fbpx
Wikipedia

Electromagnetism

In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles. Electric forces cause an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs between charged particles in relative motion. These two forces are described in terms of electromagnetic fields. Macroscopic charged objects are described in terms of Coulomb's law for electricity, Ampère's force law for magnetism; the Lorentz force describes microscopic charged particles.

Electromagnetic interactions are responsible for the glowing filaments in this plasma globe

The electromagnetic force is responsible for many of the chemical and physical phenomena observed in daily life. The electrostatic attraction between atomic nuclei and their electrons holds atoms together. Electric forces also allow different atoms to combine into molecules, including the macromolecules such as proteins that form the basis of life. Meanwhile, magnetic interactions between the spin and angular momentum magnetic moments of electrons also play a role in chemical reactivity; such relationships are studied in spin chemistry. Electromagnetism also plays several crucial roles in modern technology: electrical energy production, transformation and distribution; light, heat, and sound production and detection; fiber optic and wireless communication; sensors; computation; electrolysis; electroplating; and mechanical motors and actuators.

Electromagnetism has been studied since ancient times. Many ancient civilizations, including the Greeks and the Mayans, created wide-ranging theories to explain lightning, static electricity, and the attraction between magnetized pieces of iron ore. However, it wasn't until the late 18th century that scientists began to develop a mathematical basis for understanding the nature of electromagnetic interactions. In the 18th and 19th centuries, prominent scientists and mathematicians such as Coulomb, Gauss and Faraday developed namesake laws which helped to explain the formation and interaction of electromagnetic fields. This process culminated in the 1860s with the discovery of Maxwell's equations, a set of four partial differential equations which provide a complete description of classical electromagnetic fields. Maxwell's equations provided a sound mathematical basis for the relationships between electricity and magnetism that scientists had been exploring for centuries, and predicted the existence of self-sustaining electromagnetic waves. Maxwell postulated that such waves make up visible light, which was later shown to be true. Gamma-rays, x-rays, ultraviolet, visible, infrared radiation, microwaves and radio waves were all determined to be electromagnetic radiation differing only in their range of frequencies.

In the modern era, scientists have continued to refine the theorem of electromagnetism to take into account the effects of modern physics, including quantum mechanics and relativity. The theoretical implications of electromagnetism, particularly the establishment of the speed of light based on properties of the "medium" of propagation (permeability and permittivity), helped inspire Einstein's theory of special relativity in 1905. Meanwhile, the field of quantum electrodynamics (QED) has modified Maxwell's equations to be consistent with the quantized nature of matter. In QED, the changes in the electromagnetic field is expressed in terms of discrete excitations, particles known as photons, the quanta of light.

History

Ancient world

Investigation into electromagnetic phenomena began about 5,000 years ago. There is evidence that the ancient Chinese,[1] Mayan,[2] and potentially even Egyptian civilizations knew that the naturally magnetic mineral magnetite had attractive properties, and many incorporated it into their art and architecture.[3] Ancient people were also aware of lightning and static electricity, although they had no idea of the mechanisms behind these phenomena. The Greek philosopher Thales of Miletus discovered around 600 B.C.E. that amber could acquire an electric charge when it was rubbed with cloth, which allowed it to pick up light objects such as pieces of straw. Thales also experimented with the ability of magnetic rocks to attract one other, and hypothesized that this phenomenon might be connected to the attractive power of amber, foreshadowing the deep connections between electricity and magnetism that would be discovered over 2,000 years later. Despite all this investigation, ancient civilizations had no understanding of the mathematical basis of electromagnetism, and often analyzed its impacts through the lens of religion rather than science (lightning, for instance, was considered to be a creation of the gods in many cultures).[4]

19th century

 
Cover of A Treatise on Electricity and Magnetism

Electricity and magnetism were originally considered to be two separate forces. This view changed with the publication of James Clerk Maxwell's 1873 A Treatise on Electricity and Magnetism[5] in which the interactions of positive and negative charges were shown to be mediated by one force. There are four main effects resulting from these interactions, all of which have been clearly demonstrated by experiments:

  1. Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them: unlike charges attract, like ones repel.[6]
  2. Magnetic poles (or states of polarization at individual points) attract or repel one another in a manner similar to positive and negative charges and always exist as pairs: every north pole is yoked to a south pole.[7]
  3. An electric current inside a wire creates a corresponding circumferential magnetic field outside the wire. Its direction (clockwise or counter-clockwise) depends on the direction of the current in the wire.[8]
  4. A current is induced in a loop of wire when it is moved toward or away from a magnetic field, or a magnet is moved towards or away from it; the direction of current depends on that of the movement.[8]

In April 1820, Hans Christian Ørsted observed that an electrical current in a wire caused a nearby compass needle to move. At the time of discovery, Ørsted did not suggest any satisfactory explanation of the phenomenon, nor did he try to represent the phenomenon in a mathematical framework. However, three months later he began more intensive investigations.[9][10] Soon thereafter he published his findings, proving that an electric current produces a magnetic field as it flows through a wire. The CGS unit of magnetic induction (oersted) is named in honor of his contributions to the field of electromagnetism.[11]

His findings resulted in intensive research throughout the scientific community in electrodynamics. They influenced French physicist André-Marie Ampère's developments of a single mathematical form to represent the magnetic forces between current-carrying conductors. Ørsted's discovery also represented a major step toward a unified concept of energy.

This unification, which was observed by Michael Faraday, extended by James Clerk Maxwell, and partially reformulated by Oliver Heaviside and Heinrich Hertz, is one of the key accomplishments of 19th-century mathematical physics.[12] It has had far-reaching consequences, one of which was the understanding of the nature of light. Unlike what was proposed by the electromagnetic theory of that time, light and other electromagnetic waves are at present seen as taking the form of quantized, self-propagating oscillatory electromagnetic field disturbances called photons. Different frequencies of oscillation give rise to the different forms of electromagnetic radiation, from radio waves at the lowest frequencies, to visible light at intermediate frequencies, to gamma rays at the highest frequencies.

