fbpx
Wikipedia

Thallium

Thallium is a chemical element; it has symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek θαλλός, thallós, meaning "green shoot" or "twig", was named by Crookes. It was isolated by both Lamy and Crookes in 1862; Lamy by electrolysis, and Crookes by precipitation and melting of the resultant powder. Crookes exhibited it as a powder precipitated by zinc at the international exhibition, which opened on 1 May that year.[7]

Thallium, 81Tl
Thallium
Pronunciation/ˈθæliəm/ (THAL-ee-əm)
Appearancesilvery white
Standard atomic weight Ar°(Tl)
Thallium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
In

Tl

Nh
mercurythalliumlead
Atomic number (Z)81
Groupgroup 13 (boron group)
Periodperiod 6
Block  p-block
Electron configuration[Xe] 4f14 5d10 6s2 6p1
Electrons per shell2, 8, 18, 32, 18, 3
Physical properties
Phase at STPsolid
Melting point577 K ​(304 °C, ​579 °F)
Boiling point1746 K ​(1473 °C, ​2683 °F)
Density (near r.t.)11.85 g/cm3
when liquid (at m.p.)11.22 g/cm3
Heat of fusion4.14 kJ/mol
Heat of vaporization165 kJ/mol
Molar heat capacity26.32 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 882 977 1097 1252 1461 1758
Atomic properties
Oxidation states−5,[3] −2, −1, +1, +2, +3 (a mildly basic oxide)
ElectronegativityPauling scale: 1.62
Ionization energies
  • 1st: 589.4 kJ/mol
  • 2nd: 1971 kJ/mol
  • 3rd: 2878 kJ/mol
Atomic radiusempirical: 170 pm
Covalent radius145±7 pm
Van der Waals radius196 pm
Spectral lines of thallium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Thermal expansion29.9 µm/(m⋅K) (at 25 °C)
Thermal conductivity46.1 W/(m⋅K)
Electrical resistivity0.18 µΩ⋅m (at 20 °C)
Magnetic orderingdiamagnetic[4]
Molar magnetic susceptibility−50.9×10−6 cm3/mol (298 K)[5]
Young's modulus8 GPa
Shear modulus2.8 GPa
Bulk modulus43 GPa
Speed of sound thin rod818 m/s (at 20 °C)
Poisson ratio0.45
Mohs hardness1.2
Brinell hardness26.5–44.7 MPa
CAS Number7440-28-0
History
Namingafter Greek thallos, green shoot or twig
DiscoveryWilliam Crookes (1861)
First isolationClaude-Auguste Lamy (1862)
Isotopes of thallium
Main isotopes[6] Decay
abun­dance half-life (t1/2) mode pro­duct
201Tl synth 3.0421 d ε 201Hg
203Tl 29.5% stable
204Tl synth 3.78 y β 204Pb
ε + β+ 204Hg
205Tl 70.5% stable
 Category: Thallium
| references

Thallium tends to form the +3 and +1 oxidation states. The +3 state resembles that of the other elements in group 13 (boron, aluminium, gallium, indium). However, the +1 state, which is far more prominent in thallium than the elements above it, recalls the chemistry of alkali metals, and thallium(I) ions are found geologically mostly in potassium-based ores, and (when ingested) are handled in many ways like potassium ions (K+) by ion pumps in living cells.

Commercially, thallium is produced not from potassium ores, but as a byproduct from refining of heavy-metal sulfide ores. Approximately 65% of thallium production is used in the electronics industry, and the remainder is used in the pharmaceutical industry and in glass manufacturing.[8] It is also used in infrared detectors. The radioisotope thallium-201 (as the soluble chloride TlCl) is used in small amounts as an agent in a nuclear medicine scan, during one type of nuclear cardiac stress test.

Soluble thallium salts (many of which are nearly tasteless) are highly toxic, and they were historically used in rat poisons and insecticides. Because of their nonselective toxicity, use of these compounds has been restricted or banned in many countries. Thallium poisoning usually results in hair loss. Because of its historic popularity as a murder weapon, thallium has gained notoriety as "the poisoner's poison" and "inheritance powder" (alongside arsenic).[9]

Characteristics edit

A thallium atom has 81 electrons, arranged in the electron configuration [Xe]4f145d106s26p1; of these, the three outermost electrons in the sixth shell are valence electrons. Due to the inert pair effect, the 6s electron pair is relativistically stabilised and it is more difficult to get these involved in chemical bonding than it is for the heavier elements. Thus, very few electrons are available for metallic bonding, similar to the neighboring elements mercury and lead. Thallium, then, like its congeners, is a soft, highly electrically conducting metal with a low melting point, of 304 °C.[10]

A number of standard electrode potentials, depending on the reaction under study,[11] are reported for thallium, reflecting the greatly decreased stability of the +3 oxidation state:[10]

+0.73 Tl3+ + 3 e ↔ Tl
−0.336 Tl+ + e ↔ Tl

Thallium is the first element in group 13 where the reduction of the +3 oxidation state to the +1 oxidation state is spontaneous under standard conditions.[10] Since bond energies decrease down the group, with thallium, the energy released in forming two additional bonds and attaining the +3 state is not always enough to outweigh the energy needed to involve the 6s-electrons.[12] Accordingly, thallium(I) oxide and hydroxide are more basic and thallium(III) oxide and hydroxide are more acidic, showing that thallium conforms to the general rule of elements being more electropositive in their lower oxidation states.[12]

Thallium is malleable and sectile enough to be cut with a knife at room temperature. It has a metallic luster that, when exposed to air, quickly tarnishes to a bluish-gray tinge, resembling lead. It may be preserved by immersion in oil. A heavy layer of oxide builds up on thallium if left in air. In the presence of water, thallium hydroxide is formed. Sulfuric and nitric acids dissolve thallium rapidly to make the sulfate and nitrate salts, while hydrochloric acid forms an insoluble thallium(I) chloride layer.[13]

Isotopes edit

Thallium has 41 isotopes which have atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and make up nearly all of natural thallium. The five short-lived isotopes 206Tl through 210Tl inclusive occur in nature, as they are part of the natural decay chains of heavier elements. 204Tl is the most stable radioisotope, with a half-life of 3.78 years.[14] It is made by the neutron activation of stable thallium in a nuclear reactor.[14][15] The most useful radioisotope, 201Tl (half-life 73 hours), decays by electron capture, emitting X-rays (~70–80 keV), and photons of 135 and 167 keV in 10% total abundance;[14] therefore, it has good imaging characteristics without an excessive patient-radiation dose. It is the most popular isotope used for thallium nuclear cardiac stress tests.[16]

Compounds edit

Thallium(III) edit

Thallium(III) compounds resemble the corresponding aluminium(III) compounds. They are moderately strong oxidizing agents and are usually unstable, as illustrated by the positive reduction potential for the Tl3+/Tl couple. Some mixed-valence compounds are also known, such as Tl4O3 and TlCl2, which contain both thallium(I) and thallium(III). Thallium(III) oxide, Tl2O3, is a black solid which decomposes above 800 °C, forming the thallium(I) oxide and oxygen.[13]

The simplest possible thallium compound, thallane (TlH3), is too unstable to exist in bulk, both due to the instability of the +3 oxidation state as well as poor overlap of the valence 6s and 6p orbitals of thallium with the 1s orbital of hydrogen.[17] The trihalides are more stable, although they are chemically distinct from those of the lighter group 13 elements and are still the least stable in the whole group. For instance, thallium(III) fluoride, TlF3, has the β-BiF3 structure rather than that of the lighter group 13 trifluorides, and does not form the TlF
4
complex anion in aqueous solution. The trichloride and tribromide disproportionate just above room temperature to give the monohalides, and thallium triiodide contains the linear triiodide anion (I
3
) and is actually a thallium(I) compound.[18] Thallium(III) sesquichalcogenides do not exist.[19]

Thallium(I) edit

The thallium(I) halides are stable. In keeping with the large size of the Tl+ cation, the chloride and bromide have the caesium chloride structure, while the fluoride and iodide have distorted sodium chloride structures. Like the analogous silver compounds, TlCl, TlBr, and TlI are photosensitive and display poor solubility in water.[20] The stability of thallium(I) compounds demonstrates its differences from the rest of the group: a stable oxide, hydroxide, and carbonate are known, as are many chalcogenides.[21]

The double salt Tl
4
(OH)
2
CO
3
has been shown to have hydroxyl-centred triangles of thallium, [Tl
3
(OH)]2+
, as a recurring motif throughout its solid structure.[22]

The metalorganic compound thallium ethoxide (TlOEt, TlOC2H5) is a heavy liquid (ρ 3.49 g·cm−3, m.p. −3 °C),[23] often used as a basic and soluble thallium source in organic and organometallic chemistry.[24]

Organothallium compounds edit

Organothallium compounds tend to be thermally unstable, in concordance with the trend of decreasing thermal stability down group 13. The chemical reactivity of the Tl–C bond is also the lowest in the group, especially for ionic compounds of the type R2TlX. Thallium forms the stable [Tl(CH3)2]+ ion in aqueous solution; like the isoelectronic Hg(CH3)2 and [Pb(CH3)2]2+, it is linear. Trimethylthallium and triethylthallium are, like the corresponding gallium and indium compounds, flammable liquids with low melting points. Like indium, thallium cyclopentadienyl compounds contain thallium(I), in contrast to gallium(III).[25]

