fbpx
Wikipedia

Multiverse

The multiverse is a hypothetical group of multiple universes.[a] Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The different universes within the multiverse are called "parallel universes", "other universes", "alternate universes", or "many worlds".

History of the concept

According to some, the idea of infinite worlds was first suggested by the pre-Socratic Greek philosopher Anaximander in the sixth century BCE.[1] However, there is debate as to whether he believed in multiple worlds, and if he did, whether those worlds were co-existent or successive.[2][3][4][5]

The first to whom we can definitively attribute the concept of innumerable worlds are the Ancient Greek Atomists, beginning with Leucippus and Democritus in the 5th century BCE, followed by Epicurus (341-270 BCE) and Lucretius (1st century BCE).[6][7][5][8][9][10] In the third century BCE, the philosopher Chrysippus suggested that the world eternally expired and regenerated, effectively suggesting the existence of multiple universes across time.[9] The concept of multiple universes became more defined in the Middle Ages.[citation needed]

The American philosopher and psychologist William James used the term "multiverse" in 1895, but in a different context.[11]

The concept first appeared in the modern scientific context in the course of the debate between Boltzmann and Zermelo in 1895.[12]

In Dublin in 1952, Erwin Schrödinger gave a lecture in which he jocularly warned his audience that what he was about to say might "seem lunatic". He said that when his equations seemed to describe several different histories, these were "not alternatives, but all really happen simultaneously".[13] This sort of duality is called "superposition".

In his 1930 autobiography My Early Life, Winston Churchill cited the theory when explaining his preference for "believing whatever I want to believe":[original research?]

Certainly nothing could be more repulsive to both our minds and feelings than the spectacle of thousands of millions of universes – for that is what they say it comes to now – all knocking about together for ever without any rational or good purpose behind them.

— Winston Churchill, My Early Life, Chapter IX

The term was first used in fiction in September 1961 in the DC comic book titled Flash of Two Worlds (Flash Volume 1 #123) by Carmine Infantino and Gardner Fox. In the story, Flash meets with his duplicate version of another Earth (Earth-2) and another Flash (Flash-2).[original research?]

The term was first used in fiction in its current physics context by Michael Moorcock in his 1963 SF Adventures novella The Sundered Worlds (part of his Eternal Champion series). (see Multiverse (Michael Moorcock))[original research?]

Brief explanation

Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, music, and all kinds of literature, particularly in science fiction, comic books and fantasy. In these contexts, parallel universes are also called "alternate universes", "quantum universes", "interpenetrating dimensions", "parallel universes", "parallel dimensions", "parallel worlds", "parallel realities", "quantum realities", "alternate realities", "alternate timelines", "alternate dimensions" and "dimensional planes".

The physics community has debated the various multiverse theories over time. Prominent physicists are divided about whether any other universes exist outside of our own.

Some physicists say the multiverse is not a legitimate topic of scientific inquiry.[14] Concerns have been raised about whether attempts to exempt the multiverse from experimental verification could erode public confidence in science and ultimately damage the study of fundamental physics.[15] Some have argued that the multiverse is a philosophical notion rather than a scientific hypothesis because it cannot be empirically falsified. The ability to disprove a theory by means of scientific experiment is a critical criterion of the accepted scientific method.[16] Paul Steinhardt has famously argued that no experiment can rule out a theory if the theory provides for all possible outcomes.[17]

In 2007, Nobel laureate Steven Weinberg suggested that if the multiverse existed, "the hope of finding a rational explanation for the precise values of quark masses and other constants of the standard model that we observe in our Big Bang is doomed, for their values would be an accident of the particular part of the multiverse in which we live."[18]

Search for evidence

Around 2010, scientists such as Stephen M. Feeney analyzed Wilkinson Microwave Anisotropy Probe (WMAP) data and claimed to find evidence suggesting that this universe collided with other (parallel) universes in the distant past.[19][20][21] However, a more thorough analysis of data from the WMAP and from the Planck satellite, which has a resolution three times higher than WMAP, did not reveal any statistically significant evidence of such a bubble universe collision.[22][23] In addition, there was no evidence of any gravitational pull of other universes on ours.[24][25]

Proponents and skeptics

Modern proponents of one or more of the multiverse hypotheses include Don Page,[26] Brian Greene,[27][28] Max Tegmark,[29] Alan Guth,[30] Andrei Linde,[31] Michio Kaku,[32] David Deutsch,[33] Leonard Susskind,[34] Alexander Vilenkin,[35] Yasunori Nomura,[36] Raj Pathria,[37] Laura Mersini-Houghton,[38] Neil deGrasse Tyson,[39] Sean Carroll[40] and Stephen Hawking.[41]

Scientists who are generally skeptical of the multiverse hypothesis include David Gross,[42] Paul Steinhardt,[43][44] Anna Ijjas,[44] Abraham Loeb,[44] David Spergel,[45] Neil Turok,[46] Viatcheslav Mukhanov,[47] Michael S. Turner,[48] Roger Penrose,[49] George Ellis,[50][51] Joe Silk,[52]Carlo Rovelli,[53] Adam Frank,[54] Marcelo Gleiser,[54] Jim Baggott[55] and Paul Davies.[56]

Arguments against multiverse hypotheses

In his 2003 New York Times opinion piece, "A Brief History of the Multiverse", author and cosmologist Paul Davies offered a variety of arguments that multiverse hypotheses are non-scientific:[57]

For a start, how is the existence of the other universes to be tested? To be sure, all cosmologists accept that there are some regions of the universe that lie beyond the reach of our telescopes, but somewhere on the slippery slope between that and the idea that there is an infinite number of universes, credibility reaches a limit. As one slips down that slope, more and more must be accepted on faith, and less and less is open to scientific verification. Extreme multiverse explanations are therefore reminiscent of theological discussions. Indeed, invoking an infinity of unseen universes to explain the unusual features of the one we do see is just as ad hoc as invoking an unseen Creator. The multiverse theory may be dressed up in scientific language, but in essence, it requires the same leap of faith.

— Paul Davies, "A Brief History of the Multiverse", The New York Times

George Ellis, writing in August 2011, provided a criticism of the multiverse, and pointed out that it is not a traditional scientific theory. He accepts that the multiverse is thought to exist far beyond the cosmological horizon. He emphasized that it is theorized to be so far away that it is unlikely any evidence will ever be found. Ellis also explained that some theorists do not believe the lack of empirical testability and falsifiability is a major concern, but he is opposed to that line of thinking:

Many physicists who talk about the multiverse, especially advocates of the string landscape, do not care much about parallel universes per se. For them, objections to the multiverse as a concept are unimportant. Their theories live or die based on internal consistency and, one hopes, eventual laboratory testing.

Ellis says that scientists have proposed the idea of the multiverse as a way of explaining the nature of existence. He points out that it ultimately leaves those questions unresolved because it is a metaphysical issue that cannot be resolved by empirical science. He argues that observational testing is at the core of science and should not be abandoned:[58]

As skeptical as I am, I think the contemplation of the multiverse is an excellent opportunity to reflect on the nature of science and on the ultimate nature of existence: why we are here. ... In looking at this concept, we need an open mind, though not too open. It is a delicate path to tread. Parallel universes may or may not exist; the case is unproved. We are going to have to live with that uncertainty. Nothing is wrong with scientifically based philosophical speculation, which is what multiverse proposals are. But we should name it for what it is.

— George Ellis, "Does the Multiverse Really Exist?", Scientific American

Philosopher Philip Goff argues that the inference of a multiverse to explain the apparent fine-tuning of the universe is an example of Inverse Gambler's Fallacy.[59]

Types

Max Tegmark and Brian Greene have devised classification schemes for the various theoretical types of multiverses and universes that they might comprise.

Max Tegmark's four levels

Cosmologist Max Tegmark has provided a taxonomy of universes beyond the familiar observable universe. The four levels of Tegmark's classification are arranged such that subsequent levels can be understood to encompass and expand upon previous levels. They are briefly described below.[60][61]

Level I: An extension of our universe

A prediction of cosmic inflation is the existence of an infinite ergodic universe, which, being infinite, must contain Hubble volumes realizing all initial conditions.

Accordingly, an infinite universe will contain an infinite number of Hubble volumes, all having the same physical laws and physical constants. In regard to configurations such as the distribution of matter, almost all will differ from our Hubble volume. However, because there are infinitely many, far beyond the cosmological horizon, there will eventually be Hubble volumes with similar, and even identical, configurations. Tegmark estimates that an identical volume to ours should be about 1010115 meters away from us.[29]

Given infinite space, there would, in fact, be an infinite number of Hubble volumes identical to ours in the universe.[62] This follows directly from the cosmological principle, wherein it is assumed that our Hubble volume is not special or unique.

Level II: Universes with different physical constants

In the eternal inflation theory, which is a variant of the cosmic inflation theory, the multiverse or space as a whole is stretching and will continue doing so forever,[63] but some regions of space stop stretching and form distinct bubbles (like gas pockets in a loaf of rising bread). Such bubbles are embryonic level I multiverses.

Different bubbles may experience different spontaneous symmetry breaking, which results in different properties, such as different physical constants.[62]

Level II also includes John Archibald Wheeler's oscillatory universe theory and Lee Smolin's fecund universes theory.

Level III: Many-worlds interpretation of quantum mechanics

Hugh Everett III's many-worlds interpretation (MWI) is one of several mainstream interpretations of quantum mechanics.

In brief, one aspect of quantum mechanics is that certain observations cannot be predicted absolutely. Instead, there is a range of possible observations, each with a different probability. According to the MWI, each of these possible observations corresponds to a different universe, with some or many of the interpretation's proponents suggesting that these universes are as real as ours. Suppose a six-sided die is thrown and that the result of the throw corresponds to quantum mechanics observable. All six possible ways the dice can fall correspond to six different universes. In the case of the Schrödinger's cat thought experiment, both outcomes would be "real" in at least one "world".

