fbpx
Wikipedia

Earwig

Earwigs make up the insect order Dermaptera. With about 2,000 species[1] in 12 families, they are one of the smaller insect orders. Earwigs have characteristic cerci, a pair of forcep-like pincers on their abdomen, and membranous wings folded underneath short, rarely used forewings, hence the scientific order name, "skin wings". Some groups are tiny parasites on mammals and lack the typical pincers. Earwigs are found on all continents except Antarctica.

Earwig
Temporal range: 208–0 Ma Late Triassic to Recent
Female common earwig, Forficula auricularia
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Infraclass: Neoptera
Cohort: Polyneoptera
Order: Dermaptera
De Geer, 1773
Suborders
Synonyms
  • Euplecoptera
  • Euplexoptera
  • Forficulida

Earwigs are mostly nocturnal and often hide in small, moist crevices during the day, and are active at night, feeding on a wide variety of insects and plants. Damage to foliage, flowers, and various crops is commonly blamed on earwigs, especially the common earwig Forficula auricularia.

Earwigs have five molts in the year before they become adults. Many earwig species display maternal care, which is uncommon among insects. Female earwigs may care for their eggs; the ones that do will continue to watch over nymphs until their second molt. As the nymphs molt, sexual dimorphism such as differences in pincer shapes begins to show.

Extant Dermaptera belong to the suborder Neodermaptera, which first appeared during the Cretaceous. Some earwig specimen fossils are placed with extinct suborders Archidermaptera or Eodermaptera, the former dating to the Late Triassic and the latter to the Middle Jurassic. Dermaptera belongs to the major grouping Polyneoptera, and are amongst the earliest diverging members of the group, alongside angel insects (Zoraptera), and stoneflies (Plecoptera), but the exact relationship among the three groups is uncertain.

Etymology edit

 
Earwig diagram with wings extended and closed

The scientific name for the order, "Dermaptera", is Greek in origin, stemming from the words derma, meaning skin, and pteron (plural ptera), wing. It was coined by Charles De Geer in 1773. The common term, earwig, is derived from the Old English ēare, which means "ear", and wicga, which means "insect", or literally, "beetle".[2] Entomologists suggest that the origin of the name is a reference to the appearance of the hindwings, which are unique and distinctive among insects, and resemble a human ear when unfolded.[3][4] The name is more popularly thought to be related to the old wives' tale that earwigs burrowed into the brains of humans through the ear and laid their eggs there.[5] Earwigs are not known to purposefully climb into ear canals, but there have been anecdotal reports of earwigs being found in the ear.[6]

Distribution edit

 
An earwig from the Western Ghats

Earwigs are abundant and can be found throughout the Americas and Eurasia. The common earwig was introduced into North America in 1907 from Europe, but tends to be more common in the southern and southwestern parts of the United States.[7]: 739  The only native species of earwig found in the north of the United States is the spine-tailed earwig (Doru aculeatum),[8] found as far north as Canada, where it hides in the leaf axils of emerging plants in southern Ontario wetlands. However, other families can be found in North America, including Forficulidae (Doru and Forficula being found there), Spongiphoridae, Anisolabididae, and Labiduridae.[9]

Few earwigs survive winter outdoors in cold climates. They can be found in tight crevices in woodland, fields and gardens.[7]: 739 [10] Out of about 1,800 species, about 25 occur in North America, 45 in Europe (including 7 in Great Britain), and 60 in Australia.[11]

Morphology edit

 
Male earwig, external morphology. Click on image for a larger view

Most earwigs are flattened (which allows them to fit inside tight crevices, such as under bark) with an elongated body generally 7–50 millimetres (14–2 in) long.[11] The largest extant species is the Australian giant earwig (Titanolabis colossea) which is approximately 50 mm (2 in) long,[12]: 10  while the possibly extinct (declared extinct in 2014) Saint Helena earwig (Labidura herculeana) reached 78 mm (3+116 in).[13] Earwigs are characterized by the cerci, or the pair of forceps-like pincers on their abdomen; male earwigs generally have more curved pincers than females. These pincers are used to capture prey, defend themselves and fold their wings under the short tegmina.[14] The antennae are thread-like with at least 10 segments.[7]: 738–739 

Males in the six families Karschiellidae, Pygidicranidae, Diplatyidae, Apachyidae, Anisolabisidae and Labiduridae have paired penises, while the males in the remaining groups have a single penis. Both penises are symmetrical in Pygidicranidae and Diplatyidae, but in Karschiellidae the left one is strongly reduced. Apachyidae, Anisolabisidae, and Labiduridae have an asymmetrical pair, with left and right one pointing on opposite directions when not in use. The females have just a single genital opening, so only one of the paired penises is ever used during copulation.[15][16][17]

 
Earwig with right wing open

The forewings are short oblong leathery plates used to cover the hindwings like the elytra of a beetle, rather than to fly. Most species have short and leather-like forewings with very thin hindwings, though species in the former suborders Arixeniina and Hemimerina (epizoic species, sometimes considered as ectoparasites[18][19]) are wingless and blind with filiform segmented cerci (today these are both included merely as families in the suborder Neodermaptera).[11][20][21] The hindwing is a very thin membrane that expands like a fan, radiating from one point folded under the forewing. Even though most earwigs have wings and are capable of flight, they are rarely seen in flight. These wings are unique in venation and in the pattern of folding that requires the use of the cerci.[22]

Internal edit

The neuroendocrine system is typical of insects. There is a brain, a subesophageal ganglion, three thoracic ganglia, and six abdominal ganglia. Strong neuron connections connect the neurohemal corpora cardiaca to the brain and frontal ganglion, where the closely related median corpus allatum produces juvenile hormone III in close proximity to the neurohemal dorsal arota. The digestive system of earwigs is like all other insects, consisting of a fore-, mid-, and hindgut, but earwigs lack gastric caecae which are specialized for digestion in many species of insect. Long, slender (excretory) malpighian tubules can be found between the junction of the mid- and hind gut.[23]

The reproductive system of females consist of paired ovaries, lateral oviducts, spermatheca, and a genital chamber. The lateral ducts are where the eggs leave the body, while the spermatheca is where sperm is stored. Unlike other insects, the gonopore, or genital opening is behind the seventh abdominal segment. The ovaries are primitive in that they are polytrophic (the nurse cells and oocytes alternate along the length of the ovariole). In some species these long ovarioles branch off the lateral duct, while in others, short ovarioles appear around the duct.[23]

Life cycle and reproduction edit

 
The life cycle and development of a male earwig from egg to each instar

Earwigs are hemimetabolous, meaning they undergo incomplete metamorphosis, developing through a series of 4 to 6 molts. The developmental stages between molts are called instars. Earwigs live for about a year from hatching. They start mating in the autumn, and can be found together in the autumn and winter. The male and female will live in a chamber in debris, crevices, or soil 2.5 centimetres (1 in) deep.[7]: 739  After mating, the sperm may remain in the female for months before the eggs are fertilized. From midwinter to early spring, the male will leave, or be driven out by the female. Afterward the female will begin to lay 20 to 80 pearly white eggs in two days. Some earwigs, those parasitic in the suborders Arixeniina and Hemimerina, are viviparous (give birth to live young); they would be fed by a sort of placenta.[7]: 739–740 [20] When first laid, the eggs are white or cream-colored and oval-shaped, but right before hatching they become kidney-shaped and brown.[24] Each egg is approximately 1 mm (132 in) tall and 0.8 mm (132 in) wide.[21]

Earwigs are among the few non-social insect species that show maternal care. The mother pays close attention to the needs of her eggs, such as warmth and protection.[7]: 739–740 [20] She faithfully defends the eggs from predators, not leaving them even to eat unless the clutch goes bad.[7]: 740  She also continuously cleans the eggs to protect them from fungi. Studies have found that the urge to clean the eggs persists for only a few days after they are removed, and does not return even if the eggs are replaced; however, when the eggs were continuously replaced after hatching, the mother continued to clean the new eggs for up to 3 months.[7]: 740 

Studies have also shown that the mother does not immediately recognize her own eggs. After laying them, she gathers them together, and studies have found mothers to pick up small egg-shaped wax balls or stones by accident. Eventually, the impostor eggs were rejected for not having the proper scent.[7]: 740 


The eggs hatch in about seven days. The mother may assist the nymphs in hatching. When the nymphs hatch, they eat the egg casing and continue to live with the mother. The nymphs look similar to their parents, only smaller, and will nest under their mother and she will continue to protect them until their second molt. The nymphs feed on food regurgitated by the mother,[25] and on their own molts. If the mother dies before the nymphs are ready to leave, the nymphs may eat her.[7]: 740 [26]

After five to six instars, the nymphs will molt into adults. The male's forceps will become curved, while the females' forceps remain straight. They will also develop their natural color, which can be anything from a light brown (as in the tawny earwig) to a dark black (as in the ringlegged earwig). In species of winged earwigs, the wings will start to develop at this time. The forewings of an earwig are sclerotized to serve as protection for the membranous hindwings.

