fbpx
Wikipedia

Synthetic radioisotope

A synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. Examples include technetium-95 and promethium-146. Many of these are found in, and harvested from, spent nuclear fuel assemblies. Some must be manufactured in particle accelerators.[1]

Production edit

Some synthetic radioisotopes are extracted from spent nuclear reactor fuel rods, which contain various fission products. For example, it is estimated that up to 1994, about 49,000 terabecquerels (78 metric tons) of technetium were produced in nuclear reactors; as such, anthropogenic technetium is far more abundant than technetium from natural radioactivity.[2]

Some synthetic isotopes are produced in significant quantities by fission but are not yet being reclaimed. Other isotopes are manufactured by neutron irradiation of parent isotopes in a nuclear reactor (for example, technetium-97 can be made by neutron irradiation of ruthenium-96) or by bombarding parent isotopes with high energy particles from a particle accelerator.[3][4]

Many isotopes, including radiopharmaceuticals, are produced in cyclotrons. For example, the synthetic fluorine-18 and oxygen-15 are widely used in positron emission tomography.[5]

Uses edit

Most synthetic radioisotopes have a short half-life. Though a health hazard, radioactive materials have many medical and industrial uses.

Nuclear medicine edit

The field of nuclear medicine covers use of radioisotopes for diagnosis or treatment.

Diagnosis edit

Radioactive tracer compounds, radiopharmaceuticals, are used to observe the function of various organs and body systems. These compounds use a chemical tracer which is attracted to or concentrated by the activity which is being studied. That chemical tracer incorporates a short lived radioactive isotope, usually one which emits a gamma ray which is energetic enough to travel through the body and be captured outside by a gamma camera to map the concentrations. Gamma cameras and other similar detectors are highly efficient, and the tracer compounds are generally very effective at concentrating at the areas of interest, so the total amounts of radioactive material needed are very small.

The metastable nuclear isomer technetium-99m is a gamma-ray emitter widely used for medical diagnostics because it has a short half-life of 6 hours, but can be easily made in the hospital using a technetium-99m generator. Weekly global demand for the parent isotope molybdenum-99 was 440 TBq (12,000 Ci) in 2010, overwhelmingly provided by fission of uranium-235.[6]

Treatment edit

Several radioisotopes and compounds are used for medical treatment, usually by bringing the radioactive isotope to a high concentration in the body near a particular organ. For example, iodine-131 is used for treating some disorders and tumors of the thyroid gland.

Industrial radiation sources edit

Alpha particle, beta particle, and gamma ray radioactive emissions are industrially useful. Most sources of these are synthetic radioisotopes. Areas of use include the petroleum industry, industrial radiography, homeland security, process control, food irradiation and underground detection.[7][8][9]

Footnotes edit

  1. ^ "Radioisotopes". www.iaea.org. 2016-07-15. Retrieved 2023-06-25.
  2. ^ Yoshihara, K (1996). "Technetium in the environment". In Yoshihara, K; Omori, T (eds.). Technetium and Rhenium Their Chemistry and Its Applications. Topics in Current Chemistry. Vol. 176. Springer. doi:10.1007/3-540-59469-8_2. ISBN 978-3-540-59469-7.
  3. ^ . Brookhaven National Laboratory. 2009. Archived from the original on 6 January 2010.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  4. ^ Manual for reactor produced radioisotopes. Vienna: IAEA. 2003. ISBN 92-0-101103-2.
  5. ^ Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods. Vienna: IAEA. 2009. ISBN 978-92-0-106908-5.
  6. ^ "Production and Supply of Molybdenum-99" (PDF). IAEA. 2010. Archived (PDF) from the original on 2022-10-09. Retrieved 4 March 2018.
  7. ^ Greenblatt, Jack A. (2009). "Stable and Radioactive Isotopes: Industry & Trade Summary" (PDF). Office of Industries. United States International Trade Commission. Archived (PDF) from the original on 2022-10-09.
  8. ^ Rivard, Mark J.; Bobek, Leo M.; Butler, Ralph A.; Garland, Marc A.; Hill, David J.; Krieger, Jeanne K.; Muckerheide, James B.; Patton, Brad D.; Silberstein, Edward B. (August 2005). "The US national isotope program: Current status and strategy for future success" (PDF). Applied Radiation and Isotopes. 63 (2): 157–178. doi:10.1016/j.apradiso.2005.03.004. Archived (PDF) from the original on 2022-10-09.
  9. ^ Branch, Doug (2012). "Radioactive Isotopes in Process Measurement" (PDF). VEGA Controls. Archived (PDF) from the original on 2022-10-09. Retrieved 4 March 2018.

