fbpx
Wikipedia

Roentgenium

Roentgenium (German: [ʁœntˈɡeːni̯ʊm] ) is a synthetic chemical element; it has symbol Rg and atomic number 111. It is extremely radioactive and can only be created in a laboratory. The most stable known isotope, roentgenium-282, has a half-life of 120 seconds, although the unconfirmed roentgenium-286 may have a longer half-life of about 10.7 minutes. Roentgenium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It is named after the physicist Wilhelm Röntgen (also spelled Roentgen), who discovered X-rays. Only a few roentgenium atoms have ever been synthesized, and they have no practical application.

Roentgenium, 111Rg
Roentgenium
Pronunciation
Mass number[282] (unconfirmed: 286)
Roentgenium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Au

Rg

(Uhp)
darmstadtiumroentgeniumcopernicium
Atomic number (Z)111
Groupgroup 11
Periodperiod 7
Block  d-block
Electron configuration[Rn] 5f14 6d9 7s2 (predicted)[1][2]
Electrons per shell2, 8, 18, 32, 32, 17, 2 (predicted)
Physical properties
Phase at STPsolid (predicted)[3]
Density (near r.t.)22–24 g/cm3 (predicted)[4][5]
Atomic properties
Oxidation states(−1), (+1), (+3), (+5), (+7) (predicted)[2][6][7]
Ionization energies
  • 1st: 1020 kJ/mol
  • 2nd: 2070 kJ/mol
  • 3rd: 3080 kJ/mol
  • (more) (all estimated)[2]
Atomic radiusempirical: 138 pm (predicted)[2][6]
Covalent radius121 pm (estimated)[8]
Other properties
Natural occurrencesynthetic
Crystal structurebody-centered cubic (bcc)

(predicted)[3]
CAS Number54386-24-2
History
Namingafter Wilhelm Röntgen
DiscoveryGesellschaft für Schwerionenforschung (1994)
Isotopes of roentgenium
Main isotopes[9] Decay
abun­dance half-life (t1/2) mode pro­duct
279Rg synth 0.09 s[10] α87% 275Mt
SF13%
280Rg synth 3.9 s α 276Mt
281Rg synth 11 s[11] SF86%
α14% 277Mt
282Rg synth 2 min[12] α 278Mt
283Rg synth 5.1 min?[13] SF
286Rg synth 10.7 min?[14] α 282Mt
 Category: Roentgenium
| references

In the periodic table, it is a d-block transactinide element. It is a member of the 7th period and is placed in the group 11 elements, although no chemical experiments have been carried out to confirm that it behaves as the heavier homologue to gold in group 11 as the ninth member of the 6d series of transition metals. Roentgenium is calculated to have similar properties to its lighter homologues, copper, silver, and gold, although it may show some differences from them. Roentgenium is thought to be a solid at room temperature and to have a metallic appearance in its regular state.

Introduction edit

Synthesis of superheavy nuclei edit

 
A graphic depiction of a nuclear fusion reaction. Two nuclei fuse into one, emitting a neutron. Reactions that created new elements to this moment were similar, with the only possible difference that several singular neutrons sometimes were released, or none at all.

A superheavy[a] atomic nucleus is created in a nuclear reaction that combines two other nuclei of unequal size[b] into one; roughly, the more unequal the two nuclei in terms of mass, the greater the possibility that the two react.[20] The material made of the heavier nuclei is made into a target, which is then bombarded by the beam of lighter nuclei. Two nuclei can only fuse into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to electrostatic repulsion. The strong interaction can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus.[21] The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the speed of light. However, if too much energy is applied, the beam nucleus can fall apart.[21]

Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for approximately 10−20 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus.[21][22] This happens because during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed.[21] Each pair of a target and a beam is characterized by its cross section—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur.[c] This fusion may occur as a result of the quantum effect in which nuclei can tunnel through electrostatic repulsion. If the two nuclei can stay close for past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium.[21]

External videos
  Visualization of unsuccessful nuclear fusion, based on calculations from the Australian National University[24]

The resulting merger is an excited state[25]—termed a compound nucleus—and thus it is very unstable.[21] To reach a more stable state, the temporary merger may fission without formation of a more stable nucleus.[26] Alternatively, the compound nucleus may eject a few neutrons, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a gamma ray. This happens in approximately 10−16 seconds after the initial nuclear collision and results in creation of a more stable nucleus.[26] The definition by the IUPAC/IUPAP Joint Working Party (JWP) states that a chemical element can only be recognized as discovered if a nucleus of it has not decayed within 10−14 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire its outer electrons and thus display its chemical properties.[27][d]

Decay and detection edit

The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam.[29] In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products)[e] and transferred to a surface-barrier detector, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival.[29] The transfer takes about 10−6 seconds; in order to be detected, the nucleus must survive this long.[32] The nucleus is recorded again once its decay is registered, and the location, the energy, and the time of the decay are measured.[29]

Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, its influence on the outermost nucleons (protons and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, and its range is not limited.[33] Total binding energy provided by the strong interaction increases linearly with the number of nucleons, whereas electrostatic repulsion increases with the square of the atomic number, i.e. the latter grows faster and becomes increasingly important for heavy and superheavy nuclei.[34][35] Superheavy nuclei are thus theoretically predicted[36] and have so far been observed[37] to predominantly decay via decay modes that are caused by such repulsion: alpha decay and spontaneous fission.[f] Almost all alpha emitters have over 210 nucleons,[39] and the lightest nuclide primarily undergoing spontaneous fission has 238.[40] In both decay modes, nuclei are inhibited from decaying by corresponding energy barriers for each mode, but they can be tunnelled through.[34][35]

 
Scheme of an apparatus for creation of superheavy elements, based on the Dubna Gas-Filled Recoil Separator set up in the Flerov Laboratory of Nuclear Reactions in JINR. The trajectory within the detector and the beam focusing apparatus changes because of a dipole magnet in the former and quadrupole magnets in the latter.[41]

Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus.[42] Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart and produces various nuclei in different instances of identical nuclei fissioning.[35] As the atomic number increases, spontaneous fission rapidly becomes more important: spontaneous fission partial half-lives decrease by 23 orders of magnitude from uranium (element 92) to nobelium (element 102),[43] and by 30 orders of magnitude from thorium (element 90) to fermium (element 100).[44] The earlier liquid drop model thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the fission barrier for nuclei with about 280 nucleons.[35][45] The later nuclear shell model suggested that nuclei with about 300 nucleons would form an island of stability in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives.[35][45] Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived actinides and the predicted island are deformed, and gain additional stability from shell effects.[46] Experiments on lighter superheavy nuclei,[47] as well as those closer to the expected island,[43] have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei.[g]

Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be easily determined.[h] (That all decays within a decay chain were indeed related to each other is established by the location of these decays, which must be in the same place.)[29] The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy (or more specifically, the kinetic energy of the emitted particle).[i] Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.[j]

The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.[k]

History edit

 
Roentgenium was named after the physicist Wilhelm Röntgen, the discoverer of X-rays.

Official discovery edit

Roentgenium was first synthesized by an international team led by Sigurd Hofmann at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany, on December 8, 1994.[58] The team bombarded a target of bismuth-209 with accelerated nuclei of nickel-64 and detected three nuclei of the isotope roentgenium-272:

209
83
Bi
+ 64
28
Ni
272
111
Rg
+ 1
0
n

This reaction had previously been conducted at the Joint Institute for Nuclear Research in Dubna (then in the Soviet Union) in 1986, but no atoms of 272Rg had then been observed.[59] In 2001, the IUPAC/IUPAP Joint Working Party (JWP) concluded that there was insufficient evidence for the discovery at that time.[60] The GSI team repeated their experiment in 2002 and detected three more atoms.[61][62] In their 2003 report, the JWP decided that the GSI team should be acknowledged for the discovery of this element.[63]

 
Backdrop for presentation of the discovery and recognition of roentgenium at GSI Darmstadt

Naming edit

Using Mendeleev's nomenclature for unnamed and undiscovered elements, roentgenium should be known as eka-gold. In 1979, IUPAC published recommendations according to which the element was to be called unununium (with the corresponding symbol of Uuu),[64] a systematic element name as a placeholder, until the element was discovered (and the discovery then confirmed) and a permanent name was decided on. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, who called it element 111, with the symbol of E111, (111) or even simply 111.[2]

The name roentgenium (Rg) was suggested by the GSI team[65] in 2004, to honor the German physicist Wilhelm Conrad Röntgen, the discoverer of X-rays.[65] This name was accepted by IUPAC on November 1, 2004.[65]

Isotopes edit

List of roentgenium isotopes
Isotope Half-life[l] Decay
mode
Discovery
year
Discovery
reaction
Value ref
272Rg 4.5 ms [66] α 1994 209Bi(64Ni,n)
274Rg 29 ms [66] α 2004 278Nh(—,α)
278Rg 4.6 ms [67] α 2006 282Nh(—,α)
279Rg 90 ms [67] α, SF 2003 287Mc(—,2α)
280Rg 3.9 s [67] α, EC 2003 288Mc(—,2α)
281Rg 11 s [67] SF, α 2010 293Ts(—,3α)
282Rg 1.7 min [68] α 2010 294Ts(—,3α)
283Rg[m] 5.1 min [14] SF 1999 283Cn(ee)
286Rg[m] 10.7 min [13] α 1998 290Fl(eeα)

Roentgenium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusion of the nuclei of lighter elements or as intermediate decay products of heavier elements. Nine different isotopes of roentgenium have been reported with atomic masses 272, 274, 278–283, and 286 (283 and 286 unconfirmed), two of which, roentgenium-272 and roentgenium-274, have known but unconfirmed metastable states. All of these decay through alpha decay or spontaneous fission,[69] though 280Rg may also have an electron capture branch.[70]

Stability and half-lives edit

All roentgenium isotopes are extremely unstable and radioactive; in general, the heavier isotopes are more stable than the lighter. The most stable known roentgenium isotope, 282Rg, is also the heaviest known roentgenium isotope; it has a half-life of 100 seconds. The unconfirmed 286Rg is even heavier and appears to have an even longer half-life of about 10.7 minutes, which would make it one of the longest-lived superheavy nuclides known; likewise, the unconfirmed 283Rg appears to have a long half-life of about 5.1 minutes. The isotopes 280Rg and 281Rg have also been reported to have half-lives over a second. The remaining isotopes have half-lives in the millisecond range.[69]

Predicted properties edit

Other than nuclear properties, no properties of roentgenium or its compounds have been measured; this is due to its extremely limited and expensive production[71] and the fact that roentgenium (and its parents) decays very quickly. Properties of roentgenium metal remain unknown and only predictions are available.