Ørsted was not the only person to examine the relationship between electricity and magnetism. In 1802, Gian Domenico Romagnosi, an Italian legal scholar, deflected a magnetic needle using a Voltaic pile. The factual setup of the experiment is not completely clear, nor if current flowed across the needle or not. An account of the discovery was published in 1802 in an Italian newspaper, but it was largely overlooked by the contemporary scientific community, because Romagnosi seemingly did not belong to this community.[13]

An earlier (1735), and often neglected, connection between electricity and magnetism was reported by a Dr. Cookson.[14] The account stated:

A tradesman at Wakefield in Yorkshire, having put up a great number of knives and forks in a large box ... and having placed the box in the corner of a large room, there happened a sudden storm of thunder, lightning, &c. ... The owner emptying the box on a counter where some nails lay, the persons who took up the knives, that lay on the nails, observed that the knives took up the nails. On this the whole number was tried, and found to do the same, and that, to such a degree as to take up large nails, packing needles, and other iron things of considerable weight ...

E. T. Whittaker suggested in 1910 that this particular event was responsible for lightning to be "credited with the power of magnetizing steel; and it was doubtless this which led Franklin in 1751 to attempt to magnetize a sewing-needle by means of the discharge of Leyden jars."[15]

A fundamental force

 
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.

The electromagnetic force is the second strongest of the four known fundamental forces. It operates with infinite range.[16] All other forces (e.g., friction, contact forces) are derived from these four fundamental forces and they are known as non-fundamental forces.[17] At high energy, the weak force and electromagnetic force are unified as a single interaction called the electroweak interaction.[18]

Roughly speaking, all the forces involved in interactions between atoms can be explained by the electromagnetic force acting between the electrically charged atomic nuclei and electrons of the atoms. Electromagnetic forces also explain how these particles carry momentum by their movement. This includes the forces we experience in "pushing" or "pulling" ordinary material objects, which result from the intermolecular forces that act between the individual molecules in our bodies and those in the objects. The electromagnetic force is also involved in all forms of chemical phenomena.

A necessary part of understanding the intra-atomic and intermolecular forces is the effective force generated by the momentum of the electrons' movement, such that as electrons move between interacting atoms they carry momentum with them. As a collection of electrons becomes more confined, their minimum momentum necessarily increases due to the Pauli exclusion principle. The behaviour of matter at the molecular scale including its density is determined by the balance between the electromagnetic force and the force generated by the exchange of momentum carried by the electrons themselves.[19]

Classical electrodynamics

In 1600, William Gilbert proposed, in his De Magnete, that electricity and magnetism, while both capable of causing attraction and repulsion of objects, were distinct effects.[20] Mariners had noticed that lightning strikes had the ability to disturb a compass needle. The link between lightning and electricity was not confirmed until Benjamin Franklin's proposed experiments in 1752 were conducted on 10 May 1752 by Thomas-François Dalibard of France using a 40-foot-tall (12 m) iron rod instead of a kite and he successfully extracted electrical sparks from a cloud.[21][22]

One of the first to discover and publish a link between human-made electric current and magnetism was Gian Romagnosi, who in 1802 noticed that connecting a wire across a voltaic pile deflected a nearby compass needle. However, the effect did not become widely known until 1820, when Ørsted performed a similar experiment.[23] Ørsted's work influenced Ampère to conduct further experiments, which eventually gave rise to a new area of physics: electrodynamics. By determining a force law for the interaction between elements of electric current, Ampère placed the subject on a solid mathematical foundation.[24]

A theory of electromagnetism, known as classical electromagnetism, was developed by several physicists during the period between 1820 and 1873, when James Clerk Maxwell's treatise was published, which unified previous developments into a single theory, proposing that light was an electromagnetic wave propagating in the luminiferous ether.[25] In classical electromagnetism, the behavior of the electromagnetic field is described by a set of equations known as Maxwell's equations, and the electromagnetic force is given by the Lorentz force law.[26]

One of the peculiarities of classical electromagnetism is that it is difficult to reconcile with classical mechanics, but it is compatible with special relativity. According to Maxwell's equations, the speed of light in vacuum is a universal constant that is dependent only on the electrical permittivity and magnetic permeability of free space. This violates Galilean invariance, a long-standing cornerstone of classical mechanics. One way to reconcile the two theories (electromagnetism and classical mechanics) is to assume the existence of a luminiferous aether through which the light propagates. However, subsequent experimental efforts failed to detect the presence of the aether. After important contributions of Hendrik Lorentz and Henri Poincaré, in 1905, Albert Einstein solved the problem with the introduction of special relativity, which replaced classical kinematics with a new theory of kinematics compatible with classical electromagnetism. (For more information, see History of special relativity.)

In addition, relativity theory implies that in moving frames of reference, a magnetic field transforms to a field with a nonzero electric component and conversely, a moving electric field transforms to a nonzero magnetic component, thus firmly showing that the phenomena are two sides of the same coin. Hence the term "electromagnetism". (For more information, see Classical electromagnetism and special relativity and Covariant formulation of classical electromagnetism.)

Today few problems in electromagnetism remain unsolved. These include: the lack of magnetic monopoles, Abraham–Minkowski controversy, and the mechanism by which some organisms can sense electric and magnetic fields.

Extension to nonlinear phenomena

The Maxwell equations are linear, in that a change in the sources (the charges and currents) results in a proportional change of the fields. Nonlinear dynamics can occur when electromagnetic fields couple to matter that follows nonlinear dynamical laws.[27] This is studied, for example, in the subject of magnetohydrodynamics, which combines Maxwell theory with the Navier–Stokes equations.[28] Another branch of electromagnetism dealing with nonlinearity is nonlinear optics.

