fbpx
Wikipedia

Granite

Granite (/ˈɡrænɪt/) is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

Granite
Igneous rock
Composition
PrimaryFelsic: potassium feldspar, plagioclase feldspar, and quartz
SecondaryDiffering amounts of muscovite, biotite, and hornblende-type amphiboles

Granite is typical of a larger family of granitic rocks, or granitoids, that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites) contain almost no dark minerals.

Thin section of granite

Granite is nearly always massive (lacking any internal structures), hard, and tough. These properties have made granite a widespread construction stone throughout human history.

Description

 
QAPF diagram with granite field highlighted in yellow
 
Mineral assemblage of igneous rocks

The word "granite" comes from the Latin granum, a grain, in reference to the coarse-grained structure of such a completely crystalline rock.[1] Granitic rocks mainly consist of feldspar, quartz, mica, and amphibole minerals, which form an interlocking, somewhat equigranular matrix of feldspar and quartz with scattered darker biotite mica and amphibole (often hornblende) peppering the lighter color minerals. Occasionally some individual crystals (phenocrysts) are larger than the groundmass, in which case the texture is known as porphyritic. A granitic rock with a porphyritic texture is known as a granite porphyry. Granitoid is a general, descriptive field term for lighter-colored, coarse-grained igneous rocks. Petrographic examination is required for identification of specific types of granitoids. Granites can be predominantly white, pink, or gray in color, depending on their mineralogy.[2]

The alkali feldspar in granites is typically orthoclase or microcline and is often perthitic. The plagioclase is typically sodium-rich oligoclase. Phenocrysts are usually alkali feldspar.[3]

Granitic rocks are classified according to the QAPF diagram for coarse grained plutonic rocks and are named according to the percentage of quartz, alkali feldspar (orthoclase, sanidine, or microcline) and plagioclase feldspar on the A-Q-P half of the diagram. True granite (according to modern petrologic convention) contains between 20% and 60% quartz by volume, with 35% to 90% of the total feldspar consisting of alkali feldspar. Granitic rocks poorer in quartz are classified as syenites or monzonites, while granitic rocks dominated by plagioclase are classified as granodiorites or tonalites. Granitic rocks with over 90% alkali feldspar are classified as alkali feldspar granites. Granitic rock with more than 60% quartz, which is uncommon, is classified simply as quartz-rich granitoid or, if composed almost entirely of quartz, as quartzolite.[4][5][6]

True granites are further classified by the percentage of their total feldspar that is alkali feldspar. Granites whose feldspar is 65% to 90% alkali feldspar are syenogranites, while the feldspar in monzogranite is 35% to 65% alkali feldspar.[5][6] A granite containing both muscovite and biotite micas is called a binary or two-mica granite. Two-mica granites are typically high in potassium and low in plagioclase, and are usually S-type granites or A-type granites, as described below.[7][8]

Another aspect of granite classification is the ratios of metals that potentially form feldspars. Most granites have a composition such that almost all their aluminum and alkali metals (sodium and potassium) are combined as feldspar. This is the case when K2O + Na2O + CaO > Al2O3 > K2O + Na2O. Such granites are described as normal or metaluminous. Granites in which there is not enough aluminum to combine with all the alkali oxides as feldspar (Al2O3 < K2O + Na2O) are described as peralkaline, and they contain unusual sodium amphiboles such as riebeckite. Granites in which there is an excess of aluminum beyond what can be taken up in feldspars (Al2O3 > CaO + K2O + Na2O) are described as peraluminous, and they contain aluminum-rich minerals such as muscovite.[9]

Physical properties

The average density of granite is between 2.65 and 2.75 g/cm3 (165 and 172 lb/cu ft),[10] its compressive strength usually lies above 200 MPa (29,000 psi), and its viscosity near STP is 3–6·1020 Pa·s.[11]

The melting temperature of dry granite at ambient pressure is 1215–1260 °C (2219–2300 °F);[12] it is strongly reduced in the presence of water, down to 650 °C at a few hundred megapascals of pressure.[13]

Granite has poor primary permeability overall, but strong secondary permeability through cracks and fractures if they are present.

Chemical composition

A worldwide average of the chemical composition of granite, by weight percent, based on 2485 analyses:[14]

SiO2 72.04% (silica) 72.04
 
Al2O3 14.42% (alumina) 14.42
 
K2O 4.12% 4.12
 
Na2O 3.69% 3.69
 
CaO 1.82% 1.82
 
FeO 1.68% 1.68
 
Fe2O3 1.22% 1.22
 
MgO 0.71% 0.71
 
TiO2 0.30% 0.3
 
P2O5 0.12% 0.12
 
MnO 0.05% 0.05
 

The medium-grained equivalent of granite is microgranite.[15] The extrusive igneous rock equivalent of granite is rhyolite.[16]

Occurrence

 
The Cheesewring, a granite tor in England
 
A granite peak at Huangshan, China
 
Pink granite at Hiltaba, South Australia (part of the Hiltaba Suite)
 
Granite with quartz veins at Gros la Tête cliff, Aride Island, Seychelles

Granitic rock is widely distributed throughout the continental crust.[17] Much of it was intruded during the Precambrian age; it is the most abundant basement rock that underlies the relatively thin sedimentary veneer of the continents. Outcrops of granite tend to form tors, domes or bornhardts, and rounded massifs. Granites sometimes occur in circular depressions surrounded by a range of hills, formed by the metamorphic aureole or hornfels. Granite often occurs as relatively small, less than 100 km2 stock masses (stocks) and in batholiths that are often associated with orogenic mountain ranges. Small dikes of granitic composition called aplites are often associated with the margins of granitic intrusions. In some locations, very coarse-grained pegmatite masses occur with granite.[18]

Origin

Granite forms from silica-rich (felsic) magmas. Felsic magmas are thought to form by addition of heat or water vapor to rock of the lower crust, rather than by decompression of mantle rock, as is the case with basaltic magmas.[19] It has also been suggested that some granites found at convergent boundaries between tectonic plates, where oceanic crust subducts below continental crust, were formed from sediments subducted with the oceanic plate. The melted sediments would have produced magma intermediate in its silica content, which became further enriched in silica as it rose through the overlying crust.[20]

Early fractional crystallisation serves to reduce a melt in magnesium and chromium, and enrich the melt in iron, sodium, potassium, aluminum, and silicon.[21] Further fractionation reduces the content of iron, calcium, and titanium.[22] This is reflected in the high content of alkali feldspar and quartz in granite.

The presence of granitic rock in island arcs shows that fractional crystallization alone can convert a basaltic magma to a granitic magma, but the quantities produced are small.[23] For example, granitic rock makes up just 4% of the exposures in the South Sandwich Islands.[24] In continental arc settings, granitic rocks are the most common plutonic rocks, and batholiths composed of these rock types extend the entire length of the arc. There are no indication of magma chambers where basaltic magmas differentiate into granites, or of cumulates produced by mafic crystals settling out of the magma. Other processes must produce these great volumes of felsic magma. One such process is injection of basaltic magma into the lower crust, followed by differentiation, which leaves any cumulates in the mantle. Another is heating of the lower crust by underplating basaltic magma, which produces felsic magma directly from crustal rock. The two processes produce different kinds of granites, which may be reflected in the division between S-type (produced by underplating) and I-type (produced by injection and differentiation) granites, discussed below.[23]

Alphabet classification system

The composition and origin of any magma that differentiates into granite leave certain petrological evidence as to what the granite's parental rock was. The final texture and composition of a granite are generally distinctive as to its parental rock. For instance, a granite that is derived from partial melting of metasedimentary rocks may have more alkali feldspar, whereas a granite derived from partial melting of metaigneous rocks may be richer in plagioclase. It is on this basis that the modern "alphabet" classification schemes are based.

The letter-based Chappell & White classification system was proposed initially to divide granites into I-type (igneous source) granite and S-type (sedimentary sources).[25] Both types are produced by partial melting of crustal rocks, either metaigneous rocks or metasedimentary rocks.

I-type granites are characterized by a high content of sodium and calcium, and by a strontium isotope ratio, 87Sr/86Sr, of less than 0.708. 87Sr is produced by radioactive decay of 87Rb, and since rubidium is concentrated in the crust relative to the mantle, a low ratio suggests origin in the mantle. The elevated sodium and calcium favor crystallization of hornblende rather than biotite. I-type granites are known for their porphyry copper deposits.[23] I-type granites are orogenic (associated with mountain building) and usually metaluminous.[9]

S-type granites are sodium-poor and aluminum-rich. As a result, they contain micas such as biotite and muscovite instead of hornblende. Their strontium isotope ratio is typically greater than 0.708, suggesting a crustal origin. They also commonly contain xenoliths of metamorphosed sedimentary rock, and host tin ores. Their magmas are water-rich, and they readily solidify as the water outgasses from the magma at lower pressure, so they less commonly make it to the surface than magmas of I-type granites, which are thus more common as volcanic rock (rhyolite).[23] They are also orogenic but range from metaluminous to strongly peraluminous.[9]

Although both I- and S-type granites are orogenic, I-type granites are more common close to the convergent boundary than S-type. This is attributed to thicker crust further from the boundary, which results in more crustal melting.[23]

A-type granites show a peculiar mineralogy and geochemistry, with particularly high silicon and potassium at the expense of calcium and magnesium[26] and a high content of high field strength cations (cations with a small radius and high electrical charge, such as zirconium, niobium, tantalum, and rare earth elements.)[27] They are not orogenic, forming instead over hot spots and continental rifting, and are metaluminous to mildly peralkaline and iron-rich.[9] These granites are produced by partial melting of refractory lithology such as granulites in the lower continental crust at high thermal gradients. This leads to significant extraction of hydrous felsic melts from granulite-facies resitites.[28][29] A-type granites occur in the Koettlitz Glacier Alkaline Province in the Royal Society Range, Antarctica.[30] The rhyolites of the Yellowstone Caldera are examples of volcanic equivalents of A-type granite.[31]