History edit

Thallium (Greek θαλλός, thallos, meaning "a green shoot or twig")[26] was discovered by William Crookes and Claude Auguste Lamy, working independently, both using flame spectroscopy (Crookes was first to publish his findings, on March 30, 1861).[27] The name comes from thallium's bright green spectral emission lines [28] derived from the Greek 'thallos', meaning a green twig.[29]

After the publication of the improved method of flame spectroscopy by Robert Bunsen and Gustav Kirchhoff[30] and the discovery of caesium and rubidium in the years 1859 to 1860, flame spectroscopy became an approved method to determine the composition of minerals and chemical products. Crookes and Lamy both started to use the new method. Crookes used it to make spectroscopic determinations for tellurium on selenium compounds deposited in the lead chamber of a sulfuric acid production plant near Tilkerode in the Harz mountains. He had obtained the samples for his research on selenium cyanide from August Hofmann years earlier.[31][32] By 1862, Crookes was able to isolate small quantities of the new element and determine the properties of a few compounds.[33] Claude-Auguste Lamy used a spectrometer that was similar to Crookes' to determine the composition of a selenium-containing substance which was deposited during the production of sulfuric acid from pyrite. He also noticed the new green line in the spectra and concluded that a new element was present. Lamy had received this material from the sulfuric acid plant of his friend Frédéric Kuhlmann and this by-product was available in large quantities. Lamy started to isolate the new element from that source.[34] The fact that Lamy was able to work ample quantities of thallium enabled him to determine the properties of several compounds and in addition he prepared a small ingot of metallic thallium which he prepared by remelting thallium he had obtained by electrolysis of thallium salts.[citation needed]

As both scientists discovered thallium independently and a large part of the work, especially the isolation of the metallic thallium was done by Lamy, Crookes tried to secure his own priority on the work. Lamy was awarded a medal at the International Exhibition in London 1862: For the discovery of a new and abundant source of thallium and after heavy protest Crookes also received a medal: thallium, for the discovery of the new element. The controversy between both scientists continued through 1862 and 1863. Most of the discussion ended after Crookes was elected Fellow of the Royal Society in June 1863.[35][36]

The dominant use of thallium was the use as poison for rodents. After several accidents the use as poison was banned in the United States by Presidential Executive Order 11643 in February 1972. In subsequent years several other countries also banned its use.[37]

Occurrence and production edit

Although thallium is a modestly abundant element in the Earth's crust, with a concentration estimated to be 0.7 mg/kg,[38] mostly in association with potassium-based minerals in clays, soils, and granites, thallium is not generally economically recoverable from these sources. The major source of thallium for practical purposes is the trace amount that is found in copper, lead, zinc, and other heavy-metal-sulfide ores.[39][40]

 
Crystals of hutchinsonite ((Tl,Pb)2As5S9)

Thallium is found in the minerals crookesite TlCu7Se4, hutchinsonite TlPbAs5S9, and lorándite TlAsS2.[41] Thallium also occurs as a trace element in iron pyrite, and thallium is extracted as a by-product of roasting this mineral for the production of sulfuric acid.[8][42]

Thallium can also be obtained from the smelting of lead and zinc ores. Manganese nodules found on the ocean floor contain some thallium, but the collection of these nodules has been prohibitively expensive. There is also the potential for damaging the oceanic environment.[43] In addition, several other thallium minerals, containing 16% to 60% thallium, occur in nature as complexes of sulfides or selenides that primarily contain antimony, arsenic, copper, lead, and silver. These minerals are rare, and have had no commercial importance as sources of thallium.[38] The Allchar deposit in southern North Macedonia was the only area where thallium was actively mined. This deposit still contains an estimated 500 tonnes of thallium, and it is a source for several rare thallium minerals, for example lorándite.[44]

The United States Geological Survey (USGS) estimates that the annual worldwide production of thallium is 10 metric tonnes as a by-product from the smelting of copper, zinc, and lead ores.[38] Thallium is either extracted from the dusts from the smelter flues or from residues such as slag that are collected at the end of the smelting process.[38] The raw materials used for thallium production contain large amounts of other materials and therefore a purification is the first step. The thallium is leached either by the use of a base or sulfuric acid from the material. The thallium is precipitated several times from the solution to remove impurities. At the end it is converted to thallium sulfate and the thallium is extracted by electrolysis on platinum or stainless steel plates.[42] The production of thallium decreased by about 33% in the period from 1995 to 2009 – from about 15 metric tonnes to about 10 tonnes. Since there are several small deposits or ores with relatively high thallium content, it would be possible to increase the production if a new application, such as a thallium-containing high-temperature superconductor, becomes practical for widespread use outside of the laboratory.[45]

Applications edit

Historic uses edit

The odorless and tasteless thallium sulfate was once widely used as rat poison and ant killer. Since 1972 this use has been prohibited in the United States due to safety concerns.[37][8] Many other countries followed this example. Thallium salts were used in the treatment of ringworm, other skin infections and to reduce the night sweating of tuberculosis patients. This use has been limited due to their narrow therapeutic index, and the development of improved medicines for these conditions.[46][47][48]

Optics edit

Thallium(I) bromide and thallium(I) iodide crystals have been used as infrared optical materials, because they are harder than other common infrared optics, and because they have transmission at significantly longer wavelengths. The trade name KRS-5 refers to this material.[49] Thallium(I) oxide has been used to manufacture glasses that have a high index of refraction. Combined with sulfur or selenium and arsenic, thallium has been used in the production of high-density glasses that have low melting points in the range of 125 and 150 Celsius°. These glasses have room-temperature properties that are similar to ordinary glasses and are durable, insoluble in water and have unique refractive indices.[50]

Electronics edit

 
A corroded thallium rod

Thallium(I) sulfide's electrical conductivity changes with exposure to infrared light, making this compound useful in photoresistors.[46] Thallium selenide has been used in bolometers for infrared detection.[51] Doping selenium semiconductors with thallium improves their performance, thus it is used in trace amounts in selenium rectifiers.[46] Another application of thallium doping is the sodium iodide and cesium iodide crystals in gamma radiation detection devices. In these, the sodium iodide crystals are doped with a small amount of thallium to improve their efficiency as scintillation generators.[52] Some of the electrodes in dissolved oxygen analyzers contain thallium.[8]

High-temperature superconductivity edit

Research activity with thallium is ongoing to develop high-temperature superconducting materials for such applications as magnetic resonance imaging, storage of magnetic energy, magnetic propulsion, and electric power generation and transmission. The research in applications started after the discovery of the first thallium barium calcium copper oxide superconductor in 1988.[53] Thallium cuprate superconductors have been discovered that have transition temperatures above 120 K. Some mercury-doped thallium-cuprate superconductors have transition temperatures above 130 K at ambient pressure, nearly as high as the world-record-holding mercury cuprates.[54]

Nuclear medicine edit

Before the widespread application of technetium-99m in nuclear medicine, the radioactive isotope thallium-201, with a half-life of 73 hours, was the main substance for nuclear cardiography. The nuclide is still used for stress tests for risk stratification in patients with coronary artery disease (CAD).[55] This isotope of thallium can be generated using a transportable generator, which is similar to the technetium-99m generator.[56] The generator contains lead-201 (half-life 9.33 hours), which decays by electron capture to thallium-201. The lead-201 can be produced in a cyclotron by the bombardment of thallium with protons or deuterons by the (p,3n) and (d,4n) reactions.[57][58]

Thallium stress test edit

A thallium stress test is a form of scintigraphy in which the amount of thallium in tissues correlates with tissue blood supply. Viable cardiac cells have normal Na+/K+ ion-exchange pumps. The Tl+ cation binds the K+ pumps and is transported into the cells. Exercise or dipyridamole induces widening (vasodilation) of arteries in the body. This produces coronary steal by areas where arteries are maximally dilated. Areas of infarct or ischemic tissue will remain "cold". Pre- and post-stress thallium may indicate areas that will benefit from myocardial revascularization. Redistribution indicates the existence of coronary steal and the presence of ischemic coronary artery disease.[59]

Other uses edit

A mercury–thallium alloy, which forms a eutectic at 8.5% thallium, is reported to freeze at −60 °C, some 20 °C below the freezing point of mercury. This alloy is used in thermometers and low-temperature switches.[46] In organic synthesis, thallium(III) salts, as thallium trinitrate or triacetate, are useful reagents for performing different transformations in aromatics, ketones and olefins, among others.[60] Thallium is a constituent of the alloy in the anode plates of magnesium seawater batteries.[8] Soluble thallium salts are added to gold plating baths to increase the speed of plating and to reduce grain size within the gold layer.[61]

A saturated solution of equal parts of thallium(I) formate (Tl(HCO2)) and thallium(I) malonate (Tl(C3H3O4)) in water is known as Clerici solution. It is a mobile, odorless liquid which changes from yellowish to colorless upon reducing the concentration of the thallium salts. With a density of 4.25 g/cm3 at 20 °C, Clerici solution is one of the heaviest aqueous solutions known. It was used in the 20th century for measuring the density of minerals by the flotation method, but its use has discontinued due to the high toxicity and corrosiveness of the solution.[62][63]

Thallium iodide is frequently used as an additive in metal-halide lamps, often together with one or two halides of other metals. It allows optimization of the lamp temperature and color rendering,[64][65] and shifts the spectral output to the green region, which is useful for underwater lighting.[66]

Toxicity edit

Thallium
Hazards
GHS labelling:
   
