fbpx
Wikipedia

Sodium chloride

Sodium chloride /ˌsdiəm ˈklɔːrd/,[8] commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g/mol respectively, 100 g of NaCl contains 39.34 g Na and 60.66 g Cl. Sodium chloride is the salt most responsible for the salinity of seawater and of the extracellular fluid of many multicellular organisms. In its edible form, salt (also known as table salt) is commonly used as a condiment and food preservative. Large quantities of sodium chloride are used in many industrial processes, and it is a major source of sodium and chlorine compounds used as feedstocks for further chemical syntheses. Another major application of sodium chloride is de-icing of roadways in sub-freezing weather.

Sodium chloride

Sodium chloride crystals in a form of halite

Crystal structure with sodium in purple and chloride in green[1]
Names
IUPAC name
Sodium chloride
Other names
  • Common salt
  • halite
  • rock salt
  • saline
  • table salt
  • regular salt
  • sea salt
Identifiers
  • 7647-14-5 Y
3D model (JSmol)
  • Interactive image
3534976
ChEBI
  • CHEBI:26710 Y
ChEMBL
  • ChEMBL1200574 N
ChemSpider
  • 5044 Y
ECHA InfoCard 100.028.726
EC Number
  • 231-598-3
13673
KEGG
  • D02056 Y
MeSH Sodium+chloride
  • 5234
RTECS number
  • VZ4725000
UNII
  • 451W47IQ8X Y
  • DTXSID3021271
  • InChI=1S/ClH.Na/h1H;/q;+1/p-1 Y
    Key: FAPWRFPIFSIZLT-UHFFFAOYSA-M Y
  • InChI=1/ClH.Na/h1H;/q;+1/p-1
    Key: FAPWRFPIFSIZLT-REWHXWOFAE
  • [Na+].[Cl-]
Properties
NaCl
Molar mass 58.443 g/mol[2]
Appearance Colorless cubic crystals[2]
Odor Odorless
Density 2.17 g/cm3[2]
Melting point 800.7 °C (1,473.3 °F; 1,073.8 K)[2]
Boiling point 1,465 °C (2,669 °F; 1,738 K)[2]
360 g/1000 g pure water at T = 25 °C[2]
Solubility in ammonia 21.5 g/L at T = ?[clarification needed]
Solubility in methanol 14.9 g/L at T = ?[clarification needed]
−30.2·10−6 cm3/mol[3]
1.5441 (at 589 nm)[4]
Structure[5]
Face-centered cubic
(see text), cF8
Fm3m (No. 225)
a = 564.02 pm
4
octahedral at Na+
octahedral at Cl
Thermochemistry[6]
50.5 J/(K·mol)
72.10 J/(K·mol)
−411.120 kJ/mol
Pharmacology
A12CA01 (WHO) B05CB01 (WHO), B05XA03 (WHO), S01XA03 (WHO)
Hazards
NFPA 704 (fire diamond)
0
0
0
Lethal dose or concentration (LD, LC):
3 g/kg (oral, rats)[7]
Related compounds
Other anions
Sodium fluoride
Sodium bromide
Sodium iodide
Sodium astatide
Other cations
Lithium chloride
Potassium chloride
Rubidium chloride
Caesium chloride
Francium chloride
Supplementary data page
Sodium chloride (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)

Uses

In addition to the familiar domestic uses of salt, more dominant applications of the approximately 250 million tonnes per year production (2008 data) include chemicals and de-icing.[9]

Chemical functions

Salt is used, directly or indirectly, in the production of many chemicals, which consume most of the world's production.[10]

Chlor-alkali industry

It is the starting point for the chloralkali process, the industrial process to produce chlorine and sodium hydroxide, according to the chemical equation

 

This electrolysis is conducted in either a mercury cell, a diaphragm cell, or a membrane cell. Each of those uses a different method to separate the chlorine from the sodium hydroxide. Other technologies are under development due to the high energy consumption of the electrolysis, whereby small improvements in the efficiency can have large economic paybacks. Some applications of chlorine include PVC thermoplastics production, disinfectants, and solvents.

Sodium hydroxide is extensively used in many different industries enabling production of paper, soap, and aluminium etc.

Soda-ash industry

Sodium chloride is used in the Solvay process to produce sodium carbonate and calcium chloride. Sodium carbonate, in turn, is used to produce glass, sodium bicarbonate, and dyes, as well as a myriad of other chemicals. In the Mannheim process, sodium chloride is used for the production of sodium sulfate and hydrochloric acid.

Standard

Sodium chloride has an international standard that is created by ASTM International. The standard is named ASTM E534-13 and is the standard test methods for chemical analysis of sodium chloride. These methods listed provide procedures for analyzing sodium chloride to determine whether it is suitable for its intended use and application.

Miscellaneous industrial uses

Sodium chloride is heavily used, so even relatively minor applications can consume massive quantities. In oil and gas exploration, salt is an important component of drilling fluids in well drilling. It is used to flocculate and increase the density of the drilling fluid to overcome high downwell gas pressures. Whenever a drill hits a salt formation, salt is added to the drilling fluid to saturate the solution in order to minimize the dissolution within the salt stratum.[9] Salt is also used to increase the curing of concrete in cemented casings.[10]

In textiles and dyeing, salt is used as a brine rinse to separate organic contaminants, to promote "salting out" of dyestuff precipitates, and to blend with concentrated dyes to standardize[clarification needed] them. One of its main roles is to provide the positive ion charge to promote the absorption of negatively charged ions of dyes.[10]

It is also used in processing aluminium, beryllium, copper, steel and vanadium. In the pulp and paper industry, salt is used to bleach wood pulp. It also is used to make sodium chlorate, which is added along with sulfuric acid and water to manufacture chlorine dioxide, an excellent oxygen-based bleaching chemical. The chlorine dioxide process, which originated in Germany after World War I, is becoming more popular because of environmental pressures to reduce or eliminate chlorinated bleaching compounds. In tanning and leather treatment, salt is added to animal hides to inhibit microbial activity on the underside of the hides and to attract moisture back into the hides.[10]

