fbpx
Wikipedia

Expansion of the universe

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time.[1] It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound to each other by gravity) recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

Cosmic expansion is a key feature of Big Bang cosmology. It can be modeled mathematically with the Friedmann–Lemaître–Robertson–Walker metric (FLRW), where it corresponds to an increase in the scale of the spatial part of the universe's spacetime metric tensor (which governs the size and geometry of spacetime). Within this framework, the separation of objects over time is associated with the expansion of space itself. However, this is not a generally covariant description but rather only a choice of coordinates. Contrary to common misconception, it is equally valid to adopt a description in which space does not expand and objects simply move apart while under the influence of their mutual gravity.[2][3][4] Although cosmic expansion is often framed as a consequence of general relativity, it is also predicted by Newtonian gravity.[5][6]

According to inflation theory, during the inflationary epoch about 10−32 of a second after the Big Bang, the universe suddenly expanded, and its volume increased by a factor of at least 1078 (an expansion of distance by a factor of at least 1026 in each of the three dimensions). This would be equivalent to expanding an object 1 nanometer (10−9 m, about half the width of a molecule of DNA) in length to one approximately 10.6 light-years (about 1017 m, or 62 trillion miles) long. Cosmic expansion subsequently decelerated to much slower rates, until around 9.8 billion years after the Big Bang (4 billion years ago) it began to gradually expand more quickly, and is still doing so. Physicists have postulated the existence of dark energy, appearing as a cosmological constant in the simplest gravitational models, as a way to explain this late-time acceleration. According to the simplest extrapolation of the currently favored cosmological model, the Lambda-CDM model, this acceleration becomes more dominant into the future.

History edit

In 1912–1914, Vesto M. Slipher discovered that light from remote galaxies was redshifted,[7][8] a phenomenon later interpreted as galaxies receding from the Earth. In 1922, Alexander Friedmann used the Einstein field equations to provide theoretical evidence that the universe is expanding.[9]

Swedish astronomer Knut Lundmark was the first person to find observational evidence for expansion in 1924. According to Ian Steer of the NASA/IPAC Extragalactic Database of Galaxy Distances, "Lundmark's extragalactic distance estimates were far more accurate than Hubble's, consistent with an expansion rate (Hubble constant) that was within 1% of the best measurements today."[10]

In 1927, Georges Lemaître independently reached a similar conclusion to Friedmann on a theoretical basis, and also presented observational evidence for a linear relationship between distance to galaxies and their recessional velocity.[11] Edwin Hubble observationally confirmed Lundmark's and Lemaître's findings in 1929.[12] Assuming the cosmological principle, these findings would imply that all galaxies are moving away from each other.

Astronomer Walter Baade recalculated the size of the known universe in the 1940s, doubling the previous calculation made by Hubble in 1929.[13][14][15] He announced this finding to considerable astonishment at the 1952 meeting of the International Astronomical Union in Rome. For most of the second half of the 20th century, the value of the Hubble constant was estimated to be between 50 and 90 km⋅s−1Mpc−1.

On 13 January 1994, NASA formally announced a completion of its repairs related to the main mirror of the Hubble Space Telescope, allowing for sharper images and, consequently, more accurate analyses of its observations.[16] Briefly after the repairs were made, Wendy Freedman's 1994 Key Project analyzed the recession velocity of M100 from the core of the Virgo Cluster, offering a Hubble constant measurement of 80±17 km⋅s−1⋅Mpc−1.[17] Later the same year, Adam Riess et al. used an empirical method of visual-band light-curve shapes to more finely estimate the luminosity of Type Ia supernovae. This further minimized the systematic measurement errors of the Hubble constant to 67±7 km⋅s−1⋅Mpc−1. Reiss's measurements on the recession velocity of the nearby Virgo Cluster more closely agree with subsequent and independent analyses of Cepheid variable calibrations of 1a supernovae, which estimates a Hubble constant of 73±7 km⋅s−1⋅Mpc−1.[18] In 2003, David Spergel's analysis of the cosmic microwave background during the first year observations of the Wilkinson Microwave Anisotropy Probe satellite (WMAP) further agreed with the estimated expansion rates for local galaxies, 72±5 km⋅s−1⋅Mpc−1.[19]

Structure of cosmic expansion edit

The universe at the largest scales is observed to be homogeneous (the same everywhere) and isotropic (the same in all directions), consistent with the cosmological principle. These constraints demand that any expansion of the universe accord with Hubble's law, in which objects recede from each observer with velocities proportional to their positions with respect to that observer. That is, recession velocities   scale with (observer-centered) positions   according to

 

where the Hubble rate   quantifies the rate of expansion.   is a function of cosmic time.

Dynamics of cosmic expansion edit

 
The expansion history depends on the density of the universe. Ω on this graph corresponds to the ratio of the matter density to the critical density, for a matter-dominated universe. The "acceleration" curve shows the trajectory of the scale factor for a universe with dark energy.

The expansion of the universe can be understood as a consequence of an initial impulse (possibly due to inflation), which sent the contents of the universe flying apart. The mutual gravitational attraction of the matter and radiation within the universe gradually slows this expansion over time, but expansion nevertheless continues due to momentum left over from the initial impulse. Also, certain exotic relativistic fluids, such as dark energy and inflation, exert gravitational repulsion in the cosmological context, which accelerates the expansion of the universe. A cosmological constant also has this effect.

Mathematically, the expansion of the universe is quantified by the scale factor,  , which is proportional to the average separation between objects, such as galaxies. The scale factor is a function of time and is conventionally set to be   at the present time. Because the universe is expanding,   is smaller in the past and larger in the future. Extrapolating back in time with certain cosmological models will yield a moment when the scale factor was zero; our current understanding of cosmology sets this time at 13.787 ± 0.020 billion years ago. If the universe continues to expand forever, the scale factor will approach infinity in the future. It is also possible in principle for the universe to stop expanding and begin to contract, which corresponds to the scale factor decreasing in time.

The scale factor   is a parameter of the FLRW metric, and its time evolution is governed by the Friedmann equations. The second Friedmann equation,

 

shows how the contents of the universe influence its expansion rate. Here,   is the gravitational constant,   is the energy density within the universe,   is the pressure,   is the speed of light, and   is the cosmological constant. A positive energy density leads to deceleration of the expansion,  , and a positive pressure further decelerates expansion. On the other hand, sufficiently negative pressure with   leads to accelerated expansion, and the cosmological constant also accelerates expansion. Nonrelativistic matter is essentially pressureless, with  , while a gas of ultrarelativistic particles (such as a photon gas) has positive pressure  . Negative-pressure fluids, like dark energy, are not experimentally confirmed, but the existence of dark energy is inferred from astronomical observations.


Distances in the expanding universe edit

Comoving coordinates edit

In an expanding universe, it is often useful to study the evolution of structure with the expansion of the universe factored out. This motivates the use of comoving coordinates, which are defined to grow proportionally with the scale factor. If an object is moving only with the Hubble flow of the expanding universe, with no other motion, then it remains stationary in comoving coordinates. The comoving coordinates are the spatial coordinates in the FLRW metric.

Shape of the universe edit

The universe is a four-dimensional spacetime, but within a universe that obeys the cosmological principle, there is a natural choice of three-dimensional spatial surface. These are the surfaces on which observers who are stationary in comoving coordinates agree on the age of the universe. In a universe governed by special relativity, such surfaces would be hyperboloids, because relativistic time dilation means that rapidly receding distant observers' clocks are slowed, so that spatial surfaces must bend "into the future" over long distances. However, within general relativity, the shape of these comoving synchronous spatial surfaces is affected by gravity. Current observations are consistent with these spatial surfaces being geometrically flat (so that, for example, the angles of a triangle add up to 180 degrees).

Cosmological horizons edit

An expanding universe typically has a finite age. Light, and other particles, can have propagated only a finite distance. The comoving distance that such particles can have covered over the age of the universe is known as the particle horizon, and the region of the universe that lies within our particle horizon is known as the observable universe.

If the dark energy that is inferred to dominate the universe today is a cosmological constant, then the particle horizon converges to a finite value in the infinite future. This implies that the amount of the universe that we will ever be able to observe is limited. Many systems exist whose light can never reach us, because there is a cosmic event horizon induced by the repulsive gravity of the dark energy.

When studying the evolution of structure within the universe, a natural scale emerges, known as the Hubble horizon. Cosmological perturbations much larger than the Hubble horizon are not dynamical, because gravitational influences do not have time to propagate across them, while perturbations much smaller than the Hubble horizon are straightforwardly governed by Newtonian gravitational dynamics.

Consequences of cosmic expansion edit

Velocities and redshifts edit

An object's peculiar velocity is its velocity with respect to the comoving coordinate grid, i.e., with respect to the average motion of the surrounding material. It is a measure of how a particle's motion deviates from the Hubble flow of the expanding universe. The peculiar velocities of nonrelativistic particles decay as the universe expands, in inverse proportion with the cosmic scale factor. This can be understood as a self-sorting effect. A particle that is moving in some direction gradually overtakes the Hubble flow of cosmic expansion in that direction, asymptotically approaching material with the same velocity as its own.

