fbpx
Wikipedia

Astrophysics

Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena.[1][2] As one of the founders of the discipline, James Keeler, said, Astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space–what they are, rather than where they are."[3] Among the subjects studied are the Sun (solar physics), other stars, galaxies, extrasolar planets, the interstellar medium and the cosmic microwave background.[4][5] Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, astrophysicists apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

In practice, modern astronomical research often involves a substantial amount of work in the realms of theoretical and observational physics. Some areas of study for astrophysicists include their attempts to determine the properties of dark matter, dark energy, black holes, and other celestial bodies; and the origin and ultimate fate of the universe.[4] Topics also studied by theoretical astrophysicists include Solar System formation and evolution; stellar dynamics and evolution; galaxy formation and evolution; magnetohydrodynamics; large-scale structure of matter in the universe; origin of cosmic rays; general relativity, special relativity, quantum and physical cosmology, including string cosmology and astroparticle physics.

History

 
Early 1900s comparison of elemental, solar, and stellar spectra

Astronomy is an ancient science, long separated from the study of terrestrial physics. In the Aristotelian worldview, bodies in the sky appeared to be unchanging spheres whose only motion was uniform motion in a circle, while the earthly world was the realm which underwent growth and decay and in which natural motion was in a straight line and ended when the moving object reached its goal. Consequently, it was held that the celestial region was made of a fundamentally different kind of matter from that found in the terrestrial sphere; either Fire as maintained by Plato, or Aether as maintained by Aristotle.[6][7] During the 17th century, natural philosophers such as Galileo,[8] Descartes,[9] and Newton[10] began to maintain that the celestial and terrestrial regions were made of similar kinds of material and were subject to the same natural laws.[11] Their challenge was that the tools had not yet been invented with which to prove these assertions.[12]

For much of the nineteenth century, astronomical research was focused on the routine work of measuring the positions and computing the motions of astronomical objects.[13][14] A new astronomy, soon to be called astrophysics, began to emerge when William Hyde Wollaston and Joseph von Fraunhofer independently discovered that, when decomposing the light from the Sun, a multitude of dark lines (regions where there was less or no light) were observed in the spectrum.[15] By 1860 the physicist, Gustav Kirchhoff, and the chemist, Robert Bunsen, had demonstrated that the dark lines in the solar spectrum corresponded to bright lines in the spectra of known gases, specific lines corresponding to unique chemical elements.[16] Kirchhoff deduced that the dark lines in the solar spectrum are caused by absorption by chemical elements in the Solar atmosphere.[17] In this way it was proved that the chemical elements found in the Sun and stars were also found on Earth.

Among those who extended the study of solar and stellar spectra was Norman Lockyer, who in 1868 detected radiant, as well as dark lines in solar spectra. Working with chemist Edward Frankland to investigate the spectra of elements at various temperatures and pressures, he could not associate a yellow line in the solar spectrum with any known elements. He thus claimed the line represented a new element, which was called helium, after the Greek Helios, the Sun personified.[18][19]

In 1885, Edward C. Pickering undertook an ambitious program of stellar spectral classification at Harvard College Observatory, in which a team of woman computers, notably Williamina Fleming, Antonia Maury, and Annie Jump Cannon, classified the spectra recorded on photographic plates. By 1890, a catalog of over 10,000 stars had been prepared that grouped them into thirteen spectral types. Following Pickering's vision, by 1924 Cannon expanded the catalog to nine volumes and over a quarter of a million stars, developing the Harvard Classification Scheme which was accepted for worldwide use in 1922.[20]

In 1895, George Ellery Hale and James E. Keeler, along with a group of ten associate editors from Europe and the United States,[21] established The Astrophysical Journal: An International Review of Spectroscopy and Astronomical Physics.[22] It was intended that the journal would fill the gap between journals in astronomy and physics, providing a venue for publication of articles on astronomical applications of the spectroscope; on laboratory research closely allied to astronomical physics, including wavelength determinations of metallic and gaseous spectra and experiments on radiation and absorption; on theories of the Sun, Moon, planets, comets, meteors, and nebulae; and on instrumentation for telescopes and laboratories.[21]

Around 1920, following the discovery of the Hertzsprung–Russell diagram still used as the basis for classifying stars and their evolution, Arthur Eddington anticipated the discovery and mechanism of nuclear fusion processes in stars, in his paper The Internal Constitution of the Stars.[23][24] At that time, the source of stellar energy was a complete mystery; Eddington correctly speculated that the source was fusion of hydrogen into helium, liberating enormous energy according to Einstein's equation E = mc2. This was a particularly remarkable development since at that time fusion and thermonuclear energy, and even that stars are largely composed of hydrogen (see metallicity), had not yet been discovered.[25]