Quantities and units

Here is a list of common units related to electromagnetism:[29]

In the electromagnetic CGS system, electric current is a fundamental quantity defined via Ampère's law and takes the permeability as a dimensionless quantity (relative permeability) whose value in vacuum is unity.[30] As a consequence, the square of the speed of light appears explicitly in some of the equations interrelating quantities in this system.

Symbol[31] Name of quantity Unit name Symbol Base units
E energy joule J = C⋅V = W⋅s kg⋅m2⋅s−2
Q electric charge coulomb C A⋅s
I electric current ampere A = C/s = W/V A
J electric current density ampere per square metre A/m2 A⋅m−2
U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force volt V = J/C kg⋅m2⋅s−3⋅A−1
R; Z; X electric resistance; impedance; reactance ohm Ω = V/A kg⋅m2⋅s−3⋅A−2
ρ resistivity ohm metre Ω⋅m kg⋅m3⋅s−3⋅A−2
P electric power watt W = V⋅A kg⋅m2⋅s−3
C capacitance farad F = C/V kg−1⋅m−2⋅A2⋅s4
ΦE electric flux volt metre V⋅m kg⋅m3⋅s−3⋅A−1
E electric field strength volt per metre V/m = N/C kg⋅m⋅A−1⋅s−3
D electric displacement field coulomb per square metre C/m2 A⋅s⋅m−2
ε permittivity farad per metre F/m kg−1⋅m−3⋅A2⋅s4
χe electric susceptibility (dimensionless) 1 1
p electric dipole moment coulomb metre C⋅m A⋅s⋅m
G; Y; B conductance; admittance; susceptance siemens S = Ω−1 kg−1⋅m−2⋅s3⋅A2
κ, γ, σ conductivity siemens per metre S/m kg−1⋅m−3⋅s3⋅A2
B magnetic flux density, magnetic induction tesla T = Wb/m2 = N⋅A−1⋅m−1 kg⋅s−2⋅A−1
Φ, ΦM, ΦB magnetic flux weber Wb = V⋅s kg⋅m2⋅s−2⋅A−1
H magnetic field strength ampere per metre A/m A⋅m−1
F magnetomotive force ampere A = Wb/H A
R magnetic reluctance inverse henry H−1 = A/Wb kg−1⋅m−2⋅s2⋅A2
P magnetic permeance henry H = Wb/A kg⋅m2⋅s-2⋅A-2
L, M inductance henry H = Wb/A = V⋅s/A kg⋅m2⋅s−2⋅A−2
μ permeability henry per metre H/m kg⋅m⋅s−2⋅A−2
χ magnetic susceptibility (dimensionless) 1 1
m magnetic dipole moment ampere square meter A⋅m2 = J⋅T−1 A⋅m2
σ mass magnetization ampere square meter per kilogram A⋅m2/kg A⋅m2⋅kg−1

Formulas for physical laws of electromagnetism (such as Maxwell's equations) need to be adjusted depending on what system of units one uses. This is because there is no one-to-one correspondence between electromagnetic units in SI and those in CGS, as is the case for mechanical units. Furthermore, within CGS, there are several plausible choices of electromagnetic units, leading to different unit "sub-systems", including Gaussian, "ESU", "EMU", and Heaviside–Lorentz. Among these choices, Gaussian units are the most common today, and in fact the phrase "CGS units" is often used to refer specifically to CGS-Gaussian units.[32]

Applications

The study of electromagnetism informs electric circuits and semiconductor devices' construction.

