fbpx
Wikipedia

Platinum

Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish platina, a diminutive of plata "silver".[4][5]

Platinum, 78Pt
Platinum
Pronunciation/ˈplætənəm/ (PLAT-ən-əm)
Appearancesilvery white
Standard atomic weight Ar°(Pt)
  • 195.084±0.009
  • 195.08±0.02 (abridged)[1]
Platinum in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Pd

Pt

Ds
iridiumplatinumgold
Atomic number (Z)78
Groupgroup 10
Periodperiod 6
Block  d-block
Electron configuration[Xe] 4f14 5d9 6s1
Electrons per shell2, 8, 18, 32, 17, 1
Physical properties
Phase at STPsolid
Melting point2041.4 K ​(1768.3 °C, ​3214.9 °F)
Boiling point4098 K ​(3825 °C, ​6917 °F)
Density (near r.t.)21.45 g/cm3
when liquid (at m.p.)19.77 g/cm3
Heat of fusion22.17 kJ/mol
Heat of vaporization510 kJ/mol
Molar heat capacity25.86 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2330 (2550) 2815 3143 3556 4094
Atomic properties
Oxidation states−3, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly basic oxide)
ElectronegativityPauling scale: 2.28
Ionization energies
  • 1st: 870 kJ/mol
  • 2nd: 1791 kJ/mol
Atomic radiusempirical: 139 pm
Covalent radius136±5 pm
Van der Waals radius175 pm
Spectral lines of platinum
Other properties
Natural occurrenceprimordial
Crystal structureface-centered cubic (fcc)
Speed of sound thin rod2800 m/s (at r.t.)
Thermal expansion8.8 µm/(m⋅K) (at 25 °C)
Thermal conductivity71.6 W/(m⋅K)
Electrical resistivity105 nΩ⋅m (at 20 °C)
Magnetic orderingparamagnetic
Molar magnetic susceptibility+201.9 × 10−6 cm3/mol (290 K)[2]
Tensile strength125–240 MPa
Young's modulus168 GPa
Shear modulus61 GPa
Bulk modulus230 GPa
Poisson ratio0.38
Mohs hardness3.5
Vickers hardness400–550 MPa
Brinell hardness300–500 MPa
CAS Number7440-06-4
History
DiscoveryAntonio de Ulloa (1735)
Isotopes of platinum
Main isotopes[3] Decay
abun­dance half-life (t1/2) mode pro­duct
190Pt 0.0120% 4.83×1011 y α 186Os
192Pt 0.782% stable
193Pt synth 50 y ε 193Ir
194Pt 32.9% stable
195Pt 33.8% stable
196Pt 25.2% stable
198Pt 7.36% stable
 Category: Platinum
| references

Platinum is a member of the platinum group of elements and group 10 of the periodic table of elements. It has six naturally occurring isotopes. It is one of the rarer elements in Earth's crust, with an average abundance of approximately 5 μg/kg. It occurs in some nickel and copper ores along with some native deposits, mostly in South Africa, which accounts for ~80% of the world production. Because of its scarcity in Earth's crust, only a few hundred tonnes are produced annually, and given its important uses, it is highly valuable and is a major precious metal commodity.[6]

Platinum is one of the least reactive metals. It has remarkable resistance to corrosion, even at high temperatures, and is therefore considered a noble metal. Consequently, platinum is often found chemically uncombined as native platinum. Because it occurs naturally in the alluvial sands of various rivers, it was first used by pre-Columbian South American natives to produce artifacts. It was referenced in European writings as early as the 16th century, but it was not until Antonio de Ulloa published a report on a new metal of Colombian origin in 1748 that it began to be investigated by scientists.

Platinum is used in catalytic converters, laboratory equipment, electrical contacts and electrodes, platinum resistance thermometers, dentistry equipment, and jewelry. Platinum is used in the glass industry[7] to manipulate molten glass which does not "wet" platinum. As a heavy metal, it leads to health problems upon exposure to its salts; but due to its corrosion resistance, metallic platinum has not been linked to adverse health effects.[8] Compounds containing platinum, such as cisplatin, oxaliplatin and carboplatin, are applied in chemotherapy against certain types of cancer.[9]

Pure platinum is currently less expensive than pure gold, having been so continuously since 2015, but has been twice as expensive or more, mostly prior to 2008.[10] In early 2021, the value of platinum ranged from US$1,055 to US$1,320 per troy ounce.[11]

Characteristics

Physical

Pure platinum is a lustrous, ductile, and malleable, silver-white metal.[12] Platinum is more ductile than gold, silver or copper, thus being the most ductile of pure metals, but it is less malleable than gold.[13][14]

Its physical characteristics and chemical stability make it useful for industrial applications.[15] Its resistance to wear and tarnish is well suited to use in fine jewellery.

Chemical

 
Platinum being dissolved in hot aqua regia

Platinum has excellent resistance to corrosion. Bulk platinum does not oxidize in air at any temperature, but it forms a thin surface film of PtO2 that can be easily removed by heating to about 400 °C.[16][17]

The most common oxidation states of platinum are +2 and +4. The +1 and +3 oxidation states are less common, and are often stabilized by metal bonding in bimetallic (or polymetallic) species. Tetracoordinate platinum(II) compounds tend to adopt 16-electron square planar geometries. Although elemental platinum is generally unreactive, it is attacked by chlorine, bromine, iodine, and sulfur. It reacts vigorously with fluorine at 500 °C (932 °F) to form platinum tetrafluoride.[18] Platinum is insoluble in hydrochloric and nitric acid, but dissolves in hot aqua regia (a mixture of nitric and hydrochloric acids), to form aqueous chloroplatinic acid, H2PtCl6:[19][20]

Pt + 4 HNO3 + 6 HCl → H2PtCl6 + 4 NO2 + 4 H2O

As a soft acid, the Pt2+ ion has a great affinity for sulfide and sulfur ligands. Numerous DMSO complexes have been reported and care is taken in the choosing of reaction solvents.[21]

In 2007, the German scientist Gerhard Ertl won the Nobel Prize in Chemistry for determining the detailed molecular mechanisms of the catalytic oxidation of carbon monoxide over platinum (catalytic converter).[22]

Isotopes

Platinum has six naturally occurring isotopes: 190
Pt
, 192
Pt
, 194
Pt
, 195
Pt
, 196
Pt
, and 198
Pt
. The most abundant of these is 195
Pt
, comprising 33.83% of all platinum. It is the only stable isotope with a non-zero spin. The spin of 1/2 and other favourable magnetic properties of the nucleus are utilised in 195
Pt
NMR
. Due to its spin and large abundance, 195
Pt
satellite peaks are also often observed in 1
H
and 31
P
NMR spectroscopy (e.g., for Pt-phosphine and Pt-alkyl complexes). 190
Pt
is the least abundant at only 0.01%. Of the naturally occurring isotopes, only 190
Pt
is unstable, though it decays with a half-life of 6.5×1011 years, causing an activity of 15 Bq/kg of natural platinum. 198
Pt
can undergo alpha decay, but its decay has never been observed (the half-life is known to be longer than 3.2×1014 years); therefore, it is considered stable. Platinum also has 34 synthetic isotopes ranging in atomic mass from 165 to 204, making the total number of known isotopes 40. The least stable of these are 165
Pt
and 166
Pt
, with half-lives of 260 µs, whereas the most stable is 193
Pt
with a half-life of 50 years. Most platinum isotopes decay by some combination of beta decay and alpha decay. 188
Pt
, 191
Pt
, and 193
Pt
decay primarily by electron capture. 190
Pt
and 198
Pt
are predicted to have energetically favorable double beta decay paths.[23]

Occurrence

 
A native platinum nugget, Kondyor mine, Khabarovsk Krai
 
Platinum-palladium ore, Stillwater mine, Beartooth Mountains, Montana, USA
 
Sulfidic serpentintite (platinum-palladium ore) from the same mine as above

Platinum is an extremely rare metal,[24] occurring at a concentration of only 0.005 ppm in Earth's crust.[25][26] It is sometimes mistaken for silver. Platinum is often found chemically uncombined as native platinum and as alloy with the other platinum-group metals and iron mostly. Most often the native platinum is found in secondary deposits in alluvial deposits. The alluvial deposits used by pre-Columbian people in the Chocó Department, Colombia are still a source for platinum-group metals. Another large alluvial deposit is in the Ural Mountains, Russia, and it is still mined.[20]

In nickel and copper deposits, platinum-group metals occur as sulfides (e.g., (Pt,Pd)S), tellurides (e.g., PtBiTe), antimonides (PdSb), and arsenides (e.g. PtAs2), and as end alloys with nickel or copper. Platinum arsenide, sperrylite (PtAs2), is a major source of platinum associated with nickel ores in the Sudbury Basin deposit in Ontario, Canada. At Platinum, Alaska, about 17,000 kg (550,000 ozt) was mined between 1927 and 1975. The mine ceased operations in 1990.[27] The rare sulfide mineral cooperite, (Pt,Pd,Ni)S, contains platinum along with palladium and nickel. Cooperite occurs in the Merensky Reef within the Bushveld complex, Gauteng, South Africa.[28]

In 1865, chromites were identified in the Bushveld region of South Africa, followed by the discovery of platinum in 1906.[29] In 1924, the geologist Hans Merensky discovered a large supply of platinum in the Bushveld Igneous Complex in South Africa. The specific layer he found, named the Merensky Reef, contains around 75% of the world's known platinum.[30][31] The large copper–nickel deposits near Norilsk in Russia, and the Sudbury Basin, Canada, are the two other large deposits. In the Sudbury Basin, the huge quantities of nickel ore processed make up for the fact platinum is present as only 0.5 ppm in the ore. Smaller reserves can be found in the United States,[31] for example in the Absaroka Range in Montana.[32] In 2010, South Africa was the top producer of platinum, with an almost 77% share, followed by Russia at 13%; world production in 2010 was 192,000 kg (423,000 lb).[33]

Large platinum deposits are present in the state of Tamil Nadu, India.[34]

Platinum exists in higher abundances on the Moon and in meteorites. Correspondingly, platinum is found in slightly higher abundances at sites of bolide impact on Earth that are associated with resulting post-impact volcanism, and can be mined economically; the Sudbury Basin is one such example.[35]

Compounds

Halides

Hexachloroplatinic acid mentioned above is probably the most important platinum compound, as it serves as the precursor for many other platinum compounds. By itself, it has various applications in photography, zinc etchings, indelible ink, plating, mirrors, porcelain coloring, and as a catalyst.[36]

Treatment of hexachloroplatinic acid with an ammonium salt, such as ammonium chloride, gives ammonium hexachloroplatinate,[19] which is relatively insoluble in ammonium solutions. Heating this ammonium salt in the presence of hydrogen reduces it to elemental platinum. Potassium hexachloroplatinate is similarly insoluble, and hexachloroplatinic acid has been used in the determination of potassium ions by gravimetry.[37]

When hexachloroplatinic acid is heated, it decomposes through platinum(IV) chloride and platinum(II) chloride to elemental platinum, although the reactions do not occur stepwise:[38]

(H3O)2PtCl6·nH2O ⇌ PtCl4 + 2 HCl + (n + 2) H2O
PtCl4 ⇌ PtCl2 + Cl2
PtCl2 ⇌ Pt + Cl2

All three reactions are reversible. Platinum(II) and platinum(IV) bromides are known as well. Platinum hexafluoride is a strong oxidizer capable of oxidizing oxygen.

