fbpx
Wikipedia

Periodic table

The periodic table, also known as the periodic table of the elements, arranges the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which says that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics.

Periodic table of the chemical elements showing the most or more commonly named sets of elements (in periodic tables), and a traditional dividing line between metals and nonmetals. The f-block actually fits between groups 2 and 3; it is usually shown at the foot of the table to save space.

Vertical, horizontal and diagonal trends characterize the periodic table. Metallic character increases going down a group and decreases from left to right across a period. Nonmetallic character increases going from the bottom left of the periodic table to the top right.

The first periodic table to become generally accepted was that of the Russian chemist Dmitri Mendeleev in 1869; he formulated the periodic law as a dependence of chemical properties on atomic mass. As not all elements were then known, there were gaps in his periodic table, and Mendeleev successfully used the periodic law to predict some properties of some of the missing elements. The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of atomic numbers and associated pioneering work in quantum mechanics both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with Glenn T. Seaborg's discovery that the actinides were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry.

The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 exist; to go further, it was necessary to synthesise new elements in the laboratory. Today, while all the first 118 elements are known, thereby completing the first seven rows of the table, chemical characterisation is still needed for the heaviest elements to confirm that their properties match their positions. It is not yet known how far the table will go beyond these seven rows and whether the patterns of the known part of the table will continue into this unknown region. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many alternative representations of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table.

Overview

Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hydrogen &
alkali metals
Alkaline earth metals Triels Tetrels Pnicto­gens Chal­co­gens Halo­gens Noble
gases
Period

1

Hydro­gen1H1.0080 He­lium2He4.0026
2 Lith­ium3Li6.94 Beryl­lium4Be9.0122 Boron5B10.81 Carbon6C12.011 Nitro­gen7N14.007 Oxy­gen8O15.999 Fluor­ine9F18.998 Neon10Ne20.180
3 So­dium11Na22.990 Magne­sium12Mg24.305 Alumin­ium13Al26.982 Sili­con14Si28.085 Phos­phorus15P30.974 Sulfur16S32.06 Chlor­ine17Cl35.45 Argon18Ar39.95
4 Potas­sium19K39.098 Cal­cium20Ca40.078 Scan­dium21Sc44.956 Tita­nium22Ti47.867 Vana­dium23V50.942 Chrom­ium24Cr51.996 Manga­nese25Mn54.938 Iron26Fe55.845 Cobalt27Co58.933 Nickel28Ni58.693 Copper29Cu63.546 Zinc30Zn65.38 Gallium31Ga69.723 Germa­nium32Ge72.630 Arsenic33As74.922 Sele­nium34Se78.971 Bromine35Br79.904 Kryp­ton36Kr83.798
5 Rubid­ium37Rb85.468 Stront­ium38Sr87.62 Yttrium39Y88.906 Zirco­nium40Zr91.224 Nio­bium41Nb92.906 Molyb­denum42Mo95.95 Tech­netium43Tc​[97] Ruthe­nium44Ru101.07 Rho­dium45Rh102.91 Pallad­ium46Pd106.42 Silver47Ag107.87 Cad­mium48Cd112.41 Indium49In114.82 Tin50Sn118.71 Anti­mony51Sb121.76 Tellur­ium52Te127.60 Iodine53I126.90 Xenon54Xe131.29
6 Cae­sium55Cs132.91 Ba­rium56Ba137.33   Lute­tium71Lu174.97 Haf­nium72Hf178.49 Tanta­lum73Ta180.95 Tung­sten74W183.84 Rhe­nium75Re186.21 Os­mium76Os190.23 Iridium77Ir192.22 Plat­inum78Pt195.08 Gold79Au196.97 Mer­cury80Hg200.59 Thallium81Tl204.38 Lead82Pb207.2 Bis­muth83Bi208.98 Polo­nium84Po​[209] Asta­tine85At​[210] Radon86Rn​[222]
7 Fran­cium87Fr​[223] Ra­dium88Ra​[226]   Lawren­cium103Lr​[266] Ruther­fordium104Rf​[267] Dub­nium105Db​[268] Sea­borgium106Sg​[269] Bohr­ium107Bh​[270] Has­sium108Hs​[269] Meit­nerium109Mt​[278] Darm­stadtium110Ds​[281] Roent­genium111Rg​[282] Coper­nicium112Cn​[285] Nihon­ium113Nh​[286] Flerov­ium114Fl​[289] Moscov­ium115Mc​[290] Liver­morium116Lv​[293] Tenness­ine117Ts​[294] Oga­nesson118Og​[294]
  Lan­thanum57La138.91 Cerium58Ce140.12 Praseo­dymium59Pr140.91 Neo­dymium60Nd144.24 Prome­thium61Pm​[145] Sama­rium62Sm150.36 Europ­ium63Eu151.96 Gadolin­ium64Gd157.25 Ter­bium65Tb158.93 Dyspro­sium66Dy162.50 Hol­mium67Ho164.93 Erbium68Er167.26 Thulium69Tm168.93 Ytter­bium70Yb173.05  
  Actin­ium89Ac​[227] Thor­ium90Th232.04 Protac­tinium91Pa231.04 Ura­nium92U238.03 Neptu­nium93Np​[237] Pluto­nium94Pu​[244] Ameri­cium95Am​[243] Curium96Cm​[247] Berkel­ium97Bk​[247] Califor­nium98Cf​[251] Einstei­nium99Es​[252] Fer­mium100Fm​[257] Mende­levium101Md​[258] Nobel­ium102No​[259]

Each chemical element has a unique atomic number (Z) representing the number of protons in its nucleus.[3] Most elements have multiple isotopes, variants with the same number of protons but different numbers of neutrons. For example, carbon has three naturally occurring isotopes: all of its atoms have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if there are none, the mass of the most stable isotope usually appears, often in parentheses.[4]

In the standard periodic table, the elements are listed in order of increasing atomic number Z. A new row (period) is started when a new electron shell has its first electron. Columns (groups) are determined by the electron configuration of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. oxygen, sulfur, and selenium are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.[5]

The first 94 elements occur naturally; the remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are primordial and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: technetium (element 43), promethium (element 61), astatine (element 85), neptunium (element 93), and plutonium (element 94).[6] No element heavier than einsteinium (element 99) has ever been observed in macroscopic quantities in its pure form, nor has astatine; francium (element 87) has been only photographed in the form of light emitted from microscopic quantities (300,000 atoms).[7]

Group names and numbers

Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.[8] Groups can also be named by their first element, e.g. the "scandium group" for group 3.[8] Previously, groups were known by Roman numerals. In America, the Roman numerals were followed by either an "A" if the group was in the s- or p-block, or a "B" if the group was in the d-block. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the group 4 elements were group IVB, and the group 14 elements were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new IUPAC (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.[9]

IUPAC group 1a 2 b 3c 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Mendeleev (I–VIII) IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIB IVB VB VIB VIIB d
CAS (US, A-B-A) IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIA IVA VA VIA VIIA VIIIA
Old IUPAC (Europe, A-B) IA IIA IIIA IVA VA VIA VIIA VIIIB IB IIB IIIB IVB VB VIB VIIB 0
Trivial namer H and alkali metals alkaline earth metals triels tetrels pnicto­gens chal­co­gens halo­gens noble gases
Name by elementr lith­ium group beryl­lium group scan­dium group titan­ium group vana­dium group chro­mium group man­ga­nese group iron group co­balt group nickel group cop­per group zinc group boron group car­bon group nitro­gen group oxy­gen group fluor­ine group helium or neon group
Period 1  H  He
Period 2 Li Be B C N O F Ne
Period 3 Na Mg Al Si P S Cl Ar
Period 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Period 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Period 6 Cs Ba La–Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Period 7 Fr Ra Ac–No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
a Group 1 is composed of hydrogen (H) and the alkali metals. Elements of the group have one s-electron in the outer electron shell. Hydrogen is not considered to be an alkali metal as it is not a metal, though it is more analogous to them than any other group. This makes the group somewhat exceptional.
b The 14 f-block groups (columns) do not have a group number.
c The correct composition of group 3 is scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr), as shown here: this is endorsed by 1988[9] and 2021[10] IUPAC reports on the question. General inorganic chemistry texts often put scandium (Sc), yttrium (Y), lanthanum (La), and actinium (Ac) in group 3, so that Ce–Lu and Th–Lr become the f-block between groups 3 and 4; this was based on incorrectly measured electron configurations from history,[11] and Lev Landau and Evgeny Lifshitz already considered it incorrect in 1948.[12] Arguments can still occasionally be encountered in the contemporary literature purporting to defend it, but most authors consider them logically inconsistent.[13][14][15] Some sources follow a compromise that puts La–Lu and Ac–Lr as the f-block rows (despite that giving 15 f-block elements in each row, which contradicts quantum mechanics), leaving the heavier members of group 3 ambiguous.[10] See also Group 3 element#Composition.
d Group 18, the noble gases, were not discovered at the time of Mendeleev's original table. Later (1902), Mendeleev accepted the evidence for their existence, and they could be placed in a new "group 0", consistently and without breaking the periodic table principle.
r Group name as recommended by IUPAC.

