fbpx
Wikipedia

Universe

The universe is all of space and time[a] and their contents,[10] including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. According to this theory, space and time emerged together 13.787±0.020 billion years ago,[11] and the universe has been expanding ever since the Big Bang. While the spatial size of the entire universe is unknown,[3] it is possible to measure the size of the observable universe, which is approximately 93 billion light-years in diameter at the present day.

Universe
The Hubble Ultra-Deep Field image shows some of the most remote galaxies visible with present technology, each consisting of billions of stars. (Apparent image area about 1/79 that of a full moon)[1]
Age (within Lambda-CDM model)13.787 ± 0.020 billion years[2]
DiameterUnknown.[3] Diameter of the observable universe: 8.8×1026 m (28.5 Gpc or 93 Gly)[4]
Mass (ordinary matter)At least 1053 kg[5]
Average density (including the contribution from energy)9.9 x 10−27 kg/m3[6]
Average temperature2.72548 K (-270.4 °C or -454.8 °F)[7]
Main contentsOrdinary (baryonic) matter (4.9%)
Dark matter (26.8%)
Dark energy (68.3%)[8]
ShapeFlat with a 0.4%(4‰) margin of error[9]

Some of the earliest cosmological models of the universe were developed by ancient Greek and Indian philosophers and were geocentric, placing Earth at the center.[12][13] Over the centuries, more precise astronomical observations led Nicolaus Copernicus to develop the heliocentric model with the Sun at the center of the Solar System. In developing the law of universal gravitation, Isaac Newton built upon Copernicus's work as well as Johannes Kepler's laws of planetary motion and observations by Tycho Brahe.

Further observational improvements led to the realization that the Sun is one of a few hundred billion stars in the Milky Way, which is one of a few hundred billion galaxies in the universe. Many of the stars in a galaxy have planets. At the largest scale, galaxies are distributed uniformly and the same in all directions, meaning that the universe has neither an edge nor a center. At smaller scales, galaxies are distributed in clusters and superclusters which form immense filaments and voids in space, creating a vast foam-like structure.[14] Discoveries in the early 20th century have suggested that the universe had a beginning and that space has been expanding since then[15] at an increasing rate.[16]

According to the Big Bang theory, the energy and matter initially present have become less dense as the universe expanded. After an initial accelerated expansion called the inflationary epoch at around 10−32 seconds, and the separation of the four known fundamental forces, the universe gradually cooled and continued to expand, allowing the first subatomic particles and simple atoms to form. Dark matter gradually gathered, forming a foam-like structure of filaments and voids under the influence of gravity. Giant clouds of hydrogen and helium were gradually drawn to the places where dark matter was most dense, forming the first galaxies, stars, and everything else seen today.

From studying the movement of galaxies, it has been discovered that the universe contains much more matter than is accounted for by visible objects; stars, galaxies, nebulas and interstellar gas. This unseen matter is known as dark matter[17] (dark means that there is a wide range of strong indirect evidence that it exists, but we have not yet detected it directly). The ΛCDM model is the most widely accepted model of the universe. It suggests that about 69.2%±1.2% [2015] of the mass and energy in the universe is a cosmological constant (or, in extensions to ΛCDM, other forms of dark energy, such as a scalar field) which is responsible for the current expansion of space, and about 25.8%±1.1% [2015] is dark matter.[18] Ordinary ('baryonic') matter is therefore only 4.84%±0.1% [2015] of the physical universe.[18] Stars, planets, and visible gas clouds only form about 6% of the ordinary matter.[19]

There are many competing hypotheses about the ultimate fate of the universe and about what, if anything, preceded the Big Bang, while other physicists and philosophers refuse to speculate, doubting that information about prior states will ever be accessible. Some physicists have suggested various multiverse hypotheses, in which our universe might be one among many universes that likewise exist.[3][20][21]

Definition

Hubble Space TelescopeUltra deep field galaxies to Legacy field zoom out
(video 00:50; May 2, 2019)

The physical universe is defined as all of space and time[a] (collectively referred to as spacetime) and their contents.[10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.[22][23][24] The universe also includes the physical laws that influence energy and matter, such as conservation laws, classical mechanics, and relativity.[25]

The universe is often defined as "the totality of existence", or everything that exists, everything that has existed, and everything that will exist.[25] In fact, some philosophers and scientists support the inclusion of ideas and abstract concepts—such as mathematics and logic—in the definition of the universe.[27][28][29] The word universe may also refer to concepts such as the cosmos, the world, and nature.[30][31]

Etymology

The word universe derives from the Old French word univers, which in turn derives from the Latin word universum.[32] The Latin word was used by Cicero and later Latin authors in many of the same senses as the modern English word is used.[33]

Synonyms

A term for universe among the ancient Greek philosophers from Pythagoras onwards was τὸ πᾶν (tò pân) 'the all', defined as all matter and all space, and τὸ ὅλον (tò hólon) 'all things', which did not necessarily include the void.[34][35] Another synonym was ὁ κόσμος (ho kósmos) meaning 'the world, the cosmos'.[36] Synonyms are also found in Latin authors (totum, mundus, natura)[37] and survive in modern languages, e.g., the German words Das All, Weltall, and Natur for universe. The same synonyms are found in English, such as everything (as in the theory of everything), the cosmos (as in cosmology), the world (as in the many-worlds interpretation), and nature (as in natural laws or natural philosophy).[38]

Chronology and the Big Bang

The prevailing model for the evolution of the universe is the Big Bang theory.[39][40] The Big Bang model states that the earliest state of the universe was an extremely hot and dense one, and that the universe subsequently expanded and cooled. The model is based on general relativity and on simplifying assumptions such as the homogeneity and isotropy of space. A version of the model with a cosmological constant (Lambda) and cold dark matter, known as the Lambda-CDM model, is the simplest model that provides a reasonably good account of various observations about the universe. The Big Bang model accounts for observations such as the correlation of distance and redshift of galaxies, the ratio of the number of hydrogen to helium atoms, and the microwave radiation background.

 
In this diagram, time passes from left to right, so at any given time, the universe is represented by a disk-shaped "slice" of the diagram.

The initial hot, dense state is called the Planck epoch, a brief period extending from time zero to one Planck time unit of approximately 10−43 seconds. During the Planck epoch, all types of matter and all types of energy were concentrated into a dense state, and gravity—currently the weakest by far of the four known forces—is believed to have been as strong as the other fundamental forces, and all the forces may have been unified. Since the Planck epoch, space has been expanding to its present scale, with a very short but intense period of cosmic inflation believed to have occurred within the first 10−32 seconds.[41] This was a kind of expansion different from those we can see around us today. Objects in space did not physically move; instead the metric that defines space itself changed. Although objects in spacetime cannot move faster than the speed of light, this limitation does not apply to the metric governing spacetime itself. This initial period of inflation is believed to explain why space appears to be very flat, and much larger than light could travel since the start of the universe.[clarification needed]

Within the first fraction of a second of the universe's existence, the four fundamental forces had separated. As the universe continued to cool down from its inconceivably hot state, various types of subatomic particles were able to form in short periods of time known as the quark epoch, the hadron epoch, and the lepton epoch. Together, these epochs encompassed less than 10 seconds of time following the Big Bang. These elementary particles associated stably into ever larger combinations, including stable protons and neutrons, which then formed more complex atomic nuclei through nuclear fusion. This process, known as Big Bang nucleosynthesis, only lasted for about 17 minutes and ended about 20 minutes after the Big Bang, so only the fastest and simplest reactions occurred. About 25% of the protons and all the neutrons in the universe, by mass, were converted to helium, with small amounts of deuterium (a form of hydrogen) and traces of lithium. Any other element was only formed in very tiny quantities. The other 75% of the protons remained unaffected, as hydrogen nuclei.

After nucleosynthesis ended, the universe entered a period known as the photon epoch. During this period, the universe was still far too hot for matter to form neutral atoms, so it contained a hot, dense, foggy plasma of negatively charged electrons, neutral neutrinos and positive nuclei. After about 377,000 years, the universe had cooled enough that electrons and nuclei could form the first stable atoms. This is known as recombination for historical reasons; in fact electrons and nuclei were combining for the first time. Unlike plasma, neutral atoms are transparent to many wavelengths of light, so for the first time the universe also became transparent. The photons released ("decoupled") when these atoms formed can still be seen today; they form the cosmic microwave background (CMB).

As the universe expands, the energy density of electromagnetic radiation decreases more quickly than does that of matter because the energy of a photon decreases with its wavelength. At around 47,000 years, the energy density of matter became larger than that of photons and neutrinos, and began to dominate the large scale behavior of the universe. This marked the end of the radiation-dominated era and the start of the matter-dominated era.

In the earliest stages of the universe, tiny fluctuations within the universe's density led to concentrations of dark matter gradually forming. Ordinary matter, attracted to these by gravity, formed large gas clouds and eventually, stars and galaxies, where the dark matter was most dense, and voids where it was least dense. After around 100 – 300 million years,[citation needed] the first stars formed, known as Population III stars. These were probably very massive, luminous, non metallic and short-lived. They were responsible for the gradual reionization of the universe between about 200-500 million years and 1 billion years, and also for seeding the universe with elements heavier than helium, through stellar nucleosynthesis.[42] The universe also contains a mysterious energy—possibly a scalar field—called dark energy, the density of which does not change over time. After about 9.8 billion years, the universe had expanded sufficiently so that the density of matter was less than the density of dark energy, marking the beginning of the present dark-energy-dominated era.[43] In this era, the expansion of the universe is accelerating due to dark energy.

Physical properties

Of the four fundamental interactions, gravitation is the dominant at astronomical length scales. Gravity's effects are cumulative; by contrast, the effects of positive and negative charges tend to cancel one another, making electromagnetism relatively insignificant on astronomical length scales. The remaining two interactions, the weak and strong nuclear forces, decline very rapidly with distance; their effects are confined mainly to sub-atomic length scales.

The universe appears to have much more matter than antimatter, an asymmetry possibly related to the CP violation.[44] This imbalance between matter and antimatter is partially responsible for the existence of all matter existing today, since matter and antimatter, if equally produced at the Big Bang, would have completely annihilated each other and left only photons as a result of their interaction.[45] The universe also appears to have neither net momentum nor angular momentum, which follows accepted physical laws if the universe is finite. These laws are Gauss's law and the non-divergence of the stress-energy-momentum pseudotensor.[46]

Size and regions

 
Television signals broadcast from Earth will never reach the edges of this image.

According to the general theory of relativity, far regions of space may never interact with ours even in the lifetime of the universe due to the finite speed of light and the ongoing expansion of space. For example, radio messages sent from Earth may never reach some regions of space, even if the universe were to exist forever: space may expand faster than light can traverse it.[47]

The spatial region that can be observed with telescopes is called the observable universe, which depends on the location of the observer. The proper distance—the distance as would be measured at a specific time, including the present—between Earth and the edge of the observable universe is 46 billion light-years[48] (14 billion parsecs),[49] making the diameter of the observable universe about 93 billion light-years (28 billion parsecs).[48] The distance the light from the edge of the observable universe has travelled is very close to the age of the universe times the speed of light, 13.8 billion light-years (4.2×10^9 pc), but this does not represent the distance at any given time because the edge of the observable universe and the Earth have since moved further apart.[50] For comparison, the diameter of a typical galaxy is 30,000 light-years (9,198 parsecs), and the typical distance between two neighboring galaxies is 3 million light-years (919.8 kiloparsecs).[51] As an example, the Milky Way is roughly 100,000–180,000 light-years in diameter,[52][53] and the nearest sister galaxy to the Milky Way, the Andromeda Galaxy, is located roughly 2.5 million light-years away.[54]

Because we cannot observe space beyond the edge of the observable universe, it is unknown whether the size of the universe in its totality is finite or infinite.[3][55][56] Estimates suggest that the whole universe, if finite, must be more than 250 times larger than a Hubble sphere.[57] Some disputed[58] estimates for the total size of the universe, if finite, reach as high as   megaparsecs, as implied by a suggested resolution of the No-Boundary Proposal.[59][b]

Age and expansion

Assuming that the Lambda-CDM model is correct, the measurements of the parameters using a variety of techniques by numerous experiments yield a best value of the age of the universe at 13.799 ± 0.021 billion years, as of 2015.[2]

 
Astronomers have discovered stars in the Milky Way galaxy that are almost 13.6 billion years old.

Over time, the universe and its contents have evolved; for example, the relative population of quasars and galaxies has changed[60] and space itself has expanded. Due to this expansion, scientists on Earth can observe the light from a galaxy 30 billion light-years away even though that light has traveled for only 13 billion years; the very space between them has expanded. This expansion is consistent with the observation that the light from distant galaxies has been redshifted; the photons emitted have been stretched to longer wavelengths and lower frequency during their journey. Analyses of Type Ia supernovae indicate that the spatial expansion is accelerating.[61][62]

The more matter there is in the universe, the stronger the mutual gravitational pull of the matter. If the universe were too dense then it would re-collapse into a gravitational singularity. However, if the universe contained too little matter then the self-gravity would be too weak for astronomical structures, like galaxies or planets, to form. Since the Big Bang, the universe has expanded monotonically. Perhaps unsurprisingly, our universe has just the right mass-energy density, equivalent to about 5 protons per cubic metre, which has allowed it to expand for the last 13.8 billion years, giving time to form the universe as observed today.[63]

There are dynamical forces acting on the particles in the universe which affect the expansion rate. Before 1998, it was expected that the expansion rate would be decreasing as time went on due to the influence of gravitational interactions in the universe; and thus there is an additional observable quantity in the universe called the deceleration parameter, which most cosmologists expected to be positive and related to the matter density of the universe. In 1998, the deceleration parameter was measured by two different groups to be negative, approximately -0.55, which technically implies that the second derivative of the cosmic scale factor   has been positive in the last 5-6 billion years.[16][64] This acceleration does not, however, imply that the Hubble parameter is currently increasing; see deceleration parameter for details.

Spacetime

Spacetimes are the arenas in which all physical events take place. The basic elements of spacetimes are events. In any given spacetime, an event is defined as a unique position at a unique time. A spacetime is the union of all events (in the same way that a line is the union of all of its points), formally organized into a manifold.[65]

Events, such as matter and energy, bend spacetime. Curved spacetime, on the other hand, forces matter and energy to behave in a certain way. There is no point in considering one without the other.[15]

The universe appears to be a smooth spacetime continuum consisting of three spatial dimensions and one temporal (time) dimension (an event in the spacetime of the physical universe can therefore be identified by a set of four coordinates: (x, y, z, t). On average, space is observed to be very nearly flat (with a curvature close to zero), meaning that Euclidean geometry is empirically true with high accuracy throughout most of the Universe.[66] Spacetime also appears to have a simply connected topology, in analogy with a sphere, at least on the length-scale of the observable universe. However, present observations cannot exclude the possibilities that the universe has more dimensions (which is postulated by theories such as the string theory) and that its spacetime may have a multiply connected global topology, in analogy with the cylindrical or toroidal topologies of two-dimensional spaces.[67][68] The spacetime of the universe is usually interpreted from a Euclidean perspective, with space as consisting of three dimensions, and time as consisting of one dimension, the "fourth dimension".[69] By combining space and time into a single manifold called Minkowski space, physicists have simplified a large number of physical theories, as well as described in a more uniform way the workings of the universe at both the supergalactic and subatomic levels.

Spacetime events are not absolutely defined spatially and temporally but rather are known to be relative to the motion of an observer. Minkowski space approximates the universe without gravity; the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity.

Shape

 
The three possible options for the shape of the universe

General relativity describes how spacetime is curved and bent by mass and energy (gravity). The topology or geometry of the universe includes both local geometry in the observable universe and global geometry. Cosmologists often work with a given space-like slice of spacetime called the comoving coordinates. The section of spacetime which can be observed is the backward light cone, which delimits the cosmological horizon. The cosmological horizon (also called the particle horizon or the light horizon) is the maximum distance from which particles can have traveled to the observer in the age of the universe. This horizon represents the boundary between the observable and the unobservable regions of the universe.[70][71] The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.

An important parameter determining the future evolution of the universe theory is the density parameter, Omega (Ω), defined as the average matter density of the universe divided by a critical value of that density. This selects one of three possible geometries depending on whether Ω is equal to, less than, or greater than 1. These are called, respectively, the flat, open and closed universes.[72]

Observations, including the Cosmic Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP), and Planck maps of the CMB, suggest that the universe is infinite in extent with a finite age, as described by the Friedmann–Lemaître–Robertson–Walker (FLRW) models.[73][67][74][75] These FLRW models thus support inflationary models and the standard model of cosmology, describing a flat, homogeneous universe presently dominated by dark matter and dark energy.[76][77]

Support of life

The universe may be fine-tuned; the Fine-tuned universe hypothesis is the proposition that the conditions that allow the existence of observable life in the universe can only occur when certain universal fundamental physical constants lie within a very narrow range of values, so that if any of several fundamental constants were only slightly different, the universe would have been unlikely to be conducive to the establishment and development of matter, astronomical structures, elemental diversity, or life as it is understood.[78] The proposition is discussed among philosophers, scientists, theologians, and proponents of creationism.

Composition

The universe is composed almost completely of dark energy, dark matter, and ordinary matter. Other contents are electromagnetic radiation (estimated to constitute from 0.005% to close to 0.01% of the total mass-energy of the universe) and antimatter.[79][80][81]

The proportions of all types of matter and energy have changed over the history of the universe.[82] The total amount of electromagnetic radiation generated within the universe has decreased by 1/2 in the past 2 billion years.[83][84] Today, ordinary matter, which includes atoms, stars, galaxies, and life, accounts for only 4.9% of the contents of the Universe.[8] The present overall density of this type of matter is very low, roughly 4.5 × 10−31 grams per cubic centimetre, corresponding to a density of the order of only one proton for every four cubic metres of volume.[6] The nature of both dark energy and dark matter is unknown. Dark matter, a mysterious form of matter that has not yet been identified, accounts for 26.8% of the cosmic contents. Dark energy, which is the energy of empty space and is causing the expansion of the universe to accelerate, accounts for the remaining 68.3% of the contents.[8][85][86]

 
The formation of clusters and large-scale filaments in the cold dark matter model with dark energy. The frames show the evolution of structures in a 43 million parsecs (or 140 million light-years) box from redshift of 30 to the present epoch (upper left z=30 to lower right z=0).
 
A map of the superclusters and voids nearest to Earth

Matter, dark matter, and dark energy are distributed homogeneously throughout the universe over length scales longer than 300 million light-years or so.[87] However, over shorter length-scales, matter tends to clump hierarchically; many atoms are condensed into stars, most stars into galaxies, most galaxies into clusters, superclusters and, finally, large-scale galactic filaments. The observable universe contains as many as 200 billion galaxies[88][89] and, overall, as many as an estimated 1×1024 stars[90][91] (more stars than all the grains of sand on planet Earth).[92] Typical galaxies range from dwarfs with as few as ten million[93] (107) stars up to giants with one trillion[94] (1012) stars. Between the larger structures are voids, which are typically 10–150 Mpc (33 million–490 million ly) in diameter. The Milky Way is in the Local Group of galaxies, which in turn is in the Laniakea Supercluster.[95] This supercluster spans over 500 million light-years, while the Local Group spans over 10 million light-years.[96] The Universe also has vast regions of relative emptiness; the largest known void measures 1.8 billion ly (550 Mpc) across.[97]

 
Comparison of the contents of the universe today to 380,000 years after the Big Bang as measured with 5 year WMAP data (from 2008).[98] (Due to rounding errors, the sum of these numbers is not 100%). This reflects the 2008 limits of WMAP's ability to define dark matter and dark energy.

The observable universe is isotropic on scales significantly larger than superclusters, meaning that the statistical properties of the universe are the same in all directions as observed from Earth. The universe is bathed in highly isotropic microwave radiation that corresponds to a thermal equilibrium blackbody spectrum of roughly 2.72548 kelvins.[7] The hypothesis that the large-scale universe is homogeneous and isotropic is known as the cosmological principle.[99] A universe that is both homogeneous and isotropic looks the same from all vantage points[100] and has no center.[101]

Dark energy

An explanation for why the expansion of the universe is accelerating remains elusive. It is often attributed to "dark energy", an unknown form of energy that is hypothesized to permeate space.[102] On a mass–energy equivalence basis, the density of dark energy (~ 7 × 10−30 g/cm3) is much less than the density of ordinary matter or dark matter within galaxies. However, in the present dark-energy era, it dominates the mass–energy of the universe because it is uniform across space.[103][104]

Two proposed forms for dark energy are the cosmological constant, a constant energy density filling space homogeneously,[105] and scalar fields such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant can be formulated to be equivalent to vacuum energy. Scalar fields having only a slight amount of spatial inhomogeneity would be difficult to distinguish from a cosmological constant.