Oxides

Platinum(IV) oxide, PtO2, also known as "Adams' catalyst", is a black powder that is soluble in potassium hydroxide (KOH) solutions and concentrated acids.[39] PtO2 and the less common PtO both decompose upon heating.[12] Platinum(II,IV) oxide, Pt3O4, is formed in the following reaction:

2 Pt2+ + Pt4+ + 4 O2− → Pt3O4

Other compounds

Unlike palladium acetate, platinum(II) acetate is not commercially available. Where a base is desired, the halides have been used in conjunction with sodium acetate.[21] The use of platinum(II) acetylacetonate has also been reported.[40]

Several barium platinides have been synthesized in which platinum exhibits negative oxidation states ranging from −1 to −2. These include BaPt, Ba
3
Pt
2
, and Ba
2
Pt
.[41] Caesium platinide, Cs
2
Pt
, a dark-red transparent crystalline compound[42] has been shown to contain Pt2−
anions.[43] Platinum also exhibits negative oxidation states at surfaces reduced electrochemically.[44] The negative oxidation states exhibited by platinum are unusual for metallic elements, and they are attributed to the relativistic stabilization of the 6s orbitals.[43]

It is predicted that even the cation PtO2+
4
in which platinum exists in +10 oxidation state may be achievable.[45]

Zeise's salt, containing an ethylene ligand, was one of the first organometallic compounds discovered. Dichloro(cycloocta-1,5-diene)platinum(II) is a commercially available olefin complex, which contains easily displaceable cod ligands ("cod" being an abbreviation of 1,5-cyclooctadiene). The cod complex and the halides are convenient starting points to platinum chemistry.[21]

Cisplatin, or cis-diamminedichloroplatinum(II) is the first of a series of square planar platinum(II)-containing chemotherapy drugs.[46] Others include carboplatin and oxaliplatin. These compounds are capable of crosslinking DNA, and kill cells by similar pathways to alkylating chemotherapeutic agents.[47] (Side effects of cisplatin include nausea and vomiting, hair loss, tinnitus, hearing loss, and nephrotoxicity.)[48][49]

Organoplatinum compounds such as the above antitumour agents, as well as soluble inorganic platinum complexes, are routinely characterised using 195
Pt
nuclear magnetic resonance spectroscopy
.

History

Early uses

Archaeologists have discovered traces of platinum in the gold used in ancient Egyptian burials as early as 1200 BCE. For example, a small box from burial of Shepenupet II was found to be decorated with gold-platinum hieroglyphics.[50] However, the extent of early Egyptians' knowledge of the metal is unclear. It is quite possible they did not recognize there was platinum in their gold.[51][52]

The metal was used by Native Americans near modern-day Esmeraldas, Ecuador to produce artifacts of a white gold-platinum alloy. Archeologists usually associate the tradition of platinum-working in South America with the La Tolita Culture (c. 600 BCE – 200 CE), but precise dates and location is difficult, as most platinum artifacts from the area were bought secondhand through the antiquities trade rather than obtained by direct archeological excavation.[53] To work the metal, they would combine gold and platinum powders by sintering. The resulting gold–platinum alloy would then be soft enough to shape with tools.[54][55] The platinum used in such objects was not the pure element, but rather a naturally occurring mixture of the platinum group metals, with small amounts of palladium, rhodium, and iridium.[56]

European discovery

The first European reference to platinum appears in 1557 in the writings of the Italian humanist Julius Caesar Scaliger as a description of an unknown noble metal found between Darién and Mexico, "which no fire nor any Spanish artifice has yet been able to liquefy".[57] From their first encounters with platinum, the Spanish generally saw the metal as a kind of impurity in gold, and it was treated as such. It was often simply thrown away, and there was an official decree forbidding the adulteration of gold with platinum impurities.[56]

 
This alchemical symbol for platinum was made by joining the symbols of silver (moon) and gold (sun).
 
Antonio de Ulloa is credited in European history with the discovery of platinum.

In 1735, Antonio de Ulloa and Jorge Juan y Santacilia saw Native Americans mining platinum while the Spaniards were travelling through Colombia and Peru for eight years. Ulloa and Juan found mines with the whitish metal nuggets and took them home to Spain. Antonio de Ulloa returned to Spain and established the first mineralogy lab in Spain and was the first to systematically study platinum, which was in 1748. His historical account of the expedition included a description of platinum as being neither separable nor calcinable. Ulloa also anticipated the discovery of platinum mines. After publishing the report in 1748, Ulloa did not continue to investigate the new metal. In 1758, he was sent to superintend mercury mining operations in Huancavelica.[57]

In 1741, Charles Wood,[58] a British metallurgist, found various samples of Colombian platinum in Jamaica, which he sent to William Brownrigg for further investigation.

In 1750, after studying the platinum sent to him by Wood, Brownrigg presented a detailed account of the metal to the Royal Society, stating that he had seen no mention of it in any previous accounts of known minerals.[59] Brownrigg also made note of platinum's extremely high melting point and refractoriness toward borax.[clarification needed] Other chemists across Europe soon began studying platinum, including Andreas Sigismund Marggraf,[60] Torbern Bergman, Jöns Jakob Berzelius, William Lewis, and Pierre Macquer. In 1752, Henrik Scheffer published a detailed scientific description of the metal, which he referred to as "white gold", including an account of how he succeeded in fusing platinum ore with the aid of arsenic. Scheffer described platinum as being less pliable than gold, but with similar resistance to corrosion.[57]

Means of malleability

Karl von Sickingen researched platinum extensively in 1772. He succeeded in making malleable platinum by alloying it with gold, dissolving the alloy in hot aqua regia, precipitating the platinum with ammonium chloride, igniting the ammonium chloroplatinate, and hammering the resulting finely divided platinum to make it cohere. Franz Karl Achard made the first platinum crucible in 1784. He worked with the platinum by fusing it with arsenic, then later volatilizing the arsenic.[57]

Because the other platinum-family members were not discovered yet (platinum was the first in the list), Scheffer and Sickingen made the false assumption that due to its hardness—which is slightly more than for pure iron—platinum would be a relatively non-pliable material, even brittle at times, when in fact its ductility and malleability are close to that of gold. Their assumptions could not be avoided because the platinum they experimented with was highly contaminated with minute amounts of platinum-family elements such as osmium and iridium, amongst others, which embrittled the platinum alloy. Alloying this impure platinum residue called "plyoxen"[citation needed] with gold was the only solution at the time to obtain a pliable compound, but nowadays, very pure platinum is available and extremely long wires can be drawn from pure platinum, very easily, due to its crystalline structure, which is similar to that of many soft metals.[61]

In 1786, Charles III of Spain provided a library and laboratory to Pierre-François Chabaneau to aid in his research of platinum. Chabaneau succeeded in removing various impurities from the ore, including gold, mercury, lead, copper, and iron. This led him to believe he was working with a single metal, but in truth the ore still contained the yet-undiscovered platinum-group metals. This led to inconsistent results in his experiments. At times, the platinum seemed malleable, but when it was alloyed with iridium, it would be much more brittle. Sometimes the metal was entirely incombustible, but when alloyed with osmium, it would volatilize. After several months, Chabaneau succeeded in producing 23 kilograms of pure, malleable platinum by hammering and compressing the sponge form while white-hot. Chabeneau realized the infusibility of platinum would lend value to objects made of it, and so started a business with Joaquín Cabezas producing platinum ingots and utensils. This started what is known as the "platinum age" in Spain.[57]

Production

 
An aerial photograph of a platinum mine in South Africa. South Africa accounts for ~80% of global platinum production and a majority of the world's known platinum deposits.
 
Time trend of platinum production[62]

Platinum, along with the rest of the platinum-group metals, is obtained commercially as a by-product from nickel and copper mining and processing. During electrorefining of copper, noble metals such as silver, gold and the platinum-group metals as well as selenium and tellurium settle to the bottom of the cell as "anode mud", which forms the starting point for the extraction of the platinum-group metals.[63]

If pure platinum is found in placer deposits or other ores, it is isolated from them by various methods of subtracting impurities. Because platinum is significantly denser than many of its impurities, the lighter impurities can be removed by simply floating them away in a liquid. Platinum is paramagnetic, whereas nickel and iron are both ferromagnetic. These two impurities are thus removed by running an electromagnet over the mixture. Because platinum has a higher melting point than most other substances, many impurities can be burned or melted away without melting the platinum. Finally, platinum is resistant to hydrochloric and sulfuric acids, whereas other substances are readily attacked by them. Metal impurities can be removed by stirring the mixture in either of the two acids and recovering the remaining platinum.[64]

One suitable method for purification for the raw platinum, which contains platinum, gold, and the other platinum-group metals, is to process it with aqua regia, in which palladium, gold and platinum are dissolved, whereas osmium, iridium, ruthenium and rhodium stay unreacted. The gold is precipitated by the addition of iron(II) chloride and after filtering off the gold, the platinum is precipitated as ammonium chloroplatinate by the addition of ammonium chloride. Ammonium chloroplatinate can be converted to platinum by heating.[65] Unprecipitated hexachloroplatinate(IV) may be reduced with elemental zinc, and a similar method is suitable for small scale recovery of platinum from laboratory residues.[66] Mining and refining platinum has environmental impacts.[67]

Applications

 

Of the 218 tonnes of platinum sold in 2014, 98 tonnes were used for vehicle emissions control devices (45%), 74.7 tonnes for jewelry (34%), 20.0 tonnes for chemical production and petroleum refining (9.2%), and 5.85 tonnes for electrical applications such as hard disk drives (2.7%). The remaining 28.9 tonnes went to various other minor applications, such as medicine and biomedicine, glassmaking equipment, investment, electrodes, anticancer drugs, oxygen sensors, spark plugs and turbine engines.[68]

Catalyst

The most common use of platinum is as a catalyst in chemical reactions, often as platinum black. It has been employed as a catalyst since the early 19th century, when platinum powder was used to catalyze the ignition of hydrogen. Its most important application is in automobiles as a catalytic converter, which allows the complete combustion of low concentrations of unburned hydrocarbons from the exhaust into carbon dioxide and water vapor. Platinum is also used in the petroleum industry as a catalyst in a number of separate processes, but especially in catalytic reforming of straight-run naphthas into higher-octane gasoline that becomes rich in aromatic compounds. PtO2, also known as Adams' catalyst, is used as a hydrogenation catalyst, specifically for vegetable oils.[36] Platinum also strongly catalyzes the decomposition of hydrogen peroxide into water and oxygen[69] and it is used in fuel cells[70] as a catalyst for the reduction of oxygen.[71]

Standard

 
Prototype International Meter bar made by Johnson Matthey

From 1889 to 1960, the meter was defined as the length of a platinum-iridium (90:10) alloy bar, known as the international prototype meter. The previous bar was made of platinum in 1799. Until May 2019, the kilogram was defined as the mass of the international prototype of the kilogram, a cylinder of the same platinum-iridium alloy made in 1879.[72]

The Standard Platinum Resistance Thermometer (SPRT) is one of the four types of thermometers used to define the International Temperature Scale of 1990 (ITS-90), the international calibration standard for temperature measurements. The resistance wire in the thermometer is made of pure platinum (NIST manufactured the wires from platinum bar stock with a chemical purity of 99.999% by weight).[73][74] In addition to laboratory uses, Platinum Resistance Thermometry (PRT) also has many industrial applications, industrial standards include ASTM E1137 and IEC 60751.