Behaviour edit

Most earwigs are nocturnal and inhabit small crevices, living in small amounts of debris, in various forms such as bark and fallen logs. Species have been found to be blind and living in caves, or cavernicolous, reported to be found on the island of Hawaii and in South Africa. Food typically consists of a wide array of living and dead plant and animal matter.[23] For protection from predators, the species Doru taeniatum of earwigs can squirt foul-smelling yellow liquid in the form of jets from scent glands on the dorsal side of the third and fourth abdominal segment. It aims the discharges by revolving the abdomen, a maneuver that enables it simultaneously to use its pincers in defense.[27] Under exceptional circumstances, earwigs form swarms and can take over significant areas of a district. In August 1755 they appeared in vast numbers near Stroud, Gloucestershire, UK, especially in the cracks and crevices of "old wooden buildings...so that they dropped out oftentimes in such multitudes as to literally cover the floor."[28] A similar "plague" occurred in 2006, in and around a woodland cabin near the Blue Ridge Mountains of the eastern United States; it persisted through winter and lasted at least two years.[29]

Ecology edit

Earwigs are mostly scavengers, but some are omnivorous or predatory.[7]: 739–740  The abdomen of the earwig is flexible and muscular. It is capable of maneuvering as well as opening and closing the forceps. The forceps are used for a variety of purposes. In some species, the forceps have been observed in use for holding prey, and in copulation. The forceps tend to be more curved in males than in females.[30]

 
A male of Forficula auricularia feeding on flowers

The common earwig is an omnivore, eating plants and ripe fruit as well as actively hunting arthropods. To a large extent, this species is also a scavenger, feeding on decaying plant and animal matter if given the chance. Observed prey include largely plant lice, but also large insects such as bluebottle flies and woolly aphids.[10] Plants that they feed on typically include clover, dahlias, zinnias, butterfly bush, hollyhock, lettuce, cauliflower, strawberry, blackberry, sunflowers, celery, peaches, plums, grapes, potatoes, roses, seedling beans and beets, and tender grass shoots and roots; they have also been known to eat corn silk, damaging the corn.[31]

Species of the suborders Arixeniina and Hemimerina are generally considered epizoic, or living on the outside of other animals, mainly mammals. In the Arixeniina, family Arixeniidae, species of the genus Arixenia are normally found deep in the skin folds and gular pouch of Malaysian hairless bulldog bats (Cheiromeles torquatus), apparently feeding on bats' body or glandular secretions. On the other hand, species in the genus Xeniaria (still of the suborder Arixeniina) are believed to feed on the guano and possibly the guanophilous arthropods in the bat's roost, where it has been found. Hemimerina includes Araeomerus found in the nest of long-tailed pouch rats (Beamys), and Hemimerus which are found on giant Cricetomys rats.[19][32]

Earwigs are generally nocturnal, and typically hide in small, dark, and often moist areas in the daytime. They can usually be seen on household walls and ceilings. Interaction with earwigs at this time results in a defensive free-fall to the ground followed by a scramble to a nearby cleft or crevice.[30] During the summer they can be found around damp areas such as near sinks and in bathrooms. Earwigs tend to gather in shady cracks or openings or anywhere that they can remain concealed during daylight. Picnic tables, compost and waste bins, patios, lawn furniture, window frames, or anything with minute spaces (even artichoke blossoms) can potentially harbour them.[33]

Predators and parasites edit

Earwigs are regularly preyed upon by birds, and like many other insect species they are prey for insectivorous mammals, amphibians, lizards, centipedes, assassin bugs, and spiders.[34] European naturalists have observed bats preying upon earwigs.[34] Their primary insect predators are parasitic species of Tachinidae, or tachinid flies, whose larvae are endoparasites. One species of tachinid fly, Triarthria setipennis, has been demonstrated to be successful as a biological control of earwigs for almost a century.[35][36] Another tachinid fly and parasite of earwigs, Ocytata pallipes, has shown promise as a biological control agent as well.[37] The common predatory wasp, the yellow jacket (Vespula maculifrons), preys upon earwigs when abundant.[38] A small species of roundworm, Mermis nigrescens, is known to occasionally parasitize earwigs that have consumed roundworm eggs with plant matter.[39] At least 26 species of parasitic fungus from the order Laboulbeniales have been found on earwigs.[40] The eggs and nymphs are also cannibalized by other earwigs.[41] A species of tyroglyphoid mite, Histiostoma polypori (Histiostomatidae, Astigmata), are observed on common earwigs, sometimes in great densities;[42] however, this mite feeds on earwig cadavers and not its live earwig transportation.[43] Hippolyte Lucas observed scarlet acarine mites on European earwigs.[44]

Evolution edit

 
Fossil of Belloderma arcuata from the Middle Jurassic of China, a member of the extinct Eodermaptera
 

Phasmatodea

 

Embioptera

 

Orthoptera

 

Notoptera

Dermaptera
Archidermaptera
Eodermaptera

Bellodermatidae

 

Semenoviolidae

Turanodermatidae

Neodermaptera

Hemimerina

Arixeniina

Forficulina

Earwigs and their relatives[45][46]

The fossil record of the Dermaptera starts in the Late Triassic to Early Jurassic period about 208 million years ago in England and Australia, and comprises about 70 specimens in the extinct suborder Archidermaptera. Some of the traits believed by neontologists to belong to modern earwigs are not found in the earliest fossils, but adults had five-segmented tarsi (the final segment of the leg), well developed ovipositors, veined tegmina (forewings) and long segmented cerci; in fact the pincers would not have been curled or used as they are now.[14] The theorized stem group of the Dermaptera are the Protelytroptera, which are similar to modern Blattodea (cockroaches) with shell-like forewings and the large, unequal anal fan, are known from the Permian of North America, Europe and Australia. No fossils from the Triassic — during which Dermaptera would have evolved from Protelytroptera — have been found.[47] Amongst the most frequently suggested order of insects to be the closest relatives of Dermaptera is Notoptera, theorized by Giles in 1963. However, other arguments have been made by other authors linking them to Phasmatodea, Embioptera, Plecoptera, and Dictyoptera.[11] A 2012 mitochondrial DNA study suggested that this order is the sister to stoneflies of the order Plecoptera.[48] A 2018 phylogenetic analysis found that their closest living relatives were angel insects of the order Zoraptera, with very high support.[49]

Archidermaptera is believed to be sister to the remaining earwig groups, the extinct Eodermaptera and the living suborder Neodermaptera (= former suborders Forficulina, Hemimerina, and Arixeniina). The extinct suborders have tarsi with five segments (unlike the three found in Neodermaptera) as well as unsegmented cerci. No fossil Hemimeridae and Arixeniidae are known.[50] Species in Hemimeridae were at one time in their own order, Diploglassata, Dermodermaptera, or Hemimerina. Like most other epizoic species, there is no fossil record, but they are probably no older than late Tertiary.[14]

Some evidence of early evolutionary history is the structure of the antennal heart, a separate circulatory organ consisting of two ampullae, or vesicles,[51] that are attached to the frontal cuticle near the bases of the antennae.[52] These features have not been found in other insects. An independent organ exists for each antenna, consisting of an ampulla, attached to the frontal cuticle medial to the antenna base and forming a thin-walled sac with a valved ostium on its ventral side. They pump blood by elastic connective tissue, rather than muscle.[53]

Taxonomy edit

Distinguishing characteristics edit

The characteristics which distinguish the order Dermaptera from other insect orders are:[54]

  • General body shape: Elongate; dorso-ventrally flattened.
  • Head: Prognathous. Antennae are segmented. Biting-type mouthparts. Ocelli absent. Compound eyes in most species, reduced or absent in some taxa.
  • Appendages: Two pairs of wings normally present. The forewings are modified into short smooth, veinless tegmina. Hindwings are membranous and semicircular with veins radiating outwards.
  • Abdomen: Cerci are unsegmented and resemble forceps. The ovipositor in females is reduced or absent.

The overwhelming majority of earwig species are in the former suborder Forficulina, grouped into nine families of 180 genera,[47] including Forficula auricularia, the common European Earwig. Species within Forficulina are free-living, have functional wings and are not parasites. The cerci are unsegmented and modified into large, forceps-like structures.

The first epizoic species of earwig was discovered by a London taxidermist on the body of a Malaysian hairless bulldog bat in 1909, then described by Karl Jordan. By the 1950s, the two suborders Arixeniina and Hemimerina had been added to Dermaptera.[19] These were subsequently demoted to family Arixeniidae and superfamily Hemimeroidea (with sole family Hemimeridae), respectively.[55] They are now grouped together with the former Forficulina in the new suborder Neodermaptera.[55]

Arixeniidae represents two genera, Arixenia and Xeniaria, with a total of five species in them. As with Hemimeridae, they are blind and wingless, with filiform segmented cerci. Hemimeridae are viviparous ectoparasites, preferring the fur of African rodents in either Cricetomys or Beamys genera.[50] Hemimerina also has two genera, Hemimerus and Araeomerus, with a total of 11 species.[50]

Phylogeny edit

 
A female of the common earwig in a threat pose

Dermaptera is relatively small compared to the other orders of Insecta, with only about 2,000 species, 3 suborders and 15 families, including the extinct suborders Archidermaptera and Eodermaptera with their extinct families Protodiplatyidae, Dermapteridae, Semenoviolidae, and Turanodermatidae. The phylogeny of the Dermaptera is still debated. The extant Dermaptera appear to be monophyletic and there is support for the monophyly of the families Forficulidae, Chelisochidae, Labiduridae and Anisolabididae, however evidence has supported the conclusion that the former suborder Forficulina was paraphyletic through the exclusion of Hemimerina and Arixeniina which should instead be nested within the Forficulina.[47][56] Thus, these former suborders were eliminated in the most recent higher classification.