Presentation forms

Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson

32 columns

18 columns

For reasons of space,[16][17] the periodic table is commonly presented with the f-block elements cut out and positioned placed as a distinct part below the main body.[18][16][9] It reduces the number of element columns from 32 to 18.[16]

Both forms represent the same periodic table.[19] The form with the f-block included in the main body is sometimes called the 32-column[19] or long form;[20] the form with the f-block cut out the 18-column[19] or medium-long form.[20] The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.[21] The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing the composition of group 3, the options can be shown equally (unprejudiced) in both forms.[22]

Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and standard atomic weights. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.[a]

Atomic structures of the elements

The nucleus and its surrounding electrons

 
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)

The smallest constituents of all normal matter are known as atoms. Atoms are extremely small, being about one ten-billionth of a meter across; thus their internal structure is governed by quantum mechanics.[23] Atoms consist of a small positively charged nucleus, made of positively charged protons and uncharged neutrons, surrounded by a cloud of negatively charged electrons; the charges cancel out, so atoms are neutral.[24] Electrons participate in chemical reactions, but the nucleus does not.[24] When atoms participate in chemical reactions, they either gain or lose electrons to form positively- or negatively-charged ions; or share electrons with each other.[18]

Atoms can be subdivided into different types based on the number of protons (and thus also electrons) they have.[24] This is called the atomic number, often symbolised Z[25] (for "Zahl" — German for "number"). Each distinct atomic number therefore corresponds to a class of atom: these classes are called the chemical elements.[26] The chemical elements are what the periodic table classifies and organises. Hydrogen is the element with atomic number 1; helium, atomic number 2; lithium, atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter chemical symbol; those for hydrogen, helium, and lithium are respectively H, He, and Li.[19] Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called isotopes of the same chemical element.[19] Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined atomic weights, defined as the average mass of a naturally occurring atom of that element.[27]

Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.[28][b] Of the 94 natural elements, eighty have a stable isotope and one more (bismuth) has an almost-stable isotope (with a half-life over a billion times the age of the universe).[31] Two more, thorium and uranium, have isotopes undergoing radioactive decay with a half-life comparable to the age of the Earth. The stable elements plus bismuth, thorium, and uranium make up the 83 primordial elements that survived from the Earth's formation.[c] The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.[d] All 24 known artificial elements are radioactive.[19]

Electron configurations

The periodic table is a graphic description of the periodic law,[35] which states that the properties and atomic structures of the chemical elements are a periodic function of their atomic number.[36] Elements are placed in the periodic table according to their electron configurations,[37] the periodic recurrences of which explain the trends in properties across the periodic table.[38]

An electron can be thought of as inhabiting an atomic orbital, which characterises the probability it can be found in any particular region around the atom. Their energies are quantised, which is to say that they can only take discrete values. Furthermore, electrons obey the Pauli exclusion principle: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as spin, conventionally labeled "up" or "down".[39][e] In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimised by occupying the lowest-energy orbitals available.[41] Only the outermost electrons (so-called valence electrons) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called core electrons.[42]

ℓ →
n
0 1 2 3 4 5 6
Orbital s p d f g h i Capacity of shell (2n2)[43]
1 1s 2
2 2s 2p 8
3 3s 3p 3d 18
4 4s 4p 4d 4f 32
5 5s 5p 5d 5f 5g 50
6 6s 6p 6d 6f 6g 6h 72
7 7s 7p 7d 7f 7g 7h 7i 98
Capacity of subshell 2 6 10 14 18 22 26

Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.[16] Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.[44] The subshell types are characterised by the quantum numbers. Four numbers describe an orbital in an atom completely: the principal quantum number n, the azimuthal quantum number ℓ (the orbital type), the magnetic quantum number m, and the spin quantum number s.[38]

The order of subshell filling

 
Idealized order of subshell filling according to the Madelung rule

The sequence in which the subshells are filled is given in most cases by the Aufbau principle, also known as the Madelung or Klechkovsky rule (after Erwin Madelung and Vsevolod Klechkovsky respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.[45][46][47][48] The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:[46]

1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ...

Here the sign ≪ means "much less than" as opposed to < meaning just "less than".[46] Phrased differently, electrons enter orbitals in order of increasing n + ℓ, and if two orbitals are available with the same value of n + ℓ, the one with lower n is occupied first.[44][48] In general, orbitals with the same value of n + ℓ are similar in energy, but in the case of the s-orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next n + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s-orbital, which corresponds to the beginning of a new shell.[46][47][16] Thus, with the exception of the first row, each period length appears twice:[46]

2, 8, 8, 18, 18, 32, 32, ...

The overlaps get quite close at the point where the d-orbitals enter the picture,[49] and the order can shift slightly with atomic number[50] and atomic charge.[51][f]

Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In hydrogen, there is only one electron, which must go in the lowest-energy orbital 1s. This electron configuration is written 1s1, where the superscript indicates the number of electrons in the subshell. Helium adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s2.[38][54][g]

Starting from the third element, lithium, the first shell is full, so its third electron occupies a 2s orbital, giving a 1s2 2s1 configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms. Thus the filled first shell is called a "core shell" for this and all heavier elements. The 2s subshell is completed by the next element beryllium (1s2 2s2). The following elements then proceed to fill the 2p subshell. Boron (1s2 2s2 2p1) puts its new electron in a 2p orbital; carbon (1s2 2s2 2p2) fills a second 2p orbital; and with nitrogen (1s2 2s2 2p3) all three 2p orbitals become singly occupied. This is consistent with Hund's rule, which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. Oxygen (1s2 2s2 2p4), fluorine (1s2 2s2 2p5), and neon (1s2 2s2 2p6) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.[38][54]

Starting from element 11, sodium, the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s2 2s2 2p6 3s1 for sodium. This configuration is abbreviated [Ne] 3s1, where [Ne] represents neon's configuration. Magnesium ([Ne] 3s2) finishes this 3s orbital, and the following six elements aluminium, silicon, phosphorus, sulfur, chlorine, and argon fill the three 3p orbitals ([Ne] 3s2 3p1 through [Ne] 3s2 3p6).[38][54] This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:[38] at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.[35]

The first eighteen elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.[18] A period begins when a new shell starts filling.[16] Finally, the colouring illustrates the blocks: the elements in the s-block (coloured red) are filling s-orbitals, while those in the p-block (coloured yellow) are filling p-orbitals.[16]

1
H
2
He
2×1 = 2 elements
1s 0p
3
Li
4
Be
5
B
6
C
7
N
8
O
9
F
10
Ne
2×(1+3) = 8 elements
2s 2p
11
Na
12
Mg
13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
2×(1+3) = 8 elements
3s 3p

Starting the next row, for potassium and calcium the 4s subshell is the lowest in energy, and therefore they fill it.[38][54] Potassium adds one electron to the 4s shell ([Ar] 4s1), and calcium then completes it ([Ar] 4s2). However, starting from scandium ([Ar] 3d1 4s2) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at chromium the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable to have a [Ar] 3d5 4s1 configuration than an [Ar] 3d4 4s2 one. A similar anomaly occurs at copper.[38] These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance,[51] as the various configurations are so close in energy to each other[49] that the presence of a nearby atom can shift the balance.[38] The periodic table therefore ignores these and considers only idealised configurations.[37]

At zinc ([Ar] 3d10 4s2), the 3d orbitals are completely filled with a total of ten electrons.[38][54] Next come the 4p orbitals, completing the row, which are filled progressively by gallium ([Ar] 3d10 4s2 4p1) through krypton ([Ar] 3d10 4s2 4p6), in a manner analogous to the previous p-block elements.[38][54] From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.[53] The s- and p-block elements, which fill their outer shells, are called main-group elements; the d-block elements (coloured blue below), which fill an inner shell, are called transition elements (or transition metals, since they are all metals).[56]

The next eighteen elements fill the 5s orbitals (rubidium and strontium), then 4d (yttrium through cadmium, again with a few anomalies along the way), and then 5p (indium through xenon).[16][54] Again, from indium onward the 4d orbitals are in the core.[54][57] Hence the fifth row has the same structure as the fourth.[16]

1
H
2
He
2×1 = 2 elements
1s 0d 0p
3
Li
4
Be
5
B
6
C
7
N
8
O
9
F
10
Ne
2×(1+3) = 8 elements
2s 0d 2p
11
Na
12
Mg
13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
2×(1+3) = 8 elements
3s 0d 3p
19
K
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
2×(1+3+5) = 18 elements
4s 3d 4p
37
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
2×(1+3+5) = 18 elements
5s 4d 5p

The sixth row of the table likewise starts with two s-block elements: caesium and barium.[54] After this, the first f-block elements (coloured green below) begin to appear, starting with lanthanum. These are sometimes termed inner transition elements.[56] As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;[49] this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.[13] Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,[51] its 4f orbitals are low enough in energy to participate in chemistry.[58] At ytterbium, the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements (lutetium through mercury) follows,[54][59][60][61] and finally six main-group elements (thallium through radon) complete the period.[54][62] From lutetium onwards the 4f orbitals are in the core,[54] and from thallium onwards so are the 5d orbitals.[54][53][63]

The seventh row is analogous to the sixth row: 7s fills (francium and radium), then 5f (actinium to nobelium), then 6d (lawrencium to copernicium), and finally 7p (nihonium to oganesson).[54] Starting from lawrencium the 5f orbitals are in the core,[54] and probably the 6d orbitals join the core starting from nihonium.[54][64][h] Again there are a few anomalies along the way:[16] for example, as single atoms neither actinium nor thorium actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.[66][67][68] For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing elements beyond uranium started to be synthesised in the laboratory in 1940, when neptunium was made.[69] The row was completed with the synthesis of tennessine in 2010[70] (the last element oganesson had already been made in 2002),[71] and the last elements in this seventh row were given names in 2016.[72]

1
H
2
He
2×1 = 2 elements
1s 0f 0d 0p
3
Li
4
Be
5
B
6
C
7
N
8
O
9
F
10
Ne
2×(1+3) = 8 elements
2s 0f 0d 2p
11
Na
12
Mg
13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
2×(1+3) = 8 elements
3s 0f 0d 3p
19
K
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
2×(1+3+5) = 18 elements
4s 0f 3d 4p
37
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
2×(1+3+5) = 18 elements
5s 0f 4d 5p
55
Cs
56
Ba
57
La
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
71
Lu
72
Hf
73
Ta
74
W
75
Re
76
Os
77
Ir
78
Pt
79
Au
80
Hg
81
Tl
82
Pb
83
Bi
84
Po
85
At
86
Rn
2×(1+3+5+7) = 32 elements
6s 4f 5d 6p
87
Fr
88
Ra
89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
103
Lr
104
Rf
105
Db
106
Sg
107
Bh
108
Hs
109
Mt
110
Ds
111
Rg
112
Cn
113
Nh
114
Fl
115
Mc
116
Lv
117
Ts
118
Og
2×(1+3+5+7) = 32 elements
7s 5f 6d 7p

This completes the modern periodic table, with all seven rows completely filled to capacity.[72]

Electron configuration table

The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.[51] The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking[73] and therefore calculated configurations have been shown instead.[74] Completely filled subshells have been greyed out.