M-type granite was later proposed to cover those granites that were clearly sourced from crystallized mafic magmas, generally sourced from the mantle.[32] Although the fractional crystallisation of basaltic melts can yield small amounts of granites, which are sometimes found in island arcs,[33] such granites must occur together with large amounts of basaltic rocks.[23]

H-type granites were suggested for hybrid granites, which were hypothesized to form by mixing between mafic and felsic from different sources, such as M-type and S-type.[34] However, the big difference in rheology between mafic and felsic magmas makes this process problematic in nature.[35]

Granitization

Granitization is an old, and largely discounted, hypothesis that granite is formed in place through extreme metasomatism. The idea behind granitization was that fluids would supposedly bring in elements such as potassium, and remove others, such as calcium, to transform a metamorphic rock into granite. This was supposed to occur across a migrating front. However, experimental work had established by the 1960s that granites were of igneous origin.[36] The mineralogical and chemical features of granite can be explained only by crystal-liquid phase relations, showing that there must have been at least enough melting to mobilize the magma.[37]

However, at sufficiently deep crustal levels, the distinction between metamorphism and crustal melting itself becomes vague. Conditions for crystallization of liquid magma are close enough to those of high-grade metamorphism that the rocks often bear a close resemblance.[38] Under these conditions, granitic melts can be produced in place through the partial melting of metamorphic rocks by extracting melt-mobile elements such as potassium and silicon into the melts but leaving others such as calcium and iron in granulite residues. This may be the origin of migmatites. A migmatite consists of dark, refractory rock (the melanosome) that is permeated by sheets and channels of light granitic rock (the leucosome). The leucosome is interpreted as partial melt of a parent rock that has begun to separate from the remaining solid residue (the melanosome).[39] If enough partial melt is produced, it will separate from the source rock, become more highly evolved through fractional crystallization during its ascent toward the surface, and become the magmatic parent of granitic rock. The residue of the source rock becomes a granulite.

The partial melting of solid rocks requires high temperatures and the addition of water or other volatiles which lower the solidus temperature (temperature at which partial melting commences) of these rocks. It was long debated whether crustal thickening in orogens (mountain belts along convergent boundaries) was sufficient to produce granite melts by radiogenic heating, but recent work suggests that this is not a viable mechanism.[40] In-situ granitization requires heating by the asthenospheric mantle or by underplating with mantle-derived magmas.[41]

Ascent and emplacement

Granite magmas have a density of 2.4 Mg/m3, much less than the 2.8 Mg/m3 of high-grade metamorphic rock. This gives them tremendous buoyancy, so that ascent of the magma is inevitable once enough magma has accumulated. However, the question of precisely how such large quantities of magma are able to shove aside country rock to make room for themselves (the room problem) is still a matter of research.[42]

Two main mechanisms are thought to be important:

Of these two mechanisms, Stokes diapirism has been favoured for many years in the absence of a reasonable alternative. The basic idea is that magma will rise through the crust as a single mass through buoyancy. As it rises, it heats the wall rocks, causing them to behave as a power-law fluid and thus flow around the intrusion allowing it to pass without major heat loss.[43] This is entirely feasible in the warm, ductile lower crust where rocks are easily deformed, but runs into problems in the upper crust which is far colder and more brittle. Rocks there do not deform so easily: for magma to rise as a diapir it would expend far too much energy in heating wall rocks, thus cooling and solidifying before reaching higher levels within the crust.

Fracture propagation is the mechanism preferred by many geologists as it largely eliminates the major problems of moving a huge mass of magma through cold brittle crust. Magma rises instead in small channels along self-propagating dykes which form along new or pre-existing fracture or fault systems and networks of active shear zones.[44] As these narrow conduits open, the first magma to enter solidifies and provides a form of insulation for later magma.

These mechanisms can operate in tandem. For example, diapirs may continue to rise through the brittle upper crust through stoping, where the granite cracks the roof rocks, removing blocks of the overlying crust which then sink to the bottom of the diapir while the magma rises to take their place. This can occur as piecemeal stopping (stoping of small blocks of chamber roof), as cauldron subsidence (collapse of large blocks of chamber roof), or as roof foundering (complete collapse of the roof of a shallow magma chamber accompanied by a caldera eruption.) There is evidence for cauldron subsidence at the Mt. Ascutney intrusion in eastern Vermont.[45] Evidence for piecemeal stoping is found in intrusions that are rimmed with igneous breccia containing fragments of country rock.[42]

Assimilation is another mechanism of ascent, where the granite melts its way up into the crust and removes overlying material in this way. This is limited by the amount of thermal energy available, which must be replenished by crystallization of higher-melting minerals in the magma. Thus, the magma is melting crustal rock at its roof while simultaneously crystallizing at its base. This results in steady contamination with crustal material as the magma rises. This may not be evident in the major and minor element chemistry, since the minerals most likely to crystallize at the base of the chamber are the same ones that would crystallize anyway, but crustal assimilation is detectable in isotope ratios.[46] Heat loss to the country rock means that ascent by assimilation is limited to distance similar to the height of the magma chamber.[47]

Weathering

 
Grus sand and granitoid from which it derived

Physical weathering occurs on a large scale in the form of exfoliation joints, which are the result of granite's expanding and fracturing as pressure is relieved when overlying material is removed by erosion or other processes.

Chemical weathering of granite occurs when dilute carbonic acid, and other acids present in rain and soil waters, alter feldspar in a process called hydrolysis.[48][49] As demonstrated in the following reaction, this causes potassium feldspar to form kaolinite, with potassium ions, bicarbonate, and silica in solution as byproducts. An end product of granite weathering is grus, which is often made up of coarse-grained fragments of disintegrated granite.

2 KAlSi3O8 + 2 H2CO3 + 9 H2O → Al2Si2O5(OH)4 + 4 H4SiO4 + 2 K+ + 2 HCO3

Climatic variations also influence the weathering rate of granites. For about two thousand years, the relief engravings on Cleopatra's Needle obelisk had survived the arid conditions of its origin before its transfer to London. Within two hundred years, the red granite has drastically deteriorated in the damp and polluted air there.[50]

Soil development on granite reflects the rock's high quartz content and dearth of available bases, with the base-poor status predisposing the soil to acidification and podzolization in cool humid climates as the weather-resistant quartz yields much sand.[51] Feldspars also weather slowly in cool climes, allowing sand to dominate the fine-earth fraction. In warm humid regions, the weathering of feldspar as described above is accelerated so as to allow a much higher proportion of clay with the Cecil soil series a prime example of the consequent Ultisol great soil group.[52]

Natural radiation

Granite is a natural source of radiation, like most natural stones.

Potassium-40 is a radioactive isotope of weak emission, and a constituent of alkali feldspar, which in turn is a common component of granitic rocks, more abundant in alkali feldspar granite and syenites.

Some granites contain around 10 to 20 parts per million (ppm) of uranium. By contrast, more mafic rocks, such as tonalite, gabbro and diorite, have 1 to 5 ppm uranium, and limestones and sedimentary rocks usually have equally low amounts. Many large granite plutons are sources for palaeochannel-hosted or roll front uranium ore deposits, where the uranium washes into the sediments from the granite uplands and associated, often highly radioactive pegmatites. Cellars and basements built into soils over granite can become a trap for radon gas,[citation needed] which is formed by the decay of uranium.[53] Radon gas poses significant health concerns and is the number two cause of lung cancer in the US behind smoking.[54]

Thorium occurs in all granites.[55] Conway granite has been noted for its relatively high thorium concentration of 56±6 ppm.[56]

There is some concern that some granite sold as countertops or building material may be hazardous to health.[57] Dan Steck of St. Johns University has stated[58] that approximately 5% of all granite is of concern, with the caveat that only a tiny percentage of the tens of thousands of granite slab types have been tested. Resources from national geological survey organizations are accessible online to assist in assessing the risk factors in granite country and design rules relating, in particular, to preventing accumulation of radon gas in enclosed basements and dwellings.

A study of granite countertops was done (initiated and paid for by the Marble Institute of America) in November 2008 by National Health and Engineering Inc. of USA. In this test, all of the 39 full-size granite slabs that were measured for the study showed radiation levels well below the European Union safety standards (section 4.1.1.1 of the National Health and Engineering study) and radon emission levels well below the average outdoor radon concentrations in the US.[59]

Industry

 
Granite dimension stone quarry in Taivassalo, Finland

Granite and related marble industries are considered one of the oldest industries in the world, existing as far back as Ancient Egypt.[60]

Major modern exporters of granite include China, India, Italy, Brazil, Canada, Germany, Sweden, Spain and the United States.[61]

Uses

Antiquity

 
Cleopatra's Needle, London

The Red Pyramid of Egypt (circa 2590 BC), named for the light crimson hue of its exposed limestone surfaces, is the third largest of Egyptian pyramids. Pyramid of Menkaure, likely dating 2510 BC, was constructed of limestone and granite blocks. The Great Pyramid of Giza (c. 2580 BC) contains a huge granite sarcophagus fashioned of "Red Aswan Granite". The mostly ruined Black Pyramid dating from the reign of Amenemhat III once had a polished granite pyramidion or capstone, which is now on display in the main hall of the Egyptian Museum in Cairo (see Dahshur). Other uses in Ancient Egypt include columns, door lintels, sills, jambs, and wall and floor veneer.[62] How the Egyptians worked the solid granite is still a matter of debate. Patrick Hunt[63] has postulated that the Egyptians used emery, which has greater hardness on the Mohs scale.