In rubber manufacture, salt is used to make buna, neoprene and white rubber types. Salt brine and sulfuric acid are used to coagulate an emulsified latex made from chlorinated butadiene.[10][9]

Salt also is added to secure the soil and to provide firmness to the foundation on which highways are built. The salt acts to minimize the effects of shifting caused in the subsurface by changes in humidity and traffic load.[10]

Sodium chloride is sometimes used as a cheap and safe desiccant because of its hygroscopic properties, making salting an effective method of food preservation historically; the salt draws water out of bacteria through osmotic pressure, keeping it from reproducing, a major source of food spoilage. Even though more effective desiccants are available, few are safe for humans to ingest.

Water softening

Hard water contains calcium and magnesium ions that interfere with action of soap and contribute to the buildup of a scale or film of alkaline mineral deposits in household and industrial equipment and pipes. Commercial and residential water-softening units use ion-exchange resins to remove ions that cause the hardness. These resins are generated and regenerated using sodium chloride.[10][9]

Road salt

 
Phase diagram of water–NaCl mixture

The second major application of salt is for de-icing and anti-icing of roads, both in grit bins and spread by winter service vehicles. In anticipation of snowfall, roads are optimally "anti-iced" with brine (concentrated solution of salt in water), which prevents bonding between the snow-ice and the road surface. This procedure obviates the heavy use of salt after the snowfall. For de-icing, mixtures of brine and salt are used, sometimes with additional agents such as calcium chloride and/or magnesium chloride. The use of salt or brine becomes ineffective below −10 °C (14 °F).

 
Mounds of road salt for use in winter

Salt for de-icing in the United Kingdom predominantly comes from a single mine in Winsford in Cheshire. Prior to distribution it is mixed with <100 ppm of sodium ferrocyanide as an anti-caking agent, which enables rock salt to flow freely out of the gritting vehicles despite being stockpiled prior to use. In recent years this additive has also been used in table salt. Other additives had been used in road salt to reduce the total costs. For example, in the US, a byproduct carbohydrate solution from sugar-beet processing was mixed with rock salt and adhered to road surfaces about 40% better than loose rock salt alone. Because it stayed on the road longer, the treatment did not have to be repeated several times, saving time and money.[10]

In the technical terms of physical chemistry, the minimum freezing point of a water-salt mixture is −21.12 °C (−6.02 °F) for 23.31 wt% of salt. Freezing near this concentration is however so slow that the eutectic point of −22.4 °C (−8.3 °F) can be reached with about 25 wt% of salt.[11]

Environmental effects

Road salt ends up in fresh-water bodies and could harm aquatic plants and animals by disrupting their osmoregulation ability.[12] The omnipresence of salt poses a problem in any coastal coating application, as trapped salts cause great problems in adhesion. Naval authorities and ship builders monitor the salt concentrations on surfaces during construction. Maximal salt concentrations on surfaces are dependent on the authority and application. The IMO regulation is mostly used and sets salt levels to a maximum of 50 mg/m2 soluble salts measured as sodium chloride. These measurements are done by means of a Bresle test. Salinization (increasing salinity, aka freshwater salinization syndrome) and subsequent increased metal leaching is an ongoing problem throughout North America and European fresh waterways.[13]

In highway de-icing, salt has been associated with corrosion of bridge decks, motor vehicles, reinforcement bar and wire, and unprotected steel structures used in road construction. Surface runoff, vehicle spraying, and windblown actions also affect soil, roadside vegetation, and local surface water and groundwater supplies. Although evidence of environmental loading of salt has been found during peak usage, the spring rains and thaws usually dilute the concentrations of sodium in the area where salt was applied.[10] A 2009 study found that approximately 70% of the road salt being applied in the Minneapolis-St Paul metro area is retained in the local watershed.[14]

Substitution

Some agencies are substituting beer, molasses, and beet juice instead of road salt.[15] Airlines utilize more glycol and sugar rather than salt based solutions for de-icing.[16]

Food industry and agriculture

Many microorganisms cannot live in a salty environment: water is drawn out of their cells by osmosis. For this reason salt is used to preserve some foods, such as bacon, fish, or cabbage.

Salt is added to food, either by the food producer or by the consumer, as a flavor enhancer, preservative, binder, fermentation-control additive, texture-control agent and color developer. The salt consumption in the food industry is subdivided, in descending order of consumption, into other food processing, meat packers, canning, baking, dairy and grain mill products. Salt is added to promote color development in bacon, ham and other processed meat products. As a preservative, salt inhibits the growth of bacteria. Salt acts as a binder in sausages to form a binding gel made up of meat, fat, and moisture. Salt also acts as a flavor enhancer and as a tenderizer.[10]

In many dairy industries, salt is added to cheese as a color-, fermentation-, and texture-control agent. The dairy subsector includes companies that manufacture creamery butter, condensed and evaporated milk, frozen desserts, ice cream, natural and processed cheese, and specialty dairy products. In canning, salt is primarily added as a flavor enhancer and preservative. It also is used as a carrier for other ingredients, dehydrating agent, enzyme inhibitor and tenderizer. In baking, salt is added to control the rate of fermentation in bread dough. It also is used to strengthen the gluten (the elastic protein-water complex in certain doughs) and as a flavor enhancer, such as a topping on baked goods. The food-processing category also contains grain mill products. These products consist of milling flour and rice and manufacturing cereal breakfast food and blended or prepared flour. Salt is also used a seasoning agent, e.g. in potato chips, pretzels, cat and dog food.[10]

Sodium chloride is used in veterinary medicine as emesis-causing agent. It is given as warm saturated solution. Emesis can also be caused by pharyngeal placement of small amount of plain salt or salt crystals.

