fbpx
Wikipedia

Shear modulus

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain:[1]

Shear modulus
Common symbols
G, S, μ
SI unitPa
Derivations from
other quantities
G = τ / γ = E / [2(1 + ν)]
Shear strain

where

= shear stress
is the force which acts
is the area on which the force acts
= shear strain. In engineering , elsewhere
is the transverse displacement
is the initial length of the area.

The derived SI unit of shear modulus is the pascal (Pa), although it is usually expressed in gigapascals (GPa) or in thousand pounds per square inch (ksi). Its dimensional form is M1L−1T−2, replacing force by mass times acceleration.

Explanation edit

Material Typical values for
shear modulus (GPa)
(at room temperature)
Diamond[2] 478.0
Steel[3] 79.3
Iron[4] 52.5
Copper[5] 44.7
Titanium[3] 41.4
Glass[3] 26.2
Aluminium[3] 25.5
Polyethylene[3] 0.117
Rubber[6] 0.0006
Granite[7][8] 24
Shale[7][8] 1.6
Limestone[7][8] 24
Chalk[7][8] 3.2
Sandstone[7][8] 0.4
Wood 4

The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law:

  • Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
  • the Poisson's ratio ν describes the response in the directions orthogonal to this uniaxial stress (the wire getting thinner and the column thicker),
  • the bulk modulus K describes the material's response to (uniform) hydrostatic pressure (like the pressure at the bottom of the ocean or a deep swimming pool),
  • the shear modulus G describes the material's response to shear stress (like cutting it with dull scissors).

These moduli are not independent, and for isotropic materials they are connected via the equations[9]

 

The shear modulus is concerned with the deformation of a solid when it experiences a force parallel to one of its surfaces while its opposite face experiences an opposing force (such as friction). In the case of an object shaped like a rectangular prism, it will deform into a parallelepiped. Anisotropic materials such as wood, paper and also essentially all single crystals exhibit differing material response to stress or strain when tested in different directions. In this case, one may need to use the full tensor-expression of the elastic constants, rather than a single scalar value.

One possible definition of a fluid would be a material with zero shear modulus.

Shear waves edit

 
Influences of selected glass component additions on the shear modulus of a specific base glass.[10]

In homogeneous and isotropic solids, there are two kinds of waves, pressure waves and shear waves. The velocity of a shear wave,   is controlled by the shear modulus,

 

where

G is the
  is the solid's density.

Shear modulus of metals edit

 
Shear modulus of copper as a function of temperature. The experimental data[11][12] are shown with colored symbols.

The shear modulus of metals is usually observed to decrease with increasing temperature. At high pressures, the shear modulus also appears to increase with the applied pressure. Correlations between the melting temperature, vacancy formation energy, and the shear modulus have been observed in many metals.[13]

Several models exist that attempt to predict the shear modulus of metals (and possibly that of alloys). Shear modulus models that have been used in plastic flow computations include:

  1. the MTS shear modulus model developed by[14] and used in conjunction with the Mechanical Threshold Stress (MTS) plastic flow stress model.[15][16]
  2. the Steinberg-Cochran-Guinan (SCG) shear modulus model developed by[17] and used in conjunction with the Steinberg-Cochran-Guinan-Lund (SCGL) flow stress model.
  3. the Nadal and LePoac (NP) shear modulus model[12] that uses Lindemann theory to determine the temperature dependence and the SCG model for pressure dependence of the shear modulus.

MTS model edit

The MTS shear modulus model has the form:

 

where   is the shear modulus at  , and   and   are material constants.

SCG model edit

The Steinberg-Cochran-Guinan (SCG) shear modulus model is pressure dependent and has the form

 

where, μ0 is the shear modulus at the reference state (T = 300 K, p = 0, η = 1), p is the pressure, and T is the temperature.