Dark matter

Dark matter is a hypothetical kind of matter that is invisible to the entire electromagnetic spectrum, but which accounts for most of the matter in the universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe. Other than neutrinos, a form of hot dark matter, dark matter has not been detected directly, making it one of the greatest mysteries in modern astrophysics. Dark matter neither emits nor absorbs light or any other electromagnetic radiation at any significant level. Dark matter is estimated to constitute 26.8% of the total mass–energy and 84.5% of the total matter in the universe.[85][106]

Ordinary matter

The remaining 4.9% of the mass–energy of the universe is ordinary matter, that is, atoms, ions, electrons and the objects they form. This matter includes stars, which produce nearly all of the light we see from galaxies, as well as interstellar gas in the interstellar and intergalactic media, planets, and all the objects from everyday life that we can bump into, touch or squeeze.[107] As a matter of fact, the great majority of ordinary matter in the universe is unseen, since visible stars and gas inside galaxies and clusters account for less than 10 per cent of the ordinary matter contribution to the mass-energy density of the universe.[108]

Ordinary matter commonly exists in four states (or phases): solid, liquid, gas, and plasma. However, advances in experimental techniques have revealed other previously theoretical phases, such as Bose–Einstein condensates and fermionic condensates.

Ordinary matter is composed of two types of elementary particles: quarks and leptons.[109] For example, the proton is formed of two up quarks and one down quark; the neutron is formed of two down quarks and one up quark; and the electron is a kind of lepton. An atom consists of an atomic nucleus, made up of protons and neutrons, and electrons that orbit the nucleus. Because most of the mass of an atom is concentrated in its nucleus, which is made up of baryons, astronomers often use the term baryonic matter to describe ordinary matter, although a small fraction of this "baryonic matter" is electrons.

Soon after the Big Bang, primordial protons and neutrons formed from the quark–gluon plasma of the early universe as it cooled below two trillion degrees. A few minutes later, in a process known as Big Bang nucleosynthesis, nuclei formed from the primordial protons and neutrons. This nucleosynthesis formed lighter elements, those with small atomic numbers up to lithium and beryllium, but the abundance of heavier elements dropped off sharply with increasing atomic number. Some boron may have been formed at this time, but the next heavier element, carbon, was not formed in significant amounts. Big Bang nucleosynthesis shut down after about 20 minutes due to the rapid drop in temperature and density of the expanding universe. Subsequent formation of heavier elements resulted from stellar nucleosynthesis and supernova nucleosynthesis.[110]

Particles

 
Standard model of elementary particles: the 12 fundamental fermions and 4 fundamental bosons. Brown loops indicate which bosons (red) couple to which fermions (purple and green). Columns are three generations of matter (fermions) and one of forces (bosons). In the first three columns, two rows contain quarks and two leptons. The top two rows' columns contain up (u) and down (d) quarks, charm (c) and strange (s) quarks, top (t) and bottom (b) quarks, and photon (γ) and gluon (g), respectively. The bottom two rows' columns contain electron neutrino (νe) and electron (e), muon neutrino (νμ) and muon (μ), tau neutrino (ντ) and tau (τ), and the Z0 and W± carriers of the weak force. Mass, charge, and spin are listed for each particle.

Ordinary matter and the forces that act on matter can be described in terms of elementary particles.[111] These particles are sometimes described as being fundamental, since they have an unknown substructure, and it is unknown whether or not they are composed of smaller and even more fundamental particles.[112][113] Of central importance is the Standard Model, a theory that is concerned with electromagnetic interactions and the weak and strong nuclear interactions.[114] The Standard Model is supported by the experimental confirmation of the existence of particles that compose matter: quarks and leptons, and their corresponding "antimatter" duals, as well as the force particles that mediate interactions: the photon, the W and Z bosons, and the gluon.[112] The Standard Model predicted the existence of the recently discovered Higgs boson, a particle that is a manifestation of a field within the universe that can endow particles with mass.[115][116] Because of its success in explaining a wide variety of experimental results, the Standard Model is sometimes regarded as a "theory of almost everything".[114] The Standard Model does not, however, accommodate gravity. A true force-particle "theory of everything" has not been attained.[117]

Hadrons

A hadron is a composite particle made of quarks held together by the strong force. Hadrons are categorized into two families: baryons (such as protons and neutrons) made of three quarks, and mesons (such as pions) made of one quark and one antiquark. Of the hadrons, protons are stable, and neutrons bound within atomic nuclei are stable. Other hadrons are unstable under ordinary conditions and are thus insignificant constituents of the modern universe. From approximately 10−6 seconds after the Big Bang, during a period is known as the hadron epoch, the temperature of the universe had fallen sufficiently to allow quarks to bind together into hadrons, and the mass of the universe was dominated by hadrons. Initially, the temperature was high enough to allow the formation of hadron/anti-hadron pairs, which kept matter and antimatter in thermal equilibrium. However, as the temperature of the universe continued to fall, hadron/anti-hadron pairs were no longer produced. Most of the hadrons and anti-hadrons were then eliminated in particle-antiparticle annihilation reactions, leaving a small residual of hadrons by the time the universe was about one second old.[118]: 244–66 

Leptons

A lepton is an elementary, half-integer spin particle that does not undergo strong interactions but is subject to the Pauli exclusion principle; no two leptons of the same species can be in exactly the same state at the same time.[119] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons), and neutral leptons (better known as neutrinos). Electrons are stable and the most common charged lepton in the universe, whereas muons and taus are unstable particles that quickly decay after being produced in high energy collisions, such as those involving cosmic rays or carried out in particle accelerators.[120][121] Charged leptons can combine with other particles to form various composite particles such as atoms and positronium. The electron governs nearly all of chemistry, as it is found in atoms and is directly tied to all chemical properties. Neutrinos rarely interact with anything, and are consequently rarely observed. Neutrinos stream throughout the universe but rarely interact with normal matter.[122]

The lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the universe. It started roughly 1 second after the Big Bang, after the majority of hadrons and anti-hadrons annihilated each other at the end of the hadron epoch. During the lepton epoch the temperature of the universe was still high enough to create lepton/anti-lepton pairs, so leptons and anti-leptons were in thermal equilibrium. Approximately 10 seconds after the Big Bang, the temperature of the universe had fallen to the point where lepton/anti-lepton pairs were no longer created.[123] Most leptons and anti-leptons were then eliminated in annihilation reactions, leaving a small residue of leptons. The mass of the universe was then dominated by photons as it entered the following photon epoch.[124][125]

Photons

A photon is the quantum of light and all other forms of electromagnetic radiation. It is the force carrier for the electromagnetic force, even when static via virtual photons. The effects of this force are easily observable at the microscopic and at the macroscopic level because the photon has zero rest mass; this allows long distance interactions. Like all elementary particles, photons are currently best explained by quantum mechanics and exhibit wave–particle duality, exhibiting properties of waves and of particles.

The photon epoch started after most leptons and anti-leptons were annihilated at the end of the lepton epoch, about 10 seconds after the Big Bang. Atomic nuclei were created in the process of nucleosynthesis which occurred during the first few minutes of the photon epoch. For the remainder of the photon epoch the universe contained a hot dense plasma of nuclei, electrons and photons. About 380,000 years after the Big Bang, the temperature of the Universe fell to the point where nuclei could combine with electrons to create neutral atoms. As a result, photons no longer interacted frequently with matter and the universe became transparent. The highly redshifted photons from this period form the cosmic microwave background. Tiny variations in temperature and density detectable in the CMB were the early "seeds" from which all subsequent structure formation took place.[118]: 244–66 

Cosmological models

Model of the universe based on general relativity

General relativity is the geometric theory of gravitation published by Albert Einstein in 1915 and the current description of gravitation in modern physics. It is the basis of current cosmological models of the universe. General relativity generalizes special relativity and Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. In general relativity, the distribution of matter and energy determines the geometry of spacetime, which in turn describes the acceleration of matter. Therefore, solutions of the Einstein field equations describe the evolution of the universe. Combined with measurements of the amount, type, and distribution of matter in the universe, the equations of general relativity describe the evolution of the universe over time.[126]

With the assumption of the cosmological principle that the universe is homogeneous and isotropic everywhere, a specific solution of the field equations that describes the universe is the metric tensor called the Friedmann–Lemaître–Robertson–Walker metric,

 

where (r, θ, φ) correspond to a spherical coordinate system. This metric has only two undetermined parameters. An overall dimensionless length scale factor R describes the size scale of the universe as a function of time (an increase in R is the expansion of the universe),[127] and a curvature index k describes the geometry. The index k is defined so that it can take only one of three values: 0, corresponding to flat Euclidean geometry; 1, corresponding to a space of positive curvature; or −1, corresponding to a space of positive or negative curvature.[128] The value of R as a function of time t depends upon k and the cosmological constant Λ.[126] The cosmological constant represents the energy density of the vacuum of space and could be related to dark energy.[86] The equation describing how R varies with time is known as the Friedmann equation after its inventor, Alexander Friedmann.[129]

The solutions for R(t) depend on k and Λ, but some qualitative features of such solutions are general. First and most importantly, the length scale R of the universe can remain constant only if the universe is perfectly isotropic with positive curvature (k=1) and has one precise value of density everywhere, as first noted by Albert Einstein.[126] However, this equilibrium is unstable: because the universe is inhomogeneous on smaller scales, R must change over time. When R changes, all the spatial distances in the universe change in tandem; there is an overall expansion or contraction of space itself. This accounts for the observation that galaxies appear to be flying apart; the space between them is stretching. The stretching of space also accounts for the apparent paradox that two galaxies can be 40 billion light-years apart, although they started from the same point 13.8 billion years ago[130] and never moved faster than the speed of light.

Second, all solutions suggest that there was a gravitational singularity in the past, when R went to zero and matter and energy were infinitely dense. It may seem that this conclusion is uncertain because it is based on the questionable assumptions of perfect homogeneity and isotropy (the cosmological principle) and that only the gravitational interaction is significant. However, the Penrose–Hawking singularity theorems show that a singularity should exist for very general conditions. Hence, according to Einstein's field equations, R grew rapidly from an unimaginably hot, dense state that existed immediately following this singularity (when R had a small, finite value); this is the essence of the Big Bang model of the universe. Understanding the singularity of the Big Bang likely requires a quantum theory of gravity, which has not yet been formulated.[131]

Third, the curvature index k determines the sign of the mean spatial curvature of spacetime[128] averaged over sufficiently large length scales (greater than about a billion light-years). If k=1, the curvature is positive and the universe has a finite volume.[132] A universe with positive curvature is often visualized as a three-dimensional sphere embedded in a four-dimensional space. Conversely, if k is zero or negative, the universe has an infinite volume.[132] It may seem counter-intuitive that an infinite and yet infinitely dense universe could be created in a single instant when R = 0, but exactly that is predicted mathematically when k does not equal 1. By analogy, an infinite plane has zero curvature but infinite area, whereas an infinite cylinder is finite in one direction and a torus is finite in both. A toroidal universe could behave like a normal universe with periodic boundary conditions.

The ultimate fate of the universe is still unknown because it depends critically on the curvature index k and the cosmological constant Λ. If the universe were sufficiently dense, k would equal +1, meaning that its average curvature throughout is positive and the universe will eventually recollapse in a Big Crunch,[133] possibly starting a new universe in a Big Bounce. Conversely, if the universe were insufficiently dense, k would equal 0 or −1 and the universe would expand forever, cooling off and eventually reaching the Big Freeze and the heat death of the universe.[126] Modern data suggests that the rate of expansion of the universe is not decreasing, as originally expected, but increasing; if this continues indefinitely, the universe may eventually reach a Big Rip. Observationally, the universe appears to be flat (k = 0), with an overall density that is very close to the critical value between recollapse and eternal expansion.[134]

Multiverse hypothesis

Some speculative theories have proposed that our universe is but one of a set of disconnected universes, collectively denoted as the multiverse, challenging or enhancing more limited definitions of the universe.[20][135] Scientific multiverse models are distinct from concepts such as alternate planes of consciousness and simulated reality.

Max Tegmark developed a four-part classification scheme for the different types of multiverses that scientists have suggested in response to various Physics problems. An example of such multiverses is the one resulting from the chaotic inflation model of the early universe.[136] Another is the multiverse resulting from the many-worlds interpretation of quantum mechanics. In this interpretation, parallel worlds are generated in a manner similar to quantum superposition and decoherence, with all states of the wave functions being realized in separate worlds. Effectively, in the many-worlds interpretation the multiverse evolves as a universal wavefunction. If the Big Bang that created our multiverse created an ensemble of multiverses, the wave function of the ensemble would be entangled in this sense.[137]

The least controversial, but still highly disputed, category of multiverse in Tegmark's scheme is Level I. The multiverses of this level are composed by distant spacetime events "in our own universe". Tegmark and others[138] have argued that, if space is infinite, or sufficiently large and uniform, identical instances of the history of Earth's entire Hubble volume occur every so often, simply by chance. Tegmark calculated that our nearest so-called doppelgänger, is 1010115 metres away from us (a double exponential function larger than a googolplex).[139][140] However, the arguments used are of speculative nature.[141] Additionally, it would be impossible to scientifically verify the existence of an identical Hubble volume.

It is possible to conceive of disconnected spacetimes, each existing but unable to interact with one another.[139][142] An easily visualized metaphor of this concept is a group of separate soap bubbles, in which observers living on one soap bubble cannot interact with those on other soap bubbles, even in principle.[143] According to one common terminology, each "soap bubble" of spacetime is denoted as a universe, whereas humans' particular spacetime is denoted as the universe,[20] just as humans call Earth's moon the Moon. The entire collection of these separate spacetimes is denoted as the multiverse.[20] With this terminology, different universes are not causally connected to each other.[20] In principle, the other unconnected universes may have different dimensionalities and topologies of spacetime, different forms of matter and energy, and different physical laws and physical constants, although such possibilities are purely speculative.[20] Others consider each of several bubbles created as part of chaotic inflation to be separate universes, though in this model these universes all share a causal origin.[20]

Historical conceptions

Historically, there have been many ideas of the cosmos (cosmologies) and its origin (cosmogonies). Theories of an impersonal universe governed by physical laws were first proposed by the Greeks and Indians.[13] Ancient Chinese philosophy encompassed the notion of the universe including both all of space and all of time.[144] Over the centuries, improvements in astronomical observations and theories of motion and gravitation led to ever more accurate descriptions of the universe. The modern era of cosmology began with Albert Einstein's 1915 general theory of relativity, which made it possible to quantitatively predict the origin, evolution, and conclusion of the universe as a whole. Most modern, accepted theories of cosmology are based on general relativity and, more specifically, the predicted Big Bang.[145]

Mythologies

Many cultures have stories describing the origin of the world and universe. Cultures generally regard these stories as having some truth. There are however many differing beliefs in how these stories apply amongst those believing in a supernatural origin, ranging from a god directly creating the universe as it is now to a god just setting the "wheels in motion" (for example via mechanisms such as the big bang and evolution).[146]

Ethnologists and anthropologists who study myths have developed various classification schemes for the various themes that appear in creation stories.[147][148] For example, in one type of story, the world is born from a world egg; such stories include the Finnish epic poem Kalevala, the Chinese story of Pangu or the Indian Brahmanda Purana. In related stories, the universe is created by a single entity emanating or producing something by him- or herself, as in the Tibetan Buddhism concept of Adi-Buddha, the ancient Greek story of Gaia (Mother Earth), the Aztec goddess Coatlicue myth, the ancient Egyptian god Atum story, and the Judeo-Christian Genesis creation narrative in which the Abrahamic God created the universe. In another type of story, the universe is created from the union of male and female deities, as in the Maori story of Rangi and Papa. In other stories, the universe is created by crafting it from pre-existing materials, such as the corpse of a dead god—as from Tiamat in the Babylonian epic Enuma Elish or from the giant Ymir in Norse mythology—or from chaotic materials, as in Izanagi and Izanami in Japanese mythology. In other stories, the universe emanates from fundamental principles, such as Brahman and Prakrti, the creation myth of the Serers,[149] or the yin and yang of the Tao.

Philosophical models

The pre-Socratic Greek philosophers and Indian philosophers developed some of the earliest philosophical concepts of the universe.[13][150] The earliest Greek philosophers noted that appearances can be deceiving, and sought to understand the underlying reality behind the appearances. In particular, they noted the ability of matter to change forms (e.g., ice to water to steam) and several philosophers proposed that all the physical materials in the world are different forms of a single primordial material, or arche. The first to do so was Thales, who proposed this material to be water. Thales' student, Anaximander, proposed that everything came from the limitless apeiron. Anaximenes proposed the primordial material to be air on account of its perceived attractive and repulsive qualities that cause the arche to condense or dissociate into different forms. Anaxagoras proposed the principle of Nous (Mind), while Heraclitus proposed fire (and spoke of logos). Empedocles proposed the elements to be earth, water, air and fire. His four-element model became very popular. Like Pythagoras, Plato believed that all things were composed of number, with Empedocles' elements taking the form of the Platonic solids. Democritus, and later philosophers—most notably Leucippus—proposed that the universe is composed of indivisible atoms moving through a void (vacuum), although Aristotle did not believe that to be feasible because air, like water, offers resistance to motion. Air will immediately rush in to fill a void, and moreover, without resistance, it would do so indefinitely fast.[13]

Although Heraclitus argued for eternal change, his contemporary Parmenides made the radical suggestion that all change is an illusion, that the true underlying reality is eternally unchanging and of a single nature. Parmenides denoted this reality as τὸ ἐν (The One). Parmenides' idea seemed implausible to many Greeks, but his student Zeno of Elea challenged them with several famous paradoxes. Aristotle responded to these paradoxes by developing the notion of a potential countable infinity, as well as the infinitely divisible continuum. Unlike the eternal and unchanging cycles of time, he believed that the world is bounded by the celestial spheres and that cumulative stellar magnitude is only finitely multiplicative.

The Indian philosopher Kanada, founder of the Vaisheshika school, developed a notion of atomism and proposed that light and heat were varieties of the same substance.[151] In the 5th century AD, the Buddhist atomist philosopher Dignāga proposed atoms to be point-sized, durationless, and made of energy. They denied the existence of substantial matter and proposed that movement consisted of momentary flashes of a stream of energy.[152]

The notion of temporal finitism was inspired by the doctrine of creation shared by the three Abrahamic religions: Judaism, Christianity and Islam. The Christian philosopher, John Philoponus, presented the philosophical arguments against the ancient Greek notion of an infinite past and future. Philoponus' arguments against an infinite past were used by the early Muslim philosopher, Al-Kindi (Alkindus); the Jewish philosopher, Saadia Gaon (Saadia ben Joseph); and the Muslim theologian, Al-Ghazali (Algazel).[153]

Astronomical concepts

 
3rd century BCE calculations by Aristarchus on the relative sizes of, from left to right, the Sun, Earth, and Moon, from a 10th-century AD Greek copy

Astronomical models of the universe were proposed soon after astronomy began with the Babylonian astronomers, who viewed the universe as a flat disk floating in the ocean, and this forms the premise for early Greek maps like those of Anaximander and Hecataeus of Miletus.

Later Greek philosophers, observing the motions of the heavenly bodies, were concerned with developing models of the universe-based more profoundly on empirical evidence. The first coherent model was proposed by Eudoxus of Cnidos. According to Aristotle's physical interpretation of the model, celestial spheres eternally rotate with uniform motion around a stationary Earth. Normal matter is entirely contained within the terrestrial sphere.

