fbpx
Wikipedia

Young's modulus

Young's modulus , the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied lengthwise. It quantifies the relationship between tensile/compressive stress (force per unit area) and axial strain (proportional deformation) in the linear elastic region of a material and is determined using the formula:[1]

Young's modulus is the slope of the linear part of the stress-strain curve for a material under tension or compression.

Young's moduli are typically so large that they are expressed not in pascals but in gigapascals (GPa).

Example:

  • Silly Putty (increasing pressure: length increases quickly, meaning low )
  • Aluminum (increasing pressure: length increases slowly, meaning high )

Higher Young's modulus corresponds to greater (lengthwise) stiffness.

Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler. The first experiments that used the concept of Young's modulus in its current form were performed by the Italian scientist Giordano Riccati in 1782, pre-dating Young's work by 25 years.[2] The term modulus is derived from the Latin root term modus which means measure.

Definition

Linear elasticity

A solid material will undergo elastic deformation when a small load is applied to it in compression or extension. Elastic deformation is reversible, meaning that the material returns to its original shape after the load is removed.

At near-zero stress and strain, the stress–strain curve is linear, and the relationship between stress and strain is described by Hooke's law that states stress is proportional to strain. The coefficient of proportionality is Young's modulus. The higher the modulus, the more stress is needed to create the same amount of strain; an idealized rigid body would have an infinite Young's modulus. Conversely, a very soft material (such as a fluid) would deform without force, and would have zero Young's modulus.

Not many materials are linear and elastic beyond a small amount of deformation.[citation needed]

Note

Material stiffness should not be confused with these properties:

  • Strength: maximum amount of stress that material can withstand while staying in the elastic (reversible) deformation regime;
  • Geometric stiffness: a global characteristic of the body that depends on its shape, and not only on the local properties of the material; for instance, an I-beam has a higher bending stiffness than a rod of the same material for a given mass per length;
  • Hardness: relative resistance of the material's surface to penetration by a harder body;
  • Toughness: amount of energy that a material can absorb before fracture.

Usage

Young's modulus enables the calculation of the change in the dimension of a bar made of an isotropic elastic material under tensile or compressive loads. For instance, it predicts how much a material sample extends under tension or shortens under compression. The Young's modulus directly applies to cases of uniaxial stress; that is, tensile or compressive stress in one direction and no stress in the other directions. Young's modulus is also used in order to predict the deflection that will occur in a statically determinate beam when a load is applied at a point in between the beam's supports.

Other elastic calculations usually require the use of one additional elastic property, such as the shear modulus  , bulk modulus  , and Poisson's ratio  . Any two of these parameters are sufficient to fully describe elasticity in an isotropic material. For homogeneous isotropic materials simple relations exist between elastic constants that allow calculating them all as long as two are known:

 

Linear versus non-linear

Young's modulus represents the factor of proportionality in Hooke's law, which relates the stress and the strain. However, Hooke's law is only valid under the assumption of an elastic and linear response. Any real material will eventually fail and break when stretched over a very large distance or with a very large force; however, all solid materials exhibit nearly Hookean behavior for small enough strains or stresses. If the range over which Hooke's law is valid is large enough compared to the typical stress that one expects to apply to the material, the material is said to be linear. Otherwise, (if the typical stress one would apply is outside the linear range) the material is said to be non-linear.

Steel, carbon fiber and glass among others are usually considered linear materials, while other materials such as rubber and soils are non-linear. However, this is not an absolute classification: if very small stresses or strains are applied to a non-linear material, the response will be linear, but if very high stress or strain is applied to a linear material, the linear theory will not be enough. For example, as the linear theory implies reversibility, it would be absurd to use the linear theory to describe the failure of a steel bridge under a high load; although steel is a linear material for most applications, it is not in such a case of catastrophic failure.

In solid mechanics, the slope of the stress–strain curve at any point is called the tangent modulus. It can be experimentally determined from the slope of a stress–strain curve created during tensile tests conducted on a sample of the material.

Directional materials

Young's modulus is not always the same in all orientations of a material. Most metals and ceramics, along with many other materials, are isotropic, and their mechanical properties are the same in all orientations. However, metals and ceramics can be treated with certain impurities, and metals can be mechanically worked to make their grain structures directional. These materials then become anisotropic, and Young's modulus will change depending on the direction of the force vector.[3] Anisotropy can be seen in many composites as well. For example, carbon fiber has a much higher Young's modulus (is much stiffer) when force is loaded parallel to the fibers (along the grain). Other such materials include wood and reinforced concrete. Engineers can use this directional phenomenon to their advantage in creating structures.

Temperature dependence

The Young's modulus of metals varies with the temperature and can be realized through the change in the interatomic bonding of the atoms, and hence its change is found to be dependent on the change in the work function of the metal. Although classically, this change is predicted through fitting and without a clear underlying mechanism (for example, the Watchman's formula), the Rahemi-Li model[4] demonstrates how the change in the electron work function leads to change in the Young's modulus of metals and predicts this variation with calculable parameters, using the generalization of the Lennard-Jones potential to solids. In general, as the temperature increases, the Young's modulus decreases via   where the electron work function varies with the temperature as   and   is a calculable material property which is dependent on the crystal structure (for example, BCC, FCC).   is the electron work function at T=0 and   is constant throughout the change.

Calculation

Young's modulus E, can be calculated by dividing the tensile stress,  , by the engineering extensional strain,  , in the elastic (initial, linear) portion of the physical stress–strain curve:

 
where
  •   is the Young's modulus (modulus of elasticity)
  •   is the force exerted on an object under tension;
  •   is the actual cross-sectional area, which equals the area of the cross-section perpendicular to the applied force;
  •   is the amount by which the length of the object changes (  is positive if the material is stretched, and negative when the material is compressed);
  •   is the original length of the object.

Force exerted by stretched or contracted material

The Young's modulus of a material can be used to calculate the force it exerts under specific strain.

 

where   is the force exerted by the material when contracted or stretched by  .

Hooke's law for a stretched wire can be derived from this formula:

 

where it comes in saturation

  and  

But note that the elasticity of coiled springs comes from shear modulus, not Young's modulus.[citation needed]

Elastic potential energy

The elastic potential energy stored in a linear elastic material is given by the integral of the Hooke's law:

 

now by explicating the intensive variables:

 

This means that the elastic potential energy density (that is, per unit volume) is given by:

 

or, in simple notation, for a linear elastic material:  , since the strain is defined  .

In a nonlinear elastic material the Young's modulus is a function of the strain, so the second equivalence no longer holds, and the elastic energy is not a quadratic function of the strain:

 

Approximate values

 
Influences of selected glass component additions on Young's modulus of a specific base glass

Young's modulus can vary somewhat due to differences in sample composition and test method. The rate of deformation has the greatest impact on the data collected, especially in polymers. The values here are approximate and only meant for relative comparison.