More generally, the peculiar momenta of both relativistic and nonrelativistic particles decay in inverse proportion with the scale factor. For photons, this leads to the cosmological redshift. While the cosmological redshift is often explained as the stretching of photon wavelengths due to "expansion of space", it is more naturally viewed as a consequence of the Doppler effect.[3]

Temperature edit

The universe cools as it expands. This follows from the decay of particles' peculiar momenta, as discussed above. It can also be understood as adiabatic cooling. The temperature of ultrarelativistic fluids, often called "radiation" and including the cosmic microwave background, scales inversely with the scale factor (i.e.  ). The temperature of nonrelativistic matter drops more sharply, scaling as the inverse square of the scale factor (i.e.  ).

Density edit

The contents of the universe dilute as it expands. The number of particles within a comoving volume remains fixed (on average), while the volume expands. For nonrelativistic matter, this implies that the energy density drops as  , where   is the scale factor.

For ultrarelativistic particles ("radiation"), the energy density drops more sharply as  . This is because in addition to the volume dilution of the particle count, the energy of each particle (including the rest mass energy) also drops significantly due to the decay of peculiar momenta.

In general, we can consider a perfect fluid with pressure  , where   is the energy density. The parameter   is the equation of state parameter. The energy density of such a fluid drops as

 

Nonrelativistic matter has   while radiation has  . For an exotic fluid with negative pressure, like dark energy, the energy density drops more slowly; if   it remains constant in time. If  , corresponding to phantom energy, the energy density grows as the universe expands.

Expansion history edit

 
A graphical representation of the expansion of the universe from the Big Bang to the present day, with the inflationary epoch represented as the dramatic expansion seen on the left. This visualization shows only a section of the universe; the empty space outside the diagram should not be taken to represent empty space outside the universe (which does not necessarily exist).

Cosmic inflation edit

Inflation is a period of accelerated expansion hypothesized to have occurred at a time of around 10−32 seconds. It would have been driven by the inflaton, a field that has a positive-energy false vacuum state. Inflation was originally proposed to explain the absence of exotic relics predicted by grand unified theories, such as magnetic monopoles, because the rapid expansion would have diluted such relics. It was subsequently realized that the accelerated expansion would also solve the horizon problem and the flatness problem. Additionally, quantum fluctuations during inflation would have created initial variations in the density of the universe, which gravity later amplified to yield the observed spectrum of matter density variations.[citation needed]

During inflation, the cosmic scale factor grew exponentially in time. In order to solve the horizon and flatness problems, inflation must have lasted long enough that the scale factor grew by at least a factor of e60 (about 1026).[citation needed]

Radiation epoch edit

The history of the universe after inflation but before a time of about 1 second is largely unknown.[20] However, the universe is known to have been dominated by ultrarelativistic Standard Model particles, conventionally called radiation, by the time of neutrino decoupling at about 1 second.[21] During radiation domination, cosmic expansion decelerated, with the scale factor growing proportionally with the square root of the time.

Matter epoch edit

Since radiation redshifts as the universe expands, eventually nonrelativistic matter came to dominate the energy density of the universe. This transition happened at a time of about 50 thousand years after the Big Bang. During the matter-dominated epoch, cosmic expansion also decelerated, with the scale factor growing as the 2/3 power of the time ( ). Also, gravitational structure formation is most efficient when nonrelativistic matter dominates, and this epoch is responsible for the formation of galaxies and the large-scale structure of the universe.

Dark energy edit

Around 3 billion years ago, at a time of about 11 billion years, dark energy is believed to have begun to dominate the energy density of the universe. This transition came about because dark energy does not dilute as the universe expands, instead maintaining a constant energy density. Similarly to inflation, dark energy drives accelerated expansion, such that the scale factor grows exponentially in time.

Measuring the expansion rate edit

 
When an object is receding, its light gets stretched (redshifted). When the object is approaching, its light gets compressed (blueshifted).

The most direct way to measure the expansion rate is to independently measure the recession velocities and the distances of distant objects, such as galaxies. The ratio between these quantities gives the Hubble rate, in accordance with Hubble's law. Typically, the distance is measured using a standard candle, which is an object or event for which the intrinsic brightness is known. The object's distance can then be inferred from the observed apparent brightness. Meanwhile, the recession speed is measured through the redshift. Hubble used this approach for his original measurement of the expansion rate, by measuring the brightness of Cepheid variable stars and the redshifts of their host galaxies. More recently, using Type Ia supernovae, the expansion rate was measured to be H0 = 73.24±1.74 (km/s)/Mpc.[22] This means that for every million parsecs of distance from the observer, recessional velocity of objects at that distance increases by about 73 kilometres per second (160,000 mph).

Supernovae are observable at such great distances that the light travel time therefrom can approach the age of the universe. Consequently, they can be used to measure not only the present-day expansion rate but also the expansion history. In work that was awarded the 2011 Nobel Prize in Physics, supernova observations were used to determine that cosmic expansion is accelerating in the present epoch.[23]

By assuming a cosmological model, e.g. the Lambda-CDM model, another possibility is to infer the present-day expansion rate from the sizes of the largest fluctuations seen in the cosmic microwave background. A higher expansion rate would imply a smaller characteristic size of CMB fluctuations, and vice versa. The Planck collaboration measured the expansion rate this way and determined H0 = 67.4±0.5 (km/s)/Mpc.[24] There is a disagreement between this measurement and the supernova-based measurements, known as the Hubble tension.

A third option proposed recently is to use information from gravitational wave events (especially those involving the merger of neutron stars, like GW170817) to measure the expansion rate.[25][26] Such measurements do not yet have the precision to resolve the Hubble tension.

In principle, the cosmic expansion history can also be measured by studying how redshifts, distances, fluxes, angular positions, and angular sizes of astronomical objects change over the course of the time that they are being observed. These effects are too small to have yet been detected. However, changes in redshift or flux could be observed by the Square Kilometre Array or Extremely Large Telescope in the mid-2030s.[27]

Conceptual considerations and misconceptions edit

Measuring distances in expanding space edit

 
 
Two views of an isometric embedding of part of the visible universe over most of its history, showing how a light ray (red line) can travel an effective distance of 28 billion light years (orange line) in just 13.8 billion years of cosmological time. (Mathematical details)

At cosmological scales, the present universe conforms to Euclidean space, what cosmologists describe as geometrically flat, to within experimental error.[28]

Consequently, the rules of Euclidean geometry associated with Euclid's fifth postulate hold in the present universe in 3D space. It is, however, possible that the geometry of past 3D space could have been highly curved. The curvature of space is often modeled using a non-zero Riemann curvature tensor in curvature of Riemannian manifolds. Euclidean "geometrically flat" space has a Riemann curvature tensor of zero.

"Geometrically flat" space has three dimensions and is consistent with Euclidean space. However, spacetime has four dimensions; it is not flat according to Einstein's general theory of relativity. Einstein's theory postulates that "matter and energy curve spacetime, and there is enough matter and energy to provide for curvature."[29]

In part to accommodate such different geometries, the expansion of the universe is inherently general-relativistic. It cannot be modeled with special relativity alone: Though such models exist, they may be at fundamental odds with the observed interaction between matter and spacetime seen in the universe.

The images to the right show two views of spacetime diagrams that show the large-scale geometry of the universe according to the ΛCDM cosmological model. Two of the dimensions of space are omitted, leaving one dimension of space (the dimension that grows as the cone gets larger) and one of time (the dimension that proceeds "up" the cone's surface). The narrow circular end of the diagram corresponds to a cosmological time of 700 million years after the Big Bang, while the wide end is a cosmological time of 18 billion years, where one can see the beginning of the accelerating expansion as a splaying outward of the spacetime, a feature that eventually dominates in this model. The purple grid lines mark cosmological time at intervals of one billion years from the Big Bang. The cyan grid lines mark comoving distance at intervals of one billion light-years in the present era (less in the past and more in the future). The circular curling of the surface is an artifact of the embedding with no physical significance and is done for illustrative purposes; a flat universe does not curl back onto itself. (A similar effect can be seen in the tubular shape of the pseudosphere.)

The brown line on the diagram is the worldline of Earth (or more precisely its location in space, even before it was formed). The yellow line is the worldline of the most distant known quasar. The red line is the path of a light beam emitted by the quasar about 13 billion years ago and reaching Earth at the present day. The orange line shows the present-day distance between the quasar and Earth, about 28 billion light-years, which is a larger distance than the age of the universe multiplied by the speed of light, ct.

According to the equivalence principle of general relativity, the rules of special relativity are locally valid in small regions of spacetime that are approximately flat. In particular, light always travels locally at the speed c; in the diagram, this means, according to the convention of constructing spacetime diagrams, that light beams always make an angle of 45° with the local grid lines. It does not follow, however, that light travels a distance ct in a time t, as the red worldline illustrates. While it always moves locally at c, its time in transit (about 13 billion years) is not related to the distance traveled in any simple way, since the universe expands as the light beam traverses space and time. The distance traveled is thus inherently ambiguous because of the changing scale of the universe. Nevertheless, there are two distances that appear to be physically meaningful: the distance between Earth and the quasar when the light was emitted, and the distance between them in the present era (taking a slice of the cone along the dimension defined as the spatial dimension). The former distance is about 4 billion light-years, much smaller than ct, whereas the latter distance (shown by the orange line) is about 28 billion light-years, much larger than ct. In other words, if space were not expanding today, it would take 28 billion years for light to travel between Earth and the quasar, while if the expansion had stopped at the earlier time, it would have taken only 4 billion years.