The Seokguram Grotto in Korea is a Buddhist shrine and part of the Bulguksa temple complex. Completed in 774 AD, it is an artificial grotto constructed entirely of granite. The main Buddha of the grotto is a highly regarded piece of Buddhist art,[64] and along with the temple complex to which it belongs, Seokguram was added to the UNESCO World Heritage List in 1995.[65]

Rajaraja Chola I of the Chola Dynasty in South India built the world's first temple entirely of granite in the 11th century AD in Tanjore, India. The Brihadeeswarar Temple dedicated to Lord Shiva was built in 1010. The massive Gopuram (ornate, upper section of shrine) is believed to have a mass of around 81 tonnes. It was the tallest temple in south India.[66]

Imperial Roman granite was quarried mainly in Egypt, and also in Turkey, and on the islands of Elba and Giglio. Granite became "an integral part of the Roman language of monumental architecture".[67] The quarrying ceased around the third century AD. Beginning in Late Antiquity the granite was reused, which since at least the early 16th century became known as spolia. Through the process of case-hardening, granite becomes harder with age. The technology required to make tempered metal chisels was largely forgotten during the Middle Ages. As a result, Medieval stoneworkers were forced to use saws or emery to shorten ancient columns or hack them into discs. Giorgio Vasari noted in the 16th century that granite in quarries was "far softer and easier to work than after it has lain exposed" while ancient columns, because of their "hardness and solidity have nothing to fear from fire or sword, and time itself, that drives everything to ruin, not only has not destroyed them but has not even altered their colour."[67]

Modern

Sculpture and memorials

 
Granites (cut and polished surfaces)

In some areas, granite is used for gravestones and memorials. Granite is a hard stone and requires skill to carve by hand. Until the early 18th century, in the Western world, granite could be carved only by hand tools with generally poor results.

A key breakthrough was the invention of steam-powered cutting and dressing tools by Alexander MacDonald of Aberdeen, inspired by seeing ancient Egyptian granite carvings. In 1832, the first polished tombstone of Aberdeen granite to be erected in an English cemetery was installed at Kensal Green Cemetery. It caused a sensation in the London monumental trade and for some years all polished granite ordered came from MacDonald's.[68] As a result of the work of sculptor William Leslie, and later Sidney Field, granite memorials became a major status symbol in Victorian Britain. The royal sarcophagus at Frogmore was probably the pinnacle of its work, and at 30 tons one of the largest. It was not until the 1880s that rival machinery and works could compete with the MacDonald works.

Modern methods of carving include using computer-controlled rotary bits and sandblasting over a rubber stencil. Leaving the letters, numbers, and emblems exposed and the remainder of the stone covered with rubber, the blaster can create virtually any kind of artwork or epitaph.

The stone known as "black granite" is usually gabbro, which has a completely different chemical composition.[69]

Buildings

Granite has been extensively used as a dimension stone and as flooring tiles in public and commercial buildings and monuments. Aberdeen in Scotland, which is constructed principally from local granite, is known as "The Granite City". Because of its abundance in New England, granite was commonly used to build foundations for homes there. The Granite Railway, America's first railroad, was built to haul granite from the quarries in Quincy, Massachusetts, to the Neponset River in the 1820s.[70]

Engineering

Engineers have traditionally used polished granite surface plates to establish a plane of reference, since they are relatively impervious, inflexible, and maintain good dimensional stability. Sandblasted concrete with a heavy aggregate content has an appearance similar to rough granite, and is often used as a substitute when use of real granite is impractical. Granite tables are used extensively as bases or even as the entire structural body of optical instruments, CMMs, and very high precision CNC machines because of granite's rigidity, high dimensional stability, and excellent vibration characteristics. A most unusual use of granite was as the material of the tracks of the Haytor Granite Tramway, Devon, England, in 1820.[71] Granite block is usually processed into slabs, which can be cut and shaped by a cutting center.[72] In military engineering, Finland planted granite boulders along its Mannerheim Line to block invasion by Russian tanks in the Winter War of 1939–40.[73]

Paving

Granite is used as a pavement material. This is because it is extremely durable, permeable and requires little maintenance. For example, in Sydney, Australia black granite stone is used for the paving and kerbs throughout the Central Business District. [74]

Curling stones

 
Curling stones

Curling stones are traditionally fashioned of Ailsa Craig granite. The first stones were made in the 1750s, the original source being Ailsa Craig in Scotland. Because of the rarity of this granite, the best stones can cost as much as US$1,500. Between 60 and 70 percent of the stones used today are made from Ailsa Craig granite, although the island is now a wildlife reserve and is still used for quarrying under license for Ailsa granite by Kays of Scotland for curling stones.[75]

Rock climbing

Granite is one of the rocks most prized by climbers, for its steepness, soundness, crack systems, and friction.[76] Well-known venues for granite climbing include the Yosemite Valley, the Bugaboos, the Mont Blanc massif (and peaks such as the Aiguille du Dru, the Mourne Mountains, the Adamello-Presanella Alps, the Aiguille du Midi and the Grandes Jorasses), the Bregaglia, Corsica, parts of the Karakoram (especially the Trango Towers), the Fitzroy Massif, Patagonia, Baffin Island, Ogawayama, the Cornish coast, the Cairngorms, Sugarloaf Mountain in Rio de Janeiro, Brazil, and the Stawamus Chief, British Columbia, Canada.