Approximate Young's modulus for various materials
Material Young's modulus (GPa) Megapound per square inch (Mpsi)[5] Ref.
Aluminium (13Al) 68 9.86 [6][7][8][9][10][11]
Amino-acid molecular crystals 21 – 44 3.05 – 6.38 [12]
Aramid (for example, Kevlar) 70.5 – 112.4 10.2 – 16.3 [13]
Aromatic peptide-nanospheres 230 – 275 33.4 – 39.9 [14]
Aromatic peptide-nanotubes 19 – 27 2.76 – 3.92 [15][16]
Bacteriophage capsids 1 – 3 0.145 – 0.435 [17]
Beryllium (4Be) 287 41.6 [18]
Bone, human cortical 14 2.03 [19]
Brass 106 15.4 [20]
Bronze 112 16.2 [21]
Carbon nitride (CN2) 822 119 [22]
Carbon-fiber-reinforced plastic (CFRP), 50/50 fibre/matrix, biaxial fabric 30 – 50 4.35 – 7.25 [23]
Carbon-fiber-reinforced plastic (CFRP), 70/30 fibre/matrix, unidirectional, along fibre 181 26.3 [24]
Cobalt-chrome (CoCr) 230 33.4 [25]
Copper (Cu), annealed 110 16 [26]
Diamond (C), synthetic 1050 – 1210 152 – 175 [27]
Diatom frustules, largely silicic acid 0.35 – 2.77 0.051 – 0.058 [28]
Flax fiber 58 8.41 [29]
Float glass 47.7 – 83.6 6.92 – 12.1 [30]
Glass-reinforced polyester (GRP) 17.2 2.49 [31]
Gold 77.2 11.2 [32]
Graphene 1050 152 [33]
Hemp fiber 35 5.08 [34]
High-density polyethylene (HDPE) 0.97 – 1.38 0.141 – 0.2 [35]
High-strength concrete 30 4.35 [36]
Lead (82Pb), chemical 13 1.89 [11]
Low-density polyethylene (LDPE), molded 0.228 0.0331 [37]
Magnesium alloy 45.2 6.56 [38]
Medium-density fiberboard (MDF) 4 0.58 [39]
Molybdenum (Mo), annealed 330 47.9 [40][7][8][9][10][11]
Monel 180 26.1 [11]
Mother-of-pearl (largely calcium carbonate) 70 10.2 [41]
Nickel (28Ni), commercial 200 29 [11]
Nylon 66 2.93 0.425 [42]
Osmium (76Os) 525 – 562 76.1 – 81.5 [43]
Osmium nitride (OsN2) 194.99 – 396.44 28.3 – 57.5 [44]
Polycarbonate (PC) 2.2 0.319 [45]
Polyethylene terephthalate (PET), unreinforced 3.14 0.455 [46]
Polypropylene (PP), molded 1.68 0.244 [47]
Polystyrene, crystal 2.5 – 3.5 0.363 – 0.508 [48]
Polystyrene, foam 0.0025 – 0.007 0.000363 – 0.00102 [49]
Polytetrafluoroethylene (PTFE), molded 0.564 0.0818 [50]
Rubber, small strain 0.01 – 0.1 0.00145 – 0.0145 [12]
Silicon, single crystal, different directions 130 – 185 18.9 – 26.8 [51]
Silicon carbide (SiC) 90 – 137 13.1 – 19.9 [52]
Single-walled carbon nanotube  1000  140 [53][54]
Steel, A36 200 29 [55]
Stinging nettle fiber 87 12.6 [29]
Titanium (22Ti) 116 16.8 [56][57][7][9][8][11][10]
Titanium alloy, Grade 5 114 16.5 [58]
Tooth enamel, largely calcium phosphate 83 12 [59]
Tungsten carbide (WC) 600 – 686 87 – 99.5 [60]
Wood, American beech 9.5 – 11.9 1.38 – 1.73 [61]
Wood, black cherry 9 – 10.3 1.31 – 1.49 [61]
Wood, red maple 9.6 – 11.3 1.39 – 1.64 [61]
Wrought iron 193 28 [62]
Yttrium iron garnet (YIG), polycrystalline 193 28 [63]
Yttrium iron garnet (YIG), single-crystal 200 29 [64]
Zinc (30Zn) 108 15.7 [65]
Zirconium (40Zr), commercial 95 13.8 [11]