De Mundo (composed before 250 BC or between 350 and 200 BC), stated, "Five elements, situated in spheres in five regions, the less being in each case surrounded by the greater—namely, earth surrounded by water, water by air, air by fire, and fire by ether—make up the whole universe".[154]

This model was also refined by Callippus and after concentric spheres were abandoned, it was brought into nearly perfect agreement with astronomical observations by Ptolemy. The success of such a model is largely due to the mathematical fact that any function (such as the position of a planet) can be decomposed into a set of circular functions (the Fourier modes). Other Greek scientists, such as the Pythagorean philosopher Philolaus, postulated (according to Stobaeus account) that at the center of the universe was a "central fire" around which the Earth, Sun, Moon and planets revolved in uniform circular motion.[155]

The Greek astronomer Aristarchus of Samos was the first known individual to propose a heliocentric model of the universe. Though the original text has been lost, a reference in Archimedes' book The Sand Reckoner describes Aristarchus's heliocentric model. Archimedes wrote:

You, King Gelon, are aware the universe is the name given by most astronomers to the sphere the center of which is the center of the Earth, while its radius is equal to the straight line between the center of the Sun and the center of the Earth. This is the common account as you have heard from astronomers. But Aristarchus has brought out a book consisting of certain hypotheses, wherein it appears, as a consequence of the assumptions made, that the universe is many times greater than the universe just mentioned. His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of fixed stars, situated about the same center as the Sun, is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface

Aristarchus thus believed the stars to be very far away, and saw this as the reason why stellar parallax had not been observed, that is, the stars had not been observed to move relative each other as the Earth moved around the Sun. The stars are in fact much farther away than the distance that was generally assumed in ancient times, which is why stellar parallax is only detectable with precision instruments. The geocentric model, consistent with planetary parallax, was assumed to be an explanation for the unobservability of the parallel phenomenon, stellar parallax. The rejection of the heliocentric view was apparently quite strong, as the following passage from Plutarch suggests (On the Apparent Face in the Orb of the Moon):

Cleanthes [a contemporary of Aristarchus and head of the Stoics] thought it was the duty of the Greeks to indict Aristarchus of Samos on the charge of impiety for putting in motion the Hearth of the Universe [i.e. the Earth], ... supposing the heaven to remain at rest and the Earth to revolve in an oblique circle, while it rotates, at the same time, about its own axis

 

The only other astronomer from antiquity known by name who supported Aristarchus's heliocentric model was Seleucus of Seleucia, a Hellenistic astronomer who lived a century after Aristarchus.[156][157][158] According to Plutarch, Seleucus was the first to prove the heliocentric system through reasoning, but it is not known what arguments he used. Seleucus' arguments for a heliocentric cosmology were probably related to the phenomenon of tides.[159] According to Strabo (1.1.9), Seleucus was the first to state that the tides are due to the attraction of the Moon, and that the height of the tides depends on the Moon's position relative to the Sun.[160] Alternatively, he may have proved heliocentricity by determining the constants of a geometric model for it, and by developing methods to compute planetary positions using this model, like what Nicolaus Copernicus later did in the 16th century.[161] During the Middle Ages, heliocentric models were also proposed by the Indian astronomer Aryabhata,[162] and by the Persian astronomers Albumasar[163] and Al-Sijzi.[164]

 
Model of the Copernican Universe by Thomas Digges in 1576, with the amendment that the stars are no longer confined to a sphere, but spread uniformly throughout the space surrounding the planets

The Aristotelian model was accepted in the Western world for roughly two millennia, until Copernicus revived Aristarchus's perspective that the astronomical data could be explained more plausibly if the Earth rotated on its axis and if the Sun were placed at the center of the universe.

In the center rests the Sun. For who would place this lamp of a very beautiful temple in another or better place than this wherefrom it can illuminate everything at the same time?

— Nicolaus Copernicus, in Chapter 10, Book 1 of De Revolutionibus Orbium Coelestrum (1543)

As noted by Copernicus himself, the notion that the Earth rotates is very old, dating at least to Philolaus (c. 450 BC), Heraclides Ponticus (c. 350 BC) and Ecphantus the Pythagorean. Roughly a century before Copernicus, the Christian scholar Nicholas of Cusa also proposed that the Earth rotates on its axis in his book, On Learned Ignorance (1440).[165] Al-Sijzi[166] also proposed that the Earth rotates on its axis. Empirical evidence for the Earth's rotation on its axis, using the phenomenon of comets, was given by Tusi (1201–1274) and Ali Qushji (1403–1474).[167]

This cosmology was accepted by Isaac Newton, Christiaan Huygens and later scientists.[168] Edmund Halley (1720)[169] and Jean-Philippe de Chéseaux (1744)[170] noted independently that the assumption of an infinite space filled uniformly with stars would lead to the prediction that the nighttime sky would be as bright as the Sun itself; this became known as Olbers' paradox in the 19th century.[171] Newton believed that an infinite space uniformly filled with matter would cause infinite forces and instabilities causing the matter to be crushed inwards under its own gravity.[168] This instability was clarified in 1902 by the Jeans instability criterion.[172] One solution to these paradoxes is the Charlier Universe, in which the matter is arranged hierarchically (systems of orbiting bodies that are themselves orbiting in a larger system, ad infinitum) in a fractal way such that the universe has a negligibly small overall density; such a cosmological model had also been proposed earlier in 1761 by Johann Heinrich Lambert.[51][173] A significant astronomical advance of the 18th century was the realization by Thomas Wright, Immanuel Kant and others of nebulae.[169]

In 1919, when the Hooker Telescope was completed, the prevailing view still was that the universe consisted entirely of the Milky Way Galaxy. Using the Hooker Telescope, Edwin Hubble identified Cepheid variables in several spiral nebulae and in 1922–1923 proved conclusively that Andromeda Nebula and Triangulum among others, were entire galaxies outside our own, thus proving that universe consists of a multitude of galaxies.[174]

The modern era of physical cosmology began in 1917, when Albert Einstein first applied his general theory of relativity to model the structure and dynamics of the universe.[175]

 
Map of the observable universe with some of the notable astronomical objects known today. The scale of length increases exponentially toward the right. Celestial bodies are shown enlarged in size to be able to understand their shapes.

See also

References

Footnotes

  1. ^ a b According to modern physics, particularly the theory of relativity, space and time are intrinsically linked as spacetime.
  2. ^ Although listed in megaparsecs by the cited source, this number is so vast that its digits would remain virtually unchanged for all intents and purposes regardless of which conventional units it is listed in, whether it to be nanometres or gigaparsecs, as the differences would disappear into the error.

