organisms. Despite the diversity of various species concepts, these various concepts can be placed into one of three broad philosophical approaches: interbreeding, ecological and phylogenetic.[224] The Biological Species Concept (BSC) is a classic example of the interbreeding approach. Defined by evolutionary biologist Ernst Mayr in 1942, the BSC states that "species are groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups."[225] Despite its wide and long-term use, the BSC like others is not without controversy, for example because these concepts cannot be applied to prokaryotes;[226] this is called the species problem.[223] Some researchers have attempted a unifying monistic definition of species, while others adopt a pluralistic approach and suggest that there may be different ways to logically interpret the definition of a species.[223][224]

Barriers to reproduction between two diverging sexual populations are required for the populations to become new species. Gene flow may slow this process by spreading the new genetic variants also to the other populations. Depending on how far two species have diverged since their most recent common ancestor, it may still be possible for them to produce offspring, as with horses and donkeys mating to produce mules.[227] Such hybrids are generally infertile. In this case, closely related species may regularly interbreed, but hybrids will be selected against and the species will remain distinct. However, viable hybrids are occasionally formed and these new species can either have properties intermediate between their parent species, or possess a totally new phenotype.[228] The importance of hybridisation in producing new species of animals is unclear, although cases have been seen in many types of animals,[229] with the gray tree frog being a particularly well-studied example.[230]

Speciation has been observed multiple times under both controlled laboratory conditions and in nature.[231] In sexually reproducing organisms, speciation results from reproductive isolation followed by genealogical divergence. There are four primary geographic modes of speciation. The most common in animals is allopatric speciation, which occurs in populations initially isolated geographically, such as by habitat fragmentation or migration. Selection under these conditions can produce very rapid changes in the appearance and behaviour of organisms.[232][233] As selection and drift act independently on populations isolated from the rest of their species, separation may eventually produce organisms that cannot interbreed.[234]

The second mode of speciation is peripatric speciation, which occurs when small populations of organisms become isolated in a new environment. This differs from allopatric speciation in that the isolated populations are numerically much smaller than the parental population. Here, the founder effect causes rapid speciation after an increase in inbreeding increases selection on homozygotes, leading to rapid genetic change.[235]

The third mode is parapatric speciation. This is similar to peripatric speciation in that a small population enters a new habitat, but differs in that there is no physical separation between these two populations. Instead, speciation results from the evolution of mechanisms that reduce gene flow between the two populations.[222] Generally this occurs when there has been a drastic change in the environment within the parental species' habitat. One example is the grass Anthoxanthum odoratum, which can undergo parapatric speciation in response to localised metal pollution from mines.[236] Here, plants evolve that have resistance to high levels of metals in the soil. Selection against interbreeding with the metal-sensitive parental population produced a gradual change in the flowering time of the metal-resistant plants, which eventually produced complete reproductive isolation. Selection against hybrids between the two populations may cause reinforcement, which is the evolution of traits that promote mating within a species, as well as character displacement, which is when two species become more distinct in appearance.[237]

 
Geographical isolation of finches on the Galápagos Islands produced over a dozen new species.

Finally, in sympatric speciation species diverge without geographic isolation or changes in habitat. This form is rare since even a small amount of gene flow may remove genetic differences between parts of a population.[238] Generally, sympatric speciation in animals requires the evolution of both genetic differences and nonrandom mating, to allow reproductive isolation to evolve.[239]

One type of sympatric speciation involves crossbreeding of two related species to produce a new hybrid species. This is not common in animals as animal hybrids are usually sterile. This is because during meiosis the homologous chromosomes from each parent are from different species and cannot successfully pair. However, it is more common in plants because plants often double their number of chromosomes, to form polyploids.[240] This allows the chromosomes from each parental species to form matching pairs during meiosis, since each parent's chromosomes are represented by a pair already.[241] An example of such a speciation event is when the plant species Arabidopsis thaliana and Arabidopsis arenosa crossbred to give the new species Arabidopsis suecica.[242] This happened about 20,000 years ago,[243] and the speciation process has been repeated in the laboratory, which allows the study of the genetic mechanisms involved in this process.[244] Indeed, chromosome doubling within a species may be a common cause of reproductive isolation, as half the doubled chromosomes will be unmatched when breeding with undoubled organisms.[245]

Speciation events are important in the theory of punctuated equilibrium, which accounts for the pattern in the fossil record of short "bursts" of evolution interspersed with relatively long periods of stasis, where species remain relatively unchanged.[246] In this theory, speciation and rapid evolution are linked, with natural selection and genetic drift acting most strongly on organisms undergoing speciation in novel habitats or small populations. As a result, the periods of stasis in the fossil record correspond to the parental population and the organisms undergoing speciation and rapid evolution are found in small populations or geographically restricted habitats and therefore rarely being preserved as fossils.[160]

Extinction

 

Extinction is the disappearance of an entire species. Extinction is not an unusual event, as species regularly appear through speciation and disappear through extinction.[247] Nearly all animal and plant species that have lived on Earth are now extinct,[248] and extinction appears to be the ultimate fate of all species.[249] These extinctions have happened continuously throughout the history of life, although the rate of extinction spikes in occasional mass extinction events.[250] The Cretaceous–Paleogene extinction event, during which the non-avian dinosaurs became extinct, is the most well-known, but the earlier Permian–Triassic extinction event was even more severe, with approximately 96% of all marine species driven to extinction.[250] The Holocene extinction event is an ongoing mass extinction associated with humanity's expansion across the globe over the past few thousand years. Present-day extinction rates are 100–1000 times greater than the background rate and up to 30% of current species may be extinct by the mid 21st century.[251] Human activities are now the primary cause of the ongoing extinction event;[252][253] global warming may further accelerate it in the future.[254] Despite the estimated extinction of more than 99% of all species that ever lived on Earth,[255][256] about 1 trillion species are estimated to be on Earth currently with only one-thousandth of 1% described.[257]

The role of extinction in evolution is not very well understood and may depend on which type of extinction is considered.[250] The causes of the continuous "low-level" extinction events, which form the majority of extinctions, may be the result of competition between species for limited resources (the competitive exclusion principle).[258] If one species can out-compete another, this could produce species selection, with the fitter species surviving and the other species being driven to extinction.[85] The intermittent mass extinctions are also important, but instead of acting as a selective force, they drastically reduce diversity in a nonspecific manner and promote bursts of rapid evolution and speciation in survivors.[259]

Evolutionary history of life

Origin of life

The Earth is about 4.54 billion years old.[260][261][262] The earliest undisputed evidence of life on Earth dates from at least 3.5 billion years ago,[13][263] during the Eoarchean Era after a geological crust started to solidify following the earlier molten Hadean Eon. Microbial mat fossils have been found in 3.48 billion-year-old sandstone in Western Australia.[15][16][17] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in Western Greenland[14] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[264][265] Commenting on the Australian findings, Stephen Blair Hedges wrote, "If life arose relatively quickly on Earth, then it could be common in the universe."[264][266] In July 2016, scientists reported identifying a set of 355 genes from the last universal common ancestor (LUCA) of all organisms living on Earth.[267]

More than 99% of all species, amounting to over five billion species,[268] that ever lived on Earth are estimated to be extinct.[255][256] Estimates on the number of Earth's current species range from 10 million to 14 million,[269][270] of which about 1.9 million are estimated to have been named[271] and 1.6 million documented in a central database to date,[272] leaving at least 80% not yet described.

Highly energetic chemistry is thought to have produced a self-replicating molecule around 4 billion years ago, and half a billion years later the last common ancestor of all life existed.[11] The current scientific consensus is that the complex biochemistry that makes up life came from simpler chemical reactions.[273][274] The beginning of life may have included self-replicating molecules such as RNA[275] and the assembly of simple cells.[276]

Common descent

All organisms on Earth are descended from a common ancestor or ancestral gene pool.[189][277] Current species are a stage in the process of evolution, with their diversity the product of a long series of speciation and extinction events.[278] The common descent of organisms was first deduced from four simple facts about organisms: First, they have geographic distributions that cannot be explained by local adaptation. Second, the diversity of life is not a set of completely unique organisms, but organisms that share morphological similarities. Third, vestigial traits with no clear purpose resemble functional ancestral traits. Fourth, organisms can be classified using these similarities into a hierarchy of nested groups, similar to a family tree.[279]

 
The hominoids are descendants of a common ancestor.

Due to horizontal gene transfer, this "tree of life" may be more complicated than a simple branching tree, since some genes have spread independently between distantly related species.[280][281] To solve this problem and others, some authors prefer to use the "Coral of life" as a metaphor or a mathematical model to illustrate the evolution of life. This view dates back to an idea briefly mentioned by Darwin but later abandoned.[282]

Past species have also left records of their evolutionary history. Fossils, along with the comparative anatomy of present-day organisms, constitute the morphological, or anatomical, record.[283] By comparing the anatomies of both modern and extinct species, palaeontologists can infer the lineages of those species. However, this approach is most successful for organisms that had hard body parts, such as shells, bones or teeth. Further, as prokaryotes such as bacteria and archaea share a limited set of common morphologies, their fossils do not provide information on their ancestry.

More recently, evidence for common descent has come from the study of biochemical similarities between organisms. For example, all living cells use the same basic set of nucleotides and amino acids.[284] The development of molecular genetics has revealed the record of evolution left in organisms' genomes: dating when species diverged through the molecular clock produced by mutations.[285] For example, these DNA sequence comparisons have revealed that humans and chimpanzees share 98% of their genomes and analysing the few areas where they differ helps shed light on when the common ancestor of these species existed.[286]

Evolution of life

EuryarchaeotaNanoarchaeotaThermoproteotaProtozoaAlgaePlantSlime moldsAnimalFungusGram-positive bacteriaChlamydiotaChloroflexotaActinomycetotaPlanctomycetotaSpirochaetotaFusobacteriotaCyanobacteriaThermophilesAcidobacteriotaPseudomonadota 
Evolutionary tree showing the divergence of modern species from their common ancestor in the centre.[287] The three domains are coloured, with bacteria blue, archaea green and eukaryotes red.

Prokaryotes inhabited the Earth from approximately 3–4 billion years ago.[288][289] No obvious changes in morphology or cellular organisation occurred in these organisms over the next few billion years.[290] The eukaryotic cells emerged between 1.6 and 2.7 billion years ago. The next major change in cell structure came when bacteria were engulfed by eukaryotic cells, in a cooperative association called endosymbiosis.[291][292] The engulfed bacteria and the host cell then underwent coevolution, with the bacteria evolving into either mitochondria or hydrogenosomes.[293] Another engulfment of cyanobacterial-like organisms led to the formation of chloroplasts in algae and plants.[294]

The history of life was that of the unicellular eukaryotes, prokaryotes and archaea until about 610 million years ago when multicellular organisms began to appear in the oceans in the Ediacaran period.[288][295] The evolution of multicellularity occurred in multiple independent events, in organisms as diverse as sponges, brown algae, cyanobacteria, slime moulds and myxobacteria.[296] In January 2016, scientists reported that, about 800 million years ago, a minor genetic change in a single molecule called GK-PID may have allowed organisms to go from a single cell organism to one of many cells.[297]

Soon after the emergence of these first multicellular organisms, a remarkable amount of biological diversity appeared over approximately 10 million years, in an event called the Cambrian explosion. Here, the majority of types of modern animals appeared in the fossil record, as well as unique lineages that subsequently became extinct.[298] Various triggers for the Cambrian explosion have been proposed, including the accumulation of oxygen in the atmosphere from photosynthesis.[299]

About 500 million years ago, plants and fungi colonised the land and were soon followed by arthropods and other animals.[300] Insects were particularly successful and even today make up the majority of animal species.[301] Amphibians first appeared around 364 million years ago, followed by early amniotes and birds around 155 million years ago (both from "reptile"-like lineages), mammals around 129 million years ago, Homininae around 10 million years ago and modern humans around 250,000 years ago.[302][303][304] However, despite the evolution of these large animals, smaller organisms similar to the types that evolved early in this process continue to be highly successful and dominate the Earth, with the majority of both biomass and species being prokaryotes.[167]

History of evolutionary thought

 
In 1842, Charles Darwin penned his first sketch of On the Origin of Species.[305]

Classical antiquity

The proposal that one type of organism could descend from another type goes back to some of the first pre-Socratic Greek philosophers, such as Anaximander and Empedocles.[306] Such proposals survived into Roman times. The poet and philosopher Lucretius followed Empedocles in his masterwork De rerum natura (On the Nature of Things).[307][308]

Middle Ages

In contrast to these materialistic views, Aristotelianism had considered all natural things as actualisations of fixed natural possibilities, known as forms.[309][310] This became part of a medieval teleological understanding of nature in which all things have an intended role to play in a divine cosmic order. Variations of this idea became the standard understanding of the Middle Ages and were integrated into Christian learning, but Aristotle did not demand that real types of organisms always correspond one-for-one with exact metaphysical forms and specifically gave examples of how new types of living things could come to be.[311]

A number of Arab Muslim scholars wrote about evolution, most notably Ibn Khaldun, who wrote the book Muqaddimah in 1377 AD, in which he asserted that humans developed from "the world of the monkeys", in a process by which "species become more numerous".[312]

Pre-Darwinian

The "New Science" of the 17th century rejected the Aristotelian approach. It sought to explain natural phenomena in terms of physical laws that were the same for all visible things and that did not require the existence of any fixed natural categories or divine cosmic order. However, this new approach was slow to take root in the biological sciences: the last bastion of the concept of fixed natural types. John Ray applied one of the previously more general terms for fixed natural types, "species", to plant and animal types, but he strictly identified each type of living thing as a species and proposed that each species could be defined by the features that perpetuated themselves generation after generation.[313] The biological classification introduced by Carl Linnaeus in 1735 explicitly recognised the hierarchical nature of species relationships, but still viewed species as fixed according to a divine plan.[314]

Other naturalists of this time speculated on the evolutionary change of species over time according to natural laws. In 1751, Pierre Louis Maupertuis wrote of natural modifications occurring during reproduction and accumulating over many generations to produce new species.[315] Georges-Louis Leclerc, Comte de Buffon, suggested that species could degenerate into different organisms, and Erasmus Darwin proposed that all warm-blooded animals could have descended from a single microorganism (or "filament").[316] The first full-fledged evolutionary scheme was Jean-Baptiste Lamarck's "transmutation" theory of 1809,[317] which envisaged spontaneous generation continually producing simple forms of life that developed greater complexity in parallel lineages with an inherent progressive tendency, and postulated that on a local level, these lineages adapted to the environment by inheriting changes caused by their use or disuse in parents.[318] (The latter process was later called Lamarckism.)[318][319][320] These ideas were condemned by established naturalists as speculation lacking empirical support. In particular, Georges Cuvier insisted that species were unrelated and fixed, their similarities reflecting divine design for functional needs. In the meantime, Ray's ideas of benevolent design had been developed by William Paley into the Natural Theology or Evidences of the Existence and Attributes of the Deity (1802), which proposed complex adaptations as evidence of divine design and which was admired by Charles Darwin.[321][322]

Darwinian revolution

The crucial break from the concept of constant typological classes or types in biology came with the theory of evolution through natural selection, which was formulated by Charles Darwin and Alfred Wallace in terms of variable populations. Darwin used the expression "descent with modification" rather than "evolution".[323] Partly influenced by An Essay on the Principle of Population (1798) by Thomas Robert Malthus, Darwin noted that population growth would lead to a "struggle for existence" in which favourable variations prevailed as others perished. In each generation, many offspring fail to survive to an age of reproduction because of limited resources. This could explain the diversity of plants and animals from a common ancestry through the working of natural laws in the same way for all types of organism.[324][325][326][327] Darwin developed his theory of "natural selection" from 1838 onwards and was writing up his "big book" on the subject when Alfred Russel Wallace sent him a version of virtually the same theory in 1858. Their separate papers were presented together at an 1858 meeting of the Linnean Society of London.[328] At the end of 1859, Darwin's publication of his "abstract" as On the Origin of Species explained natural selection in detail and in a way that led to an increasingly wide acceptance of Darwin's concepts of evolution at the expense of alternative theories. Thomas Henry Huxley applied Darwin's ideas to humans, using paleontology and comparative anatomy to provide strong evidence that humans and apes shared a common ancestry. Some were disturbed by this since it implied that humans did not have a special place in the universe.[329]

Pangenesis and heredity

The mechanisms of reproductive heritability and the origin of new traits remained a mystery. Towards this end, Darwin developed his provisional theory of pangenesis.[330] In 1865, Gregor Mendel reported that traits were inherited in a predictable manner through the independent assortment and segregation of elements (later known as genes). Mendel's laws of inheritance eventually supplanted most of Darwin's pangenesis theory.[331] August Weismann made the important distinction between germ cells that give rise to gametes (such as sperm and egg cells) and the somatic cells of the body, demonstrating that heredity passes through the germ line only. Hugo de Vries connected Darwin's pangenesis theory to Weismann's germ/soma cell distinction and proposed that Darwin's pangenes were concentrated in the cell nucleus and when expressed they could move into the cytoplasm to change the cell's structure. De Vries was also one of the researchers who made Mendel's work well known, believing that Mendelian traits corresponded to the transfer of heritable variations along the germline.[332] To explain how new variants originate, de Vries developed a mutation theory that led to a temporary rift between those who accepted Darwinian evolution and biometricians who allied with de Vries.[333][334] In the 1930s, pioneers in the field of population genetics, such as Ronald Fisher, Sewall Wright and J. B. S. Haldane set the foundations of evolution onto a robust statistical philosophy. The false contradiction between Darwin's theory, genetic mutations, and Mendelian inheritance was thus reconciled.[335]

The 'modern synthesis'

In the 1920s and 1930s, the so-called modern synthesis connected natural selection and population genetics, based on Mendelian inheritance, into a unified theory that applied generally to any branch of biology. It explained patterns observed across species in populations, through fossil transitions in palaeontology.[335]

Further syntheses

Since then, further syntheses have extended evolution's explanatory power in the light of numerous discoveries, to cover biological phenomena across the whole of the biological hierarchy from genes to populations.[336]

The publication of the structure of DNA by James Watson and Francis Crick with contribution of Rosalind Franklin in 1953 demonstrated a physical mechanism for inheritance.[337] Molecular biology improved understanding of the relationship between genotype and phenotype. Advances were also made in phylogenetic systematics, mapping the transition of traits into a comparative and testable framework through the publication and use of evolutionary trees.[338] In 1973, evolutionary biologist Theodosius Dobzhansky penned that "nothing in biology makes sense except in the light of evolution," because it has brought to light the relations of what first seemed disjointed facts in natural history into a coherent explanatory body of knowledge that describes and predicts many observable facts about life on this planet.[339]

One extension, known as evolutionary developmental biology and informally called "evo-devo," emphasises how changes between generations (evolution) act on patterns of change within individual organisms (development).[258][340] Since the beginning of the 21st century, some biologists have argued for an extended evolutionary synthesis, which would account for the effects of non-genetic inheritance modes, such as epigenetics, parental effects, ecological inheritance and cultural inheritance, and evolvability.[341][342]

Social and cultural responses

 
As evolution became widely accepted in the 1870s, caricatures of Charles Darwin with an ape or monkey body symbolised evolution.[343]

In the 19th century, particularly after the publication of On the Origin of Species in 1859, the idea that life had evolved was an active source of academic debate centred on the philosophical, social and religious implications of evolution. Today, the modern evolutionary synthesis is accepted by a vast majority of scientists.[258] However, evolution remains a contentious concept for some theists.[344]

While various religions and denominations have reconciled their beliefs with evolution through concepts such as theistic evolution, there are creationists who believe that evolution is contradicted by the creation myths found in their religions and who raise various objections to evolution.[156][345][346] As had been demonstrated by responses to the publication of Vestiges of the Natural History of Creation in 1844, the most controversial aspect of evolutionary biology is the implication of human evolution that humans share common ancestry with apes and that the mental and moral faculties of humanity have the same types of natural causes as other inherited traits in animals.[347] In some countries, notably the United States, these tensions between science and religion have fuelled the current creation–evolution controversy, a religious conflict focusing on politics and public education.[348] While other scientific fields such as cosmology[349] and Earth science[350] also conflict with literal interpretations of many religious texts, evolutionary biology experiences significantly more opposition from religious literalists.