Gallery

See also

References

Citations
  1. ^ Read, H.H. (January 1943). "Meditations on granite: Part one". Proceedings of the Geologists' Association. 54 (2): 64–85. doi:10.1016/S0016-7878(43)80008-0.
  2. ^ "Granitoids – Granite and the Related Rocks Granodiorite, Diorite and Tonalite". Geology.about.com. 2010-02-06. Retrieved 2010-05-09.
  3. ^ Blatt, Harvey; Tracy, Robert J. (1996). Petrology : igneous, sedimentary, and metamorphic (2nd ed.). New York: W.H. Freeman. p. 45. ISBN 0-7167-2438-3.
  4. ^ Le Bas, M. J.; Streckeisen, A. L. (1991). "The IUGS systematics of igneous rocks". Journal of the Geological Society. 148 (5): 825–833. Bibcode:1991JGSoc.148..825L. CiteSeerX 10.1.1.692.4446. doi:10.1144/gsjgs.148.5.0825. S2CID 28548230.
  5. ^ a b "Rock Classification Scheme - Vol 1 - Igneous" (PDF). British Geological Survey: Rock Classification Scheme. 1: 1–52. 1999.
  6. ^ a b Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 139–143. ISBN 9780521880060.
  7. ^ Barbarin, Bernard (1 April 1996). "Genesis of the two main types of peraluminous granitoids". Geology. 24 (4): 295–298. Bibcode:1996Geo....24..295B. doi:10.1130/0091-7613(1996)024<0295:GOTTMT>2.3.CO;2.
  8. ^ Washington, Henry S. (1921). "The Granites of Washington, D. C.". Journal of the Washington Academy of Sciences. 11 (19): v459–470. JSTOR 24532555.
  9. ^ a b c d Blatt & Tracy 1996, p. 185.
  10. ^ . EduMine. Archived from the original on 2017-08-31. Retrieved 2017-08-27.
  11. ^ Kumagai, Naoichi; Sadao Sasajima; Hidebumi Ito (1978). "Long-term Creep of Rocks: Results with Large Specimens Obtained in about 20 Years and Those with Small Specimens in about 3 Years". Journal of the Society of Materials Science (Japan). 27 (293): 157–161. doi:10.2472/jsms.27.155.
  12. ^ Larsen, Esper S. (1929). "The temperatures of magmas". American Mineralogist. 14: 81–94.
  13. ^ Holland, Tim; Powell, Roger (2001). "Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset". Journal of Petrology. 42 (4): 673–683. Bibcode:2001JPet...42..673H. doi:10.1093/petrology/42.4.673.
  14. ^ Blatt and Tracy 1996, p.66
  15. ^ "Microgranite". OpenLearn. The Open University. Retrieved 28 December 2021.
  16. ^ Haldar, S.K.; Tišljar, J. (2014). Introduction to Mineralogy and Petrology. Elsevier. p. 116. ISBN 978-0-12-408133-8.
  17. ^ Singh, G. (2009). Earth Science Today. Discovery Publishing House. ISBN 9788183564380.
  18. ^ Twidale, C. R. (1982). Granite landforms. Amsterdam: Elsevier Scientific Pub. Co. ISBN 0444421165. Retrieved 10 October 2020.
  19. ^ Philpotts & Ague 2009, pp. 15–16.
  20. ^ Castro, Antonio (January 2014). "The off-crust origin of granite batholiths". Geoscience Frontiers. 5 (1): 63–75. doi:10.1016/j.gsf.2013.06.006.
  21. ^ Blatt & Tracy 1996, p. 128.
  22. ^ Blatt & Tracy 1996, p. 172.
  23. ^ a b c d e f Philpotts & Ague 2009, p. 378.
  24. ^ Baker, P. E. (February 1968). "Comparative volcanology and petrology of the atlantic island-arcs". Bulletin Volcanologique. 32 (1): 189–206. Bibcode:1968BVol...32..189B. doi:10.1007/BF02596591. S2CID 128993656.
  25. ^ Chappell, B. W.; White, A. J. R. (2001). "Two contrasting granite types: 25 years later". Australian Journal of Earth Sciences. 48 (4): 489–499. Bibcode:2001AuJES..48..489C. doi:10.1046/j.1440-0952.2001.00882.x. S2CID 33503865.
  26. ^ Winter, John D. (2014). Principles of igneous and metamorphic petrology (Second ; Pearson new international ed.). Harlow. p. 381. ISBN 9781292021539.
  27. ^ Philpotts & Ague 2009, p. 148.
  28. ^ Blatt & Tracy 1996, pp. 203–206.
  29. ^ Whalen, Joseph B.; Currie, Kenneth L.; Chappell, Bruce W. (April 1987). "A-type granites: geochemical characteristics, discrimination and petrogenesis". Contributions to Mineralogy and Petrology. 95 (4): 407–419. Bibcode:1987CoMP...95..407W. doi:10.1007/BF00402202. S2CID 128541930.
  30. ^ Cottle, John M.; Cooper, Alan F. (June 2006). "Geology, geochemistry, and geochronology of an A‐type granite in the Mulock Glacier area, southern Victoria Land, Antarctica". New Zealand Journal of Geology and Geophysics. 49 (2): 191–202. doi:10.1080/00288306.2006.9515159. S2CID 128395509.
  31. ^ Branney, M. J.; Bonnichsen, B.; Andrews, G. D. M.; Ellis, B.; Barry, T. L.; McCurry, M. (January 2008). "'Snake River (SR)-type' volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions". Bulletin of Volcanology. 70 (3): 293–314. doi:10.1007/s00445-007-0140-7. S2CID 128878481.
  32. ^ Whalen, J. B. (1 August 1985). "Geochemistry of an Island-Arc Plutonic Suite: the Uasilau-Yau Yau Intrusive Complex, New Britain, P.N.G". Journal of Petrology. 26 (3): 603–632. Bibcode:1985JPet...26..603W. doi:10.1093/petrology/26.3.603.
  33. ^ Saito, Satoshi; Arima, Makoto; Nakajima, Takashi; Kimura, Jun-Ichi (2004). "Petrogenesis of Ashigawa and Tonogi granitic intrusions, southern part of the Miocene Kofu Granitic Complex, central Japan: M-type granite in the Izu arc collision zone". Journal of Mineralogical and Petrological Sciences. 99 (3): 104–117. Bibcode:2004JMPeS..99..104S. doi:10.2465/jmps.99.104.
  34. ^ Castro, A.; Moreno-Ventas, I.; de la Rosa, J.D. (October 1991). "H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature". Earth-Science Reviews. 31 (3–4): 237–253. Bibcode:1991ESRv...31..237C. doi:10.1016/0012-8252(91)90020-G.
  35. ^ Philpotts & Ague 2009, pp. 104–105.
  36. ^ Philpotts & Ague 2009, p. 511.
  37. ^ McBirney, Alexander R. (1984). Igneous petrology. San Francisco, Calif.: Freeman, Cooper. pp. 379–380. ISBN 0877353239.
  38. ^ McBirney, 1984 & 379-380.
  39. ^ Philpotts & Ague 2009, p. 44.
  40. ^ Clark, Chris; Fitzsimons, Ian C. W.; Healy, David; Harley, Simon L. (1 August 2011). "How Does the Continental Crust Get Really Hot?". Elements. 7 (4): 235–240. doi:10.2113/gselements.7.4.235.
  41. ^ Zheng, Y.-F.; Chen, R.-X. (2017). "Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins". Journal of Asian Earth Sciences. 145: 46–73. Bibcode:2017JAESc.145...46Z. doi:10.1016/j.jseaes.2017.03.009.
  42. ^ a b Philpotts & Ague 2009, p. 80.
  43. ^ Weinberg, R. F.; Podladchikov, Y. (1994). "Diapiric ascent of magmas through power law crust and mantle". Journal of Geophysical Research. 99 (B5): 9543. Bibcode:1994JGR....99.9543W. doi:10.1029/93JB03461. S2CID 19470906.
  44. ^ Clemens, John (1998). "Observations on the origins and ascent mechanisms of granitic magmas". Journal of the Geological Society of London. 155 (Part 5): 843–51. Bibcode:1998JGSoc.155..843C. doi:10.1144/gsjgs.155.5.0843. S2CID 129958999.
  45. ^ Blatt & Tracy 1996, pp. 21–22.
  46. ^ Philpotts & Ague 2009, pp. 347–350.
  47. ^ Oxburgh, E. R.; McRae, Tessa (27 April 1984). "Physical constraints on magma contamination in the continental crust: an example, the Adamello complex". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 310 (1514): 457–472. Bibcode:1984RSPTA.310..457O. doi:10.1098/rsta.1984.0004. S2CID 120776326.
  48. ^ . University College London. Archived from the original on 15 October 2014. Retrieved 10 July 2014.
  49. ^ "Hydrolysis". Geological Society of London. Retrieved 10 July 2014.
  50. ^ Marsh, William M.; Kaufman, Martin M. (2012). Physical Geography: Great Systems and Global Environments. Cambridge University Press. p. 510. ISBN 9781107376649.
  51. ^ "Land Use Impacts". Land Use Impacts on Soil Quality. Retrieved 23 March 2022.
  52. ^ "Cecil – North Carolina State Soil" (PDF). Soil Science Society of America. Retrieved 23 March 2022.
  53. ^ . Archived from the original on March 9, 2012. Retrieved 2008-10-19.
  54. ^ "Radon and Cancer: Questions and Answers". National Cancer Institute. Retrieved 2008-10-19.
  55. ^ Hubbert, M. King (March 8, 1956) . American Petroleum Institute Conference. Energy Bulletin.
  56. ^ Adams, J. A.; Kline, M. C.; Richardson, K. A.; Rogers, J. J. (1962). "The Conway Granite of New Hampshire As a Major Low-Grade Thorium Resource". Proceedings of the National Academy of Sciences of the United States of America. 48 (11): 1898–905. Bibcode:1962PNAS...48.1898A. doi:10.1073/pnas.48.11.1898. PMC 221093. PMID 16591014.
  57. ^ "Granite Countertops and Radiation". United States Environmental Protection Agency. 4 May 2015. Retrieved 7 January 2020.
  58. ^ Steck, Daniel J. (2009). "Pre- and Post-Market Measurements of Gamma Radiation and Radon Emanation from a Large Sample of Decorative Granites" (PDF). Nineteenth International Radon Symposium. pp. 28–51.
  59. ^ Natural Stone Countertops and Radon – Environmental Health and Engineering – Assessing Exposure to Radon and Radiation from Granite Countertops.
  60. ^ Nelson L. Nemerow (27 January 2009). Environmental Engineering: Environmental Health and Safety for Municipal Infrastructure, Land Use and Planning, and Industry. John Wiley & Sons. p. 40. ISBN 978-0-470-08305-5.
  61. ^ Parmodh Alexander (15 January 2009). A Handbook of Minerals, Crystals, Rocks and Ores. New India Publishing. p. 585. ISBN 978-81-907237-8-7.
  62. ^ James A. Harrell. "Decorative Stones in the Pre-Ottoman Islamic Buildings of Cairo, Egypt". Retrieved 2008-01-06.
  63. ^ . Archived from the original on 2007-10-14. Retrieved 2008-01-06.
  64. ^ Sculptures of Unified Silla: 통일신라의 조각. 8 July 2015. ISBN 9788981641306.
  65. ^ "Seokguram Grotto [UNESCO World Heritage] (경주 석굴암)".
  66. ^ Heitzman, James (1991). "Ritual Polity and Economy: The Transactional Network of an Imperial Temple in Medieval South India". Journal of the Economic and Social History of the Orient. BRILL. 34 (1/2): 23–54. doi:10.1163/156852091x00157. JSTOR 3632277.
  67. ^ a b Waters, Michael (2016). "Reviving Antiquity with Granite: Spolia and the Development of Roman Renaissance Architecture". Architectural History. 59: 149–179. doi:10.1017/arh.2016.5.
  68. ^ Friends of West Norwood Cemetery newsletter 71 Alexander MacDonald (1794–1860) – Stonemason,
  69. ^ "Gabbro". Geology.com. Retrieved 2022-01-25.
  70. ^ Brayley, A.W. (1913). History of the Granite Industry of New England (2018 ed.). Franklin Classics. ISBN 0342278657. Retrieved 3 December 2020.
  71. ^ Ewans, M.C. (1966). The Haytor Granite Tramway and Stover Canal. Newton Abbot: David & Charles.
  72. ^ Bai, Shuo-wei; Zhang, Jin-sheng; Wang, Zhi (January 2016). "Selection of a sustainable technology for cutting granite block into slabs". Journal of Cleaner Production. 112: 2278–2291. doi:10.1016/j.jclepro.2015.10.052.
  73. ^ Chersicla, Rick (January–March 2017). "What Free Men Can Do: The Winter War, the Use of Delay, and Lessons for the 21st Century" (PDF). Infantry: 63. Retrieved 3 December 2020.
  74. ^ "Sydney Streets technical specifications". November 2020. Retrieved 25 January 2022.
  75. ^ Roach, John (October 27, 2004). "National Geographic News — Puffins Return to Scottish Island Famous for Curling Stones". National Geographic News.
  76. ^ Green, Stewart. "3 Types of Rock for Climbing: Granite, Sandstone & Limestone: The Geology of Rock Climbing". Liveabout.dotcom. Dotdash. Retrieved 3 December 2020.
  77. ^ De Matteo, Giovanna (12 September 2020). "Leopoldina e Teresa Cristina: descubra o que aconteceu com as "mães do Brasil"" (in Portuguese). Retrieved 29 December 2022.