See also

References

  1. ^ Jastrzebski, D. (1959). Nature and Properties of Engineering Materials (Wiley International ed.). John Wiley & Sons, Inc.
  2. ^ The Rational mechanics of Flexible or Elastic Bodies, 1638–1788: Introduction to Leonhardi Euleri Opera Omnia, vol. X and XI, Seriei Secundae. Orell Fussli.
  3. ^ Gorodtsov, V.A.; Lisovenko, D.S. (2019). "Extreme values of Young's modulus and Poisson's ratio of hexagonal crystals". Mechanics of Materials. 134: 1–8. doi:10.1016/j.mechmat.2019.03.017. S2CID 140493258.
  4. ^ Rahemi, Reza; Li, Dongyang (April 2015). "Variation in electron work function with temperature and its effect on the Young's modulus of metals". Scripta Materialia. 99 (2015): 41–44. arXiv:1503.08250. Bibcode:2015arXiv150308250R. doi:10.1016/j.scriptamat.2014.11.022. S2CID 118420968.
  5. ^ "Unit of Measure Converter". MatWeb. Retrieved May 9, 2021.
  6. ^ "Aluminum, Al". MatWeb. Retrieved May 7, 2021.
  7. ^ a b c Weast, Robert C. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. doi:10.1002/jctb.280500215. ISBN 978-0-84-930740-9.
  8. ^ a b c Ross, Robert B. (1992). Metallic Materials Specification Handbook (4th ed.). London: Chapman & Hall. doi:10.1007/978-1-4615-3482-2. ISBN 9780412369407.
  9. ^ a b c Nunes, Rafael; Adams, J. H.; Ammons, Mitchell; et al. (1990). Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (PDF). ASM Handbook (10th ed.). ASM International. ISBN 978-0-87170-378-1.
  10. ^ a b c Nayar, Alok (1997). The Metals Databook. New York, NY: McGraw-Hill. ISBN 978-0-07-462300-8.
  11. ^ a b c d e f g Lide, David R., ed. (1999). "Commercial Metals and Alloys". CRC Handbook of Chemistry and Physics (80th ed.). Boca Raton, FL: CRC Press. ISBN 978-0-84-930480-4.
  12. ^ a b Azuri, Ido; Meirzadeh, Elena; Ehre, David; et al. (November 9, 2015). "Unusually Large Young's Moduli of Amino Acid Molecular Crystals" (PDF). Angewandte Chemie (International ed.). Wiley. 54 (46): 13566–13570. doi:10.1002/anie.201505813. PMID 26373817. S2CID 13717077 – via PubMed.
  13. ^ "Kevlar Aramid Fiber Technical Guide" (PDF). DuPont. 2017. Retrieved May 8, 2021.
  14. ^ Adler-Abramovich, Lihi; Kol, Nitzan; Yanai, Inbal; et al. (December 17, 2010). "Self-Assembled Organic Nanostructures with Metallic-Like Stiffness". Angewandte Chemie (International ed.). Wiley-VCH (published September 28, 2010). 49 (51): 9939–9942. doi:10.1002/anie.201002037. PMID 20878815. S2CID 44873277.
  15. ^ Kol, Nitzan; Adler-Abramovich, Lihi; Barlam, David; et al. (June 8, 2005). "Self-Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures". Nano Letters. Israel: American Chemical Society. 5 (7): 1343–1346. Bibcode:2005NanoL...5.1343K. doi:10.1021/nl0505896. PMID 16178235 – via ACS Publications.
  16. ^ Niu, Lijiang; Chen, Xinyong; Allen, Stephanie; et al. (June 6, 2007). "Using the Bending Beam Model to Estimate the Elasticity of Diphenylalanine Nanotubes". Langmuir. American Chemical Society. 23 (14): 7443–7446. doi:10.1021/la7010106. PMID 17550276 – via ACS Publications.
  17. ^ Ivanovska, Irena L.; de Pablo, Pedro J.; Ibarra, Benjamin; et al. (May 7, 2004). Lubensky, Tom C. (ed.). "Bacteriophage capsids: Tough nanoshells with complex elastic properties". Proceedings of the National Academy of Sciences of the United States of America. The National Academy of Sciences. 101 (20): 7600–7605. Bibcode:2004PNAS..101.7600I. doi:10.1073/pnas.0308198101. PMC 419652. PMID 15133147.
  18. ^ Foley, James C.; Abeln, Stephen P.; Stanek, Paul W.; et al. (2010). "An Overview of Current Research and Industrial Practices of be Powder Metallurgy". In Marquis, Fernand D. S. (ed.). Powder Materials: Current Research and Industrial Practices III. Hoboken, NJ: John Wiley & Sons, Inc. p. 263. doi:10.1002/9781118984239.ch32. ISBN 978-1-11-898423-9.
  19. ^ Rho, Jae Young; Ashman, Richard B.; Turner, Charles H. (February 1993). "Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements". Journal of Biomechanics. Elsevier. 26 (2): 111–119. doi:10.1016/0021-9290(93)90042-d. PMID 8429054 – via Elsevier Science Direct.
  20. ^ "Overview of materials for Brass". MatWeb. Retrieved May 7, 2021.
  21. ^ "Overview of materials for Bronze". MatWeb. Retrieved May 7, 2021.
  22. ^ Chowdhury, Shafiul; Laugier, Michael T.; Rahman, Ismet Zakia (April–August 2004). "Measurement of the mechanical properties of carbon nitride thin films from the nanoindentation loading curve". Diamond and Related Materials. 13 (4–8): 1543–1548. Bibcode:2004DRM....13.1543C. doi:10.1016/j.diamond.2003.11.063 – via Elsevier Science Direct.
  23. ^ Summerscales, John (September 11, 2019). "Composites Design and Manufacture (Plymouth University teaching support materials)". Advanced Composites Manufacturing Centre. University of Plymouth. Retrieved May 8, 2021.
  24. ^ Kopeliovich, Dmitri (June 3, 2012). "Epoxy Matrix Composite reinforced by 70% carbon fibers". SubsTech. Retrieved May 8, 2021.
  25. ^ Bose, Susmita; Banerjee, Dishary; Bandyopadhyay, Amit (2016). "Introduction to Biomaterials and Devices for Bone Disorders". In Bose, Susmita; Bandyopadhyay, Amit (eds.). Materials for Bone Disorders. Academic Press. pp. 1–27. doi:10.1016/B978-0-12-802792-9.00001-X. ISBN 978-0-12-802792-9.
  26. ^ "Copper, Cu; Annealed". MatWeb. Retrieved May 9, 2021.
  27. ^ Spear, Karl E.; Dismukes, John P., eds. (1994). Synthetic Diamond: Emerging CVD Science and Technology. Wiley. p. 315. ISBN 978-0-47-153589-8. ISSN 0275-0171.
  28. ^ Subhash, Ghatu; Yao, Shuhuai; Bellinger, Brent; Gretz, Michael R. (January 2005). "Investigation of mechanical properties of diatom frustules using nanoindentation". Journal of Nanoscience and Nanotechnology. American Scientific Publishers. 5 (1): 50–56. doi:10.1166/jnn.2005.006. PMID 15762160 – via Ingenta Connect.