NP model edit

The Nadal-Le Poac (NP) shear modulus model is a modified version of the SCG model. The empirical temperature dependence of the shear modulus in the SCG model is replaced with an equation based on Lindemann melting theory. The NP shear modulus model has the form:

 

where

 

and μ0 is the shear modulus at absolute zero and ambient pressure, ζ is a area, m is the atomic mass, and f is the Lindemann constant.

Shear relaxation modulus edit

The shear relaxation modulus   is the time-dependent generalization of the shear modulus[18]  :

 .

See also edit

References edit

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "shear modulus, G". doi:10.1351/goldbook.S05635
  2. ^ McSkimin, H.J.; Andreatch, P. (1972). "Elastic Moduli of Diamond as a Function of Pressure and Temperature". J. Appl. Phys. 43 (7): 2944–2948. Bibcode:1972JAP....43.2944M. doi:10.1063/1.1661636.
  3. ^ a b c d e Crandall, Dahl, Lardner (1959). An Introduction to the Mechanics of Solids. Boston: McGraw-Hill. ISBN 0-07-013441-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. ^ Rayne, J.A. (1961). "Elastic constants of Iron from 4.2 to 300 ° K". Physical Review. 122 (6): 1714–1716. Bibcode:1961PhRv..122.1714R. doi:10.1103/PhysRev.122.1714.
  5. ^ Material properties
  6. ^ Spanos, Pete (2003). "Cure system effect on low temperature dynamic shear modulus of natural rubber". Rubber World.
  7. ^ a b c d e Hoek, Evert, and Jonathan D. Bray. Rock slope engineering. CRC Press, 1981.
  8. ^ a b c d e Pariseau, William G. Design analysis in rock mechanics. CRC Press, 2017.
  9. ^ [Landau LD, Lifshitz EM. Theory of Elasticity, vol. 7. Course of Theoretical Physics. (2nd Ed) Pergamon: Oxford 1970 p13]
  10. ^ Shear modulus calculation of glasses
  11. ^ Overton, W.; Gaffney, John (1955). "Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper". Physical Review. 98 (4): 969. Bibcode:1955PhRv...98..969O. doi:10.1103/PhysRev.98.969.
  12. ^ a b Nadal, Marie-Hélène; Le Poac, Philippe (2003). "Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: Analysis and ultrasonic validation". Journal of Applied Physics. 93 (5): 2472. Bibcode:2003JAP....93.2472N. doi:10.1063/1.1539913.
  13. ^ March, N. H., (1996), Electron Correlation in Molecules and Condensed Phases, Springer, ISBN 0-306-44844-0 p. 363
  14. ^ Varshni, Y. (1970). "Temperature Dependence of the Elastic Constants". Physical Review B. 2 (10): 3952–3958. Bibcode:1970PhRvB...2.3952V. doi:10.1103/PhysRevB.2.3952.
  15. ^ Chen, Shuh Rong; Gray, George T. (1996). "Constitutive behavior of tantalum and tantalum-tungsten alloys". Metallurgical and Materials Transactions A. 27 (10): 2994. Bibcode:1996MMTA...27.2994C. doi:10.1007/BF02663849. S2CID 136695336.
  16. ^ Goto, D. M.; Garrett, R. K.; Bingert, J. F.; Chen, S. R.; Gray, G. T. (2000). "The mechanical threshold stress constitutive-strength model description of HY-100 steel" (PDF). Metallurgical and Materials Transactions A. 31 (8): 1985–1996. Bibcode:2000MMTA...31.1985G. doi:10.1007/s11661-000-0226-8. S2CID 136118687. from the original on September 25, 2017.
  17. ^ Guinan, M; Steinberg, D (1974). "Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements". Journal of Physics and Chemistry of Solids. 35 (11): 1501. Bibcode:1974JPCS...35.1501G. doi:10.1016/S0022-3697(74)80278-7.
  18. ^ Rubinstein, Michael, 1956 December 20- (2003). Polymer physics. Colby, Ralph H. Oxford: Oxford University Press. p. 284. ISBN 019852059X. OCLC 50339757.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae             Notes
         
         
         
         
         
           
         
         
           

There are two valid solutions.
The plus sign leads to  .