Variations

Period 1

Although the modern periodic table is standard today, the placement of the period 1 elements hydrogen and helium remains an open issue under discussion, and some variation can be found.[53][75] Following electron configurations, hydrogen would be placed in group 1, and helium would be placed in group 2.[53] The group 1 placement of hydrogen is common, but helium is almost always placed in group 18 with the other noble gases.[19] The debate has to do with conflicting understandings of the extent to which chemical or electronic properties should decide periodic table placement.[75]

Like the group 1 metals, hydrogen has one electron in its outermost shell[76] and typically loses its only electron in chemical reactions.[77] Hydrogen has some metal-like chemical properties, being able to displace some metals from their salts.[77] But it forms a diatomic nonmetallic gas at standard conditions, unlike the alkali metals which are reactive solid metals. This and hydrogen's formation of hydrides, in which it gains an electron, brings it close to the properties of the halogens which do the same[77] (though it is rarer for hydrogen to form H than H+).[78] Moreover, the lightest two halogens (fluorine and chlorine) are gaseous like hydrogen at standard conditions.[77] Some properties of hydrogen are not a good fit for either group: hydrogen is neither highly oxidising nor highly reducing and is not reactive with water.[78] Hydrogen thus has properties corresponding to both those of the alkali metals and the halogens, but matches neither group perfectly, and is thus difficult to place by its chemistry.[77] Therefore, while the electronic placement of hydrogen in group 1 predominates, some rarer arrangements show either hydrogen in group 17,[79] duplicate hydrogen in both groups 1 and 17,[80][81] or float it separately from all groups.[81][82][53] This last option has nonetheless been criticised by the chemist and philosopher of science Eric Scerri on the grounds that it appears to imply that hydrogen is above the periodic law altogether, unlike all the other elements.[83]

Helium is the only element that routinely occupies a position in the periodic table that is not consistent with its electronic structure. It has two electrons in its outermost shell, whereas the other noble gases have eight; and it is an s-block element, whereas all other noble gases are p-block elements. However it is unreactive at standard conditions, and has a full outer shell: these properties are like the noble gases in group 18, but not at all like the reactive alkaline earth metals of group 2. For these reasons helium is nearly universally placed in group 18[19] which its properties best match;[53] a proposal to move helium to group 2 was rejected by IUPAC in 1988 for these reasons.[9] Nonetheless, helium is still occasionally placed in group 2 today,[84] and some of its physical and chemical properties are closer to the group 2 elements and support the electronic placement.[76][53] Solid helium crystallises in a hexagonal close-packed structure, which matches beryllium and magnesium in group 2, but not the other noble gases in group 18.[85] Recent theoretical developments in noble gas chemistry, in which helium is expected to show less inertness than neon and to form (HeO)(LiF)2 with a structure similar to the analogous beryllium compound (but with no expected neon analogue), have resulted in more chemists advocating a placement of helium in group 2.[86][87][88][89] The first-row anomaly in the periodic table is cited in support of this reassignment, since helium as the first s-block element before the alkaline earth metals stands out as anomalous in a way that helium as the first noble gas does not.[86] For example, a large difference in atomic radii between the first and second members of each main group is seen in groups 1 and 13–17: it exists between neon and argon, and between helium and beryllium, but not between helium and neon. Moving helium to group 2 makes this trend consistent in groups 2 and 18 as well.[90][91] Tables that float both hydrogen and helium outside all groups may rarely be encountered.[82][53][54]

Group 3

Group 3: Sc, Y, Lu, Lr  
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Group 3: Sc, Y, La, Ac  
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson

In many periodic tables, the f-block is shifted one element to the right, so that lanthanum and actinium become d-block elements in group 3, and Ce–Lu and Th–Lr form the f-block thereby splitting the d-block into two very uneven portions. This is a holdover from early mistaken measurements of electron configurations.[11] The 4f shell is completely filled at ytterbium, and for that reason Lev Landau and Evgeny Lifshitz in 1948 considered it incorrect to group lutetium as an f-block element.[12] They did not yet take the step of removing lanthanum from the d-block as well, but Jun Kondō realised in 1963 that lanthanum's low-temperature superconductivity implied the activity of its 4f shell.[92] In 1965, David C. Hamilton linked this observation to its position in the periodic table, and argued that the f-block should be composed of the elements La–Yb and Ac–No.[58] Since then, physical, chemical, and electronic evidence has supported this assignment,[11][9] as shown here and as supported by IUPAC reports dating from 1988 (when the 1–18 group numbers were recommended)[9] and 2021.[10] The variation nonetheless still exists because most textbook writers are not aware of the issue.[11] A third form can sometimes be encountered in which the spaces below yttrium in group 3 are left empty, such as the table appearing on the IUPAC web site,[19] but this is inconsistent with quantum mechanics by making the f-block 15 elements wide (La–Lu and Ac–Lr) even though only 14 electrons can fit in an f-subshell.[10]

Several arguments in favour of Sc-Y-La-Ac can be encountered in the literature,[93][94][95] but they have been challenged as being logically inconsistent.[13][14][15] For example, it has been argued that lanthanum and actinium cannot be f-block elements because their atoms have not begun to fill the f-subshells.[96] But the same is true of thorium which is never disputed as an f-block element,[10][11] and this argument overlooks the problem on the other end: that the f-shells complete filling at ytterbium and nobelium (matching the Sc-Y-Lu-Lr form), not at lutetium and lawrencium (as in Sc-Y-La-Ac).[97] Such exceptions have in any case never been considered as relevant for positioning any other elements on the periodic table.[20] The relevant fact for placement[37][59] is that lanthanum and actinium (like thorium) have valence f-orbitals that can become occupied in chemical environments, whereas lutetium and lawrencium do not.[54][98] Thus the relationship between yttrium and lanthanum is only a secondary relationship between elements with the same number of valence electrons but different kinds of valence orbitals, such as that between chromium and uranium; whereas the relationship between yttrium and lutetium is primary, sharing both valence electron count and valence orbital type.[54]

Periodic trends

As chemical reactions involve the valence electrons,[18] elements with similar outer electron configurations may be expected to react similarly and form compounds with similar proportions of elements in them.[99] Such elements are placed in the same group, and thus there tend to be clear similarities and trends in chemical behaviour as one proceeds down a group.[100] As analogous configurations occur at regular intervals, the properties of the elements thus exhibit periodic recurrences, hence the name of the periodic table and the periodic law. These periodic recurrences were noticed well before the underlying theory that explains them was developed.[101][102]

Atomic radius

Historically, the physical size of atoms was unknown until the early 20th century. The first calculated estimate of the atomic radius of hydrogen was published by physicist Arthur Haas in 1910 to within an order of magnitude (a factor of 10) of the accepted value, the Bohr radius (~0.529 Å). In his model, Haas used a single-electron configuration based on the classical atomic model proposed by J. J. Thomson in 1904, often called the plum-pudding model.[103]

Atomic radii (the size of atoms) are dependent on the sizes of their outermost orbitals.[90] They generally decrease going left to right along the main-group elements, because the nuclear charge increases but the outer electrons are still in the same shell. However, going down a column, the radii generally increase, because the outermost electrons are in higher shells that are thus further away from the nucleus.[18][104] The first row of each block is abnormally small, due to an effect called kainosymmetry or primogenic repulsion:[105] the 1s, 2p, 3d, and 4f subshells have no inner analogues to which they would be orthogonal. Higher s-, p-, d-, and f-subshells experience strong repulsion from their inner analogues, which have approximately the same angular distribution of charge, and must expand to avoid this. This makes significant differences arise between the small 2p elements, which prefer multiple bonding, and the larger 3p and higher p-elements, which do not.[90] Similar anomalies arise for the 1s, 2p, 3d, 4f, and the hypothetical 5g elements:[106] the degree of this first-row anomaly is highest for the s-block, is moderate for the p-block, and is less pronounced for the d- and f-blocks.[107]

