fbpx
Wikipedia

Opacity (optics)

Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer, it describes the absorption and scattering of radiation in a medium, such as a plasma, dielectric, shielding material, glass, etc. An opaque object is neither transparent (allowing all light to pass through) nor translucent (allowing some light to pass through). When light strikes an interface between two substances, in general some may be reflected, some absorbed, some scattered, and the rest transmitted (also see refraction). Reflection can be diffuse, for example light reflecting off a white wall, or specular, for example light reflecting off a mirror. An opaque substance transmits no light, and therefore reflects, scatters, or absorbs all of it. Both mirrors and carbon black are opaque. Opacity depends on the frequency of the light being considered. For instance, some kinds of glass, while transparent in the visual range, are largely opaque to ultraviolet light. More extreme frequency-dependence is visible in the absorption lines of cold gases. Opacity can be quantified in many ways; for example, see the article mathematical descriptions of opacity.

Comparisons of 1. opacity, 2. translucency, and 3. transparency; behind each panel is a star.

Different processes can lead to opacity including absorption, reflection, and scattering.

Etymology

Late Middle English opake, from Latin opacus ‘darkened’. The current spelling (rare before the 19th century) has been influenced by the French form.

Radiopacity

Radiopacity is preferentially used to describe opacity of X-rays. In modern medicine, radiodense substances are those that will not allow X-rays or similar radiation to pass. Radiographic imaging has been revolutionized by radiodense contrast media, which can be passed through the bloodstream, the gastrointestinal tract, or into the cerebral spinal fluid and utilized to highlight CT scan or X-ray images. Radiopacity is one of the key considerations in the design of various devices such as guidewires or stents that are used during radiological intervention. The radiopacity of a given endovascular device is important since it allows the device to be tracked during the interventional procedure.

Quantitative definition

The words "opacity" and "opaque" are often used as colloquial terms for objects or media with the properties described above. However, there is also a specific, quantitative definition of "opacity", used in astronomy, plasma physics, and other fields, given here.

In this use, "opacity" is another term for the mass attenuation coefficient (or, depending on context, mass absorption coefficient, the difference is described here)   at a particular frequency   of electromagnetic radiation.

More specifically, if a beam of light with frequency   travels through a medium with opacity   and mass density  , both constant, then the intensity will be reduced with distance x according to the formula

 
where
  • x is the distance the light has traveled through the medium
  •   is the intensity of light remaining at distance x
  •   is the initial intensity of light, at  

For a given medium at a given frequency, the opacity has a numerical value that may range between 0 and infinity, with units of length2/mass.

Opacity in air pollution work refers to the percentage of light blocked instead of the attenuation coefficient (aka extinction coefficient) and varies from 0% light blocked to 100% light blocked:

 

Planck and Rosseland opacities

It is customary to define the average opacity, calculated using a certain weighting scheme. Planck opacity (also known as Planck-Mean-Absorption-Coefficient[1]) uses the normalized Planck black-body radiation energy density distribution,  , as the weighting function, and averages   directly:

 
where   is the Stefan–Boltzmann constant.

Rosseland opacity (after Svein Rosseland), on the other hand, uses a temperature derivative of the Planck distribution,  , as the weighting function, and averages  ,

 
The photon mean free path is  . The Rosseland opacity is derived in the diffusion approximation to the radiative transport equation. It is valid whenever the radiation field is isotropic over distances comparable to or less than a radiation mean free path, such as in local thermal equilibrium. In practice, the mean opacity for Thomson electron scattering is:
 
where   is the hydrogen mass fraction. For nonrelativistic thermal bremsstrahlung, or free-free transitions, assuming solar metallicity, it is:[2]
 
The Rosseland mean attenuation coefficient is:[3]
 

See also

References

  1. ^ Modest, Radiative Heat Transfer, ISBN 978-0-12386944-9
  2. ^ Stuart L. Shapiro and Saul A. Teukolsky, "Black Holes, White Dwarfs, and Neutron Stars" 1983, ISBN 0-471-87317-9.
  3. ^ George B. Rybicki and Alan P. Lightman, "Radiative Processes in Astrophysics" 1979 ISBN 0-471-04815-1.