Danger
H300, H330, H373, H413
P260, P264, P284, P301, P310[67]
NFPA 704 (fire diamond)
 Health 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
4
0
2

Thallium and its compounds are extremely toxic, with numerous recorded cases of fatal thallium poisoning.[68][69] The Occupational Safety and Health Administration (OSHA) has set the legal limit (permissible exposure limit) for thallium exposure in the workplace as 0.1 mg/m2 skin exposure over an eight-hour workday. The National Institute for Occupational Safety and Health (NIOSH) also set a recommended exposure limit (REL) of 0.1 mg/m2 skin exposure over an eight-hour workday. At levels of 15 mg/m2, thallium is immediately dangerous to life and health.[70]

Contact with skin is dangerous, and adequate ventilation is necessary when melting this metal. Thallium(I) compounds have a high aqueous solubility and are readily absorbed through the skin, and care should be taken to avoid this route of exposure, as cutaneous absorption can exceed the absorbed dose received by inhalation at the permissible exposure limit (PEL).[71] Exposure by inhalation cannot safely exceed 0.1 mg/m2 in an eight-hour time-weighted average (40-hour work week).[72] The Centers for Disease Control and Prevention (CDC) states, "Thallium is not classifiable as a carcinogen, and it is not suspected to be a carcinogen. It is unknown whether chronic or repeated exposure to thallium increases the risk of reproductive toxicity or developmental toxicity. Chronic high level exposure to thallium through inhalation has been reported to cause nervous system effects, such as numbness of fingers and toes."[73] For a long time thallium compounds were readily available as rat poison. This fact and that it is water-soluble and nearly tasteless led to frequent intoxication caused by accident or criminal intent.[36]

One of the main methods of removing thallium (both radioactive and stable) from humans is to use Prussian blue, a material which absorbs thallium.[74] Up to 20 grams per day of Prussian blue is fed by mouth to the patient, and it passes through their digestive system and comes out in their stool. Hemodialysis and hemoperfusion are also used to remove thallium from the blood serum. At later stages of the treatment, additional potassium is used to mobilize thallium from the tissues.[75][76]

According to the United States Environmental Protection Agency (EPA), artificially-made sources of thallium pollution include gaseous emission of cement factories, coal-burning power plants, and metal sewers. The main source of elevated thallium concentrations in water is the leaching of thallium from ore processing operations.[40][77]