Medicine

Sodium chloride is used together with water as one of the primary solutions for intravenous therapy. Nasal spray often contains a saline solution.

Firefighting

 
A class-D fire extinguisher for various metals

Sodium chloride is the principal extinguishing agent in fire extinguishers (Met-L-X, Super D) used on combustible metal fires such as magnesium, potassium, sodium, and NaK alloys (Class D). Thermoplastic powder is added to the mixture, along with waterproofing (metal stearates) and anti-caking materials (tricalcium phosphate) to form the extinguishing agent. When it is applied to the fire, the salt acts like a heat sink, dissipating heat from the fire, and also forms an oxygen-excluding crust to smother the fire. The plastic additive melts and helps the crust maintain its integrity until the burning metal cools below its ignition temperature. This type of extinguisher was invented in the late 1940s as a cartridge-operated unit, although stored pressure versions are now popular. Common sizes are 30 pounds (14 kg) portable and 350 pounds (160 kg) wheeled.[citation needed]

Cleanser

Since at least medieval times, people have used salt as a cleansing agent rubbed on household surfaces. It is also used in many brands of shampoo, toothpaste and popularly to de-ice driveways and patches of ice.

Optical usage

Defect-free NaCl crystals have an optical transmittance of about 90% for infrared light, specifically between 200 nm and 20 µm. They were therefore used in optical components (windows and prisms) operating in that spectral range, where few non-absorbing alternatives exist and where requirements for absence of microscopic inhomogeneities are less strict than in the visible range. While inexpensive, NaCl crystals are soft and hygroscopic – when exposed to the ambient air, they gradually cover with "frost". This limits application of NaCl to dry environments, vacuum sealed assembly areas or for short-term uses such as prototyping. Nowadays materials like zinc selenide (ZnSe), which are stronger mechanically and are less sensitive to moisture, are used instead of NaCl for the infrared spectral range.

Chemistry

Solid sodium chloride

 
Sodium chloride crystal under microscope.
 
NaCl octahedra. The yellow stipples represent the electrostatic force between the ions of opposite charge

In solid sodium chloride, each ion is surrounded by six ions of the opposite charge as expected on electrostatic grounds. The surrounding ions are located at the vertices of a regular octahedron. In the language of close-packing, the larger chloride ions (167 pm in size[17]) are arranged in a cubic array whereas the smaller sodium ions (116 pm[17]) fill all the cubic gaps (octahedral voids) between them. This same basic structure is found in many other compounds and is commonly known as the halite or rock-salt crystal structure. It can be represented as a face-centered cubic (fcc) lattice with a two-atom basis or as two interpenetrating face centered cubic lattices. The first atom is located at each lattice point, and the second atom is located halfway between lattice points along the fcc unit cell edge.

Solid sodium chloride has a melting point of 801 °C. Thermal conductivity of sodium chloride as a function of temperature has a maximum of 2.03 W/(cm K) at 8 K (−265.15 °C; −445.27 °F) and decreases to 0.069 at 314 K (41 °C; 106 °F). It also decreases with doping.[18]

Atomic-resolution real-time video imaging allows visualization of the initial stage of crystal nucleation of sodium chloride.[19]

Aqueous solutions

Solubility of NaCl
(g NaCl / 1 kg of solvent at 25 °C (77 °F))[20]
Water 360
Formamide 94
Glycerin 83
Propylene glycol 71
Formic acid 52
Liquid ammonia 30.2
Methanol 14
Ethanol 0.65
Dimethylformamide 0.4
Propan-1-ol 0.124
Sulfolane 0.05
Butan-1-ol 0.05
Propan-2-ol 0.03
Pentan-1-ol 0.018
Acetonitrile 0.003
Acetone 0.00042

The attraction between the Na+ and Cl ions in the solid is so strong that only highly polar solvents like water dissolve NaCl well.

 
View of one slab of NaCl(H2O)2 (red = O, white = H, green = Cl, purple = Na).[21]

When dissolved in water, the sodium chloride framework disintegrates as the Na+ and Cl ions become surrounded by polar water molecules. These solutions consist of metal aquo complex with the formula [Na(H2O)8]+, with the Na–O distance of 250 pm. The chloride ions are also strongly solvated, each being surrounded by an average of six molecules of water.[22] Solutions of sodium chloride have very different properties from pure water. The eutectic point is −21.12 °C (−6.02 °F) for 23.31% mass fraction of salt, and the boiling point of saturated salt solution is near 108.7 °C (227.7 °F).[11] From cold solutions, salt crystallises as the dihydrate NaCl·2H2O.[23]

pH of sodium chloride solutions

The pH of a sodium chloride solution remains ≈7 due to the extremely weak basicity of the Cl ion, which is the conjugate base of the strong acid HCl. In other words, NaCl has no effect on system pH[24] in diluted solutions where the effects of ionic strength and activity coefficients are negligible.

Stoichiometric and structure variants

Common salt has a 1:1 molar ratio of sodium and chlorine. In 2013, compounds of sodium and chloride of different stoichiometries have been discovered; five new compounds were predicted (e.g., Na3Cl, Na2Cl, Na3Cl2, NaCl3, and NaCl7). The existence of some of them has been experimentally confirmed at high pressures and other conditions: cubic and orthorhombic NaCl3, two-dimensional metallic tetragonal Na3Cl and exotic hexagonal NaCl.[25] This indicates that compounds violating chemical intuition are possible, in simple systems under nonambient conditions.[26]

Occurrence

Most of the world's salt is dissolved in the ocean[citation needed]. A lesser amount is found in the Earth's crust as the water-soluble mineral halite (rock salt), and a tiny amount exists as suspended sea salt particles in the atmosphere[citation needed]. These particles are the dominant cloud condensation nuclei far out at sea, which allow the formation of clouds in otherwise non-polluted air.[27]

Production

Salt is currently mass-produced by evaporation of seawater or brine from brine wells and salt lakes. Mining of rock salt is also a major source. China is the world's main supplier of salt.[10] In 2017, world production was estimated at 280 million tonnes, the top five producers (in million tonnes) being China (68.0), United States (43.0), India (26.0), Germany (13.0), and Canada (13.0).[28] Salt is also a byproduct of potassium mining.