Chemical edit

Roentgenium is the ninth member of the 6d series of transition metals.[72] Calculations on its ionization potentials and atomic and ionic radii are similar to that of its lighter homologue gold, thus implying that roentgenium's basic properties will resemble those of the other group 11 elements, copper, silver, and gold; however, it is also predicted to show several differences from its lighter homologues.[2]

Roentgenium is predicted to be a noble metal. The standard electrode potential of 1.9 V for the Rg3+/Rg couple is greater than that of 1.5 V for the Au3+/Au couple. Roentgenium's predicted first ionisation energy of 1020 kJ/mol almost matches that of the noble gas radon at 1037 kJ/mol.[2] Based on the most stable oxidation states of the lighter group 11 elements, roentgenium is predicted to show stable +5 and +3 oxidation states, with a less stable +1 state. The +3 state is predicted to be the most stable. Roentgenium(III) is expected to be of comparable reactivity to gold(III), but should be more stable and form a larger variety of compounds. Gold also forms a somewhat stable −1 state due to relativistic effects, and it has been suggested roentgenium may do so as well:[2] nevertheless, the electron affinity of roentgenium is expected to be around 1.6 eV (37 kcal/mol), significantly lower than gold's value of 2.3 eV (53 kcal/mol), so roentgenides may not be stable or even possible.[6] The 6d orbitals are destabilized by relativistic effects and spin–orbit interactions near the end of the fourth transition metal series, thus making the high oxidation state roentgenium(V) more stable than its lighter homologue gold(V) (known only in gold pentafluoride, Au2F10) as the 6d electrons participate in bonding to a greater extent. The spin-orbit interactions stabilize molecular roentgenium compounds with more bonding 6d electrons; for example, RgF
6
is expected to be more stable than RgF
4
, which is expected to be more stable than RgF
2
.[2] The stability of RgF
6
is homologous to that of AuF
6
; the silver analogue AgF
6
is unknown and is expected to be only marginally stable to decomposition to AgF
4
and F2. Moreover, Rg2F10 is expected to be stable to decomposition, exactly analogous to the Au2F10, whereas Ag2F10 should be unstable to decomposition to Ag2F6 and F2. Gold heptafluoride, AuF7, is known as a gold(V) difluorine complex AuF5·F2, which is lower in energy than a true gold(VII) heptafluoride would be; RgF7 is instead calculated to be more stable as a true roentgenium(VII) heptafluoride, although it would be somewhat unstable, its decomposition to Rg2F10 and F2 releasing a small amount of energy at room temperature.[7] Roentgenium(I) is expected to be difficult to obtain.[2][73][74] Gold readily forms the cyanide complex Au(CN)
2
, which is used in its extraction from ore through the process of gold cyanidation; roentgenium is expected to follow suit and form Rg(CN)
2
.[75]

The probable chemistry of roentgenium has received more interest than that of the two previous elements, meitnerium and darmstadtium, as the valence s-subshells of the group 11 elements are expected to be relativistically contracted most strongly at roentgenium.[2] Calculations on the molecular compound RgH show that relativistic effects double the strength of the roentgenium–hydrogen bond, even though spin–orbit interactions also weaken it by 0.7 eV (16 kcal/mol). The compounds AuX and RgX, where X = F, Cl, Br, O, Au, or Rg, were also studied.[2][76] Rg+ is predicted to be the softest metal ion, even softer than Au+, although there is disagreement on whether it would behave as an acid or a base.[77][78] In aqueous solution, Rg+ would form the aqua ion [Rg(H2O)2]+, with an Rg–O bond distance of 207.1 pm. It is also expected to form Rg(I) complexes with ammonia, phosphine, and hydrogen sulfide.[78]

Physical and atomic edit

Roentgenium is expected to be a solid under normal conditions and to crystallize in the body-centered cubic structure, unlike its lighter congeners which crystallize in the face-centered cubic structure, due to its being expected to have different electron charge densities from them.[3] It should be a very heavy metal with a density of around 22–24 g/cm3; in comparison, the densest known element that has had its density measured, osmium, has a density of 22.61 g/cm3.[4][5] The atomic radius of roentgenium is expected to be around 138 pm.[2]

Experimental chemistry edit

Unambiguous determination of the chemical characteristics of roentgenium has yet to have been established[79] due to the low yields of reactions that produce roentgenium isotopes.[2] For chemical studies to be carried out on a transactinide, at least four atoms must be produced, the half-life of the isotope used must be at least 1 second, and the rate of production must be at least one atom per week.[72] Even though the half-life of 282Rg, the most stable confirmed roentgenium isotope, is 100 seconds, long enough to perform chemical studies, another obstacle is the need to increase the rate of production of roentgenium isotopes and allow experiments to carry on for weeks or months so that statistically significant results can be obtained. Separation and detection must be carried out continuously to separate out the roentgenium isotopes and allow automated systems to experiment on the gas-phase and solution chemistry of roentgenium, as the yields for heavier elements are predicted to be smaller than those for lighter elements. However, the experimental chemistry of roentgenium has not received as much attention as that of the heavier elements from copernicium to livermorium,[2][79][80] despite early interest in theoretical predictions due to relativistic effects on the ns subshell in group 11 reaching a maximum at roentgenium.[2] The isotopes 280Rg and 281Rg are promising for chemical experimentation and may be produced as the granddaughters of the moscovium isotopes 288Mc and 289Mc respectively;[81] their parents are the nihonium isotopes 284Nh and 285Nh, which have already received preliminary chemical investigations.[82]

See also edit

Explanatory notes edit

  1. ^ In nuclear physics, an element is called heavy if its atomic number is high; lead (element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 103 (although there are other definitions, such as atomic number greater than 100[15] or 112;[16] sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical superactinide series).[17] Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
  2. ^ In 2009, a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric 136Xe + 136Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as 2.5 pb.[18] In comparison, the reaction that resulted in hassium discovery, 208Pb + 58Fe, had a cross section of ~20 pb (more specifically, 19+19
    -11
     pb), as estimated by the discoverers.[19]
  3. ^ The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section. For example, in the 28
    14
    Si
    + 1
    0
    n
    28
    13
    Al
    + 1
    1
    p
    reaction, cross section changes smoothly from 370 mb at 12.3 MeV to 160 mb at 18.3 MeV, with a broad peak at 13.5 MeV with the maximum value of 380 mb.[23]
  4. ^ This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.[28]
  5. ^ This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle.[30] Such separation can also be aided by a time-of-flight measurement and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.[31]
  6. ^ Not all decay modes are caused by electrostatic repulsion. For example, beta decay is caused by the weak interaction.[38]
  7. ^ It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus. However, it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to form one.[43]
  8. ^ Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for superheavy nuclei.[48] The first direct measurement of mass of a superheavy nucleus was reported in 2018 at LBNL.[49] Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).[50]
  9. ^ If the decay occurred in a vacuum, then since total momentum of an isolated system before and after the decay must be preserved, the daughter nucleus would also receive a small velocity. The ratio of the two velocities, and accordingly the ratio of the kinetic energies, would thus be inverse to the ratio of the two masses. The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus (an exact fraction of the former).[39] The calculations hold for an experiment as well, but the difference is that the nucleus does not move after the decay because it is tied to the detector.
  10. ^ Spontaneous fission was discovered by Soviet physicist Georgy Flerov,[51] a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility.[52] In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles.[28] They thus preferred to link new isotopes to the already known ones by successive alpha decays.[51]
  11. ^ For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in Stockholm, Stockholm County, Sweden.[53] There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, nobelium. It was later shown that the identification was incorrect.[54] The following year, RL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later.[54] JINR insisted that they were the first to create the element and suggested a name of their own for the new element, joliotium;[55] the Soviet name was also not accepted (JINR later referred to the naming of the element 102 as "hasty").[56] This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992.[56] The name "nobelium" remained unchanged on account of its widespread usage.[57]
  12. ^ Different sources give different values for half-lives; the most recently published values are listed.
  13. ^ a b This isotope is unconfirmed