See also

References

  1. ^ Meyer, Herbert (1972). A History of Electricity and Magnetism. p. 2.
  2. ^ Magazine, Smithsonian; Learn, Joshua Rapp. "Mesoamerican Sculptures Reveal Early Knowledge of Magnetism". Smithsonian Magazine. Retrieved 2022-12-07.
  3. ^ du Trémolet de Lacheisserie, É.; Gignoux, D.; Schlenker, M. (2002), du Trémolet de Lacheisserie, É.; Gignoux, D.; Schlenker, M. (eds.), "Magnetism, from the Dawn of Civilization to Today", Magnetism, New York, NY: Springer, pp. 3–18, doi:10.1007/978-0-387-23062-7_1, ISBN 978-0-387-23062-7, retrieved 2022-12-07
  4. ^ Meyer, Herbert (1972). A History of Electricity and Magnetism. pp. 3–4.
  5. ^ "A Treatise on Electricity and Magnetism". Nature. 7 (182): 478–480. 24 April 1873. Bibcode:1873Natur...7..478.. doi:10.1038/007478a0. ISSN 0028-0836. S2CID 10178476.
  6. ^ "Why Do Like Charges Repel And Opposite Charges Attract?". Science ABC. 2019-02-06. Retrieved 2022-08-22.
  7. ^ "What Makes Magnets Repel?". Sciencing. Retrieved 2022-08-22.
  8. ^ a b Jim Lucas Contributions from Ashley Hamer (2022-02-18). "What Is Faraday's Law of Induction?". livescience.com. Retrieved 2022-08-22.
  9. ^ "History of the Electric Telegraph". Scientific American. 17 (425supp): 6784–6786. 1884-02-23. doi:10.1038/scientificamerican02231884-6784supp. ISSN 0036-8733.
  10. ^ Volta and the history of electricity. Fabio Bevilacqua, Enrico A. Giannetto. Milano: U. Hoepli. 2003. ISBN 88-203-3284-1. OCLC 1261807533.{{cite book}}: CS1 maint: others (link)
  11. ^ Roche, John J. (1998). The mathematics of measurement : a critical history. London: Athlone Press. ISBN 0-485-11473-9. OCLC 40499222.
  12. ^ Darrigol, Olivier (2000). Electrodynamics from Ampère to Einstein. New York: Oxford University Press. ISBN 0198505949.
  13. ^ Martins, Roberto de Andrade. (PDF). In Fabio Bevilacqua; Lucio Fregonese (eds.). Nuova Voltiana: Studies on Volta and his Times. Vol. 3. Università degli Studi di Pavia. pp. 81–102. Archived from the original (PDF) on 2013-05-30. Retrieved 2010-12-02.
  14. ^ VIII. An account of an extraordinary effect of lightning in communicating magnetism. Communicated by Pierce Dod, M.D. F.R.S. from Dr. Cookson of Wakefield in Yorkshire. Phil. Trans. 1735 39, 74-75, published 1 January 1735
  15. ^ Whittaker, E.T. (1910). A History of the Theories of Aether and Electricity from the Age of Descartes to the Close of the Nineteenth Century. Longmans, Green and Company.
  16. ^ Rehm, Jeremy; published, Ben Biggs (2021-12-23). "The four fundamental forces of nature". Space.com. Retrieved 2022-08-22.
  17. ^ Browne, "Physics for Engineering and Science", p. 160: "Gravity is one of the fundamental forces of nature. The other forces such as friction, tension, and the normal force are derived from the electric force, another of the fundamental forces. Gravity is a rather weak force... The electric force between two protons is much stronger than the gravitational force between them."
  18. ^ Salam, A.; Ward, J.C. (November 1964). "Electromagnetic and weak interactions". Physics Letters. 13 (2): 168–171. doi:10.1016/0031-9163(64)90711-5.
  19. ^ Purcell, "Electricity and Magnetism, 3rd Edition", p. 546: Ch 11 Section 6, "Electron Spin and Magnetic Moment."
  20. ^ Malin, Stuart; Barraclough, David (2000). "Gilbert's De Magnete: An early study of magnetism and electricity". Eos, Transactions American Geophysical Union. 81 (21): 233. Bibcode:2000EOSTr..81..233M. doi:10.1029/00EO00163. ISSN 0096-3941.
  21. ^ "Lightning! | Museum of Science, Boston".
  22. ^ Tucker, Tom (2003). Bolt of fate : Benjamin Franklin and his electric kite hoax (1st ed.). New York: PublicAffairs. ISBN 1-891620-70-3. OCLC 51763922.
  23. ^ Stern, Dr. David P.; Peredo, Mauricio (2001-11-25). "Magnetic Fields – History". NASA Goddard Space Flight Center. Retrieved 2009-11-27.
  24. ^ "Andre-Marie Ampère". ETHW. 2016-01-13. Retrieved 2022-08-22.
  25. ^ Purcell, p. 436. Chapter 9.3, "Maxwell's description of the electromagnetic field was essentially complete."
  26. ^ Purcell: p. 278: Chapter 6.1, "Definition of the Magnetic Field." Lorentz force and force equation.
  27. ^ Jufriansah, Adi; Hermanto, Arief; Toifur, Moh.; Prasetyo, Erwin (2020-05-18). "Theoretical study of Maxwell's equations in nonlinear optics". AIP Conference Proceedings. 2234 (1): 040013. Bibcode:2020AIPC.2234d0013J. doi:10.1063/5.0008179. ISSN 0094-243X. S2CID 219451710.
  28. ^ Hunt, Julian C. R. (1967-07-27). Some aspects of magnetohydrodynamics (Thesis thesis). University of Cambridge. doi:10.17863/cam.14141.
  29. ^ "Essentials of the SI: Base & derived units". physics.nist.gov. Retrieved 2022-08-22.
  30. ^ "Tables of Physical and Chemical Constants, and some Mathematical Functions". Nature. 107 (2687): 264. April 1921. Bibcode:1921Natur.107R.264.. doi:10.1038/107264c0. ISSN 1476-4687.
  31. ^ International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Oxford: Blackwell Science. ISBN 0-632-03583-8. pp. 14–15. Electronic version.
  32. ^ "Conversion of formulae and quantities between unit systems" (PDF). www.stanford.edu. Retrieved 29 January 2022.

Further reading

Web sources

  • Nave, R. "Electricity and magnetism". HyperPhysics. Georgia State University. Retrieved 2013-11-12.
  • Khutoryansky, E. "Electromagnetism – Maxwell's Laws". YouTube. Retrieved 2014-12-28.

Textbooks

General coverage

External links

  • Magnetic Field Strength Converter
  • Electromagnetic Force – from Eric Weisstein's World of Physics