Further reading

External links

granite, other, uses, disambiguation, coarse, grained, phaneritic, intrusive, igneous, rock, composed, mostly, quartz, alkali, feldspar, plagioclase, forms, from, magma, with, high, content, silica, alkali, metal, oxides, that, slowly, cools, solidifies, under. For other uses see Granite disambiguation Granite ˈ ɡ r ae n ɪ t is a coarse grained phaneritic intrusive igneous rock composed mostly of quartz alkali feldspar and plagioclase It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground It is common in the continental crust of Earth where it is found in igneous intrusions These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers GraniteIgneous rockGranite containing potassium feldspar plagioclase feldspar quartz and biotite and or amphiboleCompositionPrimaryFelsic potassium feldspar plagioclase feldspar and quartzSecondaryDiffering amounts of muscovite biotite and hornblende type amphibolesGranite is typical of a larger family of granitic rocks or granitoids that are composed mostly of coarse grained quartz and feldspars in varying proportions These rocks are classified by the relative percentages of quartz alkali feldspar and plagioclase the QAPF classification with true granite representing granitic rocks rich in quartz and alkali feldspar Most granitic rocks also contain mica or amphibole minerals though a few known as leucogranites contain almost no dark minerals Thin section of granite Granite is nearly always massive lacking any internal structures hard and tough These properties have made granite a widespread construction stone throughout human history Contents 1 Description 1 1 Physical properties 1 2 Chemical composition 2 Occurrence 3 Origin 3 1 Alphabet classification system 3 2 Granitization 4 Ascent and emplacement 5 Weathering 6 Natural radiation 7 Industry 8 Uses 8 1 Antiquity 8 2 Modern 8 2 1 Sculpture and memorials 8 2 2 Buildings 8 2 3 Engineering 8 2 4 Paving 8 2 5 Curling stones 9 Rock climbing 10 Gallery 11 See also 12 References 13 Further reading 14 External linksDescription Edit QAPF diagram with granite field highlighted in yellow Mineral assemblage of igneous rocks The word granite comes from the Latin granum a grain in reference to the coarse grained structure of such a completely crystalline rock 1 Granitic rocks mainly consist of feldspar quartz mica and amphibole minerals which form an interlocking somewhat equigranular matrix of feldspar and quartz with scattered darker biotite mica and amphibole often hornblende peppering the lighter color minerals Occasionally some individual crystals phenocrysts are larger than the groundmass in which case the texture is known as porphyritic A granitic rock with a porphyritic texture is known as a granite porphyry Granitoid is a general descriptive field term for lighter colored coarse grained igneous rocks Petrographic examination is required for identification of specific types of granitoids Granites can be predominantly white pink or gray in color depending on their mineralogy 2 The alkali feldspar in granites is typically orthoclase or microcline and is often perthitic The plagioclase is typically sodium rich oligoclase Phenocrysts are usually alkali feldspar 3 Granitic rocks are classified according to the QAPF diagram for coarse grained plutonic rocks and are named according to the percentage of quartz alkali feldspar orthoclase sanidine or microcline and plagioclase feldspar on the A Q P half of the diagram True granite according to modern petrologic convention contains between 20 and 60 quartz by volume with 35 to 90 of the total feldspar consisting of alkali feldspar Granitic rocks poorer in quartz are classified as syenites or monzonites while granitic rocks dominated by plagioclase are classified as granodiorites or tonalites Granitic rocks with over 90 alkali feldspar are classified as alkali feldspar granites Granitic rock with more than 60 quartz which is uncommon is classified simply as quartz rich granitoid or if composed almost entirely of quartz as quartzolite 4 5 6 True granites are further classified by the percentage of their total feldspar that is alkali feldspar Granites whose feldspar is 65 to 90 alkali feldspar are syenogranites while the feldspar in monzogranite is 35 to 65 alkali feldspar 5 6 A granite containing both muscovite and biotite micas is called a binary or two mica granite Two mica granites are typically high in potassium and low in plagioclase and are usually S type granites or A type granites as described below 7 8 Another aspect of granite classification is the ratios of metals that potentially form feldspars Most granites have a composition such that almost all their aluminum and alkali metals sodium and potassium are combined as feldspar This is the case when K2O Na2O CaO gt Al2O3 gt K2O Na2O Such granites are described as normal or metaluminous Granites in which there is not enough aluminum to combine with all the alkali oxides as feldspar Al2O3 lt K2O Na2O are described as peralkaline and they contain unusual sodium amphiboles such as riebeckite Granites in which there is an excess of aluminum beyond what can be taken up in feldspars Al2O3 gt CaO K2O Na2O are described as peraluminous and they contain aluminum rich minerals such as muscovite 9 Physical properties Edit The average density of granite is between 2 65 and 2 75 g cm3 165 and 172 lb cu ft 10 its compressive strength usually lies above 200 MPa 29 000 psi and its viscosity near STP is 3 6 1020 Pa s 11 The melting temperature of dry granite at ambient pressure is 1215 1260 C 2219 2300 F 12 it is strongly reduced in the presence of water down to 650 C at a few hundred megapascals of pressure 13 Granite has poor primary permeability overall but strong secondary permeability through cracks and fractures if they are present Chemical composition Edit A worldwide average of the chemical composition of granite by weight percent based on 2485 analyses 14 SiO2 72 04 silica 72 04 Al2O3 14 42 alumina 14 42 K2O 4 12 4 12 Na2O 3 69 3 69 CaO 1 82 1 82 FeO 1 68 1 68 Fe2O3 1 22 1 22 MgO 0 71 0 71 TiO2 0 30 0 3 P2O5 0 12 0 12 MnO 0 05 0 05 The medium grained equivalent of granite is microgranite 15 The extrusive igneous rock equivalent of granite is rhyolite 16 Occurrence Edit The Cheesewring a granite tor in England A granite peak at Huangshan China Pink granite at Hiltaba South Australia part of the Hiltaba Suite Granite with quartz veins at Gros la Tete cliff Aride Island Seychelles Granitic rock is widely distributed throughout the continental crust 17 Much of it was intruded during the Precambrian age it is the most abundant basement rock that underlies the relatively thin sedimentary veneer of the continents Outcrops of granite tend to form tors domes or bornhardts and rounded massifs Granites sometimes occur in circular depressions surrounded by a range of hills formed by the metamorphic aureole or hornfels Granite often occurs as relatively small less than 100 km2 stock masses stocks and in batholiths that are often associated with orogenic mountain ranges Small dikes of granitic composition called aplites are often associated with the margins of granitic intrusions In some locations very coarse grained pegmatite masses occur with granite 18 Origin EditGranite forms from silica rich felsic magmas Felsic magmas are thought to form by addition of heat or water vapor to rock of the lower crust rather than by decompression of mantle rock as is the case with basaltic magmas 19 It has also been suggested that some granites found at convergent boundaries between tectonic plates where oceanic crust subducts below continental crust were formed from sediments subducted with the oceanic plate The melted sediments would have produced magma intermediate in its silica content which became further enriched in silica as it rose through the overlying crust 20 Early fractional crystallisation serves to reduce a melt in magnesium and chromium and enrich the melt in iron sodium potassium aluminum and silicon 21 Further fractionation reduces the content of iron calcium and titanium 22 This is reflected in the high content of alkali feldspar and quartz in granite The presence of granitic rock in island arcs shows that fractional crystallization alone can convert a basaltic magma to a granitic magma but the quantities produced are small 23 For example granitic rock makes up just 4 of the exposures in the South Sandwich Islands 24 In continental arc settings granitic rocks are the most common plutonic rocks and batholiths composed of these rock types extend the entire length of the arc There are no indication of magma chambers where basaltic magmas differentiate into granites or of cumulates produced by mafic crystals settling out of the magma Other processes must produce these great volumes of felsic magma One such process is injection of basaltic magma into the lower crust followed by differentiation which leaves any cumulates in the mantle Another is heating of the lower crust by underplating basaltic magma which produces felsic magma directly from crustal rock The two processes produce different kinds of granites which may be reflected in the division between S type produced by underplating and I type produced by injection and differentiation granites discussed below 23 Alphabet classification system Edit The composition and origin of any magma that differentiates into granite leave certain petrological evidence as to what the granite s parental rock was The final texture and composition of a granite are generally distinctive as to its parental rock For instance a granite that is derived from partial melting of metasedimentary rocks may have more alkali feldspar whereas a granite derived from partial melting of metaigneous rocks may be richer in plagioclase It is on this basis that the modern alphabet classification schemes are based The letter based Chappell amp White classification system was proposed initially to divide granites into I type igneous source granite and S type sedimentary sources 25 Both types are produced by partial melting of crustal rocks either metaigneous rocks or metasedimentary rocks I type granites are characterized by a high content of sodium and calcium and by a strontium isotope ratio 87Sr 86Sr of less than 0 708 87Sr is produced by radioactive decay of 87Rb and since rubidium is concentrated in the crust relative to the mantle a low ratio suggests origin in the mantle The elevated sodium and calcium favor crystallization of hornblende rather than biotite I type granites are known