Citations edit

  1. ^ Turler, A. (2004). "Gas Phase Chemistry of Superheavy Elements" (PDF). Journal of Nuclear and Radiochemical Sciences. 5 (2): R19–R25. doi:10.14494/jnrs2000.5.R19.
  2. ^ a b c d e f g h i j k l m n o p Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  3. ^ a b c Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11): 113104. Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  4. ^ a b Gyanchandani, Jyoti; Sikka, S. K. (May 10, 2011). "Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals". Physical Review B. 83 (17): 172101. Bibcode:2011PhRvB..83q2101G. doi:10.1103/PhysRevB.83.172101.
  5. ^ a b Kratz; Lieser (2013). Nuclear and Radiochemistry: Fundamentals and Applications (3rd ed.). p. 631.
  6. ^ a b c Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved October 4, 2013.
  7. ^ a b Conradie, Jeanet; Ghosh, Abhik (June 15, 2019). "Theoretical Search for the Highest Valence States of the Coinage Metals: Roentgenium Heptafluoride May Exist". Inorganic Chemistry. 2019 (58): 8735–8738. doi:10.1021/acs.inorgchem.9b01139. PMID 31203606. S2CID 189944098.
  8. ^ Chemical Data. Roentgenium - Rg, Royal Chemical Society
  9. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  10. ^ http://www.jinr.ru/posts/both-neutron-properties-and-new-results-at-she-factory/
  11. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Alexander, C.; Binder, J.; et al. (May 30, 2013). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. American Physical Society. 87 (054621). Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
  12. ^ Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. (2014). "48Ca+249Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying 270Db and Discovery of 266Lr". Physical Review Letters. 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. PMID 24836239.
  13. ^ a b Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. doi:10.1142/9789813226548_0024. ISBN 9789813226555.
  14. ^ a b Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52): 180. Bibcode:2016EPJA...52..180H. doi:10.1140/epja/i2016-16180-4. S2CID 124362890.
  15. ^ Krämer, K. (2016). "Explainer: superheavy elements". Chemistry World. Retrieved March 15, 2020.
  16. ^ . Lawrence Livermore National Laboratory. Archived from the original on September 11, 2015. Retrieved March 15, 2020.
  17. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons. pp. 1–16. doi:10.1002/9781119951438.eibc2632. ISBN 978-1-119-95143-8. S2CID 127060181.
  18. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe". Physical Review C. 79 (2): 024608. doi:10.1103/PhysRevC.79.024608. ISSN 0556-2813.
  19. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (1984). (PDF). Zeitschrift für Physik A. 317 (2): 235–236. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. S2CID 123288075. Archived from the original (PDF) on June 7, 2015. Retrieved October 20, 2012.
  20. ^ Subramanian, S. (August 28, 2019). "Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist". Bloomberg Businessweek. Retrieved January 18, 2020.
  21. ^ a b c d e f Ivanov, D. (2019). "Сверхтяжелые шаги в неизвестное" [Superheavy steps into the unknown]. nplus1.ru (in Russian). Retrieved February 2, 2020.
  22. ^ Hinde, D. (2017). "Something new and superheavy at the periodic table". The Conversation. Retrieved January 30, 2020.
  23. ^ Kern, B. D.; Thompson, W. E.; Ferguson, J. M. (1959). "Cross sections for some (n, p) and (n, α) reactions". Nuclear Physics. 10: 226–234. Bibcode:1959NucPh..10..226K. doi:10.1016/0029-5582(59)90211-1.
  24. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.). "Comparing Experimental and Theoretical Quasifission Mass Angle Distributions". European Physical Journal Web of Conferences. 86: 00061. Bibcode:2015EPJWC..8600061W. doi:10.1051/epjconf/20158600061. hdl:1885/148847. ISSN 2100-014X.
  25. ^ "Nuclear Reactions" (PDF). pp. 7–8. Retrieved January 27, 2020. Published as Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. (2005). "Nuclear Reactions". Modern Nuclear Chemistry. John Wiley & Sons, Inc. pp. 249–297. doi:10.1002/0471768626.ch10. ISBN 978-0-471-76862-3.
  26. ^ a b Krása, A. (2010). "Neutron Sources for ADS". Faculty of Nuclear Sciences and Physical Engineering. Czech Technical University in Prague: 4–8. S2CID 28796927.
  27. ^ Wapstra, A. H. (1991). "Criteria that must be satisfied for the discovery of a new chemical element to be recognized" (PDF). Pure and Applied Chemistry. 63 (6): 883. doi:10.1351/pac199163060879. ISSN 1365-3075. S2CID 95737691.
  28. ^ a b Hyde, E. K.; Hoffman, D. C.; Keller, O. L. (1987). "A History and Analysis of the Discovery of Elements 104 and 105". Radiochimica Acta. 42 (2): 67–68. doi:10.1524/ract.1987.42.2.57. ISSN 2193-3405. S2CID 99193729.
  29. ^ a b c d Chemistry World (2016). "How to Make Superheavy Elements and Finish the Periodic Table [Video]". Scientific American. Retrieved January 27, 2020.
  30. ^ Hoffman, Ghiorso & Seaborg 2000, p. 334.
  31. ^ Hoffman, Ghiorso & Seaborg 2000, p. 335.
  32. ^ Zagrebaev, Karpov & Greiner 2013, p. 3.
  33. ^ Beiser 2003, p. 432.
  34. ^ a b Pauli, N. (2019). "Alpha decay" (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. Retrieved February 16, 2020.
  35. ^ a b c d e Pauli, N. (2019). "Nuclear fission" (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. Retrieved February 16, 2020.
  36. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). "Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory". Physical Review C. 87 (2): 024320–1. arXiv:1208.1215. Bibcode:2013PhRvC..87b4320S. doi:10.1103/physrevc.87.024320. ISSN 0556-2813.
  37. ^ Audi et al. 2017, pp. 030001-129–030001-138.
  38. ^ Beiser 2003, p. 439.
  39. ^ a b Beiser 2003, p. 433.
  40. ^ Audi et al. 2017, p. 030001-125.
  41. ^ Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. (2017). "On the volatility of nihonium (Nh, Z = 113)". The European Physical Journal A. 53 (7): 158. Bibcode:2017EPJA...53..158A. doi:10.1140/epja/i2017-12348-8. ISSN 1434-6001. S2CID 125849923.
  42. ^ Beiser 2003, p. 432–433.
  43. ^ a b c Oganessian, Yu. (2012). "Nuclei in the "Island of Stability" of Superheavy Elements". Journal of Physics: Conference Series. 337 (1): 012005-1–012005-6. Bibcode:2012JPhCS.337a2005O. doi:10.1088/1742-6596/337/1/012005. ISSN 1742-6596.
  44. ^ Moller, P.; Nix, J. R. (1994). Fission properties of the heaviest elements (PDF). Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. University of North Texas. Retrieved February 16, 2020.
  45. ^ a b Oganessian, Yu. Ts. (2004). "Superheavy elements". Physics World. 17 (7): 25–29. doi:10.1088/2058-7058/17/7/31. Retrieved February 16, 2020.
  46. ^ Schädel, M. (2015). "Chemistry of the superheavy elements". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2037): 20140191. Bibcode:2015RSPTA.37340191S. doi:10.1098/rsta.2014.0191. ISSN 1364-503X. PMID 25666065.
  47. ^ Hulet, E. K. (1989). Biomodal spontaneous fission. 50th Anniversary of Nuclear Fission, Leningrad, USSR. Bibcode:1989nufi.rept...16H.
  48. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). "A beachhead on the island of stability". Physics Today. 68 (8): 32–38. Bibcode:2015PhT....68h..32O. doi:10.1063/PT.3.2880. ISSN 0031-9228. OSTI 1337838. S2CID 119531411.
  49. ^ Grant, A. (2018). "Weighing the heaviest elements". Physics Today. doi:10.1063/PT.6.1.20181113a. S2CID 239775403.