In 1925 Cecilia Helena Payne (later Cecilia Payne-Gaposchkin) wrote an influential doctoral dissertation at Radcliffe College, in which she applied ionization theory to stellar atmospheres to relate the spectral classes to the temperature of stars.[26] Most significantly, she discovered that hydrogen and helium were the principal components of stars. Despite Eddington's suggestion, this discovery was so unexpected that her dissertation readers convinced her to modify the conclusion before publication. However, later research confirmed her discovery.[27]

By the end of the 20th century, studies of astronomical spectra had expanded to cover wavelengths extending from radio waves through optical, x-ray, and gamma wavelengths.[28] In the 21st century, it further expanded to include observations based on gravitational waves.

Observational astrophysics

 
Supernova remnant LMC N 63A imaged in x-ray (blue), optical (green) and radio (red) wavelengths. The X-ray glow is from material heated to about ten million degrees Celsius by a shock wave generated by the supernova explosion.

Observational astronomy is a division of the astronomical science that is concerned with recording and interpreting data, in contrast with theoretical astrophysics, which is mainly concerned with finding out the measurable implications of physical models. It is the practice of observing celestial objects by using telescopes and other astronomical apparatus.

The majority of astrophysical observations are made using the electromagnetic spectrum.

Other than electromagnetic radiation, few things may be observed from the Earth that originate from great distances. A few gravitational wave observatories have been constructed, but gravitational waves are extremely difficult to detect. Neutrino observatories have also been built, primarily to study the Sun. Cosmic rays consisting of very high-energy particles can be observed hitting the Earth's atmosphere.

Observations can also vary in their time scale. Most optical observations take minutes to hours, so phenomena that change faster than this cannot readily be observed. However, historical data on some objects is available, spanning centuries or millennia. On the other hand, radio observations may look at events on a millisecond timescale (millisecond pulsars) or combine years of data (pulsar deceleration studies). The information obtained from these different timescales is very different.

The study of the Sun has a special place in observational astrophysics. Due to the tremendous distance of all other stars, the Sun can be observed in a kind of detail unparalleled by any other star. Understanding the Sun serves as a guide to understanding of other stars.

The topic of how stars change, or stellar evolution, is often modeled by placing the varieties of star types in their respective positions on the Hertzsprung–Russell diagram, which can be viewed as representing the state of a stellar object, from birth to destruction.

Theoretical astrophysics

Theoretical astrophysicists use a wide variety of tools which include analytical models (for example, polytropes to approximate the behaviors of a star) and computational numerical simulations. Each has some advantages. Analytical models of a process are generally better for giving insight into the heart of what is going on. Numerical models can reveal the existence of phenomena and effects that would otherwise not be seen.[29][30]

Theorists in astrophysics endeavor to create theoretical models and figure out the observational consequences of those models. This helps allow observers to look for data that can refute a model or help in choosing between several alternate or conflicting models.

Theorists also try to generate or modify models to take into account new data. In the case of an inconsistency, the general tendency is to try to make minimal modifications to the model to fit the data. In some cases, a large amount of inconsistent data over time may lead to total abandonment of a model.

Topics studied by theoretical astrophysicists include stellar dynamics and evolution; galaxy formation and evolution; magnetohydrodynamics; large-scale structure of matter in the universe; origin of cosmic rays; general relativity and physical cosmology, including string cosmology and astroparticle physics. Relativistic astrophysics serves as a tool to gauge the properties of large-scale structures for which gravitation plays a significant role in physical phenomena investigated and as the basis for black hole (astro)physics and the study of gravitational waves.

Some widely accepted and studied theories and models in astrophysics, now included in the Lambda-CDM model, are the Big Bang, cosmic inflation, dark matter, dark energy and fundamental theories of physics.

Popularization

The roots of astrophysics can be found in the seventeenth century emergence of a unified physics, in which the same laws applied to the celestial and terrestrial realms.[11] There were scientists who were qualified in both physics and astronomy who laid the firm foundation for the current science of astrophysics. In modern times, students continue to be drawn to astrophysics due to its popularization by the Royal Astronomical Society and notable educators such as prominent professors Lawrence Krauss, Subrahmanyan Chandrasekhar, Stephen Hawking, Hubert Reeves, Carl Sagan, Neil deGrasse Tyson and Patrick Moore. The efforts of the early, late, and present scientists continue to attract young people to study the history and science of astrophysics.[31][32][33] The television sitcom show The Big Bang Theory popularized the field of astrophysics with the general public, and featured some well known scientists like Stephen Hawking and Neil deGrasse Tyson.