The minus sign leads to  .

         
          Cannot be used when  
         
         
         
         
2D formulae             Notes
         
         
         
         
         
         
         
          Cannot be used when  
         
         



shear, modulus, materials, science, shear, modulus, modulus, rigidity, denoted, sometimes, measure, elastic, shear, stiffness, material, defined, ratio, shear, stress, shear, strain, common, symbolsg, μsi, unitpaderivations, fromother, quantitiesg, shear, stra. In materials science shear modulus or modulus of rigidity denoted by G or sometimes S or m is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain 1 Shear modulusCommon symbolsG S mSI unitPaDerivations fromother quantitiesG t g E 2 1 n Shear strain G d e f t x y g x y F A D x l F l A D x displaystyle G stackrel mathrm def frac tau xy gamma xy frac F A Delta x l frac Fl A Delta x where t x y F A displaystyle tau xy F A shear stress F displaystyle F is the force which acts A displaystyle A is the area on which the force acts g x y displaystyle gamma xy shear strain In engineering D x l tan 8 displaystyle Delta x l tan theta elsewhere 8 displaystyle theta D x displaystyle Delta x is the transverse displacement l displaystyle l is the initial length of the area The derived SI unit of shear modulus is the pascal Pa although it is usually expressed in gigapascals GPa or in thousand pounds per square inch ksi Its dimensional form is M1L 1T 2 replacing force by mass times acceleration Contents 1 Explanation 2 Shear waves 3 Shear modulus of metals 3 1 MTS model 3 2 SCG model 3 3 NP model 4 Shear relaxation modulus 5 See also 6 ReferencesExplanation editMaterial Typical values for shear modulus GPa at room temperature Diamond 2 478 0Steel 3 79 3Iron 4 52 5Copper 5 44 7Titanium 3 41 4Glass 3 26 2Aluminium 3 25 5Polyethylene 3 0 117Rubber 6 0 0006Granite 7 8 24Shale 7 8 1 6Limestone 7 8 24Chalk 7 8 3 2Sandstone 7 8 0 4Wood 4The shear modulus is one of several quantities for measuring the stiffness of materials All of them arise in the generalized Hooke s law Young s modulus E describes the material s strain response to uniaxial stress in the direction of this stress like pulling on the ends of a wire or putting a weight on top of a column with the wire getting longer and the column losing height the Poisson s ratio n describes the response in the directions orthogonal to this uniaxial stress the wire getting thinner and the column thicker the bulk modulus K describes the material s response to uniform hydrostatic pressure like the pressure at the bottom of the ocean or a deep swimming pool the shear modulus G describes the material s response to shear stress like cutting it with dull scissors These moduli are not independent and for isotropic materials they are connected via the equations 9 E 2 G 1 n 3 K 1 2 n displaystyle E 2G 1 nu 3K 1 2 nu nbsp The shear modulus is concerned with the deformation of a solid when it experiences a force parallel to one of its surfaces