Tegmark argues that a Level III multiverse does not contain more possibilities in the Hubble volume than a Level I or Level II multiverse. In effect, all the different "worlds" created by "splits" in a Level III multiverse with the same physical constants can be found in some Hubble volume in a Level I multiverse. Tegmark writes that, "The only difference between Level I and Level III is where your doppelgängers reside. In Level I they live elsewhere in good old three-dimensional space. In Level III they live on another quantum branch in infinite-dimensional Hilbert space."

Similarly, all Level II bubble universes with different physical constants can, in effect, be found as "worlds" created by "splits" at the moment of spontaneous symmetry breaking in a Level III multiverse.[62] According to Yasunori Nomura,[36] Raphael Bousso, and Leonard Susskind,[34] this is because global spacetime appearing in the (eternally) inflating multiverse is a redundant concept. This implies that the multiverses of Levels I, II, and III are, in fact, the same thing. This hypothesis is referred to as "Multiverse = Quantum Many Worlds". According to Yasunori Nomura, this quantum multiverse is static, and time is a simple illusion.[64]

Another version of the many-worlds idea is H. Dieter Zeh's many-minds interpretation.

Level IV: Ultimate ensemble

The ultimate mathematical universe hypothesis is Tegmark's own hypothesis.[65]

This level considers all universes to be equally real which can be described by different mathematical structures.

Tegmark writes:

Abstract mathematics is so general that any Theory Of Everything (TOE) which is definable in purely formal terms (independent of vague human terminology) is also a mathematical structure. For instance, a TOE involving a set of different types of entities (denoted by words, say) and relations between them (denoted by additional words) is nothing but what mathematicians call a set-theoretical model, and one can generally find a formal system that it is a model of.

He argues that this "implies that any conceivable parallel universe theory can be described at Level IV" and "subsumes all other ensembles, therefore brings closure to the hierarchy of multiverses, and there cannot be, say, a Level V."[29]

Jürgen Schmidhuber, however, says that the set of mathematical structures is not even well-defined and that it admits only universe representations describable by constructive mathematics—that is, computer programs.

Schmidhuber explicitly includes universe representations describable by non-halting programs whose output bits converge after a finite time, although the convergence time itself may not be predictable by a halting program, due to the undecidability of the halting problem.[66][67][68] He also explicitly discusses the more restricted ensemble of quickly computable universes.[69]

Brian Greene's nine types

The American theoretical physicist and string theorist Brian Greene discussed nine types of multiverses:[70]

Quilted
The quilted multiverse works only in an infinite universe. With an infinite amount of space, every possible event will occur an infinite number of times. However, the speed of light prevents us from being aware of these other identical areas.
Inflationary
The inflationary multiverse is composed of various pockets in which inflation fields collapse and form new universes.
Brane
The brane multiverse version postulates that our entire universe exists on a membrane (brane) which floats in a higher dimension or "bulk". In this bulk, there are other membranes with their own universes. These universes can interact with one another, and when they collide, the violence and energy produced is more than enough to give rise to a big bang. The branes float or drift near each other in the bulk, and every few trillion years, attracted by gravity or some other force we do not understand, collide and bang into each other. This repeated contact gives rise to multiple or "cyclic" big bangs. This particular hypothesis falls under the string theory umbrella as it requires extra spatial dimensions.
Cyclic
The cyclic multiverse has multiple branes that have collided, causing Big Bangs. The universes bounce back and pass through time until they are pulled back together and again collide, destroying the old contents and creating them anew.
Landscape
The landscape multiverse relies on string theory's Calabi–Yau spaces. Quantum fluctuations drop the shapes to a lower energy level, creating a pocket with a set of laws different from that of the surrounding space.
Quantum
The quantum multiverse creates a new universe when a diversion in events occurs, as in the real-worlds variant of the many-worlds interpretation of quantum mechanics.
Holographic
The holographic multiverse is derived from the theory that the surface area of a space can encode the contents of the volume of the region.
Simulated
The simulated multiverse exists on complex computer systems that simulate entire universes. A related hypothesis, as put forward as a possibility by astronomer Avi Loeb, is that universes may be creatable in laboratories of advanced technological civilizations who have a theory of everything.[71] Other related hypotheses include brain in a vat[72]-type scenarios where the perceived universe is either simulated in a low-resource way or not perceived directly by the virtual/simulated inhabitant species.[additional citation(s) needed]
Ultimate
The ultimate multiverse contains every mathematically possible universe under different laws of physics.

Twin-world models

 
Concept of a twin universe, with the beginning (of time) in the middle.

There are models of two related universes that e.g. attempt to explain the baryon asymmetry – why there was more matter than antimatter at the beginning – with a mirror anti-universe.[73][74][75] One two-universe cosmological model could explain the Hubble constant (H0) tension via interactions between the two worlds. The "mirror world" would contain copies of all existing fundamental particles.[76][77] Another twin/pair-world or "bi-world" cosmology is shown to theoretically be able to solve the cosmological constant (Λ) problem, closely related to dark energy: two interacting worlds with a large Λ each could result in a small shared effective Λ.[78][79][80]

Cyclic theories

In several theories, there is a series of, in some cases infinite, self-sustaining cycles – typically a series of Big Crunches (or Big Bounces). However, the respective universes do not exist at once but are sequential, with key natural constituents potentially varying between universes (see § Anthropic principle).

M-theory

A multiverse of a somewhat different kind has been envisaged within string theory and its higher-dimensional extension, M-theory.[81]

These theories require the presence of 10 or 11 spacetime dimensions respectively. The extra six or seven dimensions may either be compactified on a very small scale, or our universe may simply be localized on a dynamical (3+1)-dimensional object, a D3-brane. This opens up the possibility that there are other branes which could support other universes.[82][83]

Black-hole cosmology

Black-hole cosmology is a cosmological model in which the observable universe is the interior of a black hole existing as one of possibly many universes inside a larger universe.[84] This includes the theory of white holes, which are on the opposite side of space-time.

Anthropic principle

The concept of other universes has been proposed to explain how our own universe appears to be fine-tuned for conscious life as we experience it.

If there were a large (possibly infinite) number of universes, each with possibly different physical laws (or different fundamental physical constants), then some of these universes (even if very few) would have the combination of laws and fundamental parameters that are suitable for the development of matter, astronomical structures, elemental diversity, stars, and planets that can exist long enough for life to emerge and evolve.

The weak anthropic principle could then be applied to conclude that we (as conscious beings) would only exist in one of those few universes that happened to be finely tuned, permitting the existence of life with developed consciousness. Thus, while the probability might be extremely small that any particular universe would have the requisite conditions for life (as we understand life), those conditions do not require intelligent design as an explanation for the conditions in the Universe that promote our existence in it.

An early form of this reasoning is evident in Arthur Schopenhauer's 1844 work "Von der Nichtigkeit und dem Leiden des Lebens", where he argues that our world must be the worst of all possible worlds, because if it were significantly worse in any respect it could not continue to exist.[85]

Occam's razor

Proponents and critics disagree about how to apply Occam's razor. Critics argue that to postulate an almost infinite number of unobservable universes, just to explain our own universe, is contrary to Occam's razor.[86] However, proponents argue that in terms of Kolmogorov complexity the proposed multiverse is simpler than a single idiosyncratic universe.[62]

For example, multiverse proponent Max Tegmark argues:

[A]n entire ensemble is often much simpler than one of its members. This principle can be stated more formally using the notion of algorithmic information content. The algorithmic information content in a number is, roughly speaking, the length of the shortest computer program that will produce that number as output. For example, consider the set of all integers. Which is simpler, the whole set or just one number? Naively, you might think that a single number is simpler, but the entire set can be generated by quite a trivial computer program, whereas a single number can be hugely long. Therefore, the whole set is actually simpler... (Similarly), the higher-level multiverses are simpler. Going from our universe to the Level I multiverse eliminates the need to specify initial conditions, upgrading to Level II eliminates the need to specify physical constants, and the Level IV multiverse eliminates the need to specify anything at all... A common feature of all four multiverse levels is that the simplest and arguably most elegant theory involves parallel universes by default. To deny the existence of those universes, one needs to complicate the theory by adding experimentally unsupported processes and ad hoc postulates: finite space, wave function collapse and ontological asymmetry. Our judgment therefore comes down to which we find more wasteful and inelegant: many worlds or many words. Perhaps we will gradually get used to the weird ways of our cosmos and find its strangeness to be part of its charm.[62][87]

— Max Tegmark

Possible worlds and real worlds

In any given set of possible universes – e.g. in terms of histories or variables of nature – not all may be ever realized, and some may be realized many times.[88] For example, over infinite time there could, in some potential theories, be infinite universes, but only a small or relatively small real number of universes where humanity could exist and only one where it ever does exist (with a unique history).[citation needed] It has been suggested that a universe that "contains life, in the form it has on Earth, is in a certain sense radically non-ergodic, in that the vast majority of possible organisms will never be realized".[89] On the other hand, some scientists, theories and popular works conceive of a multiverse in which the universes are so similar that humanity exists in many equally real separate universes but with varying histories.[90]

There is a debate about whether the other worlds are real in the many-worlds interpretation (MWI) of quantum mechanics. In Quantum Darwinism one does not need to adopt a MWI in which all of the branches are equally real.[91]

Modal realism

Possible worlds are a way of explaining probability and hypothetical statements. Some philosophers, such as David Lewis, posit that all possible worlds exist and that they are just as real as the world we live in. This position is known as modal realism).[92]

See also

References

Footnotes

  1. ^ In some models, such as those of brane cosmology, many parallel structures may exist within the same universe.