Relationship with humans edit

Earwigs are fairly abundant and are found in many areas around the world. There is no evidence that they transmit diseases to humans or other animals. Their pincers are commonly believed to be dangerous, but in reality, even the curved pincers of males cause little or no harm to humans.[57] Earwigs have been rarely known to crawl into the ears of humans,[58] and they do not lay eggs inside the human body or human brain as is often claimed.[59][60]

There is a debate whether earwigs are harmful or beneficial to crops, as they eat both the foliage and the insects eating such foliage, such as aphids, though it would take a large population to do considerable damage. The common earwig eats a wide variety of plants, and also a wide variety of foliage, including the leaves and petals. They have been known to cause economic losses in fruit and vegetable crops. Some examples are the flowers, hops, red raspberries,[61] and corn crops in Germany, and in the south of France, earwigs have been observed feeding on peaches and apricots. The earwigs attacked mature plants and made cup-shaped bite marks 3–11 mm (18716 in) in diameter.[62]

In literature and folklore edit

  • One of the primary characters of James Joyce's experimental novel Finnegans Wake is referred to by the initials "HCE," which primarily stand for "Humphrey Chimpden Earwicker," a reference to earwigs. Earwig imagery is found throughout the book, and also occurs in the author's Ulysses in the Laestrygonians chapter.[63]
  • Oscar Cook wrote the short story (appearing in Switch On The Light, April, 1931; A Century Of Creepy Stories 1934; Pan Horror 2, 1960) "Boomerang", which was later adapted by Rod Serling for the Night Gallery TV-series episode, "The Caterpillar".[64] It tells the tale of the use of an earwig as a murder instrument applied by a man obsessed with the wife of an associate.
  • Thomas Hood discusses the myth of earwigs finding shelter in the human ear in the poem "Love Lane" by saying the following: "'Tis vain to talk of hopes and fears, / And hope the least reply to win, / From any maid that stops her ears / In dread of earwigs creeping in!"[65]
  • In some parts of rural England the earwig is called "battle-twig", which is present in Alfred, Lord Tennyson's poem The Spinster's Sweet-Arts: "'Twur as bad as battle-twig 'ere i' my oan blue chamber to me."[66]
  • In some regions of Japan, earwigs are called "Chinpo-Basami" or "Chinpo-Kiri", which means "penis cutter". Kenta Takada, a Japanese cultural entomologist, has inferred that these names may be derived from the fact that earwigs were seen around old Japanese-style toilets.[67]
  • In Roald Dahl's children's book George's Marvellous Medicine, George's Grandma encourages him to eat unwashed celery with beetles and earwigs still on them. "'A big fat earwig is very tasty,' Grandma said, licking her lips. 'But you've got to be very quick, my dear, when you put one of those in your mouth. It has a pair of sharp nippers on its back end and if it grabs your tongue with those, it never lets go. So you've got to bite the earwig first, chop chop, before it bites you.'"[68]