  29. ^ a b Bodros, Edwin; Baley, Christophe (May 15, 2008). "Study of the tensile properties of stinging nettle fibres (Urtica dioica)". Materials Letters. 62 (14): 2143–2145. CiteSeerX 10.1.1.299.6908. doi:10.1016/j.matlet.2007.11.034 – via Elsevier Science Direct.
  30. ^ "Float glass – Properties and Applications". AZO Materials. February 16, 2001. Retrieved May 9, 2021.
  31. ^ Kopeliovich, Dmitri (March 6, 2012). "Polyester Matrix Composite reinforced by glass fibers (Fiberglass)". SubsTech. Retrieved May 7, 2021.
  32. ^ "Gold material property data". MatWeb. Retrieved September 8, 2021.
  33. ^ Liu, Fang; Ming, Pingbing; Li, Ju (August 28, 2007). "Ab initio calculation of ideal strength and phonon instability of graphene under tension" (PDF). Physical Review B. American Physical Society. 76 (6): 064120. Bibcode:2007PhRvB..76f4120L. doi:10.1103/PhysRevB.76.064120 – via APS Physics.
  34. ^ Saheb, Nabi; Jog, Jyoti (October 15, 1999). "Natural fibre polymer composites: a review". Advances in Polymer Technology. John Wiley & Sons, Inc. 18 (4): 351–363. doi:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X – via Wiley Online Library.
  35. ^ "High-Density Polyethylene (HDPE)". Polymer Database. Chemical Retrieval on the Web. Retrieved May 9, 2021.
  36. ^ Cardarelli, François (2008). "Cements, Concrete, Building Stones, and Construction Materials". Materials Handbook: A Concise Desktop Reference (2nd ed.). London: Springer-Verlag. pp. 1421–1439. doi:10.1007/978-3-319-38925-7_15. ISBN 978-3-319-38923-3.
  37. ^ "Overview of materials for Low Density Polyethylene (LDPE), Molded". MatWeb. Retrieved May 7, 2021.
  38. ^ "Overview of materials for Magnesium Alloy". MatWeb. Retrieved May 9, 2021.
  39. ^ "Medium Density Fiberboard (MDF)". MakeItFrom. May 30, 2020. Retrieved May 8, 2021.
  40. ^ "Molybdenum, Mo, Annealed". MatWeb. Retrieved May 9, 2021.
  41. ^ Jackson, Andrew P.; Vincent, Julian F. V.; Turner, R. M. (September 22, 1988). "The mechanical design of nacre". Proceedings of the Royal Society B. Royal Society. 234 (1277): 415–440. Bibcode:1988RSPSB.234..415J. doi:10.1098/rspb.1988.0056. eISSN 2053-9193. ISSN 0080-4649. S2CID 135544277 – via The Royal Society Publishing.
  42. ^ "Nylon® 6/6 (Polyamide)". Poly-Tech Industrial, Inc. 2011. Retrieved May 9, 2021.
  43. ^ Pandey, Dharmendra Kumar; Singh, Devraj; Yadawa, Pramod Kumar (April 2, 2009). "Ultrasonic Study of Osmium and Ruthenium" (PDF). Platinum Metals Review. Johnson Matthey. 53 (4): 91–97. doi:10.1595/147106709X430927. Retrieved May 7, 2021 – via Ingenta Connect.
  44. ^ Gaillac, Romain; Coudert, François-Xavier (July 26, 2020). "ELATE: Elastic tensor analysis". ELATE. Retrieved May 9, 2021.
  45. ^ "Polycarbonate". DesignerData. Retrieved May 9, 2021.
  46. ^ "Overview of materials for Polyethylene Terephthalate (PET), Unreinforced". MatWeb. Retrieved May 9, 2021.
  47. ^ "Overview of Materials for Polypropylene, Molded". MatWeb. Retrieved May 9, 2021.
  48. ^ "Young's Modulus: Tensile Elasticity Units, Factors & Material Table". Omnexus. SpecialChem. Retrieved May 9, 2021.
  49. ^ "Technical Data – Application Recommendations Dimensioning Aids". Stryodur. BASF. August 2019. Retrieved May 7, 2021.
  50. ^ "Overview of materials for Polytetrafluoroethylene (PTFE), Molded". MatWeb. Retrieved May 9, 2021.
  51. ^ Boyd, Euan J.; Uttamchandani, Deepak (2012). "Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers. 21 (1): 243–249. doi:10.1109/JMEMS.2011.2174415. eISSN 1941-0158. ISSN 1057-7157. S2CID 39025763 – via IEEE Xplore.
  52. ^ "Silicon Carbide (SiC) Properties and Applications". AZO Materials. February 5, 2001. Retrieved May 9, 2021.
  53. ^ Forró, László; Salvetat, Jean-Paul; Bonard, Jean-Marc; et al. (January 2002). Thorpe, Michael F.; Tománek, David; Enbody, Richard J. (eds.). "Electronic and Mechanical Properties of Carbon Nanotubes". Science and Application of Nanotubes. Fundamentals Materials Research. Boston, MA: Springer: 297–320. doi:10.1007/0-306-47098-5_22. ISBN 978-0-306-46372-3 – via ResearchGate.
  54. ^ Yang, Yi-Hsuan; Li, Wenzhi (January 24, 2011). "Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy". Applied Physics Letters. American Institute of Physics. 98 (4): 041901. Bibcode:2011ApPhL..98d1901Y. doi:10.1063/1.3546170.
  55. ^ "ASTM A36 Mild/Low Carbon Steel". AZO Materials. July 5, 2012. Retrieved May 9, 2021.
  56. ^ "Titanium, Ti". MatWeb. Retrieved May 7, 2021.
  57. ^ Boyer, Rodney; Welsch, Gerhard; Collings, Edward W., eds. (1994). Materials Properties Handbook: Titanium Alloys. Materials Park, OH: ASM International. ISBN 978-0-87-170481-8.
  58. ^ U.S. Titanium Industry Inc. (July 30, 2002). "Titanium Alloys – Ti6Al4V Grade 5". AZO Materials. Retrieved May 9, 2021.
  59. ^ Staines, Michael; Robinson, W. H.; Hood, J. A. A. (September 1981). "Spherical indentation of tooth enamel". Journal of Materials Science. Springer. 16 (9): 2551–2556. Bibcode:1981JMatS..16.2551S. doi:10.1007/bf01113595. S2CID 137704231 – via Springer Link.
  60. ^ "Tungsten Carbide – An Overview". AZO Materials. January 21, 2002. Retrieved May 9, 2021.
  61. ^ a b c Green, David W.; Winandy, Jerrold E.; Kretschmann, David E. (1999). "Mechanical Properties of Wood". (PDF). Madison, WI: Forest Products Laboratory. pp. 4–8. Archived from the original (PDF) on July 20, 2018.
  62. ^ "Wrought Iron – Properties and Applications". AZO Materials. August 13, 2013. Retrieved May 9, 2021.
  63. ^ Chou, Hung-Ming; Case, E. D. (November 1988). "Characterization of some mechanical properties of polycrystalline yttrium iron garnet (YIG) by non-destructive methods". Journal of Materials Science Letters. 7 (11): 1217–1220. doi:10.1007/BF00722341. S2CID 135957639 – via SpringerLink.
  64. ^ "Yttrium Iron Garnet". Deltronic Crystal Industries, Inc. December 28, 2012. Retrieved May 7, 2021.
  65. ^ "An Introduction to Zinc". AZO Materials. July 23, 2001. Retrieved May 9, 2021.

