fbpx
Wikipedia

Ecosystem

An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact.[2]: 458  These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes.

Left: Coral reef ecosystems are highly productive marine systems.[1] Right: Temperate rainforest, a terrestrial ecosystem.

Ecosystems are controlled by external and internal factors. External factors such as climate, parent material which forms the soil and topography, control the overall structure of an ecosystem but are not themselves influenced by the ecosystem. Internal factors are controlled, for example, by decomposition, root competition, shading, disturbance, succession, and the types of species present. While the resource inputs are generally controlled by external processes, the availability of these resources within the ecosystem is controlled by internal factors. Therefore, internal factors not only control ecosystem processes but are also controlled by them.

Ecosystems are dynamic entities—they are subject to periodic disturbances and are always in the process of recovering from some past disturbance. The tendency of an ecosystem to remain close to its equilibrium state, despite that disturbance, is termed its resistance. The capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity, and feedbacks is termed its ecological resilience. Ecosystems can be studied through a variety of approaches—theoretical studies, studies monitoring specific ecosystems over long periods of time, those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation. Biomes are general classes or categories of ecosystems. However, there is no clear distinction between biomes and ecosystems. Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of ecosystems: a biotic component, an abiotic complex, the interactions between and within them, and the physical space they occupy.

Ecosystems provide a variety of goods and services upon which people depend. Ecosystem goods include the "tangible, material products" of ecosystem processes such as water, food, fuel, construction material, and medicinal plants. Ecosystem services, on the other hand, are generally "improvements in the condition or location of things of value". These include things like the maintenance of hydrological cycles, cleaning air and water, the maintenance of oxygen in the atmosphere, crop pollination and even things like beauty, inspiration and opportunities for research. Many ecosystems become degraded through human impacts, such as soil loss, air and water pollution, habitat fragmentation, water diversion, fire suppression, and introduced species and invasive species. These threats can lead to abrupt transformation of the ecosystem or to gradual disruption of biotic processes and degradation of abiotic conditions of the ecosystem. Once the original ecosystem has lost its defining features, it is considered "collapsed". Ecosystem restoration can contribute to achieving the Sustainable Development Goals.

Definition

An ecosystem (or ecological system) consists of all the organisms and the abiotic pools (or physical environment) with which they interact.[3][4]: 5 [2]: 458  The biotic and abiotic components are linked together through nutrient cycles and energy flows.[5]

"Ecosystem processes" are the transfers of energy and materials from one pool to another.[2]: 458  Ecosystem processes are known to "take place at a wide range of scales". Therefore, the correct scale of study depends on the question asked.[4]: 5 

Origin and development of the term

The term "ecosystem" was first used in 1935 in a publication by British ecologist Arthur Tansley. The term was coined by Arthur Roy Clapham, who came up with the word at Tansley's request.[6] Tansley devised the concept to draw attention to the importance of transfers of materials between organisms and their environment.[4]: 9  He later refined the term, describing it as "The whole system, ... including not only the organism-complex, but also the whole complex of physical factors forming what we call the environment".[3] Tansley regarded ecosystems not simply as natural units, but as "mental isolates".[3] Tansley later defined the spatial extent of ecosystems using the term "ecotope".[7]

G. Evelyn Hutchinson, a limnologist who was a contemporary of Tansley's, combined Charles Elton's ideas about trophic ecology with those of Russian geochemist Vladimir Vernadsky. As a result, he suggested that mineral nutrient availability in a lake limited algal production. This would, in turn, limit the abundance of animals that feed on algae. Raymond Lindeman took these ideas further to suggest that the flow of energy through a lake was the primary driver of the ecosystem. Hutchinson's students, brothers Howard T. Odum and Eugene P. Odum, further developed a "systems approach" to the study of ecosystems. This allowed them to study the flow of energy and material through ecological systems.[4]: 9 

Processes

 
Rainforest ecosystems are rich in biodiversity. This is the Gambia River in Senegal's Niokolo-Koba National Park.

External and internal factors

Ecosystems are controlled by both external and internal factors. External factors, also called state factors, control the overall structure of an ecosystem and the way things work within it, but are not themselves influenced by the ecosystem. On broad geographic scales, climate is the factor that "most strongly determines ecosystem processes and structure".[4]: 14  Climate determines the biome in which the ecosystem is embedded. Rainfall patterns and seasonal temperatures influence photosynthesis and thereby determine the amount of energy available to the ecosystem.[8]: 145 

Parent material determines the nature of the soil in an ecosystem, and influences the supply of mineral nutrients. Topography also controls ecosystem processes by affecting things like microclimate, soil development and the movement of water through a system. For example, ecosystems can be quite different if situated in a small depression on the landscape, versus one present on an adjacent steep hillside.[9]: 39 [10]: 66 

Other external factors that play an important role in ecosystem functioning include time and potential biota, the organisms that are present in a region and could potentially occupy a particular site. Ecosystems in similar environments that are located in different parts of the world can end up doing things very differently simply because they have different pools of species present.[11]: 321  The introduction of non-native species can cause substantial shifts in ecosystem function.[12]

Unlike external factors, internal factors in ecosystems not only control ecosystem processes but are also controlled by them.[4]: 16  While the resource inputs are generally controlled by external processes like climate and parent material, the availability of these resources within the ecosystem is controlled by internal factors like decomposition, root competition or shading.[13] Other factors like disturbance, succession or the types of species present are also internal factors.

Primary production

 
Global oceanic and terrestrial phototroph abundance, from September 1997 to August 2000. As an estimate of autotroph biomass, it is only a rough indicator of primary production potential and not an actual estimate of it.

Primary production is the production of organic matter from inorganic carbon sources. This mainly occurs through photosynthesis. The energy incorporated through this process supports life on earth, while the carbon makes up much of the organic matter in living and dead biomass, soil carbon and fossil fuels. It also drives the carbon cycle, which influences global climate via the greenhouse effect.

Through the process of photosynthesis, plants capture energy from light and use it to combine carbon dioxide and water to produce carbohydrates and oxygen. The photosynthesis carried out by all the plants in an ecosystem is called the gross primary production (GPP).[8]: 124  About half of the gross GPP is respired by plants in order to provide the energy that supports their growth and maintenance.[14]: 157  The remainder, that portion of GPP that is not used up by respiration, is known as the net primary production (NPP).[14]: 157  Total photosynthesis is limited by a range of environmental factors. These include the amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), the rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying out photosynthesis.[8]: 155 

Energy flow

Energy and carbon enter ecosystems through photosynthesis, are incorporated into living tissue, transferred to other organisms that feed on the living and dead plant matter, and eventually released through respiration.[14]: 157  The carbon and energy incorporated into plant tissues (net primary production) is either consumed by animals while the plant is alive, or it remains uneaten when the plant tissue dies and becomes detritus. In terrestrial ecosystems, the vast majority of the net primary production ends up being broken down by decomposers. The remainder is consumed by animals while still alive and enters the plant-based trophic system. After plants and animals die, the organic matter contained in them enters the detritus-based trophic system.[15]

Ecosystem respiration is the sum of respiration by all living organisms (plants, animals, and decomposers) in the ecosystem.[16] Net ecosystem production is the difference between gross primary production (GPP) and ecosystem respiration.[17] In the absence of disturbance, net ecosystem production is equivalent to the net carbon accumulation in the ecosystem.

Energy can also be released from an ecosystem through disturbances such as wildfire or transferred to other ecosystems (e.g., from a forest to a stream to a lake) by erosion.

In aquatic systems, the proportion of plant biomass that gets consumed by herbivores is much higher than in terrestrial systems.[15] In trophic systems, photosynthetic organisms are the primary producers. The organisms that consume their tissues are called primary consumers or secondary producersherbivores. Organisms which feed on microbes (bacteria and fungi) are termed microbivores. Animals that feed on primary consumers—carnivores—are secondary consumers. Each of these constitutes a trophic level.[15]

The sequence of consumption—from plant to herbivore, to carnivore—forms a food chain. Real systems are much more complex than this—organisms will generally feed on more than one form of food, and may feed at more than one trophic level. Carnivores may capture some prey that is part of a plant-based trophic system and others that are part of a detritus-based trophic system (a bird that feeds both on herbivorous grasshoppers and earthworms, which consume detritus). Real systems, with all these complexities, form food webs rather than food chains.[15]

Decomposition

 
Sequence of a decomposing pig carcass over time

The carbon and nutrients in dead organic matter are broken down by a group of processes known as decomposition. This releases nutrients that can then be re-used for plant and microbial production and returns carbon dioxide to the atmosphere (or water) where it can be used for photosynthesis. In the absence of decomposition, the dead organic matter would accumulate in an ecosystem, and nutrients and atmospheric carbon dioxide would be depleted.[18]: 183 

Decomposition processes can be separated into three categories—leaching, fragmentation and chemical alteration of dead material. As water moves through dead organic matter, it dissolves and carries with it the water-soluble components. These are then taken up by organisms in the soil, react with mineral soil, or are transported beyond the confines of the ecosystem (and are considered lost to it).[19]: 271–280  Newly shed leaves and newly dead animals have high concentrations of water-soluble components and include sugars, amino acids and mineral nutrients. Leaching is more important in wet environments and less important in dry ones.[10]: 69–77 

Fragmentation processes break organic material into smaller pieces, exposing new surfaces for colonization by microbes. Freshly shed leaf litter may be inaccessible due to an outer layer of cuticle or bark, and cell contents are protected by a cell wall. Newly dead animals may be covered by an exoskeleton. Fragmentation processes, which break through these protective layers, accelerate the rate of microbial decomposition.[18]: 184  Animals fragment detritus as they hunt for food, as does passage through the gut. Freeze-thaw cycles and cycles of wetting and drying also fragment dead material.[18]: 186 

The chemical alteration of the dead organic matter is primarily achieved through bacterial and fungal action. Fungal hyphae produce enzymes that can break through the tough outer structures surrounding dead plant material. They also produce enzymes that break down lignin, which allows them access to both cell contents and the nitrogen in the lignin. Fungi can transfer carbon and nitrogen through their hyphal networks and thus, unlike bacteria, are not dependent solely on locally available resources.[18]: 186 