The standard hydrogen electrode also uses a platinized platinum electrode due to its corrosion resistance, and other attributes.[75]

As an investment

Platinum is a precious metal commodity; its bullion has the ISO currency code of XPT. Coins, bars, and ingots are traded or collected. Platinum finds use in jewellery, usually as a 90–95% alloy, due to its inertness. It is used for this purpose for its prestige and inherent bullion value. Jewellery trade publications advise jewellers to present minute surface scratches (which they term patina) as a desirable feature in an attempt to enhance value of platinum products.[76][77]

In watchmaking, Vacheron Constantin, Patek Philippe, Rolex, Breitling, and other companies use platinum for producing their limited edition watch series. Watchmakers appreciate the unique properties of platinum, as it neither tarnishes nor wears out (the latter quality relative to gold).[78]

During periods of sustained economic stability and growth, the price of platinum tends to be as much as twice the price of gold, whereas during periods of economic uncertainty,[79] the price of platinum tends to decrease due to reduced industrial demand, falling below the price of gold. Gold prices are more stable in slow economic times , as gold is considered a safe haven[citation needed]. Although gold is also used in industrial applications, especially in electronics due to its use as a conductor, its demand is not so driven by industrial uses[citation needed]. In the 18th century, platinum's rarity made King Louis XV of France declare it the only metal fit for a king.[80]

Other uses

In the laboratory, platinum wire is used for electrodes; platinum pans and supports are used in thermogravimetric analysis because of the stringent requirements of chemical inertness upon heating to high temperatures (~1000 °C). Platinum is used as an alloying agent for various metal products, including fine wires, noncorrosive laboratory containers, medical instruments, dental prostheses, electrical contacts, and thermocouples. Platinum-cobalt, an alloy of roughly three parts platinum and one part cobalt, is used to make relatively strong permanent magnets.[36] Platinum-based anodes are used in ships, pipelines, and steel piers.[20] Platinum drugs are used to treat a wide variety of cancers, including testicular and ovarian carcinomas, melanoma, small-cell and non-small-cell lung cancer, myelomas and lymphomas.[82]

Symbol of prestige in marketing

Platinum's rarity as a metal has caused advertisers to associate it with exclusivity and wealth. "Platinum" debit and credit cards have greater privileges than "gold" cards.[83] "Platinum awards" are the second highest possible, ranking above "gold", "silver" and "bronze", but below diamond. For example, in the United States, a musical album that has sold more than 1 million copies will be credited as "platinum", whereas an album that has sold more than 10 million copies will be certified as "diamond".[84] Some products, such as blenders and vehicles, with a silvery-white color are identified as "platinum". Platinum is considered a precious metal, although its use is not as common as the use of gold or silver. The frame of the Crown of Queen Elizabeth The Queen Mother, manufactured for her coronation as Consort of King George VI, is made of platinum. It was the first British crown to be made of this particular metal.[85]

Health problems

According to the Centers for Disease Control and Prevention, short-term exposure to platinum salts may cause irritation of the eyes, nose, and throat, and long-term exposure may cause both respiratory and skin allergies. The current OSHA standard is 2 micrograms per cubic meter of air averaged over an 8-hour work shift.[86] The National Institute for Occupational Safety and Health has set a recommended exposure limit (REL) for platinum as 1 mg/m3 over an 8-hour workday.[87]

As platinum is a catalyst in the manufacture of the silicone rubber and gel components of several types of medical implants (breast implants, joint replacement prosthetics, artificial lumbar discs, vascular access ports, etc.), the possibility that platinum could enter the body and cause adverse effects has merited study. The Food and Drug Administration and other institutions have reviewed the issue and found no evidence to suggest toxicity in vivo.[88][89] Chemically unbounded platinum has been identified by the FDA as a "fake cancer 'cure'".[90] The misunderstanding is created by healthcare workers who are using inappropriately the name of the metal as a slang term for platinum-based chemotherapy medications like cisplatin.[citation needed] They are platinum compounds, not the metal itself.