The light took much longer than 4 billion years to reach us though it was emitted from only 4 billion light-years away. In fact, the light emitted towards Earth was actually moving away from Earth when it was first emitted; the metric distance to Earth increased with cosmological time for the first few billion years of its travel time, also indicating that the expansion of space between Earth and the quasar at the early time was faster than the speed of light. None of this behavior originates from a special property of metric expansion, but rather from local principles of special relativity integrated over a curved surface.

Topology of expanding space edit

Over time, the space that makes up the universe is expanding. The words 'space' and 'universe', sometimes used interchangeably, have distinct meanings in this context. Here 'space' is a mathematical concept that stands for the three-dimensional manifold into which our respective positions are embedded, while 'universe' refers to everything that exists, including the matter and energy in space, the extra dimensions that may be wrapped up in various strings, and the time through which various events take place. The expansion of space is in reference to this 3D manifold only; that is, the description involves no structures such as extra dimensions or an exterior universe.[30]

The ultimate topology of space is a posteriori – something that in principle must be observed – as there are no constraints that can simply be reasoned out (in other words there cannot be any a priori constraints) on how the space in which we live is connected or whether it wraps around on itself as a compact space. Though certain cosmological models such as Gödel's universe even permit bizarre worldlines that intersect with themselves, ultimately the question as to whether we are in something like a "Pac-Man universe", where if traveling far enough in one direction would allow one to simply end up back in the same place like going all the way around the surface of a balloon (or a planet like the Earth), is an observational question that is constrained as measurable or non-measurable by the universe's global geometry. At present, observations are consistent with the universe having infinite extent and being a simply connected space, though cosmological horizons limit our ability to distinguish between simple and more complicated proposals. The universe could be infinite in extent or it could be finite; but the evidence that leads to the inflationary model of the early universe also implies that the "total universe" is much larger than the observable universe. Thus any edges or exotic geometries or topologies would not be directly observable since light has not reached scales on which such aspects of the universe, if they exist, are still allowed. For all intents and purposes, it is safe to assume that the universe is infinite in spatial extent, without edge or strange connectedness.[31]

Regardless of the overall shape of the universe, the question of what the universe is expanding into is one that does not require an answer according to the theories that describe the expansion; the way we define space in our universe in no way requires additional exterior space into which it can expand, since an expansion of an infinite expanse can happen without changing the infinite extent of the expanse. All that is certain is that the manifold of space in which we live simply has the property that the distances between objects are getting larger as time goes on. This only implies the simple observational consequences associated with the metric expansion explored below. No "outside" or embedding in hyperspace is required for an expansion to occur. The visualizations often seen of the universe growing as a bubble into nothingness are misleading in that respect. There is no reason to believe there is anything "outside" the expanding universe into which the universe expands.

Even if the overall spatial extent is infinite and thus the universe cannot get any "larger", we still say that space is expanding because, locally, the characteristic distance between objects is increasing. As an infinite space grows, it remains infinite.

Density of universe during expansion edit

Despite being extremely dense when very young and during part of its early expansion – far denser than is usually required to form a black hole – the universe did not re-collapse into a black hole. This is because commonly used calculations for gravitational collapse are usually based upon objects of relatively constant size, such as stars, and do not apply to rapidly expanding space such as the Big Bang.[citation needed][dubious ]

Effects of expansion on small scales edit

The expansion of space is sometimes described as a force that acts to push objects apart. Though this is an accurate description of the effect of the cosmological constant, it is not an accurate picture of the phenomenon of expansion in general.[32]

 
Animation of an expanding raisin bread model. As the bread doubles in width (depth and length), the distances between raisins also double.

In addition to slowing the overall expansion, gravity causes local clumping of matter into stars and galaxies. Once objects are formed and bound by gravity, they "drop out" of the expansion and do not subsequently expand under the influence of the cosmological metric, there being no force compelling them to do so.

There is no difference between the inertial expansion of the universe and the inertial separation of nearby objects in a vacuum; the former is simply a large-scale extrapolation of the latter.

Once objects are bound by gravity, they no longer recede from each other. Thus, the Andromeda Galaxy, which is bound to the Milky Way Galaxy, is actually falling towards us and is not expanding away. Within the Local Group, the gravitational interactions have changed the inertial patterns of objects such that there is no cosmological expansion taking place. Beyond the Local Group, the inertial expansion is measurable, though systematic gravitational effects imply that larger and larger parts of space will eventually fall out of the "Hubble Flow" and end up as bound, non-expanding objects up to the scales of superclusters of galaxies. Such future events are predicted by knowing the precise way the Hubble Flow is changing as well as the masses of the objects to which we are being gravitationally pulled. Currently, the Local Group is being gravitationally pulled towards either the Shapley Supercluster or the "Great Attractor", with which we would eventually merge if dark energy were not acting.

A consequence of metric expansion being due to inertial motion is that a uniform local "explosion" of matter into a vacuum can be locally described by the FLRW geometry, the same geometry that describes the expansion of the universe as a whole and was also the basis for the simpler Milne universe, which ignores the effects of gravity. In particular, general relativity predicts that light will move at the speed c with respect to the local motion of the exploding matter, a phenomenon analogous to frame dragging.

The situation changes somewhat with the introduction of dark energy or a cosmological constant. A cosmological constant due to a vacuum energy density has the effect of adding a repulsive force between objects that is proportional (not inversely proportional) to distance. Unlike inertia it actively "pulls" on objects that have clumped together under the influence of gravity, and even on individual atoms. However, this does not cause the objects to grow steadily or to disintegrate; unless they are very weakly bound, they will simply settle into an equilibrium state that is slightly (undetectably) larger than it would otherwise have been. As the universe expands and the matter in it thins, the gravitational attraction decreases (since it is proportional to the density), while the cosmological repulsion increases. Thus, the ultimate fate of the ΛCDM universe is a near-vacuum expanding at an ever-increasing rate under the influence of the cosmological constant. However, gravitationally bound objects like the Milky Way do not expand, and the Andromeda galaxy is moving fast enough towards us that it will still merge with the Milky Way in around 3 billion years.

Metric expansion and speed of light edit

At the end of the early universe's inflationary period, all the matter and energy in the universe was set on an inertial trajectory consistent with the equivalence principle and Einstein's general theory of relativity. This is when the precise and regular form of the universe's expansion had its origin (that is, matter in the universe is separating because it was separating in the past due to the inflaton field).[citation needed]

While special relativity prohibits objects from moving faster than light with respect to a local reference frame where spacetime can be treated as flat and unchanging, it does not apply to situations where spacetime curvature or evolution in time become important. These situations are described by general relativity, which allows the separation between two distant objects to increase faster than the speed of light, although the definition of "distance" here is somewhat different from that used in an inertial frame. The definition of distance used here is the summation or integration of local comoving distances, all done at constant local proper time. For example, galaxies that are farther than the Hubble radius, approximately 4.5 gigaparsecs or 14.7 billion light-years, away from us have a recession speed that is faster than the speed of light. Visibility of these objects depends on the exact expansion history of the universe. Light that is emitted today from galaxies beyond the more-distant cosmological event horizon, about 5 gigaparsecs or 16 billion light-years, will never reach us, although we can still see the light that these galaxies emitted in the past. Because of the high rate of expansion, it is also possible for a distance between two objects to be greater than the value calculated by multiplying the speed of light by the age of the universe. These details are a frequent source of confusion among amateurs and even professional physicists.[33] Due to the non-intuitive nature of the subject and what has been described by some as "careless" choices of wording, certain descriptions of the metric expansion of space and the misconceptions to which such descriptions can lead are an ongoing subject of discussion within the fields of education and communication of scientific concepts.[34][35][36][37]

Common analogies for cosmic expansion edit

The expansion of the universe is often illustrated with conceptual models where an expanding object is taken to represent expanding space. These models can be misleading to the extent that they give the false impression that expanding space can carry objects with it. In reality, the expansion of the universe corresponds only to the inertial motion of objects away from one another.

In the "ant on a rubber rope model" one imagines an ant (idealized as pointlike) crawling at a constant speed on a perfectly elastic rope that is constantly stretching. If we stretch the rope in accordance with the ΛCDM scale factor and think of the ant's speed as the speed of light, then this analogy is numerically accurate – the ant's position over time will match the path of the red line on the embedding diagram above.

In the "rubber sheet model", one replaces the rope with a flat two-dimensional rubber sheet that expands uniformly in all directions. The addition of a second spatial dimension raises the possibility of showing local perturbations of the spatial geometry by local curvature in the sheet.

In the "balloon model" the flat sheet is replaced by a spherical balloon that is inflated from an initial size of zero (representing the Big Bang). A balloon has positive Gaussian curvature while observations suggest that the real universe is spatially flat, but this inconsistency can be eliminated by making the balloon very large so that it is locally flat to within the limits of observation. This analogy is potentially confusing since it could wrongly suggest that the Big Bang took place at the center of the balloon. In fact points off the surface of the balloon have no meaning, even if they were occupied by the balloon at an earlier time.