while its opposite face experiences an opposing force such as friction In the case of an object shaped like a rectangular prism it will deform into a parallelepiped Anisotropic materials such as wood paper and also essentially all single crystals exhibit differing material response to stress or strain when tested in different directions In this case one may need to use the full tensor expression of the elastic constants rather than a single scalar value One possible definition of a fluid would be a material with zero shear modulus Shear waves edit nbsp Influences of selected glass component additions on the shear modulus of a specific base glass 10 In homogeneous and isotropic solids there are two kinds of waves pressure waves and shear waves The velocity of a shear wave v s displaystyle v s nbsp is controlled by the shear modulus v s G r displaystyle v s sqrt frac G rho nbsp where G is ther displaystyle rho nbsp is the solid s density Shear modulus of metals edit nbsp Shear modulus of copper as a function of temperature The experimental data 11 12 are shown with colored symbols The shear modulus of metals is usually observed to decrease with increasing temperature At high pressures the shear modulus also appears to increase with the applied pressure Correlations between the melting temperature vacancy formation energy and the shear modulus have been observed in many metals 13 Several models exist that attempt to predict the shear modulus of metals and possibly that of alloys Shear modulus models that have been used in plastic flow computations include the MTS shear modulus model developed by 14 and used in conjunction with the Mechanical Threshold Stress MTS plastic flow stress model 15 16 the Steinberg Cochran Guinan SCG shear modulus model developed by 17 and used in conjunction with the Steinberg Cochran Guinan Lund SCGL flow stress model the Nadal and LePoac NP shear modulus model 12 that uses Lindemann theory to determine the temperature dependence and the SCG model for pressure dependence of the shear modulus MTS model edit The MTS shear modulus model has the form m T m 0 D exp T 0 T 1 displaystyle mu T mu 0 frac D exp T 0 T 1 nbsp where m 0 displaystyle mu 0 nbsp is the shear modulus at T 0 K displaystyle T 0K nbsp and D displaystyle D nbsp and T 0 displaystyle T 0 nbsp are material constants SCG model edit The Steinberg Cochran Guinan SCG shear modulus model is pressure dependent and has the form m p T m 0 m p p h 1 3 m T T 300 h r r 0 displaystyle mu p T mu 0 frac partial mu partial p frac p eta frac 1 3 frac partial mu partial T T 300 quad eta frac rho rho 0 nbsp where m0 is the shear modulus at the reference state T 300 K p 0 h 1 p is the pressure and T is the temperature NP model edit The Nadal Le Poac NP shear modulus model is a modified version of the SCG model The empirical temperature dependence of the shear modulus in the SCG model is replaced with an equation based on Lindemann melting theory The NP shear modulus model has the form m p T 1 J T m 0 m p p h 1 3 1 T