  50. ^ Howes, L. (2019). "Exploring the superheavy elements at the end of the periodic table". Chemical & Engineering News. Retrieved January 27, 2020.
  51. ^ a b Robinson, A. E. (2019). "The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War". Distillations. Retrieved February 22, 2020.
  52. ^ "Популярная библиотека химических элементов. Сиборгий (экавольфрам)" [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru (in Russian). Retrieved January 7, 2020. Reprinted from "Экавольфрам" [Eka-tungsten]. Популярная библиотека химических элементов. Серебро – Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond] (in Russian). Nauka. 1977.
  53. ^ "Nobelium - Element information, properties and uses | Periodic Table". Royal Society of Chemistry. Retrieved March 1, 2020.
  54. ^ a b Kragh 2018, pp. 38–39.
  55. ^ Kragh 2018, p. 40.
  56. ^ a b Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993). "Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" (PDF). Pure and Applied Chemistry. 65 (8): 1815–1824. doi:10.1351/pac199365081815. S2CID 95069384. (PDF) from the original on November 25, 2013. Retrieved September 7, 2016.
  57. ^ Commission on Nomenclature of Inorganic Chemistry (1997). "Names and symbols of transfermium elements (IUPAC Recommendations 1997)" (PDF). Pure and Applied Chemistry. 69 (12): 2471–2474. doi:10.1351/pac199769122471.
  58. ^ Hofmann, S.; Ninov, V.; Heßberger, F.P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S.; Janik, R.; Leino, M. (1995). "The new element 111". Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192.
  59. ^ Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z.; Jeannin, Y. P.; Lefort, M.; Sakai, M.; Ulehla, I.; Wapstra, A. P.; Wilkinson, D. H. (1993). "Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements". Pure and Applied Chemistry. 65 (8): 1757. doi:10.1351/pac199365081757. S2CID 195819585. (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879–886, 1991)
  60. ^ Karol; Nakahara, H.; Petley, B. W.; Vogt, E. (2001). "On the discovery of the elements 110–112" (PDF). Pure Appl. Chem. 73 (6): 959–967. doi:10.1351/pac200173060959. S2CID 97615948.
  61. ^ Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; Leino, M.; Lommel, B.; Mann, R.; Popeko, A. G.; Reshitko, S.; Śaro, S.; Uusitalo, J.; Yeremin, A. V. (2002). "New results on elements 111 and 112". European Physical Journal A. 14 (2): 147–157. Bibcode:2002EPJA...14..147H. doi:10.1140/epja/i2001-10119-x. S2CID 8773326.
  62. ^ Hofmann; et al. "New results on element 111 and 112" (PDF). GSI report 2000. pp. 1–2. Retrieved April 21, 2018.
  63. ^ Karol, P. J.; Nakahara, H.; Petley, B. W.; Vogt, E. (2003). "On the claims for discovery of elements 110, 111, 112, 114, 116, and 118" (PDF). Pure Appl. Chem. 75 (10): 1601–1611. doi:10.1351/pac200375101601. S2CID 95920517.
  64. ^ Chatt, J. (1979). "Recommendations for the naming of elements of atomic numbers greater than 100". Pure and Applied Chemistry. 51 (2): 381–384. doi:10.1351/pac197951020381.
  65. ^ a b c Corish; Rosenblatt, G. M. (2004). "Name and symbol of the element with atomic number 111" (PDF). Pure Appl. Chem. 76 (12): 2101–2103. doi:10.1351/pac200476122101. S2CID 195819587.
  66. ^ a b Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  67. ^ a b c d Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope 286Mc produced in the 243Am+48Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi:10.1103/PhysRevC.106.064306. S2CID 254435744.
  68. ^ Oganessian, Y.T. (2015). "Super-heavy element research". Reports on Progress in Physics. 78 (3): 036301. Bibcode:2015RPPh...78c6301O. doi:10.1088/0034-4885/78/3/036301. PMID 25746203. S2CID 37779526.
  69. ^ a b Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on July 28, 2018. Retrieved June 6, 2008.
  70. ^ Forsberg, U.; et al. (2016). "Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am". Nuclear Physics A. 953: 117–138. arXiv:1502.03030. Bibcode:2016NuPhA.953..117F. doi:10.1016/j.nuclphysa.2016.04.025. S2CID 55598355.
  71. ^ Cite error: The named reference Bloomberg was invoked but never defined (see the help page).
  72. ^ a b Griffith, W. P. (2008). "The Periodic Table and the Platinum Group Metals". Platinum Metals Review. 52 (2): 114–119. doi:10.1595/147106708X297486.
  73. ^ Seth, M.; Cooke, F.; Schwerdtfeger, P.; Heully, J.-L.; Pelissier, M. (1998). "The chemistry of the superheavy elements. II. The stability of high oxidation states in group 11 elements: Relativistic coupled cluster calculations for the di-, tetra- and hexafluoro metallates of Cu, Ag, Au, and element 111". J. Chem. Phys. 109 (10): 3935–43. Bibcode:1998JChPh.109.3935S. doi:10.1063/1.476993. S2CID 54803557.
  74. ^ Seth, M.; Faegri, K.; Schwerdtfeger, P. (1998). "The Stability of the Oxidation State +4 in Group 14 Compounds from Carbon to Element 114". Angew. Chem. Int. Ed. Engl. 37 (18): 2493–6. doi:10.1002/(SICI)1521-3773(19981002)37:18<2493::AID-ANIE2493>3.0.CO;2-F. PMID 29711350.
  75. ^ Demissie, Taye B.; Ruud, Kenneth (February 25, 2017). "Darmstadtium, roentgenium, and copernicium form strong bonds with cyanide" (PDF). International Journal of Quantum Chemistry. 2017: e25393. doi:10.1002/qua.25393. hdl:10037/13632.
  76. ^ Liu, W.; van Wüllen, C. (1999). "Spectroscopic constants of gold and eka-gold (element 111) diatomic compounds: The importance of spin–orbit coupling". J. Chem. Phys. 110 (8): 3730–5. Bibcode:1999JChPh.110.3730L. doi:10.1063/1.478237.
  77. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. Vol. 10. p. 82. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  78. ^ a b Hancock, Robert D.; Bartolotti, Libero J.; Kaltsoyannis, Nikolas (November 24, 2006). "Density Functional Theory-Based Prediction of Some Aqueous-Phase Chemistry of Superheavy Element 111. Roentgenium(I) Is the 'Softest' Metal Ion". Inorg. Chem. 45 (26): 10780–5. doi:10.1021/ic061282s. PMID 17173436.
  79. ^ a b Düllmann, Christoph E. (2012). "Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry". Radiochimica Acta. 100 (2): 67–74. doi:10.1524/ract.2011.1842. S2CID 100778491.
  80. ^ Eichler, Robert (2013). "First foot prints of chemistry on the shore of the Island of Superheavy Elements". Journal of Physics: Conference Series. 420 (1): 012003. arXiv:1212.4292. Bibcode:2013JPhCS.420a2003E. doi:10.1088/1742-6596/420/1/012003. S2CID 55653705.
  81. ^ Moody, Ken (November 30, 2013). "Synthesis of Superheavy Elements". In Schädel, Matthias; Shaughnessy, Dawn (eds.). The Chemistry of Superheavy Elements (2nd ed.). Springer Science & Business Media. pp. 24–8. ISBN 9783642374661.
  82. ^ Aksenov, Nikolay V.; Steinegger, Patrick; Abdullin, Farid Sh.; Albin, Yury V.; Bozhikov, Gospodin A.; Chepigin, Viktor I.; Eichler, Robert; Lebedev, Vyacheslav Ya.; Mamudarov, Alexander Sh.; Malyshev, Oleg N.; Petrushkin, Oleg V.; Polyakov, Alexander N.; Popov, Yury A.; Sabel'nikov, Alexey V.; Sagaidak, Roman N.; Shirokovsky, Igor V.; Shumeiko, Maksim V.; Starodub, Gennadii Ya.; Tsyganov, Yuri S.; Utyonkov, Vladimir K.; Voinov, Alexey A.; Vostokin, Grigory K.; Yeremin, Alexander; Dmitriev, Sergey N. (July 2017). "On the volatility of nihonium (Nh, Z = 113)". The European Physical Journal A. 53 (158): 158. Bibcode:2017EPJA...53..158A. doi:10.1140/epja/i2017-12348-8. S2CID 125849923.