for their porphyry copper deposits 23 I type granites are orogenic associated with mountain building and usually metaluminous 9 S type granites are sodium poor and aluminum rich As a result they contain micas such as biotite and muscovite instead of hornblende Their strontium isotope ratio is typically greater than 0 708 suggesting a crustal origin They also commonly contain xenoliths of metamorphosed sedimentary rock and host tin ores Their magmas are water rich and they readily solidify as the water outgasses from the magma at lower pressure so they less commonly make it to the surface than magmas of I type granites which are thus more common as volcanic rock rhyolite 23 They are also orogenic but range from metaluminous to strongly peraluminous 9 Although both I and S type granites are orogenic I type granites are more common close to the convergent boundary than S type This is attributed to thicker crust further from the boundary which results in more crustal melting 23 A type granites show a peculiar mineralogy and geochemistry with particularly high silicon and potassium at the expense of calcium and magnesium 26 and a high content of high field strength cations cations with a small radius and high electrical charge such as zirconium niobium tantalum and rare earth elements 27 They are not orogenic forming instead over hot spots and continental rifting and are metaluminous to mildly peralkaline and iron rich 9 These granites are produced by partial melting of refractory lithology such as granulites in the lower continental crust at high thermal gradients This leads to significant extraction of hydrous felsic melts from granulite facies resitites 28 29 A type granites occur in the Koettlitz Glacier Alkaline Province in the Royal Society Range Antarctica 30 The rhyolites of the Yellowstone Caldera are examples of volcanic equivalents of A type granite 31 M type granite was later proposed to cover those granites that were clearly sourced from crystallized mafic magmas generally sourced from the mantle 32 Although the fractional crystallisation of basaltic melts can yield small amounts of granites which are sometimes found in island arcs 33 such granites must occur together with large amounts of basaltic rocks 23 H type granites were suggested for hybrid granites which were hypothesized to form by mixing between mafic and felsic from different sources such as M type and S type 34 However the big difference in rheology between mafic and felsic magmas makes this process problematic in nature 35 Granitization Edit Granitization is an old and largely discounted hypothesis that granite is formed in place through extreme metasomatism The idea behind granitization was that fluids would supposedly bring in elements such as potassium and remove others such as calcium to transform a metamorphic rock into granite This was supposed to occur across a migrating front However experimental work had established by the 1960s that granites were of igneous origin 36 The mineralogical and chemical features of granite can be explained only by crystal liquid phase relations showing that there must have been at least enough melting to mobilize the magma 37 However at sufficiently deep crustal levels the distinction between metamorphism and crustal melting itself becomes vague Conditions for crystallization of liquid magma are close enough to those of high grade metamorphism that the rocks often bear a close resemblance 38 Under these conditions granitic melts can be produced in place through the partial melting of metamorphic rocks by extracting melt mobile elements such as potassium and silicon into the melts but leaving others such as calcium and iron in granulite residues This may be the origin of migmatites A migmatite consists of dark refractory rock the melanosome that is permeated by sheets and channels of light granitic rock the leucosome The leucosome is interpreted as partial melt of a parent rock that has begun to separate from the remaining solid residue the melanosome 39 If enough partial melt is produced it will separate from the source rock become more highly evolved through fractional crystallization during its ascent toward the surface and become the magmatic parent of granitic rock The residue of the source rock becomes a granulite The partial melting of solid rocks requires high temperatures and the addition of water or other volatiles which lower the solidus temperature temperature at which partial melting commences of these rocks It was long debated whether crustal thickening in orogens mountain belts along convergent boundaries was sufficient to produce granite melts by radiogenic heating but recent work suggests that this is not a viable mechanism 40 In situ granitization requires heating by the asthenospheric mantle or by underplating with mantle derived magmas 41 Ascent and emplacement EditGranite magmas have a density of 2 4 Mg m3 much less than the 2 8 Mg m3 of high grade metamorphic rock This gives them tremendous buoyancy so that ascent of the magma is inevitable once enough magma has accumulated However the question of precisely how such large quantities of magma are able to shove aside country rock to make room for themselves the room problem is still a matter of research 42 Two main mechanisms are thought to be important Stokes diapir Fracture propagationOf these two mechanisms Stokes diapirism has been favoured for many years in the absence of a reasonable alternative The basic idea is that magma will rise through the crust as a single mass through buoyancy As it rises it heats the wall rocks causing them to behave as a power law fluid and thus flow around the intrusion allowing it to pass without major heat loss 43 This is entirely feasible in the warm ductile lower crust where rocks are easily deformed but runs into problems in the upper crust which is far colder and more brittle Rocks there do not deform so easily for magma to rise as a diapir it would expend far too much energy in heating wall rocks thus cooling and solidifying before reaching higher levels within the crust Fracture propagation is the mechanism preferred by many geologists as it largely eliminates the major problems of moving a huge mass of magma through cold brittle crust Magma rises instead in small channels along self propagating dykes which form along new or pre existing fracture or fault systems and networks of active shear zones 44 As these narrow conduits open the first magma to enter solidifies and provides a form of insulation for later magma These mechanisms can operate in tandem For example diapirs may continue to rise through the brittle upper crust through stoping where the granite cracks the roof rocks removing blocks of the overlying crust which then sink to the bottom of the diapir while the magma rises to take their place This can occur as piecemeal stopping stoping of small blocks of chamber roof as cauldron subsidence collapse of large blocks of chamber roof or as roof foundering complete collapse of the roof of a shallow magma chamber accompanied by a caldera eruption There is evidence for cauldron subsidence at the Mt Ascutney intrusion in eastern Vermont 45 Evidence for piecemeal stoping is found in intrusions that are rimmed with igneous breccia containing fragments of country rock 42 Assimilation is another mechanism of ascent where the granite melts its way up into the crust and removes overlying material in this way This is limited by the amount of thermal energy available which must be replenished by crystallization of higher melting minerals in the magma Thus the magma is melting crustal rock at its roof while simultaneously crystallizing at its base This results in steady contamination with crustal material as the magma rises This may not be evident in the major and minor element chemistry since the minerals most likely to crystallize at the base of the chamber are the same ones that would crystallize anyway but crustal assimilation is detectable in isotope ratios 46 Heat loss to the country rock means that ascent by assimilation is limited to distance similar to the height of the magma chamber 47 Weathering EditFurther information Weathering Grus sand and granitoid from which it derived Physical weathering occurs on a large scale in the form of exfoliation joints which are the result of granite s expanding and fracturing as pressure is relieved when overlying material is removed by erosion or other processes Chemical weathering of granite occurs when dilute carbonic acid and other acids present in rain and soil waters alter feldspar in a process called hydrolysis 48 49 As demonstrated in the following reaction this causes potassium feldspar to form kaolinite with potassium ions bicarbonate and silica in solution as byproducts An end product of granite weathering is grus which is often made up of coarse grained fragments of disintegrated granite 2 KAlSi3O8 2 H2CO3 9 H2O Al2Si2O5 OH 4 4 H4SiO4 2 K 2 HCO3 Climatic variations also influence the weathering rate of granites For about two thousand years the relief engravings on Cleopatra s Needle obelisk had survived the arid conditions of its origin before its transfer to London Within two hundred years the red granite has drastically deteriorated in the damp and polluted air there 50 Soil development on granite reflects the rock s high quartz content and dearth of available bases with the base poor status predisposing the soil to acidification and podzolization in cool humid climates as the weather resistant quartz yields much sand 51 Feldspars also weather slowly in cool climes allowing sand to dominate the fine earth fraction In warm humid regions the weathering of feldspar as described above is accelerated so as to allow a much higher proportion of clay with the Cecil soil series a prime example of the consequent Ultisol great soil group 52 Natural radiation EditGranite is a natural source of radiation like most natural stones Potassium 40 is a radioactive isotope of weak emission and a constituent of alkali feldspar which in turn is a common component of granitic rocks more abundant in alkali feldspar granite and syenites Some granites contain around 10 to 20 parts per million ppm of uranium By contrast more mafic rocks such as tonalite gabbro and diorite have 1 to 5 ppm uranium and limestones and sedimentary rocks usually have equally low amounts Many large granite plutons are sources for palaeochannel hosted or roll front uranium ore deposits where the uranium washes into the sediments from the granite uplands and associated often