r C m T C 6 p 2 2 3 3 f 2 displaystyle mu p T frac 1 mathcal J left hat T right left left mu 0 frac partial mu partial p frac p eta frac 1 3 right left 1 hat T right frac rho Cm T right quad C frac left 6 pi 2 right frac 2 3 3 f 2 nbsp where J T 1 exp 1 1 z 1 z 1 T for T T T m 0 6 z displaystyle mathcal J hat T 1 exp left frac 1 1 zeta 1 zeta left 1 hat T right right quad text for quad hat T frac T T m in 0 6 zeta nbsp and m0 is the shear modulus at absolute zero and ambient pressure z is a area m is the atomic mass and f is the Lindemann constant Shear relaxation modulus editThe shear relaxation modulus G t displaystyle G t nbsp is the time dependent generalization of the shear modulus 18 G displaystyle G nbsp G lim t G t displaystyle G lim t to infty G t nbsp See also editElasticity tensor Dynamic modulus Impulse excitation technique Shear strength Seismic momentReferences edit IUPAC Compendium of Chemical Terminology 2nd ed the Gold Book 1997 Online corrected version 2006 shear modulus G doi 10 1351 goldbook S05635 McSkimin H J Andreatch P 1972 Elastic Moduli of Diamond as a Function of Pressure and Temperature J Appl Phys 43 7 2944 2948 Bibcode 1972JAP 43 2944M doi 10 1063 1 1661636 a b c d e Crandall Dahl Lardner 1959 An Introduction to the Mechanics of Solids Boston McGraw Hill ISBN 0 07 013441 3 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Rayne J A 1961 Elastic constants of Iron from 4 2 to 300 K Physical Review 122 6 1714 1716 Bibcode 1961PhRv 122 1714R doi 10 1103 PhysRev 122 1714 Material properties Spanos Pete 2003 Cure system effect on low temperature dynamic shear modulus of natural rubber Rubber World a b c d e Hoek Evert and Jonathan D Bray Rock slope engineering CRC Press 1981 a b c d e Pariseau William G Design analysis in rock mechanics CRC Press 2017 Landau LD Lifshitz EM Theory of Elasticity vol 7 Course of Theoretical Physics 2nd Ed Pergamon Oxford 1970 p13 Shear modulus calculation of glasses Overton W Gaffney John 1955 Temperature Variation of the Elastic Constants of Cubic Elements I Copper Physical Review 98 4 969 Bibcode 1955PhRv 98 969O doi 10 1103 PhysRev 98 969 a b Nadal Marie Helene Le Poac Philippe 2003 Continuous model for the shear modulus as a function of pressure and temperature up to the melting point Analysis and ultrasonic validation Journal of Applied Physics 93 5 2472 Bibcode 2003JAP 93 2472N doi 10 1063 1 1539913 March N H 1996 Electron Correlation in Molecules and Condensed Phases Springer ISBN 0 306 44844 0 p 363 Varshni Y 1970 Temperature Dependence of the Elastic Constants Physical Review B 2 10 3952 3958 Bibcode 1970PhRvB 2 3952V doi 10 1103 PhysRevB 2 3952 Chen Shuh Rong Gray George T 1996 Constitutive behavior of tantalum and tantalum tungsten alloys Metallurgical and Materials Transactions A 27 10 2994 Bibcode 1996MMTA 27 2994C doi 10 1007 BF02663849 S2CID 136695336 Goto D M Garrett R K Bingert J F Chen S R Gray G T 2000 The mechanical threshold stress constitutive strength model description of HY 100 steel PDF Metallurgical