References edit

  1. ^ Zhang, Z.-Q. (2011). "Phylum Arthropoda von Siebold, 1848 In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness" (PDF). Zootaxa. 3148: 99–103. doi:10.11646/zootaxa.3148.1.14. (PDF) from the original on 23 July 2019. Retrieved 16 January 2012.
  2. ^ Walter W. Skeat (2013). An Etymological Dictionary of the English Language. Courier Corporation. p. 187. ISBN 9780486317656. from the original on 9 June 2021. Retrieved 31 October 2020.
  3. ^ Costa, J.T. (2006). The Other Insect Societies. United States, Harvard University: Harvard University Press.
  4. ^ "Dermaptera: earwigs". Insects and their Allies. CSIRO. from the original on 24 September 2015. Retrieved 16 November 2015.
  5. ^ Friedrichsen, G W S; Robert W Burchfield (31 December 1966). Onions CT (ed.). The Oxford Dictionary of English Etymology (1996 ed.). United Kingdom, Oxford University: Oxford University Press. pp. earwig. ISBN 978-0-19-861112-7.
  6. ^ Fisher, JR (1986). "Earwig in the ear". Western Journal of Medicine. 145 (2): 245. PMC 1306897. PMID 3765607.
  7. ^ a b c d e f g h i j k Burton, Maurice (January 2001). International Wildlife Encyclopedia (3 ed.). Marshall Cavendish Inc. ISBN 978-0-7614-7266-7. from the original on 9 June 2021. Retrieved 12 September 2020.
  8. ^ Robinson, William H. (2005). Urban Insects and Arachnids: A Handbook of Urban Entomology. Cambridge, UK: Cambridge University Press. p. 144. ISBN 978-0-521-81253-5. from the original on 17 May 2006. Retrieved 28 November 2009.
  9. ^ Marshall, Stephan A. (June 2006). "4". Insects: Their Natural History and Diversity: With a Photographic Guide to Insects of Eastern North America. Buffalo, NY; Richmond Hill, Ontario: Firefly Books. pp. 63–64. ISBN 978-1-55297-900-6.
  10. ^ a b Cranshaw, W.S. (January 2007). "European Earwigs". 5.533. Colorado State University. from the original on 27 July 2009. Retrieved 25 June 2009.
  11. ^ a b c d Gillott, Cedric (2005). Entomology (3 ed.). Dordrecht: Springer. pp. 175–179. ISBN 978-1-4020-3184-7.
  12. ^ Flindt, Rainer (2006). Amazing Numbers in Biology. Springer. ISBN 978-3540301462.
  13. ^ "St Helena giant earwig Labidura herculeana". Natural History Museum. 2013. from the original on 21 May 2013. Retrieved 25 May 2013.
  14. ^ a b c Grimaldi, David; Michael Engel (May 2005). "7". Evolution of the Insects. Cambridge Evolution Ser. (1 ed.). Cambridge University: Cambridge University Press. pp. 217–222. ISBN 978-0-521-82149-0. from the original on 9 June 2021. Retrieved 16 November 2009.
  15. ^ Mating and genital coupling in the primitive earwig species Echinosoma denticulatum (Pygidicranidae): implications for genital evolution in dermapteran phylogeny
  16. ^ Half of These Earwigs Use Their Right Penis. The Other Half Use Their Left Penis. Why?
  17. ^ In Search of the Origin of Twin Penises: Molecular Phylogeny of Earwigs (Dermaptera: Forficulina) Based on Mitochondrial and Nuclear Ribosomal RNA Genes
  18. ^ Carpenter, George Herbert (1899). "4". Insects: their structure & life. London: J. M. & Co. pp. 170–172. from the original on 9 June 2021. Retrieved 31 October 2020.
  19. ^ a b c T. Costa, James (May 2006). "3". The other insect societies. Foreword by Bert Hölldobler and commentary by Edward O. Wilson (1 ed.). Harvard University: Harvard University Press. pp. 53–54. ISBN 978-0674021631. from the original on 9 June 2021. Retrieved 31 October 2020.
  20. ^ a b c Gullan, P.J.; P.S. Cranston (2005). "9 - Ground Dwelling Insects". The Insects: An Outline of Entomology (3 ed.). Oxford: Blackwell Publishing. p. 235. ISBN 978-1-4051-1113-3.
  21. ^ a b "Earwigs". North Carolina Integrated Pest Management Information. from the original on 27 June 2009. Retrieved 20 July 2009.
  22. ^ Haas, Fabian (2003). "The evolution of wing folding and flight in the Dermaptera (Insecta)" (PDF). Acta Zoologica Cracoviensia. 46: 67–72. (PDF) from the original on 26 July 2011. Retrieved 1 December 2009.
  23. ^ a b c Powell, Jerry A. (2009). "Dermaptera". In Resh, Vincent H.; Cardé, Ring T. (eds.). Encyclopedia of Insects (illustrated 2nd ed.). Academic Press. p. 1132. ISBN 978-0-12-374144-8.
  24. ^ "Earwigs, HYG-2068-94". Ohio State University. Archived from the original on 22 August 2008. Retrieved 20 July 2009.
  25. ^ Staerkle M; M Koelliker (2008). (PDF). Ethology. 114 (9): 844–850. doi:10.1111/j.1439-0310.2008.01526.x. Archived from the original (PDF) on 7 July 2011.
  26. ^ Suzuki, S.; Kitamura M.; Matsubayashi, K. (2005). "Matriphagy in the hump earwig, Anechura harmandi (Dermaptera: Forficulidae), increases the survival rates of the offspring". Journal of Ethology. 23 (2): 211–213. doi:10.1007/s10164-005-0145-7. S2CID 26557397.
  27. ^ Eisner, Thomas; Rossini, Carmen; Eisner, Maria (1941). . Chemoecology. 10 (2): 81–87. doi:10.1007/s000490050011. S2CID 32523264. Archived from the original on 14 July 2011. Retrieved 25 February 2011.
  28. ^ Cowan, Frank, The Project Gutenberg EBook of Curious Facts in the History of Insects; Including Spiders and Scorpions, 1865, EBook issue December 15, 2012, [1] (citing Gentleman's Magazine, Aug. 1855, vol xxv, p. 376.) Accessed September 1, 2021
  29. ^ Kevin Hathorne, Earwig invasion mystery, Pest Management Professional, [2] (specialist trade journal) accessed September 1, 2021
  30. ^ a b Drees, B.M.; Jackman, John (1999). . Field Guide to Texas Insects. Houston: Gulf Publishing Company. p. 1. Archived from the original on 12 June 2010. Retrieved 15 November 2009.
  31. ^ Weiss, Michael J.; Garrick McDonald (1998). "European earwig, Forficula auriculari L. (Dermaptera: Forficulidae), as a predator of the redlegged earth mite, Halotydeus destructor (Tucker) (Acarina: Penthaleidae)". Australian Journal of Entomology. 37 (2): 183–185. doi:10.1111/j.1440-6055.1998.tb01569.x.
  32. ^ Nakata, Satsuko; TC Maa (1974). "A review of the parasitic earwigs" (PDF). Pacific Insects. 16: 307–374. (PDF) from the original on 21 August 2010. Retrieved 28 November 2009.
  33. ^ Grupp, Susan M.; Philip L. Nixon. "The Bug Review-Earwigs". Extension Entomologist, Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign. p. 1. from the original on 7 December 2009. Retrieved 15 November 2009.
  34. ^ a b Arnold, Richard A. "Earwigs." Endangered Wildlife and Plants of the World. Vol. 4. Eds. Anne Hildyard, Paul Thompson and Amy Prior. (Tarrytown, New York: Marshall Cavendish Corporation, 2001) 497.
  35. ^ Dimick, R.E. and Mote, D.C. (1934) Progress report regarding the introduction in Oregon of Digonocheata setipennis, a tachinid parasite of the European earwig. Journal of Economic Entomology 27, 863–865.
  36. ^ Clausen, C.P. (1978) Dermaptera – Forficulidae – European Earwig. In: Clausen, C.P. (ed.) Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review, Handbook No. 480, United States Department of Agriculture, Washington, DC, pp. 15–18.
  37. ^ Kuhlmann, Ulrich. (26 Aug 2009) "Ocytata pallipes (Fallén) (Dipt., Tachinidae), a potential agent for the biological control of the European earwig." Journal of Applied Entomology, Vol. 117, Issue 1–5, pp. 262–267.
  38. ^ Kurczewski, Frank E. "Vespula maculifrons (Hymenoptera: Vespidae) Preying on the European Earwig Forficula auricularia." Journal of the New York Entomological Society, Vol. 76, No. 2 (Jun., 1968), pp. 84–86.
  39. ^ Marshall, Judith A. "Dermaptera: the earwigs." Identifying British Insects and Arachnids: An Annotated Bibliography of Key Works. ed. Peter C. Barnard. (Cambridge: Cambridge University Press, 1999) 40.
  40. ^ Shanor, Leland. "The Characteristics and Morphology of a New Genus of the Laboulbeniales on an Earwig." American Journal of Botany, Vol. 39, No. 7 (Jul. 1952), pp. 498–504.
  41. ^ Capinera, John L. (June 1999). "EENY088/IN245: Ringlegged Earwig, Euborellia annulipes (Lucas) (Insecta: Dermaptera: Carcinophoridae)". Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida. p. 1. from the original on 24 November 2009. Retrieved 15 November 2009.
  42. ^ Behura, Basanta Kumar. "The Relationships of the Tyroglyphoid Mite, Histiostoma Polypori (Oud.) with the Earwig, Forficula Auricularia Linn." Journal of the New York Entomological Society, Vol. 64, (1956), pp. 85–94.
  43. ^ Wirth, S. "Necromenic life style of Histiostoma polypori (Acari: Histiostomatidae)" Journal Experimental and Applied Acarology, Volume 49, Number 4 (December, 2009) pp. 317–327.
  44. ^ Ohio Agricultural Experiment Station. 1924. "Economic entomology." Bulletin.
  45. ^ Jarvis, Karl J.; Haas, Fabian; Whiting, Michael F. (2005). "Phylogeny of earwigs (Insecta: Dermaptera) based on molecular and morphological evidence: Reconsidering the classification of Dermaptera". Systematic Entomology. 30 (3): 442–453. doi:10.1111/j.1365-3113.2004.00276.x. S2CID 85718043.
  46. ^ Kocarek, Petr; John, Vaclav; Hulva, Pavel (2013). "When the Body Hides the Ancestry: Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence". PLOS ONE. 8 (6): e66900. Bibcode:2013PLoSO...866900K. doi:10.1371/journal.pone.0066900. PMC 3691250. PMID 23826171.
  47. ^ a b c Fabian Haas. Dermaptera — Earwigs. Tree of Life web project. from the original on 16 July 2007. Retrieved 26 July 2007.
  48. ^ Wan X, Kim MI, Kim MJ, Kim I (2012) Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera. PLoS One 7(8):e42056.
  49. ^ Wipfler, Benjamin; Letsch, Harald; Frandsen, Paul B.; Kapli, Paschalia; Mayer, Christoph; Bartel, Daniela; Buckley, Thomas R.; Donath, Alexander; Edgerly-Rooks, Janice S.; Fujita, Mari; Liu, Shanlin (19 February 2019). "Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects". Proceedings of the National Academy of Sciences. 116 (8): 3024–3029. Bibcode:2019PNAS..116.3024W. doi:10.1073/pnas.1817794116. ISSN 0027-8424. PMC 6386694. PMID 30642969.
  50. ^ a b c Engel, Michael A.; Lim, Jong-Deock; Baek, Kwang-Seok; Martin, Larry D. (2002). "An Earwig from the Lower Cretaceous of Korea (Dermaptera: Forficulina)". Journal of the Kansas Entomological Society. 75 (2): 86–90. JSTOR 25086049.
  51. ^ Gordh, George; David H. Headrick (2003). A Dictionary of Entomology. CABI Publishing. ISBN 978-0-85199-655-4. from the original on 9 June 2021. Retrieved 31 October 2020.
  52. ^ Pass, Günther; Hans Agricola; Heiner Birkenbeil; Heinz Penzlin (August 1988). "Morphology of neurones associated with the antennal heart of Periplaneta americana (Blattodea, Insecta)". Cell and Tissue Research. 253 (2): 319–326. doi:10.1007/bf00222288. ISSN 0302-766X. PMID 3409288. S2CID 24602483.
  53. ^ Nation, James L. (28 November 2001). "11: Circulatory System". Insect physiology and biochemistry (1 ed.). CRC Press. p. 310. ISBN 978-0-8493-1181-9. from the original on 9 June 2021. Retrieved 12 September 2020.
  54. ^ Gillot, C. Entomology 2nd Ed. (1995) Springer, ISBN 0-306-44967-6, ISBN 978-0-306-44967-3. Accessed on Google Books 11 June 2020 at the Wayback Machine on 25 November 2009.
  55. ^ a b Engel, Michael S.; Haas, Fabian (2007). "Family-group Names for Earwigs (Dermaptera)". American Museum Novitates (3567): 1. doi:10.1206/0003-0082(2007)539[1:FNFED]2.0.CO;2. ISSN 0003-0082. S2CID 85642033.
  56. ^ Jarvis, KJ; F Haas; MF Whiting (2004). (PDF). Systematic Entomology. 30 (3): 1–12. doi:10.1111/j.1365-3113.2004.00276.x. S2CID 85718043. Archived from the original (PDF) on 18 July 2011.
  57. ^ Harris, Bronwyn (2006). Introduction to Earwigs. Home Institute. p. 1.
  58. ^ Fisher, JR (1986). "Earwig in the ear". West J Med. 145 (2): 245. PMC 1306897. PMID 3765607.
  59. ^ Mikkelson, Barbara; David P. Mikkelson (1995). "Bugs in the Ear". Urban Legends Reference Pages. Snopes.com. p. 1. from the original on 9 June 2021. Retrieved 22 November 2009.
  60. ^ Berenbaum, May R. (2009). "The Brain-Boring Earwig". The Earwig's Tail: A Modern Bestiary of Multi-Legged Legends. Cambridge, Mass.: Harvard University Press. pp. 10, 14. ISBN 978-0-674-03540-9.
  61. ^ Gordon, SC; Cormack, MR; Hackett, CA (September 1997). "Arthropod contamination of red raspberry (Rubus idaeus L.) harvested by machine in Scotland". Journal of Horticultural Science. 72 (5): 677–685. doi:10.1080/14620316.1997.11515559.
  62. ^ Solomon, M.G. (March 1992). "Exploitation of predators in UK fruit and hop culture". Phytoparasitica. 20 (Supplement 1): 51S–56S. doi:10.1007/BF02980408. S2CID 45136503.
  63. ^ Campbell, Joseph; Robinson, Henry Morton (1961). A Skeleton Key to Finnegans Wake. New York: The Viking Press. ISBN 9781608681662.
  64. ^ "The Second Season". nightgallery.net. from the original on 1 May 2019. Retrieved 5 May 2019.
  65. ^ Love Lane 14 June 2020 at the Wayback Machine Poetry Nook.
  66. ^ Twinn, Cecil (1942). Insect Life in the Poetry and Drama of England: With Special Reference to Poetry (Thesis). University of Ottawa. pp. 241–242. OCLC 877128347.
  67. ^ Takada, Kenta (2013). "Vulgar dialect names of earwigs used in Kansai Region, Japan" (PDF). Kiberihamushi. 36 (2): 20–22. (PDF) from the original on 7 January 2017. Retrieved 7 January 2017.
  68. ^ "Extract - George's Marvellous Medicine by Roald Dahl". www.penguin.co.uk. from the original on 5 January 2019. Retrieved 4 January 2019.