See also

References

  1. ^ "Sodium Chloride (NaCl) Crystal". PhysicsOpenLab. Retrieved 23 August 2021.
  2. ^ a b c d e f Haynes, 4.89
  3. ^ Haynes, 4.135
  4. ^ Haynes, 10.241
  5. ^ Haynes, 4.148
  6. ^ Haynes, 5.8
  7. ^ Sodium chloride. nlm.nih.gov.
  8. ^ Wells, John C. (2008), Longman Pronunciation Dictionary (3rd ed.), Longman, pp. 143 and 755, ISBN 9781405881180
  9. ^ a b c d Westphal, Gisbert et al. (2002) "Sodium Chloride" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim doi:10.1002/14356007.a24_317.pub4.
  10. ^ a b c d e f g h i j k l Kostick, Dennis S. (October 2010) "Salt" in U.S. Geological Survey, 2008 Minerals Yearbook
  11. ^ a b Elvers, B. et al. (ed.) (1991) Ullmann's Encyclopedia of Industrial Chemistry, 5th ed. Vol. A24, Wiley, p. 319, ISBN 978-3-527-20124-2.
  12. ^ Rastogi, Nina (16 February 2010) Does road salt harm the environment? slate.com.
  13. ^ "Saltier waterways are creating dangerous 'chemical cocktails'". phys.org.
  14. ^ "Most Road Salt Is Making It into Lakes And Rivers". www.sciencedaily.com. University of Minnesota. 20 February 2009. Retrieved 27 September 2015.
  15. ^ Casey, Michael. "Turning to beet juice and beer to address road salt danger". phys.org.
  16. ^ "EASA Cautions on Organic Salt Deicing Fluid". MRO Network. 9 December 2016.
  17. ^ a b R. D. Shannon (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides". Acta Crystallogr A. 32 (5): 751–767. Bibcode:1976AcCrA..32..751S. doi:10.1107/S0567739476001551.
  18. ^ Sirdeshmukh, Dinker B.; Sirdeshmukh, Lalitha & Subhadra, K. G. (2001). Alkali halides: a handbook of physical properties. Springer. pp. 65, 68. ISBN 978-3-540-42180-1.
  19. ^ Nakamuro, Takayuki; Sakakibara, Masaya; Nada, Hiroki; Harano, Koji; Nakamura, Eiichi (2021). "Capturing the Moment of Emergence of Crystal Nucleus from Disorder". Journal of the American Chemical Society. 143 (4): 1763–1767. doi:10.1021/jacs.0c12100. PMID 33475359.
  20. ^ Burgess, J (1978). Metal Ions in Solution. New York: Ellis Horwood. ISBN 978-0-85312-027-8.
  21. ^ Klewe, B; Pedersen (1974). "The crystal structure of sodium chloride dihydrate". Acta Crystallogr. B30 (10): 2363–2371. doi:10.1107/S0567740874007138.
  22. ^ Lincoln, S. F.; Richens, D. T. and Sykes, A. G. (2003) "Metal Aqua Ions" Comprehensive Coordination Chemistry II Volume 1, pp. 515–555. doi:10.1016/B0-08-043748-6/01055-0.
  23. ^ Water-NaCl phase diagram. Lide, CRC Handbook of Chemistry and Physics, 86 ed (2005-2006), CRC pages 8-71, 8-116
  24. ^ "Acidic, Basic, and Neutral Salts". Flinn Scientific Chem Fax. 2016. Retrieved 18 September 2018. Neutralization of a strong acid and a strong base gives a neutral salt.
  25. ^ Tikhomirova, K. A.; Tantardini, C.; Sukhanova, E. V.; Popov, Z. I.; Evlashin, S. A.; Tarkhov, M. A.; Zhdanov, V. L. (2020). "Exotic Two-Dimensional Structure: The first case of Hexagonal NaCl". The Journal of Physical Chemistry Letters. 11 (10): 3821–3827. doi:10.1021/acs.jpclett.0c00874. PMID 32330050. S2CID 216130640.
  26. ^ Zhang, W.; Oganov, A. R.; Goncharov, A. F.; Zhu, Q.; Boulfelfel, S. E.; Lyakhov, A. O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V. B.; Konôpková, Z. (2013). "Unexpected Stable Stoichiometries of Sodium Chlorides". Science. 342 (6165): 1502–1505. arXiv:1310.7674. Bibcode:2013Sci...342.1502Z. doi:10.1126/science.1244989. PMID 24357316. S2CID 15298372.
  27. ^ Mason, B. J. (2006). "The role of sea-salt particles as cloud condensation nuclei over the remote oceans". Quarterly Journal of the Royal Meteorological Society. 127 (576): 2023–32. Bibcode:2001QJRMS.127.2023M. doi:10.1002/qj.49712757609. S2CID 121846285.
  28. ^ Salt, U.S. Geological Survey