See also

References

  1. ^ "Standard Atomic Weights: Platinum". CIAAW. 2005.
  2. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  3. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. ^ . Encyclopædia Britannica. Encyclopædia Britannica Inc. 2012. Archived from the original on 5 April 2012. Retrieved 24 April 2012.
  5. ^ Harper, Douglas. "platinum". Online Etymology Dictionary.
  6. ^ Hobson, Peter. "Currency shocks knock platinum to 10-year lows". Reuters. Retrieved 20 August 2018.
  7. ^ "Platinum in the Glass Industry". Johnson Matthey Technology Review.
  8. ^ "Chapter 6.11 Platinum" (PDF), Air Quality Guidelines (2nd ed.), WHO Regional Office for Europe, Copenhagen, Denmark, 2000, (PDF) from the original on 18 October 2012
  9. ^ Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. (2010). "The status of platinum anticancer drugs in the clinic and in clinical trials" (PDF). Dalton Transactions. 39 (35): 8113–27. doi:10.1039/C0DT00292E. hdl:2123/14271. PMID 20593091.
  10. ^ "Platinum Prices vs Gold Prices".
  11. ^ "Live latinum Price Charts & Historical Data". APMEX. Retrieved 14 March 2021.
  12. ^ a b Lagowski, J. J., ed. (2004). Chemistry Foundations and Applications. Vol. 3. Thomson Gale. pp. 267–268. ISBN 978-0-02-865724-0.
  13. ^ Schwartz, M. (2002). Encyclopedia and Handbook of Materials, Parts and Finishes (2nd ed.). CRC Press. ISBN 9781420017168.
  14. ^ Vaccari, J.A.; Clauser, H.R.; Brady, G.S. (2002). Materials handbook: an encyclopedia for managers, technical professionals, purchasing and production managers, technicians, and supervisors (15th ed.). McGraw-Hill. ISBN 9780071360760.
  15. ^ Craig, Bruce D; Anderson, David S; International, A.S.M. (January 1995). "Platinum". Handbook of corrosion data. pp. 8–9. ISBN 978-0-87170-518-1. from the original on 24 March 2017.
  16. ^ Chaston, J.C. "Reaction of Oxygen with the Platinum Metals". technology.matthey.com. Retrieved 30 July 2022.
  17. ^ Brewer, Leo (1953). "Thermodynamic Properties of the Oxides and their Vaporization Processes". Chemical Reviews. 53: 1–75. doi:10.1021/cr60161a001. Retrieved 30 July 2022.
  18. ^ Sir Norman Lockyer (1891). Nature. Macmillan Journals Limited. pp. 625–. from the original on 24 March 2017.
  19. ^ a b Kauffman, George B.; Thurner, Joseph J.; Zatko, David A. (1967). Ammonium Hexachloroplatinate(IV). Inorganic Syntheses. Vol. 9. pp. 182–185. doi:10.1002/9780470132401.ch51. ISBN 978-0-470-13240-1.
  20. ^ a b c CRC contributors (2007–2008). "Platinum". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics. Vol. 4. New York: CRC Press. p. 26. ISBN 978-0-8493-0488-0.
  21. ^ a b c Han, Y.; Huynh, H. V.; Tan, G. K. (2007). "Mono- vs Bis(carbene) Complexes: A Detailed Study on Platinum(II)−Benzimidazolin-2-ylidenes". Organometallics. 26 (18): 4612–4617. doi:10.1021/om700543p.
  22. ^ Ertl, Gerhard (2008). "Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture)". Angewandte Chemie International Edition. 47 (19): 385–407. doi:10.1002/anie.200800480. PMID 18357601.
  23. ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  24. ^ Cohen, D. (23 May 2007). "Earth's natural wealth: an audit". New Scientist. doi:10.1016/S0262-4079(07)61315-3.
  25. ^ Stellman, Jeanne Mager (1998). Encyclopaedia of Occupational Health and Safety: Chemical, industries and occupations. International Labour Organization. p. 141. ISBN 978-92-2-109816-4. from the original on 24 March 2017.
  26. ^ Murata, K. J. (1958). in Symposium on Spectrocemical Analysis for Trace Elements. ASTM International. p. 71. from the original on 24 March 2017.
  27. ^ "The History of Platinum". Alaska Community Database Online. ExploreNorth. from the original on 22 December 2010. Retrieved 12 April 2011. Platinum is located on the Bering Sea coast, below Red Mountain on the south spit of Goodnews Bay.
  28. ^ Xiao, Z.; Laplante, A. R. (2004). "Characterizing and recovering the platinum group minerals—a review". Minerals Engineering. 17 (9–10): 961–979. doi:10.1016/j.mineng.2004.04.001.
  29. ^ Dan Oancea Platinum In South Africa 13 August 2011 at the Wayback Machine. MINING.com. September 2008
  30. ^ R. Grant Cawthorn (1999). "Seventy-fifth Anniversary of the Discovery of the Platiniferous Merensky Reef". Platinum Metals Review. Retrieved 24 December 2017.
  31. ^ a b Seymour, R. J.; O'Farrelly, J. I. (2001). "Platinum-group metals". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.1612012019052513.a01.pub2. ISBN 978-0471238966.
  32. ^ "Mining Platinum in Montana". New York Times. 13 August 1998. from the original on 3 February 2008. Retrieved 9 September 2008.
  33. ^ Loferski, P. J. (July 2012). "Platinum–Group Metals" (PDF). USGS Mineral Resources Program. (PDF) from the original on 7 July 2012. Retrieved 17 July 2012.
  34. ^ "Evidence of huge deposits of platinum in State". The Hindu. Chennai, India. 2 July 2010. from the original on 6 December 2011.
  35. ^ Koeberl, Christian (1998). "Identification of meteoritic components in imactites". Meteorites: flux with time and impact effects. pp. 133–155. ISBN 978-1-86239-017-1. from the original on 24 March 2017.
  36. ^ a b c Krebs, Robert E. (1998). "Platinum". The History and Use of our Earth's Chemical Elements. Greenwood Press. pp. 124–127. ISBN 978-0-313-30123-0.
  37. ^ Smith, G. F.; Gring, J. L. (1933). "The Separation and Determination of the Alkali Metals Using Perchloric Acid. V. Perchloric Acid and Chloroplatinic Acid in the Determination of Small Amounts of Potassium in the Presence of Large Amounts of Sodium". Journal of the American Chemical Society. 55 (10): 3957–3961. doi:10.1021/ja01337a007.
  38. ^ Schweizer, A. E.; Kerr, G. T. (1978). "Thermal Decomposition of Hexachloroplatinic Acid". Inorganic Chemistry. 17 (8): 2326–2327. doi:10.1021/ic50186a067.
  39. ^ Perry, D. L. (1995). Handbook of Inorganic Compounds. Nature. Vol. 177. pp. 296–298. Bibcode:1956Natur.177..639.. doi:10.1038/177639a0. ISBN 978-0-8493-8671-8. S2CID 4184615.
  40. ^ Ahrens, Sebastian; Strassner, Thomas (2006). "Detour-free synthesis of platinum-bis-NHC chloride complexes, their structure and catalytic activity in the CH activation of methane". Inorganica Chimica Acta. 359 (15): 4789–4796. doi:10.1016/j.ica.2006.05.042.
  41. ^ Karpov, Andrey; Konuma, Mitsuharu; Jansen, Martin (2006). "An experimental proof for negative oxidation states of platinum: ESCA-measurements on barium platinides". Chemical Communications. 44 (8): 838–840. doi:10.1039/b514631c. PMID 16479284.
  42. ^ Karpov, Andrey; Nuss, Jürgen; Wedig, Ulrich; Jansen, Martin (2003). "Cs2Pt: A Platinide(-II) Exhibiting Complete Charge Separation". Angewandte Chemie International Edition. 42 (39): 4818–21. doi:10.1002/anie.200352314. PMID 14562358.
  43. ^ a b Jansen, Martin (2005). "Effects of relativistic motion of electrons on the chemistry of gold and platinum". Solid State Sciences. 7 (12): 1464–74. Bibcode:2005SSSci...7.1464J. doi:10.1016/j.solidstatesciences.2005.06.015.
  44. ^ Ghilane, J.; Lagrost, C.; Guilloux-Viry, M.; Simonet, J.; et al. (2007). "Spectroscopic Evidence of Platinum Negative Oxidation States at Electrochemically Reduced Surfaces". Journal of Physical Chemistry C. 111 (15): 5701–7. doi:10.1021/jp068879d.
  45. ^ Gunther, M. (13 June 2016). "Oxidation state +10 may exist in a platinum compound". Chemistry World.
    Yu, H.S.; Truhlar, D.G. (2016). "Oxidation State 10 Exists". Angew. Chem. Int. Ed. 55 (31): 9004–6. doi:10.1002/anie.201604670. PMID 27273799.
  46. ^ Riddell, Imogen A.; Lippard, Stephen J. (2018). "Cisplatin and Oxaliplatin:Our Current Understanding of Their Actions". In Sigel, Astrid; Sigel, Helmut; Freisinger, Eva; Sigel, Roland K. O. (eds.). Metallo-Drugs:Development and Action of Anticancer Agents. Metal Ions in Life Sciences. Vol. 18. pp. 1–42. doi:10.1515/9783110470734-007. ISBN 978-3-11-046984-4. PMID 29394020.
  47. ^ Richards, A. D.; Rodger, A. (2007). "Synthetic metallomolecules as agents for the control of DNA structure" (PDF). Chemical Society Reviews. 36 (3): 471–483. doi:10.1039/b609495c. PMID 17325786.
  48. ^ Carinder, James A.; Morrison, Pilar M.; Morrison, David G.; Jack E. Saux III (7 July 2014). Practical Oncology Protocols. Mill City Press, Incorporated. p. 22. ISBN 978-1-62652-816-1. from the original on 9 November 2017. Retrieved 11 June 2016.
  49. ^ Taguchi, Takashi; Nazneen, Arifa; Abid, M. Ruhul; Razzaque, Mohammed S. (2005). Cisplatin-Associated Nephrotoxicity and Pathological Events. Contributions to Nephrology. Vol. 148. pp. 107–121. doi:10.1159/000086055. ISBN 978-3-8055-7858-5. PMID 15912030. S2CID 24509477.
  50. ^ Berthelot, M. (1901). "Sur les métaux égyptiens: Présence du platine parmi les caractères d'inscriptions hiéroglyphiques, confié à mon examn" [On Egyptian metals: Presence of platinum among the characters of hieroglyphic inscriptions, entrusted to my examination]. Comptes rendus de l'Académie des Sciences (in French). 132: 729.
  51. ^ Rayner W. Hesse (2007). Jewelrymaking Through History: An Encyclopedia. Greenwood Publishing Group. pp. 155–6. ISBN 978-0-313-33507-5.
  52. ^ Ogden, Jack M. (1976). "The So-Called 'Platinum' Inclusions in Egyptian Goldwork". The Journal of Egyptian Archaeology. SAGE Publications. 62 (1): 138–144. doi:10.1177/030751337606200116. ISSN 0307-5133. S2CID 192364303.
  53. ^ David A. Scott and Warwick Bray (1980). "Ancient Platinum Technology in South America: Its use by the Indians in Pre-Hispanic Times". Platinum Metals Review. Retrieved 5 November 2018.
  54. ^ Bergsøe, Paul (1936). "Metallurgy of Gold and Platinum among the Pre-Columbian Indians". Nature. Springer Science and Business Media LLC. 137 (3453): 29. Bibcode:1936Natur.137...29B. doi:10.1038/137029a0. ISSN 0028-0836. S2CID 4100269.
  55. ^ Meeks, N.; La Niece, S.; Estevez, P. (2002). "The technology of early platinum plating: a gold mask of the La Tolita culture, Ecuador". Archaeometry. Wiley. 44 (2): 273–284. doi:10.1111/1475-4754.t01-1-00059. ISSN 0003-813X.
  56. ^ a b Donald McDonald, Leslie B. Hunt (1982). A History of Platinum and its Allied Metals. Johnson Matthey Plc. pp. 7–8. ISBN 978-0-905118-83-3.
  57. ^ a b c d e Weeks, M. E. (1968). Discovery of the Elements (7th ed.). Journal of Chemical Education. pp. 385–407. ISBN 978-0-8486-8579-9. OCLC 23991202.
  58. ^ Dixon, Joshua; Brownrigg, William (1801). The literary life of William Brownrigg. To which are added an account of the coal mines near Whitehaven: And Observations on the means of preventing epidemic fevers. p. 52. from the original on 24 March 2017.
  59. ^ Watson, Wm; Brownrigg, William (1749). "Several Papers concerning a New Semi-Metal, Called Platina; Communicated to the Royal Society by Mr. Wm. Watson F. R. S". Philosophical Transactions. 46 (491–496): 584–596. Bibcode:1749RSPT...46..584W. doi:10.1098/rstl.1749.0110. S2CID 186213277.
  60. ^ Marggraf, Andreas Sigismund (1760). Versuche mit dem neuen mineralischen Körper Platina del pinto genannt. from the original on 24 March 2017.
  61. ^ Platinum 22 December 2011 at the Wayback Machine. mysite.du.edu
  62. ^ Kelly, Thomas D. and Matos, Grecia R. (2013)Historical Statistics for Mineral and Material Commodities in the United States 4 June 2013 at the Wayback Machine, U.S. Geological Survey
  63. ^ Loferski, P. J. (October 2011). "2010 Minerals Yearbook; Platinum-group metals" (PDF). USGS Mineral Resources Program. (PDF) from the original on 8 July 2012. Retrieved 17 July 2012.
  64. ^ Heiserman, David L. (1992). Exploring Chemical Elements and their Compounds. TAB Books. pp. 272–4. ISBN 978-0-8306-3018-9.
  65. ^ Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138. (PDF) from the original on 29 October 2008.
  66. ^ Kauffman, George B.; Teter, Larry A. & Rhoda, Richard N. (1963). Recovery of Platinum from Laboratory Residues. Inorg. Synth. Inorganic Syntheses. Vol. 7. pp. 232–6. doi:10.1002/9780470132388.ch61. ISBN 978-0-470-13238-8.
  67. ^ Cairncross, E. (March 2014). "Health and environmental impacts of platinum mining: Report from South Africa" (PDF). (PDF) from the original on 5 October 2016. Retrieved 4 October 2016.
  68. ^ Loferski, P. J. (July 2016). "2014 Minerals Yearbook; Platinum-group metals" (PDF). USGS Mineral Resources Program. (PDF) from the original on 18 August 2016. Retrieved 11 July 2016.
  69. ^ Petrucci, Ralph H. (2007). General Chemistry: Principles & Modern Applications (9th ed.). Prentice Hall. p. 606. ISBN 978-0-13-149330-8.
  70. ^ Laramie, James; Dicks, Andrew (2003). Fuel Cell System Explained. John Wiley & Sons Ltd. ISBN 978-0-470-84857-9.
  71. ^ Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. (2008). "A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen". Angewandte Chemie International Edition. 47 (19): 3588–91. doi:10.1002/anie.200800073. PMID 18399516.
  72. ^ Gupta, S. V. (2010). "Chapter 4. Metre Convention and Evolution of Base Units". Units of Measurement. Springer Series in Materials Science. Vol. 122. p. 47. doi:10.1007/978-3-642-00738-5_4. ISBN 978-3-642-00777-4. S2CID 150519250.
  73. ^ (PDF). International Committee for Weights and Measures. Archived from the original (PDF) on 24 February 2021. Retrieved 23 October 2020.
  74. ^ "Standard Reference Material 1750:Standard Platinum Resistance Thermometers,13.8033 K to 429.7485 K" (PDF). NIST.
  75. ^ Feltham, A. M.; Spiro, Michael (1971). "Platinized platinum electrodes". Chemical Reviews. 71 (2): 177–193. doi:10.1021/cr60270a002.
  76. ^ "Professional Jeweler's Magazine Archives, issue of August 2004". from the original on 28 September 2011. Retrieved 19 June 2011.
  77. ^ "Platinum primer". Diamond Cutters International. 12 December 2008. from the original on 27 September 2011. Retrieved 18 June 2011.
  78. ^ . watches.infoniac.com. Archived from the original on 21 September 2008. Retrieved 9 September 2008.
  79. ^ . The Speculative Invertor. 14 April 2002. Archived from the original on 26 October 2008.
  80. ^ . Minerals Zone. Archived from the original on 12 October 2008. Retrieved 9 September 2008.
  81. ^ "21.09kg Pt". WolframAlpha. from the original on 23 August 2014. Retrieved 14 July 2012.
  82. ^ Apps, Michael G; Choi, Eugene H Y; Wheate, Nial J (August 2015). "The state-of-play and future of platinum drugs". Endocrine-Related Cancer. Society for Endocrinology. 22 (4): R219–R233. doi:10.1530/ERC-15-0237. PMID 26113607.
  83. ^ Gwin, John (1986). "Pricing Financial Institution Products". Journal of Professional Services Marketing. 1 (3): 91–99. doi:10.1300/J090v01n03_07.
  84. ^ Crouse, Richard (1 May 2000). Big Bang Baby: The Rock Trivia Book. p. 126. ISBN 978-0-88882-219-2. from the original on 24 March 2017.
  85. ^ Gauding, Madonna (6 October 2009). The Signs and Symbols Bible: The Definitive Guide to Mysterious Markings. ISBN 978-1-4027-7004-3. from the original on 24 March 2017.
  86. ^ "Occupational Health Guideline for Soluble Platinum Salts (as Platinum)" (PDF). Centers for Disease Control and Prevention. (PDF) from the original on 11 March 2010. Retrieved 9 September 2008.
  87. ^ "CDC – NIOSH Pocket Guide to Chemical Hazards – Platinum". www.cdc.gov. from the original on 21 November 2015. Retrieved 21 November 2015.
  88. ^ . U.S. Food and Drug Administration. Archived from the original on 24 July 2008. Retrieved 9 September 2008.
  89. ^ Brook, Michael (2006). "Platinum in silicone breast implants". Biomaterials. 27 (17): 3274–86. doi:10.1016/j.biomaterials.2006.01.027. PMID 16483647.
  90. ^ . U.S. Food and Drug Administration. Archived from the original on 2 May 2017. Retrieved 20 May 2020.