See also edit

External links edit

  • Earwig Research Center by Fabian Haas, Heilbronn
  • Dermaptera Species File by Heidi Hopkins, Michael D. Maehr, Fabian Haas, and Lesley S. Deem
  • Ringlegged earwig on the UF / IFAS Featured Creatures website
  • Langston RL & JA Powell (1975) The earwigs of California (Order Dermaptera). Bulletin of the California Insect Survey. 20
  • Earwigs from What's That Bug?

earwig, other, uses, disambiguation, make, insect, order, dermaptera, with, about, species, families, they, smaller, insect, orders, have, characteristic, cerci, pair, forcep, like, pincers, their, abdomen, membranous, wings, folded, underneath, short, rarely,. For other uses see Earwig disambiguation Earwigs make up the insect order Dermaptera With about 2 000 species 1 in 12 families they are one of the smaller insect orders Earwigs have characteristic cerci a pair of forcep like pincers on their abdomen and membranous wings folded underneath short rarely used forewings hence the scientific order name skin wings Some groups are tiny parasites on mammals and lack the typical pincers Earwigs are found on all continents except Antarctica EarwigTemporal range 208 0 Ma PreꞒ Ꞓ O S D C P T J K Pg N Late Triassic to RecentFemale common earwig Forficula auriculariaScientific classificationDomain EukaryotaKingdom AnimaliaPhylum ArthropodaClass InsectaInfraclass NeopteraCohort PolyneopteraOrder DermapteraDe Geer 1773Suborders Archidermaptera Pandermaptera Eodermaptera NeodermapteraSynonymsEuplecoptera Euplexoptera ForficulidaEarwigs are mostly nocturnal and often hide in small moist crevices during the day and are active at night feeding on a wide variety of insects and plants Damage to foliage flowers and various crops is commonly blamed on earwigs especially the common earwig Forficula auricularia Earwigs have five molts in the year before they become adults Many earwig species display maternal care which is uncommon among insects Female earwigs may care for their eggs the ones that do will continue to watch over nymphs until their second molt As the nymphs molt sexual dimorphism such as differences in pincer shapes begins to show Extant Dermaptera belong to the suborder Neodermaptera which first appeared during the Cretaceous Some earwig specimen fossils are placed with extinct suborders Archidermaptera or Eodermaptera the former dating to the Late Triassic and the latter to the Middle Jurassic Dermaptera belongs to the major grouping Polyneoptera and are amongst the earliest diverging members of the group alongside angel insects Zoraptera and stoneflies Plecoptera but the exact relationship among the three groups is uncertain Contents 1 Etymology 2 Distribution 3 Morphology 3 1 Internal 4 Life cycle and reproduction 5 Behaviour 6 Ecology 6 1 Predators and parasites 7 Evolution 8 Taxonomy 8 1 Distinguishing characteristics 8 2 Phylogeny 9 Relationship with humans 10 In literature and folklore 11 References 12 See also 13 External linksEtymology edit nbsp Earwig diagram with wings extended and closedThe scientific name for the order Dermaptera is Greek in origin stemming from the words derma meaning skin and pteron plural ptera wing It was coined by Charles De Geer in 1773 The common term earwig is derived from the Old English eare which means ear and wicga which means insect or literally beetle 2 Entomologists suggest that the origin of the name is a reference to the appearance of the hindwings which are unique and distinctive among insects and resemble a human ear when unfolded 3 4 The name is more popularly thought to be related to the old wives tale that earwigs burrowed into the brains of humans through the ear and laid their eggs there 5 Earwigs are not known to purposefully climb into ear canals but there have been anecdotal reports of earwigs being found in the ear 6 Distribution edit nbsp An earwig from the Western GhatsEarwigs are abundant and can be found throughout the Americas and Eurasia The common earwig was introduced into North America in 1907 from Europe but tends to be more common in the southern and southwestern parts of the United States 7 739 The only native species of earwig found in the north of the United States is the spine tailed earwig Doru aculeatum 8 found as far north as Canada where it hides in the leaf axils of emerging plants in southern Ontario wetlands However other families can be found in North America including Forficulidae Doru and Forficula being found there Spongiphoridae Anisolabididae and Labiduridae 9 Few earwigs survive winter outdoors in cold climates They can be found in tight crevices in woodland fields and gardens 7 739 10 Out of about 1 800 species about 25 occur in North America 45 in Europe including 7 in Great Britain and 60 in Australia 11 Morphology edit nbsp Male earwig external morphology Click on image for a larger viewMost earwigs are flattened which allows them to fit inside tight crevices such as under bark with an elongated body generally 7 50 millimetres 1 4 2 in long 11 The largest extant species is the Australian giant earwig Titanolabis colossea which is approximately 50 mm 2 in long 12 10 while the possibly extinct declared extinct in 2014 Saint Helena earwig Labidura herculeana reached 78 mm 3 1 16 in 13 Earwigs are characterized by the cerci or the pair of forceps like pincers on their abdomen male earwigs generally have more curved pincers than females These pincers are used to capture prey defend themselves and fold their wings under the short tegmina 14 The antennae are thread like with at least 10 segments 7 738 739 Males in the six families Karschiellidae Pygidicranidae Diplatyidae Apachyidae Anisolabisidae and Labiduridae have paired penises while the males in the remaining groups have a single penis Both penises are symmetrical in Pygidicranidae and Diplatyidae but in Karschiellidae the left one is strongly reduced Apachyidae Anisolabisidae and Labiduridae have an asymmetrical pair with left and right one pointing on opposite directions when not in use The females have just a single genital opening so only one of the paired penises is ever used during copulation 15 16 17 nbsp Earwig with right wing openThe forewings are short oblong leathery plates used to cover the hindwings like the elytra of a beetle rather than to fly Most species have short and leather like forewings with very thin hindwings though species in the former suborders Arixeniina and Hemimerina epizoic species sometimes considered as ectoparasites 18 19 are wingless and blind with filiform segmented cerci today these are both included merely as families in the suborder Neodermaptera 11 20 21 The hindwing is a very thin membrane that expands like a fan radiating from one point folded under the forewing Even though most earwigs have wings and are capable of flight they are rarely seen in flight These wings are unique in venation and in the pattern of folding that requires the use of the cerci 22 Internal edit The neuroendocrine system is typical of insects There is a brain a subesophageal ganglion three thoracic ganglia and six abdominal ganglia Strong neuron connections connect the neurohemal corpora cardiaca to the brain and frontal ganglion where the closely related median corpus allatum produces juvenile hormone III in close proximity to the neurohemal dorsal arota The digestive system of earwigs is like all other insects consisting of a fore mid and hindgut but earwigs lack gastric caecae which are specialized for digestion in many species of insect Long slender excretory malpighian tubules can be found between the junction of the mid and hind gut 23 The reproductive system of females consist of paired ovaries lateral oviducts spermatheca and a genital chamber The lateral ducts are where the eggs leave the body while the spermatheca is where sperm is stored Unlike other insects the gonopore or genital opening is behind the seventh abdominal segment The ovaries are primitive in that they are polytrophic the nurse cells and oocytes alternate along the length of the ovariole In some species these long ovarioles branch off the lateral duct while in others short ovarioles appear around the duct 23 Life cycle and reproduction edit nbsp The life cycle and development of a male earwig from egg to each instarEarwigs are hemimetabolous meaning they undergo incomplete metamorphosis developing through a series of 4 to 6 molts The developmental stages between molts are called instars Earwigs live for about a year from hatching They start mating in the autumn and can be found together in the autumn and winter The male and female will live in a chamber in debris crevices or soil 2 5 centimetres 1 in deep 7 739 After mating the sperm may remain in the female for months before the eggs are fertilized From midwinter to early spring the male will leave or be driven out by the female Afterward the female will begin to lay 20 to 80 pearly white eggs in two days Some earwigs those parasitic in the suborders Arixeniina and Hemimerina are viviparous give birth to live young they would be fed by a sort of placenta 7 739 740 20 When first laid the eggs are white or cream colored and oval shaped but right before hatching they become kidney shaped and brown 24 Each egg is approximately 1 mm 1 32 in tall and 0 8 mm 1 32 in wide 21 Earwigs are among the few non social insect species that show maternal care The mother pays close attention to the needs of her eggs such as