Decomposition rates

Decomposition rates vary among ecosystems.[20] The rate of decomposition is governed by three sets of factors—the physical environment (temperature, moisture, and soil properties), the quantity and quality of the dead material available to decomposers, and the nature of the microbial community itself.[18]: 194  Temperature controls the rate of microbial respiration; the higher the temperature, the faster the microbial decomposition occurs. Temperature also affects soil moisture, which affects decomposition. Freeze-thaw cycles also affect decomposition—freezing temperatures kill soil microorganisms, which allows leaching to play a more important role in moving nutrients around. This can be especially important as the soil thaws in the spring, creating a pulse of nutrients that become available.[19]: 280 

Decomposition rates are low under very wet or very dry conditions. Decomposition rates are highest in wet, moist conditions with adequate levels of oxygen. Wet soils tend to become deficient in oxygen (this is especially true in wetlands), which slows microbial growth. In dry soils, decomposition slows as well, but bacteria continue to grow (albeit at a slower rate) even after soils become too dry to support plant growth.[18]: 200 

Dynamics and resilience

Ecosystems are dynamic entities. They are subject to periodic disturbances and are always in the process of recovering from past disturbances.[21]: 347  When a perturbation occurs, an ecosystem responds by moving away from its initial state. The tendency of an ecosystem to remain close to its equilibrium state, despite that disturbance, is termed its resistance. The capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity, and feedbacks is termed its ecological resilience.[22][23] Resilience thinking also includes humanity as an integral part of the biosphere where we are dependent on ecosystem services for our survival and must build and maintain their natural capacities to withstand shocks and disturbances.[24] Time plays a central role over a wide range, for example, in the slow development of soil from bare rock and the faster recovery of a community from disturbance.[14]: 67 

Disturbance also plays an important role in ecological processes. F. Stuart Chapin and coauthors define disturbance as "a relatively discrete event in time that removes plant biomass".[21]: 346  This can range from herbivore outbreaks, treefalls, fires, hurricanes, floods, glacial advances, to volcanic eruptions. Such disturbances can cause large changes in plant, animal and microbe populations, as well as soil organic matter content. Disturbance is followed by succession, a "directional change in ecosystem structure and functioning resulting from biotically driven changes in resource supply."[2]: 470 

The frequency and severity of disturbance determine the way it affects ecosystem function. A major disturbance like a volcanic eruption or glacial advance and retreat leave behind soils that lack plants, animals or organic matter. Ecosystems that experience such disturbances undergo primary succession. A less severe disturbance like forest fires, hurricanes or cultivation result in secondary succession and a faster recovery.[21]: 348  More severe and more frequent disturbance result in longer recovery times.

From one year to another, ecosystems experience variation in their biotic and abiotic environments. A drought, a colder than usual winter, and a pest outbreak all are short-term variability in environmental conditions. Animal populations vary from year to year, building up during resource-rich periods and crashing as they overshoot their food supply. Longer-term changes also shape ecosystem processes. For example, the forests of eastern North America still show legacies of cultivation which ceased in 1850 when large areas were reverted to forests.[21]: 340  Another example is the methane production in eastern Siberian lakes that is controlled by organic matter which accumulated during the Pleistocene.[25]

 
A freshwater lake in Gran Canaria, an island of the Canary Islands. Clear boundaries make lakes convenient to study using an ecosystem approach.

Nutrient cycling

 
Biological nitrogen cycling

Ecosystems continually exchange energy and carbon with the wider environment. Mineral nutrients, on the other hand, are mostly cycled back and forth between plants, animals, microbes and the soil. Most nitrogen enters ecosystems through biological nitrogen fixation, is deposited through precipitation, dust, gases or is applied as fertilizer.[19]: 266  Most terrestrial ecosystems are nitrogen-limited in the short term making nitrogen cycling an important control on ecosystem production.[19]: 289  Over the long term, phosphorus availability can also be critical.[26]

Macronutrients which are required by all plants in large quantities include the primary nutrients (which are most limiting as they are used in largest amounts): Nitrogen, phosphorus, potassium.[27]: 231  Secondary major nutrients (less often limiting) include: Calcium, magnesium, sulfur. Micronutrients required by all plants in small quantities include boron, chloride, copper, iron, manganese, molybdenum, zinc. Finally, there are also beneficial nutrients which may be required by certain plants or by plants under specific environmental conditions: aluminum, cobalt, iodine, nickel, selenium, silicon, sodium, vanadium.[27]: 231 

Until modern times, nitrogen fixation was the major source of nitrogen for ecosystems. Nitrogen-fixing bacteria either live symbiotically with plants or live freely in the soil. The energetic cost is high for plants that support nitrogen-fixing symbionts—as much as 25% of gross primary production when measured in controlled conditions. Many members of the legume plant family support nitrogen-fixing symbionts. Some cyanobacteria are also capable of nitrogen fixation. These are phototrophs, which carry out photosynthesis. Like other nitrogen-fixing bacteria, they can either be free-living or have symbiotic relationships with plants.[21]: 360  Other sources of nitrogen include acid deposition produced through the combustion of fossil fuels, ammonia gas which evaporates from agricultural fields which have had fertilizers applied to them, and dust.[19]: 270  Anthropogenic nitrogen inputs account for about 80% of all nitrogen fluxes in ecosystems.[19]: 270 

When plant tissues are shed or are eaten, the nitrogen in those tissues becomes available to animals and microbes. Microbial decomposition releases nitrogen compounds from dead organic matter in the soil, where plants, fungi, and bacteria compete for it. Some soil bacteria use organic nitrogen-containing compounds as a source of carbon, and release ammonium ions into the soil. This process is known as nitrogen mineralization. Others convert ammonium to nitrite and nitrate ions, a process known as nitrification. Nitric oxide and nitrous oxide are also produced during nitrification.[19]: 277  Under nitrogen-rich and oxygen-poor conditions, nitrates and nitrites are converted to nitrogen gas, a process known as denitrification.[19]: 281 

Mycorrhizal fungi which are symbiotic with plant roots, use carbohydrates supplied by the plants and in return transfer phosphorus and nitrogen compounds back to the plant roots.[28][29] This is an important pathway of organic nitrogen transfer from dead organic matter to plants. This mechanism may contribute to more than 70 Tg of annually assimilated plant nitrogen, thereby playing a critical role in global nutrient cycling and ecosystem function.[29]

Phosphorus enters ecosystems through weathering. As ecosystems age this supply diminishes, making phosphorus-limitation more common in older landscapes (especially in the tropics).[19]: 287–290  Calcium and sulfur are also produced by weathering, but acid deposition is an important source of sulfur in many ecosystems. Although magnesium and manganese are produced by weathering, exchanges between soil organic matter and living cells account for a significant portion of ecosystem fluxes. Potassium is primarily cycled between living cells and soil organic matter.[19]: 291 

Function and biodiversity

 
Loch Lomond in Scotland forms a relatively isolated ecosystem. The fish community of this lake has remained stable over a long period until a number of introductions in the 1970s restructured its food web.[30]
 
Spiny forest at Ifaty, Madagascar, featuring various Adansonia (baobab) species, Alluaudia procera (Madagascar ocotillo) and other vegetation

Biodiversity plays an important role in ecosystem functioning.[31]: 449–453  Ecosystem processes are driven by the species in an ecosystem, the nature of the individual species, and the relative abundance of organisms among these species. Ecosystem processes are the net effect of the actions of individual organisms as they interact with their environment. Ecological theory suggests that in order to coexist, species must have some level of limiting similarity—they must be different from one another in some fundamental way, otherwise, one species would competitively exclude the other.[32] Despite this, the cumulative effect of additional species in an ecosystem is not linear: additional species may enhance nitrogen retention, for example. However, beyond some level of species richness,[11]: 331  additional species may have little additive effect unless they differ substantially from species already present.[11]: 324  This is the case for example for exotic species.[11]: 321 

The addition (or loss) of species that are ecologically similar to those already present in an ecosystem tends to only have a small effect on ecosystem function. Ecologically distinct species, on the other hand, have a much larger effect. Similarly, dominant species have a large effect on ecosystem function, while rare species tend to have a small effect. Keystone species tend to have an effect on ecosystem function that is disproportionate to their abundance in an ecosystem.[11]: 324 

An ecosystem engineer is any organism that creates, significantly modifies, maintains or destroys a habitat.[33]

Study approaches

Ecosystem ecology

 
A hydrothermal vent is an ecosystem on the ocean floor. (The scale bar is 1 m.)

Ecosystem ecology is the "study of the interactions between organisms and their environment as an integrated system".[2]: 458  The size of ecosystems can range up to ten orders of magnitude, from the surface layers of rocks to the surface of the planet.[4]: 6 

The Hubbard Brook Ecosystem Study started in 1963 to study the White Mountains in New Hampshire. It was the first successful attempt to study an entire watershed as an ecosystem. The study used stream chemistry as a means of monitoring ecosystem properties, and developed a detailed biogeochemical model of the ecosystem.[34] Long-term research at the site led to the discovery of acid rain in North America in 1972. Researchers documented the depletion of soil cations (especially calcium) over the next several decades.[35]

Ecosystems can be studied through a variety of approaches—theoretical studies, studies monitoring specific ecosystems over long periods of time, those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation.[36] Studies can be carried out at a variety of scales, ranging from whole-ecosystem studies to studying microcosms or mesocosms (simplified representations of ecosystems).[37] American ecologist Stephen R. Carpenter has argued that microcosm experiments can be "irrelevant and diversionary" if they are not carried out in conjunction with field studies done at the ecosystem scale. In such cases, microcosm experiments may fail to accurately predict ecosystem-level dynamics.[38]

Classifications

Biomes are general classes or categories of ecosystems.[4]: 14  However, there is no clear distinction between biomes and ecosystems.[39] Biomes are always defined at a very general level. Ecosystems can be described at levels that range from very general (in which case the names are sometimes the same as those of biomes) to very specific, such as "wet coastal needle-leafed forests".