In the "raisin bread model", one imagines a loaf of raisin bread expanding in an oven. The loaf (space) expands as a whole, but the raisins (gravitationally bound objects) do not expand; they merely grow farther away from each other.

See also edit

References edit

  1. ^ Overbye, Dennis (20 February 2017). "Cosmos Controversy: The Universe Is Expanding, but How Fast?". The New York Times. Retrieved 21 February 2017.
  2. ^ Peacock (2008), arXiv:0809.4573
  3. ^ a b Bunn & Hogg, American Journal of Physics 77, pp. 688–694 (2009), arXiv:0808.1081
  4. ^ Lewis, Australian Physics 53(3), pp. 95–100 (2016), arXiv:1605.08634
  5. ^ Tipler, Monthly Notices of the Royal Astronomical Society 282(1), pp. 206–210 (1996).
  6. ^ Gibbons & Ellis, Classical and Quantum Gravity 31 (2), 025003 (2014), arXiv:1308.1852
  7. ^ Slipher, V. M. (1913). "The Radial Velocity of the Andromeda Nebula". Lowell Observatory Bulletin. 1 (8): 56–57. Bibcode:1913LowOB...2...56S.
  8. ^ "Vesto Slipher – American astronomer".
  9. ^ Friedman, A. (1922). "Über die Krümmung des Raumes". Zeitschrift für Physik. 10 (1): 377–386. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID 125190902. translated in Friedmann, A. (1999). "On the Curvature of Space". General Relativity and Gravitation. 31 (12): 1991–2000. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741. S2CID 122950995.
  10. ^ Steer, Ian (October 2012). "Who discovered Universe expansion?". Nature. 490 (7419): 176. arXiv:1212.1359. doi:10.1038/490176c. ISSN 1476-4687. PMID 23060180. S2CID 47038783.
  11. ^ Lemaître, Georges (1927). "Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques" [A homogeneous universe of constant mass and increasing radius accounting for the radial speed of extra-galactic nebulae]. Annales de la Société Scientifique de Bruxelles. A47: 49–59. Bibcode:1927ASSB...47...49L.
  12. ^ "Astronomer sleuth solves mystery of Big Cosmos discovery". Space.com. 14 November 2011.
  13. ^ Baade, W. (1944) The resolution of Messier 32, NGC 205, and the central region of the Andromeda nebula. ApJ 100 pp. 137–146
  14. ^ Baade, W. (1956) The period-luminosity relation of the Cepheids. PASP 68. pp. 5–16
  15. ^ Allen, Nick. . The Cepheid Distance Scale: A History. Archived from the original on 10 December 2007. Retrieved 19 November 2011.
  16. ^ Trauger, J. T. (1994). ""The on-orbit performance of WFPC2"". Astrophysical Journal Letters. 435: L3. Bibcode:1994ApJ...435L...3T. doi:10.1086/187580.
  17. ^ Freedman, W. L. "The HST Key Project to Measure the Hubble Constant". www.stsci.edu. 813 Santa Barbara Street, Pasadena, California 91101.: Carnegie Observatories. Retrieved 17 June 2023.{{cite web}}: CS1 maint: location (link)
  18. ^ Riess, Adam G. (January 1995). ""Using Type IA supernova light curve shapes to measure the Hubble constant"". The Astrophysical Journal. 438: L17. arXiv:astro-ph/9410054. Bibcode:1995ApJ...438L..17R. doi:10.1086/187704. S2CID 118938423.
  19. ^ Spergel, D. N. (September 2003). "First-Year Wilkinson Microwave Anisotropy Probe (WMAP)1 Observations: Determination of Cosmological Parameters". The Astrophysical Journal Supplement Series. 148 (1): 175–194. arXiv:astro-ph/0302209. Bibcode:2003ApJS..148..175S. doi:10.1086/377226. S2CID 10794058.
  20. ^ Allahverdi et al., Open J. Astrophys. 4, 1 (2021), arXiv:2006.16182
  21. ^ de Salas et al., Physical Review D. 92, 123534 (2015), arXiv:1511.00672
  22. ^ Riess, Adam G.; Macri, Lucas M.; Hoffmann, Samantha L.; Scolnic, Dan; Casertano, Stefano; Filippenko, Alexei V.; Tucker, Brad E.; Reid, Mark J.; Jones, David O.; Silverman, Jeffrey M.; Chornock, Ryan; Challis, Peter; Yuan, Wenlong; Brown, Peter J.; Foley, Ryan J. (2016). "A 2.4% Determination of the Local Value of the Hubble Constant". The Astrophysical Journal. 826 (1): 56. arXiv:1604.01424. Bibcode:2016ApJ...826...56R. doi:10.3847/0004-637X/826/1/56. S2CID 118630031.
  23. ^ "The Nobel Prize in Physics 2011". NobelPrize.org. Retrieved 17 June 2023.
  24. ^ Collaboration, Planck (2020). "Planck 2018 results. VI. Cosmological parameters". Astronomy & Astrophysics. 641: A6. arXiv:1807.06209. Bibcode:2020A&A...641A...6P. doi:10.1051/0004-6361/201833910. S2CID 119335614.
  25. ^ Lerner, Louise (22 October 2018). "Gravitational waves could soon provide measure of universe's expansion". Phys.org. Retrieved 22 October 2018.
  26. ^ Chen, Hsin-Yu; Fishbach, Maya; Holz, Daniel E. (17 October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv:1712.06531. Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID 30333628. S2CID 52987203.
  27. ^ Bolejko, Krzysztof; Wang, Chengyi; Lewis, Geraint F. (2019). "Direct detection of the cosmic expansion: The redshift drift and the flux drift". arXiv:1907.04495 [astro-ph.CO].
  28. ^ Krauss, Lawrence M. (2012). A Universe from Nothing. Free Press. p. 82. ISBN 9781451624458.
  29. ^ Castelvecchi, Davide. "What Do You Mean, The Universe Is Flat? (Part I)". Scientific American Blog Network. Retrieved 17 June 2023.
  30. ^ Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton University Press. p. 73. ISBN 9780691019338.
  31. ^ Rothstein, Dave (23 April 2003). . Ask an Astronomer. Archived from the original on 8 June 2020. Retrieved 28 April 2017.
  32. ^ Pons, J. M.; Talavera, P. (2021). "On cosmological expansion and local physics". General Relativity and Gravitation. 53 (11): 105. arXiv:2011.01216. Bibcode:2021GReGr..53..105P. doi:10.1007/s10714-021-02874-4. S2CID 226236696.
  33. ^ Davis, Tamara M.; Lineweaver, Charles H. (2004). "Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe". Publications of the Astronomical Society of Australia. 21 (1): 97–109. arXiv:astro-ph/0310808. Bibcode:2004PASA...21...97D. doi:10.1071/AS03040. ISSN 1323-3580. S2CID 13068122.
  34. ^ Whiting, Alan B. (2004). "The Expansion of Space: Free Particle Motion and the Cosmological Redshift". The Observatory. 124: 174. arXiv:astro-ph/0404095. Bibcode:2004Obs...124..174W.
  35. ^ Bunn, E. F.; Hogg, D. W. (2009). "The kinematic origin of the cosmological redshift". American Journal of Physics. 77 (8): 688–694. arXiv:0808.1081. Bibcode:2009AmJPh..77..688B. doi:10.1119/1.3129103. S2CID 1365918.
  36. ^ Baryshev, Yu. V. (2008). "Expanding Space: The Root of Conceptual Problems of the Cosmological Physics". Practical Cosmology. 2: 20–30. arXiv:0810.0153. Bibcode:2008pc2..conf...20B.
  37. ^ Peacock, J. A. (2008). "A diatribe on expanding space". arXiv:0809.4573 [astro-ph].

Printed references edit

  • Eddington, Arthur. The Expanding Universe: Astronomy's 'Great Debate', 1900–1931. Press Syndicate of the University of Cambridge, 1933.
  • Liddle, Andrew R. and Lyth, David H. Cosmological Inflation and Large-Scale Structure. Cambridge University Press, 2000.
  • Lineweaver, Charles H. and Davis, Tamara M. "Misconceptions about the Big Bang", Scientific American, March 2005 (non-free content).
  • Mook, Delo E. and Thomas Vargish. Inside Relativity. Princeton University Press, 1991.