The teaching of evolution in American secondary school biology classes was uncommon in most of the first half of the 20th century. The Scopes Trial decision of 1925 caused the subject to become very rare in American secondary biology textbooks for a generation, but it was gradually re-introduced later and became legally protected with the 1968 Epperson v. Arkansas decision. Since then, the competing religious belief of creationism was legally disallowed in secondary school curricula in various decisions in the 1970s and 1980s, but it returned in pseudoscientific form as intelligent design (ID), to be excluded once again in the 2005 Kitzmiller v. Dover Area School District case.[351] The debate over Darwin's ideas did not generate significant controversy in China.[352]

References

  1. ^ Hall & Hallgrímsson 2008, pp. 4–6
  2. ^ "Evolution Resources". Washington, DC: National Academies of Sciences, Engineering, and Medicine. 2016. from the original on 3 June 2016.
  3. ^ a b Futuyma & Kirkpatrick 2017, pp. 79–102, Chapter 4: Mutation and Variation
  4. ^ Scott-Phillips, Thomas C.; Laland, Kevin N.; Shuker, David M.; et al. (May 2014). "The Niche Construction Perspective: A Critical Appraisal". Evolution. 68 (5): 1231–1243. doi:10.1111/evo.12332. ISSN 0014-3820. PMC 4261998. PMID 24325256. Evolutionary processes are generally thought of as processes by which these changes occur. Four such processes are widely recognized: natural selection (in the broad sense, to include sexual selection), genetic drift, mutation, and migration (Fisher 1930; Haldane 1932). The latter two generate variation; the first two sort it.
  5. ^ Hall & Hallgrímsson 2008, pp. 3–5
  6. ^ Voet, Voet & Pratt 2016, pp. 1–22, Chapter 1: Introduction to the Chemistry of Life
  7. ^ Darwin 1859
  8. ^ a b Lewontin, Richard C. (November 1970). "The Units of Selection" (PDF). Annual Review of Ecology and Systematics. 1: 1–18. doi:10.1146/annurev.es.01.110170.000245. JSTOR 2096764. (PDF) from the original on 6 February 2015.
  9. ^ Futuyma & Kirkpatrick 2017, pp. 3–26, Chapter 1: Evolutionary Biology
  10. ^ Kampourakis 2014, pp. 127–129
  11. ^ a b Doolittle, W. Ford (February 2000). (PDF). Scientific American. 282 (2): 90–95. Bibcode:2000SciAm.282b..90D. doi:10.1038/scientificamerican0200-90. ISSN 0036-8733. PMID 10710791. Archived from the original (PDF) on 7 September 2006. Retrieved 5 April 2015.
  12. ^ Glansdorff, Nicolas; Ying Xu; Labedan, Bernard (9 July 2008). "The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner". Biology Direct. 3: 29. doi:10.1186/1745-6150-3-29. ISSN 1745-6150. PMC 2478661. PMID 18613974.
  13. ^ a b Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (5 October 2007). "Evidence of Archean life: Stromatolites and microfossils". Precambrian Research. 158 (3–4): 141–155. Bibcode:2007PreR..158..141S. doi:10.1016/j.precamres.2007.04.009. ISSN 0301-9268.
  14. ^ a b Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; et al. (January 2014). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience. 7 (1): 25–28. Bibcode:2014NatGe...7...25O. doi:10.1038/ngeo2025. ISSN 1752-0894.
  15. ^ a b Borenstein, Seth (13 November 2013). "Oldest fossil found: Meet your microbial mom". Excite. Yonkers, New York: Mindspark Interactive Network. Associated Press. from the original on 29 June 2015. Retrieved 31 May 2015.
  16. ^ a b Pearlman, Jonathan (13 November 2013). "Oldest signs of life on Earth found". The Daily Telegraph. London. from the original on 16 December 2014. Retrieved 15 December 2014.
  17. ^ a b Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (16 November 2013). "Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia". Astrobiology. 13 (12): 1103–1124. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. ISSN 1531-1074. PMC 3870916. PMID 24205812.
  18. ^ Futuyma 2004, p. 33
  19. ^ Panno 2005, pp. xv-16
  20. ^ NAS 2008, p. 17 30 June 2015 at the Wayback Machine
  21. ^ Futuyma, Douglas J., ed. (1999). (PDF) (Executive summary). New Brunswick, New Jersey: Office of University Publications, Rutgers, The State University of New Jersey. OCLC 43422991. Archived from the original (PDF) on 31 January 2012. Retrieved 24 November 2014.
  22. ^ Sturm, Richard A.; Frudakis, Tony N. (August 2004). "Eye colour: portals into pigmentation genes and ancestry". Trends in Genetics. 20 (8): 327–332. doi:10.1016/j.tig.2004.06.010. ISSN 0168-9525. PMID 15262401.
  23. ^ a b Pearson, Helen (25 May 2006). "Genetics: What is a gene?". Nature. 441 (7092): 398–401. Bibcode:2006Natur.441..398P. doi:10.1038/441398a. ISSN 0028-0836. PMID 16724031. S2CID 4420674.
  24. ^ Visscher, Peter M.; Hill, William G.; Wray, Naomi R. (April 2008). "Heritability in the genomics era — concepts and misconceptions". Nature Reviews Genetics. 9 (4): 255–266. doi:10.1038/nrg2322. ISSN 1471-0056. PMID 18319743. S2CID 690431.
  25. ^ Oetting, William S.; Brilliant, Murray H.; King, Richard A. (August 1996). "The clinical spectrum of albinism in humans". Molecular Medicine Today. 2 (8): 330–335. doi:10.1016/1357-4310(96)81798-9. ISSN 1357-4310. PMID 8796918.
  26. ^ a b Futuyma 2005[page needed]
  27. ^ Phillips, Patrick C. (November 2008). "Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems". Nature Reviews Genetics. 9 (11): 855–867. doi:10.1038/nrg2452. ISSN 1471-0056. PMC 2689140. PMID 18852697.
  28. ^ a b Rongling Wu; Min Lin (March 2006). "Functional mapping — how to map and study the genetic architecture of dynamic complex traits". Nature Reviews Genetics. 7 (3): 229–237. doi:10.1038/nrg1804. ISSN 1471-0056. PMID 16485021. S2CID 24301815.
  29. ^ Jablonka, Eva; Raz, Gal (June 2009). "Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, and Implications for the Study of Heredity and Evolution" (PDF). The Quarterly Review of Biology. 84 (2): 131–176. CiteSeerX 10.1.1.617.6333. doi:10.1086/598822. ISSN 0033-5770. PMID 19606595. S2CID 7233550. (PDF) from the original on 15 July 2011. Retrieved 30 July 2022.
  30. ^ Bossdorf, Oliver; Arcuri, Davide; Richards, Christina L.; Pigliucci, Massimo (May 2010). "Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana" (PDF). Evolutionary Ecology. 24 (3): 541–553. doi:10.1007/s10682-010-9372-7. ISSN 0269-7653. S2CID 15763479. (PDF) from the original on 5 June 2022. Retrieved 30 July 2022.
  31. ^ Jablonka, Eva; Lamb, Marion J. (December 2002). "The Changing Concept of Epigenetics". Annals of the New York Academy of Sciences. 981 (1): 82–96. Bibcode:2002NYASA.981...82J. doi:10.1111/j.1749-6632.2002.tb04913.x. ISSN 0077-8923. PMID 12547675. S2CID 12561900.
  32. ^ Laland, Kevin N.; Sterelny, Kim (September 2006). "Perspective: Seven Reasons (Not) to Neglect Niche Construction". Evolution. 60 (9): 1751–1762. doi:10.1111/j.0014-3820.2006.tb00520.x. ISSN 0014-3820. PMID 17089961. S2CID 22997236.
  33. ^ Chapman, Michael J.; Margulis, Lynn (December 1998). (PDF). International Microbiology. 1 (4): 319–326. ISSN 1139-6709. PMID 10943381. Archived from the original (PDF) on 23 August 2014. Retrieved 9 December 2014.
  34. ^ Wilson, David Sloan; Wilson, Edward O. (December 2007). (PDF). The Quarterly Review of Biology. 82 (4): 327–348. doi:10.1086/522809. ISSN 0033-5770. PMID 18217526. S2CID 37774648. Archived from the original (PDF) on 11 May 2011.
  35. ^ Butlin, Roger K.; Tregenza, Tom (28 February 1998). "Levels of genetic polymorphism: marker loci versus quantitative traits". Philosophical Transactions of the Royal Society B. 353 (1366): 187–198. doi:10.1098/rstb.1998.0201. ISSN 0962-8436. PMC 1692210. PMID 9533123.
    • Butlin, Roger K.; Tregenza, Tom (29 December 2000). "Correction for Butlin and Tregenza, Levels of genetic polymorphism: marker loci versus quantitative traits". Philosophical Transactions of the Royal Society B. 355 (1404): 1865. doi:10.1098/rstb.2000.2000. ISSN 0962-8436. Some of the values in table 1 on p. 193 were given incorrectly. The errors do not affect the conclusions drawn in the paper. The corrected table is reproduced below.
  36. ^ Wetterbom, Anna; Sevov, Marie; Cavelier, Lucia; Bergström, Tomas F. (November 2006). "Comparative Genomic Analysis of Human and Chimpanzee Indicates a Key Role for Indels in Primate Evolution". Journal of Molecular Evolution. 63 (5): 682–690. Bibcode:2006JMolE..63..682W. doi:10.1007/s00239-006-0045-7. ISSN 0022-2844. PMID 17075697. S2CID 7257193.
  37. ^ Amos, William; Harwood, John (28 February 1998). "Factors affecting levels of genetic diversity in natural populations". Philosophical Transactions of the Royal Society B. 353 (1366): 177–186. doi:10.1098/rstb.1998.0200. ISSN 0962-8436. PMC 1692205. PMID 9533122.
  38. ^ a b Ewens 2004[page needed]
  39. ^ Sawyer, Stanley A.; Parsch, John; Zhang Zhi; Hartl, Daniel L. (17 April 2007). "Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila". PNAS. 104 (16): 6504–6510. Bibcode:2007PNAS..104.6504S. doi:10.1073/pnas.0701572104. ISSN 0027-8424. PMC 1871816. PMID 17409186.
  40. ^ Hastings, P. J.; Lupski, James R.; Rosenberg, Susan M.; Ira, Grzegorz (August 2009). "Mechanisms of change in gene copy number". Nature Reviews Genetics. 10 (8): 551–564. doi:10.1038/nrg2593. ISSN 1471-0056. PMC 2864001. PMID 19597530.
  41. ^ Carroll, Grenier & Weatherbee 2005[page needed]
  42. ^ Harrison, Paul M.; Gerstein, Mark (17 May 2002). "Studying Genomes Through the Aeons: Protein Families, Pseudogenes and Proteome Evolution". Journal of Molecular Biology. 318 (5): 1155–1174. doi:10.1016/S0022-2836(02)00109-2. ISSN 0022-2836. PMID 12083509.
  43. ^ Bowmaker, James K. (May 1998). "Evolution of colour vision in vertebrates". Eye. 12 (3b): 541–547. doi:10.1038/eye.1998.143. ISSN 0950-222X. PMID 9775215. S2CID 12851209.
  44. ^ Gregory, T. Ryan; Hebert, Paul D. N. (April 1999). "The Modulation of DNA Content: Proximate Causes and Ultimate Consequences". Genome Research. 9 (4): 317–324. doi:10.1101/gr.9.4.317. ISSN 1088-9051. PMID 10207154. S2CID 16791399. from the original on 23 August 2014. Retrieved 11 December 2014.
  45. ^ Hurles, Matthew (13 July 2004). "Gene Duplication: The Genomic Trade in Spare Parts". PLOS Biology. 2 (7): e206. doi:10.1371/journal.pbio.0020206. ISSN 1545-7885. PMC 449868. PMID 15252449.
  46. ^ Liu, Na; Okamura, Katsutomo; Tyler, David M.; et al. (October 2008). "The evolution and functional diversification of animal microRNA genes". Cell Research. 18 (10): 985–996. doi:10.1038/cr.2008.278. ISSN 1001-0602. PMC 2712117. PMID 18711447.
  47. ^ Siepel, Adam (October 2009). "Darwinian alchemy: Human genes from noncoding DNA". Genome Research. 19 (10): 1693–1695. doi:10.1101/gr.098376.109. ISSN 1088-9051. PMC 2765273. PMID 19797681.
  48. ^ Orengo, Christine A.; Thornton, Janet M. (July 2005). "Protein families and their evolution—a structural perspective". Annual Review of Biochemistry. Annual Reviews. 74: 867–900. doi:10.1146/annurev.biochem.74.082803.133029. ISSN 0066-4154. PMID 15954844. S2CID 7483470.
  49. ^ Long, Manyuan; Betrán, Esther; Thornton, Kevin; Wang, Wen (November 2003). "The origin of new genes: glimpses from the young and old". Nature Reviews Genetics. 4 (11): 865–875. doi:10.1038/nrg1204. ISSN 1471-0056. PMID 14634634. S2CID 33999892.
  50. ^ Wang, Minglei; Caetano-Anollés, Gustavo (14 January 2009). "The Evolutionary Mechanics of Domain Organization in Proteomes and the Rise of Modularity in the Protein World". Structure. 17 (1): 66–78. doi:10.1016/j.str.2008.11.008. ISSN 1357-4310. PMID 19141283.
  51. ^ Weissman, Kira J.; Müller, Rolf (14 April 2008). "Protein–Protein Interactions in Multienzyme Megasynthetases". ChemBioChem. 9 (6): 826–848. doi:10.1002/cbic.200700751. ISSN 1439-4227. PMID 18357594. S2CID 205552778.
  52. ^ Andersson, Leif (2020). "Mutations in Domestic Animals Disrupting or Creating Pigmentation Patterns". Frontiers in Ecology and Evolution. 8. doi:10.3389/fevo.2020.00116. ISSN 2296-701X.
  53. ^ Radding, Charles M. (December 1982). "Homologous Pairing and Strand Exchange in Genetic Recombination". Annual Review of Genetics. 16: 405–437. doi:10.1146/annurev.ge.16.120182.002201. ISSN 0066-4197. PMID 6297377.
  54. ^ Agrawal, Aneil F. (5 September 2006). "Evolution of Sex: Why Do Organisms Shuffle Their Genotypes?". Current Biology. 16 (17): R696–R704. CiteSeerX 10.1.1.475.9645. doi:10.1016/j.cub.2006.07.063. ISSN 0960-9822. PMID 16950096. S2CID 14739487.
  55. ^ Peters, Andrew D.; Otto, Sarah P. (June 2003). "Liberating genetic variance through sex". BioEssays. 25 (6): 533–537. doi:10.1002/bies.10291. ISSN 0265-9247. PMID 12766942.
  56. ^ Goddard, Matthew R.; Godfray, H. Charles J.; Burt, Austin (31 March 2005). "Sex increases the efficacy of natural selection in experimental yeast populations". Nature. 434 (7033): 636–640. Bibcode:2005Natur.434..636G. doi:10.1038/nature03405. ISSN 0028-0836. PMID 15800622. S2CID 4397491.
  57. ^ Maynard Smith 1978[page needed]
  58. ^ a b Ridley 2004, p. 314
  59. ^ Van Valen, Leigh (1973). (PDF). Evolutionary Theory. 1: 1–30. ISSN 0093-4755. Archived from the original (PDF) on 22 December 2014. Retrieved 24 December 2014.
  60. ^ Hamilton, W. D.; Axelrod, Robert; Tanese, Reiko (1 May 1990). "Sexual reproduction as an adaptation to resist parasites (a review)". PNAS. 87 (9): 3566–3573. Bibcode:1990PNAS...87.3566H. doi:10.1073/pnas.87.9.3566. ISSN 0027-8424. PMC 53943. PMID 2185476.
  61. ^ Birdsell & Wills 2003, pp. 113–117
  62. ^ Bernstein H, Byerly HC, Hopf FA, Michod RE. Genetic damage, mutation, and the evolution of sex. Science. 1985 Sep 20;229(4719):1277–81. doi:10.1126/science.3898363. PMID 3898363
  63. ^ Bernstein H, Hopf FA, Michod RE. The molecular basis of the evolution of sex. Adv Genet. 1987;24:323-70. doi:10.1016/s0065-2660(08)60012-7. PMID 3324702
  64. ^ a b Morjan, Carrie L.; Rieseberg, Loren H. (June 2004). "How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles". Molecular Ecology. 13 (6): 1341–1356. doi:10.1111/j.1365-294X.2004.02164.x. ISSN 0962-1083. PMC 2600545. PMID 15140081.
  65. ^ Boucher, Yan; Douady, Christophe J.; Papke, R. Thane; et al. (December 2003). "Lateral gene transfer and the origins of prokaryotic groups". Annual Review of Genetics. 37: 283–328. doi:10.1146/annurev.genet.37.050503.084247. ISSN 0066-4197. PMID 14616063.
  66. ^ Walsh, Timothy R. (October 2006). "Combinatorial genetic evolution of multiresistance". Current Opinion in Microbiology. 9 (5): 476–482. doi:10.1016/j.mib.2006.08.009. ISSN 1369-5274. PMID 16942901.
  67. ^ Kondo, Natsuko; Nikoh, Naruo; Ijichi, Nobuyuki; et al. (29 October 2002). "Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect". PNAS. 99 (22): 14280–14285. Bibcode:2002PNAS...9914280K. doi:10.1073/pnas.222228199. ISSN 0027-8424. PMC 137875. PMID 12386340.
  68. ^ Sprague, George F. Jr. (December 1991). "Genetic exchange between kingdoms". Current Opinion in Genetics & Development. 1 (4): 530–533. doi:10.1016/S0959-437X(05)80203-5. ISSN 0959-437X. PMID 1822285.
  69. ^ Gladyshev, Eugene A.; Meselson, Matthew; Arkhipova, Irina R. (30 May 2008). "Massive Horizontal Gene Transfer in Bdelloid Rotifers". Science. 320 (5880): 1210–1213. Bibcode:2008Sci...320.1210G. doi:10.1126/science.1156407. ISSN 0036-8075. PMID 18511688. S2CID 11862013. from the original on 30 July 2022. Retrieved 30 July 2022.
  70. ^ Baldo, Angela M.; McClure, Marcella A. (September 1999). "Evolution and Horizontal Transfer of dUTPase-Encoding Genes in Viruses and Their Hosts". Journal of Virology. 73 (9): 7710–7721. doi:10.1128/JVI.73.9.7710-7721.1999. ISSN 0022-538X. PMC 104298. PMID 10438861.
  71. ^ Rivera, Maria C.; Lake, James A. (9 September 2004). "The ring of life provides evidence for a genome fusion origin of eukaryotes". Nature. 431 (7005): 152–155. Bibcode:2004Natur.431..152R. doi:10.1038/nature02848. ISSN 0028-0836. PMID 15356622. S2CID 4349149.
  72. ^ a b c Hurst, Laurence D. (February 2009). "Fundamental concepts in genetics: genetics and the understanding of selection". Nature Reviews Genetics. 10 (2): 83–93. doi:10.1038/nrg2506. PMID 19119264. S2CID 1670587.
  73. ^ Darwin 1859, Chapter XIV
  74. ^ Otto, Sarah P.; Servedio, Maria R.; Nuismer, Scott L. (August 2008). "Frequency-Dependent Selection and the Evolution of Assortative Mating". Genetics. 179 (4): 2091–2112. doi:10.1534/genetics.107.084418. PMC 2516082. PMID 18660541.
  75. ^ a b c Orr, H. Allen (August 2009). "Fitness and its role in evolutionary genetics". Nature Reviews Genetics. 10 (8): 531–539. doi:10.1038/nrg2603. ISSN 1471-0056. PMC 2753274. PMID 19546856.
  76. ^ Haldane, J. B. S. (14 March 1959). "The Theory of Natural Selection To-Day". Nature. 183 (4663): 710–713. Bibcode:1959Natur.183..710H. doi:10.1038/183710a0. PMID 13644170. S2CID 4185793.
  77. ^ Lande, Russell; Arnold, Stevan J. (November 1983). "The Measurement of Selection on Correlated Characters". Evolution. 37 (6): 1210–1226. doi:10.1111/j.1558-5646.1983.tb00236.x. ISSN 0014-3820. JSTOR 2408842. PMID 28556011. S2CID 36544045.
  78. ^ Goldberg, Emma E.; Igić, Boris (November 2008). "On phylogenetic tests of irreversible evolution". Evolution. 62 (11): 2727–2741. doi:10.1111/j.1558-5646.2008.00505.x. ISSN 0014-3820. PMID 18764918. S2CID 30703407.
  79. ^ Collin, Rachel; Miglietta, Maria Pia (November 2008). "Reversing opinions on Dollo's Law". Trends in Ecology & Evolution. 23 (11): 602–609. doi:10.1016/j.tree.2008.06.013. PMID 18814933.
  80. ^ Tomić, Nenad; Meyer-Rochow, Victor Benno (2011). "Atavisms: Medical, Genetic, and Evolutionary Implications". Perspectives in Biology and Medicine. 54 (3): 332–353. doi:10.1353/pbm.2011.0034. PMID 21857125. S2CID 40851098.
  81. ^ Hoekstra, Hopi E.; Hoekstra, Jonathan M.; Berrigan, David; et al. (31 July 2001). "Strength and tempo of directional selection in the wild". PNAS. 98 (16): 9157–9160. Bibcode:2001PNAS...98.9157H. doi:10.1073/pnas.161281098. PMC 55389. PMID 11470913.
  82. ^ Felsenstein, Joseph (November 1979). "Excursions along the Interface between Disruptive and Stabilizing Selection". Genetics. 93 (3): 773–795. doi:10.1093/genetics/93.3.773. PMC 1214112. PMID 17248980.
  83. ^ Odum 1971, p. 8
  84. ^ Okasha 2006
  85. ^ a b Gould, Stephen Jay (28 February 1998). "Gulliver's further travels: the necessity and difficulty of a hierarchical theory of selection". Philosophical Transactions of the Royal Society B. 353 (1366): 307–314. doi:10.1098/rstb.1998.0211. ISSN 0962-8436. PMC 1692213. PMID 9533127.
  86. ^ Mayr, Ernst (18 March 1997). "The objects of selection". PNAS. 94 (6): 2091–2094. Bibcode:1997PNAS...94.2091M. doi:10.1073/pnas.94.6.2091. ISSN 0027-8424. PMC 33654. PMID 9122151.
  87. ^ Maynard Smith 1998, pp. 203–211, discussion 211–217
  88. ^ Hickey, Donal A. (1992). "Evolutionary dynamics of transposable elements in prokaryotes and eukaryotes". Genetica. 86 (1–3): 269–274. doi:10.1007/BF00133725. ISSN 0016-6707. PMID 1334911. S2CID 6583945.
  89. ^ Gould, Stephen Jay; Lloyd, Elisabeth A. (12 October 1999). "Individuality and adaptation across levels of selection: how shall we name and generalise the unit of Darwinism?". PNAS. 96 (21): 11904–11909. Bibcode:1999PNAS...9611904G. doi:10.1073/pnas.96.21.11904. ISSN 0027-8424. PMC 18385. PMID 10518549.
  90. ^ Lien, Sigbjørn; Szyda, Joanna; Schechinger, Birgit; et al. (February 2000). "Evidence for Heterogeneity in Recombination in the Human Pseudoautosomal Region: High Resolution Analysis by Sperm Typing and Radiation-Hybrid Mapping". American Journal of Human Genetics. 66 (2): 557–566. doi:10.1086/302754. ISSN 0002-9297. PMC 1288109. PMID 10677316.
  91. ^ Barton, Nicholas H. (29 November 2000). "Genetic hitchhiking". Philosophical Transactions of the Royal Society B. 355 (1403): 1553–1562. doi:10.1098/rstb.2000.0716. ISSN 0962-8436. PMC 1692896. PMID 11127900.
  92. ^ a b Gillespie, John H. (November 2001). "Is the population size of a species relevant to its evolution?". Evolution. 55 (11): 2161–2169. doi:10.1111/j.0014-3820.2001.tb00732.x. ISSN 0014-3820. PMID 11794777. S2CID 221735887.
  93. ^ Ries, C; Spaethe, J; Sztatecsny, M; Strondl, C; Hödl, W (20 October 2008). "Turning blue and ultraviolet: sex-specific colour change during the mating season in the Balkan moor frog". Journal of Zoology. 276 (3): 229–236. doi:10.1111/j.1469-7998.2008.00456.x – via Google Scholar.
  94. ^ Andersson, Malte; Simmons, Leigh W. (June 2006). "Sexual selection and mate choice" (PDF). Trends in Ecology & Evolution. 21 (6): 296–302. CiteSeerX 10.1.1.595.4050. doi:10.1016/j.tree.2006.03.015. ISSN 0169-5347. PMID 16769428. (PDF) from the original on 9 March 2013.
  95. ^ Kokko, Hanna; Brooks, Robert; McNamara, John M.; Houston, Alasdair I. (7 July 2002). "The sexual selection continuum". Proceedings of the Royal Society B. 269 (1498): 1331–1340. doi:10.1098/rspb.2002.2020. ISSN 0962-8452. PMC 1691039. PMID 12079655.
  96. ^ Quinn, Thomas P.; Hendry, Andrew P.; Buck, Gregory B. (2001). "Balancing natural and sexual selection in sockeye salmon: interactions between body size, reproductive opportunity and vulnerability to predation by bears" (PDF). Evolutionary Ecology Research. 3: 917–937. ISSN 1522-0613. (PDF) from the original on 5 March 2016. Retrieved 15 December 2014.
  97. ^ Hunt, John; Brooks, Robert; Jennions, Michael D.; et al. (23 December 2004). "High-quality male field crickets invest heavily in sexual display but die young". Nature. 432 (7020): 1024–1027. Bibcode:2004Natur.432.1024H. doi:10.1038/nature03084. ISSN 0028-0836. PMID 15616562. S2CID 4417867.
  98. ^ Futuyma & Kirkpatrick 2017, pp. 55–66, Chapter 3: Natural Selection and Adaptation
  99. ^ a b Masel, Joanna (25 October 2011). "Genetic drift". Current Biology. 21 (20): R837–R838. doi:10.1016/j.cub.2011.08.007. ISSN 0960-9822. PMID 22032182. S2CID 17619958.
  100. ^ Lande, Russell (1989). "Fisherian and Wrightian theories of speciation". Genome. 31 (1): 221–227. doi:10.1139/g89-037. ISSN 0831-2796. PMID 2687093.
  101. ^ Kimura, Motoo (1991). "The neutral theory of molecular evolution: a review of recent evidence". Japanese Journal of Human Genetics. 66 (4): 367–386. doi:10.1266/jjg.66.367. PMID 1954033. from the original on 5 June 2022.
  102. ^ Kimura, Motoo (1989). "The neutral theory of molecular evolution and the world view of the neutralists". Genome. 31 (1): 24–31. doi:10.1139/g89-009. ISSN 0831-2796. PMID 2687096.
  103. ^ Kreitman, Martin (August 1996). "The neutral theory is dead. Long live the neutral theory". BioEssays. 18 (8): 678–683, discussion 683. doi:10.1002/bies.950180812. ISSN 0265-9247. PMID 8760341.
  104. ^ Leigh, E. G. Jr. (November 2007). "Neutral theory: a historical perspective". Journal of Evolutionary Biology. 20 (6): 2075–2091. doi:10.1111/j.1420-9101.2007.01410.x. ISSN 1010-061X. PMID 17956380. S2CID 2081042.
  105. ^ Neher, Richard A.; Shraiman, Boris I. (August 2011). "Genetic Draft and Quasi-Neutrality in Large Facultatively Sexual Populations". Genetics. 188 (4): 975–996. arXiv:1108.1635. Bibcode:2011arXiv1108.1635N. doi:10.1534/genetics.111.128876. PMC 3176096. PMID 21625002.
  106. ^ Stoltzfus, Arlin (1999). "On the Possibility of Constructive Neutral Evolution". Journal of Molecular Evolution. 49 (2): 169–181. Bibcode:1999JMolE..49..169S. doi:10.1007/PL00006540. PMID 10441669. S2CID 1743092. from the original on 30 July 2022. Retrieved 30 July 2022.
  107. ^ Stoltzfus, Arlin (13 October 2012). "Constructive neutral evolution: exploring evolutionary theory's curious disconnect". Biology Direct. 7 (1): 35. doi:10.1186/1745-6150-7-35. PMC 3534586. PMID 23062217. from the original on 30 July 2022. Retrieved 30 July 2022.