Biomes vary due to global variations in climate. Biomes are often defined by their structure: at a general level, for example, tropical forests, temperate grasslands, and arctic tundra.[4]: 14  There can be any degree of subcategories among ecosystem types that comprise a biome, e.g., needle-leafed boreal forests or wet tropical forests. Although ecosystems are most commonly categorized by their structure and geography, there are also other ways to categorize and classify ecosystems such as by their level of human impact (see anthropogenic biome), or by their integration with social processes or technological processes or their novelty (e.g. novel ecosystem). Each of these taxonomies of ecosystems tends to emphasize different structural or functional properties.[40] None of these is the “best” classification.

Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of ecosystems: a biotic component, an abiotic complex, the interactions between and within them, and the physical space they occupy.[40] Different approaches to ecological classifications have been developed in terrestrial, freshwater and marine disciplines, and a function-based typology has been proposed to leverage the strengths of these different approaches into a unified system.[41]

Examples

The following articles are examples of ecosystems for particular regions, zones or conditions:

Human interactions with ecosystems

Human activities are important in almost all ecosystems. Although humans exist and operate within ecosystems, their cumulative effects are large enough to influence external factors like climate.[4]: 14 

Ecosystem goods and services

 
The High Peaks Wilderness Area in the 6,000,000-acre (2,400,000 ha) Adirondack Park is an example of a diverse ecosystem.

Ecosystems provide a variety of goods and services upon which people depend.[42] Ecosystem goods include the "tangible, material products" of ecosystem processes such as water, food, fuel, construction material, and medicinal plants.[43][44] They also include less tangible items like tourism and recreation, and genes from wild plants and animals that can be used to improve domestic species.[42]

Ecosystem services, on the other hand, are generally "improvements in the condition or location of things of value".[44] These include things like the maintenance of hydrological cycles, cleaning air and water, the maintenance of oxygen in the atmosphere, crop pollination and even things like beauty, inspiration and opportunities for research.[42] While material from the ecosystem had traditionally been recognized as being the basis for things of economic value, ecosystem services tend to be taken for granted.[44]

The Millennium Ecosystem Assessment is an international synthesis by over 1000 of the world's leading biological scientists that analyzes the state of the Earth's ecosystems and provides summaries and guidelines for decision-makers. The report identified four major categories of ecosystem services: provisioning, regulating, cultural and supporting services.[45] It concludes that human activity is having a significant and escalating impact on the biodiversity of the world ecosystems, reducing both their resilience and biocapacity. The report refers to natural systems as humanity's "life-support system", providing essential ecosystem services. The assessment measures 24 ecosystem services and concludes that only four have shown improvement over the last 50 years, 15 are in serious decline, and five are in a precarious condition.[45]: 6–19 

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is an intergovernmental organization established to improve the interface between science and policy on issues of biodiversity and ecosystem services.[46] It is intended to serve a similar role to the Intergovernmental Panel on Climate Change.[47] The conceptual framework of the IPBES includes six primary interlinked elements: nature, nature’s benefits to people, anthropogenic assets, institutions and governance systems and other indirect drivers of change, direct drivers of change, and good quality of life.[48]

Ecosystem services are limited and also threatened by human activities.[49] To help inform decision-makers, many ecosystem services are being assigned economic values, often based on the cost of replacement with anthropogenic alternatives. The ongoing challenge of prescribing economic value to nature, for example through biodiversity banking, is prompting transdisciplinary shifts in how we recognize and manage the environment, social responsibility, business opportunities, and our future as a species.[49]

Degradation and decline

 
The Forest Landscape Integrity Index measures global anthropogenic modification on remaining forests annually. 0 = Most modification; 10= Least.[50]

As human population and per capita consumption grow, so do the resource demands imposed on ecosystems and the effects of the human ecological footprint. Natural resources are vulnerable and limited. The environmental impacts of anthropogenic actions are becoming more apparent. Problems for all ecosystems include: environmental pollution, climate change and biodiversity loss. For terrestrial ecosystems further threats include air pollution, soil degradation, and deforestation. For aquatic ecosystems threats also include unsustainable exploitation of marine resources (for example overfishing), marine pollution, microplastics pollution, the effects of climate change on oceans (e.g. warming and acidification), and building on coastal areas.[51]

Many ecosystems become degraded through human impacts, such as soil loss, air and water pollution, habitat fragmentation, water diversion, fire suppression, and introduced species and invasive species.[52]: 437 

These threats can lead to abrupt transformation of the ecosystem or to gradual disruption of biotic processes and degradation of abiotic conditions of the ecosystem. Once the original ecosystem has lost its defining features, it is considered collapsed (see also IUCN Red List of Ecosystems).[53] Ecosystem collapse could be reversible and in this way differs from species extinction.[54] Quantitative assessments of the risk of collapse are used as measures of conservation status and trends.

Management

When natural resource management is applied to whole ecosystems, rather than single species, it is termed ecosystem management.[55] Although definitions of ecosystem management abound, there is a common set of principles which underlie these definitions: A fundamental principle is the long-term sustainability of the production of goods and services by the ecosystem;[52] "intergenerational sustainability [is] a precondition for management, not an afterthought".[42] While ecosystem management can be used as part of a plan for wilderness conservation, it can also be used in intensively managed ecosystems[42] (see, for example, agroecosystem and close to nature forestry).

Restoration and sustainable development

Integrated conservation and development projects (ICDPs) aim to address conservation and human livelihood (sustainable development) concerns in developing countries together, rather than separately as was often done in the past.[52]: 445 

See also

Ecosystems in specific regions of the world:

Ecosystems grouped by condition:

References

Notes

  1. ^ Hatcher, Bruce Gordon (1990). "Coral reef primary productivity. A hierarchy of pattern and process". Trends in Ecology and Evolution. 5 (5): 149–155. doi:10.1016/0169-5347(90)90221-X. PMID 21232343.
  2. ^ a b c d e Chapin, F. Stuart, III (2011). "Glossary". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  3. ^ a b c Tansley, A. G. (1935). (PDF). Ecology. 16 (3): 284–307. doi:10.2307/1930070. JSTOR 1930070. Archived from the original (PDF) on 2016-10-06.
  4. ^ a b c d e f g h i j Chapin, F. Stuart, III (2011). "Chapter 1: The Ecosystem Concept". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  5. ^ Odum, Eugene P (1971). Fundamentals of Ecology (third ed.). New York: Saunders. ISBN 978-0-534-42066-6.
  6. ^ Willis, A.J. (1997). "The Ecosystem: An Evolving Concept Viewed Historically". Functional Ecology. 11 (2): 268–271. doi:10.1111/j.1365-2435.1997.00081.x.
  7. ^ Tansley, A.G. (1939). The British Islands and Their Vegetation. Cambridge University Press.
  8. ^ a b c Chapin, F. Stuart, III (2011). "Chapter 5: Carbon Inputs to Ecosystems". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  9. ^ Chapin, F. Stuart, III (2011). "Chapter 2: Earth's Climate System". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  10. ^ a b Chapin, F. Stuart, III (2011). "Chapter 3: Geology, Soils, and Sediments". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  11. ^ a b c d e Chapin, F. Stuart, III (2011). "Chapter 11: Species Effects on Ecosystem Processes". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  12. ^ Simberloff, Daniel; Martin, Jean-Louis; Genovesi, Piero; Maris, Virginie; Wardle, David A.; Aronson, James; Courchamp, Franck; Galil, Bella; García-Berthou, Emili (2013). "Impacts of biological invasions: what's what and the way forward". Trends in Ecology & Evolution. 28 (1): 58–66. doi:10.1016/j.tree.2012.07.013. hdl:10261/67376. ISSN 0169-5347. PMID 22889499.
  13. ^ "46.1A: Ecosystem Dynamics". Biology LibreTexts. 2018-07-17. Retrieved 2021-08-02.   Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  14. ^ a b c d Chapin, F. Stuart, III (2011). "Chapter 6: Plant Carbon Budgets". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  15. ^ a b c d Chapin, F. Stuart, III (2011). "Chapter 10: Trophic Dynamics". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  16. ^ Yvon-Durocher, Gabriel; Caffrey, Jane M.; Cescatti, Alessandro; Dossena, Matteo; Giorgio, Paul del; Gasol, Josep M.; Montoya, José M.; Pumpanen, Jukka; Staehr, Peter A. (2012). "Reconciling the temperature dependence of respiration across timescales and ecosystem types". Nature. 487 (7408): 472–476. Bibcode:2012Natur.487..472Y. doi:10.1038/nature11205. ISSN 0028-0836. PMID 22722862. S2CID 4422427.
  17. ^ Lovett, Gary M.; Cole, Jonathan J.; Pace, Michael L. (2006). "Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation?". Ecosystems. 9 (1): 152–155. doi:10.1007/s10021-005-0036-3. ISSN 1435-0629. S2CID 5890190.
  18. ^ a b c d e f Chapin, F. Stuart, III (2011). "Chapter 7: Decomposition and Ecosystem Carbon Budgets". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  19. ^ a b c d e f g h i j Chapin, F. Stuart, III (2011). "Chapter 9: Nutrient cycling". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  20. ^ Ochoa-Hueso, R; Delgado-Baquerizo, M; King, PTA; Benham, M; Arca, V; Power, SA (February 2019). "Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition". Soil Biology and Biochemistry. 129: 144–152. doi:10.1016/j.soilbio.2018.11.009. S2CID 92606851.
  21. ^ a b c d e Chapin, F. Stuart, III (2011). "Chapter 12: Temporal Dynamics". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  22. ^ Principles of ecosystem stewardship : resilience-based natural resource management in a changing world. F. Stuart, III Chapin, Gary P. Kofinas, Carl Folke, Melissa C. Chapin (1st ed.). New York: Springer. 2009. ISBN 978-0-387-73033-2. OCLC 432702920.{{cite book}}: CS1 maint: others (link)
  23. ^ Walker, Brian; Holling, C. S.; Carpenter, Stephen R.; Kinzig, Ann P. (2004). "Resilience, Adaptability and Transformability in Social-ecological Systems". Ecology and Society. 9 (2): art5. doi:10.5751/ES-00650-090205. hdl:10535/3282. ISSN 1708-3087.
  24. ^ Simonsen, S.H. (2015). "Applying Resilience Thinking" (PDF). (PDF) from the original on 2017-12-15.
  25. ^ Walter, K. M.; Zimov, S. A.; Chanton, J. P.; Verbyla, D.; Chapin, F. S. (2006). "Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming". Nature. 443 (7107): 71–75. Bibcode:2006Natur.443...71W. doi:10.1038/nature05040. ISSN 0028-0836. PMID 16957728. S2CID 4415304.
  26. ^ Vitousek, P.; Porder, S. (2010). "Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions". Ecological Applications. 20 (1): 5–15. doi:10.1890/08-0127.1. PMID 20349827.
  27. ^ a b Chapin, F. Stuart, III (2011). "Chapter 8: Plant Nutrient Use". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  28. ^ Bolan, N.S. (1991). "A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants". Plant and Soil. 134 (2): 189–207. doi:10.1007/BF00012037. S2CID 44215263.
  29. ^ a b Hestrin, R.; Hammer, E.C.; Mueller, C.W. (2019). "Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition". Commun Biol. 2: 233. doi:10.1038/s42003-019-0481-8. PMC 6588552. PMID 31263777.
  30. ^ Adams, C.E. (1994). "The fish community of Loch Lomond, Scotland: its history and rapidly changing status". Hydrobiologia. 290 (1–3): 91–102. doi:10.1007/BF00008956. S2CID 6894397.
  31. ^ Schulze, Ernst-Detlef; Erwin Beck; Klaus Müller-Hohenstein (2005). Plant Ecology. Berlin: Springer. ISBN 978-3-540-20833-4.
  32. ^ Schoener, Thomas W. (2009). "Ecological Niche". In Simon A. Levin (ed.). The Princeton Guide to Ecology. Princeton: Princeton University Press. pp. 2–13. ISBN 978-0-691-12839-9.
  33. ^ Jones, Clive G.; Lawton, John H.; Shachak, Moshe (1994). "Organisms as Ecosystem Engineers". Oikos. 69 (3): 373–386. doi:10.2307/3545850. ISSN 0030-1299. JSTOR 3545850.
  34. ^ Lindenmayer, David B.; Gene E. Likens (2010). "The Problematic, the Effective and the Ugly – Some Case Studies". Effective Ecological Monitoring. Collingwood, Australia: CSIRO Publishing. pp. 87–145. ISBN 978-1-84971-145-6.
  35. ^ Likens, Gene E. (2004). (PDF). Ecology. 85 (9): 2355–2362. doi:10.1890/03-0243. JSTOR 3450233. Archived from the original (PDF) on 2013-05-01.
  36. ^ Carpenter, Stephen R.; Jonathan J. Cole; Timothy E. Essington; James R. Hodgson; Jeffrey N. Houser; James F. Kitchell; Michael L. Pace (1998). "Evaluating Alternative Explanations in Ecosystem Experiments". Ecosystems. 1 (4): 335–344. doi:10.1007/s100219900025. S2CID 33559404.
  37. ^ Schindler, David W. (1998). "Replication versus Realism: The Need for Ecosystem-Scale Experiments". Ecosystems. 1 (4): 323–334. doi:10.1007/s100219900026. JSTOR 3658915. S2CID 45418039.
  38. ^ Carpenter, Stephen R. (1996). "Microcosm Experiments have Limited Relevance for Community and Ecosystem Ecology". Ecology. 77 (3): 677–680. doi:10.2307/2265490. JSTOR 2265490.
  39. ^ "Differences Between the Grassland & the Tundra". Sciencing. Retrieved 2021-07-16.
  40. ^ a b Keith, D.A.; Ferrer-Paris, J.R.; Nicholson, E.; Kingsford, R.T., eds. (2020). The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups. Gland, Switzerland: IUCN. doi:10.2305/IUCN.CH.2020.13.en. ISBN 978-2-8317-2077-7. S2CID 241360441.
  41. ^ Keith, David A.; Ferrer-Paris, José R.; Nicholson, Emily; Bishop, Melanie J.; Polidoro, Beth A.; Ramirez-Llodra, Eva; Tozer, Mark G.; Nel, Jeanne L.; Mac Nally, Ralph; Gregr, Edward J.; Watermeyer, Kate E.; Essl, Franz; Faber-Langendoen, Don; Franklin, Janet; Lehmann, Caroline E. R.; Etter, Andrés; Roux, Dirk J.; Stark, Jonathan S.; Rowland, Jessica A.; Brummitt, Neil A.; Fernandez-Arcaya, Ulla C.; Suthers, Iain M.; Wiser, Susan K.; Donohue, Ian; Jackson, Leland J.; Pennington, R. Toby; Iliffe, Thomas M.; Gerovasileiou, Vasilis; Giller, Paul; Robson, Belinda J.; Pettorelli, Nathalie; Andrade, Angela; Lindgaard, Arild; Tahvanainen, Teemu; Terauds, Aleks; Chadwick, Michael A.; Murray, Nicholas J.; Moat, Justin; Pliscoff, Patricio; Zager, Irene; Kingsford, Richard T. (12 October 2022). "A function-based typology for Earth's ecosystems". Nature. 610 (7932): 513–518. doi:10.1038/s41586-022-05318-4. PMC 9581774. PMID 36224387.
  42. ^ a b c d e Christensen, Norman L.; Bartuska, Ann M.; Brown, James H.; Carpenter, Stephen; D'Antonio, Carla; Francis, Robert; Franklin, Jerry F.; MacMahon, James A.; Noss, Reed F.; Parsons, David J.; Peterson, Charles H.; Turner, Monica G.; Woodmansee, Robert G. (1996). "The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management". Ecological Applications. 6 (3): 665–691. CiteSeerX 10.1.1.404.4909. doi:10.2307/2269460. JSTOR 2269460. S2CID 53461068.
  43. ^ "Ecosystem Goods and Services" (PDF). (PDF) from the original on 2009-11-10.
  44. ^ a b c Brown, Thomas C.; John C. Bergstrom; John B. Loomis (2007). (PDF). Natural Resources Journal. 47 (2): 329–376. Archived from the original (PDF) on 2013-05-25.
  45. ^ a b "Millennium Ecosystem Assessment". 2005. from the original on 2011-05-24. Retrieved 10 November 2021.
  46. ^ . Archived from the original on 27 June 2019. Retrieved 28 June 2019.
  47. ^ "Biodiversity crisis is worse than climate change, experts say". ScienceDaily. January 20, 2012. Retrieved September 11, 2019.
  48. ^ Díaz, Sandra; Demissew, Sebsebe; Carabias, Julia; Joly, Carlos; Lonsdale, Mark; Ash, Neville; Larigauderie, Anne; Adhikari, Jay Ram; Arico, Salvatore; Báldi, András; Bartuska, Ann (2015). "The IPBES Conceptual Framework — connecting nature and people". Current Opinion in Environmental Sustainability. 14: 1–16. doi:10.1016/j.cosust.2014.11.002. S2CID 14000233.
  49. ^ a b Ceccato, Pietro; Fernandes, Katia; Ruiz, Daniel; Allis, Erica (17 June 2014). "Climate and environmental monitoring for decision making". Earth Perspectives. 1 (1): 16. doi:10.1186/2194-6434-1-16. S2CID 46200068. Retrieved 25 January 2022.
  50. ^ Grantham, H. S.; Duncan, A.; Evans, T. D.; Jones, K. R.; Beyer, H. L.; Schuster, R.; Walston, J.; Ray, J. C.; Robinson, J. G.; Callow, M.; Clements, T.; Costa, H. M.; DeGemmis, A.; Elsen, P. R.; Ervin, J.; Franco, P.; Goldman, E.; Goetz, S.; Hansen, A.; Hofsvang, E.; Jantz, P.; Jupiter, S.; Kang, A.; Langhammer, P.; Laurance, W. F.; Lieberman, S.; Linkie, M.; Malhi, Y.; Maxwell, S.; Mendez, M.; Mittermeier, R.; Murray, N. J.; Possingham, H.; Radachowsky, J.; Saatchi, S.; Samper, C.; Silverman, J.; Shapiro, A.; Strassburg, B.; Stevens, T.; Stokes, E.; Taylor, R.; Tear, T.; Tizard, R.; Venter, O.; Visconti, P.; Wang, S.; Watson, J. E. M. (2020). "Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity". Nature Communications. 11 (1): 5978. Bibcode:2020NatCo..11.5978G. doi:10.1038/s41467-020-19493-3. ISSN 2041-1723. PMC 7723057. PMID 33293507.
  51. ^ Alexander, David E. (1 May 1999). Encyclopedia of Environmental Science. Springer. ISBN 978-0-412-74050-3.
  52. ^ a b c Chapin, F. Stuart, III (2011). "Chapter 15: Managing and Sustaining Ecosystems". Principles of terrestrial ecosystem ecology. P. A. Matson, Peter Morrison Vitousek, Melissa C. Chapin (2nd ed.). New York: Springer. ISBN 978-1-4419-9504-9. OCLC 755081405.
  53. ^ Keith, DA; Rodríguez, J.P.; Rodríguez-Clark, K.M.; Aapala, K.; Alonso, A.; Asmussen, M.; Bachman, S.; Bassett, A.; Barrow, E.G.; Benson, J.S.; Bishop, M.J.; Bonifacio, R.; Brooks, T.M.; Burgman, M.A.; Comer, P.; Comín, F.A.; Essl, F.; Faber-Langendoen, D.; Fairweather, P.G.; Holdaway, R.J.; Jennings, M.; Kingsford, R.T.; Lester, R.E.; Mac Nally, R.; McCarthy, M.A.; Moat, J.; Nicholson, E.; Oliveira-Miranda, M.A.; Pisanu, P.; Poulin, B.; Riecken, U.; Spalding, M.D.; Zambrano-Martínez, S. (2013). "Scientific Foundations for an IUCN Red List of Ecosystems". PLOS ONE. 8 (5): e62111. Bibcode:2013PLoSO...862111K. doi:10.1371/journal.pone.0062111. PMC 3648534. PMID 23667454.
  54. ^ Boitani, Luigi; Mace, Georgina M.; Rondinini, Carlo (2014). "Challenging the Scientific Foundations for an IUCN Red List of Ecosystems" (PDF). Conservation Letters. 8 (2): 125–131. doi:10.1111/conl.12111. hdl:11573/624610. S2CID 62790495. 
  55. ^ Grumbine, R. Edward (1994). (PDF). Conservation Biology. 8 (1): 27–38. doi:10.1046/j.1523-1739.1994.08010027.x. Archived from the original (PDF) on 2013-05-02.