General bibliography edit

External links edit

roentgenium, german, ʁœntˈɡeːni, synthetic, chemical, element, symbol, atomic, number, extremely, radioactive, only, created, laboratory, most, stable, known, isotope, roentgenium, half, life, seconds, although, unconfirmed, roentgenium, have, longer, half, li. Roentgenium German ʁœntˈɡeːni ʊm is a synthetic chemical element it has symbol Rg and atomic number 111 It is extremely radioactive and can only be created in a laboratory The most stable known isotope roentgenium 282 has a half life of 120 seconds although the unconfirmed roentgenium 286 may have a longer half life of about 10 7 minutes Roentgenium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt Germany It is named after the physicist Wilhelm Rontgen also spelled Roentgen who discovered X rays Only a few roentgenium atoms have ever been synthesized and they have no practical application Roentgenium 111RgRoentgeniumPronunciation r ʌ n t ˈ ɡ ɛ n i e m runt GHEN ee em r ɛ n t ˈ ɡ ɛ n i e m rent GHEN ee em Mass number 282 unconfirmed 286 Roentgenium in the periodic tableHydrogen HeliumLithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine NeonSodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine ArgonPotassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine KryptonRubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine XenonCaesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury element Thallium Lead Bismuth Polonium Astatine RadonFrancium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson Au Rg Uhp darmstadtium roentgenium coperniciumAtomic number Z 111Groupgroup 11Periodperiod 7Block d blockElectron configuration Rn 5f14 6d9 7s2 predicted 1 2 Electrons per shell2 8 18 32 32 17 2 predicted Physical propertiesPhase at STPsolid predicted 3 Density near r t 22 24 g cm3 predicted 4 5 Atomic propertiesOxidation states 1 1 3 5 7 predicted 2 6 7 Ionization energies1st 1020 kJ mol2nd 2070 kJ mol3rd 3080 kJ mol more all estimated 2 Atomic radiusempirical 138 pm predicted 2 6 Covalent radius121 pm estimated 8 Other propertiesNatural occurrencesyntheticCrystal structure body centered cubic bcc predicted 3 CAS Number54386 24 2HistoryNamingafter Wilhelm RontgenDiscoveryGesellschaft fur Schwerionenforschung 1994 Isotopes of roentgeniumveMain isotopes 9 Decayabun dance half life t1 2 mode pro duct279Rg synth 0 09 s 10 a 87 275MtSF 13 280Rg synth 3 9 s a 276Mt281Rg synth 11 s 11 SF 86 a 14 277Mt282Rg synth 2 min 12 a 278Mt283Rg synth 5 1 min 13 SF 286Rg synth 10 7 min 14 a 282Mt Category Roentgeniumviewtalkedit referencesIn the periodic table it is a d block transactinide element It is a member of the 7th period and is placed in the group 11 elements although no chemical experiments have been carried out to confirm that it behaves as the heavier homologue to gold in group 11 as the ninth member of the 6d series of transition metals Roentgenium is calculated to have similar properties to its lighter homologues copper silver and gold although it may show some differences from them Roentgenium is thought to be a solid at room temperature and to have a metallic appearance in its regular state Contents 1 Introduction 1 1 Synthesis of superheavy nuclei 1 2 Decay and detection 2 History 2 1 Official discovery 2 2 Naming 3 Isotopes 3 1 Stability and half lives 4 Predicted properties 4 1 Chemical 4 2 Physical and atomic 5 Experimental chemistry 6 See also 7 Explanatory notes 8 Citations 9 General bibliography 10 External linksIntroduction editThis section is an excerpt from Superheavy element Introduction edit Synthesis of superheavy nuclei edit nbsp A graphic depiction of a nuclear fusion reaction Two nuclei fuse into one emitting a neutron Reactions that created new elements to this moment were similar with the only possible difference that several singular neutrons sometimes were released or none at all A superheavy a atomic nucleus is created in a nuclear reaction that combines two other nuclei of unequal size b into one roughly the more unequal the two nuclei in terms of mass the greater the possibility that the two react 20 The material made of the heavier nuclei is made into a target which is then bombarded by the beam of lighter nuclei Two nuclei can only fuse into one if they approach each other closely enough normally nuclei all positively charged repel each other due to electrostatic repulsion The strong interaction can overcome this repulsion but only within a very short distance from a nucleus beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus 21 The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one tenth of the speed of light However if too much energy is applied the beam nucleus can fall apart 21 Coming close enough alone is not enough for two nuclei to fuse when two nuclei approach each other they usually remain together for approximately 10 20 seconds and then part ways not necessarily in the same composition as before the reaction rather than form a single nucleus 21 22 This happens because during the attempted formation of a single nucleus electrostatic repulsion tears apart the nucleus that is being formed 21 Each pair of a target and a beam is characterized by its cross section the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur c This fusion may occur as a result of the quantum effect in which nuclei can tunnel through electrostatic repulsion If the two nuclei can stay close for past that phase multiple nuclear interactions result in redistribution of energy and an energy equilibrium 21 External videos nbsp Visualization of unsuccessful nuclear fusion based on calculations from the Australian National University 24 The resulting merger is an excited state 25 termed a compound nucleus and thus it is very unstable 21 To reach a more stable state the temporary merger may fission without formation of a more stable nucleus 26 Alternatively the compound nucleus may eject a few neutrons which would carry away the excitation energy if the latter is not sufficient for a neutron expulsion the merger would produce a gamma ray This happens in approximately 10 16 seconds after the initial nuclear collision and results in creation of a more stable nucleus 26 The definition by the IUPAC IUPAP Joint Working Party JWP states that a chemical element can only be recognized as discovered if a nucleus of it has not decayed within 10 14 seconds This value was chosen as an estimate of how long it takes a nucleus to acquire its outer electrons and thus display its chemical properties 27 d Decay and detection edit The beam passes through the target and reaches the next chamber the separator if a new nucleus is produced it is carried with this beam 29 In the separator the newly produced nucleus is separated from other nuclides that of the original beam and any other reaction products e and transferred to a surface barrier detector which stops the nucleus The exact location of the upcoming impact on the detector is marked also marked are its energy and the time of the arrival 29 The transfer takes about 10 6 seconds in order to be detected the nucleus must survive this long 32 The nucleus is recorded again once its decay is registered and the location the energy and the time of the decay are measured 29 Stability of a nucleus is provided by the strong interaction However its range is very short as nuclei become larger its influence on the outermost nucleons protons and neutrons weakens At the same time the nucleus is torn apart by electrostatic repulsion between protons and its range is not limited 33 Total binding energy provided by the strong interaction increases linearly with the number of nucleons whereas electrostatic repulsion increases with the square of the atomic number i e the latter grows faster and becomes increasingly important for heavy and superheavy nuclei 34 35 Superheavy nuclei are thus theoretically predicted 36 and have so far been observed 37 to predominantly decay via decay modes that are caused by such repulsion alpha decay and spontaneous fission f Almost all alpha emitters have over 210 nucleons 39 and the lightest nuclide primarily undergoing spontaneous fission has 238 40 In both decay modes nuclei are inhibited from decaying by corresponding energy barriers for each mode but they can be tunnelled through 34 35 nbsp Scheme of an apparatus for creation of superheavy elements based on the Dubna Gas Filled Recoil Separator set up in the Flerov Laboratory of Nuclear Reactions in JINR The trajectory within the detector and the beam focusing apparatus changes because of a dipole magnet in the former and quadrupole magnets in the latter 41 Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus 42 Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart and produces various nuclei in different instances of identical nuclei fissioning 35 As the atomic number increases spontaneous fission rapidly becomes more important spontaneous fission partial half lives decrease by 23 orders of magnitude from uranium element 92 to nobelium element 102 43 and by 30 orders of magnitude from thorium element 90 to fermium element 100 44 The earlier liquid drop model thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the fission barrier for nuclei with about 280 nucleons 35 45 The later nuclear shell model suggested that nuclei with about 300 nucleons would form an island of stability in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half lives 35 45 Subsequent discoveries suggested that the predicted island might be further than originally anticipated they also showed that nuclei intermediate between the long lived actinides and the predicted island are deformed and gain additional stability from shell effects 46 Experiments on lighter superheavy nuclei 47 as well as those closer to the expected island 43 have shown greater than previously anticipated stability against spontaneous fission showing the importance of shell effects on nuclei g Alpha decays are registered by the emitted alpha particles and the decay products are easy to determine before the actual decay if such a decay or a series of consecutive decays produces a known nucleus the original product of a reaction can be easily determined h That all decays within a decay chain were indeed related to each other is established by the location of these decays which must be in the same place 29 