  108. ^ Muñoz-Gómez, Sergio A.; Bilolikar, Gaurav; Wideman, Jeremy G.; et al. (1 April 2021). "Constructive Neutral Evolution 20 Years Later". Journal of Molecular Evolution. 89 (3): 172–182. Bibcode:2021JMolE..89..172M. doi:10.1007/s00239-021-09996-y. PMC 7982386. PMID 33604782. from the original on 30 July 2022. Retrieved 30 July 2022.
  109. ^ Lukeš, Julius; Archibald, John M.; Keeling, Patrick J.; et al. (2011). "How a neutral evolutionary ratchet can build cellular complexity". IUBMB Life. 63 (7): 528–537. doi:10.1002/iub.489. PMID 21698757. S2CID 7306575.
  110. ^ Vosseberg, Julian; Snel, Berend (1 December 2017). "Domestication of self-splicing introns during eukaryogenesis: the rise of the complex spliceosomal machinery". Biology Direct. 12 (1): 30. doi:10.1186/s13062-017-0201-6. PMC 5709842. PMID 29191215. from the original on 30 July 2022. Retrieved 30 July 2022.
  111. ^ Brunet, T. D. P.; Doolittle, W. Ford (19 March 2018). "The generality of Constructive Neutral Evolution". Biology & Philosophy. 33 (1): 2. doi:10.1007/s10539-018-9614-6. S2CID 90290787. from the original on 30 July 2022. Retrieved 30 July 2022.
  112. ^ Otto, Sarah P.; Whitlock, Michael C. (June 1997). "The Probability of Fixation in Populations of Changing Size" (PDF). Genetics. 146 (2): 723–733. doi:10.1093/genetics/146.2.723. PMC 1208011. PMID 9178020. (PDF) from the original on 19 March 2015. Retrieved 18 December 2014.
  113. ^ a b Charlesworth, Brian (March 2009). "Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation". Nature Reviews Genetics. 10 (3): 195–205. doi:10.1038/nrg2526. PMID 19204717. S2CID 205484393.
  114. ^ Cutter, Asher D.; Choi, Jae Young (August 2010). "Natural selection shapes nucleotide polymorphism across the genome of the nematode Caenorhabditis briggsae". Genome Research. 20 (8): 1103–1111. doi:10.1101/gr.104331.109. PMC 2909573. PMID 20508143.
  115. ^ Mitchell-Olds, Thomas; Willis, John H.; Goldstein, David B. (November 2007). "Which evolutionary processes influence natural genetic variation for phenotypic traits?". Nature Reviews Genetics. 8 (11): 845–856. doi:10.1038/nrg2207. ISSN 1471-0056. PMID 17943192. S2CID 14914998.
  116. ^ Nei, Masatoshi (December 2005). "Selectionism and Neutralism in Molecular Evolution". Molecular Biology and Evolution. 22 (12): 2318–2342. doi:10.1093/molbev/msi242. ISSN 0737-4038. PMC 1513187. PMID 16120807.
    • Nei, Masatoshi (May 2006). "Selectionism and Neutralism in Molecular Evolution". Molecular Biology and Evolution (Erratum). 23 (5): 2318–42. doi:10.1093/molbev/msk009. ISSN 0737-4038. PMC 1513187. PMID 16120807.
  117. ^ Wright, Sewall (1932). "The roles of mutation, inbreeding, crossbreeding and selection in evolution". Proceedings of the VI International Congress of Genetrics. 1: 356–366. from the original on 23 August 2014. Retrieved 18 December 2014.
  118. ^ Coyne, Jerry A.; Barton, Nicholas H.; Turelli, Michael (June 1997). "Perspective: A Critique of Sewall Wright's Shifting Balance Theory of Evolution". Evolution. 51 (3): 643–671. doi:10.2307/2411143. ISSN 0014-3820. JSTOR 2411143. PMID 28568586.
  119. ^ Haldane, J.B.S. (July 1927). "A Mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation". Proceedings of the Cambridge Philosophical Society. 26 (7): 838–844. Bibcode:1927PCPS...23..838H. doi:10.1017/S0305004100015644. S2CID 86716613.
  120. ^ Fisher 1930
  121. ^ a b Yampolsky, Lev Y.; Stoltzfus, Arlin (20 December 2001). "Bias in the introduction of variation as an orienting factor in evolution". Evolution & Development. 3 (2): 73–83. doi:10.1046/j.1525-142x.2001.003002073.x. PMID 11341676. S2CID 26956345.
  122. ^ Sueoka, Noboru (1 April 1962). "On the Genetic Basis of Variation and Heterogeneity of DNA Base Composition". PNAS. 48 (4): 582–592. Bibcode:1962PNAS...48..582S. doi:10.1073/pnas.48.4.582. PMC 220819. PMID 13918161.
  123. ^ Freese, Ernst (July 1962). "On the Evolution of the Base Composition of DNA". Journal of Theoretical Biology. 3 (1): 82–101. Bibcode:1962JThBi...3...82F. doi:10.1016/S0022-5193(62)80005-8.
  124. ^ Cox, Edward C.; Yanofsky, Charles (1 November 1967). "Altered base ratios in the DNA of an Escherichia coli mutator strain". Proc. Natl. Acad. Sci. USA. 58 (5): 1895–1902. Bibcode:1967PNAS...58.1895C. doi:10.1073/pnas.58.5.1895. PMC 223881. PMID 4866980.
  125. ^ Shah, Premal; Gilchrist, Michael A. (21 June 2011). "Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift". PNAS. 108 (25): 10231–10236. Bibcode:2011PNAS..10810231S. doi:10.1073/pnas.1016719108. PMC 3121864. PMID 21646514.
  126. ^ Bulmer, Michael G. (November 1991). "The selection-mutation-drift theory of synonymous codon usage". Genetics. 129 (3): 897–907. doi:10.1093/genetics/129.3.897. PMC 1204756. PMID 1752426.
  127. ^ Fryxell, Karl J.; Zuckerkandl, Emile (September 2000). "Cytosine Deamination Plays a Primary Role in the Evolution of Mammalian Isochores". Molecular Biology and Evolution. 17 (9): 1371–1383. doi:10.1093/oxfordjournals.molbev.a026420. PMID 10958853.
  128. ^ Petrov, Dmitri A.; Sangster, Todd A.; Johnston, J. Spencer; et al. (11 February 2000). "Evidence for DNA Loss as a Determinant of Genome Size". Science. 287 (5455): 1060–1062. Bibcode:2000Sci...287.1060P. doi:10.1126/science.287.5455.1060. ISSN 0036-8075. PMID 10669421. S2CID 12021662.
  129. ^ Petrov, Dmitri A. (May 2002). "DNA loss and evolution of genome size in Drosophila". Genetica. 115 (1): 81–91. doi:10.1023/A:1016076215168. ISSN 0016-6707. PMID 12188050. S2CID 5314242.
  130. ^ Duret, Laurent; Galtier, Nicolas (September 2009). "Biased Gene Conversion and the Evolution of Mammalian Genomic Landscapes". Annual Review of Genomics and Human Genetics. Annual Reviews. 10: 285–311. doi:10.1146/annurev-genom-082908-150001. PMID 19630562. S2CID 9126286.
  131. ^ Hershberg, Ruth; Petrov, Dmitri A. (9 September 2010). "Evidence That Mutation Is Universally Biased towards AT in Bacteria". PLOS Genetics. 6 (9): e1001115. doi:10.1371/journal.pgen.1001115. PMC 2936535. PMID 20838599.
  132. ^ Stoltzfus, Arlin; McCandlish, David M. (September 2017). "Mutational Biases Influence Parallel Adaptation". Molecular Biology and Evolution. 34 (9): 2163–2172. doi:10.1093/molbev/msx180. PMC 5850294. PMID 28645195.
  133. ^ Payne, Joshua L.; Menardo, Fabrizio; Trauner, Andrej; et al. (13 May 2019). "Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis". PLOS Biology. 17 (5): e3000265. doi:10.1371/journal.pbio.3000265. PMC 6532934. PMID 31083647.
  134. ^ Storz, Jay F.; Natarajan, Chandrasekhar; Signore, Anthony V.; et al. (22 July 2019). "The role of mutation bias in adaptive molecular evolution: insights from convergent changes in protein function". Philosophical Transactions of the Royal Society B. 374 (1777): 20180238. doi:10.1098/rstb.2018.0238. PMC 6560279. PMID 31154983.
  135. ^ Svensson, Erik I.; Berger, David (1 May 2019). "The Role of Mutation Bias in Adaptive Evolution". Trends in Ecology & Evolution. 34 (5): 422–434. doi:10.1016/j.tree.2019.01.015. PMID 31003616. S2CID 125066709.
  136. ^ Bull, James J.; Wichman, Holly A. (November 2001). "Applied evolution". Annual Review of Ecology and Systematics. 32: 183–217. doi:10.1146/annurev.ecolsys.32.081501.114020. ISSN 1545-2069.
  137. ^ Doebley, John F.; Gaut, Brandon S.; Smith, Bruce D. (29 December 2006). "The Molecular Genetics of Crop Domestication". Cell. 127 (7): 1309–1321. doi:10.1016/j.cell.2006.12.006. ISSN 0092-8674. PMID 17190597. S2CID 278993.
  138. ^ Jäckel, Christian; Kast, Peter; Hilvert, Donald (June 2008). "Protein Design by Directed Evolution". Annual Review of Biophysics. 37: 153–173. doi:10.1146/annurev.biophys.37.032807.125832. ISSN 1936-122X. PMID 18573077.
  139. ^ Maher, Brendan (8 April 2009). "Evolution: Biology's next top model?". Nature. 458 (7239): 695–698. doi:10.1038/458695a. ISSN 0028-0836. PMID 19360058. S2CID 41648315.
  140. ^ Borowsky, Richard (8 January 2008). "Restoring sight in blind cavefish". Current Biology. 18 (1): R23–R24. doi:10.1016/j.cub.2007.11.023. ISSN 0960-9822. PMID 18177707. S2CID 16967690.
  141. ^ Gross, Joshua B.; Borowsky, Richard; Tabin, Clifford J. (2 January 2009). Barsh, Gregory S. (ed.). "A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus". PLOS Genetics. 5 (1): e1000326. doi:10.1371/journal.pgen.1000326. ISSN 1553-7390. PMC 2603666. PMID 19119422.
  142. ^ Merlo, Lauren M.F.; Pepper, John W.; Reid, Brian J.; Maley, Carlo C. (December 2006). "Cancer as an evolutionary and ecological process". Nature Reviews Cancer. 6 (12): 924–935. doi:10.1038/nrc2013. ISSN 1474-175X. PMID 17109012. S2CID 8040576.
  143. ^ Pan, Dabo; Weiwei Xue; Wenqi Zhang; et al. (October 2012). "Understanding the drug resistance mechanism of hepatitis C virus NS3/4A to ITMN-191 due to R155K, A156V, D168A/E mutations: a computational study". Biochimica et Biophysica Acta (BBA) - General Subjects. 1820 (10): 1526–1534. doi:10.1016/j.bbagen.2012.06.001. ISSN 0304-4165. PMID 22698669.
  144. ^ Woodford, Neil; Ellington, Matthew J. (January 2007). "The emergence of antibiotic resistance by mutation". Clinical Microbiology and Infection. 13 (1): 5–18. doi:10.1111/j.1469-0691.2006.01492.x. ISSN 1198-743X. PMID 17184282.
  145. ^ Labbé, Pierrick; Berticat, Claire; Berthomieu, Arnaud; et al. (16 November 2007). "Forty Years of Erratic Insecticide Resistance Evolution in the Mosquito Culex pipiens". PLOS Genetics. 3 (11): e205. doi:10.1371/journal.pgen.0030205. ISSN 1553-7390. PMC 2077897. PMID 18020711.
  146. ^ Neve, Paul (October 2007). "Challenges for herbicide resistance evolution and management: 50 years after Harper". Weed Research. 47 (5): 365–369. doi:10.1111/j.1365-3180.2007.00581.x. ISSN 0043-1737.
  147. ^ Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Couce, Alejandro; Blázquez, Jesús (August 2013). "Antibiotics and antibiotic resistance: A bitter fight against evolution". International Journal of Medical Microbiology. 303 (6–7): 293–297. doi:10.1016/j.ijmm.2013.02.004. ISSN 1438-4221. PMID 23517688.[permanent dead link]
  148. ^ Schenk, Martijn F.; Szendro, Ivan G.; Krug, Joachim; de Visser, J. Arjan G.M. (28 June 2012). "Quantifying the Adaptive Potential of an Antibiotic Resistance Enzyme". PLOS Genetics. 8 (6): e1002783. doi:10.1371/journal.pgen.1002783. ISSN 1553-7390. PMC 3386231. PMID 22761587.
  149. ^ Read, Andrew F.; Lynch, Penelope A.; Thomas, Matthew B. (7 April 2009). "How to Make Evolution-Proof Insecticides for Malaria Control". PLOS Biology. 7 (4): e1000058. doi:10.1371/journal.pbio.1000058. PMC 3279047. PMID 19355786.
  150. ^ Fraser, Alex S. (18 January 1958). "Monte Carlo Analyses of Genetic Models". Nature. 181 (4603): 208–209. Bibcode:1958Natur.181..208F. doi:10.1038/181208a0. ISSN 0028-0836. PMID 13504138. S2CID 4211563.
  151. ^ Rechenberg 1973
  152. ^ Holland 1975
  153. ^ Koza 1992
  154. ^ Jamshidi, Mo (15 August 2003). "Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms". Philosophical Transactions of the Royal Society A. 361 (1809): 1781–1808. Bibcode:2003RSPTA.361.1781J. doi:10.1098/rsta.2003.1225. PMID 12952685. S2CID 34259612.
  155. ^ Baym, Michael; Lieberman, Tami D.; Kelsic, Eric D.; et al. (9 September 2016). "Spatiotemporal microbial evolution on antibiotic landscapes". Science. 353 (6304): 1147–1151. Bibcode:2016Sci...353.1147B. doi:10.1126/science.aag0822. ISSN 0036-8075. PMC 5534434. PMID 27609891.
  156. ^ a b c Scott, Eugenie C.; Matzke, Nicholas J. (15 May 2007). "Biological design in science classrooms". PNAS. 104 (Suppl. 1): 8669–8676. Bibcode:2007PNAS..104.8669S. doi:10.1073/pnas.0701505104. PMC 1876445. PMID 17494747.
  157. ^ Hendry, Andrew Paul; Kinnison, Michael T. (November 2001). "An introduction to microevolution: rate, pattern, process". Genetica. 112–113 (1): 1–8. doi:10.1023/A:1013368628607. ISSN 0016-6707. PMID 11838760. S2CID 24485535.
  158. ^ Leroi, Armand M. (March–April 2000). "The scale independence of evolution". Evolution & Development. 2 (2): 67–77. CiteSeerX 10.1.1.120.1020. doi:10.1046/j.1525-142x.2000.00044.x. ISSN 1520-541X. PMID 11258392. S2CID 17289010.
  159. ^ Gould 2002, pp. 657–658.
  160. ^ a b Gould, Stephen Jay (19 July 1994). "Tempo and mode in the macroevolutionary reconstruction of Darwinism". PNAS. 91 (15): 6764–6771. Bibcode:1994PNAS...91.6764G. doi:10.1073/pnas.91.15.6764. PMC 44281. PMID 8041695.
  161. ^ Jablonski, David (2000). "Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology". Paleobiology. 26 (sp4): 15–52. doi:10.1666/0094-8373(2000)26[15:MAMSAH]2.0.CO;2. S2CID 53451360.
  162. ^ Dougherty, Michael J. (20 July 1998). "Is the human race evolving or devolving?". Scientific American. ISSN 0036-8733. Archived from the original on 6 May 2014. Retrieved 11 September 2015.
  163. ^ Isaak, Mark, ed. (22 July 2003). "Claim CB932: Evolution of degenerate forms". TalkOrigins Archive. Houston, Texas: The TalkOrigins Foundation. from the original on 23 August 2014. Retrieved 19 December 2014.
  164. ^ Lane 1996, p. 61
  165. ^ Carroll, Sean B. (22 February 2001). "Chance and necessity: the evolution of morphological complexity and diversity". Nature. 409 (6823): 1102–1109. Bibcode:2001Natur.409.1102C. doi:10.1038/35059227. PMID 11234024. S2CID 4319886.
  166. ^ Whitman, William B.; Coleman, David C.; Wiebe, William J. (9 June 1998). "Prokaryotes: The unseen majority". PNAS. 95 (12): 6578–6583. Bibcode:1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. ISSN 0027-8424. PMC 33863. PMID 9618454.
  167. ^ a b Schloss, Patrick D.; Handelsman, Jo (December 2004). "Status of the Microbial Census". Microbiology and Molecular Biology Reviews. 68 (4): 686–691. doi:10.1128/MMBR.68.4.686-691.2004. PMC 539005. PMID 15590780.
  168. ^ Nealson, Kenneth H. (January 1999). "Post-Viking microbiology: new approaches, new data, new insights". Origins of Life and Evolution of Biospheres. 29 (1): 73–93. Bibcode:1999OLEB...29...73N. doi:10.1023/A:1006515817767. ISSN 0169-6149. PMID 11536899. S2CID 12289639.
  169. ^ Buckling, Angus; MacLean, R. Craig; Brockhurst, Michael A.; Colegrave, Nick (12 February 2009). "The Beagle in a bottle". Nature. 457 (7231): 824–829. Bibcode:2009Natur.457..824B. doi:10.1038/nature07892. ISSN 0028-0836. PMID 19212400. S2CID 205216404.
  170. ^ Elena, Santiago F.; Lenski, Richard E. (June 2003). "Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation". Nature Reviews Genetics. 4 (6): 457–469. doi:10.1038/nrg1088. ISSN 1471-0056. PMID 12776215. S2CID 209727.
  171. ^ Mayr 1982, p. 483: "Adaptation... could no longer be considered a static condition, a product of a creative past and became instead a continuing dynamic process."
  172. ^ The sixth edition of the Oxford Dictionary of Science (2010) defines adaptation as "Any change in the structure or functioning of successive generations of a population that makes it better suited to its environment."
  173. ^ Orr, H. Allen (February 2005). "The genetic theory of adaptation: a brief history". Nature Reviews Genetics. 6 (2): 119–127. doi:10.1038/nrg1523. ISSN 1471-0056. PMID 15716908. S2CID 17772950.
  174. ^ Dobzhansky 1968, pp. 1–34
  175. ^ Dobzhansky 1970, pp. 4–6, 79–82, 84–87
  176. ^ Dobzhansky, Theodosius (March 1956). "Genetics of Natural Populations. XXV. Genetic Changes in Populations of Drosophila pseudoobscura and Drosophila persimilis in Some Localities in California". Evolution. 10 (1): 82–92. doi:10.2307/2406099. ISSN 0014-3820. JSTOR 2406099.
  177. ^ Nakajima, Akira; Sugimoto, Yohko; Yoneyama, Hiroshi; et al. (June 2002). "High-Level Fluoroquinolone Resistance in Pseudomonas aeruginosa Due to Interplay of the MexAB-OprM Efflux Pump and the DNA Gyrase Mutation". Microbiology and Immunology. 46 (6): 391–395. doi:10.1111/j.1348-0421.2002.tb02711.x. ISSN 1348-0421. PMID 12153116. S2CID 22593331.
  178. ^ Blount, Zachary D.; Borland, Christina Z.; Lenski, Richard E. (10 June 2008). "Inaugural Article: Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli". PNAS. 105 (23): 7899–7906. Bibcode:2008PNAS..105.7899B. doi:10.1073/pnas.0803151105. ISSN 0027-8424. PMC 2430337. PMID 18524956.
  179. ^ Okada, Hirosuke; Negoro, Seiji; Kimura, Hiroyuki; et al. (10 November 1983). "Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers". Nature. 306 (5939): 203–206. Bibcode:1983Natur.306..203O. doi:10.1038/306203a0. ISSN 0028-0836. PMID 6646204. S2CID 4364682.
  180. ^ Ohno, Susumu (April 1984). "Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence". PNAS. 81 (8): 2421–2425. Bibcode:1984PNAS...81.2421O. doi:10.1073/pnas.81.8.2421. ISSN 0027-8424. PMC 345072. PMID 6585807.
  181. ^ Copley, Shelley D. (June 2000). "Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach". Trends in Biochemical Sciences. 25 (6): 261–265. doi:10.1016/S0968-0004(00)01562-0. ISSN 0968-0004. PMID 10838562.
  182. ^ Crawford, Ronald L.; Jung, Carina M.; Strap, Janice L. (October 2007). "The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP". Biodegradation. 18 (5): 525–539. doi:10.1007/s10532-006-9090-6. ISSN 0923-9820. PMID 17123025. S2CID 8174462.
  183. ^ Altenberg 1995, pp. 205–259
  184. ^ Masel, Joanna; Bergman, Aviv (July 2003). "The evolution of the evolvability properties of the yeast prion [PSI+]". Evolution. 57 (7): 1498–1512. doi:10.1111/j.0014-3820.2003.tb00358.x. PMID 12940355. S2CID 30954684.
  185. ^ Lancaster, Alex K.; Bardill, J. Patrick; True, Heather L.; Masel, Joanna (February 2010). "The Spontaneous Appearance Rate of the Yeast Prion [PSI+] and Its Implications for the Evolution of the Evolvability Properties of the [PSI+] System". Genetics. 184 (2): 393–400. doi:10.1534/genetics.109.110213. ISSN 0016-6731. PMC 2828720. PMID 19917766.
  186. ^ Draghi, Jeremy; Wagner, Günter P. (February 2008). "Evolution of evolvability in a developmental model". Evolution. 62 (2): 301–315. doi:10.1111/j.1558-5646.2007.00303.x. PMID 18031304. S2CID 11560256.
  187. ^ a b Bejder, Lars; Hall, Brian K. (November 2002). "Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss". Evolution & Development. 4 (6): 445–458. doi:10.1046/j.1525-142X.2002.02033.x. PMID 12492145. S2CID 8448387.
  188. ^ Young, Nathan M.; HallgrÍmsson, Benedikt (December 2005). "Serial homology and the evolution of mammalian limb covariation structure". Evolution. 59 (12): 2691–2704. doi:10.1554/05-233.1. ISSN 0014-3820. PMID 16526515. S2CID 198156135.
  189. ^ a b Penny, David; Poole, Anthony (December 1999). "The nature of the last universal common ancestor". Current Opinion in Genetics & Development. 9 (6): 672–677. doi:10.1016/S0959-437X(99)00020-9. PMID 10607605.
  190. ^ Hall, Brian K. (August 2003). "Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution". Biological Reviews. 78 (3): 409–433. doi:10.1017/S1464793102006097. ISSN 1464-7931. PMID 14558591. S2CID 22142786.
  191. ^ Shubin, Neil; Tabin, Clifford J.; Carroll, Sean B. (12 February 2009). "Deep homology and the origins of evolutionary novelty". Nature. 457 (7231): 818–823. Bibcode:2009Natur.457..818S. doi:10.1038/nature07891. PMID 19212399. S2CID 205216390.
  192. ^ a b c Fong, Daniel F.; Kane, Thomas C.; Culver, David C. (November 1995). "Vestigialization and Loss of Nonfunctional Characters". Annual Review of Ecology and Systematics. 26: 249–268. doi:10.1146/annurev.es.26.110195.001341.
  193. ^ ZhaoLei Zhang; Gerstein, Mark (August 2004). "Large-scale analysis of pseudogenes in the human genome". Current Opinion in Genetics & Development. 14 (4): 328–335. doi:10.1016/j.gde.2004.06.003. ISSN 0959-437X. PMID 15261647.
  194. ^ Jeffery, William R. (May–June 2005). "Adaptive Evolution of Eye Degeneration in the Mexican Blind Cavefish". Journal of Heredity. 96 (3): 185–196. CiteSeerX 10.1.1.572.6605. doi:10.1093/jhered/esi028. PMID 15653557.
  195. ^ Maxwell, Erin E.; Larsson, Hans C.E. (May 2007). "Osteology and myology of the wing of the Emu (Dromaius novaehollandiae) and its bearing on the evolution of vestigial structures". Journal of Morphology. 268 (5): 423–441. doi:10.1002/jmor.10527. ISSN 0362-2525. PMID 17390336. S2CID 12494187.
  196. ^ van der Kooi, Casper J.; Schwander, Tanja (November 2014). "On the fate of sexual traits under asexuality" (PDF). Biological Reviews. 89 (4): 805–819. doi:10.1111/brv.12078. ISSN 1464-7931. PMID 24443922. S2CID 33644494. (PDF) from the original on 23 July 2015. Retrieved 5 August 2015.
  197. ^ Silvestri, Anthony R. Jr.; Singh, Iqbal (April 2003). . Journal of the American Dental Association. 134 (4): 450–455. doi:10.14219/jada.archive.2003.0194. PMID 12733778. Archived from the original on 23 August 2014.
  198. ^ Coyne 2009, p. 62
  199. ^ Darwin 1872, pp. 101, 103
  200. ^ Gray 2007, p. 66
  201. ^ Coyne 2009, pp. 85–86
  202. ^ Stevens 1982, p. 87
  203. ^ a b Gould 2002, pp. 1235–1236.
  204. ^ Pallen, Mark J.; Matzke, Nicholas J. (October 2006). (PDF). Nature Reviews Microbiology (PDF). 4 (10): 784–790. doi:10.1038/nrmicro1493. ISSN 1740-1526. PMID 16953248. S2CID 24057949. Archived from the original (PDF) on 26 December 2014. Retrieved 25 December 2014.
  205. ^ Clements, Abigail; Bursac, Dejan; Gatsos, Xenia; et al. (15 September 2009). "The reducible complexity of a mitochondrial molecular machine". PNAS. 106 (37): 15791–15795. Bibcode:2009PNAS..10615791C. doi:10.1073/pnas.0908264106. PMC 2747197. PMID 19717453.
  206. ^ Piatigorsky et al. 1994, pp. 241–250
  207. ^ Wistow, Graeme (August 1993). "Lens crystallins: gene recruitment and evolutionary dynamism". Trends in Biochemical Sciences. 18 (8): 301–306. doi:10.1016/0968-0004(93)90041-K. ISSN 0968-0004. PMID 8236445.
  208. ^ Johnson, Norman A.; Porter, Adam H. (November 2001). "Toward a new synthesis: population genetics and evolutionary developmental biology". Genetica. 112–113 (1): 45–58. doi:10.1023/A:1013371201773. ISSN 0016-6707. PMID 11838782. S2CID 1651351.
  209. ^ Baguñà, Jaume; Garcia-Fernàndez, Jordi (2003). "Evo-Devo: the long and winding road". The International Journal of Developmental Biology. 47 (7–8): 705–713. ISSN 0214-6282. PMID 14756346. from the original on 28 November 2014.
    • Love, Alan C. (March 2003). "Evolutionary Morphology, Innovation and the Synthesis of Evolutionary and Developmental Biology". Biology and Philosophy. 18 (2): 309–345. doi:10.1023/A:1023940220348. S2CID 82307503.
  210. ^ Allin, Edgar F. (December 1975). "Evolution of the mammalian middle ear". Journal of Morphology. 147 (4): 403–437. doi:10.1002/jmor.1051470404. ISSN 0362-2525. PMID 1202224. S2CID 25886311.
  211. ^ Harris, Matthew P.; Hasso, Sean M.; Ferguson, Mark W.J.; Fallon, John F. (21 February 2006). "The Development of Archosaurian First-Generation Teeth in a Chicken Mutant". Current Biology. 16 (4): 371–377. doi:10.1016/j.cub.2005.12.047. PMID 16488870. S2CID 15733491.
  212. ^ Carroll, Sean B. (11 July 2008). "Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution". Cell. 134 (1): 25–36. doi:10.1016/j.cell.2008.06.030. PMID 18614008. S2CID 2513041.
  213. ^ Wade, Michael J. (March 2007). "The co-evolutionary genetics of ecological communities". Nature Reviews Genetics. 8 (3): 185–195. doi:10.1038/nrg2031. PMID 17279094. S2CID 36705246.
  214. ^ Geffeney, Shana; Brodie, Edmund D. Jr.; Ruben, Peter C.; Brodie, Edmund D., III (23 August 2002). "Mechanisms of Adaptation in a Predator-Prey Arms Race: TTX-Resistant Sodium Channels". Science. 297 (5585): 1336–1339. Bibcode:2002Sci...297.1336G. doi:10.1126/science.1074310. PMID 12193784. S2CID 8816337.