Further reading

  • ASTM E 111, "Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus"
  • The ASM Handbook (various volumes) contains Young's Modulus for various materials and information on calculations. Online version (subscription required)

External links

  • Matweb: free database of engineering properties for over 115,000 materials
  • Young's Modulus for groups of materials, and their cost
Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae             Notes
         
         
         
         
         
           
         
         
           

There are two valid solutions.
The plus sign leads to  .

The minus sign leads to  .

         
          Cannot be used when  
         
         
         
         
2D formulae             Notes
         
         
         
         
         
         
         
          Cannot be used when  
         
         



young, modulus, displaystyle, young, modulus, modulus, elasticity, tension, compression, negative, tension, mechanical, property, that, measures, tensile, compressive, stiffness, solid, material, when, force, applied, lengthwise, quantifies, relationship, betw. Young s modulus E displaystyle E the Young modulus or the modulus of elasticity in tension or compression i e negative tension is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied lengthwise It quantifies the relationship between tensile compressive stress s displaystyle sigma force per unit area and axial strain e displaystyle varepsilon proportional deformation in the linear elastic region of a material and is determined using the formula 1 Young s modulus is the slope of the linear part of the stress strain curve for a material under tension or compression E s e displaystyle E frac sigma varepsilon Young s moduli are typically so large that they are expressed not in pascals but in gigapascals GPa Example Silly Putty increasing pressure length increases quickly meaning low E displaystyle E Aluminum increasing pressure length increases slowly meaning high E displaystyle E Higher Young s modulus corresponds to greater lengthwise stiffness Although Young s modulus is named after the 19th century British scientist Thomas Young the concept was developed in 1727 by Leonhard Euler The first experiments that used the concept of Young s modulus in its current form were performed by the Italian scientist Giordano Riccati in 1782 pre dating Young s work by 25 years 2 The term modulus is derived from the Latin root term modus which means measure Contents 1 Definition 1 1 Linear elasticity 2 Note 3 Usage 3 1 Linear versus non linear 3 2 Directional materials 3 3 Temperature dependence 4 Calculation 4 1 Force exerted by stretched or contracted material 4 2 Elastic potential energy 5 Approximate values 6 See also 7 References 8 Further reading 9 External linksDefinition EditLinear elasticity Edit Main article Linear elasticity A solid material will undergo elastic deformation when a small load is applied to it in compression or extension Elastic deformation is reversible meaning that the material returns to its original shape after the load is removed At near zero stress and strain the stress strain curve is linear and the relationship between stress and strain is described by Hooke s law that states stress is proportional to strain The coefficient of proportionality is Young s modulus The higher the modulus the more stress is needed to create the same amount of strain an idealized rigid body would have an infinite Young s modulus Conversely a very soft material such as a fluid would deform without force and would have zero Young s modulus Not many materials are linear and elastic beyond a small amount of deformation citation needed Note EditMaterial stiffness should not be confused with these properties Strength maximum amount of stress that material can withstand while staying in the elastic reversible deformation regime Geometric stiffness a global characteristic of the body that depends on its shape and not only on the local properties of the material for instance an I beam has a higher bending stiffness than a rod of the same material for a given mass per length Hardness relative resistance of the material s surface to penetration by a harder body Toughness amount of energy that a material can absorb before fracture Usage EditYoung s modulus enables the calculation of the change in the dimension of a bar made of an isotropic elastic material under tensile or compressive loads For instance it predicts how much a material sample extends under tension or shortens under compression The Young s modulus directly applies to cases of uniaxial stress that is tensile or compressive stress in one direction and no stress in the other directions Young s modulus is also used in order to predict the deflection that will occur in a statically determinate beam when a load is applied at a point in between the beam s supports Other elastic calculations usually require the use of one additional elastic property such as the shear modulus G displaystyle G bulk modulus K displaystyle K and Poisson s ratio n displaystyle nu Any two of these parameters are sufficient to fully describe elasticity in an isotropic material For homogeneous isotropic materials simple relations exist between elastic constants that allow calculating them all as long as two are known E 2 G 1 n 3 K 1 2 n displaystyle E 2G 1 nu 3K 1 2 nu Linear versus non linear Edit Young s modulus represents the factor of proportionality in Hooke s law which relates the stress and the strain However Hooke s law is only valid under the assumption of an elastic and linear response Any real material will eventually fail and break when stretched over a very large distance or with a very large force however all solid materials exhibit nearly Hookean behavior for small enough strains or stresses If the range over which Hooke s law is valid is large enough compared to the typical stress that one expects to apply to the material the material is said to be linear Otherwise if the typical stress one would apply is outside the linear range the material is said to be non linear Steel carbon fiber and glass among others are usually considered linear materials while other materials such as rubber and soils are non linear However this is not an absolute classification if very small stresses or strains are applied to a non linear material the response will be linear but if very high stress or strain is applied to a linear material the linear theory will not be enough For example as the linear theory implies reversibility it would be absurd to use the linear theory to describe the failure of a steel bridge under a high load although steel is a linear material for most applications it is not in such a case of catastrophic failure In solid mechanics the slope of the stress strain curve at any point is called the tangent modulus It can be experimentally determined from the slope of a stress strain curve created during tensile tests conducted on a sample of the material Directional materials Edit Young s modulus is not always the same in all orientations of a material Most metals and ceramics along with many other materials are isotropic and their mechanical properties are the same in all orientations However metals and ceramics can be treated with certain impurities and metals can be mechanically worked to make their grain structures directional These materials then become anisotropic and Young s modulus will change depending on the direction of the force vector 3 Anisotropy can be seen in many composites as well For example carbon fiber has a much higher Young s modulus is much stiffer when force is loaded parallel to the fibers along the grain Other such materials include wood and reinforced concrete Engineers can use this directional phenomenon to their advantage in creating structures Temperature dependence Edit The Young s modulus of metals varies with the temperature and can be realized through the change in the interatomic bonding of the atoms and hence its change is found to be dependent on the change in the work function of the metal Although classically this change is predicted through fitting and without a clear underlying mechanism for example the Watchman s formula the Rahemi Li model 4 demonstrates how the change in the electron work function leads to