The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy or more specifically the kinetic energy of the emitted particle i Spontaneous fission however produces various nuclei as products so the original nuclide cannot be determined from its daughters j The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors location energy and time of arrival of a particle to the detector and those of its decay The physicists analyze this data and seek to conclude that it was indeed caused by a new element and could not have been caused by a different nuclide than the one claimed Often provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects errors in interpreting data have been made k History edit nbsp Roentgenium was named after the physicist Wilhelm Rontgen the discoverer of X rays Official discovery edit Roentgenium was first synthesized by an international team led by Sigurd Hofmann at the Gesellschaft fur Schwerionenforschung GSI in Darmstadt Germany on December 8 1994 58 The team bombarded a target of bismuth 209 with accelerated nuclei of nickel 64 and detected three nuclei of the isotope roentgenium 272 20983 Bi 6428 Ni 272111 Rg 10 nThis reaction had previously been conducted at the Joint Institute for Nuclear Research in Dubna then in the Soviet Union in 1986 but no atoms of 272Rg had then been observed 59 In 2001 the IUPAC IUPAP Joint Working Party JWP concluded that there was insufficient evidence for the discovery at that time 60 The GSI team repeated their experiment in 2002 and detected three more atoms 61 62 In their 2003 report the JWP decided that the GSI team should be acknowledged for the discovery of this element 63 nbsp Backdrop for presentation of the discovery and recognition of roentgenium at GSI DarmstadtNaming edit Using Mendeleev s nomenclature for unnamed and undiscovered elements roentgenium should be known as eka gold In 1979 IUPAC published recommendations according to which the element was to be called unununium with the corresponding symbol of Uuu 64 a systematic element name as a placeholder until the element was discovered and the discovery then confirmed and a permanent name was decided on Although widely used in the chemical community on all levels from chemistry classrooms to advanced textbooks the recommendations were mostly ignored among scientists in the field who called it element 111 with the symbol of E111 111 or even simply 111 2 The name roentgenium Rg was suggested by the GSI team 65 in 2004 to honor the German physicist Wilhelm Conrad Rontgen the discoverer of X rays 65 This name was accepted by IUPAC on November 1 2004 65 Isotopes editMain article Isotopes of roentgenium List of roentgenium isotopes vte Isotope Half life l Decaymode Discoveryyear DiscoveryreactionValue ref272Rg 4 5 ms 66 a 1994 209Bi 64Ni n 274Rg 29 ms 66 a 2004 278Nh a 278Rg 4 6 ms 67 a 2006 282Nh a 279Rg 90 ms 67 a SF 2003 287Mc 2a 280Rg 3 9 s 67 a EC 2003 288Mc 2a 281Rg 11 s 67 SF a 2010 293Ts 3a 282Rg 1 7 min 68 a 2010 294Ts 3a 283Rg m 5 1 min 14 SF 1999 283Cn e ne 286Rg m 10 7 min 13 a 1998 290Fl e nea Roentgenium has no stable or naturally occurring isotopes Several radioactive isotopes have been synthesized in the laboratory either by fusion of the nuclei of lighter elements or as intermediate decay products of heavier elements Nine different isotopes of roentgenium have been reported with atomic masses 272 274 278 283 and 286 283 and 286 unconfirmed two of which roentgenium 272 and roentgenium 274 have known but unconfirmed metastable states All of these decay through alpha decay or spontaneous fission 69 though 280Rg may also have an electron capture branch 70 Stability and half lives edit All roentgenium isotopes are extremely unstable and radioactive in general the heavier isotopes are more stable than the lighter The most stable known roentgenium isotope 282Rg is also the heaviest known roentgenium isotope it has a half life of 100 seconds The unconfirmed 286Rg is even heavier and appears to have an even longer half life of about 10 7 minutes which would make it one of the longest lived superheavy nuclides known likewise the unconfirmed 283Rg appears to have a long half life of about 5 1 minutes The isotopes 280Rg and 281Rg have also been reported to have half lives over a second The remaining isotopes have half lives in the millisecond range 69 Predicted properties editOther than nuclear properties no properties of roentgenium or its compounds have been measured this is due to its extremely limited and expensive production 71 and the fact that roentgenium and its parents decays very quickly Properties of roentgenium metal remain unknown and only predictions are available Chemical edit Roentgenium is the ninth member of the 6d series of transition metals 72 Calculations on its ionization potentials and atomic and ionic radii are similar to that of its lighter homologue gold thus implying that roentgenium s basic properties will resemble those of the other group 11 elements copper silver and gold however it is also predicted to show several differences from its lighter homologues 2 Roentgenium is predicted to be a noble metal The standard electrode potential of 1 9 V for the Rg3 Rg couple is greater than that of 1 5 V for the Au3 Au couple Roentgenium s predicted first ionisation energy of 1020 kJ mol almost matches that of the noble gas radon at 1037 kJ mol 2 Based on the most stable oxidation states of the lighter group 11 elements roentgenium is predicted to show stable 5 and 3 oxidation states with a less stable 1 state The 3 state is predicted to be the most stable Roentgenium III is expected to be of comparable reactivity to gold III but should be more stable and form a larger variety of compounds Gold also forms a somewhat stable 1 state due to relativistic effects and it has been suggested roentgenium may do so as well 2 nevertheless the electron affinity of roentgenium is expected to be around 1 6 eV 37 kcal mol significantly lower than gold s value of 2 3 eV 53 kcal mol so roentgenides may not be stable or even possible 6 The 6d orbitals are destabilized by relativistic effects and spin orbit interactions near the end of the fourth transition metal series thus making the high oxidation state roentgenium V more stable than its lighter homologue gold V known only in gold pentafluoride Au2F10 as the 6d electrons participate in bonding to a greater extent The spin orbit interactions stabilize molecular roentgenium compounds with more bonding 6d electrons for example RgF 6 is expected to be more stable than RgF 4 which is expected to be more stable than RgF 2 2 The stability of RgF 6 is homologous to that of AuF 6 the silver analogue AgF 6 is unknown and is expected to be only marginally stable to decomposition to AgF 4 and F2 Moreover Rg2F10 is expected to be stable to decomposition exactly analogous to the Au2F10 whereas Ag2F10 should be unstable to decomposition to Ag2F6 and F2 Gold heptafluoride AuF7 is known as a gold V difluorine complex AuF5 F2 which is lower in energy than a true gold VII heptafluoride would be RgF7 is instead calculated to be more stable as a true roentgenium VII heptafluoride although it would be somewhat unstable its decomposition to Rg2F10 and F2 releasing a small amount of energy at room temperature 7 Roentgenium I is expected to be difficult to obtain 2 73 74 Gold readily forms the cyanide complex Au CN 2 which is used in its extraction from ore through the process of gold cyanidation roentgenium is expected to follow suit and form Rg CN 2 75 The probable chemistry of roentgenium has received more interest than that of the two previous elements meitnerium and darmstadtium as the valence s subshells of the group 11 elements are expected to be relativistically contracted most strongly at roentgenium 2 Calculations on the molecular compound RgH show that relativistic effects double the strength of the roentgenium hydrogen bond even though spin orbit interactions also weaken it by 0 7 eV 16 kcal mol The compounds AuX and RgX where X F Cl Br O Au or Rg were also studied 2 76 Rg is predicted to be the softest metal ion even softer than Au although there is disagreement on whether it would behave as an acid or a base 77 78 In aqueous solution Rg would form the aqua ion Rg H2O 2 with an Rg O bond distance of 207 1 pm It is also expected to form Rg I complexes with ammonia phosphine and hydrogen sulfide 78 Physical and atomic edit Roentgenium is expected to be a solid under normal conditions and to crystallize in the body centered cubic structure unlike its lighter congeners which crystallize in the face centered cubic structure due to its being expected to have different electron charge densities from them 3 It should be a very heavy metal with a density of around 22 24 g cm3 in comparison the densest known element that has had its density measured osmium has a density of 22 61 g cm3 4 5 The atomic radius of roentgenium is expected to be around 138 pm 2 Experimental chemistry editUnambiguous determination of the chemical characteristics of roentgenium has yet to have been established 79 due to the low yields of reactions that produce roentgenium isotopes 2 For chemical studies to be carried out on a transactinide at least four atoms must be produced the half life of the isotope used must be at least 1 second and the rate of production must be at least one atom per week 72 Even though the half life of 282Rg the most stable confirmed roentgenium isotope is 100 seconds long enough to perform chemical studies another obstacle is the need to increase the rate of production of roentgenium isotopes and allow experiments to carry on for weeks or months so that statistically significant results can be obtained Separation and detection must be carried out continuously to separate out the roentgenium isotopes and allow automated systems to experiment on the gas phase and solution chemistry of roentgenium as the yields for heavier elements are predicted to be smaller than those for lighter elements However the experimental chemistry of roentgenium has not received as much attention as that of the heavier elements from copernicium to livermorium 2 79 80 despite early interest in theoretical predictions due to relativistic effects on the ns subshell in group 11 reaching a maximum at roentgenium 2 The isotopes 280Rg and 281Rg are promising for chemical experimentation and may be produced as the granddaughters