    • Brodie, Edmund D. Jr.; Ridenhour, Benjamin J.; Brodie, Edmund D., III (October 2002). "The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts". Evolution. 56 (10): 2067–2082. doi:10.1554/0014-3820(2002)056[2067:teropt]2.0.co;2. PMID 12449493. S2CID 8251443.
    • Carroll, Sean B. (21 December 2009). "Whatever Doesn't Kill Some Animals Can Make Them Deadly". The New York Times. New York. from the original on 23 April 2015. Retrieved 26 December 2014.
  215. ^
evolution, this, article, about, evolution, biology, related, articles, outline, evolution, other, uses, disambiguation, more, accessible, less, technical, introduction, this, topic, introduction, evolution, change, heritable, characteristics, biological, popu. This article is about evolution in biology For related articles see Outline of evolution For other uses see Evolution disambiguation For a more accessible and less technical introduction to this topic see Introduction to evolution Evolution is change in the heritable characteristics of biological populations over successive generations 1 2 These characteristics are the expressions of genes which are passed on from parent to offspring during reproduction Variation tends to exist within any given population as a result of genetic mutation and recombination 3 Evolution occurs when evolutionary processes such as natural selection including sexual selection and genetic drift act on this variation resulting in certain characteristics becoming more common or more rare within a population 4 The evolutionary pressures that determine whether a characteristic is common or rare within a population constantly change resulting in a change in heritable characteristics arising over successive generations It is this process of evolution that has given rise to biodiversity at every level of biological organisation including the levels of species individual organisms and molecules 5 6 The theory of evolution by natural selection was conceived independently by Charles Darwin and Alfred Russel Wallace in the mid 19th century and was set out in detail in Darwin s book On the Origin of Species 7 Evolution by natural selection is established by observable facts about living organisms 1 more offspring are often produced than can possibly survive 2 traits vary among individuals with respect to their morphology physiology and behaviour phenotypic variation 3 different traits confer different rates of survival and reproduction differential fitness and 4 traits can be passed from generation to generation heritability of fitness 8 In successive generations members of a population are therefore more likely to be replaced by the offspring of parents with favourable characteristics In the early 20th century other competing ideas of evolution such as mutationism and orthogenesis were refuted as the modern synthesis concluded Darwinian evolution acts on Mendelian genetic variation 9 All life on Earth shares a last universal common ancestor LUCA 10 11 12 which lived approximately 3 5 3 8 billion years ago 13 The fossil record includes a progression from early biogenic graphite 14 to microbial mat fossils 15 16 17 to fossilised multicellular organisms Existing patterns of biodiversity have been shaped by repeated formations of new species speciation changes within species anagenesis and loss of species extinction throughout the evolutionary history of life on Earth 18 Morphological and biochemical traits are more similar among species that share a more recent common ancestor and these traits can be used to reconstruct phylogenetic trees 19 20 Evolutionary biologists have continued to study various aspects of evolution by forming and testing hypotheses as well as constructing theories based on evidence from the field or laboratory and on data generated by the methods of mathematical and theoretical biology Their discoveries have influenced not just the development of biology but numerous other scientific and industrial fields including agriculture medicine and computer science 21 Contents 1 Heredity 2 Sources of variation 2 1 Mutation 2 2 Sex and recombination 2 3 Gene flow 3 Evolutionary processes 3 1 Natural selection 3 1 1 Genetic hitchhiking 3 1 2 Sexual selection 3 2 Genetic drift 3 3 Gene flow 3 4 Mutation bias 4 Applications 5 Natural outcomes 5 1 Adaptation 5 2 Coevolution 5 3 Cooperation 5 4 Speciation 5 5 Extinction 6 Evolutionary history of life 6 1 Origin of life 6 2 Common descent 6 3 Evolution of life 7 History of evolutionary thought 7 1 Classical antiquity 7 2 Middle Ages 7 3 Pre Darwinian 7 4 Darwinian revolution 7 5 Pangenesis and heredity 7 6 The modern synthesis 7 7 Further syntheses 8 Social and cultural responses 9 References 10 Bibliography 11 Further reading 12 External linksHeredityFurther information Introduction to genetics Genetics and Heredity DNA structure Bases are in the centre surrounded by phosphate sugar chains in a double helix Evolution in organisms occurs through changes in heritable traits the inherited characteristics of an organism In humans for example eye colour is an inherited characteristic and an individual might inherit the brown eye trait from one of their parents 22 Inherited traits are controlled by genes and the complete set of genes within an organism s genome genetic material is called its genotype 23 The complete set of observable traits that make up the structure and behaviour of an organism is called its phenotype These traits come from the interaction of its genotype with the environment 24 As a result many aspects of an organism s phenotype are not inherited For example suntanned skin comes from the interaction between a person s genotype and sunlight thus suntans are not passed on to people s children However some people tan more easily than others due to differences in genotypic variation a striking example are people with the inherited trait of albinism who do not tan at all and are very sensitive to sunburn 25 Heritable traits are passed from one generation to the next via DNA a molecule that encodes genetic information 23 DNA is a long biopolymer composed of four types of bases The sequence of bases along a particular DNA molecule specifies the genetic information in a manner similar to a sequence of letters spelling out a sentence Before a cell divides the DNA is copied so that each of the resulting two cells will inherit the DNA sequence Portions of a DNA molecule that specify a single functional unit are called genes different genes have different sequences of bases Within cells the long strands of DNA form condensed structures called chromosomes The specific location of a DNA sequence within a chromosome is known as a locus If the DNA sequence at a locus varies between individuals the different forms of this sequence are called alleles DNA sequences can change through mutations producing new alleles If a mutation occurs within a gene the new allele may affect the trait that the gene controls altering the phenotype of the organism 26 However while this simple correspondence between an allele and a trait works in some cases most traits are more complex and are controlled by quantitative trait loci multiple interacting genes 27 28 Some heritable changes cannot be explained by changes to the sequence of nucleotides in the DNA These phenomena are classed as epigenetic inheritance systems 29 DNA methylation marking chromatin self sustaining metabolic loops gene silencing by RNA interference and the three dimensional conformation of proteins such as prions are areas where epigenetic inheritance systems have been discovered at the organismic level 30 Developmental biologists suggest that complex interactions in genetic networks and communication among cells can lead to heritable variations that may underlay some of the mechanics in developmental plasticity and canalisation 31 Heritability may also occur at even larger scales For example ecological inheritance through the process of niche construction is defined by the regular and repeated activities of organisms in their environment This generates a legacy of effects that modify and feed back into the selection regime of subsequent generations Descendants inherit genes plus environmental characteristics generated by the ecological actions of ancestors 32 Other examples of heritability in evolution that are not under the direct control of genes include the inheritance of cultural traits and symbiogenesis 33 34 Sources of variationMain article Genetic variation Further information Genetic diversity and Population genetics White peppered moth Black morph in peppered moth evolution Evolution can occur if there is genetic variation within a population Variation comes from mutations in the genome reshuffling of genes through sexual reproduction and migration between populations gene flow Despite the constant introduction of new variation through mutation and gene flow most of the genome of a species is identical in all individuals of that species 35 However even relatively small differences in genotype can lead to dramatic differences in phenotype for example chimpanzees and humans differ in only about 5 of their genomes 36 An individual organism s phenotype results from both its genotype and the influence of the environment it has lived in A substantial part of the phenotypic variation in a population is caused by genotypic variation 28 The modern evolutionary synthesis defines evolution as the change over time in this genetic variation The frequency of one particular allele will become more or less prevalent relative to other forms of that gene Variation disappears when a new allele reaches the point of fixation when it either disappears from the population or replaces the ancestral allele entirely 37 Before the discovery of Mendelian genetics one common hypothesis was blending inheritance But with blending inheritance genetic variation would be rapidly lost making evolution by natural selection implausible The Hardy Weinberg principle provides the solution to how variation is maintained in a population with Mendelian inheritance The frequencies of alleles variations in a gene will remain constant in the absence of selection mutation migration and genetic drift 38 Mutation Main article Mutation Duplication of part of a chromosome Mutations are changes in the DNA sequence of a cell s genome and are the ultimate source of genetic variation in all organisms 3 When mutations occur they may alter the product of a gene or prevent the gene from functioning or have no effect Based on studies in the fly Drosophila melanogaster it has been suggested that if a mutation changes a protein produced by a gene this will probably be harmful with about 70 of these mutations having damaging effects and the remainder being either neutral or weakly beneficial 39 Mutations can involve large sections of a chromosome becoming duplicated usually by genetic recombination which can introduce extra copies of a gene into a genome 40 Extra copies of genes are a major source of the raw material needed for new genes to evolve 41 This is important because most new genes evolve within gene families from pre existing genes that share common ancestors 42 For example the human eye uses four genes to make structures that sense light three for colour vision and one for night vision all four are descended from a single ancestral gene 43 New genes can be generated from an ancestral gene when a duplicate copy mutates and acquires a new function This process is easier once a gene has been duplicated because it increases the redundancy of the system one gene in the pair can acquire a new function while the other copy continues to perform its original function 44 45 Other types of mutations can even generate entirely new genes from previously noncoding DNA a phenomenon termed de novo gene birth 46 47 The generation of new genes can also involve small parts of several genes being duplicated with these fragments then recombining to form new combinations with new functions exon shuffling 48 49 When new genes are assembled from shuffling pre existing parts domains act as modules with simple independent functions which can be mixed together to produce new combinations with new and complex functions 50 For example polyketide synthases are large enzymes that make antibiotics they contain up to one hundred independent domains that each catalyse one step in the overall process like a step in an assembly line 51 One example of mutation is wild boar piglets They are camouflage colored and show a characteristic pattern of dark and light longitudinal stripes However mutations in melanocortin 1 receptor MC1R disrupt the pattern The majority of pig breeds carry MC1R mutations disrupting wild type color and different mutations causing dominant black color of the pigs 52 Sex and recombination Further information Sexual reproduction Genetic recombination and Evolution of sexual reproduction In asexual organisms genes are inherited together or linked as they cannot mix with genes of other organisms during reproduction In contrast the offspring of sexual organisms contain random mixtures of their parents chromosomes that are produced through independent assortment In a related process called homologous recombination sexual organisms exchange DNA between two matching chromosomes 53 Recombination and reassortment do not alter allele frequencies but instead change which alleles are associated with each other producing offspring with new combinations of alleles 54 Sex usually increases genetic variation and may increase the rate of evolution 55 56 This diagram illustrates the twofold cost of sex If each individual were to contribute to the same number of offspring two a the sexual population remains the same size each generation where the b Asexual reproduction population doubles in size each generation image reference needed The two fold cost of sex was first described by John Maynard Smith 57 The first cost is that in sexually dimorphic species only one of the two sexes can bear young This cost does not apply to hermaphroditic species like most plants and many invertebrates The second cost is that any individual who reproduces sexually can only pass on 50 of its genes to any individual offspring with even less passed on as each new generation passes 58 Yet sexual reproduction is the more common means of reproduction among eukaryotes and multicellular organisms The Red Queen hypothesis has been used to explain the significance of sexual reproduction as a means to enable continual evolution and adaptation in response to coevolution with other species in an ever changing environment 58 59 60 61 Another hypothesis is that sexual reproduction is primarily an adaptation for promoting accurate recombinational repair of damage in germline DNA and that increased diversity is a byproduct of this process that may sometimes be adaptively beneficial 62 63 Gene flow Further information Gene flow Gene flow is the exchange of genes between populations and between species 64 It can therefore be a source of variation that is new to a population or to a species Gene flow can be caused by the movement of individuals between separate populations of organisms as might be caused by the movement of mice between inland and coastal populations or the movement of pollen between heavy metal tolerant and heavy metal sensitive populations of grasses Gene transfer between species includes the formation of hybrid organisms and horizontal gene transfer Horizontal gene transfer is the transfer of genetic material from one organism to another organism that is not its offspring this is most common among bacteria 65 In medicine this contributes to the spread of antibiotic resistance as when one bacteria acquires resistance genes it can rapidly transfer them to other species 66 Horizontal transfer of genes from bacteria to eukaryotes such as the yeast Saccharomyces cerevisiae and the adzuki bean weevil Callosobruchus chinensis has occurred 67 68 An example of larger scale transfers are the eukaryotic bdelloid rotifers which have received a range of genes from bacteria fungi and plants 69 Viruses can also carry DNA between organisms allowing transfer of genes even across biological domains 70 Large scale gene transfer has also occurred between the ancestors of eukaryotic cells and bacteria during the acquisition of chloroplasts and mitochondria It is possible that eukaryotes themselves originated from horizontal gene transfers between bacteria and archaea 71 Evolutionary processes Mutation followed by natural selection results in a population with darker colouration image reference needed From a neo Darwinian perspective evolution occurs when there are changes in the frequencies of alleles within a population of interbreeding organisms 38 for example the allele for black colour in a population of moths becoming more common Mechanisms that can lead to changes in allele frequencies include natural selection genetic drift gene flow and mutation bias Natural selection Main article Natural selection Evolution by natural selection is the process by which traits that enhance survival and reproduction become more common in successive generations of a population It embodies three principles 8 Variation exists within populations of organisms with respect to morphology physiology and behaviour phenotypic variation Different traits confer different rates of survival and reproduction differential fitness These traits can be passed from generation to generation heritability of fitness More offspring are produced than can possibly survive and these conditions produce competition between organisms for survival and reproduction Consequently organisms with traits that give them an advantage over their competitors are more likely to pass on their traits to the next generation than those with traits that do not confer an advantage 72 This teleonomy is the quality whereby the process of natural selection creates and preserves traits that are seemingly fitted for the functional roles they perform 73 Consequences of selection include nonrandom mating 74 and genetic hitchhiking The central concept of natural selection is the evolutionary fitness of an organism 75 Fitness is measured by an organism s ability to survive and reproduce which determines the size of its genetic contribution to the next generation 75 However fitness is not the same as the total number of offspring instead fitness is indicated by the proportion of subsequent generations that carry an organism s genes 76 For example if an organism could survive well and reproduce rapidly but its offspring were all too small and weak to survive this organism would make little genetic contribution to future generations and would thus have low fitness 75 If an allele increases fitness more than the other alleles of that gene then with each generation this allele will become more common within the population These traits are said to be selected for Examples of traits that can increase fitness are enhanced survival and increased fecundity Conversely the lower fitness caused by having a less beneficial or deleterious allele results in this allele becoming rarer they are selected against 77 Importantly the fitness of an allele is not a fixed characteristic if the environment changes previously neutral or harmful traits may become beneficial and previously beneficial traits become harmful 26 However even if the direction of selection does reverse in this way traits that were lost in the past may not re evolve in an identical form see Dollo s law 78 79 However a re activation of dormant genes as long as they have not been eliminated from the genome and were only suppressed perhaps for hundreds of generations can lead to the re occurrence of traits thought to be lost like hindlegs in dolphins teeth in chickens wings in wingless stick insects tails and additional nipples in humans etc Throwbacks such as these are known as atavisms 80 These charts depict the different types of genetic selection On each graph the x axis variable is the type of phenotypic trait and the y axis variable is the number of organisms image reference needed Group A is the original population and Group B is the population after selection Graph 1 shows directional selection in which a single extreme phenotype is favoured Graph 2 depicts stabilizing selection where the intermediate phenotype is favoured over the extreme traits Graph 3 shows disruptive selection in which the extreme phenotypes are favoured over the intermediate Natural selection within a population for a trait that can vary across a range of values such as height can be categorised into three different types The first is directional selection which is a shift in the average value of a trait over time for example organisms slowly getting taller 81 Secondly disruptive selection is selection for extreme trait values and often results in two different values becoming most common with selection against the average value This would be when either short or tall organisms had an advantage but not those of medium height Finally in stabilising selection there is selection against extreme trait values on both ends which causes a decrease in variance around the average value and less diversity 72 82 This would for example cause organisms to eventually have a similar height Natural selection most generally makes nature the measure against which individuals and individual traits are more or less likely to survive Nature in this sense refers to an ecosystem that is a system in which organisms interact with every other element physical as well as biological in their local environment Eugene Odum a founder of ecology defined an ecosystem as Any unit that includes all of the organisms in a given area interacting with the physical environment so that a flow of energy leads to clearly defined trophic structure biotic diversity and material cycles i e exchange of materials between living and nonliving parts within the system 83 Each population within an ecosystem occupies a distinct niche or position with distinct relationships to other parts of the system These relationships involve the life history of the organism its position in the food chain and its geographic range This broad understanding of nature enables scientists to delineate specific forces which together comprise natural selection Natural selection can act at different levels of organisation such as genes cells individual organisms groups of organisms and species 84 85 86 Selection can act at multiple levels simultaneously 87 An example of selection occurring below the level of the individual organism are genes called transposons which can replicate and spread throughout a genome 88 Selection at a level above the individual such as group selection may allow the evolution of cooperation 89 Genetic hitchhiking Further information Genetic hitchhiking Hill Robertson effect and Selective sweep Recombination allows alleles on the same strand of DNA to become separated However the rate of recombination is low approximately two events per chromosome per generation As a result genes close together on a chromosome may not always be shuffled away from each other and genes that are close together tend to be inherited together a phenomenon known as linkage 90 This tendency is measured