See also edit

Citations edit

  1. ^ "Standard Atomic Weights: Thallium". CIAAW. 2009.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ Dong, Z.-C.; Corbett, J. D. (1996). "Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions". Inorganic Chemistry. 35 (11): 3107–12. doi:10.1021/ic960014z. PMID 11666505.
  4. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  5. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  6. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  7. ^ The Mining and Smelting Magazine 2021-02-24 at the Wayback Machine. Ed. Henry Curwen Salmon. Vol. iv, July–Dec 1963, p. 87.
  8. ^ a b c d e . Spectrum Laboratories. April 2001. Archived from the original on 2008-02-21. Retrieved 2008-02-02.
  9. ^ Hasan, Heather (2009). The Boron Elements: Boron, Aluminum, Gallium, Indium, Thallium. Rosen Publishing Group. p. 14. ISBN 978-1-4358-5333-1.
  10. ^ a b c Greenwood and Earnshaw, pp. 222–224
  11. ^ Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 8.20. ISBN 1-4398-5511-0.
  12. ^ a b Greenwood and Earnshaw, pp. 224–7
  13. ^ a b Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Thallium". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 892–893. ISBN 978-3-11-007511-3.
  14. ^ a b c Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  15. ^ "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. (PDF) from the original on 2011-05-21. Retrieved 2010-05-13.
  16. ^ Maddahi, Jamshid; Berman, Daniel (2001). "Detection, Evaluation, and Risk Stratification of Coronary Artery Disease by Thallium-201 Myocardial Perfusion Scintigraphy 155". Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178. ISBN 978-0-7817-2007-6. from the original on 2017-02-22. Retrieved 2016-09-26.
  17. ^ Andrew, L.; Wang, X. (2004). "Infrared Spectra of Thallium Hydrides in Solid Neon, Hydrogen, and Argon". J. Phys. Chem. A. 108 (16): 3396–3402. Bibcode:2004JPCA..108.3396W. doi:10.1021/jp0498973.
  18. ^ Greenwood and Earnshaw, p. 239
  19. ^ Greenwood and Earnshaw, p. 254
  20. ^ Greenwood and Earnshaw, p. 241
  21. ^ Greenwood and Earnshaw, pp. 246–7
  22. ^ Siidra, Oleg I.; Britvin, Sergey N.; Krivovichev, Sergey V. (2009). "Hydroxocentered [(OH)Tl
    3
    ]2+
    triangle as a building unit in thallium compounds: synthesis and crystal structure of Tl
    4
    (OH)
    2
    CO
    3
    ". Z. Kristallogr. 224 (12): 563–567. Bibcode:2009ZK....224..563S. doi:10.1524/zkri.2009.1213. S2CID 97334707.
  23. ^ Handbook of inorganic compounds. Perry, Dale L., Phillips, Sidney L. Boca Raton: CRC Press. 1995. ISBN 0-8493-8671-3. OCLC 32347397.{{cite book}}: CS1 maint: others (link)
  24. ^ Frank, Scott A.; Chen, Hou; Kunz, Roxanne K.; Schnaderbeck, Matthew J.; Roush, William R. (2000-08-01). "Use of Thallium(I) Ethoxide in Suzuki Cross Coupling Reactions". Organic Letters. 2 (17): 2691–2694. doi:10.1021/ol0062446. ISSN 1523-7060. PMID 10990429.
  25. ^ Greenwood and Earnshaw, pp. 262–4
  26. ^ Liddell, Henry George and Scott, Robert (eds.) "θαλλος 2016-04-15 at the Wayback Machine", in A Greek–English Lexicon, Oxford University Press.
  27. ^ * Crookes, William (March 30, 1861) "On the existence of a new element, probably of the sulphur group," Chemical News, vol. 3, pp. 193–194; reprinted in: Crookes, William (April 1861). "XLVI. On the existence of a new element, probably of the sulphur group". Philosophical Magazine. 21 (140): 301–305. doi:10.1080/14786446108643058. from the original on 2014-07-01. Retrieved 2016-09-26.;
    • Crookes, William (May 18, 1861) "Further remarks on the supposed new metalloid," Chemical News, vol. 3, p. 303.
    • Crookes, William (June 19, 1862) "Preliminary researches on thallium," Proceedings of the Royal Society of London, vol. 12, pages 150–159.
    • Lamy, A. (May 16, 1862) "De l'existencè d'un nouveau métal, le thallium," Comptes Rendus, vol. 54, pages 1255–1262 Archived 2016-05-15 at the Portuguese Web Archive.
  28. ^ Weeks, Mary Elvira (1932). "The discovery of the elements. XIII. Supplementary note on the discovery of thallium". Journal of Chemical Education. 9 (12): 2078. Bibcode:1932JChEd...9.2078W. doi:10.1021/ed009p2078.
  29. ^ "Thallium - Element information, properties and uses | Periodic Table". Royal Society of Chemistry. Retrieved 2 February 2024.
  30. ^ G. Kirchhoff; R. Bunsen (1861). "Chemische Analyse durch Spectralbeobachtungen" (PDF). Annalen der Physik und Chemie. 189 (7): 337–381. Bibcode:1861AnP...189..337K. doi:10.1002/andp.18611890702. (PDF) from the original on 2020-11-14. Retrieved 2018-04-20.
  31. ^ Crookes, William (1862–1863). "Preliminary Researches on Thallium". Proceedings of the Royal Society of London. 12: 150–159. Bibcode:1862RSPS...12..150C. doi:10.1098/rspl.1862.0030. JSTOR 112218.
  32. ^ Crookes, William (1863). "On Thallium". Philosophical Transactions of the Royal Society of London. 153: 173–192. doi:10.1098/rstl.1863.0009. JSTOR 108794. from the original on 2020-03-13. Retrieved 2019-09-12.
  33. ^ DeKosky, Robert K. (1973). "Spectroscopy and the Elements in the Late Nineteenth Century: The Work of Sir William Crookes". The British Journal for the History of Science. 6 (4): 400–423. doi:10.1017/S0007087400012553. JSTOR 4025503. S2CID 146534210.
  34. ^ Lamy, Claude-Auguste (1862). "De l'existencè d'un nouveau métal, le thallium". Comptes Rendus. 54: 1255–1262. Archived from the original on 2016-05-15. Retrieved 2008-11-11.
  35. ^ James, Frank A. J. L. (1984). "Of 'Medals and Muddles' the Context of the Discovery of Thallium: William Crookes's Early". Notes and Records of the Royal Society of London. 39 (1): 65–90. doi:10.1098/rsnr.1984.0005. JSTOR 531576.
  36. ^ a b Emsley, John (2006). "Thallium". The Elements of Murder: A History of Poison. Oxford University Press. pp. 326–327. ISBN 978-0-19-280600-0. from the original on 2020-03-07. Retrieved 2016-09-26.
  37. ^ a b Staff of the Nonferrous Metals Division (1972). "Thallium". Minerals yearbook metals, minerals, and fuels. Vol. 1. United States Geological Survey. p. 1358. from the original on 2014-03-22. Retrieved 2010-06-01.
  38. ^ a b c d Guberman, David E. "Mineral Commodity Summaries 2010: Thallium" (PDF). United States Geological Survey. (PDF) from the original on 2010-07-15. Retrieved 2010-05-13.
  39. ^ Zitko, V.; Carson, W. V.; Carson, W. G. (1975). "Thallium: Occurrence in the environment and toxicity to fish". Bulletin of Environmental Contamination and Toxicology. 13 (1): 23–30. Bibcode:1975BuECT..13...23Z. doi:10.1007/BF01684859. PMID 1131433. S2CID 40955658.
  40. ^ a b Peter, A.; Viraraghavan, T. (2005). "Thallium: a review of public health and environmental concerns". Environment International. 31 (4): 493–501. doi:10.1016/j.envint.2004.09.003. PMID 15788190.
  41. ^ Shaw, D. (1952). "The geochemistry of thallium". Geochimica et Cosmochimica Acta. 2 (2): 118–154. Bibcode:1952GeCoA...2..118S. doi:10.1016/0016-7037(52)90003-3.
  42. ^ a b Downs, Anthony John (1993). Chemistry of aluminium, gallium, indium, and thallium. Springer. pp. 90 and 106. ISBN 978-0-7514-0103-5. from the original on 2017-02-22. Retrieved 2016-09-26.
  43. ^ Rehkamper, M.; Nielsen, Sune G. (2004). "The mass balance of dissolved thallium in the oceans". Marine Chemistry. 85 (3–4): 125–139. Bibcode:2004MarCh..85..125R. doi:10.1016/j.marchem.2003.09.006.
  44. ^ Jankovic, S. (1988). "The Allchar Tl–As–Sb deposit, Yugoslavia and its specific metallogenic features". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 271 (2): 286. Bibcode:1988NIMPA.271..286J. doi:10.1016/0168-9002(88)90170-2.
  45. ^ Smith, Gerald R. "Mineral commodity summaries 1996: Thallium" (PDF). United States Geological Survey. (PDF) from the original on 2010-05-29. Retrieved 2010-05-13.
  46. ^ a b c d Hammond, C. R. (2004-06-29). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9.
  47. ^ Percival, G. H. (1930). "The Treatment of Ringworm of The Scalp with Thallium Acetate". British Journal of Dermatology. 42 (2): 59–69. doi:10.1111/j.1365-2133.1930.tb09395.x. PMC 2456722. PMID 20774304.
  48. ^ Galvanarzate, S.; Santamarı́a, A. (1998). "Thallium toxicity". Toxicology Letters. 99 (1): 1–13. doi:10.1016/S0378-4274(98)00126-X. PMID 9801025.
  49. ^ Rodney, William S.; Malitson, Irving H. (1956). "Refraction and Dispersion of Thallium Bromide Iodide". Journal of the Optical Society of America. 46 (11): 338–346. Bibcode:1956JOSA...46..956R. doi:10.1364/JOSA.46.000956.
  50. ^ Kokorina, Valentina F. (1996). Glasses for infrared optics. CRC Press. ISBN 978-0-8493-3785-7. from the original on 2020-03-11. Retrieved 2016-09-26.
  51. ^ Nayer, P. S; Hamilton, O. (1977). "Thallium selenide infrared detector". Appl. Opt. 16 (11): 2942–4. Bibcode:1977ApOpt..16.2942N. doi:10.1364/AO.16.002942. PMID 20174271.
  52. ^ Hofstadter, Robert (1949). "The Detection of Gamma-Rays with Thallium-Activated Sodium Iodide Crystals". Physical Review. 75 (5): 796–810. Bibcode:1949PhRv...75..796H. doi:10.1103/PhysRev.75.796.
  53. ^ Sheng, Z. Z.; Hermann A. M. (1988). "Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system". Nature. 332 (6160): 138–139. Bibcode:1988Natur.332..138S. doi:10.1038/332138a0. S2CID 30690410.
  54. ^ Jia, Y. X.; Lee, C. S.; Zettl, A. (1994). "Stabilization of the Tl2Ba2Ca2Cu3O10 superconductor by Hg doping". Physica C. 234 (1–2): 24–28. Bibcode:1994PhyC..234...24J. doi:10.1016/0921-4534(94)90049-3. from the original on 2020-03-16. Retrieved 2019-07-01.
  55. ^ Jain, Diwakar; Zaret, Barry L. (2005). "Nuclear imaging in cardiovascular medicine". In Clive Rosendorff (ed.). Essential cardiology: principles and practice (2nd ed.). Humana Press. pp. 221–222. ISBN 978-1-58829-370-1. from the original on 2017-02-19. Retrieved 2016-09-26.
  56. ^ Lagunas-Solar, M. C.; Little, F. E.; Goodart, C. D. (1982). "An integrally shielded transportable generator system for thallium-201 production". International Journal of Applied Radiation and Isotopes. 33 (12): 1439–1443. doi:10.1016/0020-708X(82)90183-1. PMID 7169272. from the original on 2007-10-12. Retrieved 2006-11-23.
  57. ^ Thallium-201 production 2006-09-13 at the Wayback Machine from Harvard Medical School's Joint Program in Nuclear Medicine.
  58. ^ Lebowitz, E.; Greene, M. W.; Fairchild, R.; Bradley-Moore, P. R.; Atkins, H. L.; Ansari, A. N.; Richards, P.; Belgrave, E. (1975). "Thallium-201 for medical use". The Journal of Nuclear Medicine. 16 (2): 151–5. PMID 1110421. from the original on 2008-10-11. Retrieved 2010-05-13.
  59. ^ Taylor, George J. (2004). Primary care cardiology. Wiley-Blackwell. p. 100. ISBN 978-1-4051-0386-2. from the original on 2020-03-12. Retrieved 2016-09-26.
  60. ^ Taylor, Edward Curtis; McKillop, Alexander (1970). "Thallium in organic synthesis". Accounts of Chemical Research. 3 (10): 956–960. doi:10.1021/ar50034a003.
  61. ^ Pecht, Michael (1994-03-01). Integrated circuit, hybrid, and multichip module package design guidelines: a focus on reliability. John Wiley & Sons. pp. 113–115. ISBN 978-0-471-59446-8. from the original on 2014-07-01. Retrieved 2016-09-26.
  62. ^ Jahns, R. H. (1939). "Clerici solution for the specific gravity determination of small mineral grains" (PDF). American Mineralogist. 24: 116. (PDF) from the original on 2012-07-24. Retrieved 2009-11-06.
  63. ^ Peter G. Read (1999). Gemmology. Butterworth-Heinemann. pp. 63–64. ISBN 978-0-7506-4411-2. from the original on 2020-03-17. Retrieved 2016-09-26.
  64. ^ Reiling, Gilbert H. (1964). "Characteristics of Mercury Vapor-Metallic Iodide Arc Lamps". Journal of the Optical Society of America. 54 (4): 532. Bibcode:1964JOSA...54..532R. doi:10.1364/JOSA.54.000532.
  65. ^ Gallo, C. F. (1967). "The Effect of Thallium Iodide on the Arc Temperature of Hg Discharges". Applied Optics. 6 (9): 1563–5. Bibcode:1967ApOpt...6.1563G. doi:10.1364/AO.6.001563. PMID 20062260.
  66. ^ Wilford, John Noble (1987-08-11). "UNDERSEA QUEST FOR GIANT SQUIDS AND RARE SHARKS". The New York Times. from the original on 2016-12-20. Retrieved 2017-02-13.
  67. ^ "Thallium 277932". Sigma-Aldrich. from the original on 2018-10-02. Retrieved 2018-10-02.
  68. ^ "A 15-year-old case yields a timely clue in deadly thallium poisoning". nj. 2011-02-13. Retrieved 2023-02-12.
  69. ^ Jennifer Ouellette (25 December 2018). "Study brings us one step closer to solving 1994 thallium poisoning case". Ars Technica. from the original on 26 December 2018. Retrieved 26 December 2018.
  70. ^ "CDC – NIOSH Pocket Guide to Chemical Hazards – Thallium (soluble compounds, as Tl)". www.cdc.gov. from the original on 2015-09-24. Retrieved 2015-11-24.
  71. ^ "Surface Contamination - Overview | Occupational Safety and Health Administration". www.osha.gov. Retrieved 2023-02-12.
  72. ^ Chemical Sampling Information | Thallium, soluble compounds (as Tl) 2014-03-22 at the Wayback Machine. Osha.gov. Retrieved on 2013-09-05.
  73. ^ "CDC – The Emergency Response Safety and Health Database: Systemic Agent: THALLIUM – NIOSH". www.cdc.gov. from the original on 2019-11-15. Retrieved 2019-12-11.
  74. ^ Yang, Yongsheng; Faustino, Patrick J.; Progar, Joseph J.; et al. (2008). "Quantitative determination of thallium binding to ferric hexacyanoferrate: Prussian blue". International Journal of Pharmaceutics. 353 (1–2): 187–194. doi:10.1016/j.ijpharm.2007.11.031. PMID 18226478. from the original on 2020-03-15. Retrieved 2019-07-01.
  75. ^ Prussian blue fact sheet 2013-10-20 at the Wayback Machine. US Centers for Disease Control and Prevention.
  76. ^ Malbrain, Manu L. N. G.; Lambrecht, Guy L. Y.; Zandijk, Erik; Demedts, Paul A.; Neels, Hugo M.; Lambert, Willy; De Leenheer, André P.; Lins, Robert L.; Daelemans, Ronny (1997). "Treatment of Severe Thallium Intoxication". Clinical Toxicology. 35 (1): 97–100. doi:10.3109/15563659709001173. PMID 9022660.
  77. ^ "Factsheet on: Thallium" (PDF). US Environmental Protection Agency. (PDF) from the original on 2012-01-11. Retrieved 2009-09-15.