Cited sources

External links

  • Salt United States Geological Survey Statistics and Information
  • . Road Management Journal. December 1997. Archived from the original on 21 September 2016. Retrieved 13 February 2007.
  • Calculators: surface tensions, and densities, molarities and molalities of aqueous NaCl (and other salts)
  • JtBaker MSDS

sodium, chloride, this, article, about, chemical, familiar, form, common, table, salt, salt, medical, solutions, saline, medicine, mineral, halite, nacl, redirects, here, other, uses, nacl, disambiguation, ɔːr, commonly, known, salt, although, salt, also, cont. This article is about the chemical For its familiar form common table salt see Salt For the medical solutions see Saline medicine For the mineral see Halite NaCl redirects here For other uses see NaCl disambiguation Sodium chloride ˌ s oʊ d i e m ˈ k l ɔːr aɪ d 8 commonly known as salt although sea salt also contains other chemical salts is an ionic compound with the chemical formula NaCl representing a 1 1 ratio of sodium and chloride ions With molar masses of 22 99 and 35 45 g mol respectively 100 g of NaCl contains 39 34 g Na and 60 66 g Cl Sodium chloride is the salt most responsible for the salinity of seawater and of the extracellular fluid of many multicellular organisms In its edible form salt also known as table salt is commonly used as a condiment and food preservative Large quantities of sodium chloride are used in many industrial processes and it is a major source of sodium and chlorine compounds used as feedstocks for further chemical syntheses Another major application of sodium chloride is de icing of roadways in sub freezing weather Sodium chloride Sodium chloride crystals in a form of haliteCrystal structure with sodium in purple and chloride in green 1 NamesIUPAC name Sodium chlorideOther names Common salthaliterock saltsalinetable saltregular saltsea saltIdentifiersCAS Number 7647 14 5 Y3D model JSmol Interactive imageBeilstein Reference 3534976ChEBI CHEBI 26710 YChEMBL ChEMBL1200574 NChemSpider 5044 YECHA InfoCard 100 028 726EC Number 231 598 3Gmelin Reference 13673KEGG D02056 YMeSH Sodium chloridePubChem CID 5234RTECS number VZ4725000UNII 451W47IQ8X YCompTox Dashboard EPA DTXSID3021271InChI InChI 1S ClH Na h1H q 1 p 1 YKey FAPWRFPIFSIZLT UHFFFAOYSA M YInChI 1 ClH Na h1H q 1 p 1Key FAPWRFPIFSIZLT REWHXWOFAESMILES Na Cl PropertiesChemical formula NaClMolar mass 58 443 g mol 2 Appearance Colorless cubic crystals 2 Odor OdorlessDensity 2 17 g cm3 2 Melting point 800 7 C 1 473 3 F 1 073 8 K 2 Boiling point 1 465 C 2 669 F 1 738 K 2 Solubility in water 360 g 1000 g pure water at T 25 C 2 Solubility in ammonia 21 5 g L at T clarification needed Solubility in methanol 14 9 g L at T clarification needed Magnetic susceptibility x 30 2 10 6 cm3 mol 3 Refractive index nD 1 5441 at 589 nm 4 Structure 5 Crystal structure Face centered cubic see text cF8Space group Fm3 m No 225 Lattice constant a 564 02 pmFormula units Z 4Coordination geometry octahedral at Na octahedral at Cl Thermochemistry 6 Heat capacity C 50 5 J K mol Std molarentropy S 298 72 10 J K mol Std enthalpy offormation DfH 298 411 120 kJ molPharmacologyATC code A12CA01 WHO B05CB01 WHO B05XA03 WHO S01XA03 WHO HazardsNFPA 704 fire diamond 000Lethal dose or concentration LD LC LD50 median dose 3 g kg oral rats 7 Related compoundsOther anions Sodium fluorideSodium bromideSodium iodideSodium astatideOther cations Lithium chloridePotassium chlorideRubidium chlorideCaesium chlorideFrancium chlorideSupplementary data pageSodium chloride data page Except where otherwise noted data are given for materials in their standard state at 25 C 77 F 100 kPa N verify what is Y N Infobox references Contents 1 Uses 1 1 Chemical functions 1 1 1 Chlor alkali industry 1 2 Soda ash industry 1 3 Standard 1 4 Miscellaneous industrial uses 1 5 Water softening 1 6 Road salt 1 6 1 Environmental effects 1 6 2 Substitution 1 7 Food industry and agriculture 1 8 Medicine 1 9 Firefighting 1 10 Cleanser 1 11 Optical usage 2 Chemistry 2 1 Solid sodium chloride 2 2 Aqueous solutions 2 3 pH of sodium chloride solutions 2 4 Stoichiometric and structure variants 3 Occurrence 4 Production 5 See also 6 References 7 Cited sources 8 External linksUses EditIn addition to the familiar domestic uses of salt more dominant applications of the approximately 250 million tonnes per year production 2008 data include chemicals and de icing 9 Chemical functions Edit Salt is used directly or indirectly in the production of many chemicals which consume most of the world s production 10 Chlor alkali industry Edit See also Chloralkali process It is the starting point for the chloralkali process the industrial process to produce chlorine and sodium hydroxide according to the chemical equation 2 NaCl 2 H 2 O e l e c t r o l y s i s Cl 2 H 2 2 NaOH displaystyle ce 2 NaCl 2 H2O gt electrolysis Cl2 H2 2 NaOH This electrolysis is conducted in either a mercury cell a diaphragm cell or a membrane cell Each of those uses a different method to separate the chlorine from the sodium hydroxide Other technologies are under development due to the high energy consumption of the electrolysis whereby small improvements in the efficiency can have large economic paybacks Some applications of chlorine include PVC thermoplastics production disinfectants and solvents Sodium hydroxide is extensively used in many different industries enabling production of paper soap and aluminium etc Soda ash industry Edit Sodium chloride is used in the Solvay process to produce sodium carbonate and calcium chloride Sodium carbonate in turn is used to produce glass sodium bicarbonate and dyes as well as a myriad of other chemicals In the Mannheim process sodium chloride is used for the production of sodium sulfate and hydrochloric acid Standard Edit Sodium chloride has an international standard that is created by ASTM International The standard is named ASTM E534 13 and is the standard test methods for chemical analysis of sodium chloride These methods listed provide procedures for analyzing sodium chloride to determine whether it is suitable for its intended use and application Miscellaneous industrial uses Edit Sodium chloride is heavily used so even relatively minor applications