by finding how often two alleles occur together on a single chromosome compared to expectations which is called their linkage disequilibrium A set of alleles that is usually inherited in a group is called a haplotype This can be important when one allele in a particular haplotype is strongly beneficial natural selection can drive a selective sweep that will also cause the other alleles in the haplotype to become more common in the population this effect is called genetic hitchhiking or genetic draft 91 Genetic draft caused by the fact that some neutral genes are genetically linked to others that are under selection can be partially captured by an appropriate effective population size 92 Sexual selection Further information Sexual selection Male moor frogs become blue during the height of mating season Blue reflectance may be a form of intersexual communication It is hypothesized that males with brighter blue coloration may signal greater sexual and genetic fitness 93 A special case of natural selection is sexual selection which is selection for any trait that increases mating success by increasing the attractiveness of an organism to potential mates 94 Traits that evolved through sexual selection are particularly prominent among males of several animal species Although sexually favoured traits such as cumbersome antlers mating calls large body size and bright colours often attract predation which compromises the survival of individual males 95 96 This survival disadvantage is balanced by higher reproductive success in males that show these hard to fake sexually selected traits 97 Genetic drift Further information Genetic drift and Effective population size Simulation of genetic drift of 20 unlinked alleles in populations of 10 top and 100 bottom Drift to fixation is more rapid in the smaller population image reference needed Genetic drift is the random fluctuation of allele frequencies within a population from one generation to the next 98 When selective forces are absent or relatively weak allele frequencies are equally likely to drift upward or downward clarification needed in each successive generation because the alleles are subject to sampling error 99 This drift halts when an allele eventually becomes fixed either by disappearing from the population or by replacing the other alleles entirely Genetic drift may therefore eliminate some alleles from a population due to chance alone Even in the absence of selective forces genetic drift can cause two separate populations that begin with the same genetic structure to drift apart into two divergent populations with different sets of alleles 100 According to the now largely abandoned neutral theory of molecular evolution most evolutionary changes are the result of the fixation of neutral mutations by genetic drift 101 In this model most genetic changes in a population are thus the result of constant mutation pressure and genetic drift 102 This form of the neutral theory is now largely abandoned since it does not seem to fit the genetic variation seen in nature 103 104 A better supported version of this model is the nearly neutral theory according to which a mutation that would be effectively neutral in a small population is not necessarily neutral in a large population 72 Other theories propose that genetic drift is dwarfed by other stochastic forces in evolution such as genetic hitchhiking also known as genetic draft 99 92 105 Another concept is constructive neutral evolution CNE which explains that complex systems can emerge and spread into a population through neutral transitions due to the principles of excess capacity presuppression and ratcheting 106 107 108 and it has been applied in areas ranging from the origins of the spliceosome to the complex interdependence of microbial communities 109 110 111 The time it takes a neutral allele to become fixed by genetic drift depends on population size fixation is more rapid in smaller populations 112 The number of individuals in a population is not critical but instead a measure known as the effective population size 113 The effective population is usually smaller than the total population since it takes into account factors such as the level of inbreeding and the stage of the lifecycle in which the population is the smallest 113 The effective population size may not be the same for every gene in the same population 114 It is usually difficult to measure the relative importance of selection and neutral processes including drift 115 The comparative importance of adaptive and non adaptive forces in driving evolutionary change is an area of current research 116 Gene flow Further information Gene flow Hybrid biology and Horizontal gene transfer Gene flow involves the exchange of genes between populations and between species 64 The presence or absence of gene flow fundamentally changes the course of evolution Due to the complexity of organisms any two completely isolated populations will eventually evolve genetic incompatibilities through neutral processes as in the Bateson Dobzhansky Muller model even if both populations remain essentially identical in terms of their adaptation to the environment citation needed If genetic differentiation between populations develops gene flow between populations can introduce traits or alleles which are disadvantageous in the local population and this may lead to organisms within these populations evolving mechanisms that prevent mating with genetically distant populations eventually resulting in the appearance of new species Thus exchange of genetic information between individuals is fundamentally important for the development of the Biological Species Concept citation needed During the development of the modern synthesis Sewall Wright developed his shifting balance theory which regarded gene flow between partially isolated populations as an important aspect of adaptive evolution 117 However recently there has been substantial criticism of the importance of the shifting balance theory 118 Mutation bias Mutation bias is usually conceived as a difference in expected rates for two different kinds of mutation e g transition transversion bias GC AT bias deletion insertion bias This is related to the idea of developmental bias Haldane 119 and Fisher 120 argued that because mutation is a weak pressure easily overcome by selection tendencies of mutation would be ineffectual except under conditions of neutral evolution or extraordinarily high mutation rates This opposing pressures argument was long used to dismiss the possibility of internal tendencies in evolution 121 until the molecular era prompted renewed interest in neutral evolution Noboru Sueoka 122 and Ernst Freese 123 proposed that systematic biases in mutation might be responsible for systematic differences in genomic GC composition between species The identification of a GC biased E coli mutator strain in 1967 124 along with the proposal of the neutral theory established the plausibility of mutational explanations for molecular patterns which are now common in the molecular evolution literature For instance mutation biases are frequently invoked in models of codon usage 125 Such models also include effects of selection following the mutation selection drift model 126 which allows both for mutation biases and differential selection based on effects on translation Hypotheses of mutation bias have played an important role in the development of thinking about the evolution of genome composition including isochores 127 Different insertion vs deletion biases in different taxa can lead to the evolution of different genome sizes 128 129 The hypothesis of Lynch regarding genome size relies on mutational biases toward increase or decrease in genome size However mutational hypotheses for the evolution of composition suffered a reduction in scope when it was discovered that 1 GC biased gene conversion makes an important contribution to composition in diploid organisms such as mammals 130 and 2 bacterial genomes frequently have AT biased mutation 131 Contemporary thinking about the role of mutation biases reflects a different theory from that of Haldane and Fisher More recent work 121 showed that the original pressures theory assumes that evolution is based on standing variation when evolution depends on the introduction of new alleles mutational and developmental biases in the introduction can impose biases on evolution without requiring neutral evolution or high mutation rates citation needed Several studies report that the mutations implicated in adaptation reflect common mutation biases 132 133 134 though others dispute this interpretation 135 ApplicationsMain articles Applications of evolution Selective breeding and Evolutionary computation Concepts and models used in evolutionary biology such as natural selection have many applications 136 Artificial selection is the intentional selection of traits in a population of organisms This has been used for thousands of years in the domestication of plants and animals 137 More recently such selection has become a vital part of genetic engineering with selectable markers such as antibiotic resistance genes being used to manipulate DNA Proteins with valuable properties have evolved by repeated rounds of mutation and selection for example modified enzymes and new antibodies in a process called directed evolution 138 Understanding the changes that have occurred during an organism s evolution can reveal the genes needed to construct parts of the body genes which may be involved in human genetic disorders 139 For example the Mexican tetra is an albino cavefish that lost its eyesight during evolution Breeding together different populations of this blind fish produced some offspring with functional eyes since different mutations had occurred in the isolated populations that had evolved in different caves 140 This helped identify genes required for vision and pigmentation 141 Evolutionary theory has many applications in medicine Many human diseases are not static phenomena but capable of evolution Viruses bacteria fungi and cancers evolve to be resistant to host immune defences as well as to pharmaceutical drugs 142 143 144 These same problems occur in agriculture with pesticide 145 and herbicide 146 resistance It is possible that we are facing the end of the effective life of most of available antibiotics 147 and predicting the evolution and evolvability 148 of our pathogens and devising strategies to slow or circumvent it is requiring deeper knowledge of the complex forces driving evolution at the molecular level 149 In computer science simulations of evolution using evolutionary algorithms and artificial life started in the 1960s and were extended with simulation of artificial selection 150 Artificial evolution became a widely recognised optimisation method as a result of the work of Ingo Rechenberg in the 1960s He used evolution strategies to solve complex engineering problems 151 Genetic algorithms in particular became popular through the writing of John Henry Holland 152 Practical applications also include automatic evolution of computer programmes 153 Evolutionary algorithms are now used to solve multi dimensional problems more efficiently than software produced by human designers and also to optimise the design of systems 154 Natural outcomes source source source source source source source source source source source source track track A visual demonstration of rapid antibiotic resistance evolution by E coli growing across a plate with increasing concentrations of trimethoprim 155 Evolution influences every aspect of the form and behaviour of organisms Most prominent are the specific behavioural and physical adaptations that are the outcome of natural selection These adaptations increase fitness by aiding activities such as finding food avoiding predators or attracting mates Organisms can also respond to selection by cooperating with each other usually by aiding their relatives or engaging in mutually beneficial symbiosis In the longer term evolution produces new species through splitting ancestral populations of organisms into new groups that cannot or will not interbreed These outcomes of evolution are distinguished based on time scale as macroevolution versus microevolution Macroevolution refers to evolution that occurs at or above the level of species in particular speciation and extinction whereas microevolution refers to smaller evolutionary changes within a species or population in particular shifts in allele frequency and adaptation 156 Macroevolution the outcome of long periods of microevolution 157 Thus the distinction between micro and macroevolution is not a fundamental one the difference is simply the time involved 158 However in macroevolution the traits of the entire species may be important For instance a large amount of variation among individuals allows a species to rapidly adapt to new habitats lessening the chance of it going extinct while a wide geographic range increases the chance of speciation by making it more likely that part of the population will become isolated In this sense microevolution and macroevolution might involve selection at different levels with microevolution acting on genes and organisms versus macroevolutionary processes such as species selection acting on entire species and affecting their rates of speciation and extinction 159 160 161 A common misconception is that evolution has goals long term plans or an innate tendency for progress as expressed in beliefs such as orthogenesis and evolutionism realistically however evolution has no long term goal and does not necessarily produce greater complexity 162 163 164 Although complex species have evolved they occur as a side effect of the overall number of organisms increasing and simple forms of life still remain more common in the biosphere 165 For example the overwhelming majority of species are microscopic prokaryotes which form about half the world s biomass despite their small size 166 and constitute the vast majority of Earth s biodiversity 167 Simple organisms have therefore been the dominant form of life on Earth throughout its history and continue to be the main form of life up to the present day with complex life only appearing more diverse because it is more noticeable 168 Indeed the evolution of microorganisms is particularly important to evolutionary research since their rapid reproduction allows the study of experimental evolution and the observation of evolution and adaptation in real time 169 170 Adaptation Further information Adaptation Homologous bones in the limbs of tetrapods The bones of these animals have the same basic structure but have been adapted for specific uses image reference needed Adaptation is the process that makes organisms better suited to their habitat 171 172 Also the term adaptation may refer to a trait that is important for an organism s survival For example the adaptation of horses teeth to the grinding of grass By using the term adaptation for the evolutionary process and adaptive trait for the product the bodily part or function the two senses of the word may be distinguished Adaptations are produced by natural selection 173 The following definitions are due to Theodosius Dobzhansky Adaptation is the evolutionary process whereby an organism becomes better able to live in its habitat or habitats 174 Adaptedness is the state of being adapted the degree to which an organism is able to live and reproduce in a given set of habitats 175 An adaptive trait is an aspect of the developmental pattern of the organism which enables or enhances the probability of that organism surviving and reproducing 176 Adaptation may cause either the gain of a new feature or the loss of an ancestral feature An example that shows both types of change is bacterial adaptation to antibiotic selection with genetic changes causing antibiotic resistance by both modifying the target of the drug or increasing the activity of transporters that pump the drug out of the cell 177 Other striking examples are the bacteria Escherichia coli evolving the ability to use citric acid as a nutrient in a long term laboratory experiment 178 Flavobacterium evolving a novel enzyme that allows these bacteria to grow on the by products of nylon manufacturing 179 180 and the soil bacterium Sphingobium evolving an entirely new metabolic pathway that degrades the synthetic pesticide pentachlorophenol 181 182 An interesting but still controversial idea is that some adaptations might increase the ability of organisms to generate genetic diversity and adapt by natural selection increasing organisms evolvability 183 184 185 186 A baleen whale skeleton Letters a and b label flipper bones which were adapted from front leg bones while c indicates vestigial leg bones both suggesting an adaptation from land to sea 187 Adaptation occurs through the gradual modification of existing structures Consequently structures with similar internal organisation may have different functions in related organisms This is the result of a single ancestral structure being adapted to function in different ways The bones within bat wings for example are very similar to those in mice feet and primate hands due to the descent of all these structures from a common mammalian ancestor 188 However since all living organisms are related to some extent 189 even organs that appear to have little or no structural similarity such as arthropod squid and vertebrate eyes or the limbs and wings of arthropods and vertebrates can depend on a common set of homologous genes that control their assembly and function this is called deep homology 190 191 During evolution some structures may lose their original function and become vestigial structures 192 Such structures may have little or no function in a current species yet have a clear function in ancestral species or other closely related species Examples include pseudogenes 193 the non functional remains of eyes in blind cave dwelling fish 194 wings in flightless birds 195 the presence of hip bones in whales and snakes 187 and sexual traits in organisms that reproduce via asexual reproduction 196 Examples of vestigial structures in humans include wisdom teeth 197 the coccyx 192 the vermiform appendix 192 and other behavioural vestiges such as goose bumps 198 199 and primitive reflexes 200 201 202 However many traits that appear to be simple adaptations are in fact exaptations structures originally adapted for one function but which coincidentally became somewhat useful for some other function in the process 203 One example is the African lizard Holaspis guentheri which developed an extremely flat head for hiding in crevices as can be seen by looking at its near relatives However in this species the head has become so flattened that it assists in gliding from tree to tree an exaptation 203 Within cells molecular machines such as the bacterial flagella 204 and protein sorting machinery 205 evolved by the recruitment of several pre existing proteins that previously had different functions 156 Another example is the recruitment of enzymes from glycolysis and xenobiotic metabolism to serve as structural proteins called crystallins within the lenses of organisms eyes 206 207 An area of current investigation in evolutionary developmental biology is the developmental basis of adaptations and exaptations 208 This research addresses the origin and evolution of embryonic development and how modifications of development and developmental processes produce novel features 209 These studies have shown that evolution can alter development to produce new structures such as embryonic bone structures that develop into the jaw in other animals instead forming part of the middle ear in mammals 210 It is also possible for structures that have been lost in evolution to reappear due to changes in developmental genes such as a mutation in chickens causing embryos to grow teeth similar to those of crocodiles 211 It is now becoming clear that most alterations in the form of organisms are due to changes in a small set of conserved genes 212 Coevolution Further information Coevolution The common garter snake has evolved resistance to the defensive substance tetrodotoxin in its amphibian prey Interactions between organisms can produce both conflict and cooperation When the interaction is between pairs of species such as a pathogen and a host or a predator and its prey these species can develop matched sets of adaptations Here the evolution of one species causes adaptations in a second species These changes in the second species then in turn cause new adaptations in the first species This cycle of selection and response is called coevolution 213 An example is the production of tetrodotoxin in the rough skinned newt and the evolution of tetrodotoxin resistance in its predator the common garter snake In this predator prey pair an evolutionary arms race has produced high levels of toxin in the newt and correspondingly high levels of toxin resistance in the snake 214 Cooperation Further information Co operation evolution Not all co evolved interactions between species involve conflict 215 Many cases of mutually beneficial interactions have evolved For instance an extreme cooperation exists between plants and the mycorrhizal fungi that grow on their roots and aid the plant in absorbing nutrients from the soil 216 This is a reciprocal relationship as the plants provide the fungi with sugars from photosynthesis Here the fungi actually grow inside plant cells allowing them to exchange nutrients with their hosts while sending signals that suppress the plant immune system 217 Coalitions between organisms of the same species have also evolved An extreme case is the eusociality found in social insects such as bees termites and ants where sterile insects feed and guard the small number of organisms in a colony that are able to reproduce On an even smaller scale the somatic cells that make up the body of an animal limit their reproduction so they can maintain a stable organism which then supports a small number of the animal s germ cells to produce offspring Here somatic cells respond to specific signals that instruct them whether to grow remain as they are or die If cells ignore these signals and multiply inappropriately their uncontrolled growth causes cancer 218 Such cooperation within species may have evolved through the process of kin selection which is where one organism acts to help raise a relative s offspring 219 This activity is selected for because if the helping individual contains alleles which promote the helping activity it is likely that its kin will also contain these alleles and thus those alleles will be passed on 220 Other processes that may promote cooperation include group selection where cooperation provides benefits to a group of organisms 221 Speciation Main article Speciation Further information Assortative mating and Panmixia The four geographic modes of speciation Speciation is the process where a species diverges into two or more descendant species 222 There are multiple ways to define the concept of species The choice of definition is dependent on the particularities of the species concerned 223 For example some species concepts apply more readily toward sexually reproducing organisms while others lend themselves better