In the transition elements, an inner shell is filling, but the size of the atom is still determined by the outer electrons. The increasing nuclear charge across the series and the increased number of inner electrons for shielding somewhat compensate each other, so the decrease in radius is smaller.[104] The 4p and 5d atoms, coming immediately after new types of transition series are first introduced, are smaller than would have been expected,[108] because the added core 3d and 4f subshells provide only incomplete shielding of the nuclear charge for the outer electrons. Hence for example gallium atoms are slightly smaller than aluminium atoms.[90] Together with kainosymmetry, this results in an even-odd difference between the periods (except in the s-block)[i] that is sometimes known as secondary periodicity: elements in even periods have smaller atomic radii and prefer to lose fewer electrons, while elements in odd periods (except the first) differ in the opposite direction. Thus for example many properties in the p-block show a zigzag rather than a smooth trend along the group. For example, phosphorus and antimony in odd periods of group 15 readily reach the +5 oxidation state, whereas nitrogen, arsenic, and bismuth in even periods prefer to stay at +3.[107][109]

Thallium and lead atoms are about the same size as indium and tin atoms respectively, but from bismuth to radon the 6p atoms are larger than the analogous 5p atoms. This happens because when atomic nuclei become highly charged, special relativity becomes needed to gauge the effect of the nucleus on the electron cloud. These relativistic effects result in heavy elements increasingly having differing properties compared to their lighter homologues in the periodic table. Spin–orbit interaction splits the p-subshell: one p-orbital is relativistically stabilised and shrunken (it fills in thallium and lead), but the other two (filling in bismuth through radon) are relativistically destabilised and expanded.[90] Relativistic effects also explain why gold is golden and mercury is a liquid at room temperature.[110][111] They are expected to become very strong in the late seventh period, potentially leading to a collapse of periodicity.[112] Electron configurations are only clearly known until element 108 (hassium), and experimental chemistry beyond 108 has only been done for 112 (copernicium), 113 (nihonium), and 114 (flerovium), so the chemical characterisation of the heaviest elements remains a topic of current research.[113]

Ionisation energy

 
Graph of first ionisation energies of the elements in electronvolts (predictions used for elements 105–118)

The first ionisation energy of an atom is the energy required to remove an electron from it. This varies with the atomic radius: ionisation energy increases left to right and down to up, because electrons that are closer to the nucleus are held more tightly and are more difficult to remove. Ionisation energy thus is minimised at the first element of each period – hydrogen and the alkali metals – and then generally rises until it reaches the noble gas at the right edge of the period.[18] There are some exceptions to this trend, such as oxygen, where the electron being removed is paired and thus interelectronic repulsion makes it easier to remove than expected.[114]

In the transition series, the outer electrons are preferentially lost even though the inner orbitals are filling. For example, in the 3d series, the 4s electrons are lost first even though the 3d orbitals are being filled. The shielding effect of adding an extra 3d electron approximately compensates the rise in nuclear charge, and therefore the ionisation energies stay mostly constant, though there is a small increase especially at the end of each transition series.[115]

As metal atoms tend to lose electrons in chemical reactions, ionisation energy is generally correlated with chemical reactivity, although there are other factors involved as well.[115]

Electron affinity

 
Trend in electron affinities

The opposite property to ionisation energy is the electron affinity, which is the energy released when adding an electron to the atom.[116] A passing electron will be more readily attracted to an atom if it feels the pull of the nucleus more strongly, and especially if there is an available partially filled outer orbital that can accommodate it. Therefore, electron affinity tends to increase down to up and left to right. The exception is the last column, the noble gases, which have a full shell and have no room for another electron. This gives the halogens in the next-to-last column the highest electron affinities.[18]

Some atoms, like the noble gases, have no electron affinity: they cannot form stable gas-phase anions.[117] The noble gases, having high ionisation energies and no electron affinity, have little inclination towards gaining or losing electrons and are generally unreactive.[18]

Some exceptions to the trends occur: oxygen and fluorine have lower electron affinities than their heavier homologues sulfur and chlorine, because they are small atoms and hence the newly added electron would experience significant repulsion from the already present ones. For the nonmetallic elements, electron affinity likewise somewhat correlates with reactivity, but not perfectly since other factors are involved. For example, fluorine has a lower electron affinity than chlorine (because of extreme interelectronic repulsion for the very small fluorine atom), but is more reactive.[116]

Valence and oxidation states

The valence of an element can be defined either as the number of hydrogen atoms that can combine with it to form a simple binary hydride, or as twice the number of oxygen atoms that can combine with it to form a simple binary oxide (that is, not a peroxide or a superoxide). The valences of the main-group elements are directly related to the group number: the hydrides in the main groups 1–2 and 13–17 follow the formulae MH, MH2, MH3, MH4, MH3, MH2, and finally MH. The highest oxides instead increase in valence, following the formulae M2O, MO, M2O3, MO2, M2O5, MO3, M2O7.[j] Today the notion of valence has been extended by that of the oxidation state, which is the formal charge left on an element when all other elements in a compound have been removed as their ions.[99]

The electron configuration suggests a ready explanation from the number of electrons available for bonding,[99] although a full explanation requires considering the energy that would be released in forming compounds with different valences rather than simply considering electron configurations alone.[118] For example, magnesium forms Mg2+ rather than Mg+ cations when dissolved in water, because the latter would spontaneously disproportionate into Mg0 and Mg2+ cations. This is because the enthalpy of hydration (surrounding the cation with water molecules) increases in magnitude with the charge and radius of the ion. In Mg+, the outermost orbital (which determines ionic radius) is still 3s, so the hydration enthalpy is small and insufficient to compensate the energy required to remove the electron; but ionising again to Mg2+ uncovers the core 2p subshell, making the hydration enthalpy large enough to allow magnesium(II) compounds to form. For similar reasons, the common oxidation states of the heavier p-block elements (where the ns electrons become lower in energy than the np) tend to vary by steps of 2, because that is necessary to uncover an inner subshell and decrease the ionic radius (e.g. Tl+ uncovers 6s, and Tl3+ uncovers 5d, so once thallium loses two electrons it tends to lose the third one as well). Analogous arguments based on orbital hybridisation can be used for the less electronegative p-block elements.[119][k]

For transition metals, common oxidation states are nearly always at least +2 for similar reasons (uncovering the next subshell); this holds even for the metals with anomalous dx+1s1 or dx+2s0 configurations (except for silver), because repulsion between d-electrons means that the movement of the second electron from the s- to the d-subshell does not appreciably change its ionisation energy.[120] Because ionising the transition metals further does not uncover any new inner subshells, their oxidation states tend to vary by steps of 1 instead.[119] The lanthanides and late actinides generally show a stable +3 oxidation state, removing the outer s-electrons and then (usually) one electron from the (n−2)f-orbitals, that are similar in energy to ns.[121] The common and maximum oxidation states of the d- and f-block elements tend to depend on the ionisation energies. As the energy difference between the (n−1)d and ns orbitals rises along each transition series, it becomes less energetically favourable to ionise further electrons. Thus, the early transition metal groups tend to prefer higher oxidation states, but the +2 oxidation state becomes more stable for the late transition metal groups. The highest formal oxidation state thus increases from +3 at the beginning of each d-block row, to +7 or +8 in the middle (e.g. OsO4), and then to +2 at the end.[120] The lanthanides and late actinides usually have high fourth ionisation energies and hence rarely surpass the +3 oxidation state, whereas early actinides have low fourth ionisation energies and so for example neptunium and plutonium can reach +7.[120][121]

As elements in the same group share the same valence configurations, they usually exhibit similar chemical behaviour. For example, the alkali metals in the first group all have one valence electron, and form a very homogeneous class of elements: they are all soft and reactive metals. However, there are many factors involved, and groups can often be rather hetereogeneous. For instance, hydrogen also has one valence electron and is in the same group as the alkali metals, but its chemical behaviour is quite different. The stable elements of group 14 comprise a nonmetal (carbon), two semiconductors (silicon and germanium), and two metals (tin and lead); they are nonetheless united by having four valence electrons.[122] This often leads to similarities in maximum and minimum oxidation states (e.g. sulfur and selenium in group 16 both have maximum oxidation state +6, as in SO3 and SeO3, and minimum oxidation state −2, as in sulfides and selenides); but not always (e.g. oxygen is not known to form oxidation state +6, despite being in the same group as sulfur and selenium).[54]

Electronegativity

Another important property of elements is their electronegativity. Atoms can form covalent bonds to each other by sharing electrons in pairs, creating an overlap of valence orbitals. The degree to which each atom attracts the shared electron pair depends on the atom's electronegativity[123] – the tendency of an atom towards gaining or losing electrons.[18] The more electronegative atom will tend to attract the electron pair more, and the less electronegative (or more electropositive) one will attract it less. In extreme cases, the electron can be thought of as having been passed completely from the more electropositive atom to the more electronegative one, though this is a simplification. The bond then binds two ions, one positive (having given up the electron) and one negative (having accepted it), and is termed an ionic bond.[18]

Electronegativity depends on how strongly the nucleus can attract an electron pair, and so it exhibits a similar variation to the other properties already discussed: electronegativity tends to fall going up to down, and rise going left to right. The alkali and alkaline earth metals are among the most electropositive elements, while the chalcogens, halogens, and noble gases are among the most electronegative ones.[123]

Electronegativity is generally measured on the Pauling scale, on which the most electronegative reactive atom (fluorine) is given electronegativity 4.0, and the least electronegative atom (caesium) is given electronegativity 0.79.[18] In fact neon is the most electronegative element, but the Pauling scale cannot measure its electronegativity because it does not form covalent bonds with most elements.[124]