electromagnetism, electromagnetics, redirects, here, academic, journal, electromagnetics, journal, electromagnetic, force, redirects, here, force, exerted, particles, electromagnetic, fields, lorentz, force, more, accessible, less, technical, introduction, thi. Electromagnetics redirects here For the academic journal see Electromagnetics journal Electromagnetic force redirects here For the force exerted on particles by electromagnetic fields see Lorentz force For a more accessible and less technical introduction to this topic see Introduction to electromagnetism Electromagnetic redirects here The term may also refer to the use of an electromagnet In physics electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields The electromagnetic force is one of the four fundamental forces of nature It is the dominant force in the interactions of atoms and molecules Electromagnetism can be thought of as a combination of electrostatics and magnetism which are distinct but closely intertwined phenomena Electromagnetic forces occur between any two charged particles Electric forces cause an attraction between particles with opposite charges and repulsion between particles with the same charge while magnetism is an interaction that occurs between charged particles in relative motion These two forces are described in terms of electromagnetic fields Macroscopic charged objects are described in terms of Coulomb s law for electricity Ampere s force law for magnetism the Lorentz force describes microscopic charged particles Electromagnetic interactions are responsible for the glowing filaments in this plasma globeThe electromagnetic force is responsible for many of the chemical and physical phenomena observed in daily life The electrostatic attraction between atomic nuclei and their electrons holds atoms together Electric forces also allow different atoms to combine into molecules including the macromolecules such as proteins that form the basis of life Meanwhile magnetic interactions between the spin and angular momentum magnetic moments of electrons also play a role in chemical reactivity such relationships are studied in spin chemistry Electromagnetism also plays several crucial roles in modern technology electrical energy production transformation and distribution light heat and sound production and detection fiber optic and wireless communication sensors computation electrolysis electroplating and mechanical motors and actuators Electromagnetism has been studied since ancient times Many ancient civilizations including the Greeks and the Mayans created wide ranging theories to explain lightning static electricity and the attraction between magnetized pieces of iron ore However it wasn t until the late 18th century that scientists began to develop a mathematical basis for understanding the nature of electromagnetic interactions In the 18th and 19th centuries prominent scientists and mathematicians such as Coulomb Gauss and Faraday developed namesake laws which helped to explain the formation and interaction of electromagnetic fields This process culminated in the 1860s with the discovery of Maxwell s equations a set of four partial differential equations which provide a complete description of classical electromagnetic fields Maxwell s equations provided a sound mathematical basis for the relationships between electricity and magnetism that scientists had been exploring for centuries and predicted the existence of self sustaining electromagnetic waves Maxwell postulated that such waves make up visible light which was later shown to be true Gamma rays x rays ultraviolet visible infrared radiation microwaves and radio waves were all determined to be electromagnetic radiation differing only in their range of frequencies In the modern era scientists have continued to refine the theorem of electromagnetism to take into account the effects of modern physics including quantum mechanics and relativity The theoretical implications of electromagnetism particularly the establishment of the speed of light based on properties of the medium of propagation permeability and permittivity helped inspire Einstein s theory of special relativity in 1905 Meanwhile the field of quantum electrodynamics QED has modified Maxwell s equations to be consistent with the quantized nature of matter In QED the changes in the electromagnetic field is expressed in terms of discrete excitations particles known as photons the quanta of light Contents 1 History 1 1 Ancient world 1 2 19th century 2 A fundamental force 3 Classical electrodynamics 4 Extension to nonlinear phenomena 5 Quantities and units 6 Applications 7 See also 8 References 9 Further reading 9 1 Web sources 9 2 Textbooks 9 3 General coverage 10 External linksHistoryMain article History of electromagnetic theory Ancient world Investigation into electromagnetic phenomena began about 5 000 years ago There is evidence that the ancient Chinese 1 Mayan 2 and potentially even Egyptian civilizations knew that the naturally magnetic mineral magnetite had attractive properties and many incorporated it into their art and architecture 3 Ancient people were also aware of lightning and static electricity although they had no idea of the mechanisms behind these phenomena The Greek philosopher Thales of Miletus discovered around 600 B C E that amber could acquire an electric charge when it was rubbed with cloth which allowed it to pick up light objects such as pieces of straw Thales also experimented with the ability of magnetic rocks to attract one other and hypothesized that this phenomenon might be connected to the attractive power of amber foreshadowing the deep connections between electricity and magnetism that would be discovered over 2 000 years later Despite all this investigation ancient civilizations had no understanding of the mathematical basis of electromagnetism and often analyzed its impacts through the lens of religion rather than science lightning for instance was considered to be a creation of the gods in many cultures 4 19th century nbsp Cover of A Treatise on Electricity and MagnetismElectricity and magnetism were originally considered to be two separate forces This view changed with the publication of James Clerk Maxwell s 1873 A Treatise on Electricity and Magnetism 5 in which the interactions of positive and negative charges were shown to be mediated by one force There are four main effects resulting from these interactions all of which have been clearly demonstrated by experiments Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them unlike charges attract like ones repel 6 Magnetic poles or states of polarization at individual points attract or repel one another in a manner similar to positive and negative charges and always exist as pairs every north pole is yoked to a south pole 7 An electric current inside a