See also

References

  1. ^ Maoz, Dan (23 February 2016). Astrophysics in a Nutshell. Princeton University Press. p. 272. ISBN 9781400881178.
  2. ^ "astrophysics". Merriam-Webster, Incorporated. from the original on 10 June 2011. Retrieved 2011-05-22.
  3. ^ Keeler, James E. (November 1897), "The Importance of Astrophysical Research and the Relation of Astrophysics to the Other Physical Sciences", The Astrophysical Journal, 6 (4): 271–288, Bibcode:1897ApJ.....6..271K, doi:10.1086/140401, PMID 17796068
  4. ^ a b "Focus Areas – NASA Science". nasa.gov.
  5. ^ "astronomy". Encyclopædia Britannica.
  6. ^ Lloyd, G. E. R. (1968). Aristotle: The Growth and Structure of His Thought. Cambridge: Cambridge University Press. pp. 134–135. ISBN 978-0-521-09456-6.
  7. ^ Cornford, Francis MacDonald (c. 1957) [1937]. Plato's Cosmology: The Timaeus of Plato translated, with a running commentary. Indianapolis: Bobbs Merrill Co. p. 118.
  8. ^ Galilei, Galileo (1989-04-15), Van Helden, Albert (ed.), Sidereus Nuncius or The Sidereal Messenger, Chicago: University of Chicago Press (published 1989), pp. 21, 47, ISBN 978-0-226-27903-9
  9. ^ Edward Slowik (2013) [2005]. "Descartes' Physics". Stanford Encyclopedia of Philosophy. Retrieved 2015-07-18.
  10. ^ Westfall, Richard S. (1983-04-29), Never at Rest: A Biography of Isaac Newton, Cambridge: Cambridge University Press (published 1980), pp. 731–732, ISBN 978-0-521-27435-7
  11. ^ a b Burtt, Edwin Arthur (2003) [First published 1924], The Metaphysical Foundations of Modern Science (second revised ed.), Mineola, NY: Dover Publications, pp. 30, 41, 241–2, ISBN 978-0-486-42551-1
  12. ^ Ladislav Kvasz (2013). "Galileo, Descartes, and Newton – Founders of the Language of Physics" (PDF). Institute of Philosophy, Academy of Sciences of the Czech Republic. Retrieved 2015-07-18. {{cite journal}}: Cite journal requires |journal= (help)
  13. ^ Case, Stephen (2015), "'Land-marks of the universe': John Herschel against the background of positional astronomy", Annals of Science, 72 (4): 417–434, Bibcode:2015AnSci..72..417C, doi:10.1080/00033790.2015.1034588, PMID 26221834, The great majority of astronomers working in the early nineteenth century were not interested in stars as physical objects. Far from being bodies with physical properties to be investigated, the stars were seen as markers measured in order to construct an accurate, detailed and precise background against which solar, lunar and planetary motions could be charted, primarily for terrestrial applications.
  14. ^ Donnelly, Kevin (September 2014), "On the boredom of science: positional astronomy in the nineteenth century", The British Journal for the History of Science, 47 (3): 479–503, doi:10.1017/S0007087413000915, S2CID 146382057
  15. ^ Hearnshaw, J.B. (1986). The analysis of starlight. Cambridge: Cambridge University Press. pp. 23–29. ISBN 978-0-521-39916-6.
  16. ^ Kirchhoff, Gustav (1860), "Ueber die Fraunhofer'schen Linien", Annalen der Physik, 185 (1): 148–150, Bibcode:1860AnP...185..148K, doi:10.1002/andp.18601850115
  17. ^ Kirchhoff, Gustav (1860), "Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht", Annalen der Physik, 185 (2): 275–301, Bibcode:1860AnP...185..275K, doi:10.1002/andp.18601850205
  18. ^ Cortie, A. L. (1921), "Sir Norman Lockyer, 1836 – 1920", The Astrophysical Journal, 53: 233–248, Bibcode:1921ApJ....53..233C, doi:10.1086/142602