can consume massive quantities In oil and gas exploration salt is an important component of drilling fluids in well drilling It is used to flocculate and increase the density of the drilling fluid to overcome high downwell gas pressures Whenever a drill hits a salt formation salt is added to the drilling fluid to saturate the solution in order to minimize the dissolution within the salt stratum 9 Salt is also used to increase the curing of concrete in cemented casings 10 In textiles and dyeing salt is used as a brine rinse to separate organic contaminants to promote salting out of dyestuff precipitates and to blend with concentrated dyes to standardize clarification needed them One of its main roles is to provide the positive ion charge to promote the absorption of negatively charged ions of dyes 10 It is also used in processing aluminium beryllium copper steel and vanadium In the pulp and paper industry salt is used to bleach wood pulp It also is used to make sodium chlorate which is added along with sulfuric acid and water to manufacture chlorine dioxide an excellent oxygen based bleaching chemical The chlorine dioxide process which originated in Germany after World War I is becoming more popular because of environmental pressures to reduce or eliminate chlorinated bleaching compounds In tanning and leather treatment salt is added to animal hides to inhibit microbial activity on the underside of the hides and to attract moisture back into the hides 10 In rubber manufacture salt is used to make buna neoprene and white rubber types Salt brine and sulfuric acid are used to coagulate an emulsified latex made from chlorinated butadiene 10 9 Salt also is added to secure the soil and to provide firmness to the foundation on which highways are built The salt acts to minimize the effects of shifting caused in the subsurface by changes in humidity and traffic load 10 Sodium chloride is sometimes used as a cheap and safe desiccant because of its hygroscopic properties making salting an effective method of food preservation historically the salt draws water out of bacteria through osmotic pressure keeping it from reproducing a major source of food spoilage Even though more effective desiccants are available few are safe for humans to ingest Water softening Edit Hard water contains calcium and magnesium ions that interfere with action of soap and contribute to the buildup of a scale or film of alkaline mineral deposits in household and industrial equipment and pipes Commercial and residential water softening units use ion exchange resins to remove ions that cause the hardness These resins are generated and regenerated using sodium chloride 10 9 Road salt Edit Phase diagram of water NaCl mixture The second major application of salt is for de icing and anti icing of roads both in grit bins and spread by winter service vehicles In anticipation of snowfall roads are optimally anti iced with brine concentrated solution of salt in water which prevents bonding between the snow ice and the road surface This procedure obviates the heavy use of salt after the snowfall For de icing mixtures of brine and salt are used sometimes with additional agents such as calcium chloride and or magnesium chloride The use of salt or brine becomes ineffective below 10 C 14 F Mounds of road salt for use in winter Salt for de icing in the United Kingdom predominantly comes from a single mine in Winsford in Cheshire Prior to distribution it is mixed with lt 100 ppm of sodium ferrocyanide as an anti caking agent which enables rock salt to flow freely out of the gritting vehicles despite being stockpiled prior to use In recent years this additive has also been used in table salt Other additives had been used in road salt to reduce the total costs For example in the US a byproduct carbohydrate solution from sugar beet processing was mixed with rock salt and adhered to road surfaces about 40 better than loose rock salt alone Because it stayed on the road longer the treatment did not have to be repeated several times saving time and money 10 In the technical terms of physical chemistry the minimum freezing point of a water salt mixture is 21 12 C 6 02 F for 23 31 wt of salt Freezing near this concentration is however so slow that the eutectic point of 22 4 C 8 3 F can be reached with about 25 wt of salt 11 Environmental effects Edit Road salt ends up in fresh water bodies and could harm aquatic plants and animals by disrupting their osmoregulation ability 12 The omnipresence of salt poses a problem in any coastal coating application as trapped salts cause great problems in adhesion Naval authorities and ship builders monitor the salt concentrations on surfaces during construction Maximal salt concentrations on surfaces are dependent on the authority and application The IMO regulation is mostly used and sets salt levels to a maximum of 50 mg m2 soluble salts measured as sodium chloride These measurements are done by means of a Bresle test Salinization increasing salinity aka freshwater salinization syndrome and subsequent increased metal leaching is an ongoing problem throughout North America and European fresh waterways 13 In highway de icing salt has been associated with corrosion of bridge decks motor vehicles reinforcement bar and wire and unprotected steel structures used in road construction Surface runoff vehicle spraying and windblown actions also affect soil roadside vegetation and local surface water and groundwater supplies Although evidence of environmental loading of salt has been found during peak usage the spring rains and thaws usually dilute the concentrations of sodium in the area where salt was applied 10 A 2009 study found that approximately 70 of the road salt being applied in the Minneapolis St Paul metro area is retained in the local watershed 14 Substitution Edit Some agencies are substituting beer molasses and beet juice instead of road salt 15 Airlines utilize more glycol and sugar rather than salt based solutions for de icing 16 Food industry and agriculture Edit Main article Salt Many microorganisms cannot live in a salty environment water is drawn out of their cells by osmosis For this reason salt is used to preserve some foods such as bacon fish or cabbage Salt is added