wire creates a corresponding circumferential magnetic field outside the wire Its direction clockwise or counter clockwise depends on the direction of the current in the wire 8 A current is induced in a loop of wire when it is moved toward or away from a magnetic field or a magnet is moved towards or away from it the direction of current depends on that of the movement 8 In April 1820 Hans Christian Orsted observed that an electrical current in a wire caused a nearby compass needle to move At the time of discovery Orsted did not suggest any satisfactory explanation of the phenomenon nor did he try to represent the phenomenon in a mathematical framework However three months later he began more intensive investigations 9 10 Soon thereafter he published his findings proving that an electric current produces a magnetic field as it flows through a wire The CGS unit of magnetic induction oersted is named in honor of his contributions to the field of electromagnetism 11 His findings resulted in intensive research throughout the scientific community in electrodynamics They influenced French physicist Andre Marie Ampere s developments of a single mathematical form to represent the magnetic forces between current carrying conductors Orsted s discovery also represented a major step toward a unified concept of energy This unification which was observed by Michael Faraday extended by James Clerk Maxwell and partially reformulated by Oliver Heaviside and Heinrich Hertz is one of the key accomplishments of 19th century mathematical physics 12 It has had far reaching consequences one of which was the understanding of the nature of light Unlike what was proposed by the electromagnetic theory of that time light and other electromagnetic waves are at present seen as taking the form of quantized self propagating oscillatory electromagnetic field disturbances called photons Different frequencies of oscillation give rise to the different forms of electromagnetic radiation from radio waves at the lowest frequencies to visible light at intermediate frequencies to gamma rays at the highest frequencies Orsted was not the only person to examine the relationship between electricity and magnetism In 1802 Gian Domenico Romagnosi an Italian legal scholar deflected a magnetic needle using a Voltaic pile The factual setup of the experiment is not completely clear nor if current flowed across the needle or not An account of the discovery was published in 1802 in an Italian newspaper but it was largely overlooked by the contemporary scientific community because Romagnosi seemingly did not belong to this community 13 An earlier 1735 and often neglected connection between electricity and magnetism was reported by a Dr Cookson 14 The account stated A tradesman at Wakefield in Yorkshire having put up a great number of knives and forks in a large box and having placed the box in the corner of a large room there happened a sudden storm of thunder lightning amp c The owner emptying the box on a counter where some nails lay the persons who took up the knives that lay on the nails observed that the knives took up the nails On this the whole number was tried and found to do the same and that to such a degree as to take up large nails packing needles and other iron things of considerable weight E T Whittaker suggested in 1910 that this particular event was responsible for lightning to be credited with the power of magnetizing steel and it was doubtless this which led Franklin in 1751 to attempt to magnetize a sewing needle by means of the discharge of Leyden jars 15 A fundamental force nbsp Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation The electromagnetic force is the second strongest of the four known fundamental forces It operates with infinite range 16 All other forces e g friction contact forces are derived from these four fundamental forces and they are known as non fundamental forces 17 At high energy the weak force and electromagnetic force are unified as a single interaction called the electroweak interaction 18 Roughly speaking all the forces involved in interactions between atoms can be explained by the electromagnetic force acting between the electrically charged atomic nuclei and electrons of the atoms Electromagnetic forces also explain how these particles carry momentum by their movement This includes the forces we experience in pushing or pulling ordinary material objects which result from the intermolecular forces that act between the individual molecules in our bodies and those in the objects The electromagnetic force is also involved in all forms of chemical phenomena A necessary part of understanding the intra atomic and intermolecular forces is the effective force generated by the momentum of the electrons movement such that as electrons move between interacting atoms they carry momentum with them As a collection of electrons becomes more confined their minimum momentum necessarily increases due to the Pauli exclusion principle The behaviour of matter at the molecular scale including its density is determined by the balance between the electromagnetic force and the force generated by the exchange of momentum carried by the electrons themselves 19 Classical electrodynamicsMain article Classical electrodynamics In 1600 William Gilbert proposed in his De Magnete that electricity and magnetism while both capable of causing attraction and repulsion of objects were distinct effects 20 Mariners had noticed that lightning strikes had the ability to disturb a compass needle The link between lightning and electricity was not confirmed until Benjamin Franklin s proposed experiments in 1752 were conducted on 10 May 1752 by Thomas Francois Dalibard of France using a 40 foot tall 12 m iron rod instead of a kite and he successfully extracted electrical sparks from a cloud 21 22 One of the first to discover and publish a link between human made electric current and magnetism was Gian Romagnosi who in 1802 noticed that connecting a wire across a voltaic pile deflected a nearby compass needle However the effect did not become widely known until 1820 when Orsted performed a similar experiment 23 Orsted s work influenced Ampere to conduct further experiments which eventually gave rise to a new area of physics electrodynamics By determining a force law for the interaction between elements of electric current Ampere placed the subject on a solid mathematical foundation 24 A theory of electromagnetism known as classical electromagnetism was developed by several physicists during the period between 1820 and 1873 when James Clerk Maxwell s treatise was published which unified previous developments into a single theory proposing that light was an electromagnetic wave propagating in the luminiferous ether 25 In classical electromagnetism the behavior of the electromagnetic field