highly radioactive pegmatites Cellars and basements built into soils over granite can become a trap for radon gas citation needed which is formed by the decay of uranium 53 Radon gas poses significant health concerns and is the number two cause of lung cancer in the US behind smoking 54 Thorium occurs in all granites 55 Conway granite has been noted for its relatively high thorium concentration of 56 6 ppm 56 There is some concern that some granite sold as countertops or building material may be hazardous to health 57 Dan Steck of St Johns University has stated 58 that approximately 5 of all granite is of concern with the caveat that only a tiny percentage of the tens of thousands of granite slab types have been tested Resources from national geological survey organizations are accessible online to assist in assessing the risk factors in granite country and design rules relating in particular to preventing accumulation of radon gas in enclosed basements and dwellings A study of granite countertops was done initiated and paid for by the Marble Institute of America in November 2008 by National Health and Engineering Inc of USA In this test all of the 39 full size granite slabs that were measured for the study showed radiation levels well below the European Union safety standards section 4 1 1 1 of the National Health and Engineering study and radon emission levels well below the average outdoor radon concentrations in the US 59 Industry Edit Granite dimension stone quarry in Taivassalo Finland Granite and related marble industries are considered one of the oldest industries in the world existing as far back as Ancient Egypt 60 Major modern exporters of granite include China India Italy Brazil Canada Germany Sweden Spain and the United States 61 Uses EditAntiquity Edit Cleopatra s Needle London The Red Pyramid of Egypt circa 2590 BC named for the light crimson hue of its exposed limestone surfaces is the third largest of Egyptian pyramids Pyramid of Menkaure likely dating 2510 BC was constructed of limestone and granite blocks The Great Pyramid of Giza c 2580 BC contains a huge granite sarcophagus fashioned of Red Aswan Granite The mostly ruined Black Pyramid dating from the reign of Amenemhat III once had a polished granite pyramidion or capstone which is now on display in the main hall of the Egyptian Museum in Cairo see Dahshur Other uses in Ancient Egypt include columns door lintels sills jambs and wall and floor veneer 62 How the Egyptians worked the solid granite is still a matter of debate Patrick Hunt 63 has postulated that the Egyptians used emery which has greater hardness on the Mohs scale The Seokguram Grotto in Korea is a Buddhist shrine and part of the Bulguksa temple complex Completed in 774 AD it is an artificial grotto constructed entirely of granite The main Buddha of the grotto is a highly regarded piece of Buddhist art 64 and along with the temple complex to which it belongs Seokguram was added to the UNESCO World Heritage List in 1995 65 Rajaraja Chola I of the Chola Dynasty in South India built the world s first temple entirely of granite in the 11th century AD in Tanjore India The Brihadeeswarar Temple dedicated to Lord Shiva was built in 1010 The massive Gopuram ornate upper section of shrine is believed to have a mass of around 81 tonnes It was the tallest temple in south India 66 Imperial Roman granite was quarried mainly in Egypt and also in Turkey and on the islands of Elba and Giglio Granite became an integral part of the Roman language of monumental architecture 67 The quarrying ceased around the third century AD Beginning in Late Antiquity the granite was reused which since at least the early 16th century became known as spolia Through the process of case hardening granite becomes harder with age The technology required to make tempered metal chisels was largely forgotten during the Middle Ages As a result Medieval stoneworkers were forced to use saws or emery to shorten ancient columns or hack them into discs Giorgio Vasari noted in the 16th century that granite in quarries was far softer and easier to work than after it has lain exposed while ancient columns because of their hardness and solidity have nothing to fear from fire or sword and time itself that drives everything to ruin not only has not destroyed them but has not even altered their colour 67 Modern Edit Sculpture and memorials Edit Granites cut and polished surfaces In some areas granite is used for gravestones and memorials Granite is a hard stone and requires skill to carve by hand Until the early 18th century in the Western world granite could be carved only by hand tools with generally poor results A key breakthrough was the invention of steam powered cutting and dressing tools by Alexander MacDonald of Aberdeen inspired by seeing ancient Egyptian granite carvings In 1832 the first polished tombstone of Aberdeen granite to be erected in an English cemetery was installed at Kensal Green Cemetery It caused a sensation in the London monumental trade and for some years all polished granite ordered came from MacDonald s 68 As a result of the work of sculptor William Leslie and later Sidney Field granite memorials became a major status symbol in Victorian Britain The royal sarcophagus at Frogmore was probably the pinnacle of its work and at 30 tons one of the largest It was not until the 1880s that rival machinery and works could compete with the MacDonald works Modern methods of carving include using computer controlled rotary bits and sandblasting over a rubber stencil Leaving the letters numbers and emblems exposed and the remainder of the stone covered with rubber the blaster can create virtually any kind of artwork or epitaph The stone known as black granite is usually gabbro which has a completely different chemical composition 69 Buildings Edit The granite castle of Aulanko in Hameenlinna Finland Granite has been extensively used as a dimension stone and as flooring tiles in public and commercial buildings and monuments Aberdeen in Scotland which is constructed principally from local granite is known as The Granite City Because of its abundance in New England granite was commonly used to build foundations for homes there The Granite Railway America s first railroad was built to haul granite from the quarries in Quincy Massachusetts to the Neponset River in the 1820s 70 Engineering Edit Engineers have traditionally used polished granite surface plates to establish a plane of reference since they are relatively impervious inflexible and maintain good dimensional stability Sandblasted concrete with a heavy aggregate content has an appearance similar to rough granite and is often used as a substitute when use of real granite is impractical Granite tables are used extensively as bases or even as the entire structural body of optical instruments CMMs and very high precision CNC machines because of granite s rigidity high dimensional stability and excellent vibration characteristics A most unusual use of granite was as the material of the tracks of the Haytor Granite Tramway Devon England in 1820 71 Granite block is usually processed into slabs which can be cut and shaped by a cutting center 72 In military engineering Finland planted granite boulders along its Mannerheim Line to block invasion by Russian tanks in the Winter War of 1939 40 73 Paving Edit Granite is used as a pavement material This is because it is extremely durable permeable and requires little maintenance For example in Sydney Australia black granite stone is used for the paving and kerbs throughout the Central Business District 74 Curling stones Edit Curling stones Curling stones are traditionally fashioned of Ailsa Craig granite The first stones were made in the 1750s the original source being Ailsa Craig in Scotland Because of the rarity of this granite the best stones can cost as much as US 1 500 Between 60 and 70 percent of the stones used today are made from Ailsa Craig granite although the island is now a wildlife reserve and is still used for quarrying under license for Ailsa granite by Kays of Scotland for curling stones 75 Rock climbing EditGranite is one of the rocks most prized by climbers for its steepness soundness crack systems and friction 76 Well known venues for granite climbing include the Yosemite Valley the Bugaboos the Mont Blanc massif and peaks such as the Aiguille du Dru the Mourne Mountains the Adamello Presanella Alps the Aiguille du Midi and the Grandes Jorasses the Bregaglia Corsica parts of the Karakoram especially the Trango Towers the Fitzroy Massif Patagonia Baffin Island Ogawayama the Cornish coast the Cairngorms Sugarloaf Mountain in Rio de Janeiro Brazil and the Stawamus Chief British Columbia Canada Gallery Edit Granite was used for setts on the St Louis riverfront and for the piers of the Eads Bridge background The granite peaks of the Cordillera Paine in the Chilean Patagonia Half Dome Yosemite National Park is actually a granite arete and is a popular rock climbing destination Rixo red granite quarry in Lysekil Sweden Granite in Auyuittuq National Park on Baffin Island Canada Granite in Paarl South Africa The graves of Emperor Pedro I of Brazil a k a King Pedro IV of Portugal and his two wives Maria Leopoldina not pictured and Amelie left in the Monument to the Independence of Brazil are made of green granite The walls as well as the floor are clad with the same material 77 See also Edit Geology portalCheyenne Mountain Complex Space Force installation El Capitan Vertical rock formation in Yosemite National Park Epoxy granite Mixture of epoxy and granite Exfoliating granite Granite skin peeling like an onion desquamation because of weathering Falkenfelsen also known as Falcon Rock Rock formation in Germany Fall River granite Precambrian bedrock underlying the City of Fall River Massachusetts and surrounding area Flared slope Rock wall with a smooth transition into a concavity at the foot zone Greisen Highly altered granitic rock or pegmatite Hypersolvus Type of granite with a single feldspar Kashmir gold List of rock types List of rock types recognized by geologists Luxullianite Rare type of granite Mourne Mountains Mountain range in Northern Ireland Orbicular granite Pikes Peak granite Colorado Quartz monzonite Type of igneous rock Rapakivi granite Type of igneous rock Stone Mountain Mountain and park in Georgia United States Subsolvus Two feldspar granite Wicklow Mountains Mountain range in IrelandReferences EditCitations Read H H January 1943 Meditations on granite Part one Proceedings of the Geologists