An element's electronegativity varies with the identity and number of the atoms it is bonded to, as well as how many electrons it has already lost: an atom becomes more electronegative when it has lost more electrons.[123] This sometimes makes a large difference: lead in the +2 oxidation state has electronegativity 1.87 on the Pauling scale, while lead in the +4 oxidation state has electronegativity 2.33.[125]

Metallicity

A simple substance is a substance formed from atoms of one chemical element. The simple substances of the more electronegative atoms tend to share electrons (form covalent bonds) with each other. They form either small molecules (like hydrogen or oxygen, whose atoms bond in pairs) or giant structures stretching indefinitely (like carbon or silicon). The noble gases simply stay as single atoms, as they already have a full shell.[18] Substances composed of discrete molecules or single atoms are held together by weaker attractive forces between the molecules, such as the London dispersion force: as electrons move within the molecules, they create momentary imbalances of electrical charge, which induce similar imbalances on nearby molecules and create synchronised movements of electrons across many neighbouring molecules.[126]

The more electropositive atoms, however, tend to instead lose electrons, creating a "sea" of electrons engulfing cations.[18] The outer orbitals of one atom overlap to share electrons with all its neighbours, creating a giant structure of molecular orbitals extending over all the atoms.[127] This negatively charged "sea" pulls on all the ions and keeps them together in a metallic bond. Elements forming such bonds are often called metals; those which do not are often called nonmetals.[18] Some elements can form multiple simple substances with different structures: these are called allotropes. For example, diamond and graphite are two allotropes of carbon.[122][l]

The metallicity of an element can be predicted from electronic properties. When atomic orbitals overlap during metallic or covalent bonding, they create both bonding and antibonding molecular orbitals of equal capacity, with the antibonding orbitals of higher energy. Net bonding character occurs when there are more electrons in the bonding orbitals than there are in the antibonding orbitals. Metallic bonding is thus possible when the number of electrons delocalised by each atom is less than twice the number of orbitals contributing to the overlap. This is the situation for elements in groups 1 through 13; they also have too few valence electrons to form giant covalent structures where all atoms take equivalent positions, and so almost all of them metallise. The exceptions are hydrogen and boron, which have too high an ionisation energy. Hydrogen thus forms a covalent H2 molecule, and boron forms a giant covalent structure based on icosahedral B12 clusters. In a metal, the bonding and antibonding orbitals have overlapping energies, creating a single band that electrons can freely flow through, allowing for electrical conduction.[129]

In group 14, both metallic and covalent bonding become possible. In a diamond crystal, covalent bonds between carbon atoms are strong, because they have a small atomic radius and thus the nucleus has more of a hold on the electrons. Therefore, the bonding orbitals that result are much lower in energy than the antibonding orbitals, and there is no overlap, so electrical conduction becomes impossible: carbon is a nonmetal. However, covalent bonding becomes weaker for larger atoms and the energy gap between the bonding and antibonding orbitals decreases. Therefore, silicon and germanium have smaller band gaps and are semiconductors: electrons can cross the gap when thermally excited. The band gap disappears in tin, so that tin and lead become metals.[129]

Elements in groups 15 through 17 have too many electrons to form giant covalent molecules that stretch in all three dimensions. For the lighter elements, the bonds in small diatomic molecules are so strong that a condensed phase is disfavoured: thus nitrogen (N2), oxygen (O2), white phosphorus and yellow arsenic (P4 and As4), sulfur and red selenium (S8 and Se8), and the stable halogens (F2, Cl2, Br2, and I2) readily form covalent molecules with few atoms. The heavier ones tend to form long chains (e.g. red phosphorus, grey selenium, tellurium) or layered structures (e.g. carbon as graphite, black phosphorus, grey arsenic, grey antimony, bismuth) that only extend in one or two rather than three dimensions. Both kinds of structures can be found as allotropes of phosphorus, arsenic, and selenium, although the long-chained allotropes are more stable in all three. As these structures do not use all their orbitals for bonding, they end up with bonding, nonbonding, and antibonding bands in order of increasing energy. Similarly to group 14, the band gaps shrink for the heavier elements and free movement of electrons between the chains or layers becomes possible. Thus for example black phosphorus, black arsenic, grey selenium, tellurium, and iodine are semiconductors; grey arsenic, grey antimony, and bismuth are semimetals (exhibiting quasi-metallic conduction, with a very small band overlap); and polonium and probably astatine are true metals.[129] Finally, the natural group 18 elements all stay as individual atoms.[129][m]

The dividing line between metals and nonmetals is roughly diagonal from top left to bottom right, with the transition series appearing to the left of this diagonal (as they have many available orbitals for overlap). This is expected, as metallicity tends to be correlated with electropositivity and the willingness to lose electrons, which increases right to left and up to down. Thus the metals greatly outnumber the nonmetals. Elements near the borderline are difficult to classify: they tend to have properties that are intermediate between those of metals and nonmetals, and may have some properties characteristic of both. They are often termed semimetals or metalloids.[18] The term "semimetal" used in this sense should not be confused with its strict physical sense having to do with band structure: bismuth is physically a semimetal, but is generally considered a metal by chemists.[131]

The following table considers the most stable allotropes at standard conditions. The elements coloured yellow form simple substances that are well-characterised by metallic bonding. Elements coloured light blue form giant network covalent structures, whereas those coloured dark blue form small covalently bonded molecules that are held together by weaker van der Waals forces. The noble gases are coloured in violet: their molecules are single atoms and no covalent bonding occurs. Greyed-out cells are for elements which have not been prepared in sufficient quantities for their most stable allotropes to have been characterised in this way. Theoretical considerations and current experimental evidence suggest that all of those elements would metallise if they could form condensed phases,[129] except perhaps for oganesson.[132][n]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Group →
↓ Period
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

Generally, metals are shiny and dense.[18] They usually have high melting and boiling points due to the strength of the metallic bond, and are often malleable and ductile (easily stretched and shaped) because the atoms can move relative to each other without breaking the metallic bond.[141] They conduct electricity because their electrons are free to move in all three dimensions. Similarly, they conduct heat, which is transferred by the electrons as extra kinetic energy: they move faster. These properties persist in the liquid state, as although the crystal structure is destroyed on melting, the atoms still touch and the metallic bond persists, though it is weakened.[141] Metals tend to be reactive towards nonmetals.[18] Some exceptions can be found to these generalisations: for example, manganese,[142] arsenic, antimony,[143] and bismuth are brittle;[144] chromium is extremely hard;[145] gallium, rubidium, caesium, and mercury are liquid at or close to room temperature;[o] and noble metals such as gold are chemically very inert.[146][147]

Nonmetals exhibit different properties. Those forming giant covalent crystals exhibit high melting and boiling points, as it takes considerable energy to overcome the strong covalent bonds. Those forming discrete molecules are held together mostly by dispersion forces, which are more easily overcome; thus they tend to have lower melting and boiling points,[148] and many are liquids or gases at room temperature.[18] Nonmetals are often dull-looking. They tend to be reactive towards metals, except for the noble gases, which are inert towards most substances.[18] They are brittle when solid as their atoms are held tightly in place. They are less dense and conduct electricity poorly,[18] because there are no mobile electrons.[149] Near the borderline, band gaps are small and thus many elements in that region are semiconductors, such as silicon, germanium,[149] selenium, and tellurium.[129] Again there are exceptions; for example, diamond has the highest thermal conductivity of all known materials, greater than any metal.[150]

It is common to designate a class of metalloids straddling the boundary between metals and nonmetals, as elements in that region are intermediate in both physical and chemical properties.[18] However, no consensus exists in the literature for precisely which elements should be so designated. When such a category is used, silicon, germanium, arsenic, and tellurium are almost always included, and boron and antimony usually are; but most sources include other elements as well, without agreement on which extra elements should be added, and some others subtract from this list instead.[p]

Further manifestations of periodicity

There are some other relationships throughout the periodic table between elements that are not in the same group, such as the diagonal relationships between elements that are diagonally adjacent (e.g. lithium and magnesium).[107] Some similarities can also be found between the main groups and the transition metal groups, or between the early actinides and early transition metals, when the elements have the same number of valence electrons. Thus uranium somewhat resembles chromium and tungsten in group 6,[107] as all three have six valence electrons.[155] Relationships between elements with the same number of valence electrons but different types of valence orbital have been called secondary or isodonor relationships: they usually have the same maximum oxidation states, but not the same minimum oxidation states. For example, chlorine and manganese both have +7 as their maximum oxidation state (e.g. Cl2O7 and Mn2O7), but their respective minimum oxidation states are −1 (e.g. HCl) and −3 (K2[Mn(CO)4]). Elements with the same number of valence vacancies but different numbers of valence electrons are related by a tertiary or isoacceptor relationship: they have similar minimum but not maximum oxidation states. For example, hydrogen and chlorine both have −1 as their minimum oxidation state (in hydrides and chlorides), but hydrogen's maximum oxidation state is +1 (e.g. H2O) while chlorine's is +7.[54]

Many other physical properties of the elements exhibit periodic variation in accordance with the periodic law, such as melting points, boiling points, heats of fusion, heats of vaporisation, atomisation energy, and so on. Similar periodic variations appear for the compounds of the elements, which can be observed by comparing hydrides, oxides, sulfides, halides, and so on.[123] Chemical properties are more difficult to describe quantitatively, but likewise exhibit their own periodicities. Examples include the variation in the acidic and basic properties of the elements and their compounds, the stabilities of compounds, and methods of isolating the elements.[99] Periodicity is and has been used very widely to predict the properties of unknown new elements and new compounds, and is central to modern chemistry.[156]