and Materials Transactions A 31 8 1985 1996 Bibcode 2000MMTA 31 1985G doi 10 1007 s11661 000 0226 8 S2CID 136118687 Archived from the original on September 25 2017 Guinan M Steinberg D 1974 Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements Journal of Physics and Chemistry of Solids 35 11 1501 Bibcode 1974JPCS 35 1501G doi 10 1016 S0022 3697 74 80278 7 Rubinstein Michael 1956 December 20 2003 Polymer physics Colby Ralph H Oxford Oxford University Press p 284 ISBN 019852059X OCLC 50339757 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link CS1 maint numeric names authors list link Conversion formulaeHomogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these thus given any two any other of the elastic moduli can be calculated according to these formulas provided both for 3D materials first part of the table and for 2D materials second part 3D formulae K displaystyle K nbsp E displaystyle E nbsp l displaystyle lambda nbsp G displaystyle G nbsp n displaystyle nu nbsp M displaystyle M nbsp Notes K E displaystyle K E nbsp 3 K 3 K E 9 K E displaystyle tfrac 3K 3K E 9K E nbsp 3 K E 9 K E displaystyle tfrac 3KE 9K E nbsp 3 K E 6 K displaystyle tfrac 3K E 6K nbsp 3 K 3 K E 9 K E displaystyle tfrac 3K 3K E 9K E nbsp K l displaystyle K lambda nbsp 9 K K l 3 K l displaystyle tfrac 9K K lambda 3K lambda nbsp 3 K l 2 displaystyle tfrac 3 K lambda 2 nbsp l 3 K l displaystyle tfrac lambda 3K lambda nbsp 3 K 2 l displaystyle 3K 2 lambda nbsp K G displaystyle K G nbsp 9 K G 3 K G displaystyle tfrac 9KG 3K G nbsp K 2 G 3 displaystyle K tfrac 2G 3 nbsp 3 K 2 G 2 3 K G displaystyle tfrac 3K 2G 2 3K G nbsp K 4 G 3 displaystyle K tfrac 4G 3 nbsp K n displaystyle K nu nbsp 3 K 1 2 n displaystyle 3K 1 2 nu nbsp 3 K n 1 n displaystyle tfrac 3K nu 1 nu nbsp 3 K 1 2 n 2 1 n displaystyle tfrac 3K 1 2 nu 2 1 nu nbsp 3 K 1 n 1 n displaystyle tfrac 3K 1 nu 1 nu nbsp K M displaystyle K M nbsp 9 K M K 3 K M displaystyle tfrac 9K M K 3K M nbsp 3 K M 2 displaystyle tfrac 3K M 2 nbsp 3 M K 4 displaystyle tfrac 3 M K 4 nbsp 3 K M 3 K M displaystyle tfrac 3K M 3K M nbsp E l displaystyle E lambda nbsp E 3 l R 6 displaystyle tfrac E 3 lambda R 6 nbsp E 3 l R 4 displaystyle tfrac E 3 lambda R 4 nbsp 2 l E l R displaystyle tfrac 2 lambda E lambda R nbsp E l R 2 displaystyle tfrac E lambda R 2 nbsp R E 2 9 l 2 2 E l displaystyle R sqrt E 2 9 lambda 2 2E lambda nbsp E G displaystyle E G nbsp E G 3 3 G E displaystyle tfrac EG 3 3G E nbsp G E 2 G 3 G E displaystyle tfrac G E 2G 3G E nbsp E 2 G 1 displaystyle tfrac E 2G 1 nbsp G 4 G E 3 G E displaystyle tfrac G 4G E 3G E nbsp E n displaystyle E nu nbsp E 3 1 2 n displaystyle tfrac E 3 1 2 nu nbsp E n 1 n 1 2 n displaystyle tfrac E nu 1 nu 1 2 nu nbsp E 2 1 n displaystyle tfrac E 2 1 nu nbsp E 1 n 1 n 1 2 n displaystyle tfrac E 1 nu 1 nu 1 2 nu nbsp E M displaystyle E M nbsp 3 M E S 6 displaystyle tfrac 3M E S 6 nbsp M E S 4 displaystyle tfrac M E S 4 nbsp 3 M E S 8 displaystyle tfrac 3M E S 8 nbsp E M S 4 M displaystyle tfrac E M S 4M nbsp S E 2 9 M 2 10 