  19. ^ Jensen, William B. (2004), "Why Helium Ends in "-ium"" (PDF), Journal of Chemical Education, 81 (7): 944–945, Bibcode:2004JChEd..81..944J, doi:10.1021/ed081p944
  20. ^ Hetherington, Norriss S.; McCray, W. Patrick, Weart, Spencer R. (ed.), , American Institute of Physics, Center for the History of Physics, archived from the original on September 7, 2015, retrieved July 19, 2015
  21. ^ a b Hale, George Ellery (1895), "The Astrophysical Journal", The Astrophysical Journal, 1 (1): 80–84, Bibcode:1895ApJ.....1...80H, doi:10.1086/140011
  22. ^ The Astrophysical Journal. 1 (1).
  23. ^ Eddington, A. S. (October 1920), "The Internal Constitution of the Stars", The Scientific Monthly, 11 (4): 297–303, Bibcode:1920Sci....52..233E, doi:10.1126/science.52.1341.233, JSTOR 6491, PMID 17747682
  24. ^ Eddington, A. S. (1916). "On the radiative equilibrium of the stars". Monthly Notices of the Royal Astronomical Society. 77: 16–35. Bibcode:1916MNRAS..77...16E. doi:10.1093/mnras/77.1.16.
  25. ^ McCracken, Garry; Stott, Peter (2013-01-01). McCracken, Garry; Stott, Peter (eds.). Fusion (Second ed.). Boston: Academic Press. p. 13. doi:10.1016/b978-0-12-384656-3.00002-7. ISBN 978-0-12-384656-3. Eddington had realized that there would be a mass loss if four hydrogen atoms combined to form a single helium atom. Einstein's equivalence of mass and energy led directly to the suggestion that this could be the long-sought process that produces the energy in the stars! It was an inspired guess, all the more remarkable because the structure of the nucleus and the mechanisms of these reactions were not fully understood.
  26. ^ Payne, C. H. (1925), Stellar Atmospheres; A Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars (PhD Thesis), Cambridge, Massachusetts: Radcliffe College, Bibcode:1925PhDT.........1P
  27. ^ Haramundanis, Katherine (2007), "Payne-Gaposchkin [Payne], Cecilia Helena", in Hockey, Thomas; Trimble, Virginia; Williams, Thomas R. (eds.), Biographical Encyclopedia of Astronomers, New York: Springer, pp. 876–878, ISBN 978-0-387-30400-7, retrieved July 19, 2015
  28. ^ Biermann, Peter L.; Falcke, Heino (1998), "Frontiers of Astrophysics: Workshop Summary", in Panvini, Robert S.; Weiler, Thomas J. (eds.), Fundamental particles and interactions: Frontiers in contemporary physics an international lecture and workshop series. AIP Conference Proceedings, vol. 423, American Institute of Physics, pp. 236–248, arXiv:astro-ph/9711066, Bibcode:1998AIPC..423..236B, doi:10.1063/1.55085, ISBN 1-56396-725-1
  29. ^ Roth, H. (1932), "A Slowly Contracting or Expanding Fluid Sphere and its Stability", Physical Review, 39 (3): 525–529, Bibcode:1932PhRv...39..525R, doi:10.1103/PhysRev.39.525
  30. ^ Eddington, A.S. (1988) [1926], "Internal Constitution of the Stars", Science, New York: Cambridge University Press, 52 (1341): 233–240, Bibcode:1920Sci....52..233E, doi:10.1126/science.52.1341.233, ISBN 978-0-521-33708-3, PMID 17747682
  31. ^ D. Mark Manley (2012). "Famous Astronomers and Astrophysicists". Kent State University. Retrieved 2015-07-17.
  32. ^ The science.ca team (2015). "Hubert Reeves – Astronomy, Astrophysics and Space Science". GCS Research Society. Retrieved 2015-07-17.
  33. ^ "Neil deGrasse Tyson". Hayden Planetarium. 2015. Retrieved 2015-07-17.