External links

  •   Media related to Ecosystems at Wikimedia Commons
  •   The dictionary definition of ecosystem at Wiktionary
  • Wikidata: topic (Scholia)
  •   Biomes and ecosystems travel guide from Wikivoyage

ecosystem, confused, with, digital, ecosystem, biosystem, redirects, here, journal, biosystems, ecosystem, ecological, system, consists, organisms, physical, environment, with, which, they, interact, these, biotic, abiotic, components, linked, together, throug. Not to be confused with Digital ecosystem Biosystem redirects here For the journal see BioSystems An ecosystem or ecological system consists of all the organisms and the physical environment with which they interact 2 458 These biotic and abiotic components are linked together through nutrient cycles and energy flows Energy enters the system through photosynthesis and is incorporated into plant tissue By feeding on plants and on one another animals play an important role in the movement of matter and energy through the system They also influence the quantity of plant and microbial biomass present By breaking down dead organic matter decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes Left Coral reef ecosystems are highly productive marine systems 1 Right Temperate rainforest a terrestrial ecosystem Ecosystems are controlled by external and internal factors External factors such as climate parent material which forms the soil and topography control the overall structure of an ecosystem but are not themselves influenced by the ecosystem Internal factors are controlled for example by decomposition root competition shading disturbance succession and the types of species present While the resource inputs are generally controlled by external processes the availability of these resources within the ecosystem is controlled by internal factors Therefore internal factors not only control ecosystem processes but are also controlled by them Ecosystems are dynamic entities they are subject to periodic disturbances and are always in the process of recovering from some past disturbance The tendency of an ecosystem to remain close to its equilibrium state despite that disturbance is termed its resistance The capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function structure identity and feedbacks is termed its ecological resilience Ecosystems can be studied through a variety of approaches theoretical studies studies monitoring specific ecosystems over long periods of time those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation Biomes are general classes or categories of ecosystems However there is no clear distinction between biomes and ecosystems Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of ecosystems a biotic component an abiotic complex the interactions between and within them and the physical space they occupy Ecosystems provide a variety of goods and services upon which people depend Ecosystem goods include the tangible material products of ecosystem processes such as water food fuel construction material and medicinal plants Ecosystem services on the other hand are generally improvements in the condition or location of things of value These include things like the maintenance of hydrological cycles cleaning air and water the maintenance of oxygen in the atmosphere crop pollination and even things like beauty inspiration and opportunities for research Many ecosystems become degraded through human impacts such as soil loss air and water pollution habitat fragmentation water diversion fire suppression and introduced species and invasive species These threats can lead to abrupt transformation of the ecosystem or to gradual disruption of biotic processes and degradation of abiotic conditions of the ecosystem Once the original ecosystem has lost its defining features it is considered collapsed Ecosystem restoration can contribute to achieving the Sustainable Development Goals Contents 1 Definition 1 1 Origin and development of the term 2 Processes 2 1 External and internal factors 2 2 Primary production 2 3 Energy flow 2 4 Decomposition 2 4 1 Decomposition rates 2 5 Dynamics and resilience 2 6 Nutrient cycling 2 7 Function and biodiversity 3 Study approaches 3 1 Ecosystem ecology 3 2 Classifications 3 3 Examples 4 Human interactions with ecosystems 4 1 Ecosystem goods and services 4 2 Degradation and decline 4 3 Management 4 4 Restoration and sustainable development 5 See also 6 References 6 1 Notes 7 External linksDefinitionAn ecosystem or ecological system consists of all the organisms and the abiotic pools or physical environment with which they interact 3 4 5 2 458 The biotic and abiotic components are linked together through nutrient cycles and energy flows 5 Ecosystem processes are the transfers of energy and materials from one pool to another 2 458 Ecosystem processes are known to take place at a wide range of scales Therefore the correct scale of study depends on the question asked 4 5 Origin and development of the term The term ecosystem was first used in 1935 in a publication by British ecologist Arthur Tansley The term was coined by Arthur Roy Clapham who came up with the word at Tansley s request 6 Tansley devised the concept to draw attention to the importance of transfers of materials between organisms and their environment 4 9 He later refined the term describing it as The whole system including not only the organism complex but also the whole complex of physical factors forming what we call the environment 3 Tansley regarded ecosystems not simply as natural units but as mental isolates 3 Tansley later defined the spatial extent of ecosystems using the term ecotope 7 G Evelyn Hutchinson a limnologist who was a contemporary of Tansley s combined Charles Elton s ideas about trophic ecology with those of Russian geochemist Vladimir Vernadsky As a result he suggested that mineral nutrient availability in a lake limited algal production This would in turn limit the abundance of animals that feed on algae Raymond Lindeman took these ideas further to suggest that the flow of energy through a lake was the primary driver of the ecosystem Hutchinson s students brothers Howard T Odum and Eugene P Odum further developed a systems approach to the study of ecosystems This allowed them to study the flow of energy and material through ecological systems 4 9 Processes Rainforest ecosystems are rich in biodiversity This is the Gambia River in Senegal s Niokolo Koba National Park Flora of Baja California Desert Catavina region Mexico External and internal factors Ecosystems are controlled by both external and internal factors External factors also called state factors control the overall structure of an ecosystem and the way things work within it but are not themselves influenced by the ecosystem On broad geographic scales climate is the factor that most strongly determines ecosystem processes and structure 4 14 Climate determines the biome in which the ecosystem is embedded Rainfall patterns and seasonal temperatures influence photosynthesis and thereby determine the amount of energy available to the ecosystem 8 145 Parent material determines the nature of the soil in an ecosystem and influences the supply of mineral nutrients Topography also controls ecosystem processes by affecting things like microclimate soil development and the movement of water through a system For example ecosystems can be quite different if situated in a small depression on the landscape versus one present on an adjacent steep hillside 9 39 10 66 Other external factors that play an important role in ecosystem functioning include time and potential biota the organisms that are present in a region and could potentially occupy a particular site Ecosystems in similar environments that are located in different parts of the world can end up doing things very differently simply because they have different pools of species present 11 321 The introduction of non native species can cause substantial shifts in ecosystem function 12 Unlike external factors internal factors in ecosystems not only control ecosystem processes but are also controlled by them 4 16 While the resource inputs are generally controlled by external processes like climate and parent material the availability of these resources within the ecosystem is controlled by internal factors like decomposition root competition or shading 13 Other factors like disturbance succession or the types of species present are also internal factors Primary production Global oceanic and terrestrial phototroph abundance from September 1997 to August 2000 As an estimate of autotroph biomass it is only a rough indicator of primary production potential and not an actual estimate of it Main article Primary production Primary production is the production of organic matter from inorganic carbon sources This mainly occurs through photosynthesis The energy incorporated through this process supports life on earth while the carbon makes up much of the organic matter in living and dead biomass soil carbon and fossil fuels It also drives the carbon cycle which influences global climate via the greenhouse effect Through the process of photosynthesis plants capture energy from light and use it to combine carbon dioxide and water to produce carbohydrates and oxygen The photosynthesis carried out by all the plants in an ecosystem is called the gross primary production GPP 8 124 About half of the gross GPP is respired by plants in order to provide the energy that supports their growth and maintenance 14 157 The remainder that portion of GPP that is not used up by respiration is known as the net primary production NPP 14 157 Total photosynthesis is limited by a range of environmental factors These include the amount of light available the amount of leaf area a plant has to capture light shading by other plants is a major limitation of photosynthesis the rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis the availability of water and the availability of suitable temperatures for carrying out photosynthesis 8 155 Energy flow Main article Energy flow ecology See also Food web and Trophic level Energy and carbon enter ecosystems through photosynthesis are incorporated into living tissue transferred to other organisms that feed on the living and dead plant matter and eventually released through respiration 14 157 The carbon and energy incorporated into plant tissues net primary production is either consumed by animals while the plant is alive or it remains uneaten when the plant tissue dies and becomes detritus In terrestrial ecosystems the vast majority of the net primary production ends up being broken down by decomposers The remainder is consumed by animals while still alive and enters the plant based trophic system After plants and animals die the organic matter contained in them enters the detritus based trophic system 15 Ecosystem respiration is the sum of respiration by all living organisms plants animals and decomposers in the ecosystem 16 Net ecosystem production is the difference between gross primary production GPP and ecosystem respiration 17 In the absence of disturbance net ecosystem production is equivalent to the net carbon accumulation in the ecosystem Energy can also be released from an ecosystem through disturbances such as wildfire or transferred to other ecosystems e g from a forest to a stream to a lake by erosion In aquatic systems the proportion of plant biomass that gets consumed by herbivores is much higher than in terrestrial systems 15 In trophic systems photosynthetic organisms