Citations

  1. ^ Tarán, Leonardo (1987), "The Text of Simplicius' Commentary on Aristotle's Physics", Simplicius. Sa vie, son oeuvre, sa survie, Berlin, Boston: DE GRUYTER, doi:10.1515/9783110862041.246, ISBN 9783110862041, retrieved 21 September 2022
  2. ^ Kočandrle, Radim (December 2019). "Infinite Worlds in the Thought of Anaximander". The Classical Quarterly. 69 (2): 483–500. doi:10.1017/S000983882000004X. ISSN 0009-8388. S2CID 216169543.
  3. ^ Gregory, Andrew (25 February 2016). Anaximander: A Re-assessment. Bloomsbury Publishing. p. 121. ISBN 978-1-4725-0625-2.
  4. ^ Curd, Patricia; Graham, Daniel W. (27 October 2008). The Oxford Handbook of Presocratic Philosophy. Oxford University Press. pp. 239–241. ISBN 978-0-19-972244-0.
  5. ^ a b Hatleback, Eric Nelson (2014). Chimera of the Cosmos (PDF) (PhD). University of Pittsburgh.
  6. ^ Siegfried, Tom (17 September 2019). The Number of the Heavens: A History of the Multiverse and the Quest to Understand the Cosmos. Harvard University Press. pp. 51–61. ISBN 978-0-674-97588-0. "In some worlds there is no sun and moon, in others they are larger than in our world, and in others more numerous. The intervals between the worlds are unequal; in some parts there are more worlds, in others fewer; some are increasing, some at their height, some decreasing; in some parts they are arising, in others falling. They are destroyed by collision one with another. There are some worlds devoid of living creatures or plants or any moisture." ... Only an infinite number of atoms could have created the complexity of the known world by their random motions... In this sense, the atomist-multiverse theory of antiquity presents a striking parallel to the situation in science today. The Greek atomists' theory of the ultimate nature of matter on the smallest scales implied the existence of multiple universes on cosmic scales. Modern science's most popular attempt to describe the fundamental nature of matter—superstring theory—also turns out (much to the theorists' surprise) to imply a vast multiplicity of vacuum states, essentially the same thing as predicting the existence of a multiverse.
  7. ^ Dick, Steven J. (29 June 1984). Plurality of Words: The Extraterrestrial Life Debate from Democritus to Kant. Cambridge University Press. pp. 6–10. ISBN 978-0-521-31985-0. Why should other worlds have become the subject of scientific discourse, when they were neither among the phenomena demanding explanation?... it derived from the cosmogonic assumption of ancient atomism: the belief that the constituent bodies of the cosmos are formed by the chance coalescence of moving atoms, the same type of indivisible particles of which matter on Earth was composed... Given the occurrence of these natural processes, and the obvious example of potential stability revealed in our own finite world, it was not unreasonable to suppose the existence of other stable conglomerations. The atomists further employed the principle that when causes were present, effects must occur.6 Atoms were the agents of causality and their number was infinite. The effect was innumerable worlds in formation, in collision, and in decay."
  8. ^ Rubenstein, Mary-Jane (11 February 2014). "Ancient Openings of Multiplicity". Worlds Without End: The Many Lives of the Multiverse. Columbia University Press. pp. 40–69. ISBN 978-0-231-15662-2.
  9. ^ a b Sedacca, Matthew (30 January 2017). "The Multiverse Is an Ancient Idea". Nautilus. Retrieved 4 December 2022. The earliest hints of the multiverse are found in two ancient Greek schools of thought, the Atomists and the Stoics. The Atomists, whose philosophy dates to the fifth century B.C., argued that that the order and beauty of our world was the accidental product of atoms colliding in an infinite void. The atomic collisions also give rise to an endless number of other, parallel worlds less perfect than our own.
  10. ^ Siegfried, Tom (2019). "Long Live the Multiverse!". Scientific American Blog Network. Leucippus and Democritus believed that their atomic theory required an infinity of worlds... Their later follower, Epicurus of Samos, also professed the reality of multiple worlds. "There are infinite worlds both like and unlike this world of ours"...
  11. ^ James, William, The Will to Believe, 1895; and earlier in 1895, as cited in OED's new 2003 entry for "multiverse": James, William (October 1895), "Is Life Worth Living?", Int. J. Ethics, 6 (1): 10, doi:10.1086/205378, Visible nature is all plasticity and indifference, a multiverse, as one might call it, and not a universe.
  12. ^ Ćirković, Milan M. (6 March 2019). "Stranger things: multiverse, string cosmology, physical eschatology". In Kragh, Helge; Longair, Malcolm (eds.). The Oxford Handbook of the History of Modern Cosmology. Oxford University Press. ISBN 978-0-19-254997-6.
  13. ^ "Erwin Schrödinger and the Quantum Revolution by John Gribbin: review".
  14. ^ Kragh, H. (2009). "Contemporary History of Cosmology and the Controversy over the Multiverse". Annals of Science. 66 (4): 529–551. doi:10.1080/00033790903047725. S2CID 144773289.
  15. ^ Ellis, Georg; Silk, Joe (16 December 2014). "Scientific Method: Defend the Integrity of Physics". Nature. 516 (7531): 321–323. Bibcode:2014Natur.516..321E. doi:10.1038/516321a. PMID 25519115.
  16. ^ "Feynman on Scientific Method". YouTube. Retrieved 28 July 2012.
  17. ^ Steinhardt, Paul (3 June 2014). "Big Bang blunder bursts the Multiverse bubble". Nature. 510 (7503): 9. Bibcode:2014Natur.510....9S. doi:10.1038/510009a. PMID 24899270.
  18. ^ Weinberg, Steven (20 November 2007). "Physics: What we do and don't know". The New York Review of Books.
  19. ^ "Astronomers Find First Evidence Of Other Universe". technologyreview.com. 13 December 2010. Retrieved 12 October 2013.
  20. ^ Max Tegmark; Alexander Vilenkin (19 July 2011). "The Case for Parallel Universes". Scientific American. Retrieved 12 October 2013.
  21. ^ "Is Our Universe Inside a Bubble? First Observational Test of the 'Multiverse'". Science Daily. sciencedaily.com. 3 August 2011. Retrieved 12 October 2013.
  22. ^ Feeney, Stephen M.; et al. (2011). "First observational tests of eternal inflation: Analysis methods and WMAP 7-year results". Physical Review D. 84 (4): 43507. arXiv:1012.3667. Bibcode:2011PhRvD..84d3507F. doi:10.1103/PhysRevD.84.043507. S2CID 43793857.
  23. ^ Feeney; et al. (2011). "First observational tests of eternal inflation". Physical Review Letters. 107 (7): 071301. arXiv:1012.1995. Bibcode:2011PhRvL.107g1301F. doi:10.1103/PhysRevLett.107.071301. PMID 21902380. S2CID 23560957.. Bousso, Raphael; Harlow, Daniel; Senatore, Leonardo (2015). "Inflation after False Vacuum Decay: Observational Prospects after Planck". Physical Review D. 91 (8): 083527. arXiv:1309.4060. Bibcode:2015PhRvD..91h3527B. doi:10.1103/PhysRevD.91.083527. S2CID 118488797.
  24. ^ Collaboration, Planck; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; et al. (20 March 2013). "Planck intermediate results. XIII. Constraints on peculiar velocities". Astronomy & Astrophysics. 561: A97. arXiv:1303.5090. Bibcode:2014A&A...561A..97P. doi:10.1051/0004-6361/201321299. S2CID 2745526.
  25. ^ "Blow for 'dark flow' in Planck's new view of the cosmos". New Scientist. 3 April 2013. Retrieved 10 March 2014.
  26. ^ "Does God exist in the multiverse?". 8 March 2018.
  27. ^ Greene, Brian (24 January 2011). "A Physicist Explains Why Parallel Universes May Exist". npr.org (Interview). Interviewed by Terry Gross. from the original on 13 September 2014. Retrieved 12 September 2014.
  28. ^ Greene, Brian (24 January 2011). "Transcript:A Physicist Explains Why Parallel Universes May Exist". npr.org (Interview). Interviewed by Terry Gross. from the original on 13 September 2014. Retrieved 12 September 2014.
  29. ^ a b c Tegmark, Max (2003). "Parallel Universes". Scientific American. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  30. ^ "Alan Guth: Inflationary Cosmology: Is Our Universe Part of a Multiverse?". YouTube. Archived from the original on 11 December 2021. Retrieved 6 October 2014.
  31. ^ Linde, Andrei (27 January 2012). "Inflation in Supergravity and String Theory: Brief History of the Multiverse" (PDF). ctc.cam.ac.uk. (PDF) from the original on 14 July 2014. Retrieved 13 September 2014.
  32. ^ "e-reading.ws" (PDF). www.e-reading.ws.
  33. ^ David Deutsch (1997). "The Ends of the Universe". The Fabric of Reality: The Science of Parallel Universes—and Its Implications. London: Penguin Press. ISBN 0-7139-9061-9.
  34. ^ a b Bousso, R.; Susskind, L. (2012). "Multiverse interpretation of quantum mechanics". Physical Review D. 85 (4): 045007. arXiv:1105.3796. Bibcode:2012PhRvD..85d5007B. doi:10.1103/PhysRevD.85.045007. S2CID 118507872.
  35. ^ Vilenkin, Alex (2007). Many Worlds in One: The Search for Other Universes. ISBN 9780374707149.
  36. ^ a b Nomura, Y. (2011). "Physical theories, eternal inflation, and the quantum universe". Journal of High Energy Physics. 2011 (11): 63. arXiv:1104.2324. Bibcode:2011JHEP...11..063N. doi:10.1007/JHEP11(2011)063. S2CID 119283262.
  37. ^ Pathria, R. K. (1972). "The Universe as a Black Hole". Nature. 240 (5379): 298–299. Bibcode:1972Natur.240..298P. doi:10.1038/240298a0. S2CID 4282253.
  38. ^ Fox, Killian (27 August 2022). "Cosmologist Laura Mersini-Houghton: 'Our universe is one tiny grain of dust in a beautiful cosmos' - Interview". The Guardian. Retrieved 28 August 2022.