Association 54 2 64 85 doi 10 1016 S0016 7878 43 80008 0 Granitoids Granite and the Related Rocks Granodiorite Diorite and Tonalite Geology about com 2010 02 06 Retrieved 2010 05 09 Blatt Harvey Tracy Robert J 1996 Petrology igneous sedimentary and metamorphic 2nd ed New York W H Freeman p 45 ISBN 0 7167 2438 3 Le Bas M J Streckeisen A L 1991 The IUGS systematics of igneous rocks Journal of the Geological Society 148 5 825 833 Bibcode 1991JGSoc 148 825L CiteSeerX 10 1 1 692 4446 doi 10 1144 gsjgs 148 5 0825 S2CID 28548230 a b Rock Classification Scheme Vol 1 Igneous PDF British Geological Survey Rock Classification Scheme 1 1 52 1999 a b Philpotts Anthony R Ague Jay J 2009 Principles of igneous and metamorphic petrology 2nd ed Cambridge UK Cambridge University Press pp 139 143 ISBN 9780521880060 Barbarin Bernard 1 April 1996 Genesis of the two main types of peraluminous granitoids Geology 24 4 295 298 Bibcode 1996Geo 24 295B doi 10 1130 0091 7613 1996 024 lt 0295 GOTTMT gt 2 3 CO 2 Washington Henry S 1921 The Granites of Washington D C Journal of the Washington Academy of Sciences 11 19 v459 470 JSTOR 24532555 a b c d Blatt amp Tracy 1996 p 185 Rock Types and Specific Gravities EduMine Archived from the original on 2017 08 31 Retrieved 2017 08 27 Kumagai Naoichi Sadao Sasajima Hidebumi Ito 1978 Long term Creep of Rocks Results with Large Specimens Obtained in about 20 Years and Those with Small Specimens in about 3 Years Journal of the Society of Materials Science Japan 27 293 157 161 doi 10 2472 jsms 27 155 Larsen Esper S 1929 The temperatures of magmas American Mineralogist 14 81 94 Holland Tim Powell Roger 2001 Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset Journal of Petrology 42 4 673 683 Bibcode 2001JPet 42 673H doi 10 1093 petrology 42 4 673 Blatt and Tracy 1996 p 66 Microgranite OpenLearn The Open University Retrieved 28 December 2021 Haldar S K Tisljar J 2014 Introduction to Mineralogy and Petrology Elsevier p 116 ISBN 978 0 12 408133 8 Singh G 2009 Earth Science Today Discovery Publishing House ISBN 9788183564380 Twidale C R 1982 Granite landforms Amsterdam Elsevier Scientific Pub Co ISBN 0444421165 Retrieved 10 October 2020 Philpotts amp Ague 2009 pp 15 16 Castro Antonio January 2014 The off crust origin of granite batholiths Geoscience Frontiers 5 1 63 75 doi 10 1016 j gsf 2013 06 006 Blatt amp Tracy 1996 p 128 Blatt amp Tracy 1996 p 172 a b c d e f Philpotts amp Ague 2009 p 378 Baker P E February 1968 Comparative volcanology and petrology of the atlantic island arcs Bulletin Volcanologique 32 1 189 206 Bibcode 1968BVol 32 189B doi 10 1007 BF02596591 S2CID 128993656 Chappell B W White A J R 2001 Two contrasting granite types 25 years later Australian Journal of Earth Sciences 48 4 489 499 Bibcode 2001AuJES 48 489C doi 10 1046 j 1440 0952 2001 00882 x S2CID 33503865 Winter John D 2014 Principles of igneous and metamorphic petrology Second Pearson new international ed Harlow p 381 ISBN 9781292021539 Philpotts amp Ague 2009 p 148 Blatt amp Tracy 1996 pp 203 206 Whalen Joseph B Currie Kenneth L Chappell Bruce W April 1987 A type granites geochemical characteristics discrimination and petrogenesis Contributions to Mineralogy and Petrology 95 4 407 419 Bibcode 1987CoMP 95 407W doi 10 1007 BF00402202 S2CID 128541930 Cottle John M Cooper Alan F June 2006 Geology geochemistry and geochronology of an A type granite in the Mulock Glacier area southern Victoria Land Antarctica New Zealand Journal of Geology and Geophysics 49 2 191 202 doi 10 1080 00288306 2006 9515159 S2CID 128395509 Branney M J Bonnichsen B Andrews G D M Ellis B Barry T L McCurry M January 2008 Snake River SR type volcanism at the Yellowstone hotspot track distinctive products from unusual high temperature silicic super eruptions Bulletin of Volcanology 70 3 293 314 doi 10 1007 s00445 007 0140 7 S2CID 128878481 Whalen J B 1 August 1985 Geochemistry of an Island Arc Plutonic Suite the Uasilau Yau Yau Intrusive Complex New Britain P N G Journal of Petrology 26 3 603 632 Bibcode 1985JPet 26 603W doi 10 1093 petrology 26 3 603 Saito Satoshi Arima Makoto Nakajima Takashi Kimura Jun Ichi 2004 Petrogenesis of Ashigawa and Tonogi granitic intrusions southern part of the Miocene Kofu Granitic Complex central Japan M type granite in the Izu arc collision zone Journal of Mineralogical and Petrological Sciences 99 3 104 117 Bibcode 2004JMPeS 99 104S doi 10 2465 jmps 99 104 Castro A Moreno Ventas I de la Rosa J D October 1991 H type hybrid granitoids a proposed revision of the granite type classification and nomenclature Earth Science Reviews 31 3 4 237 253 Bibcode 1991ESRv 31 237C doi 10 1016 0012 8252 91 90020 G Philpotts amp Ague 2009 pp 104 105 Philpotts amp Ague 2009 p 511 McBirney Alexander R 1984 Igneous petrology San Francisco Calif Freeman Cooper pp 379 380 ISBN 0877353239 McBirney 1984 amp 379 380 sfn error no target CITEREFMcBirney1984379 380 help Philpotts amp Ague 2009 p 44 Clark Chris Fitzsimons Ian C W Healy David Harley Simon L 1 August 2011 How Does the Continental Crust Get Really Hot Elements 7 4 235 240 doi 10 2113 gselements 7 4 235 Zheng Y F Chen R X 2017 Regional metamorphism at extreme conditions Implications for orogeny at convergent plate margins Journal of Asian Earth Sciences 145 46 73 Bibcode 2017JAESc 145 46Z doi 10 1016 j jseaes 2017 03 009 a b Philpotts amp Ague 2009 p 80 Weinberg R F Podladchikov Y 1994 Diapiric ascent of magmas through power law crust and mantle Journal of Geophysical Research 99 B5 9543 Bibcode 1994JGR 99 9543W doi 10 1029 93JB03461 S2CID 19470906 Clemens John 1998 Observations on the origins and ascent mechanisms of granitic magmas Journal of the Geological Society of London 155 Part 5 843 51 Bibcode 1998JGSoc 155 843C doi 10 1144 gsjgs 155 5 0843 S2CID 129958999 Blatt amp Tracy 1996 pp 21 22 Philpotts amp Ague 2009 pp 347 350 Oxburgh E R McRae Tessa 27 April 1984 Physical constraints on magma contamination in the continental crust an example the Adamello complex Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences 310 1514 457 472 Bibcode 1984RSPTA 310 457O doi 10 1098 rsta 1984 0004 S2CID 120776326 Granite Weathering University College London Archived from the original on 15 October 2014 Retrieved 10 July 2014 Hydrolysis Geological Society of London Retrieved 10 July 2014 Marsh William M Kaufman Martin M 2012 Physical Geography Great Systems and Global Environments Cambridge University Press p 510 ISBN 9781107376649 Land Use Impacts Land Use Impacts on Soil Quality Retrieved 23 March 2022 Cecil North Carolina State Soil PDF Soil Science Society of America Retrieved 23 March 2022 Decay series of Uranium Archived from the original on March 9 2012 Retrieved 2008 10 19 Radon and Cancer Questions and Answers National Cancer Institute Retrieved 2008 10 19 Hubbert M King March 8 1956 Nuclear Energy and the Fossil Fuels American Petroleum Institute Conference Energy Bulletin Adams J A Kline M C Richardson K A Rogers J J 1962 The Conway Granite of New Hampshire As a Major Low Grade Thorium Resource Proceedings of the National Academy of Sciences of the United States of America 48 11 1898 905 Bibcode 1962PNAS 48 1898A doi 10 1073 pnas 48 11 1898 PMC 221093 PMID 16591014 Granite Countertops and Radiation United States Environmental Protection Agency 4 May 2015 Retrieved 7 January 2020 Steck Daniel J 2009 Pre and Post Market Measurements of Gamma Radiation and Radon Emanation from a Large Sample of Decorative Granites PDF Nineteenth International Radon Symposium pp 28 51 Natural Stone Countertops and Radon Environmental Health and Engineering Assessing Exposure to Radon and Radiation from Granite Countertops Nelson L Nemerow 27 January 2009 Environmental Engineering Environmental Health and Safety for Municipal Infrastructure Land Use and Planning and Industry John Wiley amp Sons p 40 ISBN 978 0 470 08305 5 Parmodh Alexander 15 January 2009 A Handbook of Minerals Crystals Rocks and Ores New India Publishing p 585 ISBN 978 81 907237 8 7 James A Harrell Decorative Stones in the Pre Ottoman Islamic Buildings of Cairo Egypt Retrieved 2008 01 06 Egyptian Genius Stoneworking for Eternity Archived from the original on 2007 10 14 Retrieved 2008 01 06 Sculptures of Unified Silla 통일신라의 조각 8 July 2015 ISBN 9788981641306 Seokguram Grotto UNESCO World Heritage 경주 석굴암 Heitzman James 1991 Ritual Polity and Economy The Transactional Network of an Imperial Temple in Medieval South India Journal of the Economic and Social History of the Orient BRILL 34 1 2 23 54 doi 10 1163 156852091x00157 JSTOR 3632277 a b Waters Michael 2016 Reviving Antiquity with Granite Spolia and the Development of Roman Renaissance Architecture Architectural History 59 149 179 doi 10 1017 arh 2016 5 Friends of West Norwood Cemetery newsletter 71 Alexander MacDonald 1794 1860 Stonemason Gabbro Geology com Retrieved 2022 01 25 Brayley A W 1913 History of the Granite Industry of New England 2018 ed Franklin Classics ISBN 0342278657 Retrieved 3 December 2020 Ewans M C 1966 The Haytor Granite Tramway and Stover Canal Newton Abbot David amp Charles Bai Shuo wei Zhang Jin sheng Wang Zhi January 2016 Selection of a sustainable technology for cutting granite block into slabs Journal of Cleaner Production 112 2278 2291 doi 10 1016 j jclepro 2015 10 052 Chersicla Rick January March 2017 What Free Men Can Do The Winter War the Use of Delay and Lessons for the 21st Century PDF Infantry 63 Retrieved 3 December 2020 Sydney Streets technical specifications November 2020 Retrieved 25 January 2022 Roach John October 27 2004 National Geographic News Puffins Return to Scottish Island Famous for Curling Stones National Geographic News Green Stewart 3 Types of Rock for Climbing Granite Sandstone amp Limestone The Geology of Rock Climbing Liveabout dotcom Dotdash Retrieved 3 December 2020 De Matteo Giovanna 12 September 2020 Leopoldina e Teresa Cristina descubra o que aconteceu com as maes do Brasil in Portuguese Retrieved 29 December 2022 Further reading EditBlasik Miroslava Hanika Bogdashka eds 2012 Granite Occurrence Mineralogy and Origin Hauppauge New York Nova Science ISBN 978 1 62081 566 3 Twidale Charles Rowland 2005 Landforms and Geology of Granite Terrains Leiden Netherlands A A Balkema ISBN 978 0 415 36435 5 Marmo Vladimir 1971 Granite Petrology and the Granite Problem Amsterdam Netherlands Elsevier Scientific ISBN 978 0 444 40852 5 External links Edit Wikimedia Commons has media related to Granite Retrieved from https en wikipedia org w index php title Granite amp oldid 1132848935, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.