General bibliography edit

External links edit

  • Thallium at The Periodic Table of Videos (University of Nottingham)
  • Toxicity, thallium
  • NLM hazardous substances databank – Thallium, elemental
  • ATSDR – ToxFAQs
  • CDC – NIOSH Pocket Guide to Chemical Hazards

thallium, confused, with, thulium, chemical, element, symbol, atomic, number, gray, post, transition, metal, that, found, free, nature, when, isolated, thallium, resembles, discolors, when, exposed, chemists, william, crookes, claude, auguste, lamy, discovered. Not to be confused with Thulium Thalliumis a chemical element it has symbol Tl and atomic number 81 It is a gray post transition metal that is not found free in nature When isolated thallium resembles tin but discolors when exposed to air Chemists William Crookes and Claude Auguste Lamy discovered thallium independently in 1861 in residues of sulfuric acid production Both used the newly developed method of flame spectroscopy in which thallium produces a notable green spectral line Thallium from Greek 8allos thallos meaning green shoot or twig was named by Crookes It was isolated by both Lamy and Crookes in 1862 Lamy by electrolysis and Crookes by precipitation and melting of the resultant powder Crookes exhibited it as a powder precipitated by zinc at the international exhibition which opened on 1 May that year 7 Thallium 81TlThalliumPronunciation ˈ 8 ae l i e m wbr THAL ee em Appearancesilvery whiteStandard atomic weight Ar Tl 204 382 204 385 1 204 38 0 01 abridged 2 Thallium in the periodic tableHydrogen HeliumLithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine NeonSodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine ArgonPotassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine KryptonRubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine XenonCaesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury element Thallium Lead Bismuth Polonium Astatine RadonFrancium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson In Tl Nhmercury thallium leadAtomic number Z 81Groupgroup 13 boron group Periodperiod 6Block p blockElectron configuration Xe 4f14 5d10 6s2 6p1Electrons per shell2 8 18 32 18 3Physical propertiesPhase at STPsolidMelting point577 K 304 C 579 F Boiling point1746 K 1473 C 2683 F Density near r t 11 85 g cm3when liquid at m p 11 22 g cm3Heat of fusion4 14 kJ molHeat of vaporization165 kJ molMolar heat capacity26 32 J mol K Vapor pressureP Pa 1 10 100 1 k 10 k 100 kat T K 882 977 1097 1252 1461 1758Atomic propertiesOxidation states 5 3 2 1 1 2 3 a mildly basic oxide ElectronegativityPauling scale 1 62Ionization energies1st 589 4 kJ mol2nd 1971 kJ mol3rd 2878 kJ molAtomic radiusempirical 170 pmCovalent radius145 7 pmVan der Waals radius196 pmSpectral lines of thalliumOther propertiesNatural occurrenceprimordialCrystal structure hexagonal close packed hcp Thermal expansion29 9 µm m K at 25 C Thermal conductivity46 1 W m K Electrical resistivity0 18 µW m at 20 C Magnetic orderingdiamagnetic 4 Molar magnetic susceptibility 50 9 10 6 cm3 mol 298 K 5 Young s modulus8 GPaShear modulus2 8 GPaBulk modulus43 GPaSpeed of sound thin rod818 m s at 20 C Poisson ratio0 45Mohs hardness1 2Brinell hardness26 5 44 7 MPaCAS Number7440 28 0HistoryNamingafter Greek thallos green shoot or twigDiscoveryWilliam Crookes 1861 First isolationClaude Auguste Lamy 1862 Isotopes of thalliumveMain isotopes 6 Decayabun dance half life t1 2 mode pro duct201Tl synth 3 0421 d e 201Hg203Tl 29 5 stable204Tl synth 3 78 y b 204Pbe b 204Hg205Tl 70 5 stable Category Thalliumviewtalkedit referencesThallium tends to form the 3 and 1 oxidation states The 3 state resembles that of the other elements in group 13 boron aluminium gallium indium However the 1 state which is far more prominent in thallium than the elements above it recalls the chemistry of alkali metals and thallium I ions are found geologically mostly in potassium based ores and when ingested are handled in many ways like potassium ions K by ion pumps in living cells Commercially thallium is produced not from potassium ores but as a byproduct from refining of heavy metal sulfide ores Approximately 65 of thallium production is used in the electronics industry and the remainder is used in the pharmaceutical industry and in glass manufacturing 8 It is also used in infrared detectors The radioisotope thallium 201 as the soluble chloride TlCl is used in small amounts as an agent in a nuclear medicine scan during one type of nuclear cardiac stress test Soluble thallium salts many of which are nearly tasteless are highly toxic and they were historically used in rat poisons and insecticides Because of their nonselective toxicity use of these compounds has been restricted or banned in many countries Thallium poisoning usually results in hair loss Because of its historic popularity as a murder weapon thallium has gained notoriety as the poisoner s poison and inheritance powder alongside arsenic 9 Contents 1 Characteristics 1 1 Isotopes 2 Compounds 2 1 Thallium III 2 2 Thallium I 2 3 Organothallium compounds 3 History 4 Occurrence and production 5 Applications 5 1 Historic uses 5 2 Optics 5 3 Electronics 5 4 High temperature superconductivity 5 5 Nuclear medicine 5 5 1 Thallium stress test 5 6 Other uses 6 Toxicity 7 See also 8 Citations 9 General bibliography 10 External linksCharacteristics editA thallium atom has 81 electrons arranged in the electron configuration Xe 4f145d106s26p1 of these the three outermost electrons in the sixth shell are valence electrons Due to the inert pair effect the 6s electron pair is relativistically stabilised and it is more difficult to get these involved in chemical bonding than it is for the heavier elements Thus very few electrons are available for metallic bonding similar to the neighboring elements mercury and lead Thallium then like its congeners is a soft highly electrically conducting metal with a low melting point of 304 C 10 A number of standard electrode potentials depending on the reaction under study 11 are reported for thallium reflecting the greatly decreased stability of the 3 oxidation state 10 0 73 Tl3 3 e Tl 0 336 Tl e TlThallium is the first element in group 13 where the reduction of the 3 oxidation state to the 1 oxidation state is spontaneous under standard conditions 10 Since bond energies decrease down the group with thallium the energy released in forming two additional bonds and attaining the 3 state is not always enough to outweigh the energy needed to involve the 6s electrons 12 Accordingly thallium I oxide and hydroxide are more basic and thallium III oxide and hydroxide are more acidic showing that thallium conforms to the general rule of elements being more electropositive in their lower oxidation states 12 Thallium is malleable and sectile enough to be cut with a knife at room temperature It has a metallic luster that when exposed to air quickly tarnishes to a bluish gray tinge resembling lead It may be preserved by immersion in oil A heavy layer of oxide builds up on thallium if left in air In the presence of water thallium hydroxide is formed Sulfuric and nitric acids dissolve thallium rapidly to make the sulfate and nitrate salts while hydrochloric acid forms an insoluble thallium I chloride layer 13 Isotopes edit Main article Isotopes of thallium Thallium has 41 isotopes which have atomic masses that range from 176 to 216 203Tl and 205Tl are the only stable isotopes and make up nearly all of natural thallium The five short lived isotopes 206Tl through 210Tl inclusive occur in nature as they are part of the natural decay chains of heavier elements 204Tl is the most stable radioisotope with a half life of 3 78 years 14 It is made by the neutron activation of stable thallium in a nuclear reactor 14 15 The most useful radioisotope 201Tl half life 73 hours decays by electron capture emitting X rays 70 80 keV and photons of 135 and 167 keV in 10 total abundance 14 therefore it has good imaging characteristics without an excessive patient radiation dose It is the most popular isotope used for thallium nuclear cardiac stress tests 16 Compounds editSee also Category Thallium compounds and Thallium halides Thallium III edit Thallium III compounds resemble the corresponding aluminium III compounds They are moderately strong oxidizing agents and are usually unstable as illustrated by the positive reduction potential for the Tl3 Tl couple Some mixed valence compounds are also known such as Tl4O3 and TlCl2 which contain both thallium I and thallium III Thallium III oxide Tl2O3 is a black solid which decomposes above 800 C forming the thallium I oxide and oxygen 13 The simplest possible thallium compound thallane TlH3 is too unstable to exist in bulk both due to the instability of the 3 oxidation state as well as poor overlap of the valence 6s and 6p orbitals of thallium with the 1s orbital of hydrogen 17 The trihalides are more stable although they are chemically distinct from those of the lighter group 13 elements and are still the least stable in the whole group For instance thallium III fluoride TlF3 has the b BiF3 structure rather than that of the lighter group 13 trifluorides and does not form the TlF 4 complex anion in aqueous solution The trichloride and tribromide disproportionate just above room temperature to give the monohalides and thallium triiodide contains the linear triiodide anion I 3 and is actually a thallium I compound 18 Thallium III sesquichalcogenides do not exist 19 Thallium I edit The thallium I halides are stable In keeping with the large size of the Tl cation the chloride and