  39. ^ Freeman, David (4 March 2014). "Why Revive 'Cosmos?' Neil DeGrasse Tyson Says Just About Everything We Know Has Changed". huffingtonpost.com. from the original on 13 September 2014. Retrieved 12 September 2014.
  40. ^ Sean Carroll (18 October 2011). "Welcome to the Multiverse". Discover. Retrieved 5 May 2015.
  41. ^ Carr, Bernard (21 June 2007). Universe or Multiverse. p. 19. ISBN 9780521848411. Some physicists would prefer to believe that string theory, or M-theory, will answer these questions and uniquely predict the features of the Universe. Others adopt the view that the initial state of the Universe is prescribed by an outside agency, code-named God, or that there are many universes, with ours being picked out by the anthropic principle. Hawking argued that string theory is unlikely to predict the distinctive features of the Universe. But neither is he is an advocate of God. He therefore opts for the last approach, favoring the type of multiverse which arises naturally within the context of his own work in quantum cosmology.
  42. ^ Davies, Paul (2008). "Many Scientists Hate the Multiverse Idea". The Goldilocks Enigma: Why Is the Universe Just Right for Life?. Houghton Mifflin Harcourt. p. 207. ISBN 9780547348469.
  43. ^ Steinhardt, Paul (9 March 2014). "Theories of Anything". edge.org. 2014 : WHAT SCIENTIFIC IDEA IS READY FOR RETIREMENT?. from the original on 10 March 2014. Retrieved 9 March 2014.
  44. ^ a b c Ijjas, Anna; Loeb, Abraham; Steinhardt, Paul (February 2017), "Cosmic Inflation Theory Faces Challenges", Scientific American, 316 (2): 32–39, doi:10.1038/scientificamerican0217-32, PMID 28118351
  45. ^ "Is Nature Simple? 2018 Breakthrough Prize Symposium Panel". YouTube. Retrieved 14 January 2018.
  46. ^ Gibbons, G.W.; Turok, Neil (2008). "The Measure Problem in Cosmology". Phys. Rev. D. 77 (6): 063516. arXiv:hep-th/0609095. Bibcode:2008PhRvD..77f3516G. doi:10.1103/PhysRevD.77.063516. S2CID 16394385.
  47. ^ Mukhanov, Viatcheslav (2014). "Inflation without Selfreproduction". Fortschritte der Physik. 63 (1): 36–41. arXiv:1409.2335. Bibcode:2015ForPh..63...36M. doi:10.1002/prop.201400074. S2CID 117514254.
  48. ^ Woit, Peter (9 June 2015). "A Crisis at the (Western) Edge of Physics". Not Even Wrong.
  49. ^ Woit, Peter (14 June 2015). "CMB @ 50". Not Even Wrong.
  50. ^ Ellis, George F. R. (1 August 2011). "Does the Multiverse Really Exist?". Scientific American. 305 (2): 38–43. Bibcode:2011SciAm.305a..38E. doi:10.1038/scientificamerican0811-38. PMID 21827123. Retrieved 12 September 2014.
  51. ^ Ellis, George (2012). (PDF). Slides for a talk at Nicolai Fest Golm 2012. Archived from the original (PDF) on 13 September 2014. Retrieved 12 September 2014.
  52. ^ Ellis, George; Silk, Joe (16 December 2014), "Scientific Method: Defend the Integrity of Physics", Nature, 516 (7531): 321–323, Bibcode:2014Natur.516..321E, doi:10.1038/516321a, PMID 25519115
  53. ^ Scoles; Sarah (19 April 2016), "Can Physics Ever Prove the Multiverse is Real", Smithsonian.com
  54. ^ a b Frank, Adam; Gleiser, Marcelo (5 June 2015). "A Crisis at the Edge of Physics". The New York Times.
  55. ^ Baggott, Jim (1 August 2013). Farewell to Reality: How Modern Physics Has Betrayed the Search for Scientific Truth. Pegasus. ISBN 978-1-60598-472-8.
  56. ^ Davies, Paul (12 April 2003). "A Brief History of the Multiverse". The New York Times.
  57. ^ Davies, Paul (12 April 2003). "A Brief History of the Multiverse". New York Times. Retrieved 16 August 2011.
  58. ^ Ellis, George F. R. (1 August 2011). "Does the Multiverse Really Exist?". Scientific American. Vol. 305, no. 2. pp. 38–43. Bibcode:2011SciAm.305a..38E. doi:10.1038/scientificamerican0811-38. Retrieved 16 August 2011.
  59. ^ Goff, Philip. "Our Improbable Existence Is No Evidence for a Multiverse". Scientific American.
  60. ^ Tegmark, Max (May 2003). "Parallel Universes". Scientific American. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  61. ^ Tegmark, Max (23 January 2003). Parallel Universes (PDF). Retrieved 7 February 2006.
  62. ^ a b c d e "Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations.", Tegmark M., Sci Am. 2003 May;288(5):40–51.
  63. ^ "First Second of the Big Bang". How The Universe Works 3. 2014. Discovery Science.
  64. ^ Nomura, Yasunori; Johnson, Matthew C.; Mortlock, Daniel J.; Peiris, Hiranya V. (2012). "Static quantum multiverse". Physical Review D. 86 (8): 083505. arXiv:1205.5550. Bibcode:2012PhRvD..86h3505N. doi:10.1103/PhysRevD.86.083505. S2CID 119207079.
  65. ^ Tegmark, Max (2014). Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf Doubleday Publishing Group. ISBN 9780307599803.
  66. ^ J. Schmidhuber (1997): A Computer Scientist's View of Life, the Universe, and Everything. Lecture Notes in Computer Science, pp. 201–208, Springer: IDSIA – Dalle Molle Institute for Artificial Intelligence
  67. ^ Schmidhuber, Juergen (2000). "Algorithmic Theories of Everything". arXiv:quant-ph/0011122.
  68. ^ J. Schmidhuber (2002): Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4):587–612 IDSIA – Dalle Molle Institute for Artificial Intelligence
  69. ^ J. Schmidhuber (2002): The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions. Proc. 15th Annual Conference on Computational Learning Theory (COLT 2002), Sydney, Australia, Lecture Notes in Artificial Intelligence, pp. 216–228. Springer: IDSIA – Dalle Molle Institute for Artificial Intelligence
  70. ^ In The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos, 2011
  71. ^ Loeb, Avi. "Was Our Universe Created in a Laboratory?". Scientific American. Retrieved 12 July 2022.
  72. ^ "What if we're living in a computer simulation?". The Guardian. 22 April 2017. Retrieved 12 July 2022.
  73. ^ "Our universe has antimatter partner on the other side of the Big Bang, say physicists". Physics World. 3 January 2019. Retrieved 22 June 2022.
  74. ^ Letzter, Rafi (23 June 2020). "Why some physicists really think there's a 'mirror universe' hiding in space-time". Space.com. Retrieved 22 June 2022.
  75. ^ Boyle, Latham; Finn, Kieran; Turok, Neil (20 December 2018). "CPT-Symmetric Universe". Physical Review Letters. 121 (25): 251301. arXiv:1803.08928. Bibcode:2018PhRvL.121y1301B. doi:10.1103/PhysRevLett.121.251301. PMID 30608856. S2CID 58638592.
  76. ^ "Mirror world of dark particles could explain cosmic anomaly". Physics World. 31 May 2022. Retrieved 22 June 2022.
  77. ^ Cyr-Racine, Francis-Yan; Ge, Fei; Knox, Lloyd (18 May 2022). "Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant". Physical Review Letters. 128 (20): 201301. arXiv:2107.13000. Bibcode:2022PhRvL.128t1301C. doi:10.1103/PhysRevLett.128.201301. PMID 35657861. S2CID 248904936.
  78. ^ Bedford, Bailey. "Bilayer graphene inspires two-universe cosmological model". Joint Quantum Institute. Retrieved 22 June 2022.
  79. ^ Parhizkar, Alireza; Galitski, Victor (2 May 2022). "Strained bilayer graphene, emergent energy scales, and moir\'e gravity". Physical Review Research. 4 (2): L022027. arXiv:2108.04252. Bibcode:2022PhRvR...4b2027P. doi:10.1103/PhysRevResearch.4.L022027. S2CID 236965490.
  80. ^ Parhizkar, Alireza; Galitski, Victor (2022). "Moiré Gravity and Cosmology". arXiv:2204.06574 [hep-th].
  81. ^ Weinberg, Steven (2005). "Living in the Multiverse". arXiv:hep-th/0511037v1.
  82. ^ Richard J Szabo, An introduction to string theory and D-brane dynamics (2004)
  83. ^ Maurizio Gasperini, Elements of String Cosmology (2007)
  84. ^ Pathria, R. K. (1 December 1972). "The Universe as a Black Hole". Nature. 240 (5379): 298–299. Bibcode:1972Natur.240..298P. doi:10.1038/240298a0. ISSN 0028-0836. S2CID 4282253.
  85. ^ Arthur Schopenhauer, "Die Welt als Wille und Vorstellung," supplement to the 4th book "Von der Nichtigkeit und dem Leiden des Lebens". see also R.B. Haldane and J. Kemp's translation "On the Vanity and Suffering of Life" pp 395-6
  86. ^ Trinh, Xuan Thuan (2006). Staune, Jean (ed.). Science & the Search for Meaning: Perspectives from International Scientists. West Conshohocken, PA: Templeton Foundation. p. 186. ISBN 978-1-59947-102-0.
  87. ^ Tegmark, M. (May 2003). "Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations". Scientific American. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID 12701329.
  88. ^ Ellis, G. F. R.; Kirchner, U.; Stoeger, W. R. (21 January 2004). "Multiverses and physical cosmology". Monthly Notices of the Royal Astronomical Society. 347 (3): 921–936. arXiv:astro-ph/0305292. Bibcode:2004MNRAS.347..921E. doi:10.1111/j.1365-2966.2004.07261.x. S2CID 119028830.
  89. ^ Cortês, Marina; Kauffman, Stuart A.; Liddle, Andrew R.; Smolin, Lee (28 April 2022). "Biocosmology: Biology from a cosmological perspective". arXiv:2204.09379 [physics.hist-ph].
  90. ^ "What is the multiverse—and is there any evidence it really exists?". Science. 4 May 2022. Retrieved 12 July 2022.
  91. ^ Zurek, Wojciech Hubert (13 July 2018). "Quantum theory of the classical: quantum jumps, Born's Rule and objective classical reality via quantum Darwinism". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2123): 20180107. arXiv:1807.02092. Bibcode:2018RSPTA.37680107Z. doi:10.1098/rsta.2018.0107. PMC 5990654. PMID 29807905.
  92. ^ Lewis, David (1986). On the Plurality of Worlds. Basil Blackwell. ISBN 978-0-631-22426-6.