toward asexual organisms Despite the diversity of various species concepts these various concepts can be placed into one of three broad philosophical approaches interbreeding ecological and phylogenetic 224 The Biological Species Concept BSC is a classic example of the interbreeding approach Defined by evolutionary biologist Ernst Mayr in 1942 the BSC states that species are groups of actually or potentially interbreeding natural populations which are reproductively isolated from other such groups 225 Despite its wide and long term use the BSC like others is not without controversy for example because these concepts cannot be applied to prokaryotes 226 this is called the species problem 223 Some researchers have attempted a unifying monistic definition of species while others adopt a pluralistic approach and suggest that there may be different ways to logically interpret the definition of a species 223 224 Barriers to reproduction between two diverging sexual populations are required for the populations to become new species Gene flow may slow this process by spreading the new genetic variants also to the other populations Depending on how far two species have diverged since their most recent common ancestor it may still be possible for them to produce offspring as with horses and donkeys mating to produce mules 227 Such hybrids are generally infertile In this case closely related species may regularly interbreed but hybrids will be selected against and the species will remain distinct However viable hybrids are occasionally formed and these new species can either have properties intermediate between their parent species or possess a totally new phenotype 228 The importance of hybridisation in producing new species of animals is unclear although cases have been seen in many types of animals 229 with the gray tree frog being a particularly well studied example 230 Speciation has been observed multiple times under both controlled laboratory conditions and in nature 231 In sexually reproducing organisms speciation results from reproductive isolation followed by genealogical divergence There are four primary geographic modes of speciation The most common in animals is allopatric speciation which occurs in populations initially isolated geographically such as by habitat fragmentation or migration Selection under these conditions can produce very rapid changes in the appearance and behaviour of organisms 232 233 As selection and drift act independently on populations isolated from the rest of their species separation may eventually produce organisms that cannot interbreed 234 The second mode of speciation is peripatric speciation which occurs when small populations of organisms become isolated in a new environment This differs from allopatric speciation in that the isolated populations are numerically much smaller than the parental population Here the founder effect causes rapid speciation after an increase in inbreeding increases selection on homozygotes leading to rapid genetic change 235 The third mode is parapatric speciation This is similar to peripatric speciation in that a small population enters a new habitat but differs in that there is no physical separation between these two populations Instead speciation results from the evolution of mechanisms that reduce gene flow between the two populations 222 Generally this occurs when there has been a drastic change in the environment within the parental species habitat One example is the grass Anthoxanthum odoratum which can undergo parapatric speciation in response to localised metal pollution from mines 236 Here plants evolve that have resistance to high levels of metals in the soil Selection against interbreeding with the metal sensitive parental population produced a gradual change in the flowering time of the metal resistant plants which eventually produced complete reproductive isolation Selection against hybrids between the two populations may cause reinforcement which is the evolution of traits that promote mating within a species as well as character displacement which is when two species become more distinct in appearance 237 Geographical isolation of finches on the Galapagos Islands produced over a dozen new species Finally in sympatric speciation species diverge without geographic isolation or changes in habitat This form is rare since even a small amount of gene flow may remove genetic differences between parts of a population 238 Generally sympatric speciation in animals requires the evolution of both genetic differences and nonrandom mating to allow reproductive isolation to evolve 239 One type of sympatric speciation involves crossbreeding of two related species to produce a new hybrid species This is not common in animals as animal hybrids are usually sterile This is because during meiosis the homologous chromosomes from each parent are from different species and cannot successfully pair However it is more common in plants because plants often double their number of chromosomes to form polyploids 240 This allows the chromosomes from each parental species to form matching pairs during meiosis since each parent s chromosomes are represented by a pair already 241 An example of such a speciation event is when the plant species Arabidopsis thaliana and Arabidopsis arenosa crossbred to give the new species Arabidopsis suecica 242 This happened about 20 000 years ago 243 and the speciation process has been repeated in the laboratory which allows the study of the genetic mechanisms involved in this process 244 Indeed chromosome doubling within a species may be a common cause of reproductive isolation as half the doubled chromosomes will be unmatched when breeding with undoubled organisms 245 Speciation events are important in the theory of punctuated equilibrium which accounts for the pattern in the fossil record of short bursts of evolution interspersed with relatively long periods of stasis where species remain relatively unchanged 246 In this theory speciation and rapid evolution are linked with natural selection and genetic drift acting most strongly on organisms undergoing speciation in novel habitats or small populations As a result the periods of stasis in the fossil record correspond to the parental population and the organisms undergoing speciation and rapid evolution are found in small populations or geographically restricted habitats and therefore rarely being preserved as fossils 160 Extinction Further information Extinction Tyrannosaurus rex Non avian dinosaurs died out in the Cretaceous Paleogene extinction event at the end of the Cretaceous period Extinction is the disappearance of an entire species Extinction is not an unusual event as species regularly appear through speciation and disappear through extinction 247 Nearly all animal and plant species that have lived on Earth are now extinct 248 and extinction appears to be the ultimate fate of all species 249 These extinctions have happened continuously throughout the history of life although the rate of extinction spikes in occasional mass extinction events 250 The Cretaceous Paleogene extinction event during which the non avian dinosaurs became extinct is the most well known but the earlier Permian Triassic extinction event was even more severe with approximately 96 of all marine species driven to extinction 250 The Holocene extinction event is an ongoing mass extinction associated with humanity s expansion across the globe over the past few thousand years Present day extinction rates are 100 1000 times greater than the background rate and up to 30 of current species may be extinct by the mid 21st century 251 Human activities are now the primary cause of the ongoing extinction event 252 253 global warming may further accelerate it in the future 254 Despite the estimated extinction of more than 99 of all species that ever lived on Earth 255 256 about 1 trillion species are estimated to be on Earth currently with only one thousandth of 1 described 257 The role of extinction in evolution is not very well understood and may depend on which type of extinction is considered 250 The causes of the continuous low level extinction events which form the majority of extinctions may be the result of competition between species for limited resources the competitive exclusion principle 258 If one species can out compete another this could produce species selection with the fitter species surviving and the other species being driven to extinction 85 The intermittent mass extinctions are also important but instead of acting as a selective force they drastically reduce diversity in a nonspecific manner and promote bursts of rapid evolution and speciation in survivors 259 Evolutionary history of lifeMain article Evolutionary history of life See also Timeline of the evolutionary history of life Origin of life Further information Abiogenesis Earliest known life forms Panspermia and RNA world hypothesis The Earth is about 4 54 billion years old 260 261 262 The earliest undisputed evidence of life on Earth dates from at least 3 5 billion years ago 13 263 during the Eoarchean Era after a geological crust started to solidify following the earlier molten Hadean Eon Microbial mat fossils have been found in 3 48 billion year old sandstone in Western Australia 15 16 17 Other early physical evidence of a biogenic substance is graphite in 3 7 billion year old metasedimentary rocks discovered in Western Greenland 14 as well as remains of biotic life found in 4 1 billion year old rocks in Western Australia 264 265 Commenting on the Australian findings Stephen Blair Hedges wrote If life arose relatively quickly on Earth then it could be common in the universe 264 266 In July 2016 scientists reported identifying a set of 355 genes from the last universal common ancestor LUCA of all organisms living on Earth 267 More than 99 of all species amounting to over five billion species 268 that ever lived on Earth are estimated to be extinct 255 256 Estimates on the number of Earth s current species range from 10 million to 14 million 269 270 of which about 1 9 million are estimated to have been named 271 and 1 6 million documented in a central database to date 272 leaving at least 80 not yet described Highly energetic chemistry is thought to have produced a self replicating molecule around 4 billion years ago and half a billion years later the last common ancestor of all life existed 11 The current scientific consensus is that the complex biochemistry that makes up life came from simpler chemical reactions 273 274 The beginning of life may have included self replicating molecules such as RNA 275 and the assembly of simple cells 276 Common descent Further information Common descent and Evidence of common descent All organisms on Earth are descended from a common ancestor or ancestral gene pool 189 277 Current species are a stage in the process of evolution with their diversity the product of a long series of speciation and extinction events 278 The common descent of organisms was first deduced from four simple facts about organisms First they have geographic distributions that cannot be explained by local adaptation Second the diversity of life is not a set of completely unique organisms but organisms that share morphological similarities Third vestigial traits with no clear purpose resemble functional ancestral traits Fourth organisms can be classified using these similarities into a hierarchy of nested groups similar to a family tree 279 The hominoids are descendants of a common ancestor Due to horizontal gene transfer this tree of life may be more complicated than a simple branching tree since some genes have spread independently between distantly related species 280 281 To solve this problem and others some authors prefer to use the Coral of life as a metaphor or a mathematical model to illustrate the evolution of life This view dates back to an idea briefly mentioned by Darwin but later abandoned 282 Past species have also left records of their evolutionary history Fossils along with the comparative anatomy of present day organisms constitute the morphological or anatomical record 283 By comparing the anatomies of both modern and extinct species palaeontologists can infer the lineages of those species However this approach is most successful for organisms that had hard body parts such as shells bones or teeth Further as prokaryotes such as bacteria and archaea share a limited set of common morphologies their fossils do not provide information on their ancestry More recently evidence for common descent has come from the study of biochemical similarities between organisms For example all living cells use the same basic set of nucleotides and amino acids 284 The development of molecular genetics has revealed the record of evolution left in organisms genomes dating when species diverged through the molecular clock produced by mutations 285 For example these DNA sequence comparisons have revealed that humans and chimpanzees share 98 of their genomes and analysing the few areas where they differ helps shed light on when the common ancestor of these species existed 286 Evolution of life Main articles Evolutionary history of life and Timeline of evolutionary history of life Evolutionary tree showing the divergence of modern species from their common ancestor in the centre 287 The three domains are coloured with bacteria blue archaea green and eukaryotes red Prokaryotes inhabited the Earth from approximately 3 4 billion years ago 288 289 No obvious changes in morphology or cellular organisation occurred in these organisms over the next few billion years 290 The eukaryotic cells emerged between 1 6 and 2 7 billion years ago The next major change in cell structure came when bacteria were engulfed by eukaryotic cells in a cooperative association called endosymbiosis 291 292 The engulfed bacteria and the host cell then underwent coevolution with the bacteria evolving into either mitochondria or hydrogenosomes 293 Another engulfment of cyanobacterial like organisms led to the formation of chloroplasts in algae and plants 294 The history of life was that of the unicellular eukaryotes prokaryotes and archaea until about 610 million years ago when multicellular organisms began to appear in the oceans in the Ediacaran period 288 295 The evolution of multicellularity occurred in multiple independent events in organisms as diverse as sponges brown algae cyanobacteria slime moulds and myxobacteria 296 In January 2016 scientists reported that about 800 million years ago a minor genetic change in a single molecule called GK PID may have allowed organisms to go from a single cell organism to one of many cells 297 Soon after the emergence of these first multicellular organisms a remarkable amount of biological diversity appeared over approximately 10 million years in an event called the Cambrian explosion Here the majority of types of modern animals appeared in the fossil record as well as unique lineages that subsequently became extinct 298 Various triggers for the Cambrian explosion have been proposed including the accumulation of oxygen in the atmosphere from photosynthesis 299 About 500 million years ago plants and fungi colonised the land and were soon followed by arthropods and other animals 300 Insects were particularly successful and even today make up the majority of animal species 301 Amphibians first appeared around 364 million years ago followed by early amniotes and birds around 155 million years ago both from reptile like lineages mammals around 129 million years ago Homininae around 10 million years ago and modern humans around 250 000 years ago 302 303 304 However despite the evolution of these large animals smaller organisms similar to the types that evolved early in this process continue to be highly successful and dominate the Earth with the majority of both biomass and species being prokaryotes 167 History of evolutionary thoughtMain article History of evolutionary thought Further information History of speciation Lucretius Alfred Russel Wallace Thomas Robert Malthus In 1842 Charles Darwin penned his first sketch of On the Origin of Species 305 Classical antiquity The proposal that one type of organism could descend from another type goes back to some of the first pre Socratic Greek philosophers such as Anaximander and Empedocles 306 Such proposals survived into Roman times The poet and philosopher Lucretius followed Empedocles in his masterwork De rerum natura On the Nature of Things 307 308 Middle Ages In contrast to these materialistic views Aristotelianism had considered all natural things as actualisations of fixed natural possibilities known as forms 309 310 This became part of a medieval teleological understanding of nature in which all things have an intended role to play in a divine cosmic order Variations of this idea became the standard understanding of the Middle Ages and were integrated into Christian learning but Aristotle did not demand that real types of organisms always correspond one for one with exact metaphysical forms and specifically gave examples of how new types of living things could come to be 311 A number of Arab Muslim scholars wrote about evolution most notably Ibn Khaldun who wrote the book Muqaddimah in 1377 AD in which he asserted that humans developed from the world of the monkeys in a process by which species become more numerous 312 Pre Darwinian The New Science of the 17th century rejected the Aristotelian approach It sought to explain natural phenomena in terms of physical laws that were the same for all visible things and that did not require the existence of any fixed natural categories or divine cosmic order However this new approach was slow to take root in the biological sciences the last bastion of the concept of fixed natural types John Ray applied one of the previously more general terms for fixed natural types species to plant and animal types but he strictly identified each type of living thing as a species and proposed that each species could be defined by the features that perpetuated themselves generation after generation 313 The biological classification introduced by Carl Linnaeus in 1735 explicitly recognised the hierarchical nature of species relationships but still viewed species as fixed according to a divine plan 314 Other naturalists of this time speculated on the evolutionary change of species over time according to natural laws In 1751 Pierre Louis Maupertuis wrote of natural modifications occurring during reproduction and accumulating over many generations to produce new species 315 Georges Louis Leclerc Comte de Buffon suggested that species could degenerate into different organisms and Erasmus Darwin proposed that all warm blooded animals could have descended from a single microorganism or filament 316 The first full fledged evolutionary scheme was Jean Baptiste Lamarck s transmutation theory of 1809 317 which envisaged spontaneous generation continually producing simple forms of life that developed greater complexity in parallel lineages with an inherent progressive tendency and postulated that on a local level these lineages adapted to the environment by inheriting changes caused by their use or disuse in parents 318 The latter process was later called Lamarckism 318 319 320 These ideas were condemned by established naturalists as speculation lacking empirical support In particular Georges Cuvier insisted that species were unrelated and fixed their similarities reflecting divine design for functional needs In the meantime Ray s ideas of benevolent design had been developed by William Paley into the Natural Theology or Evidences of the Existence and Attributes of the Deity 1802 which proposed complex adaptations as evidence of divine design and which was admired by Charles Darwin 321 322 Darwinian revolution The crucial break from the concept of constant typological classes or types in biology came with the theory of evolution through natural selection which was formulated by Charles Darwin and Alfred Wallace in terms of variable populations Darwin used the expression descent with modification rather than evolution 323 Partly influenced by An Essay on the Principle of Population 1798 by Thomas Robert Malthus Darwin noted that population growth would lead to a struggle for existence in which favourable variations prevailed as others perished In each generation many offspring fail to survive to an age of reproduction because of limited resources This could explain the diversity of plants and animals from a common ancestry through the working of natural laws in the same way for all types of organism 324 325 326 327 Darwin developed his theory of natural selection from 1838 onwards and was writing up his big book on the subject when Alfred Russel Wallace sent him a version of virtually the same theory in 1858 Their separate papers were presented together at an 1858 meeting of the Linnean Society of London 328 At the end of 1859 Darwin s publication of his abstract as On the Origin of Species explained natural selection in detail and in a way that led to an increasingly wide acceptance of Darwin s concepts of evolution at the expense of alternative theories Thomas Henry Huxley applied Darwin s ideas to humans using paleontology and comparative anatomy to provide strong evidence that humans and apes shared a common ancestry Some were disturbed by this since it implied that humans did not have a special place in the universe 329 Pangenesis and heredity The mechanisms of reproductive heritability and the origin of new traits remained a mystery Towards this end Darwin developed his provisional theory of pangenesis 330 In 1865 Gregor Mendel reported that traits were inherited in a predictable manner through the independent assortment and segregation of elements later known as genes Mendel s laws of inheritance eventually supplanted most of Darwin s pangenesis theory 331 August Weismann made the important distinction between germ cells that give rise to gametes such as sperm and egg cells and the somatic cells of the body demonstrating that heredity passes through the germ line only Hugo de Vries connected Darwin s pangenesis theory to Weismann s germ soma cell distinction and proposed that Darwin s pangenes were concentrated in the cell nucleus and when expressed they could move into the cytoplasm to change the cell s structure De Vries was also one of the researchers who made Mendel s work well known believing that Mendelian traits corresponded to the transfer of heritable variations along the germline 332 To explain how new variants originate de Vries developed a mutation theory that led to a temporary rift between those who accepted Darwinian evolution and biometricians who allied with de Vries 333 334 In the 1930s pioneers in the field of population genetics such as Ronald Fisher Sewall Wright and J B S Haldane set the foundations of evolution onto a robust statistical philosophy The false contradiction between Darwin s theory genetic mutations and Mendelian inheritance was thus reconciled 335 The modern synthesis Main article Modern synthesis 20th century In the 1920s and 1930s the so called modern synthesis connected natural selection and population genetics based on Mendelian inheritance into a unified theory that applied generally to any branch of biology It