Citations

  1. ^ "Hubble sees galaxies galore". spacetelescope.org. from the original on May 4, 2017. Retrieved April 30, 2017.
  2. ^ a b Planck Collaboration (2016). "Planck 2015 results. XIII. Cosmological parameters". Astronomy & Astrophysics. 594: A13, Table 4. arXiv:1502.01589. Bibcode:2016A&A...594A..13P. doi:10.1051/0004-6361/201525830. S2CID 119262962.
  3. ^ a b c d Greene, Brian (2011). The Hidden Reality. Alfred A. Knopf.
  4. ^ Bars, Itzhak; Terning, John (November 2009). Extra Dimensions in Space and Time. Springer. pp. 27–. ISBN 978-0-387-77637-8. Retrieved May 1, 2011.
  5. ^ Davies, Paul (2006). The Goldilocks Enigma. First Mariner Books. p. 43ff. ISBN 978-0-618-59226-5.
  6. ^ a b NASA/WMAP Science Team (January 24, 2014). "Universe 101: What is the Universe Made Of?". NASA. from the original on March 10, 2008. Retrieved February 17, 2015.
  7. ^ a b Fixsen, D.J. (2009). "The Temperature of the Cosmic Microwave Background". The Astrophysical Journal. 707 (2): 916–20. arXiv:0911.1955. Bibcode:2009ApJ...707..916F. doi:10.1088/0004-637X/707/2/916. S2CID 119217397.
  8. ^ a b c "First Planck results: the universe is still weird and interesting". Matthew Francis. Ars technica. March 21, 2013. from the original on May 2, 2019. Retrieved August 21, 2015.
  9. ^ NASA/WMAP Science Team (January 24, 2014). "Universe 101: Will the Universe expand forever?". NASA. from the original on March 9, 2008. Retrieved April 16, 2015.
  10. ^ a b Zeilik, Michael; Gregory, Stephen A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. ISBN 978-0-03-006228-5. The totality of all space and time; all that is, has been, and will be.
  11. ^ Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S. (September 2020). "Planck 2018 results: VI. Cosmological parameters". Astronomy & Astrophysics. 641: A6. arXiv:1807.06209. Bibcode:2020A&A...641A...6P. doi:10.1051/0004-6361/201833910. ISSN 0004-6361. S2CID 119335614.
  12. ^ Dold-Samplonius, Yvonne (2002). From China to Paris: 2000 Years Transmission of Mathematical Ideas. Franz Steiner Verlag.
  13. ^ a b c d Glick, Thomas F.; Livesey, Steven; Wallis, Faith. Medieval Science Technology and Medicine: An Encyclopedia. Routledge.
  14. ^ Carroll, Bradley W.; Ostlie, Dale A. (July 23, 2013). An Introduction to Modern Astrophysics (International ed.). Pearson. pp. 1173–74. ISBN 978-1-292-02293-2. from the original on December 28, 2019. Retrieved May 16, 2018.
  15. ^ a b Hawking, Stephen (1988). A Brief History of Time. Bantam Books. p. 43. ISBN 978-0-553-05340-1.
  16. ^ a b "The Nobel Prize in Physics 2011". from the original on April 17, 2015. Retrieved April 16, 2015.
  17. ^ Redd, Nola. "What is Dark Matter?". Space.com. from the original on February 1, 2018. Retrieved February 1, 2018.
  18. ^ a b "Planck 2015 results, table 9". from the original on July 27, 2018. Retrieved May 16, 2018.
  19. ^ Persic, Massimo; Salucci, Paolo (September 1, 1992). "The baryon content of the Universe". Monthly Notices of the Royal Astronomical Society. 258 (1): 14P–18P. arXiv:astro-ph/0502178. Bibcode:1992MNRAS.258P..14P. doi:10.1093/mnras/258.1.14P. ISSN 0035-8711. S2CID 17945298.
  20. ^ a b c d e f g Ellis, George F.R.; U. Kirchner; W.R. Stoeger (2004). "Multiverses and physical cosmology". Monthly Notices of the Royal Astronomical Society. 347 (3): 921–36. arXiv:astro-ph/0305292. Bibcode:2004MNRAS.347..921E. doi:10.1111/j.1365-2966.2004.07261.x. S2CID 119028830.
  21. ^ Palmer, Jason. (August 3, 2011) BBC News – 'Multiverse' theory suggested by microwave background June 3, 2018, at the Wayback Machine. Retrieved November 28, 2011.
  22. ^ "Universe". Encyclopaedia Britannica online. Encyclopaedia Britannica Inc. 2012. from the original on June 9, 2021. Retrieved February 17, 2018.
  23. ^ "Universe". Merriam-Webster Dictionary. from the original on October 22, 2012. Retrieved September 21, 2012.
  24. ^ "Universe". Dictionary.com. from the original on October 23, 2012. Retrieved September 21, 2012.
  25. ^ a b Schreuder, Duco A. (December 3, 2014). Vision and Visual Perception. Archway Publishing. p. 135. ISBN 978-1-4808-1294-9. from the original on April 22, 2021. Retrieved January 27, 2016.
  26. ^ Mermin, N. David (2004). "Could Feynman Have Said This?". Physics Today. 57 (5): 10. Bibcode:2004PhT....57e..10M. doi:10.1063/1.1768652.
  27. ^ Tegmark, Max (2008). "The Mathematical Universe". Foundations of Physics. 38 (2): 101–50. arXiv:0704.0646. Bibcode:2008FoPh...38..101T. doi:10.1007/s10701-007-9186-9. S2CID 9890455. A short version of which is available at Fixsen, D. J. (2007). "Shut up and calculate". arXiv:0709.4024 [physics.pop-ph]. in reference to David Mermin's famous quote "shut up and calculate!"[26]
  28. ^ Holt, Jim (2012). Why Does the World Exist?. Liveright Publishing. p. 308.
  29. ^ Ferris, Timothy (1997). The Whole Shebang: A State-of-the-Universe(s) Report. Simon & Schuster. p. 400.
  30. ^ Copan, Paul; William Lane Craig (2004). Creation Out of Nothing: A Biblical, Philosophical, and Scientific Exploration. Baker Academic. p. 220. ISBN 978-0-8010-2733-8.
  31. ^ Bolonkin, Alexander (November 2011). Universe, Human Immortality and Future Human Evaluation. Elsevier. pp. 3–. ISBN 978-0-12-415801-6. from the original on February 8, 2021. Retrieved January 27, 2016.
  32. ^ The Compact Edition of the Oxford English Dictionary, volume II, Oxford: Oxford University Press, 1971, p. 3518. ISBN 978-0198611172.
  33. ^ Lewis, C.T. and Short, S (1879) A Latin Dictionary, Oxford University Press, ISBN 0-19-864201-6, pp. 1933, 1977–1978.
  34. ^ Liddell; Scott. "A Greek-English Lexicon". lsj.gr. from the original on November 6, 2018. Retrieved July 30, 2022. πᾶς
  35. ^ Liddell; Scott. "A Greek-English Lexicon". lsj.gr. from the original on November 6, 2018. Retrieved July 30, 2022. ὅλος
  36. ^ Liddell; Scott. "A Greek–English Lexicon". lsj.gr. from the original on November 6, 2018. Retrieved July 30, 2022. κόσμος
  37. ^ Lewis, C.T.; Short, S (1879). A Latin Dictionary. Oxford University Press. pp. 1175, 1189–90, 1881–82. ISBN 978-0-19-864201-5.
  38. ^ The Compact Edition of the Oxford English Dictionary. Vol. II. Oxford: Oxford University Press. 1971. pp. 569, 909, 1900, 3821–22. ISBN 978-0-19-861117-2.
  39. ^ Silk, Joseph (2009). Horizons of Cosmology. Templeton Pressr. p. 208.
  40. ^ Singh, Simon (2005). Big Bang: The Origin of the Universe. Harper Perennial. p. 560. Bibcode:2004biba.book.....S.
  41. ^ C. Sivaram (1986). "Evolution of the Universe through the Planck epoch". Astrophysics and Space Science. 125 (1): 189–99. Bibcode:1986Ap&SS.125..189S. doi:10.1007/BF00643984. S2CID 123344693.
  42. ^ Larson, Richard B. & Bromm, Volker (March 2002). "The First Stars in the Universe". Scientific American. from the original on June 11, 2015. Retrieved June 9, 2015.
  43. ^ Ryden, Barbara, "Introduction to Cosmology", 2006, eqn. 6.33
  44. ^ . Particle Physics and Astronomy Research Council. October 28, 2003. Archived from the original on March 7, 2004. Retrieved August 10, 2006.
  45. ^ Smorra C.; et al. (October 20, 2017). "A parts-per-billion measurement of the antiproton magnetic moment" (PDF). Nature. 550 (7676): 371–74. Bibcode:2017Natur.550..371S. doi:10.1038/nature24048. PMID 29052625. S2CID 205260736. (PDF) from the original on October 30, 2018. Retrieved August 25, 2019.
  46. ^ Landau & Lifshitz (1975, p. 361): "It is interesting to note that in a closed space the total electric charge must be zero. Namely, every closed surface in a finite space encloses on each side of itself a finite region of space. Therefore, the flux of the electric field through this surface is equal, on the one hand, to the total charge located in the interior of the surface, and on the other hand to the total charge outside of it, with opposite sign. Consequently, the sum of the charges on the two sides of the surface is zero."
  47. ^ Kaku, Michio (March 11, 2008). Physics of the Impossible: A Scientific Exploration into the World of Phasers, Force Fields, Teleportation, and Time Travel. Knopf Doubleday Publishing Group. pp. 202–. ISBN 978-0-385-52544-2.
  48. ^ a b Bars, Itzhak; Terning, John (October 19, 2018). Extra Dimensions in Space and Time. Springer. pp. 27–. ISBN 978-0-387-77637-8. Retrieved October 19, 2018.
  49. ^ "WolframAlpha". from the original on October 20, 2018. Retrieved October 19, 2018.
  50. ^ Crockett, Christopher (February 20, 2013). "What is a light-year?". EarthSky. from the original on February 20, 2015. Retrieved February 20, 2015.
  51. ^ a b Rindler, p. 196.
  52. ^ Christian, Eric; Samar, Safi-Harb. . Archived from the original on February 2, 1999. Retrieved November 28, 2007.
  53. ^ Hall, Shannon (May 4, 2015). "Size of the Milky Way Upgraded, Solving Galaxy Puzzle". Space.com. from the original on June 7, 2015. Retrieved June 9, 2015.
  54. ^ I. Ribas; C. Jordi; F. Vilardell; E.L. Fitzpatrick; R.W. Hilditch; F. Edward Guinan (2005). "First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy". Astrophysical Journal. 635 (1): L37–L40. arXiv:astro-ph/0511045. Bibcode:2005ApJ...635L..37R. doi:10.1086/499161. S2CID 119522151.
    McConnachie, A.W.; Irwin, M.J.; Ferguson, A.M.N.; Ibata, R.A.; Lewis, G.F.; Tanvir, N. (2005). "Distances and metallicities for 17 Local Group galaxies". Monthly Notices of the Royal Astronomical Society. 356 (4): 979–97. arXiv:astro-ph/0410489. Bibcode:2005MNRAS.356..979M. doi:10.1111/j.1365-2966.2004.08514.x.
  55. ^ Janek, Vanessa (February 20, 2015). "How can space travel faster than the speed of light?". Universe Today. from the original on December 16, 2021. Retrieved June 6, 2015.
  56. ^ . Philip Gibbs. 1997. Archived from the original on March 10, 2010. Retrieved June 6, 2015.
  57. ^ M. Vardanyan, R. Trotta, J. Silk (January 28, 2011). "Applications of Bayesian model averaging to the curvature and size of the Universe". Monthly Notices of the Royal Astronomical Society: Letters. 413 (1): L91–L95. arXiv:1101.5476. Bibcode:2011MNRAS.413L..91V. doi:10.1111/j.1745-3933.2011.01040.x. S2CID 2616287.{{cite journal}}: CS1 maint: uses authors parameter (link)
  58. ^ Schreiber, Urs (June 6, 2008). "Urban Myths in Contemporary Cosmology". The n-Category Café. University of Texas at Austin. from the original on July 1, 2020. Retrieved June 1, 2020.
  59. ^ Don N. Page (2007). "Susskind's Challenge to the Hartle-Hawking No-Boundary Proposal and Possible Resolutions". Journal of Cosmology and Astroparticle Physics. 2007 (1): 004. arXiv:hep-th/0610199. Bibcode:2007JCAP...01..004P. doi:10.1088/1475-7516/2007/01/004. S2CID 17403084.
  60. ^ Berardelli, Phil (March 25, 2010). "Galaxy Collisions Give Birth to Quasars". Science News. from the original on March 25, 2022. Retrieved July 30, 2022.
  61. ^ Riess, Adam G.; Filippenko; Challis; Clocchiatti; Diercks; Garnavich; Gilliland; Hogan; Jha; Kirshner; Leibundgut; Phillips; Reiss; Schmidt; Schommer; Smith; Spyromilio; Stubbs; Suntzeff; Tonry (1998). "Observational evidence from supernovae for an accelerating universe and a cosmological constant". Astronomical Journal. 116 (3): 1009–38. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499. S2CID 15640044.
  62. ^ Perlmutter, S.; Aldering; Goldhaber; Knop; Nugent; Castro; Deustua; Fabbro; Goobar; Groom; Hook; Kim; Kim; Lee; Nunes; Pain; Pennypacker; Quimby; Lidman; Ellis; Irwin; McMahon; Ruiz‐Lapuente; Walton; Schaefer; Boyle; Filippenko; Matheson; Fruchter; et al. (1999). "Measurements of Omega and Lambda from 42 high redshift supernovae". Astrophysical Journal. 517 (2): 565–86. arXiv:astro-ph/9812133. Bibcode:1999ApJ...517..565P. doi:10.1086/307221. S2CID 118910636.
  63. ^ Carroll, Sean; Kaku, Michio (2014). "End of the Universe". How the Universe Works. Discovery Channel.
  64. ^ Overbye, Dennis (October 11, 2003). "A 'Cosmic Jerk' That Reversed the Universe". New York Times. from the original on July 1, 2017. Retrieved February 20, 2017.
  65. ^ Schutz, Bernard (May 31, 2009). A First Course in General Relativity (2 ed.). Cambridge University Press. pp. 142, 171. ISBN 978-0-521-88705-2.
  66. ^ WMAP Mission: Results – Age of the Universe February 25, 2007, at the Wayback Machine. Map.gsfc.nasa.gov. Retrieved November 28, 2011.
  67. ^ a b Luminet, Jean-Pierre; Weeks, Jeffrey R.; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe (October 9, 2003). "Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background". Nature (Submitted manuscript). 425 (6958): 593–95. arXiv:astro-ph/0310253. Bibcode:2003Natur.425..593L. doi:10.1038/nature01944. PMID 14534579. S2CID 4380713. from the original on May 17, 2021. Retrieved August 21, 2018.
  68. ^ Luminet, Jean-Pierre; Roukema, Boudewijn F. (1999). "Topology of the Universe: Theory and Observations". Proceedings of Cosmology School held at Cargese, Corsica, August 1998. arXiv:astro-ph/9901364. Bibcode:1999ASIC..541..117L.
  69. ^ Brill, Dieter; Jacobsen, Ted (2006). "Spacetime and Euclidean geometry". General Relativity and Gravitation. 38 (4): 643–51. arXiv:gr-qc/0407022. Bibcode:2006GReGr..38..643B. CiteSeerX 10.1.1.338.7953. doi:10.1007/s10714-006-0254-9. S2CID 119067072.
  70. ^ Edward Robert Harrison (2000). Cosmology: the science of the universe. Cambridge University Press. pp. 447–. ISBN 978-0-521-66148-5. from the original on August 26, 2016. Retrieved May 1, 2011.
  71. ^ Liddle, Andrew R.; David Hilary Lyth (April 13, 2000). Cosmological inflation and large-scale structure. Cambridge University Press. pp. 24–. ISBN 978-0-521-57598-0. from the original on December 31, 2013. Retrieved May 1, 2011.
  72. ^ "What is the Ultimate Fate of the Universe?". National Aeronautics and Space Administration. NASA. from the original on December 22, 2021. Retrieved August 23, 2015.
  73. ^ Roukema, Boudewijn; Buliński, Zbigniew; Szaniewska, Agnieszka; Gaudin, Nicolas E. (2008). "A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data". Astronomy and Astrophysics. 482 (3): 747–53. arXiv:0801.0006. Bibcode:2008A&A...482..747L. doi:10.1051/0004-6361:20078777. S2CID 1616362.
  74. ^ Aurich, Ralf; Lustig, S.; Steiner, F.; Then, H. (2004). "Hyperbolic Universes with a Horned Topology and the CMB Anisotropy". Classical and Quantum Gravity. 21 (21): 4901–26. arXiv:astro-ph/0403597. Bibcode:2004CQGra..21.4901A. doi:10.1088/0264-9381/21/21/010. S2CID 17619026.
  75. ^ Planck Collaboration (2014). "Planck 2013 results. XVI. Cosmological parameters". Astronomy & Astrophysics. 571: A16. arXiv:1303.5076. Bibcode:2014A&A...571A..16P. doi:10.1051/0004-6361/201321591. S2CID 118349591.
  76. ^ "Planck reveals 'almost perfect' universe". Michael Banks. Physics World. March 21, 2013. from the original on March 24, 2013. Retrieved March 21, 2013.
  77. ^ Isaak, Mark, ed. (2005). "CI301: The Anthropic Principle". Index to Creationist Claims. TalkOrigins Archive. from the original on July 1, 2014. Retrieved October 31, 2007.
  78. ^ Fritzsche, Hellmut. "electromagnetic radiation | physics". Encyclopædia Britannica. p. 1. from the original on August 31, 2015. Retrieved July 26, 2015.
  79. ^ (PDF). Physics 7:Relativity, SpaceTime and Cosmology. University of California Riverside. Archived from the original (PDF) on September 5, 2015. Retrieved July 26, 2015.
  80. ^ . www.learner.org. Harvard-Smithsonian Center for Astrophysics Annenberg Learner. Archived from the original on September 7, 2015. Retrieved July 27, 2015.
  81. ^ "Dark matter – A history shapes by dark force". Timothy Ferris. National Geographic. 2015. from the original on March 4, 2016. Retrieved December 29, 2015.
  82. ^ Redd, SPACE.com, Nola Taylor. "It's Official: The Universe Is Dying Slowly". Scientific American. from the original on August 12, 2015. Retrieved August 11, 2015.
  83. ^ Parr, Will; et al. "RIP Universe – Your Time Is Coming… Slowly | Video". Space.com. from the original on August 13, 2015. Retrieved August 20, 2015.
  84. ^ a b Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 46, Accessed October 7, 2013, "...dark matter: An invisible, essentially collisionless component of matter that makes up about 25 percent of the energy density of the universe... it's a different kind of particle... something not yet observed in the laboratory..."
  85. ^ a b Peebles, P.J. E. & Ratra, Bharat (2003). "The cosmological constant and dark energy". Reviews of Modern Physics. 75 (2): 559–606. arXiv:astro-ph/0207347. Bibcode:2003RvMP...75..559P. doi:10.1103/RevModPhys.75.559. S2CID 118961123.
  86. ^ Mandolesi, N.; Calzolari, P.; Cortiglioni, S.; Delpino, F.; Sironi, G.; Inzani, P.; Deamici, G.; Solheim, J.-E.; Berger, L.; Partridge, R.B.; Martenis, P.L.; Sangree, C.H.; Harvey, R.C. (1986). "Large-scale homogeneity of the universe measured by the microwave background". Nature. 319 (6056): 751–53. Bibcode:1986Natur.319..751M. doi:10.1038/319751a0. S2CID 4349689.
  87. ^ "New Horizons spacecraft answers the question: How dark is space?". phys.org. from the original on January 15, 2021. Retrieved January 15, 2021.
  88. ^ Howell, Elizabeth (March 20, 2018). "How Many Galaxies Are There?". Space.com. from the original on February 28, 2021. Retrieved March 5, 2021.
  89. ^ Staff (2019). "How Many Stars Are There In The Universe?". European Space Agency. from the original on September 23, 2019. Retrieved September 21, 2019.
  90. ^ Marov, Mikhail Ya. (2015). "The Structure of the Universe". The Fundamentals of Modern Astrophysics. pp. 279–294. doi:10.1007/978-1-4614-8730-2_10. ISBN 978-1-4614-8729-6.
  91. ^ Mackie, Glen (February 1, 2002). "To see the Universe in a Grain of Taranaki Sand". Centre for Astrophysics and Supercomputing. Archived from the original on August 11, 2011. Retrieved January 28, 2017.
  92. ^ "Unveiling the Secret of a Virgo Dwarf Galaxy". European Southern Observatory Press Release. ESO: 12. May 3, 2000. Bibcode:2000eso..pres...12. from the original on July 13, 2015. Retrieved January 3, 2007.
  93. ^ "Hubble's Largest Galaxy Portrait Offers a New High-Definition View". NASA. February 28, 2006. from the original on May 27, 2020. Retrieved January 3, 2007.
  94. ^ Gibney, Elizabeth (September 3, 2014). "Earth's new address: 'Solar System, Milky Way, Laniakea'". Nature. doi:10.1038/nature.2014.15819. S2CID 124323774. from the original on January 7, 2019. Retrieved August 21, 2015.
  95. ^ . Fraser Cain. Universe Today. May 4, 2009. Archived from the original on June 21, 2018. Retrieved August 21, 2015.
  96. ^ Devlin, Hannah; Correspondent, Science (April 20, 2015). "Astronomers discover largest known structure in the universe is ... a big hole". The Guardian. from the original on February 7, 2017. Retrieved December 18, 2016.
  97. ^ "Content of the Universe – WMAP 9yr Pie Chart". wmap.gsfc.nasa.gov. from the original on September 5, 2015. Retrieved July 26, 2015.
  98. ^ Rindler, p. 202.
  99. ^ Liddle, Andrew (2003). An Introduction to Modern Cosmology (2nd ed.). John Wiley & Sons. ISBN 978-0-470-84835-7.. p. 2.
  100. ^ Livio, Mario (2001). The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos. John Wiley and Sons. p. 53. ISBN 978-0-471-43714-7. from the original on May 13, 2021. Retrieved March 31, 2012.
  101. ^ Peebles, P.J.E. & Ratra, Bharat (2003). "The cosmological constant and dark energy". Reviews of Modern Physics. 75 (2): 559–606. arXiv:astro-ph/0207347. Bibcode:2003RvMP...75..559P. doi:10.1103/RevModPhys.75.559. S2CID 118961123.
  102. ^ Steinhardt, Paul J.; Turok, Neil (2006). "Why the cosmological constant is small and positive". Science. 312 (5777): 1180–83. arXiv:astro-ph/0605173. Bibcode:2006Sci...312.1180S. doi:10.1126/science.1126231. PMID 16675662. S2CID 14178620.
  103. ^ . Hyperphysics. Archived from the original on May 27, 2013. Retrieved January 4, 2014.
  104. ^ Carroll, Sean (2001). . Living Reviews in Relativity. 4 (1): 1. arXiv:astro-ph/0004075. Bibcode:2001LRR.....4....1C. doi:10.12942/lrr-2001-1. PMC 5256042. PMID 28179856. Archived from the original on October 13, 2006. Retrieved September 28, 2006.
  105. ^ "Planck captures portrait of the young universe, revealing earliest light". University of Cambridge. March 21, 2013. from the original on April 17, 2019. Retrieved March 21, 2013.
  106. ^ P. Davies (1992). The New Physics: A Synthesis. Cambridge University Press. p. 1. ISBN 978-0-521-43831-5. from the original on February 3, 2021. Retrieved May 17, 2020.
  107. ^ Persic, Massimo; Salucci, Paolo (September 1, 1992). "The baryon content of the universe". Monthly Notices of the Royal Astronomical Society. 258 (1): 14P–18P. arXiv:astro-ph/0502178. Bibcode:1992MNRAS.258P..14P. doi:10.1093/mnras/258.1.14P. ISSN 0035-8711. S2CID 17945298.
  108. ^ G. 't Hooft (1997). In search of the ultimate building blocks. Cambridge University Press. p. 6. ISBN 978-0-521-57883-7.
  109. ^ Clayton, Donald D. (1983). Principles of Stellar Evolution and Nucleosynthesis. The University of Chicago Press. pp. 362–435. ISBN 978-0-226-10953-4.
  110. ^ Veltman, Martinus (2003). Facts and Mysteries in Elementary Particle Physics. World Scientific. ISBN 978-981-238-149-1.
  111. ^ a b Braibant, Sylvie; Giacomelli, Giorgio; Spurio, Maurizio (2012). Particles and Fundamental Interactions: An Introduction to Particle Physics (2nd ed.). Springer. pp. 1–3. ISBN 978-94-007-2463-1. from the original on August 26, 2016. Retrieved January 27, 2016.
  112. ^ Close, Frank (2012). Particle Physics: A Very Short Introduction. Oxford University Press. ISBN 978-0-19-280434-1.
  113. ^ a b R. Oerter (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics (Kindle ed.). Penguin Group. p. 2. ISBN 978-0-13-236678-6.
  114. ^ Onyisi, P. (October 23, 2012). "Higgs boson FAQ". University of Texas ATLAS group. from the original on October 12, 2013. Retrieved January 8, 2013.
  115. ^ Strassler, M. (October 12, 2012). "The Higgs FAQ 2.0". ProfMattStrassler.com. from the original on October 12, 2013. Retrieved January 8, 2013. [Q] Why do particle physicists care so much about the Higgs particle?
    [A] Well, actually, they don't. What they really care about is the Higgs field, because it is so important. [emphasis in original]
  116. ^ Weinberg, Steven (April 20, 2011). Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature. Knopf Doubleday Publishing Group. ISBN 978-0-307-78786-6.
  117. ^ a b Allday, Jonathan (2002). Quarks, Leptons and the Big Bang (Second ed.). IOP Publishing. ISBN 978-0-7503-0806-9.
  118. ^ "Lepton (physics)". Encyclopædia Britannica. from the original on May 11, 2015. Retrieved September 29, 2010.
  119. ^ Harari, H. (1977). "Beyond charm". In Balian, R.; Llewellyn-Smith, C.H. (eds.). Weak and Electromagnetic Interactions at High Energy, Les Houches, France, Jul 5 – Aug 14, 1976. Les Houches Summer School Proceedings. Vol. 29. North-Holland. p. 613.
  120. ^ Harari H. (1977). "Three generations of quarks and leptons" (PDF). In E. van Goeler; Weinstein R. (eds.). Proceedings of the XII Rencontre de Moriond. p. 170. SLAC-PUB-1974. (PDF) from the original on May 13, 2020. Retrieved May 29, 2020.
  121. ^ "Experiment confirms famous physics model" (Press release). MIT News Office. April 18, 2007. from the original on July 5, 2013. Retrieved June 2, 2015.
  122. ^ "Thermal history of the universe and early growth of density fluctuations" (PDF). Guinevere Kauffmann. Max Planck Institute for Astrophysics. (PDF) from the original on August 21, 2016. Retrieved January 6, 2016.
  123. ^ "First few minutes". Eric Chaisson. Harvard Smithsonian Center for Astrophysics. from the original on December 4, 2013. Retrieved January 6, 2016.
  124. ^ "Timeline of the Big Bang". The physics of the Universe. from the original on March 30, 2020. Retrieved January 6, 2016.
  125. ^ a b c d Zeilik, Michael; Gregory, Stephen A. (1998). "25-2". Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. ISBN 978-0-03-006228-5.
  126. ^ Raine & Thomas (2001, p. 12)
  127. ^ a b Raine & Thomas (2001, p. 66)
  128. ^ Friedmann A. (1922). "Über die Krümmung des Raumes" (PDF). Zeitschrift für Physik. 10 (1): 377–86. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID 125190902. Archived (PDF) from the original on May 15, 2016. Retrieved August 13, 2015.
  129. ^ "Cosmic Detectives". The European Space Agency (ESA). April 2, 2013. from the original on February 11, 2019. Retrieved April 15, 2013.
  130. ^ Raine & Thomas (2001, pp. 122–23)
  131. ^ a b Raine & Thomas (2001, p. 70)
  132. ^ Raine & Thomas (2001, p. 84)
  133. ^ Raine & Thomas (2001, pp. 88, 110–13)
  134. ^ Munitz MK (1959). "One Universe or Many?". Journal of the History of Ideas. 12 (2): 231–55. doi:10.2307/2707516. JSTOR 2707516.
  135. ^ Linde A. (1986). "Eternal chaotic inflation". Mod. Phys. Lett. A. 1 (2): 81–85. Bibcode:1986MPLA....1...81L. doi:10.1142/S0217732386000129. S2CID 123472763. from the original on April 17, 2019. Retrieved August 6, 2017.
    Linde A. (1986). "Eternally existing self-reproducing chaotic inflationary Universe" (PDF). Phys. Lett. B. 175 (4): 395–400. Bibcode:1986PhLB..175..395L. doi:10.1016/0370-2693(86)90611-8. (PDF) from the original on November 27, 2013. Retrieved March 17, 2011.
  136. ^ Everett, Hugh (1957). "Relative State Formulation of Quantum Mechanics". Reviews of Modern Physics. 29 (3): 454–62. Bibcode:1957RvMP...29..454E. doi:10.1103/RevModPhys.29.454. S2CID 17178479. from the original on July 28, 2020. Retrieved December 17, 2019.
  137. ^ Jaume Garriga, Alexander Vilenkin (2007). "Many Worlds in One". Physical Review D. 64 (4). arXiv:gr-qc/0102010v2. doi:10.1103/PhysRevD.64.043511. S2CID 119000743.{{cite journal}}: CS1 maint: uses authors parameter (link)
  138. ^ a b Tegmark M. (2003). "Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations". Scientific American. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  139. ^ Tegmark, Max (2003). "Parallel Universes". Scientific American. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  140. ^ Francisco José Soler Gil, Manuel Alfonseca (2013). "About the Infinite Repetition of Histories in Space". Theoria: An International Journal for Theory, History and Foundations of Science. 29 (3): 361. arXiv:1301.5295. doi:10.1387/theoria.9951. hdl:10486/664735. S2CID 52996408.{{cite journal}}: CS1 maint: uses authors parameter (link)
  141. ^ Ellis G. F (2011). "Does the Multiverse Really Exist?". Scientific American. 305 (2): 38–43. Bibcode:2011SciAm.305a..38E. doi:10.1038/scientificamerican0811-38. PMID 21827123.
  142. ^ Moskowitz, Clara (August 12, 2011). "Weird! Our Universe May Be a 'Multiverse,' Scientists Say". livescience. from the original on May 5, 2015. Retrieved May 4, 2015.
  143. ^ Gernet, J. (1993–1994). "Space and time: Science and religion in the encounter between China and Europe". Chinese Science. Vol. 11. pp. 93–102.
  144. ^ Blandford R. D. (2015). "A century of general relativity: Astrophysics and cosmology". Science. 347 (6226): 1103–08. Bibcode:2015Sci...347.1103B. doi:10.1126/science.aaa4033. PMID 25745165. S2CID 30364122.
  145. ^ Leeming, David A. (2010). Creation Myths of the World. ABC-CLIO. p. xvii. ISBN 978-1-59884-174-9. In common usage the word 'myth' refers to narratives or beliefs that are untrue or merely fanciful; the stories that make up national or ethnic mythologies describe characters and events that common sense and experience tell us are impossible. Nevertheless, all cultures celebrate such myths and attribute to them various degrees of literal or symbolic truth.
  146. ^ Eliade, Mircea (1964). Myth and Reality (Religious Traditions of the World). Allen & Unwin. ISBN 978-0-04-291001-7.
  147. ^ Leonard, Scott A.; McClure, Michael (2004). Myth and Knowing: An Introduction to World Mythology (1st ed.). McGraw-Hill. ISBN 978-0-7674-1957-4.
  148. ^ (Henry Gravrand, "La civilisation Sereer -Pangool") [in] Universität Frankfurt am Main, Frobenius-Institut, Deutsche Gesellschaft für Kulturmorphologie, Frobenius Gesellschaft, "Paideuma: Mitteilungen zur Kulturkunde, Volumes 43–44", F. Steiner (1997), pp. 144–45, ISBN 3-515-02842-0
  149. ^ B. Young, Louise. The Unfinished Universe. Oxford University Press. p. 21.
  150. ^ Will Durant, Our Oriental Heritage:

    "Two systems of Hindu thought propound physical theories suggestively similar to those of Greece. Kanada, founder of the Vaisheshika philosophy, held that the world is composed of atoms as many in kind as the various elements. The Jains more nearly approximated to Democritus by teaching that all atoms were of the same kind, producing different effects by diverse modes of combinations. Kanada believed light and heat to be varieties of the same substance; Udayana taught that all heat comes from the Sun; and Vachaspati, like Newton, interpreted light as composed of minute particles emitted by substances and striking the eye."

  151. ^ Stcherbatsky, F. Th. (1930, 1962), Buddhist Logic, Volume 1, p. 19, Dover, New York:

    "The Buddhists denied the existence of substantial matter altogether. Movement consists for them of moments, it is a staccato movement, momentary flashes of a stream of energy... "Everything is evanescent",... says the Buddhist, because there is no stuff... Both systems [Sānkhya, and later Indian Buddhism] share in common a tendency to push the analysis of existence up to its minutest, last elements which are imagined as absolute qualities, or things possessing only one unique quality. They are called "qualities" (guna-dharma) in both systems in the sense of absolute qualities, a kind of atomic, or intra-atomic, energies of which the empirical things are composed. Both systems, therefore, agree in denying the objective reality of the categories of Substance and Quality,... and of the relation of Inference uniting them. There is in Sānkhya philosophy no separate existence of qualities. What we call quality is but a particular manifestation of a subtle entity. To every new unit of quality corresponds a subtle quantum of matter which is called guna, "quality", but represents a subtle substantive entity. The same applies to early Buddhism where all qualities are substantive... or, more precisely, dynamic entities, although they are also called dharmas ('qualities')."

  152. ^ Donald Wayne Viney (1985). "The Cosmological Argument". Charles Hartshorne and the Existence of God. SUNY Press. pp. 65–68. ISBN 978-0-87395-907-0.
  153. ^ Aristotle; Forster, E. S.; Dobson, J. F. (1914). De Mundo. Oxford: The Clarendon Press. p. 2.
  154. ^ Boyer, C. (1968) A History of Mathematics. Wiley, p. 54.
  155. ^ Neugebauer, Otto E. (1945). "The History of Ancient Astronomy Problems and Methods". Journal of Near Eastern Studies. 4 (1): 166–173. doi:10.1086/370729. JSTOR 595168. S2CID 162347339. the Chaldaean Seleucus from Seleucia
  156. ^ Sarton, George (1955). "Chaldaean Astronomy of the Last Three Centuries B. C". Journal of the American Oriental Society. 75 (3): 166–73 (169). doi:10.2307/595168. JSTOR 595168. the heliocentrical astronomy invented by Aristarchos of Samos and still defended a century later by Seleucos the Babylonian
  157. ^ William P. D. Wightman (1951, 1953), The Growth of Scientific Ideas, Yale University Press p. 38, where Wightman calls him Seleukos the Chaldean.
  158. ^ Lucio Russo, Flussi e riflussi, Feltrinelli, Milano, 2003, ISBN 88-07-10349-4.
  159. ^ Bartel (1987, p. 527)
  160. ^ Bartel (1987, pp. 527–29)
  161. ^ Bartel (1987, pp. 529–34)
  162. ^ Bartel (1987, pp. 534–7)
  163. ^ Nasr, Seyyed H. (1993) [1964]. An Introduction to Islamic Cosmological Doctrines (2nd ed.). 1st edition by Harvard University Press, 2nd edition by State University of New York Press. pp. 135–36. ISBN 978-0-7914-1515-3.
  164. ^ Misner, Thorne and Wheeler, p. 754.
  165. ^ Ālī, Ema Ākabara. Science in the Quran. Vol. 1. Malik Library. p. 218.
  166. ^ Ragep, F. Jamil (2001), "Tusi and Copernicus: The Earth's Motion in Context", Science in Context, 14 (1–2): 145–63, doi:10.1017/s0269889701000060, S2CID 145372613
  167. ^ a b Misner, Thorne and Wheeler, pp. 755–56.
  168. ^ a b Misner, Thorne and Wheeler, p. 756.
  169. ^ de Cheseaux JPL (1744). Traité de la Comète. Lausanne. pp. 223ff.. Reprinted as Appendix II in Dickson FP (1969). The Bowl of Night: The Physical Universe and Scientific Thought. Cambridge, MA: M.I.T. Press. ISBN 978-0-262-54003-2.
  170. ^ Olbers HWM (1826). "Unknown title". Bode's Jahrbuch. 111.. Reprinted as Appendix I in Dickson FP (1969). The Bowl of Night: The Physical Universe and Scientific Thought. Cambridge, MA: M.I.T. Press. ISBN 978-0-262-54003-2.
  171. ^ Jeans, J. H. (1902). "The Stability of a Spherical Nebula". Philosophical Transactions of the Royal Society A. 199 (312–320): 1–53. Bibcode:1902RSPTA.199....1J. doi:10.1098/rsta.1902.0012. JSTOR 90845.
  172. ^ Misner, Thorne and Wheeler, p. 757.
  173. ^ Sharov, Aleksandr Sergeevich; Novikov, Igor Dmitrievich (1993). Edwin Hubble, the discoverer of the big bang universe. Cambridge University Press. p. 34. ISBN 978-0-521-41617-7. from the original on June 23, 2013. Retrieved December 31, 2011.
  174. ^ Einstein, A (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie". Preussische Akademie der Wissenschaften, Sitzungsberichte. 1917. (part 1): 142–52.