are the primary producers The organisms that consume their tissues are called primary consumers or secondary producers herbivores Organisms which feed on microbes bacteria and fungi are termed microbivores Animals that feed on primary consumers carnivores are secondary consumers Each of these constitutes a trophic level 15 The sequence of consumption from plant to herbivore to carnivore forms a food chain Real systems are much more complex than this organisms will generally feed on more than one form of food and may feed at more than one trophic level Carnivores may capture some prey that is part of a plant based trophic system and others that are part of a detritus based trophic system a bird that feeds both on herbivorous grasshoppers and earthworms which consume detritus Real systems with all these complexities form food webs rather than food chains 15 Decomposition See also Decomposition Sequence of a decomposing pig carcass over time The carbon and nutrients in dead organic matter are broken down by a group of processes known as decomposition This releases nutrients that can then be re used for plant and microbial production and returns carbon dioxide to the atmosphere or water where it can be used for photosynthesis In the absence of decomposition the dead organic matter would accumulate in an ecosystem and nutrients and atmospheric carbon dioxide would be depleted 18 183 Decomposition processes can be separated into three categories leaching fragmentation and chemical alteration of dead material As water moves through dead organic matter it dissolves and carries with it the water soluble components These are then taken up by organisms in the soil react with mineral soil or are transported beyond the confines of the ecosystem and are considered lost to it 19 271 280 Newly shed leaves and newly dead animals have high concentrations of water soluble components and include sugars amino acids and mineral nutrients Leaching is more important in wet environments and less important in dry ones 10 69 77 Fragmentation processes break organic material into smaller pieces exposing new surfaces for colonization by microbes Freshly shed leaf litter may be inaccessible due to an outer layer of cuticle or bark and cell contents are protected by a cell wall Newly dead animals may be covered by an exoskeleton Fragmentation processes which break through these protective layers accelerate the rate of microbial decomposition 18 184 Animals fragment detritus as they hunt for food as does passage through the gut Freeze thaw cycles and cycles of wetting and drying also fragment dead material 18 186 The chemical alteration of the dead organic matter is primarily achieved through bacterial and fungal action Fungal hyphae produce enzymes that can break through the tough outer structures surrounding dead plant material They also produce enzymes that break down lignin which allows them access to both cell contents and the nitrogen in the lignin Fungi can transfer carbon and nitrogen through their hyphal networks and thus unlike bacteria are not dependent solely on locally available resources 18 186 Decomposition rates Decomposition rates vary among ecosystems 20 The rate of decomposition is governed by three sets of factors the physical environment temperature moisture and soil properties the quantity and quality of the dead material available to decomposers and the nature of the microbial community itself 18 194 Temperature controls the rate of microbial respiration the higher the temperature the faster the microbial decomposition occurs Temperature also affects soil moisture which affects decomposition Freeze thaw cycles also affect decomposition freezing temperatures kill soil microorganisms which allows leaching to play a more important role in moving nutrients around This can be especially important as the soil thaws in the spring creating a pulse of nutrients that become available 19 280 Decomposition rates are low under very wet or very dry conditions Decomposition rates are highest in wet moist conditions with adequate levels of oxygen Wet soils tend to become deficient in oxygen this is especially true in wetlands which slows microbial growth In dry soils decomposition slows as well but bacteria continue to grow albeit at a slower rate even after soils become too dry to support plant growth 18 200 Dynamics and resilience Further information Resistance ecology and Ecological resilience Ecosystems are dynamic entities They are subject to periodic disturbances and are always in the process of recovering from past disturbances 21 347 When a perturbation occurs an ecosystem responds by moving away from its initial state The tendency of an ecosystem to remain close to its equilibrium state despite that disturbance is termed its resistance The capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function structure identity and feedbacks is termed its ecological resilience 22 23 Resilience thinking also includes humanity as an integral part of the biosphere where we are dependent on ecosystem services for our survival and must build and maintain their natural capacities to withstand shocks and disturbances 24 Time plays a central role over a wide range for example in the slow development of soil from bare rock and the faster recovery of a community from disturbance 14 67 Disturbance also plays an important role in ecological processes F Stuart Chapin and coauthors define disturbance as a relatively discrete event in time that removes plant biomass 21 346 This can range from herbivore outbreaks treefalls fires hurricanes floods glacial advances to volcanic eruptions Such disturbances can cause large changes in plant animal and microbe populations as well as soil organic matter content Disturbance is followed by succession a directional change in ecosystem structure and functioning resulting from biotically driven changes in resource supply 2 470 The frequency and severity of disturbance determine the way it affects ecosystem function A major disturbance like a volcanic eruption or glacial advance and retreat leave behind soils that lack plants animals or organic matter Ecosystems that experience such disturbances undergo primary succession A less severe disturbance like forest fires hurricanes or cultivation result in secondary succession and a faster recovery 21 348 More severe and more frequent disturbance result in longer recovery times From one year to another ecosystems experience variation in their biotic and abiotic environments A drought a colder than usual winter and a pest outbreak all are short term variability in environmental conditions Animal populations vary from year to year building up during resource rich periods and crashing as they overshoot their food supply Longer term changes also shape ecosystem processes For example the forests of eastern North America still show legacies of cultivation which ceased in 1850 when large areas were reverted to forests 21 340 Another example is the methane production in eastern Siberian lakes that is controlled by organic matter which accumulated during the Pleistocene 25 A freshwater lake in Gran Canaria an island of the Canary Islands Clear boundaries make lakes convenient to study using an ecosystem approach Nutrient cycling See also Nutrient cycle Biogeochemical cycle and Nitrogen cycle Biological nitrogen cycling Ecosystems continually exchange energy and carbon with the wider environment Mineral nutrients on the other hand are mostly cycled back and forth between plants animals microbes and the soil Most nitrogen enters ecosystems through biological nitrogen fixation is deposited through precipitation dust gases or is applied as fertilizer 19 266 Most terrestrial ecosystems are nitrogen limited in the short term making nitrogen cycling an important control on ecosystem production 19 289 Over the long term phosphorus availability can also be critical 26 Macronutrients which are required by all plants in large quantities include the primary nutrients which are most limiting as they are used in largest amounts Nitrogen phosphorus potassium 27 231 Secondary major nutrients less often limiting include Calcium magnesium sulfur Micronutrients required by all plants in small quantities include boron chloride copper iron manganese molybdenum zinc Finally there are also beneficial nutrients which may be required by certain plants or by plants under specific environmental conditions aluminum cobalt iodine nickel selenium silicon sodium vanadium 27 231 Until modern times nitrogen fixation was the major source of nitrogen for ecosystems Nitrogen fixing bacteria either live symbiotically with plants or live freely in the soil The energetic cost is high for plants that support nitrogen fixing symbionts as much as 25 of gross primary production when measured in controlled conditions Many members of the legume plant family support nitrogen fixing symbionts Some cyanobacteria are also capable of nitrogen fixation These are phototrophs which carry out photosynthesis Like other nitrogen fixing bacteria they can either be free living or have symbiotic relationships with plants 21 360 Other sources of nitrogen include acid deposition produced through the combustion of fossil fuels ammonia gas which evaporates from agricultural fields which have had fertilizers applied to them and dust 19 270 Anthropogenic nitrogen inputs account for about 80 of all nitrogen fluxes in ecosystems 19 270 When plant tissues are shed or are eaten the nitrogen in those tissues becomes available to animals and microbes Microbial decomposition releases nitrogen compounds from dead organic matter in the soil where plants fungi and bacteria compete for it Some soil bacteria use organic nitrogen containing compounds as a source of carbon and release ammonium ions into the soil This process is known as nitrogen mineralization Others convert ammonium to nitrite and nitrate ions a process known as nitrification Nitric oxide and nitrous oxide are also produced during nitrification 19 277 Under nitrogen rich and oxygen poor conditions nitrates and nitrites are converted to nitrogen gas a process known as denitrification 19 281 Mycorrhizal fungi which are symbiotic with plant roots use carbohydrates supplied by the plants and in return transfer phosphorus and nitrogen compounds back to the plant roots 28 29 This is an important pathway of organic nitrogen transfer from dead organic matter to plants This mechanism may contribute to more than 70 Tg of annually assimilated plant nitrogen thereby playing a critical role in global nutrient cycling and ecosystem function 29 Phosphorus enters ecosystems through weathering As ecosystems age this supply diminishes making phosphorus limitation more common in older landscapes especially in the tropics 19 287 290 Calcium and sulfur are also produced by weathering but acid deposition is an important source of sulfur in many ecosystems Although magnesium and manganese are produced by weathering exchanges between soil organic matter and living cells account for a significant portion of ecosystem fluxes Potassium is primarily cycled between living cells and soil organic matter 19 291 Function and biodiversity Main article BiodiversitySee also Ecosystem diversity Loch Lomond in Scotland forms a relatively isolated ecosystem The fish community of this lake has remained stable over a long period until a number of introductions in the 1970s restructured its food web 30 Spiny forest at Ifaty Madagascar featuring various Adansonia baobab species Alluaudia procera