warmth and protection 7 739 740 20 She faithfully defends the eggs from predators not leaving them even to eat unless the clutch goes bad 7 740 She also continuously cleans the eggs to protect them from fungi Studies have found that the urge to clean the eggs persists for only a few days after they are removed and does not return even if the eggs are replaced however when the eggs were continuously replaced after hatching the mother continued to clean the new eggs for up to 3 months 7 740 Studies have also shown that the mother does not immediately recognize her own eggs After laying them she gathers them together and studies have found mothers to pick up small egg shaped wax balls or stones by accident Eventually the impostor eggs were rejected for not having the proper scent 7 740 nbsp Female earwig in her nest with eggs nbsp Female earwig in her nest with newly hatched youngThe eggs hatch in about seven days The mother may assist the nymphs in hatching When the nymphs hatch they eat the egg casing and continue to live with the mother The nymphs look similar to their parents only smaller and will nest under their mother and she will continue to protect them until their second molt The nymphs feed on food regurgitated by the mother 25 and on their own molts If the mother dies before the nymphs are ready to leave the nymphs may eat her 7 740 26 After five to six instars the nymphs will molt into adults The male s forceps will become curved while the females forceps remain straight They will also develop their natural color which can be anything from a light brown as in the tawny earwig to a dark black as in the ringlegged earwig In species of winged earwigs the wings will start to develop at this time The forewings of an earwig are sclerotized to serve as protection for the membranous hindwings Behaviour editMost earwigs are nocturnal and inhabit small crevices living in small amounts of debris in various forms such as bark and fallen logs Species have been found to be blind and living in caves or cavernicolous reported to be found on the island of Hawaii and in South Africa Food typically consists of a wide array of living and dead plant and animal matter 23 For protection from predators the species Doru taeniatum of earwigs can squirt foul smelling yellow liquid in the form of jets from scent glands on the dorsal side of the third and fourth abdominal segment It aims the discharges by revolving the abdomen a maneuver that enables it simultaneously to use its pincers in defense 27 Under exceptional circumstances earwigs form swarms and can take over significant areas of a district In August 1755 they appeared in vast numbers near Stroud Gloucestershire UK especially in the cracks and crevices of old wooden buildings so that they dropped out oftentimes in such multitudes as to literally cover the floor 28 A similar plague occurred in 2006 in and around a woodland cabin near the Blue Ridge Mountains of the eastern United States it persisted through winter and lasted at least two years 29 Ecology editEarwigs are mostly scavengers but some are omnivorous or predatory 7 739 740 The abdomen of the earwig is flexible and muscular It is capable of maneuvering as well as opening and closing the forceps The forceps are used for a variety of purposes In some species the forceps have been observed in use for holding prey and in copulation The forceps tend to be more curved in males than in females 30 nbsp A male of Forficula auricularia feeding on flowersThe common earwig is an omnivore eating plants and ripe fruit as well as actively hunting arthropods To a large extent this species is also a scavenger feeding on decaying plant and animal matter if given the chance Observed prey include largely plant lice but also large insects such as bluebottle flies and woolly aphids 10 Plants that they feed on typically include clover dahlias zinnias butterfly bush hollyhock lettuce cauliflower strawberry blackberry sunflowers celery peaches plums grapes potatoes roses seedling beans and beets and tender grass shoots and roots they have also been known to eat corn silk damaging the corn 31 Species of the suborders Arixeniina and Hemimerina are generally considered epizoic or living on the outside of other animals mainly mammals In the Arixeniina family Arixeniidae species of the genus Arixenia are normally found deep in the skin folds and gular pouch of Malaysian hairless bulldog bats Cheiromeles torquatus apparently feeding on bats body or glandular secretions On the other hand species in the genus Xeniaria still of the suborder Arixeniina are believed to feed on the guano and possibly the guanophilous arthropods in the bat s roost where it has been found Hemimerina includes Araeomerus found in the nest of long tailed pouch rats Beamys and Hemimerus which are found on giant Cricetomys rats 19 32 Earwigs are generally nocturnal and typically hide in small dark and often moist areas in the daytime They can usually be seen on household walls and ceilings Interaction with earwigs at this time results in a defensive free fall to the ground followed by a scramble to a nearby cleft or crevice 30 During the summer they can be found around damp areas such as near sinks and in bathrooms Earwigs tend to gather in shady cracks or openings or anywhere that they can remain concealed during daylight Picnic tables compost and waste bins patios lawn furniture window frames or anything with minute spaces even artichoke blossoms can potentially harbour them 33 Predators and parasites edit Earwigs are regularly preyed upon by birds and like many other insect species they are prey for insectivorous mammals amphibians lizards centipedes assassin bugs and spiders 34 European naturalists have observed bats preying upon earwigs 34 Their primary insect predators are parasitic species of Tachinidae or tachinid flies whose larvae are endoparasites One species of tachinid fly Triarthria setipennis has been demonstrated to be successful as a biological control of earwigs for almost a century 35 36 Another tachinid fly and parasite of earwigs Ocytata pallipes has shown promise as a biological control agent as well 37 The common predatory wasp the yellow jacket Vespula maculifrons preys upon earwigs when abundant 38 A small species of roundworm Mermis nigrescens is known to occasionally parasitize earwigs that have consumed roundworm eggs with plant matter 39 At least 26 species of parasitic fungus from the order Laboulbeniales have been found on earwigs 40 The eggs and nymphs are also cannibalized by other earwigs 41 A species of tyroglyphoid mite Histiostoma polypori Histiostomatidae Astigmata are observed on common earwigs sometimes in great densities 42 however this mite feeds on earwig cadavers and not its live earwig transportation 43 Hippolyte Lucas observed scarlet acarine mites on European earwigs 44 Evolution edit nbsp Fossil of Belloderma arcuata from the Middle Jurassic of China a member of the extinct Eodermaptera Phasmatodea Embioptera Orthoptera NotopteraDermaptera Archidermaptera Dermapteridae ProtodiplatyidaeEodermaptera Bellodermatidae Semenoviolidae TuranodermatidaeNeodermaptera HemimerinaArixeniinaForficulinaEarwigs and their relatives 45 46 The fossil record of the Dermaptera starts in the Late Triassic to Early Jurassic period about 208 million years ago in England and Australia and comprises about 70 specimens in the extinct suborder Archidermaptera Some of the traits believed by neontologists to belong to modern earwigs are not found in the earliest fossils but adults had five segmented tarsi the final segment of the leg well developed ovipositors veined tegmina forewings and long segmented cerci in fact the pincers would not have been curled or used as they are now 14 The theorized stem group of the Dermaptera are the Protelytroptera which are similar to modern Blattodea cockroaches with shell like forewings and the large unequal anal fan are known from the Permian of North America Europe and Australia No fossils from the Triassic during which Dermaptera would have evolved from Protelytroptera have been found 47 Amongst the most frequently suggested order of insects to be the closest relatives of Dermaptera is Notoptera theorized by Giles in 1963 However other arguments have been made by other authors linking them to Phasmatodea Embioptera Plecoptera and Dictyoptera 11 A 2012 mitochondrial DNA study suggested that this order is the sister to stoneflies of the order Plecoptera 48 A 2018 phylogenetic analysis found that their closest living relatives were angel insects of the order Zoraptera with very high support 49 Archidermaptera is believed to be sister to the remaining earwig groups the extinct Eodermaptera and the living suborder Neodermaptera former suborders Forficulina Hemimerina and Arixeniina The extinct suborders have tarsi with five segments unlike the three found in Neodermaptera as well as unsegmented cerci No fossil Hemimeridae and Arixeniidae are known 50 Species in Hemimeridae were at one time in their own order Diploglassata Dermodermaptera or Hemimerina Like most other epizoic species there is no fossil record but they are probably no older than late Tertiary 14 Some evidence of early evolutionary history is the structure of the antennal heart a separate circulatory organ consisting of two ampullae or vesicles 51 that are attached to the frontal cuticle near the bases of the antennae 52 These