Further reading

External links

  • Interview with Tufts cosmologist Alex Vilenkin on his new book, "Many Worlds in One: The Search for Other Universes" on the podcast and public radio interview program ThoughtCast. 18 August 2020 at the Wayback Machine
  • Multiverse – an episode of the series In Our Time with Melvyn Bragg, on BBC Radio 4.
  • Why There Might be Many More Universes Besides Our Own, by Phillip Ball, March 21, 2016, bbc.com.

multiverse, other, uses, disambiguation, this, article, lead, section, short, adequately, summarize, points, please, consider, expanding, lead, provide, accessible, overview, important, aspects, article, april, 2021, multiverse, hypothetical, group, multiple, . For other uses see Multiverse disambiguation This article s lead section may be too short to adequately summarize the key points Please consider expanding the lead to provide an accessible overview of all important aspects of the article April 2021 The multiverse is a hypothetical group of multiple universes a Together these universes comprise everything that exists the entirety of space time matter energy information and the physical laws and constants that describe them The different universes within the multiverse are called parallel universes other universes alternate universes or many worlds Contents 1 History of the concept 2 Brief explanation 3 Search for evidence 4 Proponents and skeptics 5 Arguments against multiverse hypotheses 6 Types 6 1 Max Tegmark s four levels 6 1 1 Level I An extension of our universe 6 1 2 Level II Universes with different physical constants 6 1 3 Level III Many worlds interpretation of quantum mechanics 6 1 4 Level IV Ultimate ensemble 6 2 Brian Greene s nine types 6 3 Twin world models 6 4 Cyclic theories 7 M theory 8 Black hole cosmology 9 Anthropic principle 10 Occam s razor 11 Possible worlds and real worlds 11 1 Modal realism 12 See also 13 References 14 Further reading 15 External linksHistory of the concept EditAccording to some the idea of infinite worlds was first suggested by the pre Socratic Greek philosopher Anaximander in the sixth century BCE 1 However there is debate as to whether he believed in multiple worlds and if he did whether those worlds were co existent or successive 2 3 4 5 The first to whom we can definitively attribute the concept of innumerable worlds are the Ancient Greek Atomists beginning with Leucippus and Democritus in the 5th century BCE followed by Epicurus 341 270 BCE and Lucretius 1st century BCE 6 7 5 8 9 10 In the third century BCE the philosopher Chrysippus suggested that the world eternally expired and regenerated effectively suggesting the existence of multiple universes across time 9 The concept of multiple universes became more defined in the Middle Ages citation needed The American philosopher and psychologist William James used the term multiverse in 1895 but in a different context 11 The concept first appeared in the modern scientific context in the course of the debate between Boltzmann and Zermelo in 1895 12 In Dublin in 1952 Erwin Schrodinger gave a lecture in which he jocularly warned his audience that what he was about to say might seem lunatic He said that when his equations seemed to describe several different histories these were not alternatives but all really happen simultaneously 13 This sort of duality is called superposition In his 1930 autobiography My Early Life Winston Churchill cited the theory when explaining his preference for believing whatever I want to believe original research Certainly nothing could be more repulsive to both our minds and feelings than the spectacle of thousands of millions of universes for that is what they say it comes to now all knocking about together for ever without any rational or good purpose behind them Winston Churchill My Early Life Chapter IX The term was first used in fiction in September 1961 in the DC comic book titled Flash of Two Worlds Flash Volume 1 123 by Carmine Infantino and Gardner Fox In the story Flash meets with his duplicate version of another Earth Earth 2 and another Flash Flash 2 original research The term was first used in fiction in its current physics context by Michael Moorcock in his 1963 SF Adventures novella The Sundered Worlds part of his Eternal Champion series see Multiverse Michael Moorcock original research Brief explanation EditMultiple universes have been hypothesized in cosmology physics astronomy religion philosophy transpersonal psychology music and all kinds of literature particularly in science fiction comic books and fantasy In these contexts parallel universes are also called alternate universes quantum universes interpenetrating dimensions parallel universes parallel dimensions parallel worlds parallel realities quantum realities alternate realities alternate timelines alternate dimensions and dimensional planes The physics community has debated the various multiverse theories over time Prominent physicists are divided about whether any other universes exist outside of our own Some physicists say the multiverse is not a legitimate topic of scientific inquiry 14 Concerns have been raised about whether attempts to exempt the multiverse from experimental verification could erode public confidence in science and ultimately damage the study of fundamental physics 15 Some have argued that the multiverse is a philosophical notion rather than a scientific hypothesis because it cannot be empirically falsified The ability to disprove a theory by means of scientific experiment is a critical criterion of the accepted scientific method 16 Paul Steinhardt has famously argued that no experiment can rule out a theory if the theory provides for all possible outcomes 17 In 2007 Nobel laureate Steven Weinberg suggested that if the multiverse existed the hope of finding a rational explanation for the precise values of quark masses and other constants of the standard model that we observe in our Big Bang is doomed for their values would be an accident of the particular part of the multiverse in which we live 18 Search for evidence EditAround 2010 scientists such as Stephen M Feeney analyzed Wilkinson Microwave Anisotropy Probe WMAP data and claimed to find evidence suggesting that this universe collided with other parallel universes in the distant past 19 20 21 However a more thorough analysis of data from the WMAP and from the Planck satellite which has a resolution three times higher than WMAP did not reveal any statistically significant evidence of such a bubble universe collision 22 23 In addition there was no evidence of any gravitational pull of other universes on ours 24 25 Proponents and skeptics EditModern proponents of one or more of the multiverse hypotheses include Don Page 26 Brian Greene 27 28 Max Tegmark 29 Alan Guth 30 Andrei Linde 31 Michio Kaku 32 David Deutsch 33 Leonard Susskind 34 Alexander Vilenkin 35 Yasunori Nomura 36 Raj Pathria 37 Laura Mersini Houghton 38 Neil deGrasse Tyson 39 Sean Carroll 40 and Stephen Hawking 41 Scientists who are generally skeptical of the multiverse hypothesis include David Gross 42 Paul Steinhardt 43 44 Anna Ijjas 44 Abraham Loeb 44 David Spergel 45 Neil Turok 46 Viatcheslav Mukhanov 47 Michael S Turner 48 Roger Penrose 49 George Ellis 50 51 Joe Silk 52 Carlo Rovelli 53 Adam Frank 54 Marcelo Gleiser 54 Jim Baggott 55 and Paul Davies 56 Arguments against multiverse hypotheses EditIn his 2003 New York Times opinion piece A Brief History of the Multiverse author and cosmologist Paul Davies offered a variety of arguments that multiverse hypotheses are non scientific 57 For a start how is the existence of the other universes to be tested To be sure all cosmologists accept that there are some regions of the universe that lie beyond the reach of our telescopes but somewhere on the slippery slope between that and the idea that there is an infinite number of universes credibility reaches a limit As one slips down that slope more and more must be accepted on faith and less and less is open to scientific verification Extreme multiverse explanations are therefore reminiscent of theological discussions Indeed invoking an infinity of unseen universes to explain the unusual features of the one we do see is just as ad hoc as invoking an unseen Creator The multiverse theory may be dressed up in scientific language but in essence it requires the same leap of faith Paul Davies A Brief History of the Multiverse The New York Times George Ellis writing in August 2011 provided a criticism of the multiverse and pointed out that it is not a traditional scientific theory He accepts that the multiverse is thought to exist far beyond the cosmological horizon He emphasized that it is theorized to be so far away that it is unlikely any evidence will ever be found Ellis also explained that some theorists do not believe the lack of empirical testability and falsifiability is a major concern but he is opposed to that line of thinking Many physicists who talk about the multiverse especially advocates of the string landscape do not care much about parallel universes per se For them objections to the multiverse as a concept are unimportant Their theories live or die based on internal consistency and one hopes eventual laboratory testing Ellis says that scientists have proposed the idea of the multiverse as a way of explaining the nature of existence He points out that it ultimately leaves those questions unresolved because it is a metaphysical issue that cannot be resolved by empirical science He argues that observational testing is at the core of science and should not be abandoned 58 As skeptical as I am I think the contemplation of the multiverse is an excellent opportunity to reflect on the nature of science and on the ultimate nature of existence why we are here In looking at this concept we need an open mind though not too open It is a delicate path to tread Parallel universes may or may not exist the case is unproved We are going to have to live with that uncertainty Nothing is wrong with scientifically based philosophical speculation which is what multiverse proposals are But we should name it for what it is George Ellis Does the Multiverse Really Exist Scientific American Philosopher Philip Goff argues that the inference of a multiverse to explain the apparent fine tuning of the universe is an example of Inverse Gambler s Fallacy 59 Types EditMax Tegmark and Brian Greene have devised classification schemes for the various theoretical types of multiverses and universes that they might comprise Max Tegmark s four levels Edit Cosmologist Max Tegmark has provided a taxonomy of universes beyond the familiar observable universe The four levels of Tegmark s classification are arranged such that subsequent levels can be understood to encompass and expand upon previous levels They are briefly described below 60 61 Level I An extension of our universe Edit A prediction of cosmic inflation is the existence of an infinite ergodic universe which being infinite must contain Hubble volumes realizing all initial conditions Accordingly an infinite universe will contain an infinite number of Hubble volumes all having the same physical laws and physical constants In regard to configurations such