change in the Young s modulus of metals and predicts this variation with calculable parameters using the generalization of the Lennard Jones potential to solids In general as the temperature increases the Young s modulus decreases via E T b f T 6 displaystyle E T beta varphi T 6 where the electron work function varies with the temperature as f T f 0 g k B T 2 f 0 displaystyle varphi T varphi 0 gamma frac k B T 2 varphi 0 and g displaystyle gamma is a calculable material property which is dependent on the crystal structure for example BCC FCC f 0 displaystyle varphi 0 is the electron work function at T 0 and b displaystyle beta is constant throughout the change Calculation EditYoung s modulus E can be calculated by dividing the tensile stress s e displaystyle sigma varepsilon by the engineering extensional strain e displaystyle varepsilon in the elastic initial linear portion of the physical stress strain curve E s e e F A D L L 0 F L 0 A D L displaystyle E equiv frac sigma varepsilon varepsilon frac F A Delta L L 0 frac FL 0 A Delta L where E displaystyle E is the Young s modulus modulus of elasticity F displaystyle F is the force exerted on an object under tension A displaystyle A is the actual cross sectional area which equals the area of the cross section perpendicular to the applied force D L displaystyle Delta L is the amount by which the length of the object changes D L displaystyle Delta L is positive if the material is stretched and negative when the material is compressed L 0 displaystyle L 0 is the original length of the object Force exerted by stretched or contracted material Edit The Young s modulus of a material can be used to calculate the force it exerts under specific strain F E A D L L 0 displaystyle F frac EA Delta L L 0 where F displaystyle F is the force exerted by the material when contracted or stretched by D L displaystyle Delta L Hooke s law for a stretched wire can be derived from this formula F E A L 0 D L k x displaystyle F left frac EA L 0 right Delta L kx where it comes in saturation k E A L 0 displaystyle k equiv frac EA L 0 and x D L displaystyle x equiv Delta L But note that the elasticity of coiled springs comes from shear modulus not Young s modulus citation needed Elastic potential energy Edit The elastic potential energy stored in a linear elastic material is given by the integral of the Hooke s law U e k x d x 1 2 k x 2 displaystyle U e int kx dx frac 1 2 kx 2 now by explicating the intensive variables U e E A D L L 0 d D L E A L 0 D L d D L E A D L 2 2 L 0 displaystyle U e int frac EA Delta L L 0 d Delta L frac EA L 0 int Delta L d Delta L frac EA Delta L 2 2L 0 This means that the elastic potential energy density that is per unit volume is given by U e A L 0 E D L 2 2 L 0 2 displaystyle frac U e AL 0 frac E Delta L 2 2L 0 2 or in simple notation for a linear elastic material u e e E e d e 1 2 E e 2 textstyle u e varepsilon int E varepsilon d varepsilon frac 1 2 E varepsilon 2 since the strain is defined e D L L 0 textstyle varepsilon equiv frac Delta L L 0 In a nonlinear elastic material the Young s modulus is a function of the strain so the second equivalence no longer holds and the elastic energy is not a quadratic function of the strain u e e E e e d e 1 2 E e 2 displaystyle u e varepsilon int E varepsilon varepsilon d varepsilon neq frac 1 2 E varepsilon 2 Approximate values Edit Influences of selected glass component additions on Young s modulus of a specific base glass Young s modulus can vary somewhat due to differences in sample composition and test method The rate of deformation has the greatest impact on the data collected especially in polymers The values here are approximate and only meant for relative comparison Approximate Young s modulus for various materials Material Young s modulus GPa Megapound per square inch Mpsi 5 Ref Aluminium 13Al 68 9 86 6 7 8 9 10 11 Amino acid molecular crystals 21 44 3 05 6 38 12 Aramid for example Kevlar 70 5 112 4 10 2 16 3 13 Aromatic peptide nanospheres 230 275 33 4 39 9 14 Aromatic peptide nanotubes 19 27 2 76 3 92 15 16 Bacteriophage capsids 1 3 0 145 0 435 17 Beryllium 4Be 287 41 6 18 Bone human cortical 14 2 03 19 Brass 106 15 4 20 Bronze 112 16 2 21 Carbon nitride CN2 822 119 22 Carbon fiber reinforced plastic CFRP 50 50 fibre matrix biaxial fabric 30 50 4 35 7 25 23 Carbon fiber reinforced plastic CFRP 70 30 fibre matrix unidirectional along fibre 181 26 3 24 Cobalt chrome CoCr 230 33 4 25 Copper Cu annealed 110 16 26 Diamond C synthetic 1050 1210 152 175 27 Diatom frustules largely silicic acid 0 35 2 77 0 051 0 058 28 Flax fiber 58 8 41 29 Float glass 47 7 83 6 6 92 12 1 30 Glass reinforced polyester GRP 17 2 2 49 31 Gold 77 2 11 2 32 Graphene 1050 152 33 Hemp fiber 35 5 08 34 High density polyethylene HDPE 0 97 1 38 0 141 0 2 35 High strength concrete 30 4 35 36 Lead 82Pb chemical 13 1 89 11 Low density polyethylene LDPE molded 0 228 0 0331 37 Magnesium alloy 45 2 6 56 38 Medium density fiberboard MDF 4 0 58 39 Molybdenum Mo annealed 330 47 9 40 7 8 9 10 11 Monel 180 26 1 11 Mother of pearl largely calcium carbonate 70 10 2 41 Nickel 28Ni commercial 200 29 11 Nylon 66 2 93 0 425 42 Osmium 76Os 525 562 76 1 81 5 43 Osmium nitride OsN2 194 99 396 44 28 3 57 5 44 Polycarbonate PC 2 2 0 319 45 Polyethylene terephthalate PET unreinforced 3 14 0 455 46 Polypropylene PP molded 1 68 0 244 47 Polystyrene crystal 2 5 3 5 0 363 0 508 48 Polystyrene foam 0 0025 0 007 0 000363 0 00102 49 Polytetrafluoroethylene PTFE molded 0 564 0 0818 50 Rubber small strain 0 01 0 1 0 00145 0 0145 12 Silicon single crystal different directions 130 185 18 9 26 8 51 Silicon carbide SiC 90 137 13 1 19 9 52 Single walled carbon nanotube gt displaystyle gt 1000 gt displaystyle gt 140 53 54 Steel A36 200 29 55 Stinging nettle fiber 87 12 6 29 Titanium 22Ti 116 16 8 56 57 7 9 8 11 10 Titanium alloy Grade 5 114 16 5 58 Tooth enamel largely calcium phosphate 83 12 59 Tungsten carbide WC 600 686 87 99 5 60 Wood American beech 9 5 11 9 1 38 1 73 61 Wood black cherry 9 10 3 1 31 1 49 61 Wood red maple 9 6 11 3 1 39 1 64 61 Wrought iron 193 28 62 Yttrium iron garnet YIG polycrystalline 193 28 63 Yttrium iron garnet YIG single crystal 200 29 64 Zinc 30Zn 108 15 7 65 Zirconium 40Zr commercial 95 13 8 11 See also EditBending stiffness Deflection Deformation Flexural modulus Hooke s law Impulse excitation technique List of materials properties Yield engineering References Edit Jastrzebski D 1959 Nature and Properties of Engineering Materials Wiley International ed John Wiley amp Sons Inc The Rational mechanics of Flexible or Elastic Bodies 1638 1788 Introduction to Leonhardi Euleri Opera Omnia vol X and XI Seriei Secundae Orell Fussli Gorodtsov V A Lisovenko D S 2019 Extreme values of Young s modulus and Poisson s ratio of hexagonal crystals Mechanics of Materials 134 1 8 doi 10 1016 j mechmat 2019 03 017 S2CID 140493258 Rahemi Reza Li Dongyang April 2015 Variation in electron work function with temperature and its effect on the Young s modulus of metals Scripta Materialia 99 2015 41 44 arXiv 1503 08250 Bibcode 2015arXiv150308250R doi 10 1016 j scriptamat 2014 11 022 S2CID 118420968 Unit of Measure Converter MatWeb Retrieved May 9 2021 Aluminum Al MatWeb Retrieved May 7 2021 a b c Weast Robert C 1981 CRC Handbook of Chemistry and Physics 62nd ed Boca Raton FL CRC Press doi 10 1002 jctb 280500215 ISBN 978 0 84 930740 9 a b c Ross Robert B 1992 Metallic Materials Specification Handbook 4th ed London Chapman amp Hall doi 10 1007 978 1 4615 3482 2 ISBN 9780412369407 a b c Nunes Rafael Adams J H Ammons Mitchell et al 1990 Volume 2 Properties and Selection Nonferrous Alloys and Special Purpose Materials PDF ASM Handbook 10th ed ASM International ISBN 978 0 87170 378 1 a b c Nayar Alok 1997 The Metals Databook New York NY McGraw Hill ISBN 978 0 07 462300 8 a b c d e f g Lide David R ed 1999 Commercial Metals and Alloys CRC Handbook of Chemistry and Physics 80th ed Boca Raton FL CRC Press ISBN 978 0 84 930480 4 a b Azuri Ido Meirzadeh Elena Ehre David et al November 9 2015 Unusually Large Young s Moduli of Amino Acid Molecular Crystals PDF Angewandte Chemie International ed Wiley 54 46 13566 13570 doi 10 1002 anie 201505813 PMID 26373817 S2CID 13717077 via PubMed Kevlar Aramid Fiber Technical Guide PDF DuPont 2017 Retrieved May 8 2021 Adler Abramovich Lihi Kol Nitzan Yanai Inbal