E M displaystyle S pm sqrt E 2 9M 2 10EM nbsp There are two valid solutions The plus sign leads to n 0 displaystyle nu geq 0 nbsp The minus sign leads to n 0 displaystyle nu leq 0 nbsp l G displaystyle lambda G nbsp l 2 G 3 displaystyle lambda tfrac 2G 3 nbsp G 3 l 2 G l G displaystyle tfrac G 3 lambda 2G lambda G nbsp l 2 l G displaystyle tfrac lambda 2 lambda G nbsp l 2 G displaystyle lambda 2G nbsp l n displaystyle lambda nu nbsp l 1 n 3 n displaystyle tfrac lambda 1 nu 3 nu nbsp l 1 n 1 2 n n displaystyle tfrac lambda 1 nu 1 2 nu nu nbsp l 1 2 n 2 n displaystyle tfrac lambda 1 2 nu 2 nu nbsp l 1 n n displaystyle tfrac lambda 1 nu nu nbsp Cannot be used when n 0 l 0 displaystyle nu 0 Leftrightarrow lambda 0 nbsp l M displaystyle lambda M nbsp M 2 l 3 displaystyle tfrac M 2 lambda 3 nbsp M l M 2 l M l displaystyle tfrac M lambda M 2 lambda M lambda nbsp M l 2 displaystyle tfrac M lambda 2 nbsp l M l displaystyle tfrac lambda M lambda nbsp G n displaystyle G nu nbsp 2 G 1 n 3 1 2 n displaystyle tfrac 2G 1 nu 3 1 2 nu nbsp 2 G 1 n displaystyle 2G 1 nu nbsp 2 G n 1 2 n displaystyle tfrac 2G nu 1 2 nu nbsp 2 G 1 n 1 2 n displaystyle tfrac 2G 1 nu 1 2 nu nbsp G M displaystyle G M nbsp M 4 G 3 displaystyle M tfrac 4G 3 nbsp G 3 M 4 G M G displaystyle tfrac G 3M 4G M G nbsp M 2 G displaystyle M 2G nbsp M 2 G 2 M 2 G displaystyle tfrac M 2G 2M 2G nbsp n M displaystyle nu M nbsp M 1 n 3 1 n displaystyle tfrac M 1 nu 3 1 nu nbsp M 1 n 1 2 n 1 n displaystyle tfrac M 1 nu 1 2 nu 1 nu nbsp M n 1 n displaystyle tfrac M nu 1 nu nbsp M 1 2 n 2 1 n displaystyle tfrac M 1 2 nu 2 1 nu nbsp 2D formulae K 2 D displaystyle K mathrm 2D nbsp E 2 D displaystyle E mathrm 2D nbsp l 2 D displaystyle lambda mathrm 2D nbsp G 2 D displaystyle G mathrm 2D nbsp n 2 D displaystyle nu mathrm 2D nbsp M 2 D displaystyle M mathrm 2D nbsp Notes K 2 D E 2 D displaystyle K mathrm 2D E mathrm 2D nbsp 2 K 2 D 2 K 2 D E 2 D 4 K 2 D E 2 D displaystyle tfrac 2K mathrm 2D 2K mathrm 2D E mathrm 2D 4K mathrm 2D E mathrm 2D nbsp K 2 D E 2 D 4 K 2 D E 2 D displaystyle tfrac K mathrm 2D E mathrm 2D 4K mathrm 2D E mathrm 2D nbsp 2 K 2 D E 2 D 2 K 2 D displaystyle tfrac 2K mathrm 2D E mathrm 2D 2K mathrm 2D nbsp 4 K 2 D 2 4 K 2 D E 2 D displaystyle tfrac 4K mathrm 2D 2 4K mathrm 2D E mathrm 2D nbsp K 2 D l 2 D displaystyle K mathrm 2D lambda mathrm 2D nbsp 4 K 2 D K 2 D l 2 D 2 K 2 D l 2 D displaystyle tfrac 4K mathrm 2D K mathrm 2D lambda mathrm 2D 2K mathrm 2D lambda mathrm 2D nbsp K 2 D l 2 D displaystyle K mathrm 2D lambda mathrm 2D nbsp l 2 D 2 K 2 D l 2 D displaystyle tfrac lambda mathrm 2D 2K mathrm 2D lambda mathrm 2D nbsp 2 K 2 D l 2 D displaystyle 2K mathrm 2D lambda mathrm 2D nbsp K 2 D G 2 D displaystyle K mathrm 2D G mathrm 2D nbsp 4 K 2 D G 2 D K 2 D G 2 D displaystyle tfrac 4K mathrm 2D G mathrm 2D K mathrm 2D G mathrm 2D nbsp K 2 D G 2 D displaystyle K mathrm 2D G mathrm 2D nbsp K 2 D G 2 D K 2 D G 2 D displaystyle tfrac K mathrm 2D G mathrm 2D K mathrm 2D G mathrm 2D nbsp K 2 D G 2 D displaystyle K mathrm 2D G