External links edit

  • Swenson, Jim, Answer to a question about the expanding universe 11 January 2009 at the Wayback Machine
  • Felder, Gary, "The Expanding universe".
  • NASA's WMAP team offers an "Explanation of the universal expansion" at an elementary level
  • Hubble Tutorial from the University of Wisconsin Physics Department 9 June 2014 at the Wayback Machine
  • from the University of Winnipeg: an illustration, but no explanation
  • "Ant on a balloon" analogy to explain the expanding universe at "Ask an Astronomer". (The astronomer who provides this explanation is not specified.)

expansion, universe, expansion, universe, increase, distance, between, gravitationally, unbound, parts, observable, universe, with, time, intrinsic, expansion, does, mean, that, universe, expands, into, anything, that, space, exists, outside, observer, univers. The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time 1 It is an intrinsic expansion so it does not mean that the universe expands into anything or that space exists outside it To any observer in the universe it appears that all but the nearest galaxies which are bound to each other by gravity recede at speeds that are proportional to their distance from the observer on average While objects cannot move faster than light this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects Cosmic expansion is a key feature of Big Bang cosmology It can be modeled mathematically with the Friedmann Lemaitre Robertson Walker metric FLRW where it corresponds to an increase in the scale of the spatial part of the universe s spacetime metric tensor which governs the size and geometry of spacetime Within this framework the separation of objects over time is associated with the expansion of space itself However this is not a generally covariant description but rather only a choice of coordinates Contrary to common misconception it is equally valid to adopt a description in which space does not expand and objects simply move apart while under the influence of their mutual gravity 2 3 4 Although cosmic expansion is often framed as a consequence of general relativity it is also predicted by Newtonian gravity 5 6 According to inflation theory during the inflationary epoch about 10 32 of a second after the Big Bang the universe suddenly expanded and its volume increased by a factor of at least 1078 an expansion of distance by a factor of at least 1026 in each of the three dimensions This would be equivalent to expanding an object 1 nanometer 10 9 m about half the width of a molecule of DNA in length to one approximately 10 6 light years about 1017 m or 62 trillion miles long Cosmic expansion subsequently decelerated to much slower rates until around 9 8 billion years after the Big Bang 4 billion years ago it began to gradually expand more quickly and is still doing so Physicists have postulated the existence of dark energy appearing as a cosmological constant in the simplest gravitational models as a way to explain this late time acceleration According to the simplest extrapolation of the currently favored cosmological model the Lambda CDM model this acceleration becomes more dominant into the future Contents 1 History 2 Structure of cosmic expansion 3 Dynamics of cosmic expansion 4 Distances in the expanding universe 4 1 Comoving coordinates 4 2 Shape of the universe 4 3 Cosmological horizons 5 Consequences of cosmic expansion 5 1 Velocities and redshifts 5 2 Temperature 5 3 Density 6 Expansion history 6 1 Cosmic inflation 6 2 Radiation epoch 6 3 Matter epoch 6 4 Dark energy 7 Measuring the expansion rate 8 Conceptual considerations and misconceptions 8 1 Measuring distances in expanding space 8 2 Topology of expanding space 8 3 Density of universe during expansion 8 4 Effects of expansion on small scales 8 5 Metric expansion and speed of light 8 6 Common analogies for cosmic expansion 9 See also 10 References 11 Printed references 12 External linksHistory editIn 1912 1914 Vesto M Slipher discovered that light from remote galaxies was redshifted 7 8 a phenomenon later interpreted as galaxies receding from the Earth In 1922 Alexander Friedmann used the Einstein field equations to provide theoretical evidence that the universe is expanding 9 Swedish astronomer Knut Lundmark was the first person to find observational evidence for expansion in 1924 According to Ian Steer of the NASA IPAC Extragalactic Database of Galaxy Distances Lundmark s extragalactic distance estimates were far more accurate than Hubble s consistent with an expansion rate Hubble constant that was within 1 of the best measurements today 10 In 1927 Georges Lemaitre independently reached a similar conclusion to Friedmann on a theoretical basis and also presented observational evidence for a linear relationship between distance to galaxies and their recessional velocity 11 Edwin Hubble observationally confirmed Lundmark s and Lemaitre s findings in 1929 12 Assuming the cosmological principle these findings would imply that all galaxies are moving away from each other Astronomer Walter Baade recalculated the size of the known universe in the 1940s doubling the previous calculation made by Hubble in 1929 13 14 15 He announced this finding to considerable astonishment at the 1952 meeting of the International Astronomical Union in Rome For most of the second half of the 20th century the value of the Hubble constant was estimated to be between 50 and 90 km s 1 Mpc 1 On 13 January 1994 NASA formally announced a completion of its repairs related to the main mirror of the Hubble Space Telescope allowing for sharper images and consequently more accurate analyses of its observations 16 Briefly after the repairs were made Wendy Freedman s 1994 Key Project analyzed the recession velocity of M100 from the core of the Virgo Cluster offering a Hubble constant measurement of 80 17 km s 1 Mpc 1 17 Later the same year Adam Riess et al used an empirical method of visual band light curve shapes to more finely estimate the luminosity of Type Ia supernovae This further minimized the systematic measurement errors of the Hubble constant to 67 7 km s 1 Mpc 1 Reiss s measurements on the recession velocity of the nearby Virgo Cluster more closely agree with subsequent and independent analyses of Cepheid variable calibrations of 1a supernovae which estimates a Hubble constant of 73 7 km s 1 Mpc 1 18 In 2003 David Spergel s analysis of the cosmic microwave background during the first year observations of the Wilkinson Microwave Anisotropy Probe satellite WMAP further agreed with the estimated expansion rates for local galaxies 72 5 km s 1 Mpc 1 19 Structure of cosmic expansion editThe universe at the largest scales is observed to be homogeneous the same everywhere and isotropic the same in all directions consistent with the cosmological principle These constraints demand that any expansion of the universe accord with Hubble s law in which objects recede from each observer with velocities proportional to their positions with respect to that observer That is recession velocities v displaystyle vec v nbsp scale with observer centered positions x displaystyle vec x nbsp according to v H x displaystyle vec v H vec x nbsp where the Hubble rate H displaystyle H nbsp quantifies the rate of expansion H displaystyle H nbsp is a function of cosmic time Dynamics of cosmic expansion edit nbsp The expansion history depends on the density of the universe W on this graph corresponds to the ratio of the matter density to the critical density for a matter dominated universe The acceleration curve shows the trajectory of the scale factor for a universe with dark energy The expansion of the universe can be understood as a consequence of an initial impulse possibly due to inflation which sent the contents of the universe flying apart The mutual gravitational attraction of the matter and radiation within the universe gradually slows this expansion over time but expansion nevertheless continues due to momentum left over from the initial impulse Also certain exotic relativistic fluids such as dark energy and inflation exert gravitational repulsion in the cosmological context which accelerates the expansion of the universe A cosmological constant also has this effect Mathematically the expansion of the universe is quantified by the scale factor a displaystyle a nbsp which is proportional to the average separation between objects such as galaxies The scale factor is a function of time and is conventionally set to be a 1 displaystyle a 1 nbsp at the present time Because the universe is expanding a displaystyle a nbsp is smaller in the past and larger in the future Extrapolating back in time with certain cosmological models will yield a moment when the scale factor was zero our current understanding of cosmology sets this time at 13 787 0 020 billion years ago If the universe continues to expand forever the scale factor will approach infinity in the future It is also possible in principle for the universe to stop expanding and begin to contract which corresponds to the scale factor decreasing in time The scale factor a displaystyle a nbsp is a parameter of the FLRW metric and its time evolution is governed by the Friedmann equations The second Friedmann equation a a 4 p G 3 r 3 p c 2 L c 2 3 displaystyle frac ddot a a frac 4 pi G 3 left rho frac 3p c 2 right frac Lambda c 2 3 nbsp shows how the contents of the universe influence its expansion rate Here G displaystyle G nbsp is the gravitational constant r displaystyle rho nbsp is the energy density within the universe p displaystyle p nbsp is the pressure c displaystyle c nbsp is the speed of light and L displaystyle Lambda nbsp is the cosmological constant A positive energy density leads to deceleration of the expansion a lt 0 displaystyle ddot a lt 0 nbsp and a positive pressure further decelerates expansion On the other hand sufficiently negative pressure with p lt r c 2 3 displaystyle p lt rho c 2 3 nbsp leads to accelerated expansion and the cosmological constant also accelerates expansion Nonrelativistic matter is essentially pressureless with p r c 2 displaystyle p ll rho c 2 nbsp while a gas of ultrarelativistic particles such as a photon gas has positive pressure p r c 2 3 displaystyle p rho c 2 3 nbsp Negative pressure fluids like dark energy are not experimentally confirmed but the existence of dark energy is inferred from astronomical observations Distances in the expanding universe editComoving coordinates edit Main article Comoving coordinates In an expanding universe it is often useful to study the evolution of structure with the expansion of the universe factored out This motivates the use of comoving coordinates which are defined to grow proportionally with the scale factor If an object is moving only with the Hubble flow of the expanding universe with no other motion then it remains stationary in comoving coordinates The comoving coordinates are the spatial coordinates in the FLRW metric Shape of the universe edit Main article Shape of the universe The universe is a four dimensional spacetime but within a universe that obeys the cosmological principle there is a natural choice of three dimensional spatial surface These are the surfaces on which observers who are stationary in comoving coordinates agree on the age of the universe In a universe governed by special relativity such surfaces would be hyperboloids because relativistic time dilation means that rapidly receding distant observers clocks are slowed so that spatial surfaces must bend into the future over long distances However within general relativity