Madagascar ocotillo and other vegetation Biodiversity plays an important role in ecosystem functioning 31 449 453 Ecosystem processes are driven by the species in an ecosystem the nature of the individual species and the relative abundance of organisms among these species Ecosystem processes are the net effect of the actions of individual organisms as they interact with their environment Ecological theory suggests that in order to coexist species must have some level of limiting similarity they must be different from one another in some fundamental way otherwise one species would competitively exclude the other 32 Despite this the cumulative effect of additional species in an ecosystem is not linear additional species may enhance nitrogen retention for example However beyond some level of species richness 11 331 additional species may have little additive effect unless they differ substantially from species already present 11 324 This is the case for example for exotic species 11 321 The addition or loss of species that are ecologically similar to those already present in an ecosystem tends to only have a small effect on ecosystem function Ecologically distinct species on the other hand have a much larger effect Similarly dominant species have a large effect on ecosystem function while rare species tend to have a small effect Keystone species tend to have an effect on ecosystem function that is disproportionate to their abundance in an ecosystem 11 324 An ecosystem engineer is any organism that creates significantly modifies maintains or destroys a habitat 33 Study approachesEcosystem ecology Main article Ecosystem ecology See also Ecosystem model A hydrothermal vent is an ecosystem on the ocean floor The scale bar is 1 m Ecosystem ecology is the study of the interactions between organisms and their environment as an integrated system 2 458 The size of ecosystems can range up to ten orders of magnitude from the surface layers of rocks to the surface of the planet 4 6 The Hubbard Brook Ecosystem Study started in 1963 to study the White Mountains in New Hampshire It was the first successful attempt to study an entire watershed as an ecosystem The study used stream chemistry as a means of monitoring ecosystem properties and developed a detailed biogeochemical model of the ecosystem 34 Long term research at the site led to the discovery of acid rain in North America in 1972 Researchers documented the depletion of soil cations especially calcium over the next several decades 35 Ecosystems can be studied through a variety of approaches theoretical studies studies monitoring specific ecosystems over long periods of time those that look at differences between ecosystems to elucidate how they work and direct manipulative experimentation 36 Studies can be carried out at a variety of scales ranging from whole ecosystem studies to studying microcosms or mesocosms simplified representations of ecosystems 37 American ecologist Stephen R Carpenter has argued that microcosm experiments can be irrelevant and diversionary if they are not carried out in conjunction with field studies done at the ecosystem scale In such cases microcosm experiments may fail to accurately predict ecosystem level dynamics 38 Classifications Further information Ecosystem classification and Biogeoclimatic ecosystem classification Biomes are general classes or categories of ecosystems 4 14 However there is no clear distinction between biomes and ecosystems 39 Biomes are always defined at a very general level Ecosystems can be described at levels that range from very general in which case the names are sometimes the same as those of biomes to very specific such as wet coastal needle leafed forests Biomes vary due to global variations in climate Biomes are often defined by their structure at a general level for example tropical forests temperate grasslands and arctic tundra 4 14 There can be any degree of subcategories among ecosystem types that comprise a biome e g needle leafed boreal forests or wet tropical forests Although ecosystems are most commonly categorized by their structure and geography there are also other ways to categorize and classify ecosystems such as by their level of human impact see anthropogenic biome or by their integration with social processes or technological processes or their novelty e g novel ecosystem Each of these taxonomies of ecosystems tends to emphasize different structural or functional properties 40 None of these is the best classification Ecosystem classifications are specific kinds of ecological classifications that consider all four elements of the definition of ecosystems a biotic component an abiotic complex the interactions between and within them and the physical space they occupy 40 Different approaches to ecological classifications have been developed in terrestrial freshwater and marine disciplines and a function based typology has been proposed to leverage the strengths of these different approaches into a unified system 41 Examples The following articles are examples of ecosystems for particular regions zones or conditions Aquatic ecosystem Boreal ecosystem Freshwater ecosystem Groundwater dependent ecosystems Lake ecosystem lentic ecosystem Large marine ecosystem Marine ecosystem Montane ecosystem River ecosystem lotic ecosystem Terrestrial ecosystem Urban ecosystemHuman interactions with ecosystemsHuman activities are important in almost all ecosystems Although humans exist and operate within ecosystems their cumulative effects are large enough to influence external factors like climate 4 14 Ecosystem goods and services The High Peaks Wilderness Area in the 6 000 000 acre 2 400 000 ha Adirondack Park is an example of a diverse ecosystem Main articles Ecosystem services and Ecological goods and services See also Ecosystem valuation and Ecological yield Ecosystems provide a variety of goods and services upon which people depend 42 Ecosystem goods include the tangible material products of ecosystem processes such as water food fuel construction material and medicinal plants 43 44 They also include less tangible items like tourism and recreation and genes from wild plants and animals that can be used to improve domestic species 42 Ecosystem services on the other hand are generally improvements in the condition or location of things of value 44 These include things like the maintenance of hydrological cycles cleaning air and water the maintenance of oxygen in the atmosphere crop pollination and even things like beauty inspiration and opportunities for research 42 While material from the ecosystem had traditionally been recognized as being the basis for things of economic value ecosystem services tend to be taken for granted 44 The Millennium Ecosystem Assessment is an international synthesis by over 1000 of the world s leading biological scientists that analyzes the state of the Earth s ecosystems and provides summaries and guidelines for decision makers The report identified four major categories of ecosystem services provisioning regulating cultural and supporting services 45 It concludes that human activity is having a significant and escalating impact on the biodiversity of the world ecosystems reducing both their resilience and biocapacity The report refers to natural systems as humanity s life support system providing essential ecosystem services The assessment measures 24 ecosystem services and concludes that only four have shown improvement over the last 50 years 15 are in serious decline and five are in a precarious condition 45 6 19 The Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services IPBES is an intergovernmental organization established to improve the interface between science and policy on issues of biodiversity and ecosystem services 46 It is intended to serve a similar role to the Intergovernmental Panel on Climate Change 47 The conceptual framework of the IPBES includes six primary interlinked elements nature nature s benefits to people anthropogenic assets institutions and governance systems and other indirect drivers of change direct drivers of change and good quality of life 48 Ecosystem services are limited and also threatened by human activities 49 To help inform decision makers many ecosystem services are being assigned economic values often based on the cost of replacement with anthropogenic alternatives The ongoing challenge of prescribing economic value to nature for example through biodiversity banking is prompting transdisciplinary shifts in how we recognize and manage the environment social responsibility business opportunities and our future as a species 49 Degradation and decline The Forest Landscape Integrity Index measures global anthropogenic modification on remaining forests annually 0 Most modification 10 Least 50 See also Ecosystem collapse Climate change and ecosystems and Human ecology As human population and per capita consumption grow so do the resource demands imposed on ecosystems and the effects of the human ecological footprint Natural resources are vulnerable and limited The environmental impacts of anthropogenic actions are becoming more apparent Problems for all ecosystems include environmental pollution climate change and biodiversity loss For terrestrial ecosystems further threats include air pollution soil degradation and deforestation For aquatic ecosystems threats also include unsustainable exploitation of marine resources for example overfishing marine pollution microplastics pollution the effects of climate change on oceans e g warming and acidification and building on coastal areas 51 Many ecosystems become degraded through human impacts such as soil loss air and water pollution habitat fragmentation water diversion fire suppression and introduced species and invasive species 52 437 These threats can lead to abrupt transformation of the ecosystem or to gradual disruption of biotic processes and degradation of abiotic conditions of the ecosystem Once the original ecosystem has lost its defining features it is considered collapsed see also IUCN Red List of Ecosystems 53 Ecosystem collapse could be reversible and in this way differs from species extinction 54 Quantitative assessments of the risk of collapse are used as measures of conservation status and trends Management Main articles Ecosystem management Ecosystem based management and Ecosystem approach When natural resource management is applied to whole ecosystems rather than single species it is termed ecosystem management 55 Although definitions of ecosystem management abound there is a common set of principles which underlie these definitions A fundamental principle is the long term sustainability of the production of goods and services by the ecosystem 52 intergenerational sustainability is a precondition for management not an afterthought 42 While ecosystem management can be used as part of a plan for wilderness conservation it can also be used in intensively managed ecosystems 42 see for example agroecosystem and close to nature forestry Restoration and sustainable development See also Restoration ecology Integrated conservation and development projects ICDPs aim to address conservation and human livelihood sustainable development concerns in developing countries together rather than separately as was often done in the past 52 445 See also Earth sciences portal Ecology portal Environment portalComplex system Earth science Ecosystem based adaptationEcosystems in specific regions of the world Leuser Ecosystem Longleaf pine ecosystem Tarangire Ecosystem Tropical