Further reading

External links

  • Astronomy and Astrophysics, a European Journal
  • Astrophysical Journal
  • Cosmic Journey: A History of Scientific Cosmology from the American Institute of Physics
  • International Journal of Modern Physics D from World Scientific
  • List and directory of peer-reviewed Astronomy / Astrophysics Journals
  • Ned Wright's Cosmology Tutorial, UCLA

astrophysics, this, article, about, physics, determine, nature, astronomical, objects, physics, determine, their, positions, motions, celestial, mechanics, physical, study, largest, scale, structures, universe, physical, cosmology, journal, journal, science, t. This article is about the use of physics to determine the nature of astronomical objects For the use of physics to determine their positions and motions see Celestial mechanics For the physical study of the largest scale structures of the universe see Physical cosmology For the journal see Astrophysics journal Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena 1 2 As one of the founders of the discipline James Keeler said Astrophysics seeks to ascertain the nature of the heavenly bodies rather than their positions or motions in space what they are rather than where they are 3 Among the subjects studied are the Sun solar physics other stars galaxies extrasolar planets the interstellar medium and the cosmic microwave background 4 5 Emissions from these objects are examined across all parts of the electromagnetic spectrum and the properties examined include luminosity density temperature and chemical composition Because astrophysics is a very broad subject astrophysicists apply concepts and methods from many disciplines of physics including classical mechanics electromagnetism statistical mechanics thermodynamics quantum mechanics relativity nuclear and particle physics and atomic and molecular physics In practice modern astronomical research often involves a substantial amount of work in the realms of theoretical and observational physics Some areas of study for astrophysicists include their attempts to determine the properties of dark matter dark energy black holes and other celestial bodies and the origin and ultimate fate of the universe 4 Topics also studied by theoretical astrophysicists include Solar System formation and evolution stellar dynamics and evolution galaxy formation and evolution magnetohydrodynamics large scale structure of matter in the universe origin of cosmic rays general relativity special relativity quantum and physical cosmology including string cosmology and astroparticle physics Contents 1 History 2 Observational astrophysics 3 Theoretical astrophysics 4 Popularization 5 See also 6 References 7 Further reading 8 External linksHistory Edit Early 1900s comparison of elemental solar and stellar spectra Astronomy is an ancient science long separated from the study of terrestrial physics In the Aristotelian worldview bodies in the sky appeared to be unchanging spheres whose only motion was uniform motion in a circle while the earthly world was the realm which underwent growth and decay and in which natural motion was in a straight line and ended when the moving object reached its goal Consequently it was held that the celestial region was made of a fundamentally different kind of matter from that found in the terrestrial sphere either Fire as maintained by Plato or Aether as maintained by Aristotle 6 7 During the 17th century natural philosophers such as Galileo 8 Descartes 9 and Newton 10 began to maintain that the celestial and terrestrial regions were made of similar kinds of material and were subject to the same natural laws 11 Their challenge was that the tools had not yet been invented with which to prove these assertions 12 For much of the nineteenth century astronomical research was focused on the routine work of measuring the positions and computing the motions of astronomical objects 13 14 A new astronomy soon to be called astrophysics began to emerge when William Hyde Wollaston and Joseph von Fraunhofer independently discovered that when decomposing the light from the Sun a multitude of dark lines regions where there was less or no light were observed in the spectrum 15 By 1860 the physicist Gustav Kirchhoff and the chemist Robert Bunsen had demonstrated that the dark lines in the solar spectrum corresponded to bright lines in the spectra of known gases specific lines corresponding to unique chemical elements 16 Kirchhoff deduced that the dark lines in the solar spectrum are caused by absorption by chemical elements in the Solar atmosphere 17 In this way it was proved that the chemical elements found in the Sun and stars were also found on Earth Among those who extended the study of solar and stellar spectra was Norman Lockyer who in 1868 detected radiant as well as dark lines in solar spectra Working with chemist Edward Frankland to investigate the spectra of elements at various temperatures and pressures he could not associate a yellow line in the solar spectrum with any known elements He thus claimed the line represented a new element which was called helium after the Greek Helios the Sun personified 18 19 In 1885 Edward C Pickering undertook an ambitious program of stellar spectral classification at Harvard College Observatory in which a team of woman computers notably Williamina Fleming Antonia Maury and Annie Jump Cannon classified the spectra recorded on photographic plates By 1890 a catalog of over 10 000 stars