bromide have the caesium chloride structure while the fluoride and iodide have distorted sodium chloride structures Like the analogous silver compounds TlCl TlBr and TlI are photosensitive and display poor solubility in water 20 The stability of thallium I compounds demonstrates its differences from the rest of the group a stable oxide hydroxide and carbonate are known as are many chalcogenides 21 The double salt Tl4 OH 2 CO3 has been shown to have hydroxyl centred triangles of thallium Tl3 OH 2 as a recurring motif throughout its solid structure 22 The metalorganic compound thallium ethoxide TlOEt TlOC2H5 is a heavy liquid r 3 49 g cm 3 m p 3 C 23 often used as a basic and soluble thallium source in organic and organometallic chemistry 24 Organothallium compounds edit See also Organogallium chemistry Higher group 13 organometallic chemistry Organothallium compounds tend to be thermally unstable in concordance with the trend of decreasing thermal stability down group 13 The chemical reactivity of the Tl C bond is also the lowest in the group especially for ionic compounds of the type R2TlX Thallium forms the stable Tl CH3 2 ion in aqueous solution like the isoelectronic Hg CH3 2 and Pb CH3 2 2 it is linear Trimethylthallium and triethylthallium are like the corresponding gallium and indium compounds flammable liquids with low melting points Like indium thallium cyclopentadienyl compounds contain thallium I in contrast to gallium III 25 History editThallium Greek 8allos thallos meaning a green shoot or twig 26 was discovered by William Crookes and Claude Auguste Lamy working independently both using flame spectroscopy Crookes was first to publish his findings on March 30 1861 27 The name comes from thallium s bright green spectral emission lines 28 derived from the Greek thallos meaning a green twig 29 After the publication of the improved method of flame spectroscopy by Robert Bunsen and Gustav Kirchhoff 30 and the discovery of caesium and rubidium in the years 1859 to 1860 flame spectroscopy became an approved method to determine the composition of minerals and chemical products Crookes and Lamy both started to use the new method Crookes used it to make spectroscopic determinations for tellurium on selenium compounds deposited in the lead chamber of a sulfuric acid production plant near Tilkerode in the Harz mountains He had obtained the samples for his research on selenium cyanide from August Hofmann years earlier 31 32 By 1862 Crookes was able to isolate small quantities of the new element and determine the properties of a few compounds 33 Claude Auguste Lamy used a spectrometer that was similar to Crookes to determine the composition of a selenium containing substance which was deposited during the production of sulfuric acid from pyrite He also noticed the new green line in the spectra and concluded that a new element was present Lamy had received this material from the sulfuric acid plant of his friend Frederic Kuhlmann and this by product was available in large quantities Lamy started to isolate the new element from that source 34 The fact that Lamy was able to work ample quantities of thallium enabled him to determine the properties of several compounds and in addition he prepared a small ingot of metallic thallium which he prepared by remelting thallium he had obtained by electrolysis of thallium salts citation needed As both scientists discovered thallium independently and a large part of the work especially the isolation of the metallic thallium was done by Lamy Crookes tried to secure his own priority on the work Lamy was awarded a medal at the International Exhibition in London 1862 For the discovery of a new and abundant source of thallium and after heavy protest Crookes also received a medal thallium for the discovery of the new element The controversy between both scientists continued through 1862 and 1863 Most of the discussion ended after Crookes was elected Fellow of the Royal Society in June 1863 35 36 The dominant use of thallium was the use as poison for rodents After several accidents the use as poison was banned in the United States by Presidential Executive Order 11643 in February 1972 In subsequent years several other countries also banned its use 37 Occurrence and production editAlthough thallium is a modestly abundant element in the Earth s crust with a concentration estimated to be 0 7 mg kg 38 mostly in association with potassium based minerals in clays soils and granites thallium is not generally economically recoverable from these sources The major source of thallium for practical purposes is the trace amount that is found in copper lead zinc and other heavy metal sulfide ores 39 40 nbsp Crystals of hutchinsonite Tl Pb 2As5S9 Thallium is found in the minerals crookesite TlCu7Se4 hutchinsonite TlPbAs5S9 and lorandite TlAsS2 41 Thallium also occurs as a trace element in iron pyrite and thallium is extracted as a by product of roasting this mineral for the production of sulfuric acid 8 42 Thallium can also be obtained from the smelting of lead and zinc ores Manganese nodules found on the ocean floor contain some thallium but the collection of these nodules has been prohibitively expensive There is also the potential for damaging the oceanic environment 43 In addition several other thallium minerals containing 16 to 60 thallium occur in nature as complexes of sulfides or selenides that primarily contain antimony arsenic copper lead and silver These minerals are rare and have had no commercial importance as sources of thallium 38 The Allchar deposit in southern North Macedonia was the only area where thallium was actively mined This deposit still contains an estimated 500 tonnes of thallium and it is a source for several rare thallium minerals for example lorandite 44 The United States Geological Survey USGS estimates that the annual worldwide production of thallium is 10 metric tonnes as a by product from the smelting of copper zinc and lead ores 38 Thallium is either extracted from the dusts from the smelter flues or from residues such as slag that are collected at the end of the smelting process 38 The raw materials used for thallium production contain large amounts of other materials and therefore a purification is the first step The thallium is leached either by the use of a base or sulfuric acid from the material The thallium is precipitated several times from the solution to remove impurities At the end it is converted to thallium sulfate and the thallium is extracted by electrolysis on platinum or stainless steel plates 42 The production of thallium decreased by about 33 in the period from 1995 to 2009 from about 15 metric tonnes to about 10 tonnes Since there are several small deposits or ores with relatively high thallium content it would be possible to increase the production if a new application such as a thallium containing high temperature superconductor becomes practical for widespread use outside of the laboratory 45 Applications editHistoric uses edit The odorless and tasteless thallium sulfate was once widely used as rat poison and ant killer Since 1972 this use has been prohibited in the United States due to safety concerns 37 8 Many other countries followed this example Thallium salts were used in the treatment of ringworm other skin infections and to reduce the night sweating of tuberculosis patients This use has been limited due to their narrow therapeutic index and the development of improved medicines for these conditions 46 47 48 Optics edit Thallium I bromide and thallium I iodide crystals have been used as infrared optical materials because they are harder than other common infrared optics and because they have transmission at significantly longer wavelengths The trade name KRS 5 refers to this material 49 Thallium I oxide has been used to manufacture glasses that have a high index of refraction Combined with sulfur or selenium and arsenic thallium has been used in the production of high density glasses that have low melting points in the range of 125 and 150 Celsius These glasses have room temperature properties that are similar to ordinary glasses and are durable insoluble in water and have unique refractive indices 50 Electronics edit nbsp A corroded thallium rodThallium I sulfide s electrical conductivity changes with exposure to infrared light making this compound useful in photoresistors 46 Thallium selenide has been used in bolometers for infrared detection 51 Doping selenium semiconductors with thallium improves their performance thus it is used in trace amounts in selenium rectifiers 46 Another application of thallium doping is the sodium iodide and cesium iodide crystals in gamma radiation detection devices In these the sodium iodide crystals are doped with a small amount of thallium to improve their efficiency as scintillation generators 52 Some of the electrodes in dissolved oxygen analyzers contain thallium 8 High temperature superconductivity edit Research activity with thallium is ongoing to develop high temperature superconducting materials for such applications as magnetic resonance imaging storage of magnetic energy magnetic propulsion and electric power generation and transmission The research in applications started after the discovery of the first thallium barium calcium copper oxide superconductor in 1988 53 Thallium cuprate superconductors have been discovered that have transition temperatures above 120 K Some mercury doped thallium cuprate superconductors have transition temperatures above 130 K at ambient pressure nearly as high as the world record holding