Further reading

  • Young, Gordon (November 1983). "The Miracle Metal—Platinum". National Geographic. Vol. 164, no. 5. pp. 686–706. ISSN 0027-9358. OCLC 643483454.

External links

  • Platinum at The Periodic Table of Videos (University of Nottingham)
  • Nuclides and Isotopes Fourteenth Edition: Chart of the Nuclides, General Electric Company, 1989.
  • NIOSH Pocket Guide to Chemical Hazards – Platinum Centers for Disease Control and Prevention
  • "The PGM Database".
  • "A balanced historical account of the sequence of discoveries of platinum; illustrated".
  • "Johnson Matthey Technology Review: A free, quarterly journal of research exploring science and technology in industrial applications (formerly published as Platinum Metals Review)".
  • "Platinum-Group Metals Statistics and Information". United States Geological Survey.
  • "International Platinum Group Metals Association".

platinum, this, article, about, chemical, element, other, uses, disambiguation, confused, with, palladium, chemical, element, with, symbol, atomic, number, dense, malleable, ductile, highly, unreactive, precious, silverish, white, transition, metal, name, orig. This article is about the chemical element For other uses see Platinum disambiguation Not to be confused with Palladium Platinum is a chemical element with the symbol Pt and atomic number 78 It is a dense malleable ductile highly unreactive precious silverish white transition metal Its name originates from Spanish platina a diminutive of plata silver 4 5 Platinum 78PtPlatinumPronunciation ˈ p l ae t en e m wbr PLAT en em Appearancesilvery whiteStandard atomic weight Ar Pt 195 084 0 009195 08 0 02 abridged 1 Platinum in the periodic tableHydrogen HeliumLithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine NeonSodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine ArgonPotassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine KryptonRubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine XenonCaesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury element Thallium Lead Bismuth Polonium Astatine RadonFrancium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson Pd Pt Dsiridium platinum goldAtomic number Z 78Groupgroup 10Periodperiod 6Block d blockElectron configuration Xe 4f14 5d9 6s1Electrons per shell2 8 18 32 17 1Physical propertiesPhase at STPsolidMelting point2041 4 K 1768 3 C 3214 9 F Boiling point4098 K 3825 C 6917 F Density near r t 21 45 g cm3when liquid at m p 19 77 g cm3Heat of fusion22 17 kJ molHeat of vaporization510 kJ molMolar heat capacity25 86 J mol K Vapor pressureP Pa 1 10 100 1 k 10 k 100 kat T K 2330 2550 2815 3143 3556 4094Atomic propertiesOxidation states 3 2 1 0 1 2 3 4 5 6 a mildly basic oxide ElectronegativityPauling scale 2 28Ionization energies1st 870 kJ mol2nd 1791 kJ molAtomic radiusempirical 139 pmCovalent radius136 5 pmVan der Waals radius175 pmSpectral lines of platinumOther propertiesNatural occurrenceprimordialCrystal structure face centered cubic fcc Speed of sound thin rod2800 m s at r t Thermal expansion8 8 µm m K at 25 C Thermal conductivity71 6 W m K Electrical resistivity105 nW m at 20 C Magnetic orderingparamagneticMolar magnetic susceptibility 201 9 10 6 cm3 mol 290 K 2 Tensile strength125 240 MPaYoung s modulus168 GPaShear modulus61 GPaBulk modulus230 GPaPoisson ratio0 38Mohs hardness3 5Vickers hardness400 550 MPaBrinell hardness300 500 MPaCAS Number7440 06 4HistoryDiscoveryAntonio de Ulloa 1735 Isotopes of platinumveMain isotopes 3 Decayabun dance half life t1 2 mode pro duct190Pt 0 0120 4 83 1011 y a 186Os192Pt 0 782 stable193Pt synth 50 y e 193Ir194Pt 32 9 stable195Pt 33 8 stable196Pt 25 2 stable198Pt 7 36 stable Category Platinumviewtalkedit referencesPlatinum is a member of the platinum group of elements and group 10 of the periodic table of elements It has six naturally occurring isotopes It is one of the rarer elements in Earth s crust with an average abundance of approximately 5 mg kg It occurs in some nickel and copper ores along with some native deposits mostly in South Africa which accounts for 80 of the world production Because of its scarcity in Earth s crust only a few hundred tonnes are produced annually and given its important uses it is highly valuable and is a major precious metal commodity 6 Platinum is one of the least reactive metals It has remarkable resistance to corrosion even at high temperatures and is therefore considered a noble metal Consequently platinum is often found chemically uncombined as native platinum Because it occurs naturally in the alluvial sands of various rivers it was first used by pre Columbian South American natives to produce artifacts It was referenced in European writings as early as the 16th century but it was not until Antonio de Ulloa published a report on a new metal of Colombian origin in 1748 that it began to be investigated by scientists Platinum is used in catalytic converters laboratory equipment electrical contacts and electrodes platinum resistance thermometers dentistry equipment and jewelry Platinum is used in the glass industry 7 to manipulate molten glass which does not wet platinum As a heavy metal it leads to health problems upon exposure to its salts but due to its corrosion resistance metallic platinum has not been linked to adverse health effects 8 Compounds containing platinum such as cisplatin oxaliplatin and carboplatin are applied in chemotherapy against certain types of cancer 9 Pure platinum is currently less expensive than pure gold having been so continuously since 2015 but has been twice as expensive or more mostly prior to 2008 10 In early 2021 the value of platinum ranged from US 1 055 to US 1 320 per troy ounce 11 Contents 1 Characteristics 1 1 Physical 1 2 Chemical 1 3 Isotopes 1 4 Occurrence 2 Compounds 2 1 Halides 2 2 Oxides 2 3 Other compounds 3 History 3 1 Early uses 3 2 European discovery 3 3 Means of malleability 4 Production 5 Applications 5 1 Catalyst 5 2 Standard 5 3 As an investment 5 4 Other uses 5 5 Symbol of prestige in marketing 6 Health problems 7 See also 8 References 9 Further reading 10 External linksCharacteristics EditPhysical Edit Pure platinum is a lustrous ductile and malleable silver white metal 12 Platinum is more ductile than gold silver or copper thus being the most ductile of pure metals but it is less malleable than gold 13 14 Its physical characteristics and chemical stability make it useful for industrial applications 15 Its resistance to wear and tarnish is well suited to use in fine jewellery Chemical Edit See also Platinum group Platinum being dissolved in hot aqua regia Platinum has excellent resistance to corrosion Bulk platinum does not oxidize in air at any temperature but it forms a thin surface film of PtO2 that can be easily removed by heating to about 400 C 16 17 The most common oxidation states of platinum are 2 and 4 The 1 and 3 oxidation states are less common and are often stabilized by metal bonding in bimetallic or polymetallic species Tetracoordinate platinum II compounds tend to adopt 16 electron square planar geometries Although elemental platinum is generally unreactive it is attacked by chlorine bromine iodine and sulfur It reacts vigorously with fluorine at 500 C 932 F to form platinum tetrafluoride 18 Platinum is insoluble in hydrochloric and nitric acid but dissolves in hot aqua regia a mixture of nitric and hydrochloric acids to form aqueous chloroplatinic acid H2PtCl6 19 20 Pt 4 HNO3 6 HCl H2PtCl6 4 NO2 4 H2OAs a soft acid the Pt2 ion has a great affinity for sulfide and sulfur ligands Numerous DMSO complexes have been reported and care is taken in the choosing of reaction solvents 21 In 2007 the German scientist Gerhard Ertl won the Nobel Prize in Chemistry for determining the detailed molecular mechanisms of the catalytic oxidation of carbon monoxide over platinum catalytic converter 22 Isotopes Edit Main article Isotopes of platinum Platinum has six naturally occurring isotopes 190 Pt 192 Pt 194 Pt 195 Pt 196 Pt and 198 Pt The most abundant of these is 195 Pt comprising 33 83 of all platinum It is the only stable isotope with a non zero spin The spin of 1 2 and other favourable magnetic properties of the nucleus are utilised in 195 Pt NMR Due to its spin and large abundance 195 Pt satellite peaks are also often observed in 1 H and 31 P NMR spectroscopy e g for Pt phosphine and Pt alkyl complexes 190 Pt is the least abundant at only 0 01 Of the naturally occurring isotopes only 190 Pt is unstable though it decays with a half life of 6 5 1011 years causing an activity of 15 Bq kg of natural platinum 198 Pt can undergo alpha decay but its decay has never been observed the half life is known to be longer than 3 2 1014 years therefore it is considered stable Platinum also has 34 synthetic isotopes ranging in atomic mass from 165 to 204 making the total number of known isotopes 40 The least stable of these are 165 Pt and 166 Pt with half lives of 260 µs whereas the most stable is 193 Pt with a half life of 50 years Most platinum isotopes decay by some combination of beta decay and alpha decay 188 Pt 191 Pt and 193 Pt decay primarily by electron capture 190 Pt and 198 Pt are predicted to have energetically favorable double beta decay paths 23 Occurrence Edit A native platinum nugget Kondyor mine Khabarovsk Krai Platinum palladium ore Stillwater mine Beartooth Mountains Montana USA Sulfidic serpentintite platinum palladium ore from the same mine as above Platinum is an extremely rare metal 24 occurring at a concentration of only 0 005 ppm in Earth s crust 25 26 It is sometimes mistaken for silver Platinum is often found chemically uncombined as native platinum and as alloy with the other platinum group metals and iron mostly Most often the native platinum is found in secondary deposits in alluvial deposits The alluvial deposits used by pre Columbian people in the Choco Department Colombia are still a source for platinum group metals Another large alluvial deposit is in the Ural Mountains Russia and it is still mined 20 In nickel and copper deposits platinum group metals occur as sulfides e g Pt Pd S tellurides e g PtBiTe antimonides PdSb and arsenides e g PtAs2 and as end alloys with nickel or copper Platinum arsenide sperrylite PtAs2 is a major source of platinum associated with nickel ores in the Sudbury Basin deposit in Ontario Canada At Platinum Alaska about 17 000 kg 550 000 ozt was mined between 1927 and 1975 The mine ceased operations in 1990 27 The rare sulfide mineral cooperite Pt Pd Ni S contains platinum along with palladium and nickel Cooperite occurs in the Merensky Reef within the Bushveld complex Gauteng South Africa 28 In 1865 chromites were identified in the Bushveld region of South Africa followed by the discovery of platinum in 1906 29 In 1924 the geologist Hans Merensky discovered a large supply of platinum in the Bushveld Igneous Complex in South Africa The specific layer he found named the Merensky Reef contains around 75 of the world s known platinum 30 31 The large copper nickel deposits near Norilsk in Russia and the Sudbury Basin Canada are the two other large deposits In the Sudbury Basin the huge quantities of nickel ore processed make up for the fact platinum is present as only 0 5 ppm in the ore Smaller reserves can be found in the United States 31 for example in the Absaroka Range in Montana 32 In 2010 South Africa was the top producer of platinum with an almost 77 share followed by Russia at 13 world production in 2010 was 192 000 kg 423 000 lb 33 Large platinum deposits are present in the state of Tamil Nadu India 34 Platinum exists in higher abundances on the Moon and in