had been prepared that grouped them into thirteen spectral types Following Pickering s vision by 1924 Cannon expanded the catalog to nine volumes and over a quarter of a million stars developing the Harvard Classification Scheme which was accepted for worldwide use in 1922 20 In 1895 George Ellery Hale and James E Keeler along with a group of ten associate editors from Europe and the United States 21 established The Astrophysical Journal An International Review of Spectroscopy and Astronomical Physics 22 It was intended that the journal would fill the gap between journals in astronomy and physics providing a venue for publication of articles on astronomical applications of the spectroscope on laboratory research closely allied to astronomical physics including wavelength determinations of metallic and gaseous spectra and experiments on radiation and absorption on theories of the Sun Moon planets comets meteors and nebulae and on instrumentation for telescopes and laboratories 21 Around 1920 following the discovery of the Hertzsprung Russell diagram still used as the basis for classifying stars and their evolution Arthur Eddington anticipated the discovery and mechanism of nuclear fusion processes in stars in his paper The Internal Constitution of the Stars 23 24 At that time the source of stellar energy was a complete mystery Eddington correctly speculated that the source was fusion of hydrogen into helium liberating enormous energy according to Einstein s equation E mc2 This was a particularly remarkable development since at that time fusion and thermonuclear energy and even that stars are largely composed of hydrogen see metallicity had not yet been discovered 25 In 1925 Cecilia Helena Payne later Cecilia Payne Gaposchkin wrote an influential doctoral dissertation at Radcliffe College in which she applied ionization theory to stellar atmospheres to relate the spectral classes to the temperature of stars 26 Most significantly she discovered that hydrogen and helium were the principal components of stars Despite Eddington s suggestion this discovery was so unexpected that her dissertation readers convinced her to modify the conclusion before publication However later research confirmed her discovery 27 By the end of the 20th century studies of astronomical spectra had expanded to cover wavelengths extending from radio waves through optical x ray and gamma wavelengths 28 In the 21st century it further expanded to include observations based on gravitational waves Observational astrophysics Edit Supernova remnant LMC N 63A imaged in x ray blue optical green and radio red wavelengths The X ray glow is from material heated to about ten million degrees Celsius by a shock wave generated by the supernova explosion Observational astronomy is a division of the astronomical science that is concerned with recording and interpreting data in contrast with theoretical astrophysics which is mainly concerned with finding out the measurable implications of physical models It is the practice of observing celestial objects by using telescopes and other astronomical apparatus The majority of astrophysical observations are made using the electromagnetic spectrum Radio astronomy studies radiation with a wavelength greater than a few millimeters Example areas of study are radio waves usually emitted by cold objects such as interstellar gas and dust clouds the cosmic microwave background radiation which is the redshifted light from the Big Bang pulsars which were first detected at microwave frequencies The study of these waves requires very large radio telescopes Infrared astronomy studies radiation with a wavelength that is too long to be visible to the naked eye but is shorter than radio waves Infrared observations are usually made with telescopes similar to the familiar optical telescopes Objects colder than stars such as planets are normally studied at infrared frequencies Optical astronomy was the earliest kind of astronomy Telescopes paired with a charge coupled device or spectroscopes are the most common instruments used The Earth s atmosphere interferes somewhat with optical observations so adaptive optics and space telescopes are used to obtain the highest possible image quality In this wavelength range stars are highly visible and many chemical spectra can be observed to study the chemical composition of stars galaxies and nebulae Ultraviolet X ray and gamma ray astronomy study very energetic processes such as binary pulsars black holes magnetars and many others These kinds of radiation do not penetrate the Earth s atmosphere well There are two methods in use to observe this part of the electromagnetic spectrum space based telescopes and ground based imaging air Cherenkov telescopes IACT Examples of Observatories of the first type are RXTE the Chandra X ray Observatory and the Compton Gamma Ray Observatory Examples of IACTs are the High Energy Stereoscopic System H E S S and the MAGIC telescope Other than electromagnetic radiation few things may be observed from the Earth that originate from great distances A few gravitational wave observatories have been constructed but gravitational waves are extremely difficult to detect Neutrino observatories have also been built primarily to study the Sun Cosmic rays consisting of very high energy particles can be observed hitting the Earth s atmosphere Observations can also vary in their time scale Most optical observations take minutes to hours so phenomena that change