of the moscovium isotopes 288Mc and 289Mc respectively 81 their parents are the nihonium isotopes 284Nh and 285Nh which have already received preliminary chemical investigations 82 See also editIsland of stabilityExplanatory notes edit In nuclear physics an element is called heavy if its atomic number is high lead element 82 is one example of such a heavy element The term superheavy elements typically refers to elements with atomic number greater than 103 although there are other definitions such as atomic number greater than 100 15 or 112 16 sometimes the term is presented an equivalent to the term transactinide which puts an upper limit before the beginning of the hypothetical superactinide series 17 Terms heavy isotopes of a given element and heavy nuclei mean what could be understood in the common language isotopes of high mass for the given element and nuclei of high mass respectively In 2009 a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric 136Xe 136Xe reaction They failed to observe a single atom in such a reaction putting the upper limit on the cross section the measure of probability of a nuclear reaction as 2 5 pb 18 In comparison the reaction that resulted in hassium discovery 208Pb 58Fe had a cross section of 20 pb more specifically 19 19 11 pb as estimated by the discoverers 19 The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section For example in the 2814 Si 10 n 2813 Al 11 p reaction cross section changes smoothly from 370 mb at 12 3 MeV to 160 mb at 18 3 MeV with a broad peak at 13 5 MeV with the maximum value of 380 mb 23 This figure also marks the generally accepted upper limit for lifetime of a compound nucleus 28 This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle 30 Such separation can also be aided by a time of flight measurement and a recoil energy measurement a combination of the two may allow to estimate the mass of a nucleus 31 Not all decay modes are caused by electrostatic repulsion For example beta decay is caused by the weak interaction 38 It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus However it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to form one 43 Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus such measurement is called indirect Direct measurements are also possible but for the most part they have remained unavailable for superheavy nuclei 48 The first direct measurement of mass of a superheavy nucleus was reported in 2018 at LBNL 49 Mass was determined from the location of a nucleus after the transfer the location helps determine its trajectory which is linked to the mass to charge ratio of the nucleus since the transfer was done in presence of a magnet 50 If the decay occurred in a vacuum then since total momentum of an isolated system before and after the decay must be preserved the daughter nucleus would also receive a small velocity The ratio of the two velocities and accordingly the ratio of the kinetic energies would thus be inverse to the ratio of the two masses The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus an exact fraction of the former 39 The calculations hold for an experiment as well but the difference is that the nucleus does not move after the decay because it is tied to the detector Spontaneous fission was discovered by Soviet physicist Georgy Flerov 51 a leading scientist at JINR and thus it was a hobbyhorse for the facility 52 In contrast the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element They believed spontaneous fission had not been studied enough to use it for identification of a new element since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles 28 They thus preferred to link new isotopes to the already known ones by successive alpha decays 51 For instance element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in Stockholm Stockholm County Sweden 53 There were no earlier definitive claims of creation of this element and the element was assigned a name by its Swedish American and British discoverers nobelium It was later shown that the identification was incorrect 54 The following year RL was unable to reproduce the Swedish results and announced instead their synthesis of the element that claim was also disproved later 54 JINR insisted that they were the first to create the element and suggested a name of their own for the new element joliotium 55 the Soviet name was also not accepted JINR later referred to the naming of the element 102 as hasty 56 This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements signed 29 September 1992 56 The name nobelium remained unchanged on account of its widespread usage 57 Different sources give different values for half lives the most recently published values are listed a b This isotope is unconfirmedCitations edit Turler A 2004 Gas Phase Chemistry of Superheavy Elements PDF Journal of Nuclear and Radiochemical Sciences 5 2 R19 R25 doi 10 14494 jnrs2000 5 R19 a b c d e f g h i j k l m n o p Hoffman Darleane C Lee Diana M Pershina Valeria 2006 Transactinides and the future elements In Morss Edelstein Norman M Fuger Jean eds The Chemistry of the Actinide and Transactinide Elements 3rd ed Dordrecht The Netherlands Springer Science Business Media ISBN 978 1 4020 3555 5 a b c Ostlin A Vitos L 2011 First principles calculation of the structural stability of 6d transition metals Physical Review B 84 11 113104 Bibcode 2011PhRvB 84k3104O doi 10 1103 PhysRevB 84 113104 a b Gyanchandani Jyoti Sikka S K May 10 2011 Physical properties of the 6 d series elements from density functional theory Close similarity to lighter transition metals Physical Review B 83 17 172101 Bibcode 2011PhRvB 83q2101G doi 10 1103 PhysRevB 83 172101 a b Kratz Lieser 2013 Nuclear and Radiochemistry Fundamentals and Applications 3rd ed p 631 a b c Fricke Burkhard 1975 Superheavy elements a prediction of their chemical and physical properties Recent Impact of Physics on Inorganic Chemistry Structure and Bonding 21 89 144 doi 10 1007 BFb0116498 ISBN 978 3 540 07109 9 Retrieved October 4 2013 a b Conradie Jeanet Ghosh Abhik June 15 2019 Theoretical Search for the Highest Valence States of the Coinage Metals Roentgenium Heptafluoride May Exist Inorganic Chemistry 2019 58 8735 8738 doi 10 1021 acs inorgchem 9b01139 PMID 31203606 S2CID 189944098 Chemical Data Roentgenium Rg Royal Chemical Society Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae http www jinr ru posts both neutron properties and new results at she factory Oganessian Yuri Ts Abdullin F Sh Alexander C Binder J et al May 30 2013 Experimental studies of the 249Bk 48Ca reaction including decay properties and excitation function for isotopes of element 117 and discovery of the new isotope 277Mt Physical Review C American Physical Society 87 054621 Bibcode 2013PhRvC 87e4621O doi 10 1103 PhysRevC 87 054621 Khuyagbaatar J Yakushev A Dullmann Ch E et al 2014 48Ca 249Bk Fusion Reaction Leading to Element Z 117 Long Lived a Decaying 270Db and Discovery of 266Lr Physical Review Letters 112 17 172501 Bibcode 2014PhRvL 112q2501K doi 10 1103 PhysRevLett 112 172501 PMID 24836239 a b Hofmann S Heinz S Mann R et al 2016 Remarks on the Fission Barriers of SHN and Search for Element 120 In Peninozhkevich Yu E Sobolev Yu G eds Exotic Nuclei EXON 2016 Proceedings of the International Symposium on Exotic Nuclei Exotic Nuclei pp 155 164 doi 10 1142 9789813226548 0024 ISBN 9789813226555 a b Hofmann S Heinz S Mann R et al 2016 Review of even element super heavy nuclei and search for element 120 The European Physics Journal A 2016 52 180 Bibcode 2016EPJA 52 180H doi 10 1140 epja i2016 16180 4 S2CID 124362890 Kramer K 2016 Explainer superheavy elements Chemistry World Retrieved March 15 2020 Discovery of Elements 113 and 115 Lawrence Livermore National Laboratory Archived from the original on September 11 2015 Retrieved March 15 2020 Eliav E Kaldor U Borschevsky A 2018 Electronic Structure of the Transactinide Atoms In Scott R A ed Encyclopedia of Inorganic and Bioinorganic Chemistry John Wiley amp Sons pp 1 16 doi 10 1002 9781119951438 eibc2632 ISBN 978 1 119 95143 8 S2CID 127060181 Oganessian Yu Ts Dmitriev S N Yeremin A V et al 2009 Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe 136Xe Physical Review C 79 2 024608 doi 10 1103 PhysRevC 79 024608 ISSN 0556 2813 Munzenberg G Armbruster P Folger H et al 1984 The identification of element 108 PDF Zeitschrift fur Physik A 317 2 235 236 Bibcode 1984ZPhyA 317 235M doi 10 1007 BF01421260 S2CID 123288075 Archived from the original PDF on June 7 2015 Retrieved October 20 2012 Subramanian S August 28 2019 Making New Elements Doesn t Pay Just Ask This Berkeley Scientist Bloomberg Businessweek Retrieved January 18 2020 a b c d e f Ivanov D 2019 Sverhtyazhelye shagi v neizvestnoe Superheavy steps into the unknown nplus1 ru in Russian Retrieved February 2 2020 Hinde D 2017 Something new and superheavy at the periodic table The Conversation Retrieved January 30 2020 Kern B D Thompson W E Ferguson J M 1959 Cross sections for some n p and n a reactions Nuclear Physics 10 226 234 Bibcode 1959NucPh 10 226K doi 10 1016 0029 5582 59 90211 1 Wakhle A Simenel C Hinde D J et al 2015 Simenel C Gomes P R S Hinde D J et al eds Comparing Experimental and Theoretical Quasifission Mass Angle Distributions European Physical Journal Web of Conferences 86 00061 Bibcode 2015EPJWC 8600061W doi 10 1051 epjconf 20158600061 hdl 1885 148847 ISSN 2100 014X Nuclear Reactions PDF pp 7 8 Retrieved January 27 2020 Published as Loveland W D Morrissey D J Seaborg G T 2005 Nuclear Reactions Modern Nuclear Chemistry John Wiley amp Sons Inc pp 249 297 doi 10 1002 0471768626 ch10 ISBN 978 0 471 76862 3 a b Krasa A 2010 Neutron Sources for ADS Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 4 8 S2CID 28796927 Wapstra A H 1991 Criteria that must be satisfied for the discovery of a new chemical element to be recognized PDF Pure and Applied Chemistry 63 6 883 doi 10 1351 pac199163060879 ISSN 1365 3075 S2CID 95737691 a b Hyde E K Hoffman D C Keller O L 1987 A History and Analysis of the Discovery of Elements 104 and 105 Radiochimica Acta 42 2 67 68 doi 10 1524 ract 1987 42 2 57 ISSN 2193 3405 S2CID 99193729 a b c d Chemistry World 2016 How to Make Superheavy Elements and Finish the Periodic Table Video Scientific American Retrieved January 27 2020 Hoffman Ghiorso amp Seaborg 2000 p 334 Hoffman Ghiorso amp Seaborg 