features have not been found in other insects An independent organ exists for each antenna consisting of an ampulla attached to the frontal cuticle medial to the antenna base and forming a thin walled sac with a valved ostium on its ventral side They pump blood by elastic connective tissue rather than muscle 53 Taxonomy editFurther information Taxonomy of the Dermaptera Distinguishing characteristics edit The characteristics which distinguish the order Dermaptera from other insect orders are 54 General body shape Elongate dorso ventrally flattened Head Prognathous Antennae are segmented Biting type mouthparts Ocelli absent Compound eyes in most species reduced or absent in some taxa Appendages Two pairs of wings normally present The forewings are modified into short smooth veinless tegmina Hindwings are membranous and semicircular with veins radiating outwards Abdomen Cerci are unsegmented and resemble forceps The ovipositor in females is reduced or absent The overwhelming majority of earwig species are in the former suborder Forficulina grouped into nine families of 180 genera 47 including Forficula auricularia the common European Earwig Species within Forficulina are free living have functional wings and are not parasites The cerci are unsegmented and modified into large forceps like structures The first epizoic species of earwig was discovered by a London taxidermist on the body of a Malaysian hairless bulldog bat in 1909 then described by Karl Jordan By the 1950s the two suborders Arixeniina and Hemimerina had been added to Dermaptera 19 These were subsequently demoted to family Arixeniidae and superfamily Hemimeroidea with sole family Hemimeridae respectively 55 They are now grouped together with the former Forficulina in the new suborder Neodermaptera 55 Arixeniidae represents two genera Arixenia and Xeniaria with a total of five species in them As with Hemimeridae they are blind and wingless with filiform segmented cerci Hemimeridae are viviparous ectoparasites preferring the fur of African rodents in either Cricetomys or Beamys genera 50 Hemimerina also has two genera Hemimerus and Araeomerus with a total of 11 species 50 Phylogeny edit nbsp A female of the common earwig in a threat poseDermaptera is relatively small compared to the other orders of Insecta with only about 2 000 species 3 suborders and 15 families including the extinct suborders Archidermaptera and Eodermaptera with their extinct families Protodiplatyidae Dermapteridae Semenoviolidae and Turanodermatidae The phylogeny of the Dermaptera is still debated The extant Dermaptera appear to be monophyletic and there is support for the monophyly of the families Forficulidae Chelisochidae Labiduridae and Anisolabididae however evidence has supported the conclusion that the former suborder Forficulina was paraphyletic through the exclusion of Hemimerina and Arixeniina which should instead be nested within the Forficulina 47 56 Thus these former suborders were eliminated in the most recent higher classification Relationship with humans editEarwigs are fairly abundant and are found in many areas around the world There is no evidence that they transmit diseases to humans or other animals Their pincers are commonly believed to be dangerous but in reality even the curved pincers of males cause little or no harm to humans 57 Earwigs have been rarely known to crawl into the ears of humans 58 and they do not lay eggs inside the human body or human brain as is often claimed 59 60 There is a debate whether earwigs are harmful or beneficial to crops as they eat both the foliage and the insects eating such foliage such as aphids though it would take a large population to do considerable damage The common earwig eats a wide variety of plants and also a wide variety of foliage including the leaves and petals They have been known to cause economic losses in fruit and vegetable crops Some examples are the flowers hops red raspberries 61 and corn crops in Germany and in the south of France earwigs have been observed feeding on peaches and apricots The earwigs attacked mature plants and made cup shaped bite marks 3 11 mm 1 8 7 16 in in diameter 62 In literature and folklore editOne of the primary characters of James Joyce s experimental novel Finnegans Wake is referred to by the initials HCE which primarily stand for Humphrey Chimpden Earwicker a reference to earwigs Earwig imagery is found throughout the book and also occurs in the author s Ulysses in the Laestrygonians chapter 63 Oscar Cook wrote the short story appearing in Switch On The Light April 1931 A Century Of Creepy Stories 1934 Pan Horror 2 1960 Boomerang which was later adapted by Rod Serling for the Night Gallery TV series episode The Caterpillar 64 It tells the tale of the use of an earwig as a murder instrument applied by a man obsessed with the wife of an associate Thomas Hood discusses the myth of earwigs finding shelter in the human ear in the poem Love Lane by saying the following Tis vain to talk of hopes and fears And hope the least reply to win From any maid that stops her ears In dread of earwigs creeping in 65 In some parts of rural England the earwig is called battle twig which is present in Alfred Lord Tennyson s poem The Spinster s Sweet Arts Twur as bad as battle twig ere i my oan blue chamber to me 66 In some regions of Japan earwigs are called Chinpo Basami or Chinpo Kiri which means penis cutter Kenta Takada a Japanese cultural entomologist has inferred that these names may be derived from the fact that earwigs were seen around old Japanese style toilets 67 In Roald Dahl s children s book George s Marvellous Medicine George s Grandma encourages him to eat unwashed celery with beetles and earwigs still on them A big fat earwig is very tasty Grandma said licking her lips But you ve got to be very quick my dear when you put one of those in your mouth It has a pair of sharp nippers on its back end and if it grabs your tongue with those it never lets go So you ve got to bite the earwig first chop chop before it bites you 68 References edit Zhang Z Q 2011 Phylum Arthropoda von Siebold 1848 In Zhang Z Q Ed Animal biodiversity An outline of higher level classification and survey of taxonomic richness PDF Zootaxa 3148 99 103 doi 10 11646 zootaxa 3148 1 14 Archived PDF from the original on 23 July 2019 Retrieved 16 January 2012 Walter W Skeat 2013 An Etymological Dictionary of the English Language Courier Corporation p 187 ISBN 9780486317656 Archived from the original on 9 June 2021 Retrieved 31 October 2020 Costa J T 2006 The Other Insect Societies United States Harvard University Harvard University Press Dermaptera earwigs Insects and their Allies CSIRO Archived from the original on 24 September 2015 Retrieved 16 November 2015 Friedrichsen G W S Robert W Burchfield 31 December 1966 Onions CT ed The Oxford Dictionary of English Etymology 1996 ed United Kingdom Oxford University Oxford University Press pp earwig ISBN 978 0 19 861112 7 Fisher JR 1986 Earwig in the ear Western Journal of Medicine 145 2 245 PMC 1306897 PMID 3765607 a b c d e f g h i j k Burton Maurice January 2001 International Wildlife Encyclopedia 3 ed Marshall Cavendish Inc ISBN 978 0 7614 7266 7 Archived from the original on 9 June 2021 Retrieved 12 September 2020 Robinson William H 2005 Urban Insects and Arachnids A Handbook of Urban Entomology Cambridge UK Cambridge University Press p 144 ISBN 978 0 521 81253 5 Archived from the original on 17 May 2006 Retrieved 28 November 2009 Marshall Stephan A June 2006 4 Insects Their Natural History and Diversity With a Photographic Guide to Insects of Eastern North America Buffalo NY Richmond Hill Ontario Firefly Books pp 63 64 ISBN 978 1 55297 900 6 a b Cranshaw W S January 2007 European Earwigs 5 533 Colorado State University Archived from the original on 27 July 2009 Retrieved 25 June 2009 a b c d Gillott Cedric 2005 Entomology 3 ed Dordrecht Springer pp 175 179 ISBN 978 1 4020 3184 7 Flindt Rainer 2006 Amazing Numbers in Biology Springer ISBN 978 3540301462 St Helena giant earwig Labidura herculeana Natural History Museum 2013 Archived from the original on 21 May 2013 Retrieved 25 May 2013 a b c Grimaldi David Michael Engel May 2005 7 Evolution of the Insects Cambridge Evolution Ser 1 ed Cambridge University Cambridge University Press pp 217 222 ISBN 978 0 521 82149 0 Archived from the original on 9 June 2021 Retrieved 16 November 2009 Mating and genital coupling in the primitive earwig species Echinosoma denticulatum Pygidicranidae implications for genital evolution in dermapteran phylogeny Half of These Earwigs Use Their Right Penis The Other Half Use Their Left Penis Why In Search of the Origin of Twin Penises Molecular Phylogeny of Earwigs Dermaptera Forficulina Based on Mitochondrial and Nuclear Ribosomal RNA Genes Carpenter George Herbert 1899 4 Insects their structure amp life London J M amp Co pp 170 172 Archived from the original on 9 June 2021 Retrieved 31 October 2020 a b c T Costa James May 2006 3 The other insect societies Foreword by Bert Holldobler and commentary by Edward O Wilson 1 ed Harvard University Harvard University Press pp 53 54 ISBN 978 0674021631 Archived from the original on 9 June 2021 Retrieved 31 October 2020 a b c Gullan P J P S Cranston 2005 9 Ground Dwelling Insects The Insects An Outline of Entomology 3 ed Oxford Blackwell Publishing p 235 ISBN 978 1 4051 1113 3 a b Earwigs North Carolina Integrated Pest Management