meteorites Correspondingly platinum is found in slightly higher abundances at sites of bolide impact on Earth that are associated with resulting post impact volcanism and can be mined economically the Sudbury Basin is one such example 35 Compounds EditHalides Edit Hexachloroplatinic acid mentioned above is probably the most important platinum compound as it serves as the precursor for many other platinum compounds By itself it has various applications in photography zinc etchings indelible ink plating mirrors porcelain coloring and as a catalyst 36 Treatment of hexachloroplatinic acid with an ammonium salt such as ammonium chloride gives ammonium hexachloroplatinate 19 which is relatively insoluble in ammonium solutions Heating this ammonium salt in the presence of hydrogen reduces it to elemental platinum Potassium hexachloroplatinate is similarly insoluble and hexachloroplatinic acid has been used in the determination of potassium ions by gravimetry 37 When hexachloroplatinic acid is heated it decomposes through platinum IV chloride and platinum II chloride to elemental platinum although the reactions do not occur stepwise 38 H3O 2PtCl6 nH2O PtCl4 2 HCl n 2 H2O PtCl4 PtCl2 Cl2 PtCl2 Pt Cl2All three reactions are reversible Platinum II and platinum IV bromides are known as well Platinum hexafluoride is a strong oxidizer capable of oxidizing oxygen Oxides Edit Platinum IV oxide PtO2 also known as Adams catalyst is a black powder that is soluble in potassium hydroxide KOH solutions and concentrated acids 39 PtO2 and the less common PtO both decompose upon heating 12 Platinum II IV oxide Pt3O4 is formed in the following reaction 2 Pt2 Pt4 4 O2 Pt3O4Other compounds Edit Unlike palladium acetate platinum II acetate is not commercially available Where a base is desired the halides have been used in conjunction with sodium acetate 21 The use of platinum II acetylacetonate has also been reported 40 Several barium platinides have been synthesized in which platinum exhibits negative oxidation states ranging from 1 to 2 These include BaPt Ba3 Pt2 and Ba2 Pt 41 Caesium platinide Cs2 Pt a dark red transparent crystalline compound 42 has been shown to contain Pt2 anions 43 Platinum also exhibits negative oxidation states at surfaces reduced electrochemically 44 The negative oxidation states exhibited by platinum are unusual for metallic elements and they are attributed to the relativistic stabilization of the 6s orbitals 43 It is predicted that even the cation PtO2 4 in which platinum exists in 10 oxidation state may be achievable 45 Zeise s salt containing an ethylene ligand was one of the first organometallic compounds discovered Dichloro cycloocta 1 5 diene platinum II is a commercially available olefin complex which contains easily displaceable cod ligands cod being an abbreviation of 1 5 cyclooctadiene The cod complex and the halides are convenient starting points to platinum chemistry 21 Cisplatin or cis diamminedichloroplatinum II is the first of a series of square planar platinum II containing chemotherapy drugs 46 Others include carboplatin and oxaliplatin These compounds are capable of crosslinking DNA and kill cells by similar pathways to alkylating chemotherapeutic agents 47 Side effects of cisplatin include nausea and vomiting hair loss tinnitus hearing loss and nephrotoxicity 48 49 Organoplatinum compounds such as the above antitumour agents as well as soluble inorganic platinum complexes are routinely characterised using 195 Pt nuclear magnetic resonance spectroscopy The hexachloroplatinate ion The anion of Zeise s salt Dichloro cycloocta 1 5 diene platinum II CisplatinHistory EditEarly uses Edit Archaeologists have discovered traces of platinum in the gold used in ancient Egyptian burials as early as 1200 BCE For example a small box from burial of Shepenupet II was found to be decorated with gold platinum hieroglyphics 50 However the extent of early Egyptians knowledge of the metal is unclear It is quite possible they did not recognize there was platinum in their gold 51 52 The metal was used by Native Americans near modern day Esmeraldas Ecuador to produce artifacts of a white gold platinum alloy Archeologists usually associate the tradition of platinum working in South America with the La Tolita Culture c 600 BCE 200 CE but precise dates and location is difficult as most platinum artifacts from the area were bought secondhand through the antiquities trade rather than obtained by direct archeological excavation 53 To work the metal they would combine gold and platinum powders by sintering The resulting gold platinum alloy would then be soft enough to shape with tools 54 55 The platinum used in such objects was not the pure element but rather a naturally occurring mixture of the platinum group metals with small amounts of palladium rhodium and iridium 56 European discovery Edit The first European reference to platinum appears in 1557 in the writings of the Italian humanist Julius Caesar Scaliger as a description of an unknown noble metal found between Darien and Mexico which no fire nor any Spanish artifice has yet been able to liquefy 57 From their first encounters with platinum the Spanish generally saw the metal as a kind of impurity in gold and it was treated as such It was often simply thrown away and there was an official decree forbidding the adulteration of gold with platinum impurities 56 This alchemical symbol for platinum was made by joining the symbols of silver moon and gold sun Antonio de Ulloa is credited in European history with the discovery of platinum In 1735 Antonio de Ulloa and Jorge Juan y Santacilia saw Native Americans mining platinum while the Spaniards were travelling through Colombia and Peru for eight years Ulloa and Juan found mines with the whitish metal nuggets and took them home to Spain Antonio de Ulloa returned to Spain and established the first mineralogy lab in Spain and was the first to systematically study platinum which was in 1748 His historical account of the expedition included a description of platinum as being neither separable nor calcinable Ulloa also anticipated the discovery of platinum mines After publishing the report in 1748 Ulloa did not continue to investigate the new metal In 1758 he was sent to superintend mercury mining operations in Huancavelica 57 In 1741 Charles Wood 58 a British metallurgist found various samples of Colombian platinum in Jamaica which he sent to William Brownrigg for further investigation In 1750 after studying the platinum sent to him by Wood Brownrigg presented a detailed account of the metal to the Royal Society stating that he had seen no mention of it in any previous accounts of known minerals 59 Brownrigg also made note of platinum s extremely high melting point and refractoriness toward borax clarification needed Other chemists across Europe soon began studying platinum including Andreas Sigismund Marggraf 60 Torbern Bergman Jons Jakob Berzelius William Lewis and Pierre Macquer In 1752 Henrik Scheffer published a detailed scientific description of the metal which he referred to as white gold including an account of how he succeeded in fusing platinum ore with the aid of arsenic Scheffer described platinum as being less pliable than gold but with similar resistance to corrosion 57 Means of malleability Edit Karl von Sickingen researched platinum extensively in 1772 He succeeded in making malleable platinum by alloying it with gold dissolving the alloy in hot aqua regia precipitating the platinum with ammonium chloride igniting the ammonium chloroplatinate and hammering the resulting finely divided platinum to make it cohere Franz Karl Achard made the first platinum crucible in 1784 He worked with the platinum by fusing it with arsenic then later volatilizing the arsenic 57 Because the other platinum family members were not discovered yet platinum was the first in the list Scheffer and Sickingen made the false assumption that due to its hardness which is slightly more than for pure iron platinum would be a relatively non pliable material even brittle at times when in fact its ductility and malleability are close to that of gold Their assumptions could not be avoided because the platinum they experimented with was highly contaminated with minute amounts of platinum family elements such as osmium and iridium amongst others which embrittled the platinum alloy Alloying this impure platinum residue called plyoxen citation needed with gold was the only solution at the time to obtain a pliable compound but nowadays very pure platinum is available and extremely long wires can be drawn from pure platinum very easily due to its crystalline structure which is similar to that of many soft metals 61 In 1786 Charles III of Spain provided a library and laboratory to Pierre Francois Chabaneau to aid in his research of platinum Chabaneau succeeded in removing various impurities from the ore including gold mercury lead copper and iron This led him to believe he was working with a single metal but in truth the ore still contained the yet undiscovered platinum group metals This led to inconsistent results in his experiments At times the platinum seemed malleable but when it was alloyed with iridium it would be much more brittle Sometimes the metal was entirely incombustible but when alloyed with osmium it would volatilize After several months Chabaneau succeeded in producing 23 kilograms of pure malleable platinum by hammering and compressing the sponge form while white hot Chabeneau realized the infusibility of platinum would lend value to objects made of it and so started a business with Joaquin Cabezas producing platinum ingots and utensils This started what is known as the platinum age in Spain 57 Production EditFurther information List of countries by platinum production An aerial photograph of a platinum mine in South Africa South Africa accounts for 80 of global platinum production and a majority of the world s known platinum deposits Time trend of platinum production 62 Platinum along with the rest of the platinum group metals is obtained commercially as a by product from nickel and copper mining and processing During electrorefining of copper noble metals such as silver gold and the platinum group metals as well as selenium and tellurium settle to the bottom of the cell as anode mud which forms the starting point for the extraction of the platinum group metals 63 If pure platinum is found in placer deposits or other ores it is isolated from them by various methods of subtracting impurities Because platinum is significantly denser than many of its impurities the lighter impurities can be removed by simply floating them away in a liquid Platinum is paramagnetic whereas nickel and iron are both ferromagnetic These two impurities are thus removed by running an electromagnet over the mixture Because platinum has a higher melting point than most other substances many impurities can be burned or melted away without melting the platinum Finally platinum is resistant to hydrochloric and sulfuric acids whereas other substances are readily attacked by them Metal impurities can be removed by stirring the mixture in either of the two acids and recovering the remaining platinum 64 One suitable method for purification for the raw platinum which contains platinum gold and the other platinum group metals is to process it with aqua regia in which palladium gold and platinum are dissolved whereas osmium iridium ruthenium and rhodium stay unreacted The gold is precipitated by the addition of iron II chloride and after filtering off the gold the platinum is precipitated as ammonium chloroplatinate