Bibliography

External links

Listen to this article
(4 parts, 1 hour and 13 minutes)
 
These audio files were created from a revision of this article dated 13 June 2012 (2012-06-13), and do not reflect subsequent edits.
  • NASA/IPAC Extragalactic Database (NED) / (NED-Distances).
  • There are about 1082 atoms in the observable universe – LiveScience, July 2021.
  • This is why we will never know everything about our universeForbes, May 2019.

universe, other, uses, disambiguation, universe, space, time, their, contents, including, planets, stars, galaxies, other, forms, matter, energy, bang, theory, prevailing, cosmological, description, development, universe, according, this, theory, space, time, . For other uses see Universe disambiguation The universe is all of space and time a and their contents 10 including planets stars galaxies and all other forms of matter and energy The Big Bang theory is the prevailing cosmological description of the development of the universe According to this theory space and time emerged together 13 787 0 020 billion years ago 11 and the universe has been expanding ever since the Big Bang While the spatial size of the entire universe is unknown 3 it is possible to measure the size of the observable universe which is approximately 93 billion light years in diameter at the present day UniverseThe Hubble Ultra Deep Field image shows some of the most remote galaxies visible with present technology each consisting of billions of stars Apparent image area about 1 79 that of a full moon 1 Age within Lambda CDM model 13 787 0 020 billion years 2 DiameterUnknown 3 Diameter of the observable universe 8 8 1026 m 28 5 Gpc or 93 Gly 4 Mass ordinary matter At least 1053 kg 5 Average density including the contribution from energy 9 9 x 10 27 kg m3 6 Average temperature2 72548 K 270 4 C or 454 8 F 7 Main contentsOrdinary baryonic matter 4 9 Dark matter 26 8 Dark energy 68 3 8 ShapeFlat with a 0 4 4 margin of error 9 Some of the earliest cosmological models of the universe were developed by ancient Greek and Indian philosophers and were geocentric placing Earth at the center 12 13 Over the centuries more precise astronomical observations led Nicolaus Copernicus to develop the heliocentric model with the Sun at the center of the Solar System In developing the law of universal gravitation Isaac Newton built upon Copernicus s work as well as Johannes Kepler s laws of planetary motion and observations by Tycho Brahe Further observational improvements led to the realization that the Sun is one of a few hundred billion stars in the Milky Way which is one of a few hundred billion galaxies in the universe Many of the stars in a galaxy have planets At the largest scale galaxies are distributed uniformly and the same in all directions meaning that the universe has neither an edge nor a center At smaller scales galaxies are distributed in clusters and superclusters which form immense filaments and voids in space creating a vast foam like structure 14 Discoveries in the early 20th century have suggested that the universe had a beginning and that space has been expanding since then 15 at an increasing rate 16 According to the Big Bang theory the energy and matter initially present have become less dense as the universe expanded After an initial accelerated expansion called the inflationary epoch at around 10 32 seconds and the separation of the four known fundamental forces the universe gradually cooled and continued to expand allowing the first subatomic particles and simple atoms to form Dark matter gradually gathered forming a foam like structure of filaments and voids under the influence of gravity Giant clouds of hydrogen and helium were gradually drawn to the places where dark matter was most dense forming the first galaxies stars and everything else seen today From studying the movement of galaxies it has been discovered that the universe contains much more matter than is accounted for by visible objects stars galaxies nebulas and interstellar gas This unseen matter is known as dark matter 17 dark means that there is a wide range of strong indirect evidence that it exists but we have not yet detected it directly The LCDM model is the most widely accepted model of the universe It suggests that about 69 2 1 2 2015 of the mass and energy in the universe is a cosmological constant or in extensions to LCDM other forms of dark energy such as a scalar field which is responsible for the current expansion of space and about 25 8 1 1 2015 is dark matter 18 Ordinary baryonic matter is therefore only 4 84 0 1 2015 of the physical universe 18 Stars planets and visible gas clouds only form about 6 of the ordinary matter 19 There are many competing hypotheses about the ultimate fate of the universe and about what if anything preceded the Big Bang while other physicists and philosophers refuse to speculate doubting that information about prior states will ever be accessible Some physicists have suggested various multiverse hypotheses in which our universe might be one among many universes that likewise exist 3 20 21 Contents 1 Definition 2 Etymology 2 1 Synonyms 3 Chronology and the Big Bang 4 Physical properties 4 1 Size and regions 4 2 Age and expansion 4 3 Spacetime 4 4 Shape 4 5 Support of life 5 Composition 5 1 Dark energy 5 2 Dark matter 5 3 Ordinary matter 5 4 Particles 5 4 1 Hadrons 5 4 2 Leptons 5 4 3 Photons 6 Cosmological models 6 1 Model of the universe based on general relativity 6 2 Multiverse hypothesis 7 Historical conceptions 7 1 Mythologies 7 2 Philosophical models 7 3 Astronomical concepts 8 See also 9 References 9 1 Bibliography 10 External linksDefinition source source source source source source source source source source source source source source source source Hubble Space Telescope Ultra deep field galaxies to Legacy field zoom out video 00 50 May 2 2019 The physical universe is defined as all of space and time a collectively referred to as spacetime and their contents 10 Such contents comprise all of energy in its various forms including electromagnetic radiation and matter and therefore planets moons stars galaxies and the contents of intergalactic space 22 23 24 The universe also includes the physical laws that influence energy and matter such as conservation laws classical mechanics and relativity 25 The universe is often defined as the totality of existence or everything that exists everything that has existed and everything that will exist 25 In fact some philosophers and scientists support the inclusion of ideas and abstract concepts such as mathematics and logic in the definition of the universe 27 28 29 The word universe may also refer to concepts such as the cosmos the world and nature 30 31 EtymologyThe word universe derives from the Old French word univers which in turn derives from the Latin word universum 32 The Latin word was used by Cicero and later Latin authors in many of the same senses as the modern English word is used 33 Synonyms A term for universe among the ancient Greek philosophers from Pythagoras onwards was tὸ pᾶn to pan the all defined as all matter and all space and tὸ ὅlon to holon all things which did not necessarily include the void 34 35 Another synonym was ὁ kosmos ho kosmos meaning the world the cosmos 36 Synonyms are also found in Latin authors totum mundus natura 37 and survive in modern languages e g the German words Das All Weltall and Natur for universe The same synonyms are found in English such as everything as in the theory of everything the cosmos as in cosmology the world as in the many worlds interpretation and nature as in natural laws or natural philosophy 38 Chronology and the Big BangMain articles Big Bang and Chronology of the universe The prevailing model for the evolution of the universe is the Big Bang theory 39 40 The Big Bang model states that the earliest state of the universe was an extremely hot and dense one and that the universe subsequently expanded and cooled The model is based on general relativity and on simplifying assumptions such as the homogeneity and isotropy of space A version of the model with a cosmological constant Lambda and cold dark matter known as the Lambda CDM model is the simplest model that provides a reasonably good account of various observations about the universe The Big Bang model accounts for observations such as the correlation of distance and redshift of galaxies the ratio of the number of hydrogen to helium atoms and the microwave radiation background In this diagram time passes from left to right so at any given time the universe is represented by a disk shaped slice of the diagram The initial hot dense state is called the Planck epoch a brief period extending from time zero to one Planck time unit of approximately 10 43 seconds During the Planck epoch all types of matter and all types of energy were concentrated into a dense state and gravity currently the weakest by far of the four known forces is believed to have been as strong as the other fundamental forces and all the forces may have been unified Since the Planck epoch space has been expanding to its present scale with a very short but intense period of cosmic inflation believed to have occurred within the first 10 32 seconds 41 This was a kind of expansion different from those we can see around us today Objects in space did not physically move instead the metric that defines space itself changed Although objects in spacetime cannot move faster than the speed of light this limitation does not apply to the metric governing spacetime itself This initial period of inflation is believed to explain why space appears to be very flat and much larger than light could travel since the start of the universe clarification needed Within the first fraction of a second of the universe s existence the four fundamental forces had separated As the universe continued to cool down from its inconceivably hot state various types of subatomic particles were able to form in short periods of time known as the quark epoch the hadron epoch and the lepton epoch Together these epochs encompassed less than 10 seconds of time following the Big Bang These elementary particles associated stably into ever larger combinations including stable protons and neutrons which then formed more complex atomic nuclei through nuclear fusion This process known as Big Bang nucleosynthesis only lasted for about 17 minutes and ended about 20 minutes after the Big Bang so only the fastest and simplest reactions occurred About 25 of the protons and all the neutrons in the universe by mass were converted to helium with small amounts of deuterium a form of hydrogen and traces of lithium Any other element was only formed in very tiny quantities The other 75 of the protons remained unaffected as hydrogen nuclei After nucleosynthesis ended the universe entered a period known as the photon epoch During this period the universe was still far too hot for matter to form neutral atoms so it contained a hot dense foggy plasma of negatively charged electrons neutral neutrinos and positive nuclei After about 377 000 years the universe had cooled enough that electrons and nuclei could form the first stable atoms This is known as recombination for historical reasons in fact electrons and nuclei were combining for the first time Unlike plasma neutral atoms are transparent to many wavelengths of light so for the first time the universe also became transparent The photons released decoupled when these atoms formed can still be seen today they form the cosmic microwave background CMB As the universe expands the energy density of electromagnetic radiation decreases more quickly than does that of matter because the energy of a photon decreases with its wavelength At around 47 000 years the energy density of matter became larger than that of photons and neutrinos and began to dominate the large scale behavior of the universe This marked the end of the radiation dominated era and the start of the matter dominated era In the earliest stages of the universe tiny fluctuations within the universe s density led to concentrations of dark matter gradually forming Ordinary matter attracted to these by gravity formed large gas clouds and eventually stars and galaxies where the dark matter was most dense and voids where it was least dense After around 100 300 million years citation needed the first stars formed known as Population III stars These were probably very massive luminous non metallic and short lived They were responsible for the gradual reionization of the universe between about 200 500 million years and 1 billion years and also for seeding the universe with elements heavier than helium through stellar nucleosynthesis 42 The universe also contains a mysterious energy possibly a scalar field called dark energy the density of which does not change over time After about 9 8 billion years the universe had expanded sufficiently so that the density of matter was less than the density of dark energy marking the beginning of the present dark energy dominated era 43 In this era the expansion of the universe is accelerating due to dark energy Physical propertiesMain articles Observable universe Age of the Universe and Metric expansion of space Of the four fundamental interactions gravitation is the dominant at astronomical length scales Gravity s effects are cumulative by contrast the effects of positive and negative charges tend to cancel one another making electromagnetism relatively insignificant on astronomical length scales The remaining two interactions the weak and strong nuclear forces decline very rapidly with distance their effects are confined mainly to sub atomic length scales The universe appears to have much more matter than antimatter an asymmetry possibly related to the CP violation 44 This imbalance between matter and antimatter is partially responsible for the existence of all matter existing today since matter and antimatter if equally produced at the Big Bang would have completely annihilated each other and left only photons as a result of their interaction 45 The universe also appears to have neither net momentum nor angular momentum which follows accepted physical laws if the universe is finite These laws are Gauss s law and the non divergence of the stress energy momentum pseudotensor 46 Size and regions See also Observational cosmology Television signals broadcast from Earth will never reach the edges of this image According to the general theory of relativity far regions of space may never interact with ours even in the lifetime of the universe due to the finite speed of light and the ongoing expansion of space For example radio messages sent from Earth may never reach some regions of space even if the universe were to exist forever space may expand faster than light can traverse it 47 The spatial region that can be observed with telescopes is called the observable universe which depends on the location of the observer The proper distance the distance as would be measured at a specific time including the present between Earth and the edge of the observable universe is 46 billion light years 48 14 billion parsecs 49 making the diameter of the observable universe about 93 billion light years 28 billion parsecs 48 The distance the light from the edge of the observable universe has travelled is very close to the age of the universe times the speed of light 13 8 billion light years 4 2 10 9 pc but this does not represent the distance at any given time because the edge of the observable universe and the Earth have since moved further apart 50 For comparison the diameter of a typical galaxy is 30 000 light years 9 198 parsecs and the typical distance between two neighboring galaxies is 3 million light years 919 8 kiloparsecs 51 As an example the Milky Way is roughly 100 000 180 000 light years in diameter 52 53 and the nearest sister galaxy to the Milky Way the Andromeda Galaxy is located roughly 2 5 million light years away 54 Because we cannot observe space beyond the edge of the observable universe it is unknown whether the size of the universe in its totality is finite or infinite 3 55 56 Estimates suggest that the whole universe if finite must be more than 250 times larger than a Hubble sphere 57 Some disputed 58 estimates for the total size of the universe if finite reach as high as 10 10 10 122 displaystyle 10 10 10 122 megaparsecs as implied by a suggested resolution of the No Boundary Proposal 59 b Age and expansion Main articles Age of the universe and Metric expansion of space Assuming that the Lambda CDM model is correct the measurements of the parameters using a variety of techniques by numerous experiments yield a best value of the age of the universe at 13 799 0 021 billion years as of 2015 2 Astronomers have discovered stars in the Milky Way galaxy that are almost 13 6 billion years old Over time the universe and its contents have evolved for example the relative population of quasars and galaxies has changed 60 and space itself has expanded Due to this expansion scientists on Earth can observe the light from a galaxy 30 billion light years away even though that light has traveled for only 13 billion years the very space between them has expanded This expansion is consistent with the observation that the light from distant galaxies has been redshifted the photons emitted have been stretched to longer wavelengths and lower frequency during their journey Analyses of Type Ia supernovae indicate that the spatial expansion is accelerating 61 62 The more matter there is in the universe the stronger the mutual gravitational pull of the matter If the universe were too dense then it would re collapse into a gravitational singularity However if the universe contained too little matter then the self gravity would be too weak for astronomical structures like galaxies or planets to form Since the Big Bang the universe has expanded monotonically Perhaps unsurprisingly our universe has just the right mass energy density equivalent to about 5 protons per cubic metre which has allowed it to expand for the last 13 8 billion years giving time to form the universe as observed today 63 There are dynamical forces acting on the particles in the universe which affect the expansion rate Before 1998 it was expected that the expansion rate would be decreasing as time went on due to the influence of gravitational interactions in the universe and thus there is an additional observable quantity in the universe called the deceleration parameter which most cosmologists expected to be positive and related to the matter density of the universe In 1998 the deceleration parameter was measured by two different groups to be negative approximately 0 55 which technically implies that the second derivative of the cosmic scale factor a displaystyle ddot a has been positive in the last 5 6 billion years 16 64 This acceleration does not however imply that the Hubble parameter is currently increasing see deceleration parameter for details Spacetime Main articles Spacetime and World line See also Lorentz transformation Spacetimes are the arenas in which all physical events take place The basic elements of spacetimes are events In any given spacetime an event is defined as a unique position at a unique time A spacetime is the union of all events in the same way that a line is the union of all of its points formally organized into a manifold 65 Events such as matter and energy bend spacetime Curved spacetime on the other hand forces matter and energy to behave in a certain way There is no point in considering one without the other 15 The universe appears to be a smooth spacetime continuum consisting of three spatial dimensions and one temporal time dimension an event in the spacetime of the physical universe can therefore be identified by a set of four coordinates x y z t On average space is observed to be very nearly flat with a curvature close to zero meaning that Euclidean geometry is empirically true with high accuracy throughout most of the Universe 66 Spacetime also appears to have a simply connected topology in analogy with a sphere at least on the length scale of the observable universe However present observations cannot exclude the possibilities that the universe has more dimensions which is postulated by theories such as the string theory and that its spacetime may have a multiply connected global topology in analogy with the cylindrical or toroidal topologies of two dimensional spaces 67 68 The spacetime of the universe is usually interpreted from a Euclidean perspective with space as consisting of three dimensions and time as consisting of one dimension the fourth dimension 69 By combining space and time into a single manifold called Minkowski space physicists have simplified a large number of physical theories as well as described in a more uniform way the workings of the universe at both the supergalactic and subatomic levels Spacetime events are not absolutely defined spatially and temporally but rather are known to be relative to the motion of an observer Minkowski space approximates the universe without gravity the pseudo Riemannian manifolds of general relativity describe spacetime with matter and gravity Shape Main article Shape of the universe The three possible options for the shape of the universe General relativity describes how spacetime is curved and bent by mass and energy gravity The topology or geometry of the universe includes both local geometry in the observable universe and global geometry Cosmologists often work with a given space like slice of spacetime called the comoving coordinates The section of spacetime which can be observed is the backward light cone which delimits the cosmological horizon The cosmological horizon also called the particle horizon or the light horizon is the maximum distance from which particles can have traveled to the observer in the age of the universe This horizon represents the boundary between the observable and the unobservable regions of the universe 70 71 The existence properties and significance of a cosmological horizon depend on the particular cosmological model An important parameter determining the future evolution of the universe theory is the density parameter Omega W defined as the average matter density of the universe divided by a critical value of that density This selects one of three possible geometries depending on whether W is equal to less than or greater than 1 These are called respectively the flat open and closed universes 72 Observations including the Cosmic Background Explorer COBE Wilkinson Microwave Anisotropy Probe WMAP and Planck maps of the CMB suggest that the universe is infinite in extent with a finite age as described by the Friedmann Lemaitre Robertson Walker FLRW models 73 67 74 75 These FLRW models thus support inflationary models and the standard model of cosmology describing a flat homogeneous universe presently dominated by dark matter and dark energy 76 77 Support of life Main article Fine tuned universe The universe may be fine tuned the Fine tuned universe hypothesis is the proposition that the conditions that allow the existence of observable life in the universe can only occur when certain universal fundamental physical constants lie within a very narrow range of values so that if any of several fundamental constants were only slightly different the universe would have been unlikely to be conducive to the establishment and development of matter astronomical structures elemental diversity or life as it is understood 78 The proposition is discussed among philosophers scientists theologians and proponents of creationism CompositionSee also Galaxy