opacity, optics, opacity, redirects, here, other, uses, opacity, disambiguation, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, fi. Opacity redirects here For other uses see Opacity disambiguation This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Opacity optics news newspapers books scholar JSTOR February 2010 Learn how and when to remove this template message Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation especially visible light In radiative transfer it describes the absorption and scattering of radiation in a medium such as a plasma dielectric shielding material glass etc An opaque object is neither transparent allowing all light to pass through nor translucent allowing some light to pass through When light strikes an interface between two substances in general some may be reflected some absorbed some scattered and the rest transmitted also see refraction Reflection can be diffuse for example light reflecting off a white wall or specular for example light reflecting off a mirror An opaque substance transmits no light and therefore reflects scatters or absorbs all of it Both mirrors and carbon black are opaque Opacity depends on the frequency of the light being considered For instance some kinds of glass while transparent in the visual range are largely opaque to ultraviolet light More extreme frequency dependence is visible in the absorption lines of cold gases Opacity can be quantified in many ways for example see the article mathematical descriptions of opacity Comparisons of 1 opacity 2 translucency and 3 transparency behind each panel is a star Different processes can lead to opacity including absorption reflection and scattering Contents 1 Etymology 2 Radiopacity 3 Quantitative definition 3 1 Planck and Rosseland opacities 4 See also 5 ReferencesEtymology EditLate Middle English opake from Latin opacus darkened The current spelling rare before the 19th century has been influenced by the French form Radiopacity EditMain article Radiodensity Radiopacity is preferentially used to describe opacity of X rays In modern medicine radiodense substances are those that will not allow X rays or similar radiation to pass Radiographic imaging has been revolutionized by radiodense contrast media which can be passed through the bloodstream the gastrointestinal tract or into the cerebral spinal fluid and utilized to highlight CT scan or X ray images Radiopacity is one of the key considerations in the design of various devices such as guidewires or stents that are used during radiological intervention The radiopacity of a given endovascular device is important since it allows the device to be tracked during the interventional procedure Quantitative definition EditSee also Extinction astronomy and attenuation coefficient The words opacity and opaque are often used as colloquial terms for objects or media with the properties described above However there is also a specific quantitative definition of opacity used in astronomy plasma physics and other fields given here In this use opacity is another term for the mass attenuation coefficient or depending on context mass absorption coefficient the difference is described here k n displaystyle kappa nu at a particular frequency n displaystyle nu of electromagnetic radiation More specifically if a beam of light with frequency n displaystyle nu travels through a medium with opacity k n displaystyle kappa nu and mass density r displaystyle rho both constant then the intensity will be reduced with distance x according to the formulaI x I 0 e k n r x displaystyle I x I 0 e kappa nu rho x where x is the distance the light has traveled through the medium I x displaystyle I x is the intensity of light remaining at distance x I 0 displaystyle I 0 is the initial intensity of light at x 0 displaystyle x 0 For a given medium at a given frequency the opacity has a numerical value that may range between 0 and infinity with units of length2 mass Opacity in air pollution work refers to the percentage of light blocked instead of the attenuation coefficient aka extinction coefficient and varies from 0 light blocked to 100 light blocked Opacity 100 1 I x I 0 displaystyle text Opacity 100 left 1 frac I x I 0 right Planck and Rosseland opacities Edit It is customary to define the average opacity calculated using a certain weighting scheme Planck opacity also known as Planck Mean Absorption Coefficient 1 uses the normalized Planck black body radiation energy density distribution B n T displaystyle B nu T as the weighting function and averages k n displaystyle kappa nu directly k P l 0 k n B n T d n 0 B n T d n p s T 4 0 k n B n T d n displaystyle kappa Pl int 0 infty kappa nu B nu T d nu over int 0 infty B nu T d nu left pi over sigma T 4 right int 0 infty kappa nu B nu T d nu where s displaystyle sigma is the Stefan Boltzmann constant Rosseland opacity after Svein Rosseland on the other hand uses a temperature derivative of the Planck distribution u n T B n T T displaystyle u nu T partial B nu T partial T as the weighting function and averages k n 1 displaystyle kappa nu 1 1 k 0 k n 1 u n T d n 0 u n T d n displaystyle frac 1 kappa frac int 0 infty kappa nu 1 u nu T d nu int 0 infty u nu T d nu The photon mean free path is l n k n r 1 displaystyle lambda nu kappa nu rho 1 The Rosseland opacity is derived in the diffusion approximation to the radiative transport equation It is valid whenever the radiation field is isotropic over distances comparable to or less than a radiation mean free path such as in local thermal equilibrium In practice the mean opacity for Thomson electron scattering is k e s 0 20 1 X c m 2 g 1 displaystyle kappa rm es 0 20 1 X mathrm cm 2 g 1 where X displaystyle X is the hydrogen mass fraction For nonrelativistic thermal bremsstrahlung or free free transitions assuming solar metallicity it is 2 k f f r T 0 64 10 23 r g c m 3 T K 7 2 c m 2 g 1 displaystyle kappa rm ff rho T 0 64 times 10 23 rho rm g rm cm 3 T rm K 7 2 rm cm 2 rm g 1 The Rosseland mean attenuation coefficient is 3 1 k 0 k n e s k n f f 1 u n T d n 0 u n T d n displaystyle frac 1 kappa frac int 0 infty kappa nu rm es kappa nu rm ff 1 u nu T d nu int 0 infty u nu T d nu See also Edit Look up opacity optics in Wiktionary the free dictionary Absorption electromagnetic radiation Mathematical descriptions of opacity Molar absorptivity Reflection physics Scattering theory Transparency and translucency Kappa mechanismReferences Edit Modest Radiative Heat Transfer ISBN 978 0 12386944 9 Stuart L Shapiro and Saul A Teukolsky Black Holes White Dwarfs and Neutron Stars 1983 ISBN 0 471 87317 9 George B Rybicki and Alan P Lightman Radiative Processes in Astrophysics 1979 ISBN 0 471 04815 1 Retrieved from https en wikipedia org w index php title Opacity optics amp oldid 1149097210, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.