mercury cuprates 54 Nuclear medicine edit Before the widespread application of technetium 99m in nuclear medicine the radioactive isotope thallium 201 with a half life of 73 hours was the main substance for nuclear cardiography The nuclide is still used for stress tests for risk stratification in patients with coronary artery disease CAD 55 This isotope of thallium can be generated using a transportable generator which is similar to the technetium 99m generator 56 The generator contains lead 201 half life 9 33 hours which decays by electron capture to thallium 201 The lead 201 can be produced in a cyclotron by the bombardment of thallium with protons or deuterons by the p 3n and d 4n reactions 57 58 Thallium stress test edit A thallium stress test is a form of scintigraphy in which the amount of thallium in tissues correlates with tissue blood supply Viable cardiac cells have normal Na K ion exchange pumps The Tl cation binds the K pumps and is transported into the cells Exercise or dipyridamole induces widening vasodilation of arteries in the body This produces coronary steal by areas where arteries are maximally dilated Areas of infarct or ischemic tissue will remain cold Pre and post stress thallium may indicate areas that will benefit from myocardial revascularization Redistribution indicates the existence of coronary steal and the presence of ischemic coronary artery disease 59 Other uses edit A mercury thallium alloy which forms a eutectic at 8 5 thallium is reported to freeze at 60 C some 20 C below the freezing point of mercury This alloy is used in thermometers and low temperature switches 46 In organic synthesis thallium III salts as thallium trinitrate or triacetate are useful reagents for performing different transformations in aromatics ketones and olefins among others 60 Thallium is a constituent of the alloy in the anode plates of magnesium seawater batteries 8 Soluble thallium salts are added to gold plating baths to increase the speed of plating and to reduce grain size within the gold layer 61 A saturated solution of equal parts of thallium I formate Tl HCO2 and thallium I malonate Tl C3H3O4 in water is known as Clerici solution It is a mobile odorless liquid which changes from yellowish to colorless upon reducing the concentration of the thallium salts With a density of 4 25 g cm3 at 20 C Clerici solution is one of the heaviest aqueous solutions known It was used in the 20th century for measuring the density of minerals by the flotation method but its use has discontinued due to the high toxicity and corrosiveness of the solution 62 63 Thallium iodide is frequently used as an additive in metal halide lamps often together with one or two halides of other metals It allows optimization of the lamp temperature and color rendering 64 65 and shifts the spectral output to the green region which is useful for underwater lighting 66 Toxicity editMain article Thallium poisoning Thallium HazardsGHS labelling Pictograms nbsp nbsp nbsp Signal word DangerHazard statements H300 H330 H373 H413Precautionary statements P260 P264 P284 P301 P310 67 NFPA 704 fire diamond nbsp 402 Thallium and its compounds are extremely toxic with numerous recorded cases of fatal thallium poisoning 68 69 The Occupational Safety and Health Administration OSHA has set the legal limit permissible exposure limit for thallium exposure in the workplace as 0 1 mg m2 skin exposure over an eight hour workday The National Institute for Occupational Safety and Health NIOSH also set a recommended exposure limit REL of 0 1 mg m2 skin exposure over an eight hour workday At levels of 15 mg m2 thallium is immediately dangerous to life and health 70 Contact with skin is dangerous and adequate ventilation is necessary when melting this metal Thallium I compounds have a high aqueous solubility and are readily absorbed through the skin and care should be taken to avoid this route of exposure as cutaneous absorption can exceed the absorbed dose received by inhalation at the permissible exposure limit PEL 71 Exposure by inhalation cannot safely exceed 0 1 mg m2 in an eight hour time weighted average 40 hour work week 72 The Centers for Disease Control and Prevention CDC states Thallium is not classifiable as a carcinogen and it is not suspected to be a carcinogen It is unknown whether chronic or repeated exposure to thallium increases the risk of reproductive toxicity or developmental toxicity Chronic high level exposure to thallium through inhalation has been reported to cause nervous system effects such as numbness of fingers and toes 73 For a long time thallium compounds were readily available as rat poison This fact and that it is water soluble and nearly tasteless led to frequent intoxication caused by accident or criminal intent 36 One of the main methods of removing thallium both radioactive and stable from humans is to use Prussian blue a material which absorbs thallium 74 Up to 20 grams per day of Prussian blue is fed by mouth to the patient and it passes through their digestive system and comes out in their stool Hemodialysis and hemoperfusion are also used to remove thallium from the blood serum At later stages of the treatment additional potassium is used to mobilize thallium from the tissues 75 76 According to the United States Environmental Protection Agency EPA artificially made sources of thallium pollution include gaseous emission of cement factories coal burning power plants and metal sewers The main source of elevated thallium concentrations in water is the leaching of thallium from ore processing operations 40 77 See also edit nbsp Chemistry portal Myocardial perfusion imagingCitations edit Standard Atomic Weights Thallium CIAAW 2009 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Dong Z C Corbett J D 1996 Na23K9Tl15 3 An Unusual Zintl Compound Containing Apparent Tl57 Tl48 Tl37 and Tl5 Anions Inorganic Chemistry 35 11 3107 12 doi 10 1021 ic960014z PMID 11666505 Lide D R ed 2005 Magnetic susceptibility of the elements and inorganic compounds CRC Handbook of Chemistry and Physics PDF 86th ed Boca Raton FL CRC Press ISBN 0 8493 0486 5 Weast Robert 1984 CRC Handbook of Chemistry and Physics Boca Raton Florida Chemical Rubber Company Publishing pp E110 ISBN 0 8493 0464 4 Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae The Mining and Smelting Magazine Archived 2021 02 24 at the Wayback Machine Ed Henry Curwen Salmon Vol iv July Dec 1963 p 87 a b c d e Chemical fact sheet Thallium Spectrum Laboratories April 2001 Archived from the original on 2008 02 21 Retrieved 2008 02 02 Hasan Heather 2009 The Boron Elements Boron Aluminum Gallium Indium Thallium Rosen Publishing Group p 14 ISBN 978 1 4358 5333 1 a b c Greenwood and Earnshaw pp 222 224 Haynes William M ed 2011 CRC Handbook of Chemistry and Physics 92nd ed Boca Raton FL CRC Press p 8 20 ISBN 1 4398 5511 0 a b Greenwood and Earnshaw pp 224 7 a b Holleman Arnold F Wiberg Egon Wiberg Nils 1985 Thallium Lehrbuch der Anorganischen Chemie in German 91 100 ed Walter de Gruyter pp 892 893 ISBN 978 3 11 007511 3 a b c Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Manual for reactor produced radioisotopes PDF International Atomic Energy Agency 2003 Archived PDF from the original on 2011 05 21 Retrieved 2010 05 13 Maddahi Jamshid Berman Daniel 2001 Detection Evaluation and Risk Stratification of Coronary Artery Disease by Thallium 201 Myocardial Perfusion Scintigraphy 155 Cardiac SPECT imaging 2nd ed Lippincott Williams amp Wilkins pp 155 178 ISBN 978 0 7817 2007 6 Archived from the original on 2017 02 22 Retrieved 2016 09 26 Andrew L Wang X 2004 Infrared Spectra of Thallium Hydrides in Solid Neon Hydrogen and Argon J Phys Chem A 108 16 3396 3402 Bibcode 2004JPCA 108 3396W doi 10 1021 jp0498973 Greenwood and Earnshaw p 239 Greenwood and Earnshaw p 254 Greenwood and Earnshaw p 241 Greenwood and Earnshaw pp 246 7 Siidra Oleg I Britvin Sergey N Krivovichev Sergey V 2009 Hydroxocentered OH Tl3 2 triangle as a building unit in thallium compounds synthesis and crystal structure of Tl4 OH 2 CO3 Z Kristallogr 224 12 563 567 Bibcode 2009ZK 224 563S doi 10 1524 zkri 2009 1213 S2CID 97334707 Handbook of inorganic compounds Perry Dale L Phillips Sidney L Boca Raton CRC Press 1995 ISBN 0 8493 8671 3 OCLC 32347397 a href Template Cite book html title Template Cite book cite book a CS1 maint others link Frank Scott A Chen Hou Kunz Roxanne K Schnaderbeck Matthew J Roush William R 2000 08 01 Use of Thallium I Ethoxide in Suzuki Cross Coupling Reactions Organic Letters 2 17 2691 2694 doi 10 1021 ol0062446 ISSN 1523 7060 PMID 10990429 Greenwood and Earnshaw pp 262 4 Liddell Henry George and Scott Robert eds 8allos Archived 2016 04 15 at the Wayback Machine in A Greek English Lexicon Oxford University Press Crookes William March 30 1861 On the existence of a new element probably of the sulphur group Chemical News vol 3 pp 193 194 reprinted in Crookes William April 1861 XLVI On the existence of a new element probably of the sulphur group Philosophical Magazine 21 140 301 305 doi 10 1080 14786446108643058 Archived from the original on 2014 07 01 Retrieved 2016 09 26 Crookes William May 18 1861 Further remarks on the supposed new metalloid Chemical News vol 3 p 303 Crookes William June 19 1862 Preliminary researches on thallium Proceedings of the Royal Society of London vol 12 pages 150 159 Lamy A May 16 1862 De l existence d un nouveau metal le thallium Comptes Rendus vol 54 pages 1255 1262 Archived 2016 05 15 at the Portuguese Web Archive Weeks Mary Elvira 1932 The discovery of the elements XIII Supplementary note on