by the addition of ammonium chloride Ammonium chloroplatinate can be converted to platinum by heating 65 Unprecipitated hexachloroplatinate IV may be reduced with elemental zinc and a similar method is suitable for small scale recovery of platinum from laboratory residues 66 Mining and refining platinum has environmental impacts 67 Applications Edit Cutaway view of a metal core catalytic converter Of the 218 tonnes of platinum sold in 2014 98 tonnes were used for vehicle emissions control devices 45 74 7 tonnes for jewelry 34 20 0 tonnes for chemical production and petroleum refining 9 2 and 5 85 tonnes for electrical applications such as hard disk drives 2 7 The remaining 28 9 tonnes went to various other minor applications such as medicine and biomedicine glassmaking equipment investment electrodes anticancer drugs oxygen sensors spark plugs and turbine engines 68 Catalyst Edit The most common use of platinum is as a catalyst in chemical reactions often as platinum black It has been employed as a catalyst since the early 19th century when platinum powder was used to catalyze the ignition of hydrogen Its most important application is in automobiles as a catalytic converter which allows the complete combustion of low concentrations of unburned hydrocarbons from the exhaust into carbon dioxide and water vapor Platinum is also used in the petroleum industry as a catalyst in a number of separate processes but especially in catalytic reforming of straight run naphthas into higher octane gasoline that becomes rich in aromatic compounds PtO2 also known as Adams catalyst is used as a hydrogenation catalyst specifically for vegetable oils 36 Platinum also strongly catalyzes the decomposition of hydrogen peroxide into water and oxygen 69 and it is used in fuel cells 70 as a catalyst for the reduction of oxygen 71 Standard Edit Prototype International Meter bar made by Johnson Matthey From 1889 to 1960 the meter was defined as the length of a platinum iridium 90 10 alloy bar known as the international prototype meter The previous bar was made of platinum in 1799 Until May 2019 the kilogram was defined as the mass of the international prototype of the kilogram a cylinder of the same platinum iridium alloy made in 1879 72 The Standard Platinum Resistance Thermometer SPRT is one of the four types of thermometers used to define the International Temperature Scale of 1990 ITS 90 the international calibration standard for temperature measurements The resistance wire in the thermometer is made of pure platinum NIST manufactured the wires from platinum bar stock with a chemical purity of 99 999 by weight 73 74 In addition to laboratory uses Platinum Resistance Thermometry PRT also has many industrial applications industrial standards include ASTM E1137 and IEC 60751 The standard hydrogen electrode also uses a platinized platinum electrode due to its corrosion resistance and other attributes 75 As an investment Edit Main articles Platinum as an investment and Platinum coin Platinum is a precious metal commodity its bullion has the ISO currency code of XPT Coins bars and ingots are traded or collected Platinum finds use in jewellery usually as a 90 95 alloy due to its inertness It is used for this purpose for its prestige and inherent bullion value Jewellery trade publications advise jewellers to present minute surface scratches which they term patina as a desirable feature in an attempt to enhance value of platinum products 76 77 In watchmaking Vacheron Constantin Patek Philippe Rolex Breitling and other companies use platinum for producing their limited edition watch series Watchmakers appreciate the unique properties of platinum as it neither tarnishes nor wears out the latter quality relative to gold 78 During periods of sustained economic stability and growth the price of platinum tends to be as much as twice the price of gold whereas during periods of economic uncertainty 79 the price of platinum tends to decrease due to reduced industrial demand falling below the price of gold Gold prices are more stable in slow economic times as gold is considered a safe haven citation needed Although gold is also used in industrial applications especially in electronics due to its use as a conductor its demand is not so driven by industrial uses citation needed In the 18th century platinum s rarity made King Louis XV of France declare it the only metal fit for a king 80 1 000 cubic centimeters of 99 9 pure platinum worth about US 696 000 at 29 Jun 2016 prices 81 Platinum price 1970 2022Other uses Edit In the laboratory platinum wire is used for electrodes platinum pans and supports are used in thermogravimetric analysis because of the stringent requirements of chemical inertness upon heating to high temperatures 1000 C Platinum is used as an alloying agent for various metal products including fine wires noncorrosive laboratory containers medical instruments dental prostheses electrical contacts and thermocouples Platinum cobalt an alloy of roughly three parts platinum and one part cobalt is used to make relatively strong permanent magnets 36 Platinum based anodes are used in ships pipelines and steel piers 20 Platinum drugs are used to treat a wide variety of cancers including testicular and ovarian carcinomas melanoma small cell and non small cell lung cancer myelomas and lymphomas 82 Symbol of prestige in marketing Edit See also Platinum album and Platinum color Platinum s rarity as a metal has caused advertisers to associate it with exclusivity and wealth Platinum debit and credit cards have greater privileges than gold cards 83 Platinum awards are the second highest possible ranking above gold silver and bronze but below diamond For example in the United States a musical album that has sold more than 1 million copies will be credited as platinum whereas an album that has sold more than 10 million copies will be certified as diamond 84 Some products such as blenders and vehicles with a silvery white color are identified as platinum Platinum is considered a precious metal although its use is not as common as the use of gold or silver The frame of the Crown of Queen Elizabeth The Queen Mother manufactured for her coronation as Consort of King George VI is made of platinum It was the first British crown to be made of this particular metal 85 Health problems EditAccording to the Centers for Disease Control and Prevention short term exposure to platinum salts may cause irritation of the eyes nose and throat and long term exposure may cause both respiratory and skin allergies The current OSHA standard is 2 micrograms per cubic meter of air averaged over an 8 hour work shift 86 The National Institute for Occupational Safety and Health has set a recommended exposure limit REL for platinum as 1 mg m3 over an 8 hour workday 87 As platinum is a catalyst in the manufacture of the silicone rubber and gel components of several types of medical implants breast implants joint replacement prosthetics artificial lumbar discs vascular access ports etc the possibility that platinum could enter the body and cause adverse effects has merited study The Food and Drug Administration and other institutions have reviewed the issue and found no evidence to suggest toxicity in vivo 88 89 Chemically unbounded platinum has been identified by the FDA as a fake cancer cure 90 The misunderstanding is created by healthcare workers who are using inappropriately the name of the metal as a slang term for platinum based chemotherapy medications like cisplatin citation needed They are platinum compounds not the metal itself See also EditChelated platinum Iron platinum nanoparticle List of countries by platinum production Mixed metal oxide electrode Nox unit Platinum group Platinum in Africa Platinum nanoparticle Platinum print Skot unit 2000s commodities boomReferences Edit Standard Atomic Weights Platinum CIAAW 2005 Weast Robert 1984 CRC Handbook of Chemistry and Physics Boca Raton Florida Chemical Rubber Company Publishing pp E110 ISBN 0 8493 0464 4 Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae platinum Pt Encyclopaedia Britannica Encyclopaedia Britannica Inc 2012 Archived from the original on 5 April 2012 Retrieved 24 April 2012 Harper Douglas platinum Online Etymology Dictionary Hobson Peter Currency shocks knock platinum to 10 year lows Reuters Retrieved 20 August 2018 Platinum in the Glass Industry Johnson Matthey Technology Review Chapter 6 11 Platinum PDF Air Quality Guidelines 2nd ed WHO Regional Office for Europe Copenhagen Denmark 2000 archived PDF from the original on 18 October 2012 Wheate N J Walker S Craig G E Oun R 2010 The status of platinum anticancer drugs in the clinic and in clinical trials PDF Dalton Transactions 39 35 8113 27 doi 10 1039 C0DT00292E hdl 2123 14271 PMID 20593091 Platinum Prices vs Gold Prices Live latinum Price Charts amp Historical Data APMEX Retrieved 14 March 2021 a b Lagowski J J ed 2004 Chemistry Foundations and Applications Vol 3 Thomson Gale pp 267 268 ISBN 978 0 02 865724 0 Schwartz M 2002 Encyclopedia and Handbook of Materials Parts and Finishes 2nd ed CRC Press ISBN 9781420017168 Vaccari J A Clauser H R Brady G S 2002 Materials handbook an encyclopedia for managers technical professionals purchasing and production managers technicians and supervisors 15th ed McGraw Hill ISBN 9780071360760 Craig Bruce D Anderson David S International A S M January 1995 Platinum Handbook of corrosion data pp 8 9 ISBN 978 0 87170 518 1 Archived from the original on 24 March 2017 Chaston J C Reaction of Oxygen with the Platinum Metals technology matthey com Retrieved 30 July 2022 Brewer Leo 1953 Thermodynamic Properties of the Oxides and their Vaporization Processes Chemical Reviews 53 1 75 doi 10 1021 cr60161a001 Retrieved 30 July 2022 Sir Norman Lockyer 1891 Nature Macmillan Journals Limited pp 625 Archived from the original on 24 March 2017 a b Kauffman George B Thurner Joseph J Zatko David A 1967 Ammonium Hexachloroplatinate IV Inorganic Syntheses Vol 9 pp 182 185 doi 10 1002 9780470132401 ch51 ISBN 978 0 470 13240 1 a b c CRC contributors 2007 2008 Platinum In Lide David R ed CRC Handbook of Chemistry and Physics Vol 4 New York CRC Press p 26 ISBN 978 0 8493 0488 0 a b c Han Y Huynh H V Tan G K 2007 Mono vs Bis carbene Complexes A Detailed Study on Platinum II Benzimidazolin 2 ylidenes Organometallics 26 18 4612 4617 doi 10 1021 om700543p Ertl Gerhard 2008 Reactions at Surfaces From Atoms to Complexity Nobel Lecture Angewandte Chemie International Edition 47 19 385 407 doi 10 1002 anie 200800480 PMID 18357601 Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Cohen D 23 May 2007 Earth s natural wealth an audit New Scientist doi 10 1016 S0262 4079 07 61315 3 Stellman Jeanne Mager 1998 Encyclopaedia of Occupational Health and Safety Chemical industries and occupations International Labour Organization p 141 ISBN 978 92 2 109816 4 Archived from the original on 24 March 2017 Murata K J 1958 in Symposium on Spectrocemical Analysis for Trace Elements ASTM International p 71 Archived from the original on 24 March 2017 The History of Platinum Alaska Community Database Online ExploreNorth Archived from the original on 22 December 2010 Retrieved 12 April 2011 Platinum is located on the Bering Sea coast below Red Mountain on the south spit of Goodnews Bay Xiao Z Laplante A R 2004 Characterizing and recovering the platinum group minerals a review Minerals Engineering 17 9 10 961 979 doi 10 1016 j mineng 2004 04 001 Dan Oancea Platinum In South Africa Archived 13 August 2011 at the Wayback Machine MINING com September 2008 R Grant Cawthorn 1999 Seventy fifth Anniversary of