2000 p 335 Zagrebaev Karpov amp Greiner 2013 p 3 Beiser 2003 p 432 a b Pauli N 2019 Alpha decay PDF Introductory Nuclear Atomic and Molecular Physics Nuclear Physics Part Universite libre de Bruxelles Retrieved February 16 2020 a b c d e Pauli N 2019 Nuclear fission PDF Introductory Nuclear Atomic and Molecular Physics Nuclear Physics Part Universite libre de Bruxelles Retrieved February 16 2020 Staszczak A Baran A Nazarewicz W 2013 Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory Physical Review C 87 2 024320 1 arXiv 1208 1215 Bibcode 2013PhRvC 87b4320S doi 10 1103 physrevc 87 024320 ISSN 0556 2813 Audi et al 2017 pp 030001 129 030001 138 Beiser 2003 p 439 a b Beiser 2003 p 433 Audi et al 2017 p 030001 125 Aksenov N V Steinegger P Abdullin F Sh et al 2017 On the volatility of nihonium Nh Z 113 The European Physical Journal A 53 7 158 Bibcode 2017EPJA 53 158A doi 10 1140 epja i2017 12348 8 ISSN 1434 6001 S2CID 125849923 Beiser 2003 p 432 433 a b c Oganessian Yu 2012 Nuclei in the Island of Stability of Superheavy Elements Journal of Physics Conference Series 337 1 012005 1 012005 6 Bibcode 2012JPhCS 337a2005O doi 10 1088 1742 6596 337 1 012005 ISSN 1742 6596 Moller P Nix J R 1994 Fission properties of the heaviest elements PDF Dai 2 Kai Hadoron Tataikei no Simulation Symposium Tokai mura Ibaraki Japan University of North Texas Retrieved February 16 2020 a b Oganessian Yu Ts 2004 Superheavy elements Physics World 17 7 25 29 doi 10 1088 2058 7058 17 7 31 Retrieved February 16 2020 Schadel M 2015 Chemistry of the superheavy elements Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 373 2037 20140191 Bibcode 2015RSPTA 37340191S doi 10 1098 rsta 2014 0191 ISSN 1364 503X PMID 25666065 Hulet E K 1989 Biomodal spontaneous fission 50th Anniversary of Nuclear Fission Leningrad USSR Bibcode 1989nufi rept 16H Oganessian Yu Ts Rykaczewski K P 2015 A beachhead on the island of stability Physics Today 68 8 32 38 Bibcode 2015PhT 68h 32O doi 10 1063 PT 3 2880 ISSN 0031 9228 OSTI 1337838 S2CID 119531411 Grant A 2018 Weighing the heaviest elements Physics Today doi 10 1063 PT 6 1 20181113a S2CID 239775403 Howes L 2019 Exploring the superheavy elements at the end of the periodic table Chemical amp Engineering News Retrieved January 27 2020 a b Robinson A E 2019 The Transfermium Wars Scientific Brawling and Name Calling during the Cold War Distillations Retrieved February 22 2020 Populyarnaya biblioteka himicheskih elementov Siborgij ekavolfram Popular library of chemical elements Seaborgium eka tungsten n t ru in Russian Retrieved January 7 2020 Reprinted from Ekavolfram Eka tungsten Populyarnaya biblioteka himicheskih elementov Serebro Nilsborij i dalee Popular library of chemical elements Silver through nielsbohrium and beyond in Russian Nauka 1977 Nobelium Element information properties and uses Periodic Table Royal Society of Chemistry Retrieved March 1 2020 a b Kragh 2018 pp 38 39 Kragh 2018 p 40 a b Ghiorso A Seaborg G T Oganessian Yu Ts et al 1993 Responses on the report Discovery of the Transfermium elements followed by reply to the responses by Transfermium Working Group PDF Pure and Applied Chemistry 65 8 1815 1824 doi 10 1351 pac199365081815 S2CID 95069384 Archived PDF from the original on November 25 2013 Retrieved September 7 2016 Commission on Nomenclature of Inorganic Chemistry 1997 Names and symbols of transfermium elements IUPAC Recommendations 1997 PDF Pure and Applied Chemistry 69 12 2471 2474 doi 10 1351 pac199769122471 Hofmann S Ninov V Hessberger F P Armbruster P Folger H Munzenberg G Schott H J Popeko A G Yeremin A V Andreyev A N Saro S Janik R Leino M 1995 The new element 111 Zeitschrift fur Physik A 350 4 281 282 Bibcode 1995ZPhyA 350 281H doi 10 1007 BF01291182 S2CID 18804192 Barber R C Greenwood N N Hrynkiewicz A Z Jeannin Y P Lefort M Sakai M Ulehla I Wapstra A P Wilkinson D H 1993 Discovery of the transfermium elements Part II Introduction to discovery profiles Part III Discovery profiles of the transfermium elements Pure and Applied Chemistry 65 8 1757 doi 10 1351 pac199365081757 S2CID 195819585 Note for Part I see Pure Appl Chem Vol 63 No 6 pp 879 886 1991 Karol Nakahara H Petley B W Vogt E 2001 On the discovery of the elements 110 112 PDF Pure Appl Chem 73 6 959 967 doi 10 1351 pac200173060959 S2CID 97615948 Hofmann S Hessberger F P Ackermann D Munzenberg G Antalic S Cagarda P Kindler B Kojouharova J Leino M Lommel B Mann R Popeko A G Reshitko S Saro S Uusitalo J Yeremin A V 2002 New results on elements 111 and 112 European Physical Journal A 14 2 147 157 Bibcode 2002EPJA 14 147H doi 10 1140 epja i2001 10119 x S2CID 8773326 Hofmann et al New results on element 111 and 112 PDF GSI report 2000 pp 1 2 Retrieved April 21 2018 Karol P J Nakahara H Petley B W Vogt E 2003 On the claims for discovery of elements 110 111 112 114 116 and 118 PDF Pure Appl Chem 75 10 1601 1611 doi 10 1351 pac200375101601 S2CID 95920517 Chatt J 1979 Recommendations for the naming of elements of atomic numbers greater than 100 Pure and Applied Chemistry 51 2 381 384 doi 10 1351 pac197951020381 a b c Corish Rosenblatt G M 2004 Name and symbol of the element with atomic number 111 PDF Pure Appl Chem 76 12 2101 2103 doi 10 1351 pac200476122101 S2CID 195819587 a b Audi G Kondev F G Wang M Huang W J Naimi S 2017 The NUBASE2016 evaluation of nuclear properties PDF Chinese Physics C 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 a b c d Oganessian Yu Ts Utyonkov V K Kovrizhnykh N D et al 2022 New isotope 286Mc produced in the 243Am 48Ca reaction Physical Review C 106 64306 064306 Bibcode 2022PhRvC 106f4306O doi 10 1103 PhysRevC 106 064306 S2CID 254435744 Oganessian Y T 2015 Super heavy element research Reports on Progress in Physics 78 3 036301 Bibcode 2015RPPh 78c6301O doi 10 1088 0034 4885 78 3 036301 PMID 25746203 S2CID 37779526 a b Sonzogni Alejandro Interactive Chart of Nuclides National Nuclear Data Center Brookhaven National Laboratory Archived from the original on July 28 2018 Retrieved June 6 2008 Forsberg U et al 2016 Recoil a fission and recoil a a fission events observed in the reaction 48Ca 243Am Nuclear Physics A 953 117 138 arXiv 1502 03030 Bibcode 2016NuPhA 953 117F doi 10 1016 j nuclphysa 2016 04 025 S2CID 55598355 Cite error The named reference Bloomberg was invoked but never defined see the help page a b Griffith W P 2008 The Periodic Table and the Platinum Group Metals Platinum Metals Review 52 2 114 119 doi 10 1595 147106708X297486 Seth M Cooke F Schwerdtfeger P Heully J L Pelissier M 1998 The chemistry of the superheavy elements II The stability of high oxidation states in group 11 elements Relativistic coupled cluster calculations for the di tetra and hexafluoro metallates of Cu Ag Au and element 111 J Chem Phys 109 10 3935 43 Bibcode 1998JChPh 109 3935S doi 10 1063 1 476993 S2CID 54803557 Seth M Faegri K Schwerdtfeger P 1998 The Stability of the Oxidation State 4 in Group 14 Compounds from Carbon to Element 114 Angew Chem Int Ed Engl 37 18 2493 6 doi 10 1002 SICI 1521 3773 19981002 37 18 lt 2493 AID ANIE2493 gt 3 0 CO 2 F PMID 29711350 Demissie Taye B Ruud Kenneth February 25 2017 Darmstadtium roentgenium and copernicium form strong bonds with cyanide PDF International Journal of Quantum Chemistry 2017 e25393 doi 10 1002 qua 25393 hdl 10037 13632 Liu W van Wullen C 1999 Spectroscopic constants of gold and eka gold element 111 diatomic compounds The importance of spin orbit coupling J Chem Phys 110 8 3730 5 Bibcode 1999JChPh 110 3730L doi 10 1063 1 478237 Thayer John S 2010 Relativistic Effects and the Chemistry of the Heavier Main Group Elements Relativistic Methods for Chemists Challenges and Advances in Computational Chemistry and Physics Vol 10 p 82 doi 10 1007 978 1 4020 9975 5 2 ISBN 978 1 4020 9974 8 a b Hancock Robert D Bartolotti Libero J Kaltsoyannis Nikolas November 24 2006 Density Functional Theory Based Prediction of Some Aqueous Phase Chemistry of Superheavy Element 111 Roentgenium I Is the Softest Metal Ion Inorg Chem 45 26 10780 5 doi 10 1021 ic061282s PMID 17173436 a b Dullmann Christoph E 2012 Superheavy elements at GSI a broad research program with element 114 in the focus of physics and chemistry Radiochimica Acta 100 2 67 74 doi 10 1524 ract 2011 1842 S2CID 100778491 Eichler Robert 2013 First foot prints of chemistry on the shore of the Island of Superheavy Elements Journal of Physics Conference Series 420 1 012003 arXiv 1212 4292 Bibcode 2013JPhCS 420a2003E doi 10 1088 1742 6596 420 1 012003 S2CID 55653705 Moody Ken November 30 2013 Synthesis of Superheavy Elements In Schadel Matthias Shaughnessy Dawn eds The Chemistry of Superheavy Elements 2nd ed Springer Science amp Business Media pp 24 8 ISBN 9783642374661 Aksenov Nikolay V Steinegger Patrick Abdullin Farid Sh Albin Yury V Bozhikov Gospodin A Chepigin Viktor I Eichler Robert Lebedev Vyacheslav Ya Mamudarov Alexander Sh Malyshev Oleg N Petrushkin Oleg V Polyakov Alexander N Popov Yury A Sabel nikov Alexey V Sagaidak Roman N Shirokovsky Igor V Shumeiko Maksim V Starodub Gennadii Ya Tsyganov Yuri S Utyonkov Vladimir K Voinov Alexey A Vostokin Grigory K Yeremin Alexander Dmitriev Sergey N July 2017 On the volatility of nihonium Nh Z 113 The European Physical Journal A 53 158 158 Bibcode 2017EPJA 53 158A doi 10 1140 epja i2017 12348 8 S2CID 125849923 General bibliography editAudi G Kondev F G Wang M et al 2017 The NUBASE2016 evaluation of nuclear properties Chinese Physics C 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 Beiser A 2003 Concepts of modern physics 6th ed McGraw Hill ISBN 978 0 07 244848 1 OCLC 48965418 Hoffman D C Ghiorso A Seaborg G T 2000 The Transuranium People The Inside Story World Scientific ISBN 978 1 78 326244 1 Kragh H 2018 From Transuranic to Superheavy Elements A Story of Dispute and Creation Springer ISBN 978 3 319 75813 8 Zagrebaev V Karpov A Greiner W 2013 Future of superheavy element research Which nuclei could be synthesized within the next few years Journal of Physics Conference Series 420 1 012001 arXiv 1207 5700 Bibcode 2013JPhCS 420a2001Z doi 10 1088 1742 6596 420 1 012001 ISSN 1742 6588 S2CID 55434734 External links edit nbsp Wikimedia Commons has media related to Roentgenium Roentgenium at The Periodic Table of Videos University of Nottingham Retrieved from https en wikipedia org w index php title Roentgenium amp oldid 1191976913, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.