as the distribution of matter almost all will differ from our Hubble volume However because there are infinitely many far beyond the cosmological horizon there will eventually be Hubble volumes with similar and even identical configurations Tegmark estimates that an identical volume to ours should be about 1010115 meters away from us 29 Given infinite space there would in fact be an infinite number of Hubble volumes identical to ours in the universe 62 This follows directly from the cosmological principle wherein it is assumed that our Hubble volume is not special or unique Level II Universes with different physical constants Edit In the eternal inflation theory which is a variant of the cosmic inflation theory the multiverse or space as a whole is stretching and will continue doing so forever 63 but some regions of space stop stretching and form distinct bubbles like gas pockets in a loaf of rising bread Such bubbles are embryonic level I multiverses Different bubbles may experience different spontaneous symmetry breaking which results in different properties such as different physical constants 62 Level II also includes John Archibald Wheeler s oscillatory universe theory and Lee Smolin s fecund universes theory Level III Many worlds interpretation of quantum mechanics Edit Hugh Everett III s many worlds interpretation MWI is one of several mainstream interpretations of quantum mechanics In brief one aspect of quantum mechanics is that certain observations cannot be predicted absolutely Instead there is a range of possible observations each with a different probability According to the MWI each of these possible observations corresponds to a different universe with some or many of the interpretation s proponents suggesting that these universes are as real as ours Suppose a six sided die is thrown and that the result of the throw corresponds to quantum mechanics observable All six possible ways the dice can fall correspond to six different universes In the case of the Schrodinger s cat thought experiment both outcomes would be real in at least one world Tegmark argues that a Level III multiverse does not contain more possibilities in the Hubble volume than a Level I or Level II multiverse In effect all the different worlds created by splits in a Level III multiverse with the same physical constants can be found in some Hubble volume in a Level I multiverse Tegmark writes that The only difference between Level I and Level III is where your doppelgangers reside In Level I they live elsewhere in good old three dimensional space In Level III they live on another quantum branch in infinite dimensional Hilbert space Similarly all Level II bubble universes with different physical constants can in effect be found as worlds created by splits at the moment of spontaneous symmetry breaking in a Level III multiverse 62 According to Yasunori Nomura 36 Raphael Bousso and Leonard Susskind 34 this is because global spacetime appearing in the eternally inflating multiverse is a redundant concept This implies that the multiverses of Levels I II and III are in fact the same thing This hypothesis is referred to as Multiverse Quantum Many Worlds According to Yasunori Nomura this quantum multiverse is static and time is a simple illusion 64 Another version of the many worlds idea is H Dieter Zeh s many minds interpretation Level IV Ultimate ensemble Edit The ultimate mathematical universe hypothesis is Tegmark s own hypothesis 65 This level considers all universes to be equally real which can be described by different mathematical structures Tegmark writes Abstract mathematics is so general that any Theory Of Everything TOE which is definable in purely formal terms independent of vague human terminology is also a mathematical structure For instance a TOE involving a set of different types of entities denoted by words say and relations between them denoted by additional words is nothing but what mathematicians call a set theoretical model and one can generally find a formal system that it is a model of He argues that this implies that any conceivable parallel universe theory can be described at Level IV and subsumes all other ensembles therefore brings closure to the hierarchy of multiverses and there cannot be say a Level V 29 Jurgen Schmidhuber however says that the set of mathematical structures is not even well defined and that it admits only universe representations describable by constructive mathematics that is computer programs Schmidhuber explicitly includes universe representations describable by non halting programs whose output bits converge after a finite time although the convergence time itself may not be predictable by a halting program due to the undecidability of the halting problem 66 67 68 He also explicitly discusses the more restricted ensemble of quickly computable universes 69 Brian Greene s nine types Edit The American theoretical physicist and string theorist Brian Greene discussed nine types of multiverses 70 Quilted The quilted multiverse works only in an infinite universe With an infinite amount of space every possible event will occur an infinite number of times However the speed of light prevents us from being aware of these other identical areas Inflationary The inflationary multiverse is composed of various pockets in which inflation fields collapse and form new universes Brane The brane multiverse version postulates that our entire universe exists on a membrane brane which floats in a higher dimension or bulk In this bulk there are other membranes with their own universes These universes can interact with one another and when they collide the violence and energy produced is more than enough to give rise to a big bang The branes float or drift near each other in the bulk and every few trillion years attracted by gravity or some other force we do not understand collide and bang into each other This repeated contact gives rise to multiple or cyclic big bangs This particular hypothesis falls under the string theory umbrella as it requires extra spatial dimensions Cyclic The cyclic multiverse has multiple branes that have collided causing Big Bangs The universes bounce back and pass through time until they are pulled back together and again collide destroying the old contents and creating them anew Landscape The landscape multiverse relies on string theory s Calabi Yau spaces Quantum fluctuations drop the shapes to a lower energy level creating a pocket with a set of laws different from that of the surrounding space Quantum The quantum multiverse creates a new universe when a diversion in events occurs as in the real worlds variant of the many worlds interpretation of quantum mechanics Holographic The holographic multiverse is derived from the theory that the surface area of a space can encode the contents of the volume of the region Simulated The simulated multiverse exists on complex computer systems that simulate entire universes A related hypothesis as put forward as a possibility by astronomer Avi Loeb is that universes may be creatable in laboratories of advanced technological civilizations who have a theory of everything 71 Other related hypotheses include brain in a vat 72 type scenarios where the perceived universe is either simulated in a low resource way or not perceived directly by the virtual simulated inhabitant species additional citation s needed Ultimate The ultimate multiverse contains every mathematically possible universe under different laws of physics Twin world models Edit Concept of a twin universe with the beginning of time in the middle There are models of two related universes that e g attempt to explain the baryon asymmetry why there was more matter than antimatter at the beginning with a mirror anti universe 73 74 75 One two universe cosmological model could explain the Hubble constant H0 tension via interactions between the two worlds The mirror world would contain copies of all existing fundamental particles 76 77 Another twin pair world or bi world cosmology is shown to theoretically be able to solve the cosmological constant L problem closely related to dark energy two interacting worlds with a large L each could result in a small shared effective L 78 79 80 Cyclic theories Edit Main article Cyclic model In several theories there is a series of in some cases infinite self sustaining cycles typically a series of Big Crunches or Big Bounces However the respective universes do not exist at once but are sequential with key natural constituents potentially varying between universes see Anthropic principle M theory EditSee also Introduction to M theory M theory Brane cosmology and String theory landscape A multiverse of a somewhat different kind has been envisaged within string theory and its higher dimensional extension M theory 81 These theories require the presence of 10 or 11 spacetime dimensions respectively The extra six or seven dimensions may either be compactified on a very small scale or our universe may simply be localized on a dynamical 3 1 dimensional object a D3 brane This opens up the possibility that there are other branes which could support other universes 82 83 Black hole cosmology EditMain article Black hole cosmology Black hole cosmology is a cosmological model in which the observable universe is the interior of a black hole existing as one of possibly many universes inside a larger universe 84 This includes the theory of white holes which are on the opposite side of space time Anthropic principle EditMain article Anthropic principle The concept of other universes has been proposed to explain how our own universe appears to be fine tuned for conscious life as we experience it If there were a large possibly infinite number of universes each with possibly different physical laws or different fundamental physical constants then some of these universes even if very few would have the combination of laws and fundamental parameters that are suitable for the development of matter astronomical structures elemental diversity stars and planets that can exist long enough for life to emerge and evolve The weak anthropic principle could then be applied to conclude that we as conscious beings would only exist in one of those few universes that happened to be finely tuned permitting the existence of life with developed consciousness Thus while the probability might be extremely small that any particular universe would have the requisite conditions for life as we understand life those conditions do not require intelligent design as an explanation for the conditions in the Universe that promote our existence in it An early form of this reasoning is evident in Arthur Schopenhauer s 1844 work Von der Nichtigkeit und dem Leiden des Lebens where he argues that our world must be the worst of all possible worlds because if it were significantly worse in any respect it could not continue to exist 85 Occam s razor EditProponents and critics disagree about how to apply Occam s razor Critics argue that to postulate an almost infinite number of unobservable universes just to explain our own universe is contrary to Occam s razor 86 However proponents argue that in terms of Kolmogorov complexity the proposed multiverse is