External links edit

  • Map of the Nuclides at LANL T-2 Website

synthetic, radioisotope, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, ju. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Synthetic radioisotope news newspapers books scholar JSTOR July 2017 Learn how and when to remove this template message A synthetic radioisotope is a radionuclide that is not found in nature no natural process or mechanism exists which produces it or it is so unstable that it decays away in a very short period of time Examples include technetium 95 and promethium 146 Many of these are found in and harvested from spent nuclear fuel assemblies Some must be manufactured in particle accelerators 1 Contents 1 Production 2 Uses 2 1 Nuclear medicine 2 1 1 Diagnosis 2 1 2 Treatment 2 2 Industrial radiation sources 3 Footnotes 4 External linksProduction editSome synthetic radioisotopes are extracted from spent nuclear reactor fuel rods which contain various fission products For example it is estimated that up to 1994 about 49 000 terabecquerels 78 metric tons of technetium were produced in nuclear reactors as such anthropogenic technetium is far more abundant than technetium from natural radioactivity 2 Some synthetic isotopes are produced in significant quantities by fission but are not yet being reclaimed Other isotopes are manufactured by neutron irradiation of parent isotopes in a nuclear reactor for example technetium 97 can be made by neutron irradiation of ruthenium 96 or by bombarding parent isotopes with high energy particles from a particle accelerator 3 4 Many isotopes including radiopharmaceuticals are produced in cyclotrons For example the synthetic fluorine 18 and oxygen 15 are widely used in positron emission tomography 5 Uses editMost synthetic radioisotopes have a short half life Though a health hazard radioactive materials have many medical and industrial uses Nuclear medicine edit The field of nuclear medicine covers use of radioisotopes for diagnosis or treatment Diagnosis edit Radioactive tracer compounds radiopharmaceuticals are used to observe the function of various organs and body systems These compounds use a chemical tracer which is attracted to or concentrated by the activity which is being studied That chemical tracer incorporates a short lived radioactive isotope usually one which emits a gamma ray which is energetic enough to travel through the body and be captured outside by a gamma camera to map the concentrations Gamma cameras and other similar detectors are highly efficient and the tracer compounds are generally very effective at concentrating at the areas of interest so the total amounts of radioactive material needed are very small The metastable nuclear isomer technetium 99m is a gamma ray emitter widely used for medical diagnostics because it has a short half life of 6 hours but can be easily made in the hospital using a technetium 99m generator Weekly global demand for the parent isotope molybdenum 99 was 440 TBq 12 000 Ci in 2010 overwhelmingly provided by fission of uranium 235 6 Treatment edit Several radioisotopes and compounds are used for medical treatment usually by bringing the radioactive isotope to a high concentration in the body near a particular organ For example iodine 131 is used for treating some disorders and tumors of the thyroid gland Industrial radiation sources edit This section needs expansion You can help by adding to it July 2017 Alpha particle beta particle and gamma ray radioactive emissions are industrially useful Most sources of these are synthetic radioisotopes Areas of use include the petroleum industry industrial radiography homeland security process control food irradiation and underground detection 7 8 9 Footnotes edit Radioisotopes www iaea org 2016 07 15 Retrieved 2023 06 25 Yoshihara K 1996 Technetium in the environment In Yoshihara K Omori T eds Technetium and Rhenium Their Chemistry and Its Applications Topics in Current Chemistry Vol 176 Springer doi 10 1007 3 540 59469 8 2 ISBN 978 3 540 59469 7 Radioisotope Production Brookhaven National Laboratory 2009 Archived from the original on 6 January 2010 a href Template Cite web html title Template Cite web cite web a CS1 maint bot original URL status unknown link Manual for reactor produced radioisotopes Vienna IAEA 2003 ISBN 92 0 101103 2 Cyclotron Produced Radionuclides Physical Characteristics and Production Methods Vienna IAEA 2009 ISBN 978 92 0 106908 5 Production and Supply of Molybdenum 99 PDF IAEA 2010 Archived PDF from the original on 2022 10 09 Retrieved 4 March 2018 Greenblatt Jack A 2009 Stable and Radioactive Isotopes Industry amp Trade Summary PDF Office of Industries United States International Trade Commission Archived PDF from the original on 2022 10 09 Rivard Mark J Bobek Leo M Butler Ralph A Garland Marc A Hill David J Krieger Jeanne K Muckerheide James B Patton Brad D Silberstein Edward B August 2005 The US national isotope program Current status and strategy for future success PDF Applied Radiation and Isotopes 63 2 157 178 doi 10 1016 j apradiso 2005 03 004 Archived PDF from the original on 2022 10 09 Branch Doug 2012 Radioactive Isotopes in Process Measurement PDF VEGA Controls Archived PDF from the original on 2022 10 09 Retrieved 4 March 2018 External links editMap of the Nuclides at LANL T 2 Website Retrieved from https en wikipedia org w index php title Synthetic radioisotope amp oldid 1197199209, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.