mathrm 2D nbsp K 2 D n 2 D displaystyle K mathrm 2D nu mathrm 2D nbsp 2 K 2 D 1 n 2 D displaystyle 2K mathrm 2D 1 nu mathrm 2D nbsp 2 K 2 D n 2 D 1 n 2 D displaystyle tfrac 2K mathrm 2D nu mathrm 2D 1 nu mathrm 2D nbsp K 2 D 1 n 2 D 1 n 2 D displaystyle tfrac K mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D nbsp 2 K 2 D 1 n 2 D displaystyle tfrac 2K mathrm 2D 1 nu mathrm 2D nbsp E 2 D G 2 D displaystyle E mathrm 2D G mathrm 2D nbsp E 2 D G 2 D 4 G 2 D E 2 D displaystyle tfrac E mathrm 2D G mathrm 2D 4G mathrm 2D E mathrm 2D nbsp 2 G 2 D E 2 D 2 G 2 D 4 G 2 D E 2 D displaystyle tfrac 2G mathrm 2D E mathrm 2D 2G mathrm 2D 4G mathrm 2D E mathrm 2D nbsp E 2 D 2 G 2 D 1 displaystyle tfrac E mathrm 2D 2G mathrm 2D 1 nbsp 4 G 2 D 2 4 G 2 D E 2 D displaystyle tfrac 4G mathrm 2D 2 4G mathrm 2D E mathrm 2D nbsp E 2 D n 2 D displaystyle E mathrm 2D nu mathrm 2D nbsp E 2 D 2 1 n 2 D displaystyle tfrac E mathrm 2D 2 1 nu mathrm 2D nbsp E 2 D n 2 D 1 n 2 D 1 n 2 D displaystyle tfrac E mathrm 2D nu mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D nbsp E 2 D 2 1 n 2 D displaystyle tfrac E mathrm 2D 2 1 nu mathrm 2D nbsp E 2 D 1 n 2 D 1 n 2 D displaystyle tfrac E mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D nbsp l 2 D G 2 D displaystyle lambda mathrm 2D G mathrm 2D nbsp l 2 D G 2 D displaystyle lambda mathrm 2D G mathrm 2D nbsp 4 G 2 D l 2 D G 2 D l 2 D 2 G 2 D displaystyle tfrac 4G mathrm 2D lambda mathrm 2D G mathrm 2D lambda mathrm 2D 2G mathrm 2D nbsp l 2 D l 2 D 2 G 2 D displaystyle tfrac lambda mathrm 2D lambda mathrm 2D 2G mathrm 2D nbsp l 2 D 2 G 2 D displaystyle lambda mathrm 2D 2G mathrm 2D nbsp l 2 D n 2 D displaystyle lambda mathrm 2D nu mathrm 2D nbsp l 2 D 1 n 2 D 2 n 2 D displaystyle tfrac lambda mathrm 2D 1 nu mathrm 2D 2 nu mathrm 2D nbsp l 2 D 1 n 2 D 1 n 2 D n 2 D displaystyle tfrac lambda mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D nu mathrm 2D nbsp l 2 D 1 n 2 D 2 n 2 D displaystyle tfrac lambda mathrm 2D 1 nu mathrm 2D 2 nu mathrm 2D nbsp l 2 D n 2 D displaystyle tfrac lambda mathrm 2D nu mathrm 2D nbsp Cannot be used when n 2 D 0 l 2 D 0 displaystyle nu mathrm 2D 0 Leftrightarrow lambda mathrm 2D 0 nbsp G 2 D n 2 D displaystyle G mathrm 2D nu mathrm 2D nbsp G 2 D 1 n 2 D 1 n 2 D displaystyle tfrac G mathrm 2D 1 nu mathrm 2D 1 nu mathrm 2D nbsp 2 G 2 D 1 n 2 D displaystyle 2G mathrm 2D 1 nu mathrm 2D nbsp 2 G 2 D n 2 D 1 n 2 D displaystyle tfrac 2G mathrm 2D nu mathrm 2D 1 nu mathrm 2D nbsp 2 G 2 D 1 n 2 D displaystyle tfrac 2G mathrm 2D 1 nu mathrm 2D nbsp G 2 D M 2 D displaystyle G mathrm 2D M mathrm 2D nbsp M 2 D G 2 D displaystyle M mathrm 2D G mathrm 2D nbsp 4 G 2 D M 2 D G 2 D M 2 D displaystyle tfrac 4G mathrm 2D M mathrm 2D G mathrm 2D M mathrm 2D nbsp M 2 D 2 G 2 D displaystyle M mathrm 2D 2G mathrm 2D nbsp M 2 D 2 G 2 D M 2 D displaystyle tfrac M mathrm 2D 2G mathrm 2D M mathrm 2D nbsp Retrieved from https en wikipedia org w index php title Shear modulus amp oldid 1187645491, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.