simpler than a single idiosyncratic universe 62 For example multiverse proponent Max Tegmark argues A n entire ensemble is often much simpler than one of its members This principle can be stated more formally using the notion of algorithmic information content The algorithmic information content in a number is roughly speaking the length of the shortest computer program that will produce that number as output For example consider the set of all integers Which is simpler the whole set or just one number Naively you might think that a single number is simpler but the entire set can be generated by quite a trivial computer program whereas a single number can be hugely long Therefore the whole set is actually simpler Similarly the higher level multiverses are simpler Going from our universe to the Level I multiverse eliminates the need to specify initial conditions upgrading to Level II eliminates the need to specify physical constants and the Level IV multiverse eliminates the need to specify anything at all A common feature of all four multiverse levels is that the simplest and arguably most elegant theory involves parallel universes by default To deny the existence of those universes one needs to complicate the theory by adding experimentally unsupported processes and ad hoc postulates finite space wave function collapse and ontological asymmetry Our judgment therefore comes down to which we find more wasteful and inelegant many worlds or many words Perhaps we will gradually get used to the weird ways of our cosmos and find its strangeness to be part of its charm 62 87 Max TegmarkPossible worlds and real worlds EditIn any given set of possible universes e g in terms of histories or variables of nature not all may be ever realized and some may be realized many times 88 For example over infinite time there could in some potential theories be infinite universes but only a small or relatively small real number of universes where humanity could exist and only one where it ever does exist with a unique history citation needed It has been suggested that a universe that contains life in the form it has on Earth is in a certain sense radically non ergodic in that the vast majority of possible organisms will never be realized 89 On the other hand some scientists theories and popular works conceive of a multiverse in which the universes are so similar that humanity exists in many equally real separate universes but with varying histories 90 There is a debate about whether the other worlds are real in the many worlds interpretation MWI of quantum mechanics In Quantum Darwinism one does not need to adopt a MWI in which all of the branches are equally real 91 Modal realism Edit Possible worlds are a way of explaining probability and hypothetical statements Some philosophers such as David Lewis posit that all possible worlds exist and that they are just as real as the world we live in This position is known as modal realism 92 See also EditBeyond black holes Cosmogony Impossible world Measure problem cosmology Modal realism Parallel universes in fiction Philosophy of physics Philosophy of space and time Simulated reality Twin Earth thought experiment Ultimate fate of the universeReferences EditFootnotes In some models such as those of brane cosmology many parallel structures may exist within the same universe Citations Taran Leonardo 1987 The Text of Simplicius Commentary on Aristotle s Physics Simplicius Sa vie son oeuvre sa survie Berlin Boston DE GRUYTER doi 10 1515 9783110862041 246 ISBN 9783110862041 retrieved 21 September 2022 Kocandrle Radim December 2019 Infinite Worlds in the Thought of Anaximander The Classical Quarterly 69 2 483 500 doi 10 1017 S000983882000004X ISSN 0009 8388 S2CID 216169543 Gregory Andrew 25 February 2016 Anaximander A Re assessment Bloomsbury Publishing p 121 ISBN 978 1 4725 0625 2 Curd Patricia Graham Daniel W 27 October 2008 The Oxford Handbook of Presocratic Philosophy Oxford University Press pp 239 241 ISBN 978 0 19 972244 0 a b Hatleback Eric Nelson 2014 Chimera of the Cosmos PDF PhD University of Pittsburgh Siegfried Tom 17 September 2019 The Number of the Heavens A History of the Multiverse and the Quest to Understand the Cosmos Harvard University Press pp 51 61 ISBN 978 0 674 97588 0 In some worlds there is no sun and moon in others they are larger than in our world and in others more numerous The intervals between the worlds are unequal in some parts there are more worlds in others fewer some are increasing some at their height some decreasing in some parts they are arising in others falling They are destroyed by collision one with another There are some worlds devoid of living creatures or plants or any moisture Only an infinite number of atoms could have created the complexity of the known world by their random motions In this sense the atomist multiverse theory of antiquity presents a striking parallel to the situation in science today The Greek atomists theory of the ultimate nature of matter on the smallest scales implied the existence of multiple universes on cosmic scales Modern science s most popular attempt to describe the fundamental nature of matter superstring theory also turns out much to the theorists surprise to imply a vast multiplicity of vacuum states essentially the same thing as predicting the existence of a multiverse Dick Steven J 29 June 1984 Plurality of Words The Extraterrestrial Life Debate from Democritus to Kant Cambridge University Press pp 6 10 ISBN 978 0 521 31985 0 Why should other worlds have become the subject of scientific discourse when they were neither among the phenomena demanding explanation it derived from the cosmogonic assumption of ancient atomism the belief that the constituent bodies of the cosmos are formed by the chance coalescence of moving atoms the same type of indivisible particles of which matter on Earth was composed Given the occurrence of these natural processes and the obvious example of potential stability revealed in our own finite world it was not unreasonable to suppose the existence of other stable conglomerations The atomists further employed the principle that when causes were present effects must occur 6 Atoms were the agents of causality and their number was infinite The effect was innumerable worlds in formation in collision and in decay Rubenstein Mary Jane 11 February 2014 Ancient Openings of Multiplicity Worlds Without End The Many Lives of the Multiverse Columbia University Press pp 40 69 ISBN 978 0 231 15662 2 a b Sedacca Matthew 30 January 2017 The Multiverse Is an Ancient Idea Nautilus Retrieved 4 December 2022 The earliest hints of the multiverse are found in two ancient Greek schools of thought the Atomists and the Stoics The Atomists whose philosophy dates to the fifth century B C argued that that the order and beauty of our world was the accidental product of atoms colliding in an infinite void The atomic collisions also give rise to an endless number of other parallel worlds less perfect than our own Siegfried Tom 2019 Long Live the Multiverse Scientific American Blog Network Leucippus and Democritus believed that their atomic theory required an infinity of worlds Their later follower Epicurus of Samos also professed the reality of multiple worlds There are infinite worlds both like and unlike this world of ours James William The Will to Believe 1895 and earlier in 1895 as cited in OED s new 2003 entry for multiverse James William October 1895 Is Life Worth Living Int J Ethics 6 1 10 doi 10 1086 205378 Visible nature is all plasticity and indifference a multiverse as one might call it and not a universe Cirkovic Milan M 6 March 2019 Stranger things multiverse string cosmology physical eschatology In Kragh Helge Longair Malcolm eds The Oxford Handbook of the History of Modern Cosmology Oxford University Press ISBN 978 0 19 254997 6 Erwin Schrodinger and the Quantum Revolution by John Gribbin review Kragh H 2009 Contemporary History of Cosmology and the Controversy over the Multiverse Annals of Science 66 4 529 551 doi 10 1080 00033790903047725 S2CID 144773289 Ellis Georg Silk Joe 16 December 2014 Scientific Method Defend the Integrity of Physics Nature 516 7531 321 323 Bibcode 2014Natur 516 321E doi 10 1038 516321a PMID 25519115 Feynman on Scientific Method YouTube Retrieved 28 July 2012 Steinhardt Paul 3 June 2014 Big Bang blunder bursts the Multiverse bubble Nature 510 7503 9 Bibcode 2014Natur 510 9S doi 10 1038 510009a PMID 24899270 Weinberg Steven 20 November 2007 Physics What we do and don t know The New York Review of Books Astronomers Find First Evidence Of Other Universe technologyreview com 13 December 2010 Retrieved 12 October 2013 Max Tegmark Alexander Vilenkin 19 July 2011 The Case for Parallel Universes Scientific American Retrieved 12 October 2013 Is Our Universe Inside a Bubble First Observational Test of the Multiverse Science Daily sciencedaily com 3 August 2011 Retrieved 12 October 2013 Feeney Stephen M et al 2011 First observational tests of eternal inflation Analysis methods and WMAP 7 year results Physical Review D 84 4 43507 arXiv 1012 3667 Bibcode 2011PhRvD 84d3507F doi 10 1103 PhysRevD 84 043507 S2CID 43793857 Feeney et al 2011 First observational tests of eternal inflation Physical Review Letters 107 7 071301 arXiv 1012 1995 Bibcode 2011PhRvL 107g1301F doi 10 1103 PhysRevLett 107 071301 PMID 21902380 S2CID 23560957 Bousso Raphael Harlow Daniel Senatore Leonardo 2015 Inflation after False Vacuum Decay Observational Prospects after Planck Physical Review D 91 8 083527 arXiv 1309 4060 Bibcode 2015PhRvD 91h3527B doi 10 1103 PhysRevD 91 083527 S2CID 118488797 Collaboration Planck Ade P A R Aghanim N Arnaud M Ashdown M Aumont J Baccigalupi C Balbi A Banday A J Barreiro R B Battaner E Benabed K Benoit Levy A Bernard J P Bersanelli M Bielewicz P Bikmaev I Bobin J Bock J J Bonaldi A Bond J R Borrill J Bouchet F R Burigana C Butler R C Cabella P Cardoso J F Catalano A Chamballu A et al 20 March 2013 Planck intermediate results XIII Constraints on peculiar velocities Astronomy amp Astrophysics 561 A97 arXiv 1303 5090 Bibcode 2014A amp A 561A 97P doi 10 1051 0004 6361 201321299 S2CID 2745526 Blow for dark flow in Planck s new view of the cosmos New Scientist 3 April 2013 Retrieved 10 March 2014 Does God exist in the multiverse 8 March 2018 Greene Brian 24 January 2011 A Physicist Explains Why Parallel Universes May Exist npr org Interview Interviewed by Terry Gross Archived from the original on 13 September 2014 Retrieved 12 September 2014 Greene Brian 24 January 2011 Transcript A Physicist Explains Why Parallel Universes May Exist npr org Interview Interviewed by Terry Gross Archived from the original on 13 September 2014 Retrieved 12 September 2014 a b c Tegmark Max 2003 Parallel Universes Scientific American 288 5 40 51 arXiv astro ph 0302131 Bibcode 2003SciAm 288e 40T doi 10 1038 scientificamerican0503 40 PMID 12701329 Alan Guth Inflationary Cosmology Is Our Universe Part of a Multiverse YouTube Archived from the original on 11 December 2021 Retrieved 6 October 2014 Linde Andrei 27 January 2012 Inflation in Supergravity and String Theory Brief History of the Multiverse PDF ctc cam ac uk Archived PDF from the original on 14 July 2014 