to food either by the food producer or by the consumer as a flavor enhancer preservative binder fermentation control additive texture control agent and color developer The salt consumption in the food industry is subdivided in descending order of consumption into other food processing meat packers canning baking dairy and grain mill products Salt is added to promote color development in bacon ham and other processed meat products As a preservative salt inhibits the growth of bacteria Salt acts as a binder in sausages to form a binding gel made up of meat fat and moisture Salt also acts as a flavor enhancer and as a tenderizer 10 In many dairy industries salt is added to cheese as a color fermentation and texture control agent The dairy subsector includes companies that manufacture creamery butter condensed and evaporated milk frozen desserts ice cream natural and processed cheese and specialty dairy products In canning salt is primarily added as a flavor enhancer and preservative It also is used as a carrier for other ingredients dehydrating agent enzyme inhibitor and tenderizer In baking salt is added to control the rate of fermentation in bread dough It also is used to strengthen the gluten the elastic protein water complex in certain doughs and as a flavor enhancer such as a topping on baked goods The food processing category also contains grain mill products These products consist of milling flour and rice and manufacturing cereal breakfast food and blended or prepared flour Salt is also used a seasoning agent e g in potato chips pretzels cat and dog food 10 Sodium chloride is used in veterinary medicine as emesis causing agent It is given as warm saturated solution Emesis can also be caused by pharyngeal placement of small amount of plain salt or salt crystals Medicine Edit Main article Saline medicine Sodium chloride is used together with water as one of the primary solutions for intravenous therapy Nasal spray often contains a saline solution Firefighting Edit A class D fire extinguisher for various metals Sodium chloride is the principal extinguishing agent in fire extinguishers Met L X Super D used on combustible metal fires such as magnesium potassium sodium and NaK alloys Class D Thermoplastic powder is added to the mixture along with waterproofing metal stearates and anti caking materials tricalcium phosphate to form the extinguishing agent When it is applied to the fire the salt acts like a heat sink dissipating heat from the fire and also forms an oxygen excluding crust to smother the fire The plastic additive melts and helps the crust maintain its integrity until the burning metal cools below its ignition temperature This type of extinguisher was invented in the late 1940s as a cartridge operated unit although stored pressure versions are now popular Common sizes are 30 pounds 14 kg portable and 350 pounds 160 kg wheeled citation needed Cleanser Edit Since at least medieval times people have used salt as a cleansing agent rubbed on household surfaces It is also used in many brands of shampoo toothpaste and popularly to de ice driveways and patches of ice Optical usage Edit Defect free NaCl crystals have an optical transmittance of about 90 for infrared light specifically between 200 nm and 20 µm They were therefore used in optical components windows and prisms operating in that spectral range where few non absorbing alternatives exist and where requirements for absence of microscopic inhomogeneities are less strict than in the visible range While inexpensive NaCl crystals are soft and hygroscopic when exposed to the ambient air they gradually cover with frost This limits application of NaCl to dry environments vacuum sealed assembly areas or for short term uses such as prototyping Nowadays materials like zinc selenide ZnSe which are stronger mechanically and are less sensitive to moisture are used instead of NaCl for the infrared spectral range Chemistry EditSolid sodium chloride Edit See also Cubic crystal system Sodium chloride crystal under microscope NaCl octahedra The yellow stipples represent the electrostatic force between the ions of opposite charge In solid sodium chloride each ion is surrounded by six ions of the opposite charge as expected on electrostatic grounds The surrounding ions are located at the vertices of a regular octahedron In the language of close packing the larger chloride ions 167 pm in size 17 are arranged in a cubic array whereas the smaller sodium ions 116 pm 17 fill all the cubic gaps octahedral voids between them This same basic structure is found in many other compounds and is commonly known as the halite or rock salt crystal structure It can be represented as a face centered cubic fcc lattice with a two atom basis or as two interpenetrating face centered cubic lattices The first atom is located at each lattice point and the second atom is located halfway between lattice points along the fcc unit cell edge Solid sodium chloride has a melting point of 801 C Thermal conductivity of sodium chloride as a function of temperature has a maximum of 2 03 W cm K at 8 K 265 15 C 445 27 F and decreases to 0 069 at 314 K 41 C 106 F It also decreases with doping 18 Atomic resolution real time video imaging allows visualization of the initial stage of crystal nucleation of sodium chloride 19 Aqueous solutions Edit Solubility of NaCl g NaCl 1 kg of solvent at 25 C 77 F 20 Water 360Formamide 94Glycerin 83Propylene glycol 71Formic acid 52Liquid ammonia 30 2Methanol 14Ethanol 0 65Dimethylformamide 0 4Propan 1 ol 0 124Sulfolane 0 05Butan 1 ol 0 05Propan 2 ol 0 03Pentan 1 ol 0 018Acetonitrile 0 003Acetone 0 00042The attraction between the Na and Cl ions in the solid is so strong that only highly polar solvents like water dissolve NaCl well View of one slab of NaCl H2O 2 red O white H green Cl purple Na 21 When dissolved in water the sodium chloride framework disintegrates as the Na and Cl ions become surrounded by polar water molecules These solutions consist of metal aquo complex with the formula Na H2O 8 with the Na O distance of 250 pm The chloride ions are also strongly solvated each being surrounded by an average of six molecules of water 22 Solutions of sodium chloride have very different properties from pure water The