the Discovery of the Platiniferous Merensky Reef Platinum Metals Review Retrieved 24 December 2017 a b Seymour R J O Farrelly J I 2001 Platinum group metals Kirk Othmer Encyclopedia of Chemical Technology Wiley doi 10 1002 0471238961 1612012019052513 a01 pub2 ISBN 978 0471238966 Mining Platinum in Montana New York Times 13 August 1998 Archived from the original on 3 February 2008 Retrieved 9 September 2008 Loferski P J July 2012 Platinum Group Metals PDF USGS Mineral Resources Program Archived PDF from the original on 7 July 2012 Retrieved 17 July 2012 Evidence of huge deposits of platinum in State The Hindu Chennai India 2 July 2010 Archived from the original on 6 December 2011 Koeberl Christian 1998 Identification of meteoritic components in imactites Meteorites flux with time and impact effects pp 133 155 ISBN 978 1 86239 017 1 Archived from the original on 24 March 2017 a b c Krebs Robert E 1998 Platinum The History and Use of our Earth s Chemical Elements Greenwood Press pp 124 127 ISBN 978 0 313 30123 0 Smith G F Gring J L 1933 The Separation and Determination of the Alkali Metals Using Perchloric Acid V Perchloric Acid and Chloroplatinic Acid in the Determination of Small Amounts of Potassium in the Presence of Large Amounts of Sodium Journal of the American Chemical Society 55 10 3957 3961 doi 10 1021 ja01337a007 Schweizer A E Kerr G T 1978 Thermal Decomposition of Hexachloroplatinic Acid Inorganic Chemistry 17 8 2326 2327 doi 10 1021 ic50186a067 Perry D L 1995 Handbook of Inorganic Compounds Nature Vol 177 pp 296 298 Bibcode 1956Natur 177 639 doi 10 1038 177639a0 ISBN 978 0 8493 8671 8 S2CID 4184615 Ahrens Sebastian Strassner Thomas 2006 Detour free synthesis of platinum bis NHC chloride complexes their structure and catalytic activity in the CH activation of methane Inorganica Chimica Acta 359 15 4789 4796 doi 10 1016 j ica 2006 05 042 Karpov Andrey Konuma Mitsuharu Jansen Martin 2006 An experimental proof for negative oxidation states of platinum ESCA measurements on barium platinides Chemical Communications 44 8 838 840 doi 10 1039 b514631c PMID 16479284 Karpov Andrey Nuss Jurgen Wedig Ulrich Jansen Martin 2003 Cs2Pt A Platinide II Exhibiting Complete Charge Separation Angewandte Chemie International Edition 42 39 4818 21 doi 10 1002 anie 200352314 PMID 14562358 a b Jansen Martin 2005 Effects of relativistic motion of electrons on the chemistry of gold and platinum Solid State Sciences 7 12 1464 74 Bibcode 2005SSSci 7 1464J doi 10 1016 j solidstatesciences 2005 06 015 Ghilane J Lagrost C Guilloux Viry M Simonet J et al 2007 Spectroscopic Evidence of Platinum Negative Oxidation States at Electrochemically Reduced Surfaces Journal of Physical Chemistry C 111 15 5701 7 doi 10 1021 jp068879d Gunther M 13 June 2016 Oxidation state 10 may exist in a platinum compound Chemistry World Yu H S Truhlar D G 2016 Oxidation State 10 Exists Angew Chem Int Ed 55 31 9004 6 doi 10 1002 anie 201604670 PMID 27273799 Riddell Imogen A Lippard Stephen J 2018 Cisplatin and Oxaliplatin Our Current Understanding of Their Actions In Sigel Astrid Sigel Helmut Freisinger Eva Sigel Roland K O eds Metallo Drugs Development and Action of Anticancer Agents Metal Ions in Life Sciences Vol 18 pp 1 42 doi 10 1515 9783110470734 007 ISBN 978 3 11 046984 4 PMID 29394020 Richards A D Rodger A 2007 Synthetic metallomolecules as agents for the control of DNA structure PDF Chemical Society Reviews 36 3 471 483 doi 10 1039 b609495c PMID 17325786 Carinder James A Morrison Pilar M Morrison David G Jack E Saux III 7 July 2014 Practical Oncology Protocols Mill City Press Incorporated p 22 ISBN 978 1 62652 816 1 Archived from the original on 9 November 2017 Retrieved 11 June 2016 Taguchi Takashi Nazneen Arifa Abid M Ruhul Razzaque Mohammed S 2005 Cisplatin Associated Nephrotoxicity and Pathological Events Contributions to Nephrology Vol 148 pp 107 121 doi 10 1159 000086055 ISBN 978 3 8055 7858 5 PMID 15912030 S2CID 24509477 Berthelot M 1901 Sur les metaux egyptiens Presence du platine parmi les caracteres d inscriptions hieroglyphiques confie a mon examn On Egyptian metals Presence of platinum among the characters of hieroglyphic inscriptions entrusted to my examination Comptes rendus de l Academie des Sciences in French 132 729 Rayner W Hesse 2007 Jewelrymaking Through History An Encyclopedia Greenwood Publishing Group pp 155 6 ISBN 978 0 313 33507 5 Ogden Jack M 1976 The So Called Platinum Inclusions in Egyptian Goldwork The Journal of Egyptian Archaeology SAGE Publications 62 1 138 144 doi 10 1177 030751337606200116 ISSN 0307 5133 S2CID 192364303 David A Scott and Warwick Bray 1980 Ancient Platinum Technology in South America Its use by the Indians in Pre Hispanic Times Platinum Metals Review Retrieved 5 November 2018 Bergsoe Paul 1936 Metallurgy of Gold and Platinum among the Pre Columbian Indians Nature Springer Science and Business Media LLC 137 3453 29 Bibcode 1936Natur 137 29B doi 10 1038 137029a0 ISSN 0028 0836 S2CID 4100269 Meeks N La Niece S Estevez P 2002 The technology of early platinum plating a gold mask of the La Tolita culture Ecuador Archaeometry Wiley 44 2 273 284 doi 10 1111 1475 4754 t01 1 00059 ISSN 0003 813X a b Donald McDonald Leslie B Hunt 1982 A History of Platinum and its Allied Metals Johnson Matthey Plc pp 7 8 ISBN 978 0 905118 83 3 a b c d e Weeks M E 1968 Discovery of the Elements 7th ed Journal of Chemical Education pp 385 407 ISBN 978 0 8486 8579 9 OCLC 23991202 Dixon Joshua Brownrigg William 1801 The literary life of William Brownrigg To which are added an account of the coal mines near Whitehaven And Observations on the means of preventing epidemic fevers p 52 Archived from the original on 24 March 2017 Watson Wm Brownrigg William 1749 Several Papers concerning a New Semi Metal Called Platina Communicated to the Royal Society by Mr Wm Watson F R S Philosophical Transactions 46 491 496 584 596 Bibcode 1749RSPT 46 584W doi 10 1098 rstl 1749 0110 S2CID 186213277 Marggraf Andreas Sigismund 1760 Versuche mit dem neuen mineralischen Korper Platina del pinto genannt Archived from the original on 24 March 2017 Platinum Archived 22 December 2011 at the Wayback Machine mysite du edu Kelly Thomas D and Matos Grecia R 2013 Historical Statistics for Mineral and Material Commodities in the United States Archived 4 June 2013 at the Wayback Machine U S Geological Survey Loferski P J October 2011 2010 Minerals Yearbook Platinum group metals PDF USGS Mineral Resources Program Archived PDF from the original on 8 July 2012 Retrieved 17 July 2012 Heiserman David L 1992 Exploring Chemical Elements and their Compounds TAB Books pp 272 4 ISBN 978 0 8306 3018 9 Hunt L B Lever F M 1969 Platinum Metals A Survey of Productive Resources to industrial Uses PDF Platinum Metals Review 13 4 126 138 Archived PDF from the original on 29 October 2008 Kauffman George B Teter Larry A amp Rhoda Richard N 1963 Recovery of Platinum from Laboratory Residues Inorg Synth Inorganic Syntheses Vol 7 pp 232 6 doi 10 1002 9780470132388 ch61 ISBN 978 0 470 13238 8 Cairncross E March 2014 Health and environmental impacts of platinum mining Report from South Africa PDF Archived PDF from the original on 5 October 2016 Retrieved 4 October 2016 Loferski P J July 2016 2014 Minerals Yearbook Platinum group metals PDF USGS Mineral Resources Program Archived PDF from the original on 18 August 2016 Retrieved 11 July 2016 Petrucci Ralph H 2007 General Chemistry Principles amp Modern Applications 9th ed Prentice Hall p 606 ISBN 978 0 13 149330 8 Laramie James Dicks Andrew 2003 Fuel Cell System Explained John Wiley amp Sons Ltd ISBN 978 0 470 84857 9 Wang C Daimon H Onodera T Koda T Sun S 2008 A general approach to the size and shape controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen Angewandte Chemie International Edition 47 19 3588 91 doi 10 1002 anie 200800073 PMID 18399516 Gupta S V 2010 Chapter 4 Metre Convention and Evolution of Base Units Units of Measurement Springer Series in Materials Science Vol 122 p 47 doi 10 1007 978 3 642 00738 5 4 ISBN 978 3 642 00777 4 S2CID 150519250 Guide to the Realization of the ITS 90 Platinum Resistance Thermometry PDF International Committee for Weights and Measures Archived from the original PDF on 24 February 2021 Retrieved 23 October 2020 Standard Reference Material 1750 Standard Platinum Resistance Thermometers 13 8033 K to 429 7485 K PDF NIST Feltham A M Spiro Michael 1971 Platinized platinum electrodes Chemical Reviews 71 2 177 193 doi 10 1021 cr60270a002 Professional Jeweler s Magazine Archives issue of August 2004 Archived from the original on 28 September 2011 Retrieved 19 June 2011 Platinum primer Diamond Cutters International 12 December 2008 Archived from the original on 27 September 2011 Retrieved 18 June 2011 Unknown Facts about Platinum watches infoniac com Archived from the original on 21 September 2008 Retrieved 9 September 2008 Platinum versus Gold The Speculative Invertor 14 April 2002 Archived from the original on 26 October 2008 Platinum Minerals Zone Archived from the original on 12 October 2008 Retrieved 9 September 2008 21 09kg Pt WolframAlpha Archived from the original on 23 August 2014 Retrieved 14 July 2012 Apps Michael G Choi Eugene H Y Wheate Nial J August 2015 The state of play and future of platinum drugs Endocrine Related Cancer Society for Endocrinology 22 4 R219 R233 doi 10 1530 ERC 15 0237 PMID 26113607 Gwin John 1986 Pricing Financial Institution Products Journal of Professional Services Marketing 1 3 91 99 doi 10 1300 J090v01n03 07 Crouse Richard 1 May 2000 Big Bang Baby The Rock Trivia Book p 126 ISBN 978 0 88882 219 2 Archived from the original on 24 March 2017 Gauding Madonna 6 October 2009 The Signs and Symbols Bible The Definitive Guide to Mysterious Markings ISBN 978 1 4027 7004 3 Archived from the original on 24 March 2017 Occupational Health Guideline for Soluble Platinum Salts as Platinum PDF Centers for Disease Control and Prevention Archived PDF from the original on 11 March 2010 Retrieved 9 September 2008 CDC NIOSH Pocket Guide to Chemical Hazards Platinum www cdc gov Archived from the original on 21 November 2015 Retrieved 21 November 2015 FDA Backgrounder on Platinum in Silicone Breast Implants U S Food and Drug Administration Archived from the original on 24 July 2008 Retrieved 9 September 2008 Brook Michael 2006 Platinum in silicone breast implants Biomaterials 27 17 3274 86 doi 10 1016 j biomaterials 2006 01 027 PMID 16483647 187 Fake Cancer Cures Consumers Should Avoid U S Food and Drug Administration Archived from the original on 2 May 2017 Retrieved 20 May 2020 Further reading EditYoung Gordon November 1983 The Miracle Metal Platinum National Geographic Vol 164 no 5 pp 686 706 ISSN 0027 9358 OCLC 643483454 External links Edit Wikimedia Commons has media related to Platinum Look up platinum in Wiktionary the free dictionary Platinum at The Periodic Table of Videos University of Nottingham Nuclides and Isotopes Fourteenth Edition Chart of the Nuclides General Electric Company 1989 NIOSH Pocket Guide to Chemical Hazards Platinum Centers for Disease Control and Prevention The PGM Database A balanced historical account of the sequence of discoveries of platinum illustrated Johnson Matthey Technology Review A free quarterly journal of research exploring science and technology in industrial applications formerly published as Platinum Metals Review Platinum Group Metals Statistics and Information United States Geological Survey International Platinum Group Metals Association Retrieved from https en wikipedia org w index php title Platinum amp oldid 1156577424, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.