is described by a set of equations known as Maxwell s equations and the electromagnetic force is given by the Lorentz force law 26 One of the peculiarities of classical electromagnetism is that it is difficult to reconcile with classical mechanics but it is compatible with special relativity According to Maxwell s equations the speed of light in vacuum is a universal constant that is dependent only on the electrical permittivity and magnetic permeability of free space This violates Galilean invariance a long standing cornerstone of classical mechanics One way to reconcile the two theories electromagnetism and classical mechanics is to assume the existence of a luminiferous aether through which the light propagates However subsequent experimental efforts failed to detect the presence of the aether After important contributions of Hendrik Lorentz and Henri Poincare in 1905 Albert Einstein solved the problem with the introduction of special relativity which replaced classical kinematics with a new theory of kinematics compatible with classical electromagnetism For more information see History of special relativity In addition relativity theory implies that in moving frames of reference a magnetic field transforms to a field with a nonzero electric component and conversely a moving electric field transforms to a nonzero magnetic component thus firmly showing that the phenomena are two sides of the same coin Hence the term electromagnetism For more information see Classical electromagnetism and special relativity and Covariant formulation of classical electromagnetism Today few problems in electromagnetism remain unsolved These include the lack of magnetic monopoles Abraham Minkowski controversy and the mechanism by which some organisms can sense electric and magnetic fields Extension to nonlinear phenomenaThe Maxwell equations are linear in that a change in the sources the charges and currents results in a proportional change of the fields Nonlinear dynamics can occur when electromagnetic fields couple to matter that follows nonlinear dynamical laws 27 This is studied for example in the subject of magnetohydrodynamics which combines Maxwell theory with the Navier Stokes equations 28 Another branch of electromagnetism dealing with nonlinearity is nonlinear optics Quantities and unitsSee also List of physical quantities and List of electromagnetism equations Here is a list of common units related to electromagnetism 29 ampere electric current coulomb electric charge farad capacitance henry inductance ohm resistance siemens conductance tesla magnetic flux density volt electric potential watt power weber magnetic flux In the electromagnetic CGS system electric current is a fundamental quantity defined via Ampere s law and takes the permeability as a dimensionless quantity relative permeability whose value in vacuum is unity 30 As a consequence the square of the speed of light appears explicitly in some of the equations interrelating quantities in this system SI electromagnetism unitsvte Symbol 31 Name of quantity Unit name Symbol Base unitsE energy joule J C V W s kg m2 s 2Q electric charge coulomb C A sI electric current ampere A C s W V AJ electric current density ampere per square metre A m2 A m 2U DV Dϕ E 3 potential difference voltage electromotive force volt V J C kg m2 s 3 A 1R Z X electric resistance impedance reactance ohm W V A kg m2 s 3 A 2r resistivity ohm metre W m kg m3 s 3 A 2P electric power watt W V A kg m2 s 3C capacitance farad F C V kg 1 m 2 A2 s4FE electric flux volt metre V m kg m3 s 3 A 1E electric field strength volt per metre V m N C kg m A 1 s 3D electric displacement field coulomb per square metre C m2 A s m 2e permittivity farad per metre F m kg 1 m 3 A2 s4xe electric susceptibility dimensionless 1 1p electric dipole moment coulomb metre C m A s mG Y B conductance admittance susceptance siemens S W 1 kg 1 m 2 s3 A2k g s conductivity siemens per metre S m kg 1 m 3 s3 A2B magnetic flux density magnetic induction tesla T Wb m2 N A 1 m 1 kg s 2 A 1F FM FB magnetic flux weber Wb V s kg m2 s 2 A 1H magnetic field strength ampere per metre A m A m 1F magnetomotive force ampere A Wb H AR magnetic reluctance inverse henry H 1 A Wb kg 1 m 2 s2 A2P magnetic permeance henry H Wb A kg m2 s 2 A 2L M inductance henry H Wb A V s A kg m2 s 2 A 2m permeability henry per metre H m kg m s 2 A 2x magnetic susceptibility dimensionless 1 1m magnetic dipole moment ampere square meter A m2 J T 1 A m2s mass magnetization ampere square meter per kilogram A m2 kg A m2 kg 1Formulas for physical laws of electromagnetism such as Maxwell s equations need to be adjusted depending on what system of units one uses This is because there is no one to one correspondence between electromagnetic units in SI and those in CGS as is the case for mechanical units Furthermore within CGS there are several plausible choices of electromagnetic units leading to different unit sub systems including Gaussian ESU EMU and Heaviside Lorentz Among these choices Gaussian units are the most common today and in fact the phrase CGS units is often used to refer specifically to CGS Gaussian units 32 ApplicationsThe study of electromagnetism informs electric circuits and semiconductor devices construction See alsoAbraham Lorentz force Aeromagnetic surveys Computational electromagnetics Double slit experiment Electrodynamic droplet deformation Electromagnet Electromagnetic induction Electromagnetic wave equation Electromagnetic scattering Electromechanics Geophysics Introduction to electromagnetism Magnetostatics Magnetoquasistatic field Optics Relativistic electromagnetism Wheeler Feynman absorber theoryReferences Meyer Herbert 1972 A History of Electricity and Magnetism p 2 Magazine Smithsonian Learn Joshua Rapp Mesoamerican Sculptures Reveal Early Knowledge of Magnetism Smithsonian Magazine Retrieved 2022 12 07 du Tremolet de Lacheisserie E Gignoux D Schlenker M 2002 du Tremolet de Lacheisserie E Gignoux D Schlenker M eds Magnetism from the Dawn of Civilization to Today Magnetism New York NY Springer pp 3 18 doi 10 1007 978 0 387 23062 7 1 ISBN 978 0 387 23062 7 retrieved 2022 12 07 Meyer Herbert 1972 A History of Electricity and Magnetism pp 3 4 A Treatise on Electricity and Magnetism Nature 7 182 478 480 24 April 1873 Bibcode 1873Natur 7 478 doi 10 1038 007478a0 ISSN 0028 0836 S2CID 10178476 Why Do Like Charges Repel And Opposite Charges Attract Science ABC 2019 02 06 Retrieved 2022 08 22 What Makes Magnets Repel Sciencing Retrieved 2022 08 22 a b Jim Lucas Contributions from Ashley Hamer 2022 02 18 What Is Faraday s Law of Induction livescience com Retrieved 2022 08 22 History of the Electric Telegraph Scientific American 17 425supp 6784 6786 1884 02 23 doi 10 1038 scientificamerican02231884 6784supp ISSN 0036 8733 Volta and the history of electricity Fabio Bevilacqua Enrico A