faster than this cannot readily be observed However historical data on some objects is available spanning centuries or millennia On the other hand radio observations may look at events on a millisecond timescale millisecond pulsars or combine years of data pulsar deceleration studies The information obtained from these different timescales is very different The study of the Sun has a special place in observational astrophysics Due to the tremendous distance of all other stars the Sun can be observed in a kind of detail unparalleled by any other star Understanding the Sun serves as a guide to understanding of other stars The topic of how stars change or stellar evolution is often modeled by placing the varieties of star types in their respective positions on the Hertzsprung Russell diagram which can be viewed as representing the state of a stellar object from birth to destruction Theoretical astrophysics EditSee also Theoretical astronomy Theoretical astrophysicists use a wide variety of tools which include analytical models for example polytropes to approximate the behaviors of a star and computational numerical simulations Each has some advantages Analytical models of a process are generally better for giving insight into the heart of what is going on Numerical models can reveal the existence of phenomena and effects that would otherwise not be seen 29 30 Theorists in astrophysics endeavor to create theoretical models and figure out the observational consequences of those models This helps allow observers to look for data that can refute a model or help in choosing between several alternate or conflicting models Theorists also try to generate or modify models to take into account new data In the case of an inconsistency the general tendency is to try to make minimal modifications to the model to fit the data In some cases a large amount of inconsistent data over time may lead to total abandonment of a model Topics studied by theoretical astrophysicists include stellar dynamics and evolution galaxy formation and evolution magnetohydrodynamics large scale structure of matter in the universe origin of cosmic rays general relativity and physical cosmology including string cosmology and astroparticle physics Relativistic astrophysics serves as a tool to gauge the properties of large scale structures for which gravitation plays a significant role in physical phenomena investigated and as the basis for black hole astro physics and the study of gravitational waves Some widely accepted and studied theories and models in astrophysics now included in the Lambda CDM model are the Big Bang cosmic inflation dark matter dark energy and fundamental theories of physics Popularization EditThe roots of astrophysics can be found in the seventeenth century emergence of a unified physics in which the same laws applied to the celestial and terrestrial realms 11 There were scientists who were qualified in both physics and astronomy who laid the firm foundation for the current science of astrophysics In modern times students continue to be drawn to astrophysics due to its popularization by the Royal Astronomical Society and notable educators such as prominent professors Lawrence Krauss Subrahmanyan Chandrasekhar Stephen Hawking Hubert Reeves Carl Sagan Neil deGrasse Tyson and Patrick Moore The efforts of the early late and present scientists continue to attract young people to study the history and science of astrophysics 31 32 33 The television sitcom show The Big Bang Theory popularized the field of astrophysics with the general public and featured some well known scientists like Stephen Hawking and Neil deGrasse Tyson See also EditAstrochemistry Astronomical observatories Astronomical spectroscopy Astroparticle physics Gravitational wave astronomy Hertzsprung Russell diagram High energy astronomy Important publications in astrophysics List of astronomers includes astrophysicists Neutrino astronomy future prospects Timeline of gravitational physics and relativity Timeline of knowledge about galaxies clusters of galaxies and large scale structure Timeline of white dwarfs neutron stars and supernovaeReferences Edit Maoz Dan 23 February 2016 Astrophysics in a Nutshell Princeton University Press p 272 ISBN 9781400881178 astrophysics Merriam Webster Incorporated Archived from the original on 10 June 2011 Retrieved 2011 05 22 Keeler James E November 1897 The Importance of Astrophysical Research and the Relation of Astrophysics to the Other Physical Sciences The Astrophysical Journal 6 4 271 288 Bibcode 1897ApJ 6 271K doi 10 1086 140401 PMID 17796068 a b Focus Areas NASA Science nasa gov astronomy Encyclopaedia Britannica Lloyd G E R 1968 Aristotle The Growth and Structure of His Thought Cambridge Cambridge University Press pp 134 135 ISBN 978 0 521 09456 6 Cornford Francis MacDonald c 1957 1937 Plato s Cosmology TheTimaeusof Plato translated with a running commentary Indianapolis Bobbs Merrill Co p 118 Galilei Galileo 1989 04 15 Van Helden Albert ed Sidereus Nuncius or The Sidereal Messenger Chicago University of Chicago Press published 1989 pp 21 47 ISBN 978 0 226 27903 9 Edward Slowik 2013 2005 Descartes Physics Stanford Encyclopedia of Philosophy Retrieved 2015 07 18 Westfall Richard S 1983 04 29 Never at Rest A Biography of Isaac Newton Cambridge Cambridge University Press published 1980 pp 731 732 ISBN 978 0 521 27435 7 a b Burtt Edwin Arthur 2003 First published 1924 The Metaphysical Foundations of Modern Science