explained patterns observed across species in populations through fossil transitions in palaeontology 335 Further syntheses Since then further syntheses have extended evolution s explanatory power in the light of numerous discoveries to cover biological phenomena across the whole of the biological hierarchy from genes to populations 336 The publication of the structure of DNA by James Watson and Francis Crick with contribution of Rosalind Franklin in 1953 demonstrated a physical mechanism for inheritance 337 Molecular biology improved understanding of the relationship between genotype and phenotype Advances were also made in phylogenetic systematics mapping the transition of traits into a comparative and testable framework through the publication and use of evolutionary trees 338 In 1973 evolutionary biologist Theodosius Dobzhansky penned that nothing in biology makes sense except in the light of evolution because it has brought to light the relations of what first seemed disjointed facts in natural history into a coherent explanatory body of knowledge that describes and predicts many observable facts about life on this planet 339 One extension known as evolutionary developmental biology and informally called evo devo emphasises how changes between generations evolution act on patterns of change within individual organisms development 258 340 Since the beginning of the 21st century some biologists have argued for an extended evolutionary synthesis which would account for the effects of non genetic inheritance modes such as epigenetics parental effects ecological inheritance and cultural inheritance and evolvability 341 342 Social and cultural responsesFurther information Social effects of evolutionary theory 1860 Oxford evolution debate Rejection of evolution by religious groups Objections to evolution and Evolution in fiction As evolution became widely accepted in the 1870s caricatures of Charles Darwin with an ape or monkey body symbolised evolution 343 In the 19th century particularly after the publication of On the Origin of Species in 1859 the idea that life had evolved was an active source of academic debate centred on the philosophical social and religious implications of evolution Today the modern evolutionary synthesis is accepted by a vast majority of scientists 258 However evolution remains a contentious concept for some theists 344 While various religions and denominations have reconciled their beliefs with evolution through concepts such as theistic evolution there are creationists who believe that evolution is contradicted by the creation myths found in their religions and who raise various objections to evolution 156 345 346 As had been demonstrated by responses to the publication of Vestiges of the Natural History of Creation in 1844 the most controversial aspect of evolutionary biology is the implication of human evolution that humans share common ancestry with apes and that the mental and moral faculties of humanity have the same types of natural causes as other inherited traits in animals 347 In some countries notably the United States these tensions between science and religion have fuelled the current creation evolution controversy a religious conflict focusing on politics and public education 348 While other scientific fields such as cosmology 349 and Earth science 350 also conflict with literal interpretations of many religious texts evolutionary biology experiences significantly more opposition from religious literalists The teaching of evolution in American secondary school biology classes was uncommon in most of the first half of the 20th century The Scopes Trial decision of 1925 caused the subject to become very rare in American secondary biology textbooks for a generation but it was gradually re introduced later and became legally protected with the 1968 Epperson v Arkansas decision Since then the competing religious belief of creationism was legally disallowed in secondary school curricula in various decisions in the 1970s and 1980s but it returned in pseudoscientific form as intelligent design ID to be excluded once again in the 2005 Kitzmiller v Dover Area School District case 351 The debate over Darwin s ideas did not generate significant controversy in China 352 References Hall amp Hallgrimsson 2008 pp 4 6 Evolution Resources Washington DC National Academies of Sciences Engineering and Medicine 2016 Archived from the original on 3 June 2016 a b Futuyma amp Kirkpatrick 2017 pp 79 102 Chapter 4 Mutation and Variation Scott Phillips Thomas C Laland Kevin N Shuker David M et al May 2014 The Niche Construction Perspective A Critical Appraisal Evolution 68 5 1231 1243 doi 10 1111 evo 12332 ISSN 0014 3820 PMC 4261998 PMID 24325256 Evolutionary processes are generally thought of as processes by which these changes occur Four such processes are widely recognized natural selection in the broad sense to include sexual selection genetic drift mutation and migration Fisher 1930 Haldane 1932 The latter two generate variation the first two sort it Hall amp Hallgrimsson 2008 pp 3 5 Voet Voet amp Pratt 2016 pp 1 22 Chapter 1 Introduction to the Chemistry of Life Darwin 1859 a b Lewontin Richard C November 1970 The Units of Selection PDF Annual Review of Ecology and Systematics 1 1 18 doi 10 1146 annurev es 01 110170 000245 JSTOR 2096764 Archived PDF from the original on 6 February 2015 Futuyma amp Kirkpatrick 2017 pp 3 26 Chapter 1 Evolutionary Biology Kampourakis 2014 pp 127 129 a b Doolittle W Ford February 2000 Uprooting the Tree of Life PDF Scientific American 282 2 90 95 Bibcode 2000SciAm 282b 90D doi 10 1038 scientificamerican0200 90 ISSN 0036 8733 PMID 10710791 Archived from the original PDF on 7 September 2006 Retrieved 5 April 2015 Glansdorff Nicolas Ying Xu Labedan Bernard 9 July 2008 The Last Universal Common Ancestor emergence constitution and genetic legacy of an elusive forerunner Biology Direct 3 29 doi 10 1186 1745 6150 3 29 ISSN 1745 6150 PMC 2478661 PMID 18613974 a b Schopf J William Kudryavtsev Anatoliy B Czaja Andrew D Tripathi Abhishek B 5 October 2007 Evidence of Archean life Stromatolites and microfossils Precambrian Research 158 3 4 141 155 Bibcode 2007PreR 158 141S doi 10 1016 j precamres 2007 04 009 ISSN 0301 9268 a b Ohtomo Yoko Kakegawa Takeshi Ishida Akizumi et al January 2014 Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks Nature Geoscience 7 1 25 28 Bibcode 2014NatGe 7 25O doi 10 1038 ngeo2025 ISSN 1752 0894 a b Borenstein Seth 13 November 2013 Oldest fossil found Meet your microbial mom Excite Yonkers New York Mindspark Interactive Network Associated Press Archived from the original on 29 June 2015 Retrieved 31 May 2015 a b Pearlman Jonathan 13 November 2013 Oldest signs of life on Earth found The Daily Telegraph London Archived from the original on 16 December 2014 Retrieved 15 December 2014 a b Noffke Nora Christian Daniel Wacey David Hazen Robert M 16 November 2013 Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca 3 48 Billion Year Old Dresser Formation Pilbara Western Australia Astrobiology 13 12 1103 1124 Bibcode 2013AsBio 13 1103N doi 10 1089 ast 2013 1030 ISSN 1531 1074 PMC 3870916 PMID 24205812 Futuyma 2004 p 33 Panno 2005 pp xv 16 NAS 2008 p 17 Archived 30 June 2015 at the Wayback Machine Futuyma Douglas J ed 1999 Evolution Science and Society Evolutionary Biology and the National Research Agenda PDF Executive summary New Brunswick New Jersey Office of University Publications Rutgers The State University of New Jersey OCLC 43422991 Archived from the original PDF on 31 January 2012 Retrieved 24 November 2014 Sturm Richard A Frudakis Tony N August 2004 Eye colour portals into pigmentation genes and ancestry Trends in Genetics 20 8 327 332 doi 10 1016 j tig 2004 06 010 ISSN 0168 9525 PMID 15262401 a b Pearson Helen 25 May 2006 Genetics What is a gene Nature 441 7092 398 401 Bibcode 2006Natur 441 398P doi 10 1038 441398a ISSN 0028 0836 PMID 16724031 S2CID 4420674 Visscher Peter M Hill William G Wray Naomi R April 2008 Heritability in the genomics era concepts and misconceptions Nature Reviews Genetics 9 4 255 266 doi 10 1038 nrg2322 ISSN 1471 0056 PMID 18319743 S2CID 690431 Oetting William S Brilliant Murray H King Richard A August 1996 The clinical spectrum of albinism in humans Molecular Medicine Today 2 8 330 335 doi 10 1016 1357 4310 96 81798 9 ISSN 1357 4310 PMID 8796918 a b Futuyma 2005 page needed Phillips Patrick C November 2008 Epistasis the essential role of gene interactions in the structure and evolution of genetic systems Nature Reviews Genetics 9 11 855 867 doi 10 1038 nrg2452 ISSN 1471 0056 PMC 2689140 PMID 18852697 a b Rongling Wu Min Lin March 2006 Functional mapping how to map and study the genetic architecture of dynamic complex traits Nature Reviews Genetics 7 3 229 237 doi 10 1038 nrg1804 ISSN 1471 0056 PMID 16485021 S2CID 24301815 Jablonka Eva Raz Gal June 2009 Transgenerational Epigenetic Inheritance Prevalence Mechanisms and Implications for the Study of Heredity and Evolution PDF The Quarterly Review of Biology 84 2 131 176 CiteSeerX 10 1 1 617 6333 doi 10 1086 598822 ISSN 0033 5770 PMID 19606595 S2CID 7233550 Archived PDF from the original on 15 July 2011 Retrieved 30 July 2022 Bossdorf Oliver Arcuri Davide Richards Christina L Pigliucci Massimo May 2010 Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana PDF Evolutionary Ecology 24 3 541 553 doi 10 1007 s10682 010 9372 7 ISSN 0269 7653 S2CID 15763479 Archived PDF from the original on 5 June 2022 Retrieved 30 July 2022 Jablonka Eva Lamb Marion J December 2002 The Changing Concept of Epigenetics Annals of the New York Academy of Sciences 981 1 82 96 Bibcode 2002NYASA 981 82J doi 10 1111 j 1749 6632 2002 tb04913 x ISSN 0077 8923 PMID 12547675 S2CID 12561900 Laland Kevin N Sterelny Kim September 2006 Perspective Seven Reasons Not to Neglect Niche Construction Evolution 60 9 1751 1762 doi 10 1111 j 0014 3820 2006 tb00520 x ISSN 0014 3820 PMID 17089961 S2CID 22997236 Chapman Michael J Margulis Lynn December 1998 Morphogenesis by symbiogenesis PDF International Microbiology 1 4 319 326 ISSN 1139 6709 PMID 10943381 Archived from the original PDF on 23 August 2014 Retrieved 9 December 2014 Wilson David Sloan Wilson Edward O December 2007 Rethinking the Theoretical Foundation of Sociobiology PDF The Quarterly Review of Biology 82 4 327 348 doi 10 1086 522809 ISSN 0033 5770 PMID 18217526 S2CID 37774648 Archived from the original PDF on 11 May 2011 Butlin Roger K Tregenza Tom 28 February 1998 Levels of genetic polymorphism marker loci versus quantitative traits Philosophical Transactions of the Royal Society B 353 1366 187 198 doi 10 1098 rstb 1998 0201 ISSN 0962 8436 PMC 1692210 PMID 9533123 Butlin Roger K Tregenza Tom 29 December 2000 Correction for Butlin and Tregenza Levels of genetic polymorphism marker loci versus quantitative traits Philosophical Transactions of the Royal Society B 355 1404 1865 doi 10 1098 rstb 2000 2000 ISSN 0962 8436 Some of the values in table 1 on p 193 were given incorrectly The errors do not affect the conclusions drawn in the paper The corrected table is reproduced below Wetterbom Anna Sevov Marie Cavelier Lucia Bergstrom Tomas F November 2006 Comparative Genomic Analysis of Human and Chimpanzee Indicates a Key Role for Indels in Primate Evolution Journal of Molecular Evolution 63 5 682 690 Bibcode 2006JMolE 63 682W doi 10 1007 s00239 006 0045 7 ISSN 0022 2844 PMID 17075697 S2CID 7257193 Amos William Harwood John 28 February 1998 Factors affecting levels of genetic diversity in natural populations Philosophical Transactions of the Royal Society B 353 1366 177 186 doi 10 1098 rstb 1998 0200 ISSN 0962 8436 PMC 1692205 PMID 9533122 a b Ewens 2004 page needed Sawyer Stanley A Parsch John Zhang Zhi Hartl Daniel L 17 April 2007 Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila PNAS 104 16 6504 6510 Bibcode 2007PNAS 104 6504S doi 10 1073 pnas 0701572104 ISSN 0027 8424 PMC 1871816 PMID 17409186 Hastings P J Lupski James R Rosenberg Susan M Ira Grzegorz August 2009 Mechanisms of change in gene copy number Nature Reviews Genetics 10 8 551 564 doi 10 1038 nrg2593 ISSN 1471 0056 PMC 2864001 PMID 19597530 Carroll Grenier amp Weatherbee 2005 page needed Harrison Paul M Gerstein Mark 17 May 2002 Studying Genomes Through the Aeons Protein Families Pseudogenes and Proteome Evolution Journal of Molecular Biology 318 5 1155 1174 doi 10 1016 S0022 2836 02 00109 2 ISSN 0022 2836 PMID 12083509 Bowmaker James K May 1998 Evolution of colour vision in vertebrates Eye 12 3b 541 547 doi 10 1038 eye 1998 143 ISSN 0950 222X PMID 9775215 S2CID 12851209 Gregory T Ryan Hebert Paul D N April 1999 The Modulation of DNA Content Proximate Causes and Ultimate Consequences Genome Research 9 4 317 324 doi 10 1101 gr 9 4 317 ISSN 1088 9051 PMID 10207154 S2CID 16791399 Archived from the original on 23 August 2014 Retrieved 11 December 2014 Hurles Matthew 13 July 2004 Gene Duplication The Genomic Trade in Spare Parts PLOS Biology 2 7 e206 doi 10 1371 journal pbio 0020206 ISSN 1545 7885 PMC 449868 PMID 15252449 Liu Na Okamura Katsutomo Tyler David M et al October 2008 The evolution and functional diversification of animal microRNA genes Cell Research 18 10 985 996 doi 10 1038 cr 2008 278 ISSN 1001 0602 PMC 2712117 PMID 18711447 Siepel Adam October 2009 Darwinian alchemy Human genes from noncoding DNA Genome Research 19 10 1693 1695 doi 10 1101 gr 098376 109 ISSN 1088 9051 PMC 2765273 PMID 19797681 Orengo Christine A Thornton Janet M July 2005 Protein families and their evolution a structural perspective Annual Review of Biochemistry Annual Reviews 74 867 900 doi 10 1146 annurev biochem 74 082803 133029 ISSN 0066 4154 PMID 15954844 S2CID 7483470 Long Manyuan Betran Esther Thornton Kevin Wang Wen November 2003 The origin of new genes glimpses from the young and old Nature Reviews Genetics 4 11 865 875 doi 10 1038 nrg1204 ISSN 1471 0056 PMID 14634634 S2CID 33999892 Wang Minglei Caetano Anolles Gustavo 14 January 2009 The Evolutionary Mechanics of Domain Organization in Proteomes and the Rise of Modularity in the Protein World Structure 17 1 66 78 doi 10 1016 j str 2008 11 008 ISSN 1357 4310 PMID 19141283 Weissman Kira J Muller Rolf 14 April 2008 Protein Protein Interactions in Multienzyme Megasynthetases ChemBioChem 9 6 826 848 doi 10 1002 cbic 200700751 ISSN 1439 4227 PMID 18357594 S2CID 205552778 Andersson Leif 2020 Mutations in Domestic Animals Disrupting or Creating Pigmentation Patterns Frontiers in Ecology and Evolution 8 doi 10 3389 fevo 2020 00116 ISSN 2296 701X Radding Charles M December 1982 Homologous Pairing and Strand Exchange in Genetic Recombination Annual Review of Genetics 16 405 437 doi 10 1146 annurev ge 16 120182 002201 ISSN 0066 4197 PMID 6297377 Agrawal Aneil F 5 September 2006 Evolution of Sex Why Do Organisms Shuffle Their Genotypes Current Biology 16 17 R696 R704 CiteSeerX 10 1 1 475 9645 doi 10 1016 j cub 2006 07 063 ISSN 0960 9822 PMID 16950096 S2CID 14739487 Peters Andrew D Otto Sarah P June 2003 Liberating genetic variance through sex BioEssays 25 6 533 537 doi 10 1002 bies 10291 ISSN 0265 9247 PMID 12766942 Goddard Matthew R Godfray H Charles J Burt Austin 31 March 2005 Sex increases the efficacy of natural selection in experimental yeast populations Nature 434 7033 636 640 Bibcode 2005Natur 434 636G doi 10 1038 nature03405 ISSN 0028 0836 PMID 15800622 S2CID 4397491 Maynard Smith 1978 page needed a b Ridley 2004 p 314 Van Valen Leigh 1973 A New Evolutionary Law PDF Evolutionary Theory 1 1 30 ISSN 0093 4755 Archived from the original PDF on 22 December 2014 Retrieved 24 December 2014 Hamilton W D Axelrod Robert Tanese Reiko 1 May 1990 Sexual reproduction as an adaptation to resist parasites a review PNAS 87 9 3566 3573 Bibcode 1990PNAS 87 3566H doi 10 1073 pnas 87 9 3566 ISSN 0027 8424 PMC 53943 PMID 2185476 Birdsell amp Wills 2003 pp 113 117 Bernstein H Byerly HC Hopf FA Michod RE Genetic damage mutation and the evolution of sex Science 1985 Sep 20 229 4719 1277 81 doi 10 1126 science 3898363 PMID 3898363 Bernstein H Hopf FA Michod RE The molecular basis of the evolution of sex Adv Genet 1987 24 323 70 doi 10 1016 s0065 2660 08 60012 7 PMID 3324702 a b Morjan Carrie L Rieseberg Loren H June 2004 How species evolve collectively implications of gene flow and selection for the spread of advantageous alleles Molecular Ecology 13 6 1341 1356 doi 10 1111 j 1365 294X 2004 02164 x ISSN 0962 1083 PMC 2600545 PMID 15140081 Boucher Yan Douady Christophe J Papke R Thane et al December 2003 Lateral gene transfer and the origins of prokaryotic groups Annual Review of Genetics 37 283 328 doi 10 1146 annurev genet 37 050503 084247 ISSN 0066 4197 PMID 14616063 Walsh Timothy R October 2006 Combinatorial genetic evolution of multiresistance Current Opinion in Microbiology 9 5 476 482 doi 10 1016 j mib 2006 08 009 ISSN 1369 5274 PMID 16942901 Kondo Natsuko Nikoh Naruo Ijichi Nobuyuki et al 29 October 2002 Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect PNAS 99 22 14280 14285 Bibcode 2002PNAS 9914280K doi 10 1073 pnas 222228199 ISSN 0027 8424 PMC 137875 PMID 12386340 Sprague George F Jr December 1991 Genetic exchange between kingdoms Current Opinion in Genetics amp Development 1 4 530 533 doi 10 1016 S0959 437X 05 80203 5 ISSN 0959 437X PMID 1822285 Gladyshev Eugene A Meselson Matthew Arkhipova Irina R 30 May 2008 Massive Horizontal Gene Transfer in Bdelloid Rotifers Science 320 5880 1210 1213 Bibcode 2008Sci 320 1210G doi 10 1126 science 1156407 ISSN 0036 8075 PMID 18511688 S2CID 11862013 Archived from the original on 30 July 2022 Retrieved 30 July 2022 Baldo Angela M McClure Marcella A September 1999 Evolution and Horizontal Transfer of dUTPase Encoding Genes in Viruses and Their Hosts Journal of Virology 73 9 7710 7721 doi 10 1128 JVI 73 9 7710 7721 1999 ISSN 0022 538X PMC 104298 PMID 10438861 Rivera Maria C Lake James A 9 September 2004 The ring of life provides evidence for a genome fusion origin of eukaryotes Nature 431 7005 152 155 Bibcode 2004Natur 431 152R doi 10 1038 nature02848 ISSN 0028 0836 PMID 15356622 S2CID 4349149 a b c Hurst Laurence D February 2009 Fundamental concepts in genetics genetics and the understanding of selection Nature Reviews Genetics 10 2 83 93 doi 10 1038 nrg2506 PMID 19119264 S2CID 1670587 Darwin 1859 Chapter XIV Otto Sarah P Servedio Maria R Nuismer Scott L August 2008 Frequency Dependent Selection and the Evolution of Assortative Mating Genetics 179 4 2091 2112 doi 10 1534 genetics 107 084418 PMC 2516082 PMID 18660541 a b c Orr H Allen August 2009 Fitness and its role in evolutionary genetics Nature Reviews Genetics 10 8 531 539 doi 10 1038 nrg2603 ISSN 1471 0056 PMC 2753274 PMID 19546856 Haldane J B S 14 March 1959 The Theory of Natural Selection To Day Nature 183 4663 710 713 Bibcode 1959Natur 183 710H doi 10 1038 183710a0 PMID 13644170 S2CID 4185793 Lande Russell Arnold Stevan J November 1983 The Measurement of Selection on Correlated Characters Evolution 37 6 1210 1226 doi 10 1111 j 1558 5646 1983 tb00236 x ISSN 0014 3820 JSTOR 2408842 PMID 28556011 S2CID 36544045 Goldberg Emma E Igic Boris November 2008 On phylogenetic tests of irreversible evolution Evolution 62 11 2727 2741 doi 10 1111 j 1558 5646 2008 00505 x ISSN 0014 3820 PMID 18764918 S2CID 30703407 Collin Rachel Miglietta Maria Pia November 2008 Reversing opinions on Dollo s Law Trends in Ecology amp Evolution 23 11 602 609 doi 10 1016 j tree 2008 06 013 PMID 18814933 Tomic Nenad Meyer Rochow Victor Benno 2011 Atavisms Medical Genetic and Evolutionary Implications Perspectives in Biology and Medicine 54 3 332 353 doi 10 1353 pbm 2011 0034 PMID 21857125 S2CID 40851098 Hoekstra Hopi E Hoekstra Jonathan M Berrigan David et al 31 July 2001 Strength and tempo of directional selection in the wild PNAS 98 16 9157 9160 Bibcode 2001PNAS 98 9157H doi 10 1073 pnas 161281098 PMC 55389 PMID 11470913 Felsenstein Joseph November 1979 Excursions along the Interface between Disruptive and Stabilizing Selection Genetics 93 3 773 795 doi 10 1093 genetics 93 3 773 PMC 1214112 PMID 17248980 Odum 1971 p 8 Okasha 2006 a b Gould Stephen Jay 28 February 1998 Gulliver s further travels the necessity and difficulty of a hierarchical theory of selection Philosophical Transactions of the Royal Society B 353 1366 307 314 doi 10 1098 rstb 1998 0211 ISSN 0962 8436 PMC 1692213 PMID 9533127 Mayr Ernst 18 March 1997 The objects of selection PNAS 94 6 2091 2094 Bibcode 1997PNAS 94 2091M doi 10 1073 pnas 94 6 2091 ISSN 0027 8424 PMC 33654 PMID 9122151 Maynard Smith 1998 pp 203 211 discussion 211 217 Hickey Donal A 1992 Evolutionary dynamics of transposable elements in prokaryotes and eukaryotes Genetica 86 1 3 269 274 doi 10 1007 BF00133725 ISSN 0016 6707 PMID 1334911 S2CID 6583945 Gould Stephen Jay Lloyd Elisabeth A 12 October 1999 Individuality and adaptation across levels of selection how shall we name and generalise the unit of Darwinism PNAS 96 21 11904 11909 Bibcode 1999PNAS 9611904G doi 10 1073 pnas 96 21 11904 ISSN 0027 8424 PMC 18385 PMID 10518549 Lien Sigbjorn Szyda Joanna Schechinger Birgit et al February 2000 Evidence for Heterogeneity in Recombination in the Human Pseudoautosomal Region High Resolution Analysis by Sperm Typing and Radiation Hybrid Mapping American Journal of Human Genetics 66 2 557 566 doi 10 1086 302754 ISSN 0002 9297 PMC 1288109 PMID 10677316 Barton Nicholas H 29 November 2000 Genetic hitchhiking Philosophical Transactions of the Royal Society B 355 1403 1553 1562 doi 10 1098 rstb 2000 0716 ISSN 0962 8436 PMC 1692896 PMID 11127900 a b Gillespie John H November 2001 Is the population size of a species relevant to its evolution Evolution 55 11 2161 2169 doi 10 1111 j 0014 3820 2001 tb00732 x ISSN 0014 3820 PMID 11794777 S2CID 221735887 Ries C Spaethe J Sztatecsny M Strondl C Hodl W 20 October 2008 Turning blue and ultraviolet sex specific colour change during the mating season in the Balkan moor frog Journal of Zoology 276 3 229 236 doi 10 1111 j 1469 7998 2008 00456 x via Google Scholar Andersson Malte Simmons Leigh W June 2006 Sexual selection and mate choice PDF Trends in Ecology amp Evolution 21 6 296 302 CiteSeerX 10 1 1 595 4050 doi 10 1016 j tree 2006 03 015 ISSN 0169 5347 PMID 16769428 Archived PDF from the original on 9 March 2013 Kokko Hanna Brooks Robert McNamara John M Houston Alasdair I 7 July 2002 The sexual selection continuum Proceedings of the Royal Society B 269 1498 1331 1340 doi 10 1098 rspb 2002 2020 ISSN 0962 8452 PMC 1691039 PMID 12079655 Quinn Thomas P Hendry Andrew P Buck Gregory B 2001 Balancing natural and sexual selection in sockeye salmon interactions between body size reproductive opportunity and vulnerability to predation by bears PDF Evolutionary Ecology Research 3 917 937 ISSN 1522 0613 Archived PDF from the original on 5 March 2016 Retrieved 15 December 2014 Hunt John Brooks Robert Jennions Michael D et al 23 December 2004 High quality male field crickets invest heavily in sexual display but die young Nature 432 7020 1024 1027 Bibcode 2004Natur 432 1024H doi 10 1038 nature03084 ISSN 0028 0836 PMID 15616562 S2CID 4417867 Futuyma amp Kirkpatrick 2017 pp 55 66 Chapter 3 Natural Selection and Adaptation a b Masel Joanna 25 October 2011 Genetic drift Current Biology 21 20 R837 R838 doi 10 1016 j cub 2011 08 007 ISSN 0960 9822 PMID 22032182 S2CID 17619958 Lande Russell 1989 Fisherian and Wrightian theories of speciation Genome 31 1 221 227 