Classification of elements

 
A periodic table colour-coded to show some commonly used sets of similar elements. The categories and their boundaries differ somewhat between sources.[151] Lutetium and lawrencium in group 3 are also transition metals.[54]

Many terms have been used in the literature to describe sets of elements that behave similarly. The group names alkali metal, alkaline earth metal, triel, tetrel, pnictogen, chalcogen, halogen, and noble gas are acknowledged by IUPAC; the other groups can be referred to by their number, or by their first element (e.g., group 6 is the chromium group).[8][157] Some divide the p-block elements from groups 13 to 16 by metallicity,[153][151] although there is neither an IUPAC definition nor a precise consensus on exactly which elements should be considered metals, nonmetals, or semi-metals (sometimes called metalloids).[153][151][8] Neither is there a consensus on what the metals succeeding the transition metals ought to be called, with post-transition metal and poor metal being among the possibilities having been used.[q] Some advanced monographs exclude the elements of group 12 from the transition metals on the grounds of their sometimes quite different chemical properties, but this is not a universal practice[158] and IUPAC does not presently mention it as allowable in its Principles of Chemical Nomenclature.[159]

The lanthanides are considered to be the elements La–Lu, which are all very similar to each other: historically they included only Ce–Lu, but lanthanum became included by common usage.[8] The rare earth elements (or rare earth metals) add scandium and yttrium to the lanthanides.[8] Analogously, the actinides are considered to be the elements Ac–Lr (historically Th–Lr),[8] although variation of properties in this set is much greater than within the lanthanides.[51] IUPAC recommends the names lanthanoids and actinoids to avoid ambiguity, as the -ide suffix typically denotes a negative ion; however lanthanides and actinides remain common.[8] With the increasing recognition of lutetium and lawrencium as d-block elements, some authors began to define the lanthanides as La–Yb and the actinides as Ac–No, matching the f-block.[53][11][160][161][162]

Many more categorisations exist and are used according to certain disciplines. In astrophysics, a metal is defined as any element with atomic number greater than 2, i.e. anything except hydrogen and helium.[163] The term "semimetal" has a different definition in physics than it does in chemistry: bismuth is a semimetal by physical definitions, but chemists generally consider it a metal.[164] A few terms are widely used, but without any very formal definition, such as "heavy metal", which has been given such a wide range of definitions that it has been criticised as "effectively meaningless".[165]

The scope of terms varies significantly between authors. For example, according to IUPAC, the noble gases extend to include the whole group, including the very radioactive superheavy element oganesson.[166] However, among those who specialise in the superheavy elements, this is not often done: in this case "noble gas" is typically taken to imply the unreactive behaviour of the lighter elements of the group. Since calculations generally predict that oganesson should not be particularly inert due to relativistic effects, and may not even be a gas at room temperature if it could be produced in bulk, its status as a noble gas is often questioned in this context.[167] Furthermore, national variations are sometimes encountered: in Japan, alkaline earth metals often do not include beryllium and magnesium as their behaviour is different from the heavier group 2 metals.[168]

History

 
Mendeleev's 1869 periodic table

Early history

In 1817, German physicist Johann Wolfgang Döbereiner began to formulate one of the earliest attempts to classify the elements.[169] In 1829, he found that he could form some of the elements into groups of three, with the members of each group having related properties. He termed these groups triads.[170][171] Chlorine, bromine, and iodine formed a triad; as did calcium, strontium, and barium; lithium, sodium, and potassium; and sulfur, selenium, and tellurium. Today, all these triads form part of modern-day groups.[172] Various chemists continued his work and were able to identify more and more relationships between small groups of elements. However, they could not build one scheme that encompassed them all.[173]

 
Newland's table of the elements in 1866.

John Newlands published a letter in the Chemical News in February 1863 on the periodicity among the chemical elements.[174] In 1864 Newlands published an article in the Chemical News showing that if the elements are arranged in the order of their atomic weights, those having consecutive numbers frequently either belong to the same group or occupy similar positions in different groups, and he pointed out that each eighth element starting from a given one is in this arrangement a kind of repetition of the first, like the eighth note of an octave in music (The Law of Octaves).[174] However, Newlands' formulation only worked well for the main-group elements, and encountered serious problems with the others.[54]

German chemist Lothar Meyer noted the sequences of similar chemical and physical properties repeated at periodic intervals. According to him, if the atomic weights were plotted as ordinates (i.e. vertically) and the atomic volumes as abscissas (i.e. horizontally)—the curve obtained a series of maximums and minimums—the most electropositive elements would appear at the peaks of the curve in the order of their atomic weights. In 1864, a book of his was published; it contained an early version of the periodic table containing 28 elements, and classified elements into six families by their valence—for the first time, elements had been grouped according to their valence. Works on organizing the elements by atomic weight had until then been stymied by inaccurate measurements of the atomic weights.[175] In 1868, he revised his table, but this revision was published as a draft only after his death.[176]

Mendeleev

 
Dmitri Mendeleev

The definitive breakthrough came from the Russian chemist Dmitri Mendeleev. Although other chemists (including Meyer) had found some other versions of the periodic system at about the same time, Mendeleev was the most dedicated to developing and defending his system, and it was his system that most affected the scientific community.[177] On 17 February 1869 (1 March 1869 in the Gregorian calendar), Mendeleev began arranging the elements and comparing them by their atomic weights. He began with a few elements, and over the course of the day his system grew until it encompassed most of the known elements. After he found a consistent arrangement, his printed table appeared in May 1869 in the journal of the Russian Chemical Society.[178] When elements did not appear to fit in the system, he boldly predicted that either valencies or atomic weights had been measured incorrectly, or that there was a missing element yet to be discovered.[54] In 1871, Mendeleev published a long article, including an updated form of his table, that made his predictions for unknown elements explicit. Mendeleev predicted the properties of three of these unknown elements in detail: as they would be missing heavier homologues of boron, aluminium, and silicon, he named them eka-boron, eka-aluminium, and eka-silicon ("eka" being Sanskrit for "one").[178][179]: 45 

 
Mendeleev's 1871 periodic table

In 1875, the French chemist Paul-Émile Lecoq de Boisbaudran, working without knowledge of Mendeleev's prediction, discovered a new element in a sample of the mineral sphalerite, and named it gallium. He isolated the element and began determining its properties. Mendeleev, reading de Boisbaudran's publication, sent a letter claiming that gallium was his predicted eka-aluminium. Although Lecoq de Boisbaudran was initially sceptical, and suspected that Mendeleev was trying to take credit for his discovery, he later admitted that Mendeleev was correct.[180] In 1879, the Swedish chemist Lars Fredrik Nilson discovered a new element, which he named scandium: it turned out to be eka-boron. Eka-silicon was found in 1886 by German chemist Clemens Winkler, who named it germanium. The properties of gallium, scandium, and germanium matched what Mendeleev had predicted.[181] In 1889, Mendeleev noted at the Faraday Lecture to the Royal Institution in London that he had not expected to live long enough "to mention their discovery to the Chemical Society of Great Britain as a confirmation of the exactitude and generality of the periodic law".[182] Even the discovery of the noble gases at the close of the 19th century, which Mendeleev had not predicted, fitted neatly into his scheme as an eighth main group.[183]

Mendeleev nevertheless had some trouble fitting the known lanthanides into his scheme, as they did not exhibit the periodic change in valencies that the other elements did. After much investigation, the Czech chemist Bohuslav Brauner suggested in 1902 that the lanthanides could all be placed together in one group on the periodic table. He named this the "asteroid hypothesis" as an astronomical analogy: just as there is an asteroid belt instead of a single planet between Mars and Jupiter, so the place below yttrium was thought to be occupied by all the lanthanides instead of just one element.[20]

Atomic number

 
Periodic table of van den Broek

After the internal structure of the atom was probed, amateur Dutch physicist Antonius van den Broek proposed in 1913 that the nuclear charge determined the placement of elements in the periodic table.[184][185] The New Zealand physicist Ernest Rutherford coined the word "atomic number" for this nuclear charge.[186] In van der Broek's published article he illustrated the first electronic periodic table showing the elements arranged according to the number of their electrons.[187] Rutherford confirmed in his 1914 paper that Bohr had accepted the view of van der Broek.[188]

 
Henry Moseley

The same year, English physicist Henry Moseley using X-ray spectroscopy confirmed van den Broek's proposal experimentally. Moseley determined the value of the nuclear charge of each element from aluminium to gold and showed that Mendeleev's ordering actually places the elements in sequential order by nuclear charge.[189] Nuclear charge is identical to proton count and determines the value of the atomic number (Z) of each element. Using atomic number gives a definitive, integer-based sequence for the elements. Moseley's research immediately resolved discrepancies between atomic weight and chemical properties; these were cases such as tellurium and iodine, where atomic number increases but atomic weight decreases.[184] Although Moseley was soon killed in World War I, the Swedish physicist Manne Siegbahn continued his work up to uranium, and established that it was the element with the highest atomic number then known (92).[190] Based on Moseley and Siegbahn's research, it was also known which atomic numbers corresponded to missing elements yet to be found.[184]

Electron shells

The Danish physicist Niels Bohr applied Max Planck's idea of quantisation to the atom. He concluded that the energy levels of electrons were quantised: only a discrete set of stable energy states were allowed. Bohr then attempted to understand periodicity through electron configurations, surmising in 1913 that the inner electrons should be responsible for the chemical properties of the element.[191][192] In 1913, he produced the first electronic periodic table based on a quantum atom.[193]