et al December 17 2010 Self Assembled Organic Nanostructures with Metallic Like Stiffness Angewandte Chemie International ed Wiley VCH published September 28 2010 49 51 9939 9942 doi 10 1002 anie 201002037 PMID 20878815 S2CID 44873277 Kol Nitzan Adler Abramovich Lihi Barlam David et al June 8 2005 Self Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures Nano Letters Israel American Chemical Society 5 7 1343 1346 Bibcode 2005NanoL 5 1343K doi 10 1021 nl0505896 PMID 16178235 via ACS Publications Niu Lijiang Chen Xinyong Allen Stephanie et al June 6 2007 Using the Bending Beam Model to Estimate the Elasticity of Diphenylalanine Nanotubes Langmuir American Chemical Society 23 14 7443 7446 doi 10 1021 la7010106 PMID 17550276 via ACS Publications Ivanovska Irena L de Pablo Pedro J Ibarra Benjamin et al May 7 2004 Lubensky Tom C ed Bacteriophage capsids Tough nanoshells with complex elastic properties Proceedings of the National Academy of Sciences of the United States of America The National Academy of Sciences 101 20 7600 7605 Bibcode 2004PNAS 101 7600I doi 10 1073 pnas 0308198101 PMC 419652 PMID 15133147 Foley James C Abeln Stephen P Stanek Paul W et al 2010 An Overview of Current Research and Industrial Practices of be Powder Metallurgy In Marquis Fernand D S ed Powder Materials Current Research and Industrial Practices III Hoboken NJ John Wiley amp Sons Inc p 263 doi 10 1002 9781118984239 ch32 ISBN 978 1 11 898423 9 Rho Jae Young Ashman Richard B Turner Charles H February 1993 Young s modulus of trabecular and cortical bone material Ultrasonic and microtensile measurements Journal of Biomechanics Elsevier 26 2 111 119 doi 10 1016 0021 9290 93 90042 d PMID 8429054 via Elsevier Science Direct Overview of materials for Brass MatWeb Retrieved May 7 2021 Overview of materials for Bronze MatWeb Retrieved May 7 2021 Chowdhury Shafiul Laugier Michael T Rahman Ismet Zakia April August 2004 Measurement of the mechanical properties of carbon nitride thin films from the nanoindentation loading curve Diamond and Related Materials 13 4 8 1543 1548 Bibcode 2004DRM 13 1543C doi 10 1016 j diamond 2003 11 063 via Elsevier Science Direct Summerscales John September 11 2019 Composites Design and Manufacture Plymouth University teaching support materials Advanced Composites Manufacturing Centre University of Plymouth Retrieved May 8 2021 Kopeliovich Dmitri June 3 2012 Epoxy Matrix Composite reinforced by 70 carbon fibers SubsTech Retrieved May 8 2021 Bose Susmita Banerjee Dishary Bandyopadhyay Amit 2016 Introduction to Biomaterials and Devices for Bone Disorders In Bose Susmita Bandyopadhyay Amit eds Materials for Bone Disorders Academic Press pp 1 27 doi 10 1016 B978 0 12 802792 9 00001 X ISBN 978 0 12 802792 9 Copper Cu Annealed MatWeb Retrieved May 9 2021 Spear Karl E Dismukes John P eds 1994 Synthetic Diamond Emerging CVD Science and Technology Wiley p 315 ISBN 978 0 47 153589 8 ISSN 0275 0171 Subhash Ghatu Yao Shuhuai Bellinger Brent Gretz Michael R January 2005 Investigation of mechanical properties of diatom frustules using nanoindentation Journal of Nanoscience and Nanotechnology American Scientific Publishers 5 1 50 56 doi 10 1166 jnn 2005 006 PMID 15762160 via Ingenta Connect a b Bodros Edwin Baley Christophe May 15 2008 Study of the tensile properties of stinging nettle fibres Urtica dioica Materials Letters 62 14 2143 2145 CiteSeerX 10 1 1 299 6908 doi 10 1016 j matlet 2007 11 034 via Elsevier Science Direct Float glass Properties and Applications AZO Materials February 16 2001 Retrieved May 9 2021 Kopeliovich Dmitri March 6 2012 Polyester Matrix Composite reinforced by glass fibers Fiberglass SubsTech Retrieved May 7 2021 Gold material property data MatWeb Retrieved September 8 2021 Liu Fang Ming Pingbing Li Ju August 28 2007 Ab initio calculation of ideal strength and phonon instability of graphene under tension PDF Physical Review B American Physical Society 76 6 064120 Bibcode 2007PhRvB 76f4120L doi 10 1103 PhysRevB 76 064120 via APS Physics Saheb Nabi Jog Jyoti October 15 1999 Natural fibre polymer composites a review Advances in Polymer Technology John Wiley amp Sons Inc 18 4 351 363 doi 10 1002 SICI 1098 2329 199924 18 4 lt 351 AID ADV6 gt 3 0 CO 2 X via Wiley Online Library High Density Polyethylene HDPE Polymer Database Chemical Retrieval on the Web Retrieved May 9 2021 Cardarelli Francois 2008 Cements Concrete Building Stones and Construction Materials Materials Handbook A Concise Desktop Reference 2nd ed London Springer Verlag pp 1421 1439 doi 10 1007 978 3 319 38925 7 15 ISBN 978 3 319 38923 3 Overview of materials for Low Density Polyethylene LDPE Molded MatWeb Retrieved May 7 2021 Overview of materials for Magnesium Alloy MatWeb Retrieved May 9 2021 Medium Density Fiberboard MDF MakeItFrom May 30 2020 Retrieved May 8 2021 Molybdenum Mo Annealed MatWeb Retrieved May 9 2021 Jackson Andrew P Vincent Julian F V Turner R M September 22 1988 The mechanical design of nacre Proceedings of the Royal Society B Royal Society 234 1277 415 440 Bibcode 1988RSPSB 234 415J doi 10 1098 rspb 1988 0056 eISSN 2053 9193 ISSN 0080 4649 S2CID 135544277 via The Royal Society Publishing Nylon 6 6 Polyamide Poly Tech Industrial Inc 2011 Retrieved May 9 2021 Pandey Dharmendra Kumar Singh Devraj Yadawa Pramod Kumar April 2 2009 Ultrasonic Study of Osmium and Ruthenium PDF Platinum Metals Review Johnson Matthey 53 4 91 97 doi 10 1595 147106709X430927 Retrieved May 7 2021 via Ingenta Connect Gaillac Romain Coudert Francois Xavier July 26 2020 ELATE Elastic tensor analysis ELATE Retrieved May 9 2021 Polycarbonate DesignerData Retrieved May 9 2021 Overview of materials for Polyethylene Terephthalate PET Unreinforced MatWeb Retrieved May 9 2021 Overview of Materials for Polypropylene Molded MatWeb Retrieved May 9 2021 Young s Modulus Tensile Elasticity Units Factors amp Material Table Omnexus SpecialChem Retrieved May 9 2021 Technical Data Application Recommendations Dimensioning Aids Stryodur BASF August 2019 Retrieved May 7 2021 Overview of materials for Polytetrafluoroethylene PTFE Molded MatWeb Retrieved May 9 2021 Boyd Euan J Uttamchandani Deepak 2012 Measurement of the Anisotropy of Young s Modulus in Single Crystal Silicon Journal of Microelectromechanical Systems Institute of Electrical and Electronics Engineers 21 1 243 249 doi 10 1109 JMEMS 2011 2174415 eISSN 1941 0158 ISSN 1057 7157 S2CID 39025763 via IEEE Xplore Silicon Carbide SiC Properties and Applications AZO Materials February 5 2001 Retrieved May 9 2021 Forro Laszlo Salvetat Jean Paul Bonard Jean Marc et al January 2002 Thorpe Michael F Tomanek David Enbody Richard J eds Electronic and Mechanical Properties of Carbon Nanotubes Science and Application of Nanotubes Fundamentals Materials Research Boston MA Springer 297 320 doi 10 1007 0 306 47098 5 22 ISBN 978 0 306 46372 3 via ResearchGate Yang Yi Hsuan Li Wenzhi January 24 2011 Radial elasticity of single walled carbon nanotube measured by atomic force microscopy Applied Physics Letters American Institute of Physics 98 4 041901 Bibcode 2011ApPhL 98d1901Y doi 10 1063 1 3546170 ASTM A36 Mild Low Carbon Steel AZO Materials July 5 2012 Retrieved May 9 2021 Titanium Ti MatWeb Retrieved May 7 2021 Boyer Rodney Welsch Gerhard Collings Edward W eds 1994 Materials Properties Handbook Titanium Alloys Materials Park OH ASM International ISBN 978 0 87 170481 8 U S Titanium Industry Inc July 30 2002 Titanium Alloys Ti6Al4V Grade 5 AZO Materials Retrieved May 9 2021 Staines Michael Robinson W H Hood J A A September 1981 Spherical indentation of tooth enamel Journal of Materials Science Springer 16 9 2551 2556 Bibcode 1981JMatS 16 2551S doi 10 1007 bf01113595 S2CID 137704231 via Springer Link Tungsten Carbide An Overview AZO Materials January 21 2002 Retrieved May 9 2021 a b c Green David W Winandy Jerrold E Kretschmann David E 1999 Mechanical Properties of Wood Wood Handbook Wood as an Engineering Material PDF Madison WI Forest Products Laboratory pp 4 8 Archived from the original PDF on July 20 2018 Wrought Iron Properties and Applications AZO Materials August 13 2013 Retrieved May 9 2021 Chou Hung Ming Case E D November 1988 Characterization of some mechanical properties of polycrystalline yttrium iron garnet YIG by non destructive methods Journal of Materials Science Letters 7 11 1217 1220 doi 10 1007 BF00722341 S2CID 135957639 via