formation and evolution Galaxy cluster Illustris project and Nebula The universe is composed almost completely of dark energy dark matter and ordinary matter Other contents are electromagnetic radiation estimated to constitute from 0 005 to close to 0 01 of the total mass energy of the universe and antimatter 79 80 81 The proportions of all types of matter and energy have changed over the history of the universe 82 The total amount of electromagnetic radiation generated within the universe has decreased by 1 2 in the past 2 billion years 83 84 Today ordinary matter which includes atoms stars galaxies and life accounts for only 4 9 of the contents of the Universe 8 The present overall density of this type of matter is very low roughly 4 5 10 31 grams per cubic centimetre corresponding to a density of the order of only one proton for every four cubic metres of volume 6 The nature of both dark energy and dark matter is unknown Dark matter a mysterious form of matter that has not yet been identified accounts for 26 8 of the cosmic contents Dark energy which is the energy of empty space and is causing the expansion of the universe to accelerate accounts for the remaining 68 3 of the contents 8 85 86 The formation of clusters and large scale filaments in the cold dark matter model with dark energy The frames show the evolution of structures in a 43 million parsecs or 140 million light years box from redshift of 30 to the present epoch upper left z 30 to lower right z 0 A map of the superclusters and voids nearest to Earth Matter dark matter and dark energy are distributed homogeneously throughout the universe over length scales longer than 300 million light years or so 87 However over shorter length scales matter tends to clump hierarchically many atoms are condensed into stars most stars into galaxies most galaxies into clusters superclusters and finally large scale galactic filaments The observable universe contains as many as 200 billion galaxies 88 89 and overall as many as an estimated 1 1024 stars 90 91 more stars than all the grains of sand on planet Earth 92 Typical galaxies range from dwarfs with as few as ten million 93 107 stars up to giants with one trillion 94 1012 stars Between the larger structures are voids which are typically 10 150 Mpc 33 million 490 million ly in diameter The Milky Way is in the Local Group of galaxies which in turn is in the Laniakea Supercluster 95 This supercluster spans over 500 million light years while the Local Group spans over 10 million light years 96 The Universe also has vast regions of relative emptiness the largest known void measures 1 8 billion ly 550 Mpc across 97 Comparison of the contents of the universe today to 380 000 years after the Big Bang as measured with 5 year WMAP data from 2008 98 Due to rounding errors the sum of these numbers is not 100 This reflects the 2008 limits of WMAP s ability to define dark matter and dark energy The observable universe is isotropic on scales significantly larger than superclusters meaning that the statistical properties of the universe are the same in all directions as observed from Earth The universe is bathed in highly isotropic microwave radiation that corresponds to a thermal equilibrium blackbody spectrum of roughly 2 72548 kelvins 7 The hypothesis that the large scale universe is homogeneous and isotropic is known as the cosmological principle 99 A universe that is both homogeneous and isotropic looks the same from all vantage points 100 and has no center 101 Dark energy Main article Dark energy An explanation for why the expansion of the universe is accelerating remains elusive It is often attributed to dark energy an unknown form of energy that is hypothesized to permeate space 102 On a mass energy equivalence basis the density of dark energy 7 10 30 g cm3 is much less than the density of ordinary matter or dark matter within galaxies However in the present dark energy era it dominates the mass energy of the universe because it is uniform across space 103 104 Two proposed forms for dark energy are the cosmological constant a constant energy density filling space homogeneously 105 and scalar fields such as quintessence or moduli dynamic quantities whose energy density can vary in time and space Contributions from scalar fields that are constant in space are usually also included in the cosmological constant The cosmological constant can be formulated to be equivalent to vacuum energy Scalar fields having only a slight amount of spatial inhomogeneity would be difficult to distinguish from a cosmological constant Dark matter Main article Dark matter Dark matter is a hypothetical kind of matter that is invisible to the entire electromagnetic spectrum but which accounts for most of the matter in the universe The existence and properties of dark matter are inferred from its gravitational effects on visible matter radiation and the large scale structure of the universe Other than neutrinos a form of hot dark matter dark matter has not been detected directly making it one of the greatest mysteries in modern astrophysics Dark matter neither emits nor absorbs light or any other electromagnetic radiation at any significant level Dark matter is estimated to constitute 26 8 of the total mass energy and 84 5 of the total matter in the universe 85 106 Ordinary matter Main article Matter The remaining 4 9 of the mass energy of the universe is ordinary matter that is atoms ions electrons and the objects they form This matter includes stars which produce nearly all of the light we see from galaxies as well as interstellar gas in the interstellar and intergalactic media planets and all the objects from everyday life that we can bump into touch or squeeze 107 As a matter of fact the great majority of ordinary matter in the universe is unseen since visible stars and gas inside galaxies and clusters account for less than 10 per cent of the ordinary matter contribution to the mass energy density of the universe 108 Ordinary matter commonly exists in four states or phases solid liquid gas and plasma However advances in experimental techniques have revealed other previously theoretical phases such as Bose Einstein condensates and fermionic condensates Ordinary matter is composed of two types of elementary particles quarks and leptons 109 For example the proton is formed of two up quarks and one down quark the neutron is formed of two down quarks and one up quark and the electron is a kind of lepton An atom consists of an atomic nucleus made up of protons and neutrons and electrons that orbit the nucleus Because most of the mass of an atom is concentrated in its nucleus which is made up of baryons astronomers often use the term baryonic matter to describe ordinary matter although a small fraction of this baryonic matter is electrons Soon after the Big Bang primordial protons and neutrons formed from the quark gluon plasma of the early universe as it cooled below two trillion degrees A few minutes later in a process known as Big Bang nucleosynthesis nuclei formed from the primordial protons and neutrons This nucleosynthesis formed lighter elements those with small atomic numbers up to lithium and beryllium but the abundance of heavier elements dropped off sharply with increasing atomic number Some boron may have been formed at this time but the next heavier element carbon was not formed in significant amounts Big Bang nucleosynthesis shut down after about 20 minutes due to the rapid drop in temperature and density of the expanding universe Subsequent formation of heavier elements resulted from stellar nucleosynthesis and supernova nucleosynthesis 110 Particles Standard model of elementary particles the 12 fundamental fermions and 4 fundamental bosons Brown loops indicate which bosons red couple to which fermions purple and green Columns are three generations of matter fermions and one of forces bosons In the first three columns two rows contain quarks and two leptons The top two rows columns contain up u and down d quarks charm c and strange s quarks top t and bottom b quarks and photon g and gluon g respectively The bottom two rows columns contain electron neutrino ne and electron e muon neutrino nm and muon m tau neutrino nt and tau t and the Z0 and W carriers of the weak force Mass charge and spin are listed for each particle Main article Particle physics Ordinary matter and the forces that act on matter can be described in terms of elementary particles 111 These particles are sometimes described as being fundamental since they have an unknown substructure and it is unknown whether or not they are composed of smaller and even more fundamental particles 112 113 Of central importance is the Standard Model a theory that is concerned with electromagnetic interactions and the weak and strong nuclear interactions 114 The Standard Model is supported by the experimental confirmation of the existence of particles that compose matter quarks and leptons and their corresponding antimatter duals as well as the force particles that mediate interactions the photon the W and Z bosons and the gluon 112 The Standard Model predicted the existence of the recently discovered Higgs boson a particle that is a manifestation of a field within the universe that can endow particles with mass 115 116 Because of its success in explaining a wide variety of experimental results the Standard Model is sometimes regarded as a theory of almost everything 114 The Standard Model does not however accommodate gravity A true force particle theory of everything has not been attained 117 Hadrons Main article Hadron A hadron is a composite particle made of quarks held together by the strong force Hadrons are categorized into two families baryons such as protons and neutrons made of three quarks and mesons such as pions made of one quark and one antiquark Of the hadrons protons are stable and neutrons bound within atomic nuclei are stable Other hadrons are unstable under ordinary conditions and are thus insignificant constituents of the modern universe From approximately 10 6 seconds after the Big Bang during a period is known as the hadron epoch the temperature of the universe had fallen sufficiently to allow quarks to bind together into hadrons and the mass of the universe was dominated by hadrons Initially the temperature was high enough to allow the formation of hadron anti hadron pairs which kept matter and antimatter in thermal equilibrium However as the temperature of the universe continued to fall hadron anti hadron pairs were no longer produced Most of the hadrons and anti hadrons were then eliminated in particle antiparticle annihilation reactions leaving a small residual of hadrons by the time the universe was about one second old 118 244 66 Leptons Main article Lepton A lepton is an elementary half integer spin particle that does not undergo strong interactions but is subject to the Pauli exclusion principle no two leptons of the same species can be in exactly the same state at the same time 119 Two main classes of leptons exist charged leptons also known as the electron like leptons and neutral leptons better known as neutrinos Electrons are stable and the most common charged lepton in the universe whereas muons and taus are unstable particles that quickly decay after being produced in high energy collisions such as those involving cosmic rays or carried out in particle accelerators 120 121 Charged leptons can combine with other particles to form various composite particles such as atoms and positronium The electron governs nearly all of chemistry as it is found in atoms and is directly tied to all chemical properties Neutrinos rarely interact with anything and are consequently rarely observed Neutrinos stream throughout the universe but rarely interact with normal matter 122 The lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the universe It started roughly 1 second after the Big Bang after the majority of hadrons and anti hadrons annihilated each other at the end of the hadron epoch During the lepton epoch the temperature of the universe was still high enough to create lepton anti lepton pairs so leptons and anti leptons were in thermal equilibrium Approximately 10 seconds after the Big Bang the temperature of the universe had fallen to the point where lepton anti lepton pairs were no longer created 123 Most leptons and anti leptons were then eliminated in annihilation reactions leaving a small residue of leptons The mass of the universe was then dominated by photons as it entered the following photon epoch 124 125 Photons Main article Photon epoch See also Photino A photon is the quantum of light and all other forms of electromagnetic radiation It is the force carrier for the electromagnetic force even when static via virtual photons The effects of this force are easily observable at the microscopic and at the macroscopic level because the photon has zero rest mass this allows long distance interactions Like all elementary particles photons are currently best explained by quantum mechanics and exhibit wave particle duality exhibiting properties of waves and of particles The photon epoch started after most leptons and anti leptons were annihilated at the end of the lepton epoch about 10 seconds after the Big Bang Atomic nuclei were created in the process of nucleosynthesis which occurred during the first few minutes of the photon epoch For the remainder of the photon epoch the universe contained a hot dense plasma of nuclei electrons and photons About 380 000 years after the Big Bang the temperature of the Universe fell to the point where nuclei could combine with electrons to create neutral atoms As a result photons no longer interacted frequently with matter and the universe became transparent The highly redshifted photons from this period form the cosmic microwave background Tiny variations in temperature and density detectable in the CMB were the early seeds from which all subsequent structure formation took place 118 244 66 Cosmological modelsModel of the universe based on general relativity Main article Solutions of the Einstein field equations See also Big Bang and Ultimate fate of the universe General relativity is the geometric theory of gravitation published by Albert Einstein in 1915 and the current description of gravitation in modern physics It is the basis of current cosmological models of the universe General relativity generalizes special relativity and Newton s law of universal gravitation providing a unified description of gravity as a geometric property of space and time or spacetime In particular the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present The relation is specified by the Einstein field equations a system of partial differential equations In general relativity the distribution of matter and energy determines the geometry of spacetime which in turn describes the acceleration of matter Therefore solutions of the Einstein field equations describe the evolution of the universe Combined with measurements of the amount type and distribution of matter in the universe the equations of general relativity describe the evolution of the universe over time 126 With the assumption of the cosmological principle that the universe is homogeneous and isotropic everywhere a specific solution of the field equations that describes the universe is the metric tensor called the Friedmann Lemaitre Robertson Walker metric d s 2 c 2 d t 2 R t 2 d r 2 1 k r 2 r 2 d 8 2 r 2 sin 2 8 d ϕ 2 displaystyle ds 2 c 2 dt 2 R t 2 left frac dr 2 1 kr 2 r 2 d theta 2 r 2 sin 2 theta d phi 2 right where r 8 f correspond to a spherical coordinate system This metric has only two undetermined parameters An overall dimensionless length scale factor R describes the size scale of the universe as a function of time an increase in R is the expansion of the universe 127 and a curvature index k describes the geometry The index k is defined so that it can take only one of three values 0 corresponding to flat Euclidean geometry 1 corresponding to a space of positive curvature or 1 corresponding to a space of positive or negative curvature 128 The value of R as a function of time t depends upon k and the cosmological constant L 126 The cosmological constant represents the energy density of the vacuum of space and could be related to dark energy 86 The equation describing how R varies with time is known as the Friedmann equation after its inventor Alexander Friedmann 129 The solutions for R t depend on k and L but some qualitative features of such solutions are general First and most importantly the length scale R of the universe can remain constant only if the universe is perfectly isotropic with positive curvature k 1 and has one precise value of density everywhere as first noted by Albert Einstein 126 However this equilibrium is unstable because the universe is inhomogeneous on smaller scales R must change over time When R changes all the spatial distances in the universe change in tandem there is an overall expansion or contraction of space itself This accounts for the observation that galaxies appear to be flying apart the space between them is stretching The stretching of space also accounts for the apparent paradox that two galaxies can be 40 billion light years apart although they started from the same point 13 8 billion years ago 130 and never moved faster than the speed of light Second all solutions suggest that there was a gravitational singularity in the past when R went to zero and matter and energy were infinitely dense It may seem that this conclusion is uncertain because it is based on the questionable assumptions of perfect homogeneity and isotropy the cosmological principle and that only the gravitational interaction is significant However the Penrose Hawking singularity theorems show that a singularity should exist for very general conditions Hence according to Einstein s field equations R grew rapidly from an unimaginably hot dense state that existed immediately following this singularity when R had a small finite value this is the essence of the Big Bang model of the universe Understanding the singularity of the Big Bang likely requires a quantum theory of gravity which has not yet been formulated 131 Third the curvature index k determines the sign of the mean spatial curvature of spacetime 128 averaged over sufficiently large length scales greater than about a billion light years If k 1 the curvature is positive and the universe has a finite volume 132 A universe with positive curvature is often visualized as a three dimensional sphere embedded in a four dimensional space Conversely if k is zero or negative the universe has an infinite volume 132 It may seem counter intuitive that an infinite and yet infinitely dense universe could be created in a single instant when R 0 but exactly that is predicted mathematically when k does not equal 1 By analogy an infinite plane has zero curvature but infinite area whereas an infinite cylinder is finite in one direction and a torus is finite in both A toroidal universe could behave like a normal universe with periodic boundary conditions The ultimate fate of the universe is still unknown because it depends critically on the curvature index k and the cosmological constant L If the universe were sufficiently dense k would equal 1 meaning that its average curvature throughout is positive and the universe will eventually recollapse in a Big Crunch 133 possibly starting a new universe in a Big Bounce Conversely if the universe were insufficiently dense k would equal 0 or 1 and the universe would expand forever cooling off and eventually reaching the Big Freeze and the heat death of the universe 126 Modern data suggests that the rate of expansion of the universe is not decreasing as originally expected but increasing if this continues indefinitely the universe may eventually reach a Big Rip Observationally the universe appears to be flat k 0 with an overall density that is very close to the critical value between recollapse and eternal expansion 134 Multiverse hypothesis Main articles Multiverse Many worlds interpretation Bubble universe theory and Parallel universe fiction See also Eternal inflation Some speculative theories have proposed that our universe is but one of a set of disconnected universes collectively denoted as the multiverse challenging or enhancing more limited definitions of the universe 20 135 Scientific multiverse models are distinct from concepts such as alternate planes of consciousness and simulated reality Max Tegmark developed a four part classification scheme for the different types of multiverses that scientists have suggested in response to various Physics problems An example of such multiverses is the one resulting from the chaotic inflation model of the early universe 136 Another is the multiverse resulting from the many worlds interpretation of quantum mechanics In this interpretation parallel worlds are generated in a manner similar to quantum superposition and decoherence with all states of the wave functions being realized in separate worlds Effectively in the many worlds interpretation the multiverse evolves as a universal wavefunction If the Big Bang that created our multiverse created an ensemble of multiverses the wave function of the ensemble would be entangled in this sense 137 The least controversial but still highly disputed category of multiverse in Tegmark s scheme is Level I The multiverses of this level are composed by distant spacetime events in our own universe Tegmark and others 138 have argued that if space is infinite or sufficiently large and uniform identical instances of the history of Earth s entire Hubble volume occur every so often simply by chance Tegmark calculated that our nearest so called doppelganger is 1010115 metres away from us a double exponential function larger than a googolplex 139 140 However the arguments used are of speculative nature 141 Additionally it would be impossible to scientifically verify the existence of an identical Hubble volume It is possible to conceive of disconnected spacetimes each existing but unable to interact with one another 139 142 An easily visualized metaphor of this concept is a group of separate soap bubbles in which observers living on one soap bubble cannot interact with those on other soap bubbles even in principle 143 According to one common terminology each soap bubble of spacetime is denoted as a universe whereas humans particular spacetime is denoted as the universe 20 just as humans call Earth s moon the Moon The entire collection of these separate spacetimes is denoted as the multiverse 20 With this terminology different universes are not causally connected to each other 20 In principle the other unconnected universes may have different dimensionalities and topologies of spacetime different forms of matter and energy and different physical laws and physical constants although such possibilities are purely speculative 20 Others consider each of several bubbles created as part of chaotic inflation to be separate universes though in this model these universes all share a causal origin 20 Historical conceptionsSee also Cosmology Timeline of cosmological theories Nicolaus Copernicus Copernican system and Philosophiae Naturalis Principia Mathematica Beginnings of the Scientific Revolution Historically there have been many ideas of the cosmos cosmologies and its origin cosmogonies Theories of an impersonal universe governed by physical laws were first proposed by the Greeks and Indians 13 Ancient Chinese philosophy encompassed the notion of the universe including both all of space and all of time 144 Over the centuries improvements in