Bohr called his electron shells "rings" in 1913: atomic orbitals within shells did not exist at the time of his planetary model. Bohr explains in Part 3 of his famous 1913 paper that the maximum electrons in a shell is eight, writing, "We see, further, that a ring of n electrons cannot rotate in a single ring round a nucleus of charge ne unless n < 8." For smaller atoms, the electron shells would be filled as follows: "rings of electrons will only join if they contain equal numbers of electrons; and that accordingly the numbers of electrons on inner rings will only be 2, 4, 8." However, in larger atoms the innermost shell would contain eight electrons: "on the other hand, the periodic system of the elements strongly suggests that already in neon N = 10 an inner ring of eight electrons will occur." His proposed electron configurations for the atoms (shown to the right) mostly do not accord with those now known.[194][195]

Bohr's electron configurations for light elements
Element Electrons per shell
4 2,2
6 2,4
7 4,3
8 4,2,2
9 4,4,1
10 8,2
11 8,2,1
16 8,4,2,2
18 8,8,2

The first one to systematically expand and correct the chemical potentials of Bohr's atomic theory was Walther Kossel in 1914 and in 1916. Kossel explained that in the periodic table new elements would be created as electrons were added to the outer shell. In Kossel's paper, he writes: "This leads to the conclusion that the electrons, which are added further, should be put into concentric rings or shells, on each of which ... only a certain number of electrons—namely, eight in our case—should be arranged. As soon as one ring or shell is completed, a new one has to be started for the next element; the number of electrons, which are most easily accessible, and lie at the outermost periphery, increases again from element to element and, therefore, in the formation of each new shell the chemical periodicity is repeated."[196][197]

In a 1919 paper, Irving Langmuir postulated the existence of "cells" which we now call orbitals, which could each only contain two electrons each, and these were arranged in "equidistant layers" which we now call shells. He made an exception for the first shell to only contain two electrons.[198] The chemist Charles Rugeley Bury suggested in 1921 that eight and eighteen electrons in a shell form stable configurations. Bury proposed that the electron configurations in transitional elements depended upon the valence electrons in their outer shell.[199] He introduced the word transition to describe the elements now known as transition metals or transition elements.[200]

Prompted by Bohr, Wolfgang Pauli took up the problem of electron configurations in 1923. Pauli extended Bohr's scheme to use four quantum numbers, and formulated his exclusion principle which stated that no two electrons could have the same four quantum numbers. This explained the lengths of the periods in the periodic table (2, 8, 18, and 32), which corresponded to the number of electrons that each shell could occupy.[201] In 1925, Friedrich Hund arrived at configurations close to the modern ones.[202] As a result of these advances, periodicity became based on the number of chemically active or valence electrons rather than by the valences of the elements.[54] The Aufbau principle that describes the electron configurations of the elements was first empirically observed by Erwin Madelung in 1926,[44] though the first to publish it was Vladimir Karapetoff in 1930.[203][204] In 1961, Vsevolod Klechkovsky derived the first part of the Madelung rule (that orbitals fill in order of increasing n + ℓ) from the Thomas–Fermi model;[205] the complete rule was derived from a similar potential in 1971 by Yury N. Demkov and Valentin N. Ostrovsky.[206][r]

 
Periodic table of Alfred Werner (1905), the first appearance of the long form[20]

The quantum theory clarified the transition metals and lanthanides as forming their own separate groups, transitional between the main groups, although some chemists had already proposed tables showing them this way before then: the English chemist Henry Bassett did so in 1892, the Danish chemist Julius Thomsen in 1895, and the Swiss chemist Alfred Werner in 1905. Bohr used Thomsen's form in his 1922 Nobel Lecture; Werner's form is very similar to the modern 32-column form. In particular, this supplanted Brauner's asteroidal hypothesis.[20]

The exact position of the lanthanides, and thus the composition of group 3, remained under dispute for decades longer because their electron configurations were initially measured incorrectly.[11][86] On chemical grounds Bassett, Werner, and Bury grouped scandium and yttrium with lutetium rather than lanthanum (the former two left an empty space below yttrium as lutetium had not yet been discovered).[20][199] Hund assumed in 1927 that all the lanthanide atoms had configuration [Xe]4f0−145d16s2, on account of their prevailing trivalency (it is now known that the relationship between chemistry and electron configuration is more complicated than that).[207] Early spectroscopic evidence seemed to confirm this, and thus the periodic table was structured to have group 3 as scandium, yttrium, lanthanum, and actinium, with fourteen f-elements breaking up the d-block between lanthanum and hafnium.[11] But it was later discovered that this is only true for four of the fifteen lanthanides (lanthanum, cerium, gadolinium, and lutetium), and that the other lanthanide atoms do not have a d-electron. In particular, ytterbium completes the 4f shell and thus Soviet physicists Lev Landau and Evgeny Lifshitz noted in 1948 that lutetium is correctly regarded as a d-block rather than an f-block element;[12] that bulk lanthanum is an f-metal was first suggested by Jun Kondō in 1963, on the grounds of its low-temperature superconductivity.[92] This clarified the importance of looking at low-lying excited states of atoms that can play a role in chemical environments when classifying elements by block and positioning them on the table.[58][59][11] Many authors subsequently rediscovered this correction based on physical, chemical, and electronic concerns and applied it to all the relevant elements, thus making group 3 contain scandium, yttrium, lutetium, and lawrencium[58][9][86] and having lanthanum through ytterbium and actinium through nobelium as the f-block rows:[58][9] this corrected version achieves consistency with the Madelung rule and vindicates Bassett, Werner, and Bury's initial chemical placement.[20]

In 1988, IUPAC released a report supporting this composition of group 3,[9] a decision that was reaffirmed in 2021.[10] Variation can still be found in textbooks on the composition of group 3,[22] and some argumentation against this format is still published today,[13] but chemists and physicists who have considered the matter largely agree on group 3 containing scandium, yttrium, lutetium, and lawrencium and challenge the counterarguments as being inconsistent.[13]

Synthetic elements

 
Glenn T. Seaborg

By 1936, the pool of missing elements from hydrogen to uranium had shrunk to four: elements 43, 61, 85, and 87 remained missing. Element 43 eventually became the first element to be synthesised artificially via nuclear reactions rather than discovered in nature. It was discovered in 1937 by Italian chemists Emilio Segrè and Carlo Perrier, who named their discovery technetium, after the Greek word for "artificial".[208] Elements 61 (promethium) and 85 (astatine) were likewise produced artificially in 1945 and 1940 respectively; element 87 (francium) became the last element to be discovered in nature, by French chemist Marguerite Perey in 1939.[209][s] The elements beyond uranium were likewise discovered artificially, starting with Edwin McMillan and Philip Abelson's 1940 discovery of neptunium (via bombardment of uranium with neutrons).[69] Glenn T. Seaborg and his team at the Lawrence Berkeley National Laboratory (LBNL) continued discovering transuranium elements, starting with plutonium in 1941, and discovered that contrary to previous thinking, the elements from actinium onwards were congeners of the lanthanides rather than transition metals.[210] Bassett (1892), Werner (1905), and the French engineer Charles Janet (1928) had previously suggested this, but their ideas did not then receive general acceptance.[20] Seaborg thus called them the actinides.[210] Elements up to 101 (named mendelevium in honour of Mendeleev) were synthesised up to 1955, either through neutron or alpha-particle irradiation, or in nuclear explosions in the cases of 99 (einsteinium) and 100 (fermium).[69]

A significant controversy arose with elements 102 through 106 in the 1960s and 1970s, as competition arose between the LBNL team (now led by Albert Ghiorso) and a team of Soviet scientists at the Joint Institute for Nuclear Research (JINR) led by Georgy Flyorov. Each team claimed discovery, and in some cases each proposed their own name for the element, creating an element naming controversy that lasted decades. These elements were made by bombardment of actinides with light ions.[211] IUPAC at first adopted a hands-off approach, preferring to wait and see if a consensus would be forthcoming. But as it was also the height of the Cold War, it became clear that this would not happen. As such, IUPAC and the International Union of Pure and Applied Physics (IUPAP) created a Transfermium Working Group (TWG, fermium being element 100) in 1985 to set out criteria for discovery,[212] which were published in 1991.[213] After some further controversy, these elements received their final names in 1997, including seaborgium (106) in honour of Seaborg.[214]

The TWG's criteria were used to arbitrate later element discovery claims from LBNL and JINR, as well as from research institutes in Germany (GSI) and Japan (Riken).[215] Currently, consideration of discovery claims is performed by a IUPAC/IUPAP Joint Working Party. After priority was assigned, the elements were officially added to the periodic table, and the discoverers were invited to propose their names.[19] By 2016, this had occurred for all elements up to 118, therefore completing the periodic table's first seven rows.[19][216] The discoveries of elements beyond 106 were made possible by techniques devised by Yuri Oganessian at the JINR: cold fusion (bombardment of lead and bismuth by heavy ions) made possible the 1981–2004 discoveries of elements 107 through 112 at GSI and 113 at Riken, and he led the JINR team (in collaboration with American scientists) to discover elements 114 through 118 using hot fusion (bombardment of actinides by calcium ions) in 1998–2010.[217][218] The heaviest known element, oganesson (118), is named in Oganessian's honour. Element 114 is named flerovium in honour of his predecessor and mentor Flyorov.[218]