salt pond ecosystemEcosystems grouped by condition Agroecosystem Closed ecosystem Depauperate ecosystem Novel ecosystem Reference ecosystemReferencesNotes Hatcher Bruce Gordon 1990 Coral reef primary productivity A hierarchy of pattern and process Trends in Ecology and Evolution 5 5 149 155 doi 10 1016 0169 5347 90 90221 X PMID 21232343 a b c d e Chapin F Stuart III 2011 Glossary Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 a b c Tansley A G 1935 The Use and Abuse of Vegetational Concepts and Terms PDF Ecology 16 3 284 307 doi 10 2307 1930070 JSTOR 1930070 Archived from the original PDF on 2016 10 06 a b c d e f g h i j Chapin F Stuart III 2011 Chapter 1 The Ecosystem Concept Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 Odum Eugene P 1971 Fundamentals of Ecology third ed New York Saunders ISBN 978 0 534 42066 6 Willis A J 1997 The Ecosystem An Evolving Concept Viewed Historically Functional Ecology 11 2 268 271 doi 10 1111 j 1365 2435 1997 00081 x Tansley A G 1939 The British Islands and Their Vegetation Cambridge University Press a b c Chapin F Stuart III 2011 Chapter 5 Carbon Inputs to Ecosystems Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 Chapin F Stuart III 2011 Chapter 2 Earth s Climate System Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 a b Chapin F Stuart III 2011 Chapter 3 Geology Soils and Sediments Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 a b c d e Chapin F Stuart III 2011 Chapter 11 Species Effects on Ecosystem Processes Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 Simberloff Daniel Martin Jean Louis Genovesi Piero Maris Virginie Wardle David A Aronson James Courchamp Franck Galil Bella Garcia Berthou Emili 2013 Impacts of biological invasions what s what and the way forward Trends in Ecology amp Evolution 28 1 58 66 doi 10 1016 j tree 2012 07 013 hdl 10261 67376 ISSN 0169 5347 PMID 22889499 46 1A Ecosystem Dynamics Biology LibreTexts 2018 07 17 Retrieved 2021 08 02 Text was copied from this source which is available under a Creative Commons Attribution 4 0 International License a b c d Chapin F Stuart III 2011 Chapter 6 Plant Carbon Budgets Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 a b c d Chapin F Stuart III 2011 Chapter 10 Trophic Dynamics Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 Yvon Durocher Gabriel Caffrey Jane M Cescatti Alessandro Dossena Matteo Giorgio Paul del Gasol Josep M Montoya Jose M Pumpanen Jukka Staehr Peter A 2012 Reconciling the temperature dependence of respiration across timescales and ecosystem types Nature 487 7408 472 476 Bibcode 2012Natur 487 472Y doi 10 1038 nature11205 ISSN 0028 0836 PMID 22722862 S2CID 4422427 Lovett Gary M Cole Jonathan J Pace Michael L 2006 Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation Ecosystems 9 1 152 155 doi 10 1007 s10021 005 0036 3 ISSN 1435 0629 S2CID 5890190 a b c d e f Chapin F Stuart III 2011 Chapter 7 Decomposition and Ecosystem Carbon Budgets Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 a b c d e f g h i j Chapin F Stuart III 2011 Chapter 9 Nutrient cycling Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 Ochoa Hueso R Delgado Baquerizo M King PTA Benham M Arca V Power SA February 2019 Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition Soil Biology and Biochemistry 129 144 152 doi 10 1016 j soilbio 2018 11 009 S2CID 92606851 a b c d e Chapin F Stuart III 2011 Chapter 12 Temporal Dynamics Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 Principles of ecosystem stewardship resilience based natural resource management in a changing world F Stuart III Chapin Gary P Kofinas Carl Folke Melissa C Chapin 1st ed New York Springer 2009 ISBN 978 0 387 73033 2 OCLC 432702920 a href Template Cite book html title Template Cite book cite book a CS1 maint others link Walker Brian Holling C S Carpenter Stephen R Kinzig Ann P 2004 Resilience Adaptability and Transformability in Social ecological Systems Ecology and Society 9 2 art5 doi 10 5751 ES 00650 090205 hdl 10535 3282 ISSN 1708 3087 Simonsen S H 2015 Applying Resilience Thinking PDF Archived PDF from the original on 2017 12 15 Walter K M Zimov S A Chanton J P Verbyla D Chapin F S 2006 Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming Nature 443 7107 71 75 Bibcode 2006Natur 443 71W doi 10 1038 nature05040 ISSN 0028 0836 PMID 16957728 S2CID 4415304 Vitousek P Porder S 2010 Terrestrial phosphorus limitation mechanisms implications and nitrogen phosphorus interactions Ecological Applications 20 1 5 15 doi 10 1890 08 0127 1 PMID 20349827 a b Chapin F Stuart III 2011 Chapter 8 Plant Nutrient Use Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 Bolan N S 1991 A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants Plant and Soil 134 2 189 207 doi 10 1007 BF00012037 S2CID 44215263 a b Hestrin R Hammer E C Mueller C W 2019 Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition Commun Biol 2 233 doi 10 1038 s42003 019 0481 8 PMC 6588552 PMID 31263777 Adams C E 1994 The fish community of Loch Lomond Scotland its history and rapidly changing status Hydrobiologia 290 1 3 91 102 doi 10 1007 BF00008956 S2CID 6894397 Schulze Ernst Detlef Erwin Beck Klaus Muller Hohenstein 2005 Plant Ecology Berlin Springer ISBN 978 3 540 20833 4 Schoener Thomas W 2009 Ecological Niche In Simon A Levin ed The Princeton Guide to Ecology Princeton Princeton University Press pp 2 13 ISBN 978 0 691 12839 9 Jones Clive G Lawton John H Shachak Moshe 1994 Organisms as Ecosystem Engineers Oikos 69 3 373 386 doi 10 2307 3545850 ISSN 0030 1299 JSTOR 3545850 Lindenmayer David B Gene E Likens 2010 The Problematic the Effective and the Ugly Some Case Studies Effective Ecological Monitoring Collingwood Australia CSIRO Publishing pp 87 145 ISBN 978 1 84971 145 6 Likens Gene E 2004 Some perspectives on long term biogeochemical research from the Hubbard Brook Ecosystem Study PDF Ecology 85 9 2355 2362 doi 10 1890 03 0243 JSTOR 3450233 Archived from the original PDF on 2013 05 01 Carpenter Stephen R Jonathan J Cole Timothy E Essington James R Hodgson Jeffrey N Houser James F Kitchell Michael L Pace 1998 Evaluating Alternative Explanations in Ecosystem Experiments Ecosystems 1 4 335 344 doi 10 1007 s100219900025 S2CID 33559404 Schindler David W 1998 Replication versus Realism The Need for Ecosystem Scale Experiments Ecosystems 1 4 323 334 doi 10 1007 s100219900026 JSTOR 3658915 S2CID 45418039 Carpenter Stephen R 1996 Microcosm Experiments have Limited Relevance for Community and Ecosystem Ecology Ecology 77 3 677 680 doi 10 2307 2265490 JSTOR 2265490 Differences Between the Grassland amp the Tundra Sciencing Retrieved 2021 07 16 a b Keith D A Ferrer Paris J R Nicholson E Kingsford R T eds 2020 The IUCN Global Ecosystem Typology 2 0 Descriptive profiles for biomes and ecosystem functional groups Gland Switzerland IUCN doi 10 2305 IUCN CH 2020 13 en ISBN 978 2 8317 2077 7 S2CID 241360441 Keith David A Ferrer Paris Jose R Nicholson Emily Bishop Melanie J Polidoro Beth A Ramirez Llodra Eva Tozer Mark G Nel Jeanne L Mac Nally Ralph Gregr Edward J Watermeyer Kate E Essl Franz Faber Langendoen Don Franklin Janet Lehmann Caroline E R Etter Andres Roux Dirk J Stark Jonathan S Rowland Jessica A Brummitt Neil A Fernandez Arcaya Ulla C Suthers Iain M Wiser Susan K Donohue Ian Jackson Leland J Pennington R Toby Iliffe Thomas M Gerovasileiou Vasilis Giller Paul Robson Belinda J Pettorelli Nathalie Andrade Angela Lindgaard Arild Tahvanainen Teemu Terauds Aleks Chadwick Michael A Murray Nicholas J Moat Justin Pliscoff Patricio Zager Irene Kingsford Richard T 12 October 2022 A function based typology for Earth s ecosystems Nature 610 7932 513 518 doi 10 1038 s41586 022 05318 4 PMC 9581774 PMID 36224387 a b c d e Christensen Norman L Bartuska Ann M Brown James H Carpenter Stephen D Antonio Carla Francis Robert Franklin Jerry F MacMahon James A Noss Reed F Parsons David J Peterson Charles H Turner Monica G Woodmansee Robert G 1996 The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management Ecological Applications 6 3 665 691 CiteSeerX 10 1 1 404 4909 doi 10 2307 2269460 JSTOR 2269460 S2CID 53461068 Ecosystem Goods and Services PDF Archived PDF from the original on 2009 11 10 a b c Brown Thomas C John C Bergstrom John B Loomis 2007 Defining valuing and providing ecosystem goods and services PDF Natural Resources Journal 47 2 329 376 Archived from the original PDF on 2013 05 25 a b Millennium Ecosystem Assessment 2005 Archived from the original on 2011 05 24 Retrieved 10 November 2021 IPBES Archived from the original on 27 June 2019 Retrieved 28 June 2019 Biodiversity crisis is worse than climate change experts say ScienceDaily January 20 2012 Retrieved September 11 2019 Diaz Sandra Demissew Sebsebe Carabias Julia Joly Carlos Lonsdale Mark Ash Neville Larigauderie Anne Adhikari Jay Ram Arico Salvatore Baldi Andras Bartuska Ann 2015 The IPBES Conceptual Framework connecting nature and people Current Opinion in Environmental Sustainability 14 1 16 doi 10 1016 j cosust 2014 11 002 S2CID 14000233 a b Ceccato Pietro Fernandes Katia Ruiz Daniel Allis Erica 17 June 2014 Climate and environmental monitoring for decision making Earth Perspectives 1 1 16 doi 10 1186 2194 6434 1 16 S2CID 46200068 Retrieved 25 January 2022 Grantham H S Duncan A Evans T D Jones K R Beyer H L Schuster R Walston J Ray J C Robinson J G Callow M Clements T Costa H M DeGemmis A Elsen P R Ervin J Franco P Goldman E Goetz S Hansen A Hofsvang E Jantz P Jupiter S Kang A Langhammer P Laurance W F Lieberman S Linkie M Malhi Y Maxwell S Mendez M Mittermeier R Murray N J Possingham H Radachowsky J Saatchi S Samper C Silverman J Shapiro A Strassburg B Stevens T Stokes E Taylor R Tear T Tizard R Venter O Visconti P Wang S Watson J E M 2020 Anthropogenic modification of forests means only 40 of remaining forests have high ecosystem integrity Nature Communications 11 1 5978 Bibcode 2020NatCo 11 5978G doi 10 1038 s41467 020 19493 3 ISSN 2041 1723 PMC 7723057 PMID 33293507 Alexander David E 1 May 1999 Encyclopedia of Environmental Science Springer ISBN 978 0 412 74050 3 a b c Chapin F Stuart III 2011 Chapter 15 Managing and Sustaining Ecosystems Principles of terrestrial ecosystem ecology P A Matson Peter Morrison Vitousek Melissa C Chapin 2nd ed New York Springer ISBN 978 1 4419 9504 9 OCLC 755081405 Keith DA Rodriguez J P Rodriguez Clark K M Aapala K Alonso A Asmussen M Bachman S Bassett A Barrow E G Benson J S Bishop M J Bonifacio R Brooks T M Burgman M A Comer P Comin F A Essl F Faber Langendoen D Fairweather P G Holdaway R J Jennings M Kingsford R T Lester R E Mac Nally R McCarthy M A Moat J Nicholson E Oliveira Miranda M A Pisanu P Poulin B Riecken U Spalding M D Zambrano Martinez S 2013 Scientific Foundations for an IUCN Red List of Ecosystems PLOS ONE 8 5 e62111 Bibcode 2013PLoSO 862111K doi 10 1371 journal pone 0062111 PMC 3648534 PMID 23667454 Boitani Luigi Mace Georgina M Rondinini Carlo 2014 Challenging the Scientific Foundations for an IUCN Red List of Ecosystems PDF Conservation Letters 8 2 125 131 doi 10 1111 conl 12111 hdl 11573 624610 S2CID 62790495 Grumbine R Edward 1994 What is ecosystem management PDF Conservation Biology 8 1 27 38 doi 10 1046 j 1523 1739 1994 08010027 x Archived from the original PDF on 2013 05 02 External links Media related to Ecosystems at Wikimedia Commons The dictionary definition of ecosystem at Wiktionary Wikidata topic Scholia Biomes and ecosystems travel guide from Wikivoyage Retrieved from https en wikipedia org w index php title Ecosystem amp oldid 1136303049, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.