SpringerLink Yttrium Iron Garnet Deltronic Crystal Industries Inc December 28 2012 Retrieved May 7 2021 An Introduction to Zinc AZO Materials July 23 2001 Retrieved May 9 2021 Further reading EditASTM E 111 Standard Test Method for Young s Modulus Tangent Modulus and Chord Modulus The ASM Handbook various volumes contains Young s Modulus for various materials and information on calculations Online version subscription required External links EditMatweb free database of engineering properties for over 115 000 materials Young s Modulus for groups of materials and their cost Conversion formulaeHomogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these thus given any two any other of the elastic moduli can be calculated according to these formulas provided both for 3D materials first part of the table and for 2D materials second part 3D formulae K displaystyle K E displaystyle E l displaystyle lambda G displaystyle G n displaystyle nu M displaystyle M Notes K E displaystyle K E 3 K 3 K E 9 K E displaystyle tfrac 3K 3K E 9K E 3 K E 9 K E displaystyle tfrac 3KE 9K E 3 K E 6 K displaystyle tfrac 3K E 6K 3 K 3 K E 9 K E displaystyle tfrac 3K 3K E 9K E K l displaystyle K lambda 9 K K l 3 K l displaystyle tfrac 9K K lambda 3K lambda 3 K l 2 displaystyle tfrac 3 K lambda 2 l 3 K l displaystyle tfrac lambda 3K lambda 3 K 2 l displaystyle 3K 2 lambda K G displaystyle K G 9 K G 3 K G displaystyle tfrac 9KG 3K G K 2 G 3 displaystyle K tfrac 2G 3 3 K 2 G 2 3 K G displaystyle tfrac 3K 2G 2 3K G K 4 G 3 displaystyle K tfrac 4G 3 K n displaystyle K nu 3 K 1 2 n displaystyle 3K 1 2 nu 3 K n 1 n displaystyle tfrac 3K nu 1 nu 3 K 1 2 n 2 1 n displaystyle tfrac 3K 1 2 nu 2 1 nu 3 K 1 n 1 n displaystyle tfrac 3K 1 nu 1 nu K M displaystyle K M 9 K M K 3 K M displaystyle tfrac 9K M K 3K M 3 K M 2 displaystyle tfrac 3K M 2 3 M K 4 displaystyle tfrac 3 M K 4 3 K M 3 K M displaystyle tfrac 3K M 3K M E l displaystyle E lambda E 3 l R 6 displaystyle tfrac E 3 lambda R 6 E 3 l R 4 displaystyle tfrac E 3 lambda R 4 2 l E l R displaystyle tfrac 2 lambda E lambda R E l R 2 displaystyle tfrac E lambda R 2 R E 2 9 l 2 2 E l displaystyle R sqrt E 2 9 lambda 2 2E lambda E G displaystyle E G E G 3 3 G E displaystyle tfrac EG 3 3G E G E 2 G 3 G E displaystyle tfrac G E 2G 3G E E 2 G 1 displaystyle tfrac E 2G 1 G 4 G E 3 G E displaystyle tfrac G 4G E 3G E E n displaystyle E nu E 3 1 2 n displaystyle tfrac E 3 1 2 nu E n 1 n 1 2 n displaystyle tfrac E nu 1 nu 1 2 nu E 2 1 n displaystyle tfrac E 2 1 nu E 1 n 1 n 1 2 n displaystyle tfrac E 1 nu 1 nu 1 2 nu E M displaystyle E M 3 M E S 6 displaystyle tfrac 3M E S 6 M E S 4 displaystyle tfrac M E S 4 3 M E S 8 displaystyle tfrac 3M E S 8 E M S 4 M displaystyle tfrac E M S 4M S E 2 9 M 2 10 E M displaystyle S pm sqrt E 2 9M 2 10EM There are two valid solutions The plus sign leads to n 0 displaystyle nu geq 0 The minus sign leads to n 0 displaystyle nu leq 0 l G displaystyle lambda G l 2 G 3 displaystyle lambda tfrac 2G 3 G 3 l 2 G l G displaystyle tfrac G 3 lambda 2G lambda G l 2 l G displaystyle tfrac lambda 2 lambda G l 2 G displaystyle lambda 2G l n displaystyle lambda nu l 1 n 3 n displaystyle tfrac lambda 1 nu 3 nu l 1 n 1 2 n n displaystyle tfrac lambda 1 nu 1 2 nu nu l 1 2 n 2 n displaystyle tfrac lambda 1 2 nu 2 nu l 1 n n displaystyle tfrac lambda 1 nu nu Cannot be used when n 0 l 0 displaystyle nu 0 Leftrightarrow lambda 0 l M displaystyle lambda M M 2 l 3 displaystyle tfrac M 2 lambda 3 M l M 2 l M l displaystyle tfrac M lambda M 2 lambda M lambda M l 2 displaystyle tfrac M lambda 2 l M l displaystyle tfrac lambda M lambda G n displaystyle G nu 2 G 1 n 3 1 2 n displaystyle tfrac 2G 1 nu 3 1 2 nu 2 G 1 n displaystyle 2G 1 nu 2 G n 1 2 n displaystyle tfrac 2G nu 1 2 nu 2 G 1 n 1 2 n displaystyle tfrac 2G 1 nu 1 2 nu G M displaystyle G M M 4 G 3 displaystyle M tfrac 4G 3 G 3 M 4 G M G displaystyle tfrac G 3M 4G M G M 2 G displaystyle M 2G M 2 G 2 M 2 G displaystyle tfrac M 2G 2M 2G n M displaystyle nu M M 1 n 3 1 n displaystyle tfrac M 1 nu 3 1 nu M 1 n 1 2 n 1 n displaystyle tfrac M 1 nu 1 2 nu 1 nu M n 1 n displaystyle tfrac M nu 1 nu M 1 2 n 2 1 n displaystyle tfrac M 1 2 nu 2 1 nu 2D formulae K 2 D displaystyle K mathrm 2D E 2 D displaystyle E mathrm 2D l 2 D displaystyle lambda mathrm 2D G 2 D displaystyle G mathrm 2D n 2 D displaystyle nu mathrm 2D M 2 D displaystyle M mathrm 2D Notes K 2 D E 2 D displaystyle K mathrm 2D E mathrm 2D 2 K 2 D 2 K 2 D E 2 D 4 K 2 D E 2 D displaystyle tfrac 2K mathrm 2D 2K mathrm 2D E mathrm 2D 4K mathrm 2D E mathrm 2D K 2 D E 2 D 4 K 2 D E 2 D displaystyle tfrac K mathrm 2D E mathrm 2D 4K mathrm 2D E mathrm 2D 2 K 2 D E 2 D 2 K 2 D displaystyle tfrac 2K mathrm 2D E mathrm 2D 2K mathrm 2D 4 K 2 D 2 4 K 2 D E 2 D displaystyle tfrac 4K mathrm 2D 2 4K mathrm 2D E mathrm 2D K 2 D l 2 D displaystyle K mathrm 2D lambda mathrm 2D 4 K 2 D K 2 D l 2 D 2 K 2 D l 2 D displaystyle tfrac 4K mathrm 2D K mathrm 2D lambda mathrm 2D 2K mathrm 2D lambda mathrm 2D K 2 D l 2 D displaystyle K mathrm 2D lambda mathrm 2D l 2 D 2 K 2 D l 2 D displaystyle tfrac lambda mathrm 2D 2K mathrm 2D lambda mathrm 2D 2 K 2 D l 2 D displaystyle 2K mathrm 2D lambda mathrm 2D K 2 D G 2 D displaystyle K mathrm 2D G mathrm 2D 4 K 2 D G 2 D K 2 D G 2 D displaystyle tfrac 4K mathrm 2D G mathrm 2D K mathrm 2D G mathrm 2D K 2 D G 2 D displaystyle K mathrm 2D G mathrm 2D K 2 D G 2 D K 2 D G 2 D displaystyle tfrac K mathrm 2D G mathrm 2D K mathrm 2D G mathrm 2D K 2 D G 2 D displaystyle K mathrm 2D G mathrm 2D K 2 D n 2 D displaystyle K mathrm 2D nu mathrm 2D 2 K 2 D 1 n 2 D displaystyle 2K mathrm 2D 1 nu mathrm 2D 2 K 2 D n 2 D 1 n 2 D displaystyle tfrac 2K mathrm 2D nu mathrm 2D 1 nu mathrm 2D K 2 D 1 n 2 D 1 n 2 D displaystyle tfrac K mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D 2 K 2 D 1 n 2 D displaystyle tfrac 2K mathrm 2D 1 nu mathrm 2D E 2 D G 2 D displaystyle E mathrm 2D G mathrm 2D E 2 D G 2 D 4 G 2 D E 2 D displaystyle tfrac E mathrm 2D G mathrm 2D 4G mathrm 2D E mathrm 2D 2 G 2 D E 2 D 2 G 2 D 4 G 2 D E 2 D displaystyle tfrac 2G mathrm 2D E mathrm 2D 2G mathrm 2D 4G mathrm 2D E mathrm 2D E 2 D 2 G 2 D 1 displaystyle tfrac E mathrm 2D 2G mathrm 2D 1 4 G 2 D 2 4 G 2 D E 2 D displaystyle tfrac 4G mathrm 2D 2 4G mathrm 2D E mathrm 2D E 2 D n 2 D displaystyle E mathrm 2D nu mathrm 2D E 2 D 2 1 n 2 D displaystyle tfrac E mathrm 2D 2 1 nu mathrm 2D E 2 D n 2 D 1 n 2 D 1 n 2 D displaystyle tfrac E mathrm 2D nu mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D E 2 D 2 1 n 2 D displaystyle tfrac E mathrm 2D 2 1 nu mathrm 2D E 2 D 1 n 2 D 1 n 2 D displaystyle tfrac E mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D l 2 D G 2 D displaystyle lambda mathrm 2D G mathrm 2D l 2 D G 2 D displaystyle lambda mathrm 2D G mathrm 2D 4 G 2 D l 2 D G 2 D l 2 D 2 G 2 D displaystyle tfrac 4G mathrm 2D lambda mathrm 2D G mathrm 2D lambda mathrm 2D 2G mathrm 2D l 2 D l 2 D 2 G 2 D displaystyle tfrac lambda mathrm 2D lambda mathrm 2D 2G mathrm 2D l 2 D 2 G 2 D displaystyle lambda mathrm 2D 2G mathrm 2D l 2 D n 2 D displaystyle lambda mathrm 2D nu mathrm 2D l 2 D 1 n 2 D 2 n 2 D displaystyle tfrac lambda mathrm 2D 1 nu mathrm 2D 2 nu mathrm 2D l 2 D 1 n 2 D 1 n 2 D n 2 D displaystyle tfrac lambda mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D nu mathrm 2D l 2 D 1 n 2 D 2 n 2 D displaystyle tfrac lambda mathrm 2D 1 nu mathrm 2D 2 nu mathrm 2D l 2 D n 2 D displaystyle tfrac lambda mathrm 2D nu mathrm 2D Cannot be used when n 2 D 0 l 2 D 0 displaystyle nu mathrm 2D 0 Leftrightarrow lambda mathrm 2D 0 G 2 D n 2 D displaystyle G mathrm 2D nu mathrm 2D G 2 D 1 n 2 D 1 n 2 D displaystyle tfrac G mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D 2 G 2 D 1 n 2 D displaystyle 2G mathrm 2D 1 nu mathrm 2D 2 G 2 D n 2 D 1 n 2 D displaystyle tfrac 2G mathrm 2D nu mathrm 2D 1 nu mathrm 2D 2 G 2 D 1 n 2 D displaystyle tfrac 2G mathrm 2D 1 nu mathrm 2D G 2 D M 2 D displaystyle G mathrm 2D M mathrm 2D M 2 D G 2 D displaystyle M mathrm 2D G mathrm 2D 4 G 2 D M 2 D G 2 D M 2 D displaystyle tfrac 4G mathrm 2D M mathrm 2D G mathrm 2D M mathrm 2D M 2 D 2 G 2 D displaystyle M mathrm 2D 2G mathrm 2D M 2 D 2 G 2 D M 2 D displaystyle tfrac M mathrm 2D 2G mathrm 2D M mathrm 2D Retrieved from https en wikipedia org w index php title Young 27s modulus amp oldid 1135176947, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.