doi 10 1139 g89 037 ISSN 0831 2796 PMID 2687093 Kimura Motoo 1991 The neutral theory of molecular evolution a review of recent evidence Japanese Journal of Human Genetics 66 4 367 386 doi 10 1266 jjg 66 367 PMID 1954033 Archived from the original on 5 June 2022 Kimura Motoo 1989 The neutral theory of molecular evolution and the world view of the neutralists Genome 31 1 24 31 doi 10 1139 g89 009 ISSN 0831 2796 PMID 2687096 Kreitman Martin August 1996 The neutral theory is dead Long live the neutral theory BioEssays 18 8 678 683 discussion 683 doi 10 1002 bies 950180812 ISSN 0265 9247 PMID 8760341 Leigh E G Jr November 2007 Neutral theory a historical perspective Journal of Evolutionary Biology 20 6 2075 2091 doi 10 1111 j 1420 9101 2007 01410 x ISSN 1010 061X PMID 17956380 S2CID 2081042 Neher Richard A Shraiman Boris I August 2011 Genetic Draft and Quasi Neutrality in Large Facultatively Sexual Populations Genetics 188 4 975 996 arXiv 1108 1635 Bibcode 2011arXiv1108 1635N doi 10 1534 genetics 111 128876 PMC 3176096 PMID 21625002 Stoltzfus Arlin 1999 On the Possibility of Constructive Neutral Evolution Journal of Molecular Evolution 49 2 169 181 Bibcode 1999JMolE 49 169S doi 10 1007 PL00006540 PMID 10441669 S2CID 1743092 Archived from the original on 30 July 2022 Retrieved 30 July 2022 Stoltzfus Arlin 13 October 2012 Constructive neutral evolution exploring evolutionary theory s curious disconnect Biology Direct 7 1 35 doi 10 1186 1745 6150 7 35 PMC 3534586 PMID 23062217 Archived from the original on 30 July 2022 Retrieved 30 July 2022 Munoz Gomez Sergio A Bilolikar Gaurav Wideman Jeremy G et al 1 April 2021 Constructive Neutral Evolution 20 Years Later Journal of Molecular Evolution 89 3 172 182 Bibcode 2021JMolE 89 172M doi 10 1007 s00239 021 09996 y PMC 7982386 PMID 33604782 Archived from the original on 30 July 2022 Retrieved 30 July 2022 Lukes Julius Archibald John M Keeling Patrick J et al 2011 How a neutral evolutionary ratchet can build cellular complexity IUBMB Life 63 7 528 537 doi 10 1002 iub 489 PMID 21698757 S2CID 7306575 Vosseberg Julian Snel Berend 1 December 2017 Domestication of self splicing introns during eukaryogenesis the rise of the complex spliceosomal machinery Biology Direct 12 1 30 doi 10 1186 s13062 017 0201 6 PMC 5709842 PMID 29191215 Archived from the original on 30 July 2022 Retrieved 30 July 2022 Brunet T D P Doolittle W Ford 19 March 2018 The generality of Constructive Neutral Evolution Biology amp Philosophy 33 1 2 doi 10 1007 s10539 018 9614 6 S2CID 90290787 Archived from the original on 30 July 2022 Retrieved 30 July 2022 Otto Sarah P Whitlock Michael C June 1997 The Probability of Fixation in Populations of Changing Size PDF Genetics 146 2 723 733 doi 10 1093 genetics 146 2 723 PMC 1208011 PMID 9178020 Archived PDF from the original on 19 March 2015 Retrieved 18 December 2014 a b Charlesworth Brian March 2009 Fundamental concepts in genetics effective population size and patterns of molecular evolution and variation Nature Reviews Genetics 10 3 195 205 doi 10 1038 nrg2526 PMID 19204717 S2CID 205484393 Cutter Asher D Choi Jae Young August 2010 Natural selection shapes nucleotide polymorphism across the genome of the nematode Caenorhabditis briggsae Genome Research 20 8 1103 1111 doi 10 1101 gr 104331 109 PMC 2909573 PMID 20508143 Mitchell Olds Thomas Willis John H Goldstein David B November 2007 Which evolutionary processes influence natural genetic variation for phenotypic traits Nature Reviews Genetics 8 11 845 856 doi 10 1038 nrg2207 ISSN 1471 0056 PMID 17943192 S2CID 14914998 Nei Masatoshi December 2005 Selectionism and Neutralism in Molecular Evolution Molecular Biology and Evolution 22 12 2318 2342 doi 10 1093 molbev msi242 ISSN 0737 4038 PMC 1513187 PMID 16120807 Nei Masatoshi May 2006 Selectionism and Neutralism in Molecular Evolution Molecular Biology and Evolution Erratum 23 5 2318 42 doi 10 1093 molbev msk009 ISSN 0737 4038 PMC 1513187 PMID 16120807 Wright Sewall 1932 The roles of mutation inbreeding crossbreeding and selection in evolution Proceedings of the VI International Congress of Genetrics 1 356 366 Archived from the original on 23 August 2014 Retrieved 18 December 2014 Coyne Jerry A Barton Nicholas H Turelli Michael June 1997 Perspective A Critique of Sewall Wright s Shifting Balance Theory of Evolution Evolution 51 3 643 671 doi 10 2307 2411143 ISSN 0014 3820 JSTOR 2411143 PMID 28568586 Haldane J B S July 1927 A Mathematical Theory of Natural and Artificial Selection Part V Selection and Mutation Proceedings of the Cambridge Philosophical Society 26 7 838 844 Bibcode 1927PCPS 23 838H doi 10 1017 S0305004100015644 S2CID 86716613 Fisher 1930 a b Yampolsky Lev Y Stoltzfus Arlin 20 December 2001 Bias in the introduction of variation as an orienting factor in evolution Evolution amp Development 3 2 73 83 doi 10 1046 j 1525 142x 2001 003002073 x PMID 11341676 S2CID 26956345 Sueoka Noboru 1 April 1962 On the Genetic Basis of Variation and Heterogeneity of DNA Base Composition PNAS 48 4 582 592 Bibcode 1962PNAS 48 582S doi 10 1073 pnas 48 4 582 PMC 220819 PMID 13918161 Freese Ernst July 1962 On the Evolution of the Base Composition of DNA Journal of Theoretical Biology 3 1 82 101 Bibcode 1962JThBi 3 82F doi 10 1016 S0022 5193 62 80005 8 Cox Edward C Yanofsky Charles 1 November 1967 Altered base ratios in the DNA of an Escherichia coli mutator strain Proc Natl Acad Sci USA 58 5 1895 1902 Bibcode 1967PNAS 58 1895C doi 10 1073 pnas 58 5 1895 PMC 223881 PMID 4866980 Shah Premal Gilchrist Michael A 21 June 2011 Explaining complex codon usage patterns with selection for translational efficiency mutation bias and genetic drift PNAS 108 25 10231 10236 Bibcode 2011PNAS 10810231S doi 10 1073 pnas 1016719108 PMC 3121864 PMID 21646514 Bulmer Michael G November 1991 The selection mutation drift theory of synonymous codon usage Genetics 129 3 897 907 doi 10 1093 genetics 129 3 897 PMC 1204756 PMID 1752426 Fryxell Karl J Zuckerkandl Emile September 2000 Cytosine Deamination Plays a Primary Role in the Evolution of Mammalian Isochores Molecular Biology and Evolution 17 9 1371 1383 doi 10 1093 oxfordjournals molbev a026420 PMID 10958853 Petrov Dmitri A Sangster Todd A Johnston J Spencer et al 11 February 2000 Evidence for DNA Loss as a Determinant of Genome Size Science 287 5455 1060 1062 Bibcode 2000Sci 287 1060P doi 10 1126 science 287 5455 1060 ISSN 0036 8075 PMID 10669421 S2CID 12021662 Petrov Dmitri A May 2002 DNA loss and evolution of genome size in Drosophila Genetica 115 1 81 91 doi 10 1023 A 1016076215168 ISSN 0016 6707 PMID 12188050 S2CID 5314242 Duret Laurent Galtier Nicolas September 2009 Biased Gene Conversion and the Evolution of Mammalian Genomic Landscapes Annual Review of Genomics and Human Genetics Annual Reviews 10 285 311 doi 10 1146 annurev genom 082908 150001 PMID 19630562 S2CID 9126286 Hershberg Ruth Petrov Dmitri A 9 September 2010 Evidence That Mutation Is Universally Biased towards AT in Bacteria PLOS Genetics 6 9 e1001115 doi 10 1371 journal pgen 1001115 PMC 2936535 PMID 20838599 Stoltzfus Arlin McCandlish David M September 2017 Mutational Biases Influence Parallel Adaptation Molecular Biology and Evolution 34 9 2163 2172 doi 10 1093 molbev msx180 PMC 5850294 PMID 28645195 Payne Joshua L Menardo Fabrizio Trauner Andrej et al 13 May 2019 Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis PLOS Biology 17 5 e3000265 doi 10 1371 journal pbio 3000265 PMC 6532934 PMID 31083647 Storz Jay F Natarajan Chandrasekhar Signore Anthony V et al 22 July 2019 The role of mutation bias in adaptive molecular evolution insights from convergent changes in protein function Philosophical Transactions of the Royal Society B 374 1777 20180238 doi 10 1098 rstb 2018 0238 PMC 6560279 PMID 31154983 Svensson Erik I Berger David 1 May 2019 The Role of Mutation Bias in Adaptive Evolution Trends in Ecology amp Evolution 34 5 422 434 doi 10 1016 j tree 2019 01 015 PMID 31003616 S2CID 125066709 Bull James J Wichman Holly A November 2001 Applied evolution Annual Review of Ecology and Systematics 32 183 217 doi 10 1146 annurev ecolsys 32 081501 114020 ISSN 1545 2069 Doebley John F Gaut Brandon S Smith Bruce D 29 December 2006 The Molecular Genetics of Crop Domestication Cell 127 7 1309 1321 doi 10 1016 j cell 2006 12 006 ISSN 0092 8674 PMID 17190597 S2CID 278993 Jackel Christian Kast Peter Hilvert Donald June 2008 Protein Design by Directed Evolution Annual Review of Biophysics 37 153 173 doi 10 1146 annurev biophys 37 032807 125832 ISSN 1936 122X PMID 18573077 Maher Brendan 8 April 2009 Evolution Biology s next top model Nature 458 7239 695 698 doi 10 1038 458695a ISSN 0028 0836 PMID 19360058 S2CID 41648315 Borowsky Richard 8 January 2008 Restoring sight in blind cavefish Current Biology 18 1 R23 R24 doi 10 1016 j cub 2007 11 023 ISSN 0960 9822 PMID 18177707 S2CID 16967690 Gross Joshua B Borowsky Richard Tabin Clifford J 2 January 2009 Barsh Gregory S ed A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus PLOS Genetics 5 1 e1000326 doi 10 1371 journal pgen 1000326 ISSN 1553 7390 PMC 2603666 PMID 19119422 Merlo Lauren M F Pepper John W Reid Brian J Maley Carlo C December 2006 Cancer as an evolutionary and ecological process Nature Reviews Cancer 6 12 924 935 doi 10 1038 nrc2013 ISSN 1474 175X PMID 17109012 S2CID 8040576 Pan Dabo Weiwei Xue Wenqi Zhang et al October 2012 Understanding the drug resistance mechanism of hepatitis C virus NS3 4A to ITMN 191 due to R155K A156V D168A E mutations a computational study Biochimica et Biophysica Acta BBA General Subjects 1820 10 1526 1534 doi 10 1016 j bbagen 2012 06 001 ISSN 0304 4165 PMID 22698669 Woodford Neil Ellington Matthew J January 2007 The emergence of antibiotic resistance by mutation Clinical Microbiology and Infection 13 1 5 18 doi 10 1111 j 1469 0691 2006 01492 x ISSN 1198 743X PMID 17184282 Labbe Pierrick Berticat Claire Berthomieu Arnaud et al 16 November 2007 Forty Years of Erratic Insecticide Resistance Evolution in the Mosquito Culex pipiens PLOS Genetics 3 11 e205 doi 10 1371 journal pgen 0030205 ISSN 1553 7390 PMC 2077897 PMID 18020711 Neve Paul October 2007 Challenges for herbicide resistance evolution and management 50 years after Harper Weed Research 47 5 365 369 doi 10 1111 j 1365 3180 2007 00581 x ISSN 0043 1737 Rodriguez Rojas Alexandro Rodriguez Beltran Jeronimo Couce Alejandro Blazquez Jesus August 2013 Antibiotics and antibiotic resistance A bitter fight against evolution International Journal of Medical Microbiology 303 6 7 293 297 doi 10 1016 j ijmm 2013 02 004 ISSN 1438 4221 PMID 23517688 permanent dead link Schenk Martijn F Szendro Ivan G Krug Joachim de Visser J Arjan G M 28 June 2012 Quantifying the Adaptive Potential of an Antibiotic Resistance Enzyme PLOS Genetics 8 6 e1002783 doi 10 1371 journal pgen 1002783 ISSN 1553 7390 PMC 3386231 PMID 22761587 Read Andrew F Lynch Penelope A Thomas Matthew B 7 April 2009 How to Make Evolution Proof Insecticides for Malaria Control PLOS Biology 7 4 e1000058 doi 10 1371 journal pbio 1000058 PMC 3279047 PMID 19355786 Fraser Alex S 18 January 1958 Monte Carlo Analyses of Genetic Models Nature 181 4603 208 209 Bibcode 1958Natur 181 208F doi 10 1038 181208a0 ISSN 0028 0836 PMID 13504138 S2CID 4211563 Rechenberg 1973 Holland 1975 Koza 1992 Jamshidi Mo 15 August 2003 Tools for intelligent control fuzzy controllers neural networks and genetic algorithms Philosophical Transactions of the Royal Society A 361 1809 1781 1808 Bibcode 2003RSPTA 361 1781J doi 10 1098 rsta 2003 1225 PMID 12952685 S2CID 34259612 Baym Michael Lieberman Tami D Kelsic Eric D et al 9 September 2016 Spatiotemporal microbial evolution on antibiotic landscapes Science 353 6304 1147 1151 Bibcode 2016Sci 353 1147B doi 10 1126 science aag0822 ISSN 0036 8075 PMC 5534434 PMID 27609891 a b c Scott Eugenie C Matzke Nicholas J 15 May 2007 Biological design in science classrooms PNAS 104 Suppl 1 8669 8676 Bibcode 2007PNAS 104 8669S doi 10 1073 pnas 0701505104 PMC 1876445 PMID 17494747 Hendry Andrew Paul Kinnison Michael T November 2001 An introduction to microevolution rate pattern process Genetica 112 113 1 1 8 doi 10 1023 A 1013368628607 ISSN 0016 6707 PMID 11838760 S2CID 24485535 Leroi Armand M March April 2000 The scale independence of evolution Evolution amp Development 2 2 67 77 CiteSeerX 10 1 1 120 1020 doi 10 1046 j 1525 142x 2000 00044 x ISSN 1520 541X PMID 11258392 S2CID 17289010 Gould 2002 pp 657 658 a b Gould Stephen Jay 19 July 1994 Tempo and mode in the macroevolutionary reconstruction of Darwinism PNAS 91 15 6764 6771 Bibcode 1994PNAS 91 6764G doi 10 1073 pnas 91 15 6764 PMC 44281 PMID 8041695 Jablonski David 2000 Micro and macroevolution scale and hierarchy in evolutionary biology and paleobiology Paleobiology 26 sp4 15 52 doi 10 1666 0094 8373 2000 26 15 MAMSAH 2 0 CO 2 S2CID 53451360 Dougherty Michael J 20 July 1998 Is the human race evolving or devolving Scientific American ISSN 0036 8733 Archived from the original on 6 May 2014 Retrieved 11 September 2015 Isaak Mark ed 22 July 2003 Claim CB932 Evolution of degenerate forms TalkOrigins Archive Houston Texas The TalkOrigins Foundation Archived from the original on 23 August 2014 Retrieved 19 December 2014 Lane 1996 p 61 Carroll Sean B 22 February 2001 Chance and necessity the evolution of morphological complexity and diversity Nature 409 6823 1102 1109 Bibcode 2001Natur 409 1102C doi 10 1038 35059227 PMID 11234024 S2CID 4319886 Whitman William B Coleman David C Wiebe William J 9 June 1998 Prokaryotes The unseen majority PNAS 95 12 6578 6583 Bibcode 1998PNAS 95 6578W doi 10 1073 pnas 95 12 6578 ISSN 0027 8424 PMC 33863 PMID 9618454 a b Schloss Patrick D Handelsman Jo December 2004 Status of the Microbial Census Microbiology and Molecular Biology Reviews 68 4 686 691 doi 10 1128 MMBR 68 4 686 691 2004 PMC 539005 PMID 15590780 Nealson Kenneth H January 1999 Post Viking microbiology new approaches new data new insights Origins of Life and Evolution of Biospheres 29 1 73 93 Bibcode 1999OLEB 29 73N doi 10 1023 A 1006515817767 ISSN 0169 6149 PMID 11536899 S2CID 12289639 Buckling Angus MacLean R Craig Brockhurst Michael A Colegrave Nick 12 February 2009 The Beagle in a bottle Nature 457 7231 824 829 Bibcode 2009Natur 457 824B doi 10 1038 nature07892 ISSN 0028 0836 PMID 19212400 S2CID 205216404 Elena Santiago F Lenski Richard E June 2003 Evolution experiments with microorganisms the dynamics and genetic bases of adaptation Nature Reviews Genetics 4 6 457 469 doi 10 1038 nrg1088 ISSN 1471 0056 PMID 12776215 S2CID 209727 Mayr 1982 p 483 Adaptation could no longer be considered a static condition a product of a creative past and became instead a continuing dynamic process The sixth edition of the Oxford Dictionary of Science 2010 defines adaptation as Any change in the structure or functioning of successive generations of a population that makes it better suited to its environment Orr H Allen February 2005 The genetic theory of adaptation a brief history Nature Reviews Genetics 6 2 119 127 doi 10 1038 nrg1523 ISSN 1471 0056 PMID 15716908 S2CID 17772950 Dobzhansky 1968 pp 1 34 Dobzhansky 1970 pp 4 6 79 82 84 87 Dobzhansky Theodosius March 1956 Genetics of Natural Populations XXV Genetic Changes in Populations of Drosophila pseudoobscura and Drosophila persimilis in Some Localities in California Evolution 10 1 82 92 doi 10 2307 2406099 ISSN 0014 3820 JSTOR 2406099 Nakajima Akira Sugimoto Yohko Yoneyama Hiroshi et al June 2002 High Level Fluoroquinolone Resistance in Pseudomonas aeruginosa Due to Interplay of the MexAB OprM Efflux Pump and the DNA Gyrase Mutation Microbiology and Immunology 46 6 391 395 doi 10 1111 j 1348 0421 2002 tb02711 x ISSN 1348 0421 PMID 12153116 S2CID 22593331 Blount Zachary D Borland Christina Z Lenski Richard E 10 June 2008 Inaugural Article Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli PNAS 105 23 7899 7906 Bibcode 2008PNAS 105 7899B doi 10 1073 pnas 0803151105 ISSN 0027 8424 PMC 2430337 PMID 18524956 Okada Hirosuke Negoro Seiji Kimura Hiroyuki et al 10 November 1983 Evolutionary adaptation of plasmid encoded enzymes for degrading nylon oligomers Nature 306 5939 203 206 Bibcode 1983Natur 306 203O doi 10 1038 306203a0 ISSN 0028 0836 PMID 6646204 S2CID 4364682 Ohno Susumu April 1984 Birth of a unique enzyme from an alternative reading frame of the preexisted internally repetitious coding sequence PNAS 81 8 2421 2425 Bibcode 1984PNAS 81 2421O doi 10 1073 pnas 81 8 2421 ISSN 0027 8424 PMC 345072 PMID 6585807 Copley Shelley D June 2000 Evolution of a metabolic pathway for degradation of a toxic xenobiotic the patchwork approach Trends in Biochemical Sciences 25 6 261 265 doi 10 1016 S0968 0004 00 01562 0 ISSN 0968 0004 PMID 10838562 Crawford Ronald L Jung Carina M Strap Janice L October 2007 The recent evolution of pentachlorophenol PCP 4 monooxygenase PcpB and associated pathways for bacterial degradation of PCP Biodegradation 18 5 525 539 doi 10 1007 s10532 006 9090 6 ISSN 0923 9820 PMID 17123025 S2CID 8174462 Altenberg 1995 pp 205 259 Masel Joanna Bergman Aviv July 2003 The evolution of the evolvability properties of the yeast prion PSI Evolution 57 7 1498 1512 doi 10 1111 j 0014 3820 2003 tb00358 x PMID 12940355 S2CID 30954684 Lancaster Alex K Bardill J Patrick True Heather L Masel Joanna February 2010 The Spontaneous Appearance Rate of the Yeast Prion PSI and Its Implications for the Evolution of the Evolvability Properties of the PSI System Genetics 184 2 393 400 doi 10 1534 genetics 109 110213 ISSN 0016 6731 PMC 2828720 PMID 19917766 Draghi Jeremy Wagner Gunter P February 2008 Evolution of evolvability in a developmental model Evolution 62 2 301 315 doi 10 1111 j 1558 5646 2007 00303 x PMID 18031304 S2CID 11560256 a b Bejder Lars Hall Brian K November 2002 Limbs in whales and limblessness in other vertebrates mechanisms of evolutionary and developmental transformation and loss Evolution amp Development 4 6 445 458 doi 10 1046 j 1525 142X 2002 02033 x PMID 12492145 S2CID 8448387 Young Nathan M HallgrImsson Benedikt December 2005 Serial homology and the evolution of mammalian limb covariation structure Evolution 59 12 2691 2704 doi 10 1554 05 233 1 ISSN 0014 3820 PMID 16526515 S2CID 198156135 a b Penny David Poole Anthony December 1999 The nature of the last universal common ancestor Current Opinion in Genetics amp Development 9 6 672 677 doi 10 1016 S0959 437X 99 00020 9 PMID 10607605 Hall Brian K August 2003 Descent with modification the unity underlying homology and homoplasy as seen through an analysis of development and evolution Biological Reviews 78 3 409 433 doi 10 1017 S1464793102006097 ISSN 1464 7931 PMID 14558591 S2CID 22142786 Shubin Neil Tabin Clifford J Carroll Sean B 12 February 2009 Deep homology and the origins of evolutionary novelty Nature 457 7231 818 823 Bibcode 2009Natur 457 818S doi 10 1038 nature07891 PMID 19212399 S2CID 205216390 a b c Fong Daniel F Kane Thomas C Culver David C November 1995 Vestigialization and Loss of Nonfunctional Characters Annual Review of Ecology and Systematics 26 249 268 doi 10 1146 annurev es 26 110195 001341 ZhaoLei Zhang Gerstein Mark August 2004 Large scale analysis of pseudogenes in the human genome Current Opinion in Genetics amp Development 14 4 328 335 doi 10 1016 j gde 2004 06 003 ISSN 0959 437X PMID 15261647 Jeffery William R May June 2005 Adaptive Evolution of Eye Degeneration in the Mexican Blind Cavefish Journal of Heredity 96 3 185 196 CiteSeerX 10 1 1 572 6605 doi 10 1093 jhered esi028 PMID 15653557 Maxwell Erin E Larsson Hans C E May 2007 Osteology and myology of the wing of the Emu Dromaius novaehollandiae and its bearing on the evolution of vestigial structures Journal of Morphology 268 5 423 441 doi 10 1002 jmor 10527 ISSN 0362 2525 PMID 17390336 S2CID 12494187 van der Kooi Casper J Schwander Tanja November 2014 On the fate of sexual traits under asexuality PDF Biological Reviews 89 4 805 819 doi 10 1111 brv 12078 ISSN 1464 7931 PMID 24443922 S2CID 33644494 Archived PDF from the original on 23 July 2015 Retrieved 5 August 2015 Silvestri Anthony R Jr Singh Iqbal April 2003 The unresolved problem of the third molar Would people be better off without it Journal of the American Dental Association 134 4 450 455 doi 10 14219 jada archive 2003 0194 PMID 12733778 Archived from the original on 23 August 2014 Coyne 2009 p 62 Darwin 1872 pp 101 103 Gray 2007 p 66 Coyne 2009 pp 85 86 Stevens 1982 p 87 a b Gould 2002 pp 1235 1236 Pallen Mark J Matzke Nicholas J October 2006 From The Origin of Species to the origin of bacterial flagella PDF Nature Reviews Microbiology PDF 4 10 784 790 doi 10 1038 nrmicro1493 ISSN 1740 1526 PMID 16953248 S2CID 24057949 Archived from the original PDF on 26 December 2014 Retrieved 25 December 2014 Clements Abigail Bursac Dejan Gatsos Xenia et al 15 September 2009 The reducible complexity of a mitochondrial molecular machine PNAS 106 37 15791 15795 Bibcode 2009PNAS 10615791C doi 10 1073 pnas 0908264106 PMC 2747197 PMID 19717453 Piatigorsky et al 1994 pp 241 250 Wistow Graeme August 1993 Lens crystallins gene recruitment and evolutionary dynamism Trends in Biochemical Sciences 18 8 301 306 doi 10 1016 0968 0004 93 90041 K ISSN 0968 0004 PMID 8236445 Johnson Norman A Porter Adam H November 2001 Toward a new synthesis population genetics and evolutionary developmental biology Genetica 112 113 1 45 58 doi 10 1023 A 1013371201773 ISSN 0016 6707 PMID 11838782 S2CID 1651351 Baguna Jaume Garcia Fernandez Jordi 2003 Evo Devo the long and winding road The International Journal of Developmental Biology 47 7 8 705 713 ISSN 0214 6282 PMID 14756346 Archived from the original on 28 November 2014 Love Alan C March 2003 Evolutionary Morphology Innovation and the Synthesis of Evolutionary and Developmental Biology Biology and Philosophy 18 2 309 345 doi 10 1023 A 1023940220348 S2CID 82307503 Allin Edgar F December 1975 Evolution of the mammalian middle ear Journal of Morphology 147 4 403 437 doi 10 1002 jmor 1051470404 ISSN 0362 2525 PMID 1202224 S2CID 25886311 Harris Matthew P Hasso Sean M Ferguson Mark W J Fallon John F 21 February 2006 The Development of Archosaurian First Generation Teeth in a Chicken Mutant Current Biology 16 4 371 377 doi 10 1016 j cub 2005 12 047 PMID 16488870 S2CID 15733491 Carroll Sean B 11 July 2008 Evo Devo and an Expanding Evolutionary Synthesis A Genetic Theory of Morphological Evolution Cell 134 1 25 36 doi 10 1016 j cell 2008 06 030 PMID 18614008 S2CID 2513041 Wade Michael J March 2007 The co evolutionary genetics of ecological communities Nature Reviews Genetics 8 3 185 195 doi 10 1038 nrg2031 PMID 17279094 S2CID 36705246 Geffeney Shana Brodie Edmund D Jr Ruben Peter C Brodie Edmund D III 23 August 2002 Mechanisms of Adaptation in a Predator Prey Arms Race TTX Resistant Sodium Channels Science 297 5585 1336 1339 Bibcode 2002Sci 297 1336G doi 10 1126 science 1074310 PMID 12193784 S2CID 8816337 Brodie Edmund D Jr Ridenhour Benjamin J Brodie Edmund D III October 2002 The evolutionary response of predators to dangerous prey hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts Evolution 56 10 2067 2082 doi 10 1554 0014 3820 2002 056 2067 teropt 2 0 co 2 PMID 12449493 S2CID 8251443 Carroll Sean B 21 December 2009 Whatever Doesn t Kill Some Animals Can Make Them Deadly The New York Times New York Archived from the original on 23 April 2015 Retrieved 26 December 2014 link, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.