astronomical observations and theories of motion and gravitation led to ever more accurate descriptions of the universe The modern era of cosmology began with Albert Einstein s 1915 general theory of relativity which made it possible to quantitatively predict the origin evolution and conclusion of the universe as a whole Most modern accepted theories of cosmology are based on general relativity and more specifically the predicted Big Bang 145 Mythologies Main articles Creation myth Cosmogony and Religious cosmology Many cultures have stories describing the origin of the world and universe Cultures generally regard these stories as having some truth There are however many differing beliefs in how these stories apply amongst those believing in a supernatural origin ranging from a god directly creating the universe as it is now to a god just setting the wheels in motion for example via mechanisms such as the big bang and evolution 146 Ethnologists and anthropologists who study myths have developed various classification schemes for the various themes that appear in creation stories 147 148 For example in one type of story the world is born from a world egg such stories include the Finnish epic poem Kalevala the Chinese story of Pangu or the Indian Brahmanda Purana In related stories the universe is created by a single entity emanating or producing something by him or herself as in the Tibetan Buddhism concept of Adi Buddha the ancient Greek story of Gaia Mother Earth the Aztec goddess Coatlicue myth the ancient Egyptian god Atum story and the Judeo Christian Genesis creation narrative in which the Abrahamic God created the universe In another type of story the universe is created from the union of male and female deities as in the Maori story of Rangi and Papa In other stories the universe is created by crafting it from pre existing materials such as the corpse of a dead god as from Tiamat in the Babylonian epic Enuma Elish or from the giant Ymir in Norse mythology or from chaotic materials as in Izanagi and Izanami in Japanese mythology In other stories the universe emanates from fundamental principles such as Brahman and Prakrti the creation myth of the Serers 149 or the yin and yang of the Tao Philosophical models Further information Cosmology See also Pre Socratic philosophy Physics Aristotle Hindu cosmology Islamic cosmology and Philosophy of space and time The pre Socratic Greek philosophers and Indian philosophers developed some of the earliest philosophical concepts of the universe 13 150 The earliest Greek philosophers noted that appearances can be deceiving and sought to understand the underlying reality behind the appearances In particular they noted the ability of matter to change forms e g ice to water to steam and several philosophers proposed that all the physical materials in the world are different forms of a single primordial material or arche The first to do so was Thales who proposed this material to be water Thales student Anaximander proposed that everything came from the limitless apeiron Anaximenes proposed the primordial material to be air on account of its perceived attractive and repulsive qualities that cause the arche to condense or dissociate into different forms Anaxagoras proposed the principle of Nous Mind while Heraclitus proposed fire and spoke of logos Empedocles proposed the elements to be earth water air and fire His four element model became very popular Like Pythagoras Plato believed that all things were composed of number with Empedocles elements taking the form of the Platonic solids Democritus and later philosophers most notably Leucippus proposed that the universe is composed of indivisible atoms moving through a void vacuum although Aristotle did not believe that to be feasible because air like water offers resistance to motion Air will immediately rush in to fill a void and moreover without resistance it would do so indefinitely fast 13 Although Heraclitus argued for eternal change his contemporary Parmenides made the radical suggestion that all change is an illusion that the true underlying reality is eternally unchanging and of a single nature Parmenides denoted this reality as tὸ ἐn The One Parmenides idea seemed implausible to many Greeks but his student Zeno of Elea challenged them with several famous paradoxes Aristotle responded to these paradoxes by developing the notion of a potential countable infinity as well as the infinitely divisible continuum Unlike the eternal and unchanging cycles of time he believed that the world is bounded by the celestial spheres and that cumulative stellar magnitude is only finitely multiplicative The Indian philosopher Kanada founder of the Vaisheshika school developed a notion of atomism and proposed that light and heat were varieties of the same substance 151 In the 5th century AD the Buddhist atomist philosopher Dignaga proposed atoms to be point sized durationless and made of energy They denied the existence of substantial matter and proposed that movement consisted of momentary flashes of a stream of energy 152 The notion of temporal finitism was inspired by the doctrine of creation shared by the three Abrahamic religions Judaism Christianity and Islam The Christian philosopher John Philoponus presented the philosophical arguments against the ancient Greek notion of an infinite past and future Philoponus arguments against an infinite past were used by the early Muslim philosopher Al Kindi Alkindus the Jewish philosopher Saadia Gaon Saadia ben Joseph and the Muslim theologian Al Ghazali Algazel 153 Astronomical concepts Main articles History of astronomy and Timeline of astronomy 3rd century BCE calculations by Aristarchus on the relative sizes of from left to right the Sun Earth and Moon from a 10th century AD Greek copy Astronomical models of the universe were proposed soon after astronomy began with the Babylonian astronomers who viewed the universe as a flat disk floating in the ocean and this forms the premise for early Greek maps like those of Anaximander and Hecataeus of Miletus Later Greek philosophers observing the motions of the heavenly bodies were concerned with developing models of the universe based more profoundly on empirical evidence The first coherent model was proposed by Eudoxus of Cnidos According to Aristotle s physical interpretation of the model celestial spheres eternally rotate with uniform motion around a stationary Earth Normal matter is entirely contained within the terrestrial sphere De Mundo composed before 250 BC or between 350 and 200 BC stated Five elements situated in spheres in five regions the less being in each case surrounded by the greater namely earth surrounded by water water by air air by fire and fire by ether make up the whole universe 154 This model was also refined by Callippus and after concentric spheres were abandoned it was brought into nearly perfect agreement with astronomical observations by Ptolemy The success of such a model is largely due to the mathematical fact that any function such as the position of a planet can be decomposed into a set of circular functions the Fourier modes Other Greek scientists such as the Pythagorean philosopher Philolaus postulated according to Stobaeus account that at the center of the universe was a central fire around which the Earth Sun Moon and planets revolved in uniform circular motion 155 The Greek astronomer Aristarchus of Samos was the first known individual to propose a heliocentric model of the universe Though the original text has been lost a reference in Archimedes book The Sand Reckoner describes Aristarchus s heliocentric model Archimedes wrote You King Gelon are aware the universe is the name given by most astronomers to the sphere the center of which is the center of the Earth while its radius is equal to the straight line between the center of the Sun and the center of the Earth This is the common account as you have heard from astronomers But Aristarchus has brought out a book consisting of certain hypotheses wherein it appears as a consequence of the assumptions made that the universe is many times greater than the universe just mentioned His hypotheses are that the fixed stars and the Sun remain unmoved that the Earth revolves about the Sun on the circumference of a circle the Sun lying in the middle of the orbit and that the sphere of fixed stars situated about the same center as the Sun is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface Aristarchus thus believed the stars to be very far away and saw this as the reason why stellar parallax had not been observed that is the stars had not been observed to move relative each other as the Earth moved around the Sun The stars are in fact much farther away than the distance that was generally assumed in ancient times which is why stellar parallax is only detectable with precision instruments The geocentric model consistent with planetary parallax was assumed to be an explanation for the unobservability of the parallel phenomenon stellar parallax The rejection of the heliocentric view was apparently quite strong as the following passage from Plutarch suggests On the Apparent Face in the Orb of the Moon Cleanthes a contemporary of Aristarchus and head of the Stoics thought it was the duty of the Greeks to indict Aristarchus of Samos on the charge of impiety for putting in motion the Hearth of the Universe i e the Earth supposing the heaven to remain at rest and the Earth to revolve in an oblique circle while it rotates at the same time about its own axis Flammarion engraving Paris 1888 The only other astronomer from antiquity known by name who supported Aristarchus s heliocentric model was Seleucus of Seleucia a Hellenistic astronomer who lived a century after Aristarchus 156 157 158 According to Plutarch Seleucus was the first to prove the heliocentric system through reasoning but it is not known what arguments he used Seleucus arguments for a heliocentric cosmology were probably related to the phenomenon of tides 159 According to Strabo 1 1 9 Seleucus was the first to state that the tides are due to the attraction of the Moon and that the height of the tides depends on the Moon s position relative to the Sun 160 Alternatively he may have proved heliocentricity by determining the constants of a geometric model for it and by developing methods to compute planetary positions using this model like what Nicolaus Copernicus later did in the 16th century 161 During the Middle Ages heliocentric models were also proposed by the Indian astronomer Aryabhata 162 and by the Persian astronomers Albumasar 163 and Al Sijzi 164 Model of the Copernican Universe by Thomas Digges in 1576 with the amendment that the stars are no longer confined to a sphere but spread uniformly throughout the space surrounding the planets The Aristotelian model was accepted in the Western world for roughly two millennia until Copernicus revived Aristarchus s perspective that the astronomical data could be explained more plausibly if the Earth rotated on its axis and if the Sun were placed at the center of the universe In the center rests the Sun For who would place this lamp of a very beautiful temple in another or better place than this wherefrom it can illuminate everything at the same time Nicolaus Copernicus in Chapter 10 Book 1 of De Revolutionibus Orbium Coelestrum 1543 As noted by Copernicus himself the notion that the Earth rotates is very old dating at least to Philolaus c 450 BC Heraclides Ponticus c 350 BC and Ecphantus the Pythagorean Roughly a century before Copernicus the Christian scholar Nicholas of Cusa also proposed that the Earth rotates on its axis in his book On Learned Ignorance 1440 165 Al Sijzi 166 also proposed that the Earth rotates on its axis Empirical evidence for the Earth s rotation on its axis using the phenomenon of comets was given by Tusi 1201 1274 and Ali Qushji 1403 1474 167 This cosmology was accepted by Isaac Newton Christiaan Huygens and later scientists 168 Edmund Halley 1720 169 and Jean Philippe de Cheseaux 1744 170 noted independently that the assumption of an infinite space filled uniformly with stars would lead to the prediction that the nighttime sky would be as bright as the Sun itself this became known as Olbers paradox in the 19th century 171 Newton believed that an infinite space uniformly filled with matter would cause infinite forces and instabilities causing the matter to be crushed inwards under its own gravity 168 This instability was clarified in 1902 by the Jeans instability criterion 172 One solution to these paradoxes is the Charlier Universe in which the matter is arranged hierarchically systems of orbiting bodies that are themselves orbiting in a larger system ad infinitum in a fractal way such that the universe has a negligibly small overall density such a cosmological model had also been proposed earlier in 1761 by Johann Heinrich Lambert 51 173 A significant astronomical advance of the 18th century was the realization by Thomas Wright Immanuel Kant and others of nebulae 169 In 1919 when the Hooker Telescope was completed the prevailing view still was that the universe consisted entirely of the Milky Way Galaxy Using the Hooker Telescope Edwin Hubble identified Cepheid variables in several spiral nebulae and in 1922 1923 proved conclusively that Andromeda Nebula and Triangulum among others were entire galaxies outside our own thus proving that universe consists of a multitude of galaxies 174 The modern era of physical cosmology began in 1917 when Albert Einstein first applied his general theory of relativity to model the structure and dynamics of the universe 175 Map of the observable universe with some of the notable astronomical objects known today The scale of length increases exponentially toward the right Celestial bodies are shown enlarged in size to be able to understand their shapes Location of the Earth in the Universe Earth Solar System Radcliffe Wave Orion Arm Milky Way Local Group Virgo SCl Laniakea SCl Our UniverseSee alsoChronology of the universe Cosmic Calendar scaled down timeline Cosmic latte Cosmos Detailed logarithmic timeline Earth s location in the universe False vacuum Future of an expanding universe Galaxy And Mass Assembly survey Heat death of the universe History of the center of the Universe Illustris project Multiverse set theory Hyperverse Megaverse or Omniverse Non standard cosmology Nucleocosmochronology Panspermia Rare Earth hypothesis Religious cosmology Space and survival Terasecond and longer Timeline of the early universe Timeline of the far future Timeline of the near future Zero energy universeReferencesFootnotes a b According to modern physics particularly the theory of relativity space and time are intrinsically linked as spacetime Although listed in megaparsecs by the cited source this number is so vast that its digits would remain virtually unchanged for all intents and purposes regardless of which conventional units it is listed in whether it to be nanometres or gigaparsecs as the differences would disappear into the error Citations Hubble sees galaxies galore spacetelescope org Archived from the original on May 4 2017 Retrieved April 30 2017 a b Planck Collaboration 2016 Planck 2015 results XIII Cosmological parameters Astronomy amp Astrophysics 594 A13 Table 4 arXiv 1502 01589 Bibcode 2016A amp A 594A 13P doi 10 1051 0004 6361 201525830 S2CID 119262962 a b c d Greene Brian 2011 The Hidden Reality Alfred A Knopf Bars Itzhak Terning John November 2009 Extra Dimensions in Space and Time Springer pp 27 ISBN 978 0 387 77637 8 Retrieved May 1 2011 Davies Paul 2006 The Goldilocks Enigma First Mariner Books p 43ff ISBN 978 0 618 59226 5 a b NASA WMAP Science Team January 24 2014 Universe 101 What is the Universe Made Of NASA Archived from the original on March 10 2008 Retrieved February 17 2015 a b Fixsen D J 2009 The Temperature of the Cosmic Microwave Background The Astrophysical Journal 707 2 916 20 arXiv 0911 1955 Bibcode 2009ApJ 707 916F doi 10 1088 0004 637X 707 2 916 S2CID 119217397 a b c First Planck results the universe is still weird and interesting Matthew Francis Ars technica March 21 2013 Archived from the original on May 2 2019 Retrieved August 21 2015 NASA WMAP Science Team January 24 2014 Universe 101 Will the Universe expand forever NASA Archived from the original on March 9 2008 Retrieved April 16 2015 a b Zeilik Michael Gregory Stephen A 1998 Introductory Astronomy amp Astrophysics 4th ed Saunders College Publishing ISBN 978 0 03 006228 5 The totality of all space and time all that is has been and will be Planck Collaboration Aghanim N Akrami Y Ashdown M Aumont J Baccigalupi C Ballardini M Banday A J Barreiro R B Bartolo N Basak S September 2020 Planck 2018 results VI Cosmological parameters Astronomy amp Astrophysics 641 A6 arXiv 1807 06209 Bibcode 2020A amp A 641A 6P doi 10 1051 0004 6361 201833910 ISSN 0004 6361 S2CID 119335614 Dold Samplonius Yvonne 2002 From China to Paris 2000 Years Transmission of Mathematical Ideas Franz Steiner Verlag a b c d Glick Thomas F Livesey Steven Wallis Faith Medieval Science Technology and Medicine An Encyclopedia Routledge Carroll Bradley W Ostlie Dale A July 23 2013 An Introduction to Modern Astrophysics International ed Pearson pp 1173 74 ISBN 978 1 292 02293 2 Archived from the original on December 28 2019 Retrieved May 16 2018 a b Hawking Stephen 1988 A Brief History of Time Bantam Books p 43 ISBN 978 0 553 05340 1 a b The Nobel Prize in Physics 2011 Archived from the original on April 17 2015 Retrieved April 16 2015 Redd Nola What is Dark Matter Space com Archived from the original on February 1 2018 Retrieved February 1 2018 a b Planck 2015 results table 9 Archived from the original on July 27 2018 Retrieved May 16 2018 Persic Massimo Salucci Paolo September 1 1992 The baryon content of the Universe Monthly Notices of the Royal Astronomical Society 258 1 14P 18P arXiv astro ph 0502178 Bibcode 1992MNRAS 258P 14P doi 10 1093 mnras 258 1 14P ISSN 0035 8711 S2CID 17945298 a b c d e f g Ellis George F R U Kirchner W R Stoeger 2004 Multiverses and physical cosmology Monthly Notices of the Royal Astronomical Society 347 3 921 36 arXiv astro ph 0305292 Bibcode 2004MNRAS 347 921E doi 10 1111 j 1365 2966 2004 07261 x S2CID 119028830 Palmer Jason August 3 2011 BBC News Multiverse theory suggested by microwave background Archived June 3 2018 at the Wayback Machine Retrieved November 28 2011 Universe Encyclopaedia Britannica online Encyclopaedia Britannica Inc 2012 Archived from the original on June 9 2021 Retrieved February 17 2018 Universe Merriam Webster Dictionary Archived from the original on October 22 2012 Retrieved September 21 2012 Universe Dictionary com Archived from the original on October 23 2012 Retrieved September 21 2012 a b Schreuder Duco A December 3 2014 Vision and Visual Perception Archway Publishing p 135 ISBN 978 1 4808 1294 9 Archived from the original on April 22 2021 Retrieved January 27 2016 Mermin N David 2004 Could Feynman Have Said This Physics Today 57 5 10 Bibcode 2004PhT 57e 10M doi 10 1063 1 1768652 Tegmark Max 2008 The Mathematical Universe Foundations of Physics 38 2 101 50 arXiv 0704 0646 Bibcode 2008FoPh 38 101T doi 10 1007 s10701 007 9186 9 S2CID 9890455 A short version of which is available at Fixsen D J 2007 Shut up and calculate arXiv 0709 4024 physics pop ph in reference to David Mermin s famous quote shut up and calculate 26 Holt Jim 2012 Why Does the World Exist Liveright Publishing p 308 Ferris Timothy 1997 The Whole Shebang A State of the Universe s Report Simon amp Schuster p 400 Copan Paul William Lane Craig 2004 Creation Out of Nothing A Biblical Philosophical and Scientific Exploration Baker Academic p 220 ISBN 978 0 8010 2733 8 Bolonkin Alexander November 2011 Universe Human Immortality and Future Human Evaluation Elsevier pp 3 ISBN 978 0 12 415801 6 Archived from the original on February 8 2021 Retrieved January 27 2016 The Compact Edition of the Oxford English Dictionary volume II Oxford Oxford University Press 1971 p 3518 ISBN 978 0198611172 Lewis C T and Short S 1879 A Latin Dictionary Oxford University Press ISBN 0 19 864201 6 pp 1933 1977 1978 Liddell Scott A Greek English Lexicon lsj gr Archived from the original on November 6 2018 Retrieved July 30 2022 pᾶs Liddell Scott A Greek English Lexicon lsj gr Archived from the original on November 6 2018 Retrieved July 30 2022 ὅlos Liddell Scott A Greek English Lexicon lsj gr Archived from the original on November 6 2018 Retrieved July 30 2022 kosmos Lewis C T Short S 1879 A Latin Dictionary Oxford University Press pp 1175 1189 90 1881 82 ISBN 978 0 19 864201 5 The Compact Edition of the Oxford English Dictionary Vol II Oxford Oxford University Press 1971 pp 569 909 1900 3821 22 ISBN 978 0 19 861117 2 Silk Joseph 2009 Horizons of Cosmology Templeton Pressr p 208 Singh Simon 2005 Big Bang The Origin of the Universe Harper Perennial p 560 Bibcode 2004biba book S C Sivaram 1986 Evolution of the Universe through the Planck epoch Astrophysics and Space Science 125 1 189 99 Bibcode 1986Ap amp SS 125 189S doi 10 1007 BF00643984 S2CID 123344693 Larson Richard B amp Bromm Volker March 2002 The First Stars in the Universe Scientific American Archived from the original on June 11 2015 Retrieved June 9 2015 Ryden Barbara Introduction to Cosmology 2006 eqn 6 33 Antimatter Particle Physics and Astronomy Research Council October 28 2003 Archived from the original on March 7 2004 Retrieved August 10 2006 Smorra C et al October 20 2017 A parts per billion measurement of the antiproton magnetic moment PDF Nature 550 7676 371 74 Bibcode 2017Natur 550 371S doi 10 1038 nature24048 PMID 29052625 S2CID 205260736 Archived PDF from the original on October 30 2018 Retrieved August 25 2019 Landau amp Lifshitz 1975 p 361 It is interesting to note that in a closed space the total electric charge must be zero Namely every closed surface in a finite space encloses on each side of itself a finite region of space Therefore the flux of the electric field through this surface is equal on the one hand to the total charge located in the interior of the surface and on the other hand to the total charge outside of it with opposite sign Consequently the sum of the charges on the two sides of the surface is zero Kaku Michio March 11 2008 Physics of the Impossible A Scientific Exploration into the World of Phasers Force Fields Teleportation and Time Travel Knopf Doubleday Publishing Group pp 202 ISBN 978 0 385 52544 2 a b Bars Itzhak Terning John October 19 2018 Extra Dimensions in Space and Time Springer pp 27 ISBN 978 0 387 77637 8 Retrieved October 19 2018 WolframAlpha Archived from the original on October 20 2018 Retrieved October 19 2018 Crockett Christopher February 20 2013 What is a light year EarthSky Archived from the original on February 20 2015 Retrieved February 20 2015 a b Rindler p 196 Christian Eric Samar Safi Harb How large is the Milky Way Archived from the original on February 2 1999 Retrieved November 28 2007 Hall Shannon May 4 2015 Size of the Milky Way Upgraded Solving Galaxy Puzzle Space com Archived from the original on June 7 2015 Retrieved June 9 2015 I Ribas C Jordi F Vilardell E L Fitzpatrick R W Hilditch F Edward Guinan 2005 First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy Astrophysical Journal 635 1 L37 L40 arXiv astro ph 0511045 Bibcode 2005ApJ 635L 37R doi 10 1086 499161 S2CID 119522151 McConnachie A W Irwin M J Ferguson A M N Ibata R A Lewis G F Tanvir N 2005 Distances and metallicities for 17 Local Group galaxies Monthly Notices of the Royal Astronomical Society 356 4 979 97 arXiv astro ph 0410489 Bibcode 2005MNRAS 356 979M doi 10 1111 j 1365 2966 2004 08514 x Janek