In celebration of the periodic table's 150th anniversary, the United Nations declared the year 2019 as the International Year of the Periodic Table, celebrating "one of the most significant achievements in science".[219] The discovery criteria set down by the TWG were updated in 2020 in response to experimental and theoretical progress that had not been foreseen in 1991.[220] Today, the periodic table is among the most recognisable icons of chemistry.[75] IUPAC is involved today with many processes relating to the periodic table: the recognition and naming of new elements, recommending group numbers and collective names, and the updating of atomic weights.[19]

Future extension beyond the seventh period

The most recently named elements – nihonium (113), moscovium (115), tennessine (117), and oganesson (118) – completed the seventh row of the periodic table.[19] Future elements would have to begin an eighth row. These elements may be referred to either by their atomic numbers (e.g. "element 119"), or by the IUPAC systematic element names adopted in 1978, which directly relate to the atomic numbers (e.g. "ununennium" for element 119, derived from Latin unus "one", Greek ennea "nine", and the traditional -ium suffix for metallic elements).[19] All attempts to synthesise such elements have failed so far. An attempt to make element 119 has been ongoing since 2018 at the Riken research institute in Japan. The Joint Institute for Nuclear Research in Russia also plans to make its own attempts at synthesising the first few period 8 elements.[221][222][223]

If the eighth period follows the pattern set by the earlier periods, then it would contain fifty elements, filling the 8s, 5g, 6f, 7d, and finally 8p subshells in that order. But there is present discussion regarding whether this would truly be the case, as calculations predict that by this point relativistic effects should result in significant deviations from the Madelung rule. Various different models have been suggested. All agree that the eighth period should begin like the previous ones with two 8s elements, and that there should then follow a new series of g-block elements filling up the 5g orbitals, but the precise configurations calculated for these 5g elements vary widely between sources. Beyond this 5g series, calculations do not agree on what exactly should follow. Filling of the 5g, 6f, 7d, and 8p shells is indeed expected to occur in approximately that order, but they are likely to be intermingled with each other and with the 9s and 9p subshells, so that it is not clear which elements should go in which groups anymore.[224][225][226][55][227] Eric Scerri has raised the question of whether an extended periodic table should take into account the failure of the Madelung rule in this region, or if such exceptions should be ignored.[227] The shell structure may also be fairly formal at this point: already the electron distribution in an oganesson atom is expected to be rather uniform, with no discernible shell structure.[228]

Nuclear stability will likely prove a decisive factor constraining the number of possible elements.[t] It depends on the balance between the electric repulsion between protons and the strong force binding protons and neutrons together.[231] Protons and neutrons are arranged in shells, just like electrons, and so a closed shell can significantly increase stability: the known superheavy nuclei exist because of such a shell closure. They are probably close to a predicted island of stability, where superheavy nuclides should have significantly longer half-lives: predictions range from minutes or days, to millions or billions of years.[232][233] However, as the number of protons increases beyond about 126, this stabilising effect should vanish as a closed shell is passed. It is not clear if any further-out shell closures exist, due to an expected smearing out of distinct nuclear shells (as is already expected for the electron shells at oganesson).[234] Furthermore, even if later shell closures exist, it is not clear if they would allow such heavy elements to exist.[235][236][237][153] As such, it may be that the periodic table practically ends around element 120, as elements become too short-lived to observe; the era of discovering new elements would thus be close to its end.[153][238]

Alternatively, quark matter may become stable at high mass numbers, in which the nucleus is composed of freely flowing up and down quarks instead of binding them into protons and neutrons; this would create a continent of stability instead of an island.[239][240] Other effects may come into play: for example, in very heavy elements the 1s electrons are likely to spend a significant amount of time so close to the nucleus that they are actually inside it, which would make them vulnerable to electron capture.[241]

Even if eighth-row elements can exist, producing them is likely to be difficult, and it should become even more difficult as atomic number rises.[242] Although the 8s elements are expected to be reachable with present means, the first few 5g elements are expected to require new technology,[243] if they can be produced at all.[244] Experimentally characterising these elements chemically would also pose a great challenge.[221]

Alternative periodic tables

 
Otto Theodor Benfey's spiral periodic table (1964)

The periodic law may be represented in multiple ways, of which the standard periodic table is only one.[245] Within 100 years of the appearance of Mendeleev's table in 1869, Edward G. Mazurs had collected an estimated 700 different published versions of the periodic table.[155][246] Many forms retain the rectangular structure, including Charles Janet's left-step periodic table (pictured below), and the modernised form of Mendeleev's original 8-column layout that is still common in Russia. Other periodic table formats have been shaped much more exotically, such as spirals (Otto Theodor Benfey's pictured to the right), circles and triangles.[247]

Alternative periodic tables are often developed to highlight or emphasize chemical or physical properties of the elements that are not as apparent in traditional periodic tables, with different ones skewed more towards emphasizing chemistry or physics at either end.[248] The standard form, which remains by far the most common, is somewhere in the middle.[248]

The many different forms of the periodic table have prompted the questions of whether there is an optimal or definitive form of the periodic table, and if so, what it might be. There are no current consensus answers to either question.[249][248] Janet's left-step table is being increasingly discussed as a candidate for being the optimal or most fundamental form; Scerri has written in support of it, as it clarifies helium's nature as an s-block element, increases regularity by having all period lengths repeated, faithfully follows Madelung's rule by making each period correspond to one value of n + , and regularises atomic number triads and the first-row anomaly trend. While he notes that its placement of helium atop the alkaline earth metals can be seen a disadvantage from a chemical perspective, he counters this by appealing to the first-row anomaly, pointing out that the periodic table "fundamentally reduces to quantum mechanics", and that it is concerned with "abstract elements" and hence atomic properties rather than macroscopic properties.[250]

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 p1 p2 p3 p4 p5 p6 s1 s2
1s H He
2s Li Be
2p 3s B C N O F Ne Na Mg
3p 4s Al Si P S Cl Ar K Ca
3d 4p 5s Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr
4d 5p 6s Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te  I  Xe Cs Ba
4f 5d 6p 7s La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra
5f 6d 7p 8s Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og Uue Ubn
f-block d-block p-block s-block
This form of periodic table is congruent with the order in which electron shells are ideally filled according to the Madelung rule, as shown in the accompanying sequence in the left margin (read from top to bottom, left to right). The experimentally determined ground-state electron configurations of the elements differ from the configurations predicted by the Madelung rule in twenty instances, but the Madelung-predicted configurations are always at least close to the ground state. The last two elements shown, elements 119 and 120, have not yet been synthesized.

See also

Notes

  1. ^ See for example the periodic table poster sold by Sigma-Aldrich.
  2. ^ The question of how many natural elements there are is quite complicated and is not fully resolved. In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. Curium (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via cosmic rays, but it has not been found.[28] Elements up to 99 (einsteinium) have been observed in Przybylski's Star.[29] Elements up to 100 (fermium) probably occurred in the natural nuclear fission reactor at Oklo Mine, Gabon, but they have long since decayed away.[6] Even heavier elements may be produced in the r-process via supernovae or neutron star mergers, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly beta decay to nuclides that suffer spontaneous fission, so that 99.9% of the produced superheavy nuclides would decay within a month.[30] If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.[28]
  3. ^ The half-life of plutonium's most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,[32] but a more recent study from 2012 could not detect it.[33]
  4. ^ Tiny traces of plutonium are also continually brought to Earth via cosmic rays.[34]
  5. ^ Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.[40]
  6. ^ Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:[51]
    1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ...
    and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing n instead. There is a gradual transition between the limiting situations of highly charged ions (increasing n) and neutral atoms (Madelung's rule).[44]
    Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p[50] as the d-orbitals fall into the core at gallium.[52][53]
  7. ^ In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.[14] The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.[51] In some of the undiscovered g-block elements, it is predicted that mixing of configurations should become so important that the result can no longer be well-described by a single configuration.[55]
  8. ^ Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.[65]
  9. ^ Properties of the p-block elements nevertheless do affect the succeeding s-block elements. The 3s shell in sodium is above a kainosymmetric 2p core, but the 4s shell in potassium is above the much larger 3p core. Hence while one would have already expected potassium atoms to be larger than sodium atoms, the size difference is greater than usual.[90]
  10. ^ There are many lower oxides as well: for example, phosphorus in group 15 forms two oxides, P2O3 and P2O5.[99]
  11. ^ The normally "forbidden" intermediate oxidation states may be stabilised by forming dimers, as in [Cl3Ga–GaCl3]2− (gallium in the +2 oxidation state) or S2F10 (sulfur in the +5 oxidation state).[119]
  12. ^ The boundary between dispersion forces and metallic bonding is gradual, like that between ionic and covalent bonding. Characteristic metallic properties do not appear in small mercury clusters, but do appear in large ones.[128]
  13. ^ All this describes the situation at standard pressure. Under sufficiently high pressure, the band gaps of any solid drop to zero and metallisation occurs. Thus for example at about 170 kbar iodine becomes a metal,[129] and metallic hydrogen should form at pressures of about four million atmospheres.[130]
  14. ^ Descriptions of the structures formed by the elements can be found throughout Greenwood and Earnshaw. There are two borderline cases. Arsenic's most stable form conducts electricity like a metal, but the bonding is significantly more localised to the nearest neighbours than it is for the similar structures of antimony and bismuth.[133] Carbon as graphite shows metallic conduction parallel to its planes, but is a semiconductor perpendicular to them. Some computations predict copernicium and flerovium to be nonmetallic,[134][135] but the most recent experiments on them suggest that they are metallic.[136][137][138] Astatine is calculated to metallise at standard conditions,[139] so presumably tennessine should as well.[140]
  15. ^ See melting points of