eutectic point is 21 12 C 6 02 F for 23 31 mass fraction of salt and the boiling point of saturated salt solution is near 108 7 C 227 7 F 11 From cold solutions salt crystallises as the dihydrate NaCl 2H2O 23 pH of sodium chloride solutions Edit The pH of a sodium chloride solution remains 7 due to the extremely weak basicity of the Cl ion which is the conjugate base of the strong acid HCl In other words NaCl has no effect on system pH 24 in diluted solutions where the effects of ionic strength and activity coefficients are negligible Stoichiometric and structure variants Edit Common salt has a 1 1 molar ratio of sodium and chlorine In 2013 compounds of sodium and chloride of different stoichiometries have been discovered five new compounds were predicted e g Na3Cl Na2Cl Na3Cl2 NaCl3 and NaCl7 The existence of some of them has been experimentally confirmed at high pressures and other conditions cubic and orthorhombic NaCl3 two dimensional metallic tetragonal Na3Cl and exotic hexagonal NaCl 25 This indicates that compounds violating chemical intuition are possible in simple systems under nonambient conditions 26 Occurrence EditMost of the world s salt is dissolved in the ocean citation needed A lesser amount is found in the Earth s crust as the water soluble mineral halite rock salt and a tiny amount exists as suspended sea salt particles in the atmosphere citation needed These particles are the dominant cloud condensation nuclei far out at sea which allow the formation of clouds in otherwise non polluted air 27 Production EditSalt is currently mass produced by evaporation of seawater or brine from brine wells and salt lakes Mining of rock salt is also a major source China is the world s main supplier of salt 10 In 2017 world production was estimated at 280 million tonnes the top five producers in million tonnes being China 68 0 United States 43 0 India 26 0 Germany 13 0 and Canada 13 0 28 Salt is also a byproduct of potassium mining Modern rock salt mine near Mount Morris New York United States Jordanian and Israeli salt evaporation ponds at the south end of the Dead Sea Mounds of salt Salar de Uyuni Bolivia See also Edit Chemistry portalBiosalinity Edible salt table salt Halite the mineral form of sodium chloride Health effects of salt Salinity Salting the earth Salt poisoningReferences Edit Sodium Chloride NaCl Crystal PhysicsOpenLab Retrieved 23 August 2021 a b c d e f Haynes 4 89 Haynes 4 135 Haynes 10 241 Haynes 4 148 Haynes 5 8 Sodium chloride nlm nih gov Wells John C 2008 Longman Pronunciation Dictionary 3rd ed Longman pp 143 and 755 ISBN 9781405881180 a b c d Westphal Gisbert et al 2002 Sodium Chloride in Ullmann s Encyclopedia of Industrial Chemistry Wiley VCH Weinheim doi 10 1002 14356007 a24 317 pub4 a b c d e f g h i j k l Kostick Dennis S October 2010 Salt in U S Geological Survey 2008 Minerals Yearbook a b Elvers B et al ed 1991 Ullmann s Encyclopedia of Industrial Chemistry 5th ed Vol A24 Wiley p 319 ISBN 978 3 527 20124 2 Rastogi Nina 16 February 2010 Does road salt harm the environment slate com Saltier waterways are creating dangerous chemical cocktails phys org Most Road Salt Is Making It into Lakes And Rivers www sciencedaily com University of Minnesota 20 February 2009 Retrieved 27 September 2015 Casey Michael Turning to beet juice and beer to address road salt danger phys org EASA Cautions on Organic Salt Deicing Fluid MRO Network 9 December 2016 a b R D Shannon 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallogr A 32 5 751 767 Bibcode 1976AcCrA 32 751S doi 10 1107 S0567739476001551 Sirdeshmukh Dinker B Sirdeshmukh Lalitha amp Subhadra K G 2001 Alkali halides a handbook of physical properties Springer pp 65 68 ISBN 978 3 540 42180 1 Nakamuro Takayuki Sakakibara Masaya Nada Hiroki Harano Koji Nakamura Eiichi 2021 Capturing the Moment of Emergence of Crystal Nucleus from Disorder Journal of the American Chemical Society 143 4 1763 1767 doi 10 1021 jacs 0c12100 PMID 33475359 Burgess J 1978 Metal Ions in Solution New York Ellis Horwood ISBN 978 0 85312 027 8 Klewe B Pedersen 1974 The crystal structure of sodium chloride dihydrate Acta Crystallogr B30 10 2363 2371 doi 10 1107 S0567740874007138 Lincoln S F Richens D T and Sykes A G 2003 Metal Aqua Ions Comprehensive Coordination Chemistry II Volume 1 pp 515 555 doi 10 1016 B0 08 043748 6 01055 0 Water NaCl phase diagram Lide CRC Handbook of Chemistry and Physics 86 ed 2005 2006 CRC pages 8 71 8 116 Acidic Basic and Neutral Salts Flinn Scientific Chem Fax 2016 Retrieved 18 September 2018 Neutralization of a strong acid and a strong base gives a neutral salt Tikhomirova K A Tantardini C Sukhanova E V Popov Z I Evlashin S A Tarkhov M A Zhdanov V L 2020 Exotic Two Dimensional Structure The first case of Hexagonal NaCl The Journal of Physical Chemistry Letters 11 10 3821 3827 doi 10 1021 acs jpclett 0c00874 PMID 32330050 S2CID 216130640 Zhang W Oganov A R Goncharov A F Zhu Q Boulfelfel S E Lyakhov A O Stavrou E Somayazulu M Prakapenka V B Konopkova Z 2013 Unexpected Stable Stoichiometries of Sodium Chlorides Science 342 6165 1502 1505 arXiv 1310 7674 Bibcode 2013Sci 342 1502Z doi 10 1126 science 1244989 PMID 24357316 S2CID 15298372 Mason B J 2006 The role of sea salt particles as cloud condensation nuclei over the remote oceans Quarterly Journal of the Royal Meteorological Society 127 576 2023 32 Bibcode 2001QJRMS 127 2023M doi 10 1002 qj 49712757609 S2CID 121846285 Salt U S Geological Survey This article incorporates public domain material from Salt PDF United States Geological Survey Cited sources EditHaynes William M ed 2011 CRC Handbook of Chemistry and Physics 92nd ed CRC Press ISBN 978 1439855119 External links Edit Wikimedia Commons has media related to NaCl Wikibooks Cookbook has a recipe module on Salt Salt United States Geological Survey Statistics and Information Using Salt and Sand for Winter Road Maintenance Road Management Journal December 1997 Archived from the original on 21 September 2016 Retrieved 13 February 2007 Calculators surface tensions and densities molarities and molalities of aqueous NaCl and other salts JtBaker MSDS Retrieved from https en wikipedia org w index php title Sodium chloride amp oldid 1135174281, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.