Information Archived from the original on 27 June 2009 Retrieved 20 July 2009 Haas Fabian 2003 The evolution of wing folding and flight in the Dermaptera Insecta PDF Acta Zoologica Cracoviensia 46 67 72 Archived PDF from the original on 26 July 2011 Retrieved 1 December 2009 a b c Powell Jerry A 2009 Dermaptera In Resh Vincent H Carde Ring T eds Encyclopedia of Insects illustrated 2nd ed Academic Press p 1132 ISBN 978 0 12 374144 8 Earwigs HYG 2068 94 Ohio State University Archived from the original on 22 August 2008 Retrieved 20 July 2009 Staerkle M M Koelliker 2008 Maternal Food Regurgitation to Nymphs in Earwigs Forficula auricularia PDF Ethology 114 9 844 850 doi 10 1111 j 1439 0310 2008 01526 x Archived from the original PDF on 7 July 2011 Suzuki S Kitamura M Matsubayashi K 2005 Matriphagy in the hump earwig Anechura harmandi Dermaptera Forficulidae increases the survival rates of the offspring Journal of Ethology 23 2 211 213 doi 10 1007 s10164 005 0145 7 S2CID 26557397 Eisner Thomas Rossini Carmen Eisner Maria 1941 Chemical defense of an earwig Doru taeniatum Chemoecology 10 2 81 87 doi 10 1007 s000490050011 S2CID 32523264 Archived from the original on 14 July 2011 Retrieved 25 February 2011 Cowan Frank The Project Gutenberg EBook of Curious Facts in the History of Insects Including Spiders and Scorpions 1865 EBook issue December 15 2012 1 citing Gentleman s Magazine Aug 1855 vol xxv p 376 Accessed September 1 2021 Kevin Hathorne Earwig invasion mystery Pest Management Professional 2 specialist trade journal accessed September 1 2021 a b Drees B M Jackman John 1999 Earwig Field Guide to Texas Insects Houston Gulf Publishing Company p 1 Archived from the original on 12 June 2010 Retrieved 15 November 2009 Weiss Michael J Garrick McDonald 1998 European earwig Forficula auriculari L Dermaptera Forficulidae as a predator of the redlegged earth mite Halotydeus destructor Tucker Acarina Penthaleidae Australian Journal of Entomology 37 2 183 185 doi 10 1111 j 1440 6055 1998 tb01569 x Nakata Satsuko TC Maa 1974 A review of the parasitic earwigs PDF Pacific Insects 16 307 374 Archived PDF from the original on 21 August 2010 Retrieved 28 November 2009 Grupp Susan M Philip L Nixon The Bug Review Earwigs Extension Entomologist Department of Natural Resources and Environmental Sciences University of Illinois at Urbana Champaign p 1 Archived from the original on 7 December 2009 Retrieved 15 November 2009 a b Arnold Richard A Earwigs Endangered Wildlife and Plants of the World Vol 4 Eds Anne Hildyard Paul Thompson and Amy Prior Tarrytown New York Marshall Cavendish Corporation 2001 497 Dimick R E and Mote D C 1934 Progress report regarding the introduction in Oregon of Digonocheata setipennis a tachinid parasite of the European earwig Journal of Economic Entomology 27 863 865 Clausen C P 1978 Dermaptera Forficulidae European Earwig In Clausen C P ed Introduced Parasites and Predators of Arthropod Pests and Weeds A World Review Handbook No 480 United States Department of Agriculture Washington DC pp 15 18 Kuhlmann Ulrich 26 Aug 2009 Ocytata pallipes Fallen Dipt Tachinidae a potential agent for the biological control of the European earwig Journal of Applied Entomology Vol 117 Issue 1 5 pp 262 267 Kurczewski Frank E Vespula maculifrons Hymenoptera Vespidae Preying on the European Earwig Forficula auricularia Journal of the New York Entomological Society Vol 76 No 2 Jun 1968 pp 84 86 Marshall Judith A Dermaptera the earwigs Identifying British Insects and Arachnids An Annotated Bibliography of Key Works ed Peter C Barnard Cambridge Cambridge University Press 1999 40 Shanor Leland The Characteristics and Morphology of a New Genus of the Laboulbeniales on an Earwig American Journal of Botany Vol 39 No 7 Jul 1952 pp 498 504 Capinera John L June 1999 EENY088 IN245 Ringlegged Earwig Euborellia annulipes Lucas Insecta Dermaptera Carcinophoridae Entomology and Nematology Department Institute of Food and Agricultural Sciences University of Florida p 1 Archived from the original on 24 November 2009 Retrieved 15 November 2009 Behura Basanta Kumar The Relationships of the Tyroglyphoid Mite Histiostoma Polypori Oud with the Earwig Forficula Auricularia Linn Journal of the New York Entomological Society Vol 64 1956 pp 85 94 Wirth S Necromenic life style of Histiostoma polypori Acari Histiostomatidae Journal Experimental and Applied Acarology Volume 49 Number 4 December 2009 pp 317 327 Ohio Agricultural Experiment Station 1924 Economic entomology Bulletin Jarvis Karl J Haas Fabian Whiting Michael F 2005 Phylogeny of earwigs Insecta Dermaptera based on molecular and morphological evidence Reconsidering the classification of Dermaptera Systematic Entomology 30 3 442 453 doi 10 1111 j 1365 3113 2004 00276 x S2CID 85718043 Kocarek Petr John Vaclav Hulva Pavel 2013 When the Body Hides the Ancestry Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence PLOS ONE 8 6 e66900 Bibcode 2013PLoSO 866900K doi 10 1371 journal pone 0066900 PMC 3691250 PMID 23826171 a b c Fabian Haas Dermaptera Earwigs Tree of Life web project Archived from the original on 16 July 2007 Retrieved 26 July 2007 Wan X Kim MI Kim MJ Kim I 2012 Complete mitochondrial genome of the free living earwig Challia fletcheri Dermaptera Pygidicranidae and phylogeny of Polyneoptera PLoS One 7 8 e42056 Wipfler Benjamin Letsch Harald Frandsen Paul B Kapli Paschalia Mayer Christoph Bartel Daniela Buckley Thomas R Donath Alexander Edgerly Rooks Janice S Fujita Mari Liu Shanlin 19 February 2019 Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects Proceedings of the National Academy of Sciences 116 8 3024 3029 Bibcode 2019PNAS 116 3024W doi 10 1073 pnas 1817794116 ISSN 0027 8424 PMC 6386694 PMID 30642969 a b c Engel Michael A Lim Jong Deock Baek Kwang Seok Martin Larry D 2002 An Earwig from the Lower Cretaceous of Korea Dermaptera Forficulina Journal of the Kansas Entomological Society 75 2 86 90 JSTOR 25086049 Gordh George David H Headrick 2003 A Dictionary of Entomology CABI Publishing ISBN 978 0 85199 655 4 Archived from the original on 9 June 2021 Retrieved 31 October 2020 Pass Gunther Hans Agricola Heiner Birkenbeil Heinz Penzlin August 1988 Morphology of neurones associated with the antennal heart of Periplaneta americana Blattodea Insecta Cell and Tissue Research 253 2 319 326 doi 10 1007 bf00222288 ISSN 0302 766X PMID 3409288 S2CID 24602483 Nation James L 28 November 2001 11 Circulatory System Insect physiology and biochemistry 1 ed CRC Press p 310 ISBN 978 0 8493 1181 9 Archived from the original on 9 June 2021 Retrieved 12 September 2020 Gillot C Entomology 2nd Ed 1995 Springer ISBN 0 306 44967 6 ISBN 978 0 306 44967 3 Accessed on Google Books Archived 11 June 2020 at the Wayback Machine on 25 November 2009 a b Engel Michael S Haas Fabian 2007 Family group Names for Earwigs Dermaptera American Museum Novitates 3567 1 doi 10 1206 0003 0082 2007 539 1 FNFED 2 0 CO 2 ISSN 0003 0082 S2CID 85642033 Jarvis KJ F Haas MF Whiting 2004 A phylogeny of earwigs Insecta Dermaptera based on molecular and morphological evidence reconsidering the classification of Dermaptera PDF Systematic Entomology 30 3 1 12 doi 10 1111 j 1365 3113 2004 00276 x S2CID 85718043 Archived from the original PDF on 18 July 2011 Harris Bronwyn 2006 Introduction to Earwigs Home Institute p 1 Fisher JR 1986 Earwig in the ear West J Med 145 2 245 PMC 1306897 PMID 3765607 Mikkelson Barbara David P Mikkelson 1995 Bugs in the Ear Urban Legends Reference Pages Snopes com p 1 Archived from the original on 9 June 2021 Retrieved 22 November 2009 Berenbaum May R 2009 The Brain Boring Earwig The Earwig s Tail A Modern Bestiary of Multi Legged Legends Cambridge Mass Harvard University Press pp 10 14 ISBN 978 0 674 03540 9 Gordon SC Cormack MR Hackett CA September 1997 Arthropod contamination of red raspberry Rubus idaeus L harvested by machine in Scotland Journal of Horticultural Science 72 5 677 685 doi 10 1080 14620316 1997 11515559 Solomon M G March 1992 Exploitation of predators in UK fruit and hop culture Phytoparasitica 20 Supplement 1 51S 56S doi 10 1007 BF02980408 S2CID 45136503 Campbell Joseph Robinson Henry Morton 1961 A Skeleton Key to Finnegans Wake New York The Viking Press ISBN 9781608681662 The Second Season nightgallery net Archived from the original on 1 May 2019 Retrieved 5 May 2019 Love Lane Archived 14 June 2020 at the Wayback Machine Poetry Nook Twinn Cecil 1942 Insect Life in the Poetry and Drama of England With Special Reference to Poetry Thesis University of Ottawa pp 241 242 OCLC 877128347 Takada Kenta 2013 Vulgar dialect names of earwigs used in Kansai Region Japan PDF Kiberihamushi 36 2 20 22 Archived PDF from the original on 7 January 2017 Retrieved 7 January 2017 Extract George s Marvellous Medicine by Roald Dahl www penguin co uk Archived from the original on 5 January 2019 Retrieved 4 January 2019 See also editList of Orthopteroid genera containing species recorded in EuropeExternal links editEarwig Research Center by Fabian Haas Heilbronn Dermaptera Species File by Heidi Hopkins Michael D Maehr Fabian Haas and Lesley S Deem Ringlegged earwig on the UF IFAS Featured Creatures website Langston RL amp JA Powell 1975 The earwigs of California Order Dermaptera Bulletin of the California Insect Survey 20 Earwigs from What s That Bug Retrieved from https en wikipedia org w index php title Earwig amp oldid 1194763546, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.