second revised ed Mineola NY Dover Publications pp 30 41 241 2 ISBN 978 0 486 42551 1 Ladislav Kvasz 2013 Galileo Descartes and Newton Founders of the Language of Physics PDF Institute of Philosophy Academy of Sciences of the Czech Republic Retrieved 2015 07 18 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Case Stephen 2015 Land marks of the universe John Herschel against the background of positional astronomy Annals of Science 72 4 417 434 Bibcode 2015AnSci 72 417C doi 10 1080 00033790 2015 1034588 PMID 26221834 The great majority of astronomers working in the early nineteenth century were not interested in stars as physical objects Far from being bodies with physical properties to be investigated the stars were seen as markers measured in order to construct an accurate detailed and precise background against which solar lunar and planetary motions could be charted primarily for terrestrial applications Donnelly Kevin September 2014 On the boredom of science positional astronomy in the nineteenth century The British Journal for the History of Science 47 3 479 503 doi 10 1017 S0007087413000915 S2CID 146382057 Hearnshaw J B 1986 The analysis of starlight Cambridge Cambridge University Press pp 23 29 ISBN 978 0 521 39916 6 Kirchhoff Gustav 1860 Ueber die Fraunhofer schen Linien Annalen der Physik 185 1 148 150 Bibcode 1860AnP 185 148K doi 10 1002 andp 18601850115 Kirchhoff Gustav 1860 Ueber das Verhaltniss zwischen dem Emissionsvermogen und dem Absorptionsvermogen der Korper fur Warme und Licht Annalen der Physik 185 2 275 301 Bibcode 1860AnP 185 275K doi 10 1002 andp 18601850205 Cortie A L 1921 Sir Norman Lockyer 1836 1920 The Astrophysical Journal 53 233 248 Bibcode 1921ApJ 53 233C doi 10 1086 142602 Jensen William B 2004 Why Helium Ends in ium PDF Journal of Chemical Education 81 7 944 945 Bibcode 2004JChEd 81 944J doi 10 1021 ed081p944 Hetherington Norriss S McCray W Patrick Weart Spencer R ed Spectroscopy and the Birth of Astrophysics American Institute of Physics Center for the History of Physics archived from the original on September 7 2015 retrieved July 19 2015 a b Hale George Ellery 1895 The Astrophysical Journal The Astrophysical Journal 1 1 80 84 Bibcode 1895ApJ 1 80H doi 10 1086 140011 The Astrophysical Journal 1 1 Eddington A S October 1920 The Internal Constitution of the Stars The Scientific Monthly 11 4 297 303 Bibcode 1920Sci 52 233E doi 10 1126 science 52 1341 233 JSTOR 6491 PMID 17747682 Eddington A S 1916 On the radiative equilibrium of the stars Monthly Notices of the Royal Astronomical Society 77 16 35 Bibcode 1916MNRAS 77 16E doi 10 1093 mnras 77 1 16 McCracken Garry Stott Peter 2013 01 01 McCracken Garry Stott Peter eds Fusion Second ed Boston Academic Press p 13 doi 10 1016 b978 0 12 384656 3 00002 7 ISBN 978 0 12 384656 3 Eddington had realized that there would be a mass loss if four hydrogen atoms combined to form a single helium atom Einstein s equivalence of mass and energy led directly to the suggestion that this could be the long sought process that produces the energy in the stars It was an inspired guess all the more remarkable because the structure of the nucleus and the mechanisms of these reactions were not fully understood Payne C H 1925 Stellar Atmospheres A Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars PhD Thesis Cambridge Massachusetts Radcliffe College Bibcode 1925PhDT 1P Haramundanis Katherine 2007 Payne Gaposchkin Payne Cecilia Helena in Hockey Thomas Trimble Virginia Williams Thomas R eds Biographical Encyclopedia of Astronomers New York Springer pp 876 878 ISBN 978 0 387 30400 7 retrieved July 19 2015 Biermann Peter L Falcke Heino 1998 Frontiers of Astrophysics Workshop Summary in Panvini Robert S Weiler Thomas J eds Fundamental particles and interactions Frontiers in contemporary physics an international lecture and workshop series AIP Conference Proceedings vol 423 American Institute of Physics pp 236 248 arXiv astro ph 9711066 Bibcode 1998AIPC 423 236B doi 10 1063 1 55085 ISBN 1 56396 725 1 Roth H 1932 A Slowly Contracting or Expanding Fluid Sphere and its Stability Physical Review 39 3 525 529 Bibcode 1932PhRv 39 525R doi 10 1103 PhysRev 39 525 Eddington A S 1988 1926 Internal Constitution of the Stars Science New York Cambridge University Press 52 1341 233 240 Bibcode 1920Sci 52 233E doi 10 1126 science 52 1341 233 ISBN 978 0 521 33708 3 PMID 17747682 D Mark Manley 2012 Famous Astronomers and Astrophysicists Kent State University Retrieved 2015 07 17 The science ca team 2015 Hubert Reeves Astronomy Astrophysics and Space Science GCS Research Society Retrieved 2015 07 17 Neil deGrasse Tyson Hayden Planetarium 2015 Retrieved 2015 07 17 Further reading EditLongair Malcolm S 2006 The Cosmic Century A History of Astrophysics and Cosmology Cambridge Cambridge University Press ISBN 978 0 521 47436 8 Astrophysics Scholarpedia Expert articlesExternal links Edit Wikibooks has a book on the topic of Astrophysics Astronomy and Astrophysics a European Journal Astrophysical Journal Cosmic Journey A History of Scientific Cosmology from the American Institute of Physics International Journal of Modern Physics D from World Scientific List and directory of peer reviewed Astronomy Astrophysics Journals Ned Wright s Cosmology Tutorial UCLA Portals Physics Astronomy Stars Spaceflight Outer space Solar System Retrieved from https en wikipedia org w index php title Astrophysics amp oldid 1148813558, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.