Vanessa February 20 2015 How can space travel faster than the speed of light Universe Today Archived from the original on December 16 2021 Retrieved June 6 2015 Is faster than light travel or communication possible Section Expansion of the Universe Philip Gibbs 1997 Archived from the original on March 10 2010 Retrieved June 6 2015 M Vardanyan R Trotta J Silk January 28 2011 Applications of Bayesian model averaging to the curvature and size of the Universe Monthly Notices of the Royal Astronomical Society Letters 413 1 L91 L95 arXiv 1101 5476 Bibcode 2011MNRAS 413L 91V doi 10 1111 j 1745 3933 2011 01040 x S2CID 2616287 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link Schreiber Urs June 6 2008 Urban Myths in Contemporary Cosmology The n Category Cafe University of Texas at Austin Archived from the original on July 1 2020 Retrieved June 1 2020 Don N Page 2007 Susskind s Challenge to the Hartle Hawking No Boundary Proposal and Possible Resolutions Journal of Cosmology and Astroparticle Physics 2007 1 004 arXiv hep th 0610199 Bibcode 2007JCAP 01 004P doi 10 1088 1475 7516 2007 01 004 S2CID 17403084 Berardelli Phil March 25 2010 Galaxy Collisions Give Birth to Quasars Science News Archived from the original on March 25 2022 Retrieved July 30 2022 Riess Adam G Filippenko Challis Clocchiatti Diercks Garnavich Gilliland Hogan Jha Kirshner Leibundgut Phillips Reiss Schmidt Schommer Smith Spyromilio Stubbs Suntzeff Tonry 1998 Observational evidence from supernovae for an accelerating universe and a cosmological constant Astronomical Journal 116 3 1009 38 arXiv astro ph 9805201 Bibcode 1998AJ 116 1009R doi 10 1086 300499 S2CID 15640044 Perlmutter S Aldering Goldhaber Knop Nugent Castro Deustua Fabbro Goobar Groom Hook Kim Kim Lee Nunes Pain Pennypacker Quimby Lidman Ellis Irwin McMahon Ruiz Lapuente Walton Schaefer Boyle Filippenko Matheson Fruchter et al 1999 Measurements of Omega and Lambda from 42 high redshift supernovae Astrophysical Journal 517 2 565 86 arXiv astro ph 9812133 Bibcode 1999ApJ 517 565P doi 10 1086 307221 S2CID 118910636 Carroll Sean Kaku Michio 2014 End of the Universe How the Universe Works Discovery Channel Overbye Dennis October 11 2003 A Cosmic Jerk That Reversed the Universe New York Times Archived from the original on July 1 2017 Retrieved February 20 2017 Schutz Bernard May 31 2009 A First Course in General Relativity 2 ed Cambridge University Press pp 142 171 ISBN 978 0 521 88705 2 WMAP Mission Results Age of the Universe Archived February 25 2007 at the Wayback Machine Map gsfc nasa gov Retrieved November 28 2011 a b Luminet Jean Pierre Weeks Jeffrey R Riazuelo Alain Lehoucq Roland Uzan Jean Philippe October 9 2003 Dodecahedral space topology as an explanation for weak wide angle temperature correlations in the cosmic microwave background Nature Submitted manuscript 425 6958 593 95 arXiv astro ph 0310253 Bibcode 2003Natur 425 593L doi 10 1038 nature01944 PMID 14534579 S2CID 4380713 Archived from the original on May 17 2021 Retrieved August 21 2018 Luminet Jean Pierre Roukema Boudewijn F 1999 Topology of the Universe Theory and Observations Proceedings of Cosmology School held at Cargese Corsica August 1998 arXiv astro ph 9901364 Bibcode 1999ASIC 541 117L Brill Dieter Jacobsen Ted 2006 Spacetime and Euclidean geometry General Relativity and Gravitation 38 4 643 51 arXiv gr qc 0407022 Bibcode 2006GReGr 38 643B CiteSeerX 10 1 1 338 7953 doi 10 1007 s10714 006 0254 9 S2CID 119067072 Edward Robert Harrison 2000 Cosmology the science of the universe Cambridge University Press pp 447 ISBN 978 0 521 66148 5 Archived from the original on August 26 2016 Retrieved May 1 2011 Liddle Andrew R David Hilary Lyth April 13 2000 Cosmological inflation and large scale structure Cambridge University Press pp 24 ISBN 978 0 521 57598 0 Archived from the original on December 31 2013 Retrieved May 1 2011 What is the Ultimate Fate of the Universe National Aeronautics and Space Administration NASA Archived from the original on December 22 2021 Retrieved August 23 2015 Will the Universe expand forever Archived March 9 2008 at the Wayback Machine WMAP website at NASA Roukema Boudewijn Bulinski Zbigniew Szaniewska Agnieszka Gaudin Nicolas E 2008 A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data Astronomy and Astrophysics 482 3 747 53 arXiv 0801 0006 Bibcode 2008A amp A 482 747L doi 10 1051 0004 6361 20078777 S2CID 1616362 Aurich Ralf Lustig S Steiner F Then H 2004 Hyperbolic Universes with a Horned Topology and the CMB Anisotropy Classical and Quantum Gravity 21 21 4901 26 arXiv astro ph 0403597 Bibcode 2004CQGra 21 4901A doi 10 1088 0264 9381 21 21 010 S2CID 17619026 Planck Collaboration 2014 Planck 2013 results XVI Cosmological parameters Astronomy amp Astrophysics 571 A16 arXiv 1303 5076 Bibcode 2014A amp A 571A 16P doi 10 1051 0004 6361 201321591 S2CID 118349591 Planck reveals almost perfect universe Michael Banks Physics World March 21 2013 Archived from the original on March 24 2013 Retrieved March 21 2013 Isaak Mark ed 2005 CI301 The Anthropic Principle Index to Creationist Claims TalkOrigins Archive Archived from the original on July 1 2014 Retrieved October 31 2007 Fritzsche Hellmut electromagnetic radiation physics Encyclopaedia Britannica p 1 Archived from the original on August 31 2015 Retrieved July 26 2015 Physics 7 Relativity SpaceTime and Cosmology PDF Physics 7 Relativity SpaceTime and Cosmology University of California Riverside Archived from the original PDF on September 5 2015 Retrieved July 26 2015 Physics for the 21st Century www learner org Harvard Smithsonian Center for Astrophysics Annenberg Learner Archived from the original on September 7 2015 Retrieved July 27 2015 Dark matter A history shapes by dark force Timothy Ferris National Geographic 2015 Archived from the original on March 4 2016 Retrieved December 29 2015 Redd SPACE com Nola Taylor It s Official The Universe Is Dying Slowly Scientific American Archived from the original on August 12 2015 Retrieved August 11 2015 Parr Will et al RIP Universe Your Time Is Coming Slowly Video Space com Archived from the original on August 13 2015 Retrieved August 20 2015 a b Sean Carroll Ph D Caltech 2007 The Teaching Company Dark Matter Dark Energy The Dark Side of the Universe Guidebook Part 2 p 46 Accessed October 7 2013 dark matter An invisible essentially collisionless component of matter that makes up about 25 percent of the energy density of the universe it s a different kind of particle something not yet observed in the laboratory a b Peebles P J E amp Ratra Bharat 2003 The cosmological constant and dark energy Reviews of Modern Physics 75 2 559 606 arXiv astro ph 0207347 Bibcode 2003RvMP 75 559P doi 10 1103 RevModPhys 75 559 S2CID 118961123 Mandolesi N Calzolari P Cortiglioni S Delpino F Sironi G Inzani P Deamici G Solheim J E Berger L Partridge R B Martenis P L Sangree C H Harvey R C 1986 Large scale homogeneity of the universe measured by the microwave background Nature 319 6056 751 53 Bibcode 1986Natur 319 751M doi 10 1038 319751a0 S2CID 4349689 New Horizons spacecraft answers the question How dark is space phys org Archived from the original on January 15 2021 Retrieved January 15 2021 Howell Elizabeth March 20 2018 How Many Galaxies Are There Space com Archived from the original on February 28 2021 Retrieved March 5 2021 Staff 2019 How Many Stars Are There In The Universe European Space Agency Archived from the original on September 23 2019 Retrieved September 21 2019 Marov Mikhail Ya 2015 The Structure of the Universe The Fundamentals of Modern Astrophysics pp 279 294 doi 10 1007 978 1 4614 8730 2 10 ISBN 978 1 4614 8729 6 Mackie Glen February 1 2002 To see the Universe in a Grain of Taranaki Sand Centre for Astrophysics and Supercomputing Archived from the original on August 11 2011 Retrieved January 28 2017 Unveiling the Secret of a Virgo Dwarf Galaxy European Southern Observatory Press Release ESO 12 May 3 2000 Bibcode 2000eso pres 12 Archived from the original on July 13 2015 Retrieved January 3 2007 Hubble s Largest Galaxy Portrait Offers a New High Definition View NASA February 28 2006 Archived from the original on May 27 2020 Retrieved January 3 2007 Gibney Elizabeth September 3 2014 Earth s new address Solar System Milky Way Laniakea Nature doi 10 1038 nature 2014 15819 S2CID 124323774 Archived from the original on January 7 2019 Retrieved August 21 2015 Local Group Fraser Cain Universe Today May 4 2009 Archived from the original on June 21 2018 Retrieved August 21 2015 Devlin Hannah Correspondent Science April 20 2015 Astronomers discover largest known structure in the universe is a big hole The Guardian Archived from the original on February 7 2017 Retrieved December 18 2016 Content of the Universe WMAP 9yr Pie Chart wmap gsfc nasa gov Archived from the original on September 5 2015 Retrieved July 26 2015 Rindler p 202 Liddle Andrew 2003 An Introduction to Modern Cosmology 2nd ed John Wiley amp Sons ISBN 978 0 470 84835 7 p 2 Livio Mario 2001 The Accelerating Universe Infinite Expansion the Cosmological Constant and the Beauty of the Cosmos John Wiley and Sons p 53 ISBN 978 0 471 43714 7 Archived from the original on May 13 2021 Retrieved March 31 2012 Peebles P J E amp Ratra Bharat 2003 The cosmological constant and dark energy Reviews of Modern Physics 75 2 559 606 arXiv astro ph 0207347 Bibcode 2003RvMP 75 559P doi 10 1103 RevModPhys 75 559 S2CID 118961123 Steinhardt Paul J Turok Neil 2006 Why the cosmological constant is small and positive Science 312 5777 1180 83 arXiv astro ph 0605173 Bibcode 2006Sci 312 1180S doi 10 1126 science 1126231 PMID 16675662 S2CID 14178620 Dark Energy Hyperphysics Archived from the original on May 27 2013 Retrieved January 4 2014 Carroll Sean 2001 The cosmological constant Living Reviews in Relativity 4 1 1 arXiv astro ph 0004075 Bibcode 2001LRR 4 1C doi 10 12942 lrr 2001 1 PMC 5256042 PMID 28179856 Archived from the original on October 13 2006 Retrieved September 28 2006 Planck captures portrait of the young universe revealing earliest light University of Cambridge March 21 2013 Archived from the original on April 17 2019 Retrieved March 21 2013 P Davies 1992 The New Physics A Synthesis Cambridge University Press p 1 ISBN 978 0 521 43831 5 Archived from the original on February 3 2021 Retrieved May 17 2020 Persic Massimo Salucci Paolo September 1 1992 The baryon content of the universe Monthly Notices of the Royal Astronomical Society 258 1 14P 18P arXiv astro ph 0502178 Bibcode 1992MNRAS 258P 14P doi 10 1093 mnras 258 1 14P ISSN 0035 8711 S2CID 17945298 G t Hooft 1997 In search of the ultimate building blocks Cambridge University Press p 6 ISBN 978 0 521 57883 7 Clayton Donald D 1983 Principles of Stellar Evolution and Nucleosynthesis The University of Chicago Press pp 362 435 ISBN 978 0 226 10953 4 Veltman Martinus 2003 Facts and Mysteries in Elementary Particle Physics World Scientific ISBN 978 981 238 149 1 a b Braibant Sylvie Giacomelli Giorgio Spurio Maurizio 2012 Particles and Fundamental Interactions An Introduction to Particle Physics 2nd ed Springer pp 1 3 ISBN 978 94 007 2463 1 Archived from the original on August 26 2016 Retrieved January 27 2016 Close Frank 2012 Particle Physics A Very Short Introduction Oxford University Press ISBN 978 0 19 280434 1 a b R Oerter 2006 The Theory of Almost Everything The Standard Model the Unsung Triumph of Modern Physics Kindle ed Penguin Group p 2 ISBN 978 0 13 236678 6 Onyisi P October 23 2012 Higgs boson FAQ University of Texas ATLAS group Archived from the original on October 12 2013 Retrieved January 8 2013 Strassler M October 12 2012 The Higgs FAQ 2 0 ProfMattStrassler com Archived from the original on October 12 2013 Retrieved January 8 2013 Q Why do particle physicists care so much about the Higgs particle A Well actually they don t What they really care about is the Higgs field because it is so important emphasis in original Weinberg Steven April 20 2011 Dreams of a Final Theory The Scientist s Search for the Ultimate Laws of Nature Knopf Doubleday Publishing Group ISBN 978 0 307 78786 6 a b Allday Jonathan 2002 Quarks Leptons and the Big Bang Second ed IOP Publishing ISBN 978 0 7503 0806 9 Lepton physics Encyclopaedia Britannica Archived from the original on May 11 2015 Retrieved September 29 2010 Harari H 1977 Beyond charm In Balian R Llewellyn Smith C H eds Weak and Electromagnetic Interactions at High Energy Les Houches France Jul 5 Aug 14 1976 Les Houches Summer School Proceedings Vol 29 North Holland p 613 Harari H 1977 Three generations of quarks and leptons PDF In E van Goeler Weinstein R eds Proceedings of the XII Rencontre de Moriond p 170 SLAC PUB 1974 Archived PDF from the original on May 13 2020 Retrieved May 29 2020 Experiment confirms famous physics model Press release MIT News Office April 18 2007 Archived from the original on July 5 2013 Retrieved June 2 2015 Thermal history of the universe and early growth of density fluctuations PDF Guinevere Kauffmann Max Planck Institute for Astrophysics Archived PDF from the original on August 21 2016 Retrieved January 6 2016 First few minutes Eric Chaisson Harvard Smithsonian Center for Astrophysics Archived from the original on December 4 2013 Retrieved January 6 2016 Timeline of the Big Bang The physics of the Universe Archived from the original on March 30 2020 Retrieved January 6 2016 a b c d Zeilik Michael Gregory Stephen A 1998 25 2 Introductory Astronomy amp Astrophysics 4th ed Saunders College Publishing ISBN 978 0 03 006228 5 Raine amp Thomas 2001 p 12 a b Raine amp Thomas 2001 p 66 Friedmann A 1922 Uber die Krummung des Raumes PDF Zeitschrift fur Physik 10 1 377 86 Bibcode 1922ZPhy 10 377F doi 10 1007 BF01332580 S2CID 125190902 Archived PDF from the original on May 15 2016 Retrieved August 13 2015 Cosmic Detectives The European Space Agency ESA April 2 2013 Archived from the original on February 11 2019 Retrieved April 15 2013 Raine amp Thomas 2001 pp 122 23 a b Raine amp Thomas 2001 p 70 Raine amp Thomas 2001 p 84 Raine amp Thomas 2001 pp 88 110 13 Munitz MK 1959 One Universe or Many Journal of the History of Ideas 12 2 231 55 doi 10 2307 2707516 JSTOR 2707516 Linde A 1986 Eternal chaotic inflation Mod Phys Lett A 1 2 81 85 Bibcode 1986MPLA 1 81L doi 10 1142 S0217732386000129 S2CID 123472763 Archived from the original on April 17 2019 Retrieved August 6 2017 Linde A 1986 Eternally existing self reproducing chaotic inflationary Universe PDF Phys Lett B 175 4 395 400 Bibcode 1986PhLB 175 395L doi 10 1016 0370 2693 86 90611 8 Archived PDF from the original on November 27 2013 Retrieved March 17 2011 Everett Hugh 1957 Relative State Formulation of Quantum Mechanics Reviews of Modern Physics 29 3 454 62 Bibcode 1957RvMP 29 454E doi 10 1103 RevModPhys 29 454 S2CID 17178479 Archived from the original on July 28 2020 Retrieved December 17 2019 Jaume Garriga Alexander Vilenkin 2007 Many Worlds in One Physical Review D 64 4 arXiv gr qc 0102010v2 doi 10 1103 PhysRevD 64 043511 S2CID 119000743 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link a b Tegmark M 2003 Parallel universes Not just a staple of science fiction other universes are a direct implication of cosmological observations Scientific American 288 5 40 51 arXiv astro ph 0302131 Bibcode 2003SciAm 288e 40T doi 10 1038 scientificamerican0503 40 PMID 12701329 Tegmark Max 2003 Parallel Universes Scientific American 288 5 40 51 arXiv astro ph 0302131 Bibcode 2003SciAm 288e 40T doi 10 1038 scientificamerican0503 40 PMID 12701329 Francisco Jose Soler Gil Manuel Alfonseca 2013 About the Infinite Repetition of Histories in Space Theoria An International Journal for Theory History and Foundations of Science 29 3 361 arXiv 1301 5295 doi 10 1387 theoria 9951 hdl 10486 664735 S2CID 52996408 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link Ellis G F 2011 Does the Multiverse Really Exist Scientific American 305 2 38 43 Bibcode 2011SciAm 305a 38E doi 10 1038 scientificamerican0811 38 PMID 21827123 Moskowitz Clara August 12 2011 Weird Our Universe May Be a Multiverse Scientists Say livescience Archived from the original on May 5 2015 Retrieved May 4 2015 Gernet J 1993 1994 Space and time Science and religion in the encounter between China and Europe Chinese Science Vol 11 pp 93 102 Blandford R D 2015 A century of general relativity Astrophysics and cosmology Science 347 6226 1103 08 Bibcode 2015Sci 347 1103B doi 10 1126 science aaa4033 PMID 25745165 S2CID 30364122 Leeming David A 2010 Creation Myths of the World ABC CLIO p xvii ISBN 978 1 59884 174 9 In common usage the word myth refers to narratives or beliefs that are untrue or merely fanciful the stories that make up national or ethnic mythologies describe characters and events that common sense and experience tell us are impossible Nevertheless all cultures celebrate such myths and attribute to them various degrees of literal or symbolic truth Eliade Mircea 1964 Myth and Reality Religious Traditions of the World Allen amp Unwin ISBN 978 0 04 291001 7 Leonard Scott A McClure Michael 2004 Myth and Knowing An Introduction to World Mythology 1st ed McGraw Hill ISBN 978 0 7674 1957 4 Henry Gravrand La civilisation Sereer Pangool in Universitat Frankfurt am Main Frobenius Institut Deutsche Gesellschaft fur Kulturmorphologie Frobenius Gesellschaft Paideuma Mitteilungen zur Kulturkunde Volumes 43 44 F Steiner 1997 pp 144 45 ISBN 3 515 02842 0 B Young Louise The Unfinished Universe Oxford University Press p 21 Will Durant Our Oriental Heritage Two systems of Hindu thought propound physical theories suggestively similar to those of Greece Kanada founder of the Vaisheshika philosophy held that the world is composed of atoms as many in kind as the various elements The Jains more nearly approximated to Democritus by teaching that all atoms were of the same kind producing different effects by diverse modes of combinations Kanada believed light and heat to be varieties of the same substance Udayana taught that all heat comes from the Sun and Vachaspati like Newton interpreted light as composed of minute particles emitted by substances and striking the eye Stcherbatsky F Th 1930 1962 Buddhist Logic Volume 1 p 19 Dover New York The Buddhists denied the existence of substantial matter altogether Movement consists for them of moments it is a staccato movement momentary flashes of a stream of energy Everything is evanescent says the Buddhist because there is no stuff Both systems Sankhya and later Indian Buddhism share in common a tendency to push the analysis of existence up to its minutest last elements which are imagined as absolute qualities or things possessing only one unique quality They are called qualities guna dharma in both systems in the sense of absolute qualities a kind of atomic or intra atomic energies of which the empirical things are composed Both systems therefore agree in denying the objective reality of the categories of Substance and Quality and of the relation of Inference uniting them There is in Sankhya philosophy no separate existence of qualities What we call quality is but a particular manifestation of a subtle entity To every new unit of quality corresponds a subtle quantum of matter which is called guna quality but represents a subtle substantive entity The same applies to early Buddhism where all qualities are substantive or more precisely dynamic entities although they are also called dharmas qualities Donald Wayne Viney 1985 The Cosmological Argument Charles Hartshorne and the Existence of God SUNY Press pp 65 68 ISBN 978 0 87395 907 0 Aristotle Forster E S Dobson J F 1914 De Mundo Oxford The Clarendon Press p 2 Boyer C 1968 A History of Mathematics Wiley p 54 Neugebauer Otto E 1945 The History of Ancient Astronomy Problems and Methods Journal of Near Eastern Studies 4 1 166 173 doi 10 1086 370729 JSTOR 595168 S2CID 162347339 the Chaldaean Seleucus from Seleucia Sarton George 1955 Chaldaean Astronomy of the Last Three Centuries B C Journal of the American Oriental Society 75 3 166 73 169 doi 10 2307 595168 JSTOR 595168 the heliocentrical astronomy invented by Aristarchos of Samos and still defended a century later by Seleucos the Babylonian William P D Wightman 1951 1953 The Growth of Scientific Ideas Yale University Press p 38 where Wightman calls him Seleukos the Chaldean Lucio Russo Flussi e riflussi Feltrinelli Milano 2003 ISBN 88 07 10349 4 Bartel 1987 p 527 Bartel 1987 pp 527 29 Bartel 1987 pp 529 34 Bartel 1987 pp 534 7 Nasr Seyyed H 1993 1964 An Introduction to Islamic Cosmological Doctrines 2nd ed 1st edition by Harvard University Press 2nd edition by State University of New York Press pp 135 36 ISBN 978 0 7914 1515 3 Misner Thorne and Wheeler p 754 Ali Ema Akabara Science in the Quran Vol 1 Malik Library p 218 Ragep F Jamil 2001 Tusi and Copernicus The Earth s Motion in Context Science in Context 14 1 2 145 63 doi 10 1017 s0269889701000060 S2CID 145372613 a b Misner Thorne and Wheeler pp 755 56 a b Misner Thorne and Wheeler p 756 de Cheseaux JPL 1744 Traite de la Comete Lausanne pp 223ff Reprinted as Appendix II in Dickson FP 1969 The Bowl of Night The Physical Universe and Scientific Thought Cambridge MA M I T Press ISBN 978 0 262 54003 2 Olbers HWM 1826 Unknown title Bode s Jahrbuch 111 Reprinted as Appendix I in Dickson FP 1969 The Bowl of Night The Physical Universe and Scientific Thought Cambridge MA M I T Press ISBN 978 0 262 54003 2 Jeans J H 1902 The Stability of a Spherical Nebula Philosophical Transactions of the Royal Society A 199 312 320 1 53 Bibcode 1902RSPTA 199 1J doi 10 1098 rsta 1902 0012 JSTOR 90845 Misner Thorne and Wheeler p 757 Sharov Aleksandr Sergeevich Novikov Igor Dmitrievich 1993 Edwin Hubble the discoverer of the big bang universe Cambridge University Press p 34 ISBN 978 0 521 41617 7 Archived from the original on June 23 2013 Retrieved December 31 2011 Einstein A 1917 Kosmologische Betrachtungen zur allgemeinen Relativitatstheorie Preussische Akademie der Wissenschaften Sitzungsberichte 1917 part 1 142 52 Bibliography Bartel Leendert van der Waerden 1987 The Heliocentric System in Greek Persian and Hindu Astronomy Annals of the New York Academy of Sciences 500 1 525 45 Bibcode 1987NYASA 500 525V doi 10 1111 j 1749 6632 1987 tb37224 x S2CID 222087224 Landau L Lifshitz E 1975 The Classical Theory of Fields Course of Theoretical Physics Vol 2 revised 4th English ed New York Pergamon Press pp 358 97 ISBN 978 0 08 018176 9 Liddell H G amp Scott R 1968 A Greek English Lexicon Oxford University Press ISBN 978 0 19 864214 5 Misner C W Thorne Kip Wheeler J A 1973 Gravitation San Francisco W H Freeman pp 703 816 ISBN 978 0 7167 0344 0 Raine D J Thomas E G 2001 An Introduction to the Science of Cosmology Institute of Physics Publishing Rindler W 1977 Essential Relativity Special General and Cosmological New York Springer Verlag pp 193 244 ISBN 978 0 387 10090 6 Rees Martin ed 2012 Smithsonian Universe 2nd ed London Dorling Kindersley ISBN 978 0 7566 9841 6 External linksUniverse at Wikipedia s sister projects Definitions from Wiktionary Media from Commons Quotations from Wikiquote Listen to this article 4 parts 1 hour and 13 minutes source source source source source source source source These audio files were created from a revision of this article dated 13 June 2012 2012 06 13 and do not reflect subsequent edits Audio help More spoken articles NASA IPAC Extragalactic Database NED NED Distances There are about 1082 atoms in the observable universe LiveScience July 2021 This is why we will never know everything about our universe Forbes May 2019 Portals Stars Spaceflight Solar System Science Retrieved from https en wikipedia org w index php title Universe amp oldid 1136364549, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.