Retrieved 13 September 2014 e reading ws PDF www e reading ws David Deutsch 1997 The Ends of the Universe The Fabric of Reality The Science of Parallel Universes and Its Implications London Penguin Press ISBN 0 7139 9061 9 a b Bousso R Susskind L 2012 Multiverse interpretation of quantum mechanics Physical Review D 85 4 045007 arXiv 1105 3796 Bibcode 2012PhRvD 85d5007B doi 10 1103 PhysRevD 85 045007 S2CID 118507872 Vilenkin Alex 2007 Many Worlds in One The Search for Other Universes ISBN 9780374707149 a b Nomura Y 2011 Physical theories eternal inflation and the quantum universe Journal of High Energy Physics 2011 11 63 arXiv 1104 2324 Bibcode 2011JHEP 11 063N doi 10 1007 JHEP11 2011 063 S2CID 119283262 Pathria R K 1972 The Universe as a Black Hole Nature 240 5379 298 299 Bibcode 1972Natur 240 298P doi 10 1038 240298a0 S2CID 4282253 Fox Killian 27 August 2022 Cosmologist Laura Mersini Houghton Our universe is one tiny grain of dust in a beautiful cosmos Interview The Guardian Retrieved 28 August 2022 Freeman David 4 March 2014 Why Revive Cosmos Neil DeGrasse Tyson Says Just About Everything We Know Has Changed huffingtonpost com Archived from the original on 13 September 2014 Retrieved 12 September 2014 Sean Carroll 18 October 2011 Welcome to the Multiverse Discover Retrieved 5 May 2015 Carr Bernard 21 June 2007 Universe or Multiverse p 19 ISBN 9780521848411 Some physicists would prefer to believe that string theory or M theory will answer these questions and uniquely predict the features of the Universe Others adopt the view that the initial state of the Universe is prescribed by an outside agency code named God or that there are many universes with ours being picked out by the anthropic principle Hawking argued that string theory is unlikely to predict the distinctive features of the Universe But neither is he is an advocate of God He therefore opts for the last approach favoring the type of multiverse which arises naturally within the context of his own work in quantum cosmology Davies Paul 2008 Many Scientists Hate the Multiverse Idea The Goldilocks Enigma Why Is the Universe Just Right for Life Houghton Mifflin Harcourt p 207 ISBN 9780547348469 Steinhardt Paul 9 March 2014 Theories of Anything edge org 2014 WHAT SCIENTIFIC IDEA IS READY FOR RETIREMENT Archived from the original on 10 March 2014 Retrieved 9 March 2014 a b c Ijjas Anna Loeb Abraham Steinhardt Paul February 2017 Cosmic Inflation Theory Faces Challenges Scientific American 316 2 32 39 doi 10 1038 scientificamerican0217 32 PMID 28118351 Is Nature Simple 2018 Breakthrough Prize Symposium Panel YouTube Retrieved 14 January 2018 Gibbons G W Turok Neil 2008 The Measure Problem in Cosmology Phys Rev D 77 6 063516 arXiv hep th 0609095 Bibcode 2008PhRvD 77f3516G doi 10 1103 PhysRevD 77 063516 S2CID 16394385 Mukhanov Viatcheslav 2014 Inflation without Selfreproduction Fortschritte der Physik 63 1 36 41 arXiv 1409 2335 Bibcode 2015ForPh 63 36M doi 10 1002 prop 201400074 S2CID 117514254 Woit Peter 9 June 2015 A Crisis at the Western Edge of Physics Not Even Wrong Woit Peter 14 June 2015 CMB 50 Not Even Wrong Ellis George F R 1 August 2011 Does the Multiverse Really Exist Scientific American 305 2 38 43 Bibcode 2011SciAm 305a 38E doi 10 1038 scientificamerican0811 38 PMID 21827123 Retrieved 12 September 2014 Ellis George 2012 The Multiverse Conjecture Proof and Science PDF Slides for a talk at Nicolai Fest Golm 2012 Archived from the original PDF on 13 September 2014 Retrieved 12 September 2014 Ellis George Silk Joe 16 December 2014 Scientific Method Defend the Integrity of Physics Nature 516 7531 321 323 Bibcode 2014Natur 516 321E doi 10 1038 516321a PMID 25519115 Scoles Sarah 19 April 2016 Can Physics Ever Prove the Multiverse is Real Smithsonian com a b Frank Adam Gleiser Marcelo 5 June 2015 A Crisis at the Edge of Physics The New York Times Baggott Jim 1 August 2013 Farewell to Reality How Modern Physics Has Betrayed the Search for Scientific Truth Pegasus ISBN 978 1 60598 472 8 Davies Paul 12 April 2003 A Brief History of the Multiverse The New York Times Davies Paul 12 April 2003 A Brief History of the Multiverse New York Times Retrieved 16 August 2011 Ellis George F R 1 August 2011 Does the Multiverse Really Exist Scientific American Vol 305 no 2 pp 38 43 Bibcode 2011SciAm 305a 38E doi 10 1038 scientificamerican0811 38 Retrieved 16 August 2011 Goff Philip Our Improbable Existence Is No Evidence for a Multiverse Scientific American Tegmark Max May 2003 Parallel Universes Scientific American 288 5 40 51 arXiv astro ph 0302131 Bibcode 2003SciAm 288e 40T doi 10 1038 scientificamerican0503 40 PMID 12701329 Tegmark Max 23 January 2003 Parallel Universes PDF Retrieved 7 February 2006 a b c d e Parallel universes Not just a staple of science fiction other universes are a direct implication of cosmological observations Tegmark M Sci Am 2003 May 288 5 40 51 First Second of the Big Bang How The Universe Works 3 2014 Discovery Science Nomura Yasunori Johnson Matthew C Mortlock Daniel J Peiris Hiranya V 2012 Static quantum multiverse Physical Review D 86 8 083505 arXiv 1205 5550 Bibcode 2012PhRvD 86h3505N doi 10 1103 PhysRevD 86 083505 S2CID 119207079 Tegmark Max 2014 Our Mathematical Universe My Quest for the Ultimate Nature of Reality Knopf Doubleday Publishing Group ISBN 9780307599803 J Schmidhuber 1997 A Computer Scientist s View of Life the Universe and Everything Lecture Notes in Computer Science pp 201 208 Springer IDSIA Dalle Molle Institute for Artificial Intelligence Schmidhuber Juergen 2000 Algorithmic Theories of Everything arXiv quant ph 0011122 J Schmidhuber 2002 Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit International Journal of Foundations of Computer Science 13 4 587 612 IDSIA Dalle Molle Institute for Artificial Intelligence J Schmidhuber 2002 The Speed Prior A New Simplicity Measure Yielding Near Optimal Computable Predictions Proc 15th Annual Conference on Computational Learning Theory COLT 2002 Sydney Australia Lecture Notes in Artificial Intelligence pp 216 228 Springer IDSIA Dalle Molle Institute for Artificial Intelligence In The Hidden Reality Parallel Universes and the Deep Laws of the Cosmos 2011 Loeb Avi Was Our Universe Created in a Laboratory Scientific American Retrieved 12 July 2022 What if we re living in a computer simulation The Guardian 22 April 2017 Retrieved 12 July 2022 Our universe has antimatter partner on the other side of the Big Bang say physicists Physics World 3 January 2019 Retrieved 22 June 2022 Letzter Rafi 23 June 2020 Why some physicists really think there s a mirror universe hiding in space time Space com Retrieved 22 June 2022 Boyle Latham Finn Kieran Turok Neil 20 December 2018 CPT Symmetric Universe Physical Review Letters 121 25 251301 arXiv 1803 08928 Bibcode 2018PhRvL 121y1301B doi 10 1103 PhysRevLett 121 251301 PMID 30608856 S2CID 58638592 Mirror world of dark particles could explain cosmic anomaly Physics World 31 May 2022 Retrieved 22 June 2022 Cyr Racine Francis Yan Ge Fei Knox Lloyd 18 May 2022 Symmetry of Cosmological Observables a Mirror World Dark Sector and the Hubble Constant Physical Review Letters 128 20 201301 arXiv 2107 13000 Bibcode 2022PhRvL 128t1301C doi 10 1103 PhysRevLett 128 201301 PMID 35657861 S2CID 248904936 Bedford Bailey Bilayer graphene inspires two universe cosmological model Joint Quantum Institute Retrieved 22 June 2022 Parhizkar Alireza Galitski Victor 2 May 2022 Strained bilayer graphene emergent energy scales and moir e gravity Physical Review Research 4 2 L022027 arXiv 2108 04252 Bibcode 2022PhRvR 4b2027P doi 10 1103 PhysRevResearch 4 L022027 S2CID 236965490 Parhizkar Alireza Galitski Victor 2022 Moire Gravity and Cosmology arXiv 2204 06574 hep th Weinberg Steven 2005 Living in the Multiverse arXiv hep th 0511037v1 Richard J Szabo An introduction to string theory and D brane dynamics 2004 Maurizio Gasperini Elements of String Cosmology 2007 Pathria R K 1 December 1972 The Universe as a Black Hole Nature 240 5379 298 299 Bibcode 1972Natur 240 298P doi 10 1038 240298a0 ISSN 0028 0836 S2CID 4282253 Arthur Schopenhauer Die Welt als Wille und Vorstellung supplement to the 4th book Von der Nichtigkeit und dem Leiden des Lebens see also R B Haldane and J Kemp s translation On the Vanity and Suffering of Life pp 395 6 Trinh Xuan Thuan 2006 Staune Jean ed Science amp the Search for Meaning Perspectives from International Scientists West Conshohocken PA Templeton Foundation p 186 ISBN 978 1 59947 102 0 Tegmark M May 2003 Parallel universes Not just a staple of science fiction other universes are a direct implication of cosmological observations Scientific American 288 5 40 51 arXiv astro ph 0302131 Bibcode 2003SciAm 288e 40T doi 10 1038 scientificamerican0503 40 PMID 12701329 Ellis G F R Kirchner U Stoeger W R 21 January 2004 Multiverses and physical cosmology Monthly Notices of the Royal Astronomical Society 347 3 921 936 arXiv astro ph 0305292 Bibcode 2004MNRAS 347 921E doi 10 1111 j 1365 2966 2004 07261 x S2CID 119028830 Cortes Marina Kauffman Stuart A Liddle Andrew R Smolin Lee 28 April 2022 Biocosmology Biology from a cosmological perspective arXiv 2204 09379 physics hist ph What is the multiverse and is there any evidence it really exists Science 4 May 2022 Retrieved 12 July 2022 Zurek Wojciech Hubert 13 July 2018 Quantum theory of the classical quantum jumps Born s Rule and objective classical reality via quantum Darwinism Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 376 2123 20180107 arXiv 1807 02092 Bibcode 2018RSPTA 37680107Z doi 10 1098 rsta 2018 0107 PMC 5990654 PMID 29807905 Lewis David 1986 On the Plurality of Worlds Basil Blackwell ISBN 978 0 631 22426 6 Further reading EditCarr Bernard Universe or Multiverse 2007 ed Cambridge University Press Deutsch David 1985 Quantum theory the Church Turing principle and the universal quantum computer PDF Proceedings of the Royal Society of London A 400 1818 97 117 Bibcode 1985RSPSA 400 97D CiteSeerX 10 1 1 41 2382 doi 10 1098 rspa 1985 0070 S2CID 1438116 Archived from the original PDF on 9 March 2016 Retrieved 15 September 2014 Ellis George F R William R Stoeger Stoeger W R 2004 Multiverses and physical cosmology Monthly Notices of the Royal Astronomical Society 347 3 921 936 arXiv astro ph 0305292 Bibcode 2004MNRAS 347 921E doi 10 1111 j 1365 2966 2004 07261 x S2CID 119028830 Andrei Linde The Self Reproducing Inflationary Universe Scientific American November 1994 Touches on multiverse concepts at the end of the articleExternal links Edit Look up multiverse in Wiktionary the free dictionary Wikiquote has quotations related to Multiverse Wikimedia Commons has media related to Multiverse Interview with Tufts cosmologist Alex Vilenkin on his new book Many Worlds in One The Search for Other Universes on the podcast and public radio interview program ThoughtCast Archived 18 August 2020 at the Wayback Machine Multiverse an episode of the series In Our Time with Melvyn Bragg on BBC Radio 4 Why There Might be Many More Universes Besides Our Own by Phillip Ball March 21 2016 bbc com Portals Astronomy Physics Space Retrieved from https en wikipedia org w index php title Multiverse amp oldid 1135121725, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.