Giannetto Milano U Hoepli 2003 ISBN 88 203 3284 1 OCLC 1261807533 a href Template Cite book html title Template Cite book cite book a CS1 maint others link Roche John J 1998 The mathematics of measurement a critical history London Athlone Press ISBN 0 485 11473 9 OCLC 40499222 Darrigol Olivier 2000 Electrodynamics from Ampere to Einstein New York Oxford University Press ISBN 0198505949 Martins Roberto de Andrade Romagnosi and Volta s Pile Early Difficulties in the Interpretation of Voltaic Electricity PDF In Fabio Bevilacqua Lucio Fregonese eds Nuova Voltiana Studies on Volta and his Times Vol 3 Universita degli Studi di Pavia pp 81 102 Archived from the original PDF on 2013 05 30 Retrieved 2010 12 02 VIII An account of an extraordinary effect of lightning in communicating magnetism Communicated by Pierce Dod M D F R S from Dr Cookson of Wakefield in Yorkshire Phil Trans 1735 39 74 75 published 1 January 1735 Whittaker E T 1910 A History of the Theories of Aether and Electricity from the Age of Descartes to the Close of the Nineteenth Century Longmans Green and Company Rehm Jeremy published Ben Biggs 2021 12 23 The four fundamental forces of nature Space com Retrieved 2022 08 22 Browne Physics for Engineering and Science p 160 Gravity is one of the fundamental forces of nature The other forces such as friction tension and the normal force are derived from the electric force another of the fundamental forces Gravity is a rather weak force The electric force between two protons is much stronger than the gravitational force between them Salam A Ward J C November 1964 Electromagnetic and weak interactions Physics Letters 13 2 168 171 doi 10 1016 0031 9163 64 90711 5 Purcell Electricity and Magnetism 3rd Edition p 546 Ch 11 Section 6 Electron Spin and Magnetic Moment Malin Stuart Barraclough David 2000 Gilbert s De Magnete An early study of magnetism and electricity Eos Transactions American Geophysical Union 81 21 233 Bibcode 2000EOSTr 81 233M doi 10 1029 00EO00163 ISSN 0096 3941 Lightning Museum of Science Boston Tucker Tom 2003 Bolt of fate Benjamin Franklin and his electric kite hoax 1st ed New York PublicAffairs ISBN 1 891620 70 3 OCLC 51763922 Stern Dr David P Peredo Mauricio 2001 11 25 Magnetic Fields History NASA Goddard Space Flight Center Retrieved 2009 11 27 Andre Marie Ampere ETHW 2016 01 13 Retrieved 2022 08 22 Purcell p 436 Chapter 9 3 Maxwell s description of the electromagnetic field was essentially complete Purcell p 278 Chapter 6 1 Definition of the Magnetic Field Lorentz force and force equation Jufriansah Adi Hermanto Arief Toifur Moh Prasetyo Erwin 2020 05 18 Theoretical study of Maxwell s equations in nonlinear optics AIP Conference Proceedings 2234 1 040013 Bibcode 2020AIPC 2234d0013J doi 10 1063 5 0008179 ISSN 0094 243X S2CID 219451710 Hunt Julian C R 1967 07 27 Some aspects of magnetohydrodynamics Thesis thesis University of Cambridge doi 10 17863 cam 14141 Essentials of the SI Base amp derived units physics nist gov Retrieved 2022 08 22 Tables of Physical and Chemical Constants and some Mathematical Functions Nature 107 2687 264 April 1921 Bibcode 1921Natur 107R 264 doi 10 1038 107264c0 ISSN 1476 4687 International Union of Pure and Applied Chemistry 1993 Quantities Units and Symbols in Physical Chemistry 2nd edition Oxford Blackwell Science ISBN 0 632 03583 8 pp 14 15 Electronic version Conversion of formulae and quantities between unit systems PDF www stanford edu Retrieved 29 January 2022 Further readingWeb sources Nave R Electricity and magnetism HyperPhysics Georgia State University Retrieved 2013 11 12 Khutoryansky E Electromagnetism Maxwell s Laws YouTube Retrieved 2014 12 28 Textbooks G A G Bennet 1974 Electricity and Modern Physics 2nd ed Edward Arnold UK ISBN 978 0 7131 2459 0 Browne Michael 2008 Physics for Engineering and Science 2nd ed McGraw Hill Schaum ISBN 978 0 07 161399 6 Dibner Bern 2012 Oersted and the discovery of electromagnetism Literary Licensing LLC ISBN 978 1 258 33555 7 Durney Carl H Johnson Curtis C 1969 Introduction to modern electromagnetics McGraw Hill ISBN 978 0 07 018388 9 Feynman Richard P 1970 The Feynman Lectures on Physics Vol II Addison Wesley Longman ISBN 978 0 201 02115 8 Fleisch Daniel 2008 A Student s Guide to Maxwell s Equations Cambridge UK Cambridge University Press ISBN 978 0 521 70147 1 I S Grant W R Phillips Manchester Physics 2008 Electromagnetism 2nd ed John Wiley amp Sons ISBN 978 0 471 92712 9 Griffiths David J 1998 Introduction to Electrodynamics 3rd ed Prentice Hall ISBN 978 0 13 805326 0 Jackson John D 1998 Classical Electrodynamics 3rd ed Wiley ISBN 978 0 471 30932 1 Moliton Andre 2007 Basic electromagnetism and materials New York Springer Verlag New York ISBN 978 0 387 30284 3 a href Template Cite book html title Template Cite book cite book a work ignored help Purcell Edward M 1985 Electricity and Magnetism Berkeley Physics Course Volume 2 2nd ed McGraw Hill ISBN 978 0 07 004908 6 Purcell Edward M and Morin David 2013 Electricity and Magnetism 820p 3rd ed Cambridge University Press New York ISBN 978 1 107 01402 2 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Rao Nannapaneni N 1994 Elements of engineering electromagnetics 4th ed Prentice Hall ISBN 978 0 13 948746 0 Rothwell Edward J Cloud Michael J 2001 Electromagnetics CRC Press ISBN 978 0 8493 1397 4 Tipler Paul 1998 Physics for Scientists and Engineers Vol 2 Light Electricity and Magnetism 4th ed W H Freeman ISBN 978 1 57259 492 0 Wangsness Roald K Cloud Michael J 1986 Electromagnetic Fields 2nd ed Wiley ISBN 978 0 471 81186 2 General coverage A Beiser 1987 Concepts of Modern Physics 4th ed McGraw Hill International ISBN 978 0 07 100144 1 L H Greenberg 1978 Physics with Modern Applications Holt Saunders International W B Saunders and Co ISBN 978 0 7216 4247 5 R G Lerner G L Trigg 2005 Encyclopaedia of Physics 2nd ed VHC Publishers Hans Warlimont Springer pp 12 13 ISBN 978 0 07 025734 4 J B Marion W F Hornyak 1984 Principles of Physics Holt Saunders International Saunders College ISBN 978 4 8337 0195 2 H J Pain 1983 The Physics of Vibrations and Waves 3rd ed John Wiley amp Sons ISBN 978 0 471 90182 2 C B Parker 1994 McGraw Hill Encyclopaedia of Physics 2nd ed McGraw Hill ISBN 978 0 07 051400 3 R Penrose 2007 The Road to Reality Vintage books ISBN 978 0 679 77631 4 P A Tipler G Mosca 2008 Physics for Scientists and Engineers With Modern Physics 6th ed W H Freeman and Co ISBN 978 1 4292 0265 7 P M Whelan M J Hodgeson 1978 Essential Principles of Physics 2nd ed John Murray ISBN 978 0 7195 3382 2 External links nbsp Wikiquote has quotations related to Electromagnetism Magnetic Field Strength Converter Electromagnetic Force from Eric Weisstein s World of Physics Retrieved from https en wikipedia org w index php title Electromagnetism amp oldid 1206722134, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.