the shape of these comoving synchronous spatial surfaces is affected by gravity Current observations are consistent with these spatial surfaces being geometrically flat so that for example the angles of a triangle add up to 180 degrees Cosmological horizons edit Main article Cosmological horizon An expanding universe typically has a finite age Light and other particles can have propagated only a finite distance The comoving distance that such particles can have covered over the age of the universe is known as the particle horizon and the region of the universe that lies within our particle horizon is known as the observable universe If the dark energy that is inferred to dominate the universe today is a cosmological constant then the particle horizon converges to a finite value in the infinite future This implies that the amount of the universe that we will ever be able to observe is limited Many systems exist whose light can never reach us because there is a cosmic event horizon induced by the repulsive gravity of the dark energy When studying the evolution of structure within the universe a natural scale emerges known as the Hubble horizon Cosmological perturbations much larger than the Hubble horizon are not dynamical because gravitational influences do not have time to propagate across them while perturbations much smaller than the Hubble horizon are straightforwardly governed by Newtonian gravitational dynamics Consequences of cosmic expansion editVelocities and redshifts edit An object s peculiar velocity is its velocity with respect to the comoving coordinate grid i e with respect to the average motion of the surrounding material It is a measure of how a particle s motion deviates from the Hubble flow of the expanding universe The peculiar velocities of nonrelativistic particles decay as the universe expands in inverse proportion with the cosmic scale factor This can be understood as a self sorting effect A particle that is moving in some direction gradually overtakes the Hubble flow of cosmic expansion in that direction asymptotically approaching material with the same velocity as its own More generally the peculiar momenta of both relativistic and nonrelativistic particles decay in inverse proportion with the scale factor For photons this leads to the cosmological redshift While the cosmological redshift is often explained as the stretching of photon wavelengths due to expansion of space it is more naturally viewed as a consequence of the Doppler effect 3 Temperature edit The universe cools as it expands This follows from the decay of particles peculiar momenta as discussed above It can also be understood as adiabatic cooling The temperature of ultrarelativistic fluids often called radiation and including the cosmic microwave background scales inversely with the scale factor i e T a 1 displaystyle T propto a 1 nbsp The temperature of nonrelativistic matter drops more sharply scaling as the inverse square of the scale factor i e T a 2 displaystyle T propto a 2 nbsp Density edit The contents of the universe dilute as it expands The number of particles within a comoving volume remains fixed on average while the volume expands For nonrelativistic matter this implies that the energy density drops as r a 3 displaystyle rho propto a 3 nbsp where a displaystyle a nbsp is the scale factor For ultrarelativistic particles radiation the energy density drops more sharply as r a 4 displaystyle rho propto a 4 nbsp This is because in addition to the volume dilution of the particle count the energy of each particle including the rest mass energy also drops significantly due to the decay of peculiar momenta In general we can consider a perfect fluid with pressure p w r displaystyle p w rho nbsp where r displaystyle rho nbsp is the energy density The parameter w displaystyle w nbsp is the equation of state parameter The energy density of such a fluid drops as r a 3 1 w displaystyle rho propto a 3 1 w nbsp Nonrelativistic matter has w 0 displaystyle w 0 nbsp while radiation has w 1 3 displaystyle w 1 3 nbsp For an exotic fluid with negative pressure like dark energy the energy density drops more slowly if w 1 displaystyle w 1 nbsp it remains constant in time If w lt 1 displaystyle w lt 1 nbsp corresponding to phantom energy the energy density grows as the universe expands Expansion history edit nbsp A graphical representation of the expansion of the universe from the Big Bang to the present day with the inflationary epoch represented as the dramatic expansion seen on the left This visualization shows only a section of the universe the empty space outside the diagram should not be taken to represent empty space outside the universe which does not necessarily exist Cosmic inflation edit Main articles inflation cosmology and inflaton Inflation is a period of accelerated expansion hypothesized to have occurred at a time of around 10 32 seconds It would have been driven by the inflaton a field that has a positive energy false vacuum state Inflation was originally proposed to explain the absence of exotic relics predicted by grand unified theories such as magnetic monopoles because the rapid expansion would have diluted such relics It was subsequently realized that the accelerated expansion would also solve the horizon problem and the flatness problem Additionally quantum fluctuations during inflation would have created initial variations in the density of the universe which gravity later amplified to yield the observed spectrum of matter density variations citation needed During inflation the cosmic scale factor grew exponentially in time In order to solve the horizon and flatness problems inflation must have lasted long enough that the scale factor grew by at least a factor of e60 about 1026 citation needed Radiation epoch edit The history of the universe after inflation but before a time of about 1 second is largely unknown 20 However the universe is known to have been dominated by ultrarelativistic Standard Model particles conventionally called radiation by the time of neutrino decoupling at about 1 second 21 During radiation domination cosmic expansion decelerated with the scale factor growing proportionally with the square root of the time Matter epoch edit Since radiation redshifts as the universe expands eventually nonrelativistic matter came to dominate the energy density of the universe This transition happened at a time of about 50 thousand years after the Big Bang During the matter dominated epoch cosmic expansion also decelerated with the scale factor growing as the 2 3 power of the time a t 2 3 displaystyle a propto t 2 3 nbsp Also gravitational structure formation is most efficient when nonrelativistic matter dominates and this epoch is responsible for the formation of galaxies and the large scale structure of the universe Dark energy edit Main article Dark energy Around 3 billion years ago at a time of about 11 billion years dark energy is believed to have begun to dominate the energy density of the universe This transition came about because dark energy does not dilute as the universe expands instead maintaining a constant energy density Similarly to inflation dark energy drives accelerated expansion such that the scale factor grows exponentially in time Measuring the expansion rate edit nbsp When an object is receding its light gets stretched redshifted When the object is approaching its light gets compressed blueshifted The most direct way to measure the expansion rate is to independently measure the recession velocities and the distances of distant objects such as galaxies The ratio between these quantities gives the Hubble rate in accordance with Hubble s law Typically the distance is measured using a standard candle which is an object or event for which the intrinsic brightness is known The object s distance can then be inferred from the observed apparent brightness Meanwhile the recession speed is measured through the redshift Hubble used this approach for his original measurement of the expansion rate by measuring the brightness of Cepheid variable stars and the redshifts of their host galaxies More recently using Type Ia supernovae the expansion rate was measured to be H0 73 24 1 74 km s Mpc 22 This means that for every million parsecs of distance from the observer recessional velocity of objects at that distance increases by about 73 kilometres per second 160 000 mph Supernovae are observable at such great distances that the light travel time therefrom can approach the age of the universe Consequently they can be used to measure not only the present day expansion rate but also the expansion history In work that was awarded the 2011 Nobel Prize in Physics supernova observations were used to determine that cosmic expansion is accelerating in the present epoch 23 By assuming a cosmological model e g the Lambda CDM model another possibility is to infer the present day expansion rate from the sizes of the largest fluctuations seen in the cosmic microwave background A higher expansion rate would imply a smaller characteristic size of CMB fluctuations and vice versa The Planck collaboration measured the expansion rate this way and determined H0 67 4 0 5 km s Mpc 24 There is a disagreement between this measurement and the supernova based measurements known as the Hubble tension A third option proposed recently is to use information from gravitational wave events especially those involving the merger of neutron stars like GW170817 to measure the expansion rate 25 26 Such measurements do not yet have the precision to resolve the Hubble tension In principle the cosmic expansion history can also be measured by studying how redshifts distances fluxes angular positions and angular sizes of astronomical objects change over the course of the time that they are being observed These effects are too small to have yet been detected However changes in redshift or flux could be observed by the Square Kilometre Array or Extremely Large Telescope in the mid 2030s 27 Conceptual considerations and misconceptions editMeasuring distances in expanding space edit This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This section is written like a personal reflection personal essay or argumentative essay that states a Wikipedia editor s personal feelings or presents an original argument about a topic Please help improve it by rewriting it in an encyclopedic style August 2015 Learn how and when to remove this message This section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed Find sources Expansion of the universe news newspapers books scholar JSTOR May 2021 Learn how and when to remove this message Learn how and when to remove this message nbsp nbsp Two views of an isometric embedding of part of the visible universe over most of its history showing how a light ray red line can travel an effective distance of 28 billion light years orange line in just 13 8 billion years of cosmological time Mathematical details At cosmological scales the present universe conforms to Euclidean space what cosmologists describe as geometrically flat to within experimental error 28 Consequently the rules of Euclidean geometry associated with Euclid s fifth postulate hold in the present universe in 3D space It is however possible that the geometry of past 3D space could have been highly curved The curvature of space is often modeled using a non zero Riemann curvature tensor in curvature of Riemannian manifolds Euclidean geometrically flat space has a Riemann curvature tensor of zero Geometrically flat space has three dimensions and is consistent with