the discovery of thallium Journal of Chemical Education 9 12 2078 Bibcode 1932JChEd 9 2078W doi 10 1021 ed009p2078 Thallium Element information properties and uses Periodic Table Royal Society of Chemistry Retrieved 2 February 2024 G Kirchhoff R Bunsen 1861 Chemische Analyse durch Spectralbeobachtungen PDF Annalen der Physik und Chemie 189 7 337 381 Bibcode 1861AnP 189 337K doi 10 1002 andp 18611890702 Archived PDF from the original on 2020 11 14 Retrieved 2018 04 20 Crookes William 1862 1863 Preliminary Researches on Thallium Proceedings of the Royal Society of London 12 150 159 Bibcode 1862RSPS 12 150C doi 10 1098 rspl 1862 0030 JSTOR 112218 Crookes William 1863 On Thallium Philosophical Transactions of the Royal Society of London 153 173 192 doi 10 1098 rstl 1863 0009 JSTOR 108794 Archived from the original on 2020 03 13 Retrieved 2019 09 12 DeKosky Robert K 1973 Spectroscopy and the Elements in the Late Nineteenth Century The Work of Sir William Crookes The British Journal for the History of Science 6 4 400 423 doi 10 1017 S0007087400012553 JSTOR 4025503 S2CID 146534210 Lamy Claude Auguste 1862 De l existence d un nouveau metal le thallium Comptes Rendus 54 1255 1262 Archived from the original on 2016 05 15 Retrieved 2008 11 11 James Frank A J L 1984 Of Medals and Muddles the Context of the Discovery of Thallium William Crookes s Early Notes and Records of the Royal Society of London 39 1 65 90 doi 10 1098 rsnr 1984 0005 JSTOR 531576 a b Emsley John 2006 Thallium The Elements of Murder A History of Poison Oxford University Press pp 326 327 ISBN 978 0 19 280600 0 Archived from the original on 2020 03 07 Retrieved 2016 09 26 a b Staff of the Nonferrous Metals Division 1972 Thallium Minerals yearbook metals minerals and fuels Vol 1 United States Geological Survey p 1358 Archived from the original on 2014 03 22 Retrieved 2010 06 01 a b c d Guberman David E Mineral Commodity Summaries 2010 Thallium PDF United States Geological Survey Archived PDF from the original on 2010 07 15 Retrieved 2010 05 13 Zitko V Carson W V Carson W G 1975 Thallium Occurrence in the environment and toxicity to fish Bulletin of Environmental Contamination and Toxicology 13 1 23 30 Bibcode 1975BuECT 13 23Z doi 10 1007 BF01684859 PMID 1131433 S2CID 40955658 a b Peter A Viraraghavan T 2005 Thallium a review of public health and environmental concerns Environment International 31 4 493 501 doi 10 1016 j envint 2004 09 003 PMID 15788190 Shaw D 1952 The geochemistry of thallium Geochimica et Cosmochimica Acta 2 2 118 154 Bibcode 1952GeCoA 2 118S doi 10 1016 0016 7037 52 90003 3 a b Downs Anthony John 1993 Chemistry of aluminium gallium indium and thallium Springer pp 90 and 106 ISBN 978 0 7514 0103 5 Archived from the original on 2017 02 22 Retrieved 2016 09 26 Rehkamper M Nielsen Sune G 2004 The mass balance of dissolved thallium in the oceans Marine Chemistry 85 3 4 125 139 Bibcode 2004MarCh 85 125R doi 10 1016 j marchem 2003 09 006 Jankovic S 1988 The Allchar Tl As Sb deposit Yugoslavia and its specific metallogenic features Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 271 2 286 Bibcode 1988NIMPA 271 286J doi 10 1016 0168 9002 88 90170 2 Smith Gerald R Mineral commodity summaries 1996 Thallium PDF United States Geological Survey Archived PDF from the original on 2010 05 29 Retrieved 2010 05 13 a b c d Hammond C R 2004 06 29 The Elements in Handbook of Chemistry and Physics 81st ed CRC press ISBN 978 0 8493 0485 9 Percival G H 1930 The Treatment of Ringworm of The Scalp with Thallium Acetate British Journal of Dermatology 42 2 59 69 doi 10 1111 j 1365 2133 1930 tb09395 x PMC 2456722 PMID 20774304 Galvanarzate S Santamari a A 1998 Thallium toxicity Toxicology Letters 99 1 1 13 doi 10 1016 S0378 4274 98 00126 X PMID 9801025 Rodney William S Malitson Irving H 1956 Refraction and Dispersion of Thallium Bromide Iodide Journal of the Optical Society of America 46 11 338 346 Bibcode 1956JOSA 46 956R doi 10 1364 JOSA 46 000956 Kokorina Valentina F 1996 Glasses for infrared optics CRC Press ISBN 978 0 8493 3785 7 Archived from the original on 2020 03 11 Retrieved 2016 09 26 Nayer P S Hamilton O 1977 Thallium selenide infrared detector Appl Opt 16 11 2942 4 Bibcode 1977ApOpt 16 2942N doi 10 1364 AO 16 002942 PMID 20174271 Hofstadter Robert 1949 The Detection of Gamma Rays with Thallium Activated Sodium Iodide Crystals Physical Review 75 5 796 810 Bibcode 1949PhRv 75 796H doi 10 1103 PhysRev 75 796 Sheng Z Z Hermann A M 1988 Bulk superconductivity at 120 K in the Tl Ca Ba Cu O system Nature 332 6160 138 139 Bibcode 1988Natur 332 138S doi 10 1038 332138a0 S2CID 30690410 Jia Y X Lee C S Zettl A 1994 Stabilization of the Tl2Ba2Ca2Cu3O10 superconductor by Hg doping Physica C 234 1 2 24 28 Bibcode 1994PhyC 234 24J doi 10 1016 0921 4534 94 90049 3 Archived from the original on 2020 03 16 Retrieved 2019 07 01 Jain Diwakar Zaret Barry L 2005 Nuclear imaging in cardiovascular medicine In Clive Rosendorff ed Essential cardiology principles and practice 2nd ed Humana Press pp 221 222 ISBN 978 1 58829 370 1 Archived from the original on 2017 02 19 Retrieved 2016 09 26 Lagunas Solar M C Little F E Goodart C D 1982 An integrally shielded transportable generator system for thallium 201 production International Journal of Applied Radiation and Isotopes 33 12 1439 1443 doi 10 1016 0020 708X 82 90183 1 PMID 7169272 Archived from the original on 2007 10 12 Retrieved 2006 11 23 Thallium 201 production Archived 2006 09 13 at the Wayback Machine from Harvard Medical School s Joint Program in Nuclear Medicine Lebowitz E Greene M W Fairchild R Bradley Moore P R Atkins H L Ansari A N Richards P Belgrave E 1975 Thallium 201 for medical use The Journal of Nuclear Medicine 16 2 151 5 PMID 1110421 Archived from the original on 2008 10 11 Retrieved 2010 05 13 Taylor George J 2004 Primary care cardiology Wiley Blackwell p 100 ISBN 978 1 4051 0386 2 Archived from the original on 2020 03 12 Retrieved 2016 09 26 Taylor Edward Curtis McKillop Alexander 1970 Thallium in organic synthesis Accounts of Chemical Research 3 10 956 960 doi 10 1021 ar50034a003 Pecht Michael 1994 03 01 Integrated circuit hybrid and multichip module package design guidelines a focus on reliability John Wiley amp Sons pp 113 115 ISBN 978 0 471 59446 8 Archived from the original on 2014 07 01 Retrieved 2016 09 26 Jahns R H 1939 Clerici solution for the specific gravity determination of small mineral grains PDF American Mineralogist 24 116 Archived PDF from the original on 2012 07 24 Retrieved 2009 11 06 Peter G Read 1999 Gemmology Butterworth Heinemann pp 63 64 ISBN 978 0 7506 4411 2 Archived from the original on 2020 03 17 Retrieved 2016 09 26 Reiling Gilbert H 1964 Characteristics of Mercury Vapor Metallic Iodide Arc Lamps Journal of the Optical Society of America 54 4 532 Bibcode 1964JOSA 54 532R doi 10 1364 JOSA 54 000532 Gallo C F 1967 The Effect of Thallium Iodide on the Arc Temperature of Hg Discharges Applied Optics 6 9 1563 5 Bibcode 1967ApOpt 6 1563G doi 10 1364 AO 6 001563 PMID 20062260 Wilford John Noble 1987 08 11 UNDERSEA QUEST FOR GIANT SQUIDS AND RARE SHARKS The New York Times Archived from the original on 2016 12 20 Retrieved 2017 02 13 Thallium 277932 Sigma Aldrich Archived from the original on 2018 10 02 Retrieved 2018 10 02 A 15 year old case yields a timely clue in deadly thallium poisoning nj 2011 02 13 Retrieved 2023 02 12 Jennifer Ouellette 25 December 2018 Study brings us one step closer to solving 1994 thallium poisoning case Ars Technica Archived from the original on 26 December 2018 Retrieved 26 December 2018 CDC NIOSH Pocket Guide to Chemical Hazards Thallium soluble compounds as Tl www cdc gov Archived from the original on 2015 09 24 Retrieved 2015 11 24 Surface Contamination Overview Occupational Safety and Health Administration www osha gov Retrieved 2023 02 12 Chemical Sampling Information Thallium soluble compounds as Tl Archived 2014 03 22 at the Wayback Machine Osha gov Retrieved on 2013 09 05 CDC The Emergency Response Safety and Health Database Systemic Agent THALLIUM NIOSH www cdc gov Archived from the original on 2019 11 15 Retrieved 2019 12 11 Yang Yongsheng Faustino Patrick J Progar Joseph J et al 2008 Quantitative determination of thallium binding to ferric hexacyanoferrate Prussian blue International Journal of Pharmaceutics 353 1 2 187 194 doi 10 1016 j ijpharm 2007 11 031 PMID 18226478 Archived from the original on 2020 03 15 Retrieved 2019 07 01 Prussian blue fact sheet Archived 2013 10 20 at the Wayback Machine US Centers for Disease Control and Prevention Malbrain Manu L N G Lambrecht Guy L Y Zandijk Erik Demedts Paul A Neels Hugo M Lambert Willy De Leenheer Andre P Lins Robert L Daelemans Ronny 1997 Treatment of Severe Thallium Intoxication Clinical Toxicology 35 1 97 100 doi 10 3109 15563659709001173 PMID 9022660 Factsheet on Thallium PDF US Environmental Protection Agency Archived PDF from the original on 2012 01 11 Retrieved 2009 09 15 General bibliography editGreenwood Norman N Earnshaw Alan 1997 Chemistry of the Elements 2nd ed Butterworth Heinemann ISBN 978 0 08 037941 8 External links editThallium at Wikipedia s sister projects nbsp Definitions from Wiktionary nbsp Media from Commons nbsp Texts from Wikisource nbsp Resources from Wikiversity Thallium at The Periodic Table of Videos University of Nottingham Toxicity thallium NLM hazardous substances databank Thallium elemental ATSDR ToxFAQs CDC NIOSH Pocket Guide to Chemical Hazards Retrieved from https en wikipedia org w index php title Thallium amp oldid 1203817472, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.