Euclidean space However spacetime has four dimensions it is not flat according to Einstein s general theory of relativity Einstein s theory postulates that matter and energy curve spacetime and there is enough matter and energy to provide for curvature 29 In part to accommodate such different geometries the expansion of the universe is inherently general relativistic It cannot be modeled with special relativity alone Though such models exist they may be at fundamental odds with the observed interaction between matter and spacetime seen in the universe The images to the right show two views of spacetime diagrams that show the large scale geometry of the universe according to the LCDM cosmological model Two of the dimensions of space are omitted leaving one dimension of space the dimension that grows as the cone gets larger and one of time the dimension that proceeds up the cone s surface The narrow circular end of the diagram corresponds to a cosmological time of 700 million years after the Big Bang while the wide end is a cosmological time of 18 billion years where one can see the beginning of the accelerating expansion as a splaying outward of the spacetime a feature that eventually dominates in this model The purple grid lines mark cosmological time at intervals of one billion years from the Big Bang The cyan grid lines mark comoving distance at intervals of one billion light years in the present era less in the past and more in the future The circular curling of the surface is an artifact of the embedding with no physical significance and is done for illustrative purposes a flat universe does not curl back onto itself A similar effect can be seen in the tubular shape of the pseudosphere The brown line on the diagram is the worldline of Earth or more precisely its location in space even before it was formed The yellow line is the worldline of the most distant known quasar The red line is the path of a light beam emitted by the quasar about 13 billion years ago and reaching Earth at the present day The orange line shows the present day distance between the quasar and Earth about 28 billion light years which is a larger distance than the age of the universe multiplied by the speed of light ct According to the equivalence principle of general relativity the rules of special relativity are locally valid in small regions of spacetime that are approximately flat In particular light always travels locally at the speed c in the diagram this means according to the convention of constructing spacetime diagrams that light beams always make an angle of 45 with the local grid lines It does not follow however that light travels a distance ct in a time t as the red worldline illustrates While it always moves locally at c its time in transit about 13 billion years is not related to the distance traveled in any simple way since the universe expands as the light beam traverses space and time The distance traveled is thus inherently ambiguous because of the changing scale of the universe Nevertheless there are two distances that appear to be physically meaningful the distance between Earth and the quasar when the light was emitted and the distance between them in the present era taking a slice of the cone along the dimension defined as the spatial dimension The former distance is about 4 billion light years much smaller than ct whereas the latter distance shown by the orange line is about 28 billion light years much larger than ct In other words if space were not expanding today it would take 28 billion years for light to travel between Earth and the quasar while if the expansion had stopped at the earlier time it would have taken only 4 billion years The light took much longer than 4 billion years to reach us though it was emitted from only 4 billion light years away In fact the light emitted towards Earth was actually moving away from Earth when it was first emitted the metric distance to Earth increased with cosmological time for the first few billion years of its travel time also indicating that the expansion of space between Earth and the quasar at the early time was faster than the speed of light None of this behavior originates from a special property of metric expansion but rather from local principles of special relativity integrated over a curved surface Topology of expanding space edit Over time the space that makes up the universe is expanding The words space and universe sometimes used interchangeably have distinct meanings in this context Here space is a mathematical concept that stands for the three dimensional manifold into which our respective positions are embedded while universe refers to everything that exists including the matter and energy in space the extra dimensions that may be wrapped up in various strings and the time through which various events take place The expansion of space is in reference to this 3D manifold only that is the description involves no structures such as extra dimensions or an exterior universe 30 The ultimate topology of space is a posteriori something that in principle must be observed as there are no constraints that can simply be reasoned out in other words there cannot be any a priori constraints on how the space in which we live is connected or whether it wraps around on itself as a compact space Though certain cosmological models such as Godel s universe even permit bizarre worldlines that intersect with themselves ultimately the question as to whether we are in something like a Pac Man universe where if traveling far enough in one direction would allow one to simply end up back in the same place like going all the way around the surface of a balloon or a planet like the Earth is an observational question that is constrained as measurable or non measurable by the universe s global geometry At present observations are consistent with the universe having infinite extent and being a simply connected space though cosmological horizons limit our ability to distinguish between simple and more complicated proposals The universe could be infinite in extent or it could be finite but the evidence that leads to the inflationary model of the early universe also implies that the total universe is much larger than the observable universe Thus any edges or exotic geometries or topologies would not be directly observable since light has not reached scales on which such aspects of the universe if they exist are still allowed For all intents and purposes it is safe to assume that the universe is infinite in spatial extent without edge or strange connectedness 31 Regardless of the overall shape of the universe the question of what the universe is expanding into is one that does not require an answer according to the theories that describe the expansion the way we define space in our universe in no way requires additional exterior space into which it can expand since an expansion of an infinite expanse can happen without changing the infinite extent of the expanse All that is certain is that the manifold of space in which we live simply has the property that the distances between objects are getting larger as time goes on This only implies the simple observational consequences associated with the metric expansion explored below No outside or embedding in hyperspace is required for an expansion to occur The visualizations often seen of the universe growing as a bubble into nothingness are misleading in that respect There is no reason to believe there is anything outside the expanding universe into which the universe expands Even if the overall spatial extent is infinite and thus the universe cannot get any larger we still say that space is expanding because locally the characteristic distance between objects is increasing As an infinite space grows it remains infinite Density of universe during expansion edit Despite being extremely dense when very young and during part of its early expansion far denser than is usually required to form a black hole the universe did not re collapse into a black hole This is because commonly used calculations for gravitational collapse are usually based upon objects of relatively constant size such as stars and do not apply to rapidly expanding space such as the Big Bang citation needed dubious discuss Effects of expansion on small scales edit The expansion of space is sometimes described as a force that acts to push objects apart Though this is an accurate description of the effect of the cosmological constant it is not an accurate picture of the phenomenon of expansion in general 32 nbsp Animation of an expanding raisin bread model As the bread doubles in width depth and length the distances between raisins also double In addition to slowing the overall expansion gravity causes local clumping of matter into stars and galaxies Once objects are formed and bound by gravity they drop out of the expansion and do not subsequently expand under the influence of the cosmological metric there being no force compelling them to do so There is no difference between the inertial expansion of the universe and the inertial separation of nearby objects in a vacuum the former is simply a large scale extrapolation of the latter Once objects are bound by gravity they no longer recede from each other Thus the Andromeda Galaxy which is bound to the Milky Way Galaxy is actually falling towards us and is not expanding away Within the Local Group the gravitational interactions have changed the inertial patterns of objects such that there is no cosmological expansion taking place Beyond the Local Group the inertial expansion is measurable though systematic gravitational effects imply that larger and larger parts of space will eventually fall out of the Hubble Flow and end up as bound non expanding objects up to the scales of superclusters of galaxies Such future events are predicted by knowing the precise way the Hubble Flow is changing as well as the masses of the objects to which we are being gravitationally pulled Currently the Local Group is being gravitationally pulled towards either the Shapley Supercluster or the Great Attractor with which we would eventually merge if dark energy were not acting A consequence of metric expansion being due to inertial motion is that a uniform local explosion of matter into a vacuum can be locally described by the FLRW geometry the same geometry that describes the expansion of the universe as a whole and was also the basis for the simpler Milne universe which ignores the effects of gravity In particular general relativity predicts that light will move at the speed c with respect to the local motion of the exploding matter a phenomenon analogous to frame dragging The situation changes somewhat with the introduction of dark energy or a cosmological constant A cosmological constant due to a vacuum energy density has the effect of adding a repulsive force between objects that is proportional not inversely proportional to distance Unlike inertia it actively pulls on objects that have clumped together under the influence of gravity and even on individual atoms However this does not cause the objects to grow steadily or to disintegrate unless they are very weakly bound they will simply settle into an equilibrium state that is slightly undetectably larger than it would otherwise have been As the universe expands and the matter in it thins the gravitational attraction decreases since it is proportional to the density while the cosmological repulsion increases Thus the ultimate fate of the LCDM universe is a near vacuum expanding at an ever increasing rate under the influence of the cosmological constant However gravitationally bound objects like the Milky Way do not expand and the Andromeda galaxy is moving fast enough towards us that it will still merge with the Milky Way in around 3 billion years Metric expansion and speed of light edit At the end of the early universe s inflationary period all the matter and energy in the universe was set on an inertial trajectory consistent with the equivalence principle and Einstein s general theory of relativity This is when the precise and regular form of the universe s expansion had its origin that is matter in the universe is separating because it was separating in the past due to the inflaton field citation needed While special relativity prohibits objects from moving faster than light with respect to a local reference frame where spacetime can be treated as flat and unchanging it does not apply to situations where spacetime curvature or evolution in time become important These situations are described by general relativity which allows the separation between two distant objects to increase faster than the speed of light although the definition of distance here is somewhat different from that used in an inertial frame The definition of distance used here is the summation or integration of local comoving distances all done at constant local proper time For example galaxies that are farther than the Hubble radius approximately 4 5 gigaparsecs or 14 7 billion light years away from us have a recession speed that is faster than the speed of light Visibility of these objects depends on the exact expansion history of the universe Light that is emitted today from galaxies beyond the more distant cosmological event horizon about 5 gigaparsecs or 16 billion light years will never reach us although we can still see the light that these galaxies emitted in the past Because of the high rate of expansion it is also possible for a distance between two objects to be greater than the value calculated by multiplying the speed of light by the age of the universe These details are a frequent source of confusion among amateurs and even professional physicists 33 Due to the non intuitive nature of the subject and what has been described by some as careless choices of wording certain descriptions of the metric expansion of space and the misconceptions to which such descriptions can lead are an ongoing subject of discussion within the fields of education and communication of scientific concepts 34 35 36 37 Common analogies for cosmic expansion edit The expansion of the universe is often illustrated with conceptual models where an expanding object is taken to represent expanding space These models can be misleading to the extent that they give the false impression that expanding space can carry objects with it In reality the expansion of the universe corresponds only to the inertial motion of objects away from one another In the ant on a rubber rope model one imagines an ant idealized as pointlike crawling at a constant speed on a perfectly elastic rope that is constantly stretching If we stretch the rope in accordance with the LCDM scale factor and think of the ant s speed as the speed of light then this analogy is numerically accurate the ant s position over time will match the path of the red line on the embedding diagram above In the rubber sheet model one replaces the rope with a flat two dimensional rubber sheet that expands uniformly in all directions The addition of a second spatial dimension raises the possibility of showing local perturbations of the spatial geometry by local curvature in the sheet In the balloon model the flat sheet is replaced by a spherical balloon that is inflated from an initial size of zero representing the Big Bang A balloon has positive Gaussian curvature while observations suggest that the real universe is spatially flat but this inconsistency can be eliminated by making the balloon very large so that it is locally flat to within the limits of observation This analogy is potentially confusing since it could wrongly suggest that the Big Bang took place at the center of the balloon In fact points off the surface of the balloon have no meaning even if they were occupied by the balloon at an earlier time In the raisin bread model one imagines a loaf of raisin bread expanding in an oven The loaf space expands as a whole but the raisins gravitationally bound objects do not expand they merely grow farther away from each other See also editComoving and proper distancesReferences edit Overbye Dennis 20 February 2017 Cosmos Controversy The Universe Is Expanding but How Fast The New York Times Retrieved 21 February 2017 Peacock 2008 arXiv 0809 4573 a b Bunn amp Hogg American Journal of Physics 77 pp 688 694 2009 arXiv 0808 1081 Lewis Australian Physics 53 3 pp 95 100 2016 arXiv 1605 08634 Tipler Monthly Notices of the Royal Astronomical Society 282 1 pp 206 210 1996 Gibbons amp Ellis Classical and Quantum Gravity 31 2 025003 2014 arXiv 1308 1852 Slipher V M 1913 The Radial Velocity of the Andromeda Nebula Lowell Observatory Bulletin 1 8 56 57 Bibcode 1913LowOB 2 56S Vesto Slipher American astronomer Friedman A 1922 Uber die Krummung des Raumes Zeitschrift fur Physik 10 1 377 386 Bibcode 1922ZPhy 10 377F doi 10 1007 BF01332580 S2CID 125190902 translated in Friedmann A 1999 On the Curvature of Space General Relativity and Gravitation 31 12 1991 2000 Bibcode 1999GReGr 31 1991F doi 10 1023 A 1026751225741 S2CID 122950995 Steer Ian October 2012 Who discovered Universe expansion Nature 490 7419 176 arXiv 1212 1359 doi 10 1038 490176c ISSN 1476 4687 PMID 23060180 S2CID 47038783 Lemaitre Georges 1927 Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nebuleuses extra galactiques A homogeneous universe of constant mass and increasing radius accounting for the radial speed of extra galactic nebulae Annales de la Societe Scientifique de Bruxelles A47 49 59 Bibcode 1927ASSB 47 49L Astronomer sleuth solves mystery of Big Cosmos discovery Space com 14 November 2011 Baade W 1944 The resolution of Messier 32 NGC 205 and the central region of the Andromeda nebula ApJ 100 pp 137 146 Baade W 1956 The period luminosity relation of the Cepheids PASP 68 pp 5 16 Allen Nick Section 2 The Great Debate and the Great Mistake Shapley Hubble Baade The Cepheid Distance Scale A History Archived from the original on 10 December 2007 Retrieved 19 November 2011 Trauger J T 1994 The on orbit performance of WFPC2 Astrophysical Journal Letters 435 L3 Bibcode 1994ApJ 435L 3T doi 10 1086 187580 Freedman W L The HST Key Project to Measure the Hubble Constant www stsci edu 813 Santa Barbara Street Pasadena California 91101 Carnegie Observatories Retrieved 17 June 2023 a href Template Cite web html title Template Cite web cite web a CS1 maint location link Riess Adam G January 1995 Using Type IA supernova light curve shapes to measure the Hubble constant The Astrophysical Journal 438 L17 arXiv astro ph 9410054 Bibcode 1995ApJ 438L 17R doi 10 1086 187704 S2CID 118938423 Spergel D N September 2003 First Year Wilkinson Microwave Anisotropy Probe WMAP 1 Observations Determination of Cosmological Parameters The Astrophysical Journal Supplement Series 148 1 175 194 arXiv astro ph 0302209 Bibcode 2003ApJS 148 175S doi 10 1086 377226 S2CID 10794058 Allahverdi et al Open J Astrophys 4 1 2021 arXiv 2006 16182 de Salas et al Physical Review D 92 123534 2015 arXiv 1511 00672 Riess Adam G Macri Lucas M Hoffmann Samantha L Scolnic Dan Casertano Stefano Filippenko Alexei V Tucker Brad E Reid Mark J Jones David O Silverman Jeffrey M Chornock Ryan Challis Peter Yuan Wenlong Brown Peter J Foley Ryan J 2016 A 2 4 Determination of the Local Value of the Hubble Constant The Astrophysical Journal 826 1 56 arXiv 1604 01424 Bibcode 2016ApJ 826 56R doi 10 3847 0004 637X 826 1 56 S2CID 118630031 The Nobel Prize in Physics 2011 NobelPrize org Retrieved 17 June 2023 Collaboration Planck 2020 Planck 2018 results VI Cosmological parameters Astronomy amp Astrophysics 641 A6 arXiv 1807 06209 Bibcode 2020A amp A 641A 6P doi 10 1051 0004 6361 201833910 S2CID 119335614 Lerner Louise 22 October 2018 Gravitational waves could soon provide measure of universe s expansion Phys org Retrieved 22 October 2018 Chen Hsin Yu Fishbach Maya Holz Daniel E 17 October 2018 A two per cent Hubble constant measurement from standard sirens within five years Nature 562 7728 545 547 arXiv 1712 06531 Bibcode 2018Natur 562 545C doi 10 1038 s41586 018 0606 0 PMID 30333628 S2CID 52987203 Bolejko Krzysztof Wang Chengyi Lewis Geraint F 2019 Direct detection of the cosmic expansion The redshift drift and the flux drift arXiv 1907 04495 astro ph CO Krauss Lawrence M 2012 A Universe from Nothing Free Press p 82 ISBN 9781451624458 Castelvecchi Davide What Do You Mean The Universe Is Flat Part I Scientific American Blog Network Retrieved 17 June 2023 Peebles P J E 1993 Principles of Physical Cosmology Princeton University Press p 73 ISBN 9780691019338 Rothstein Dave 23 April 2003 What is the universe expanding into Ask an Astronomer Archived from the original on 8 June 2020 Retrieved 28 April 2017 Pons J M Talavera P 2021 On cosmological expansion and local physics General Relativity and Gravitation 53 11 105 arXiv 2011 01216 Bibcode 2021GReGr 53 105P doi 10 1007 s10714 021 02874 4 S2CID 226236696 Davis Tamara M Lineweaver Charles H 2004 Expanding Confusion common misconceptions of cosmological horizons and the superluminal expansion of the Universe Publications of the Astronomical Society of Australia 21 1 97 109 arXiv astro ph 0310808 Bibcode 2004PASA 21 97D doi 10 1071 AS03040 ISSN 1323 3580 S2CID 13068122 Whiting Alan B 2004 The Expansion of Space Free Particle Motion and the Cosmological Redshift The Observatory 124 174 arXiv astro ph 0404095 Bibcode 2004Obs 124 174W Bunn E F Hogg D W 2009 The kinematic origin of the cosmological redshift American Journal of Physics 77 8 688 694 arXiv 0808 1081 Bibcode 2009AmJPh 77 688B doi 10 1119 1 3129103 S2CID 1365918 Baryshev Yu V 2008 Expanding Space The Root of Conceptual Problems of the Cosmological Physics Practical Cosmology 2 20 30 arXiv 0810 0153 Bibcode 2008pc2 conf 20B Peacock J A 2008 A diatribe on expanding space arXiv 0809 4573 astro ph Printed references editEddington Arthur The Expanding Universe Astronomy s Great Debate 1900 1931 Press Syndicate of the University of Cambridge 1933 Liddle Andrew R and Lyth David H Cosmological Inflation and Large Scale Structure Cambridge University Press 2000 Lineweaver Charles H and Davis Tamara M Misconceptions about the Big Bang Scientific American March 2005 non free content Mook Delo E and Thomas Vargish Inside Relativity Princeton University Press 1991 External links edit nbsp Wikimedia Commons has media related to Expansion of the universe Swenson Jim Answer to a question about the expanding universe Archived 11 January 2009 at the Wayback Machine Felder Gary The Expanding universe NASA s WMAP team offers an Explanation of the universal expansion at an elementary level Hubble Tutorial from the University of Wisconsin Physics Department Archived 9 June 2014 at the Wayback Machine Expanding raisin bread from the University of Winnipeg an illustration but no explanation Ant on a balloon analogy to explain the expanding universe at Ask an Astronomer The astronomer who provides this explanation is not specified Portals nbsp Physics nbsp Astronomy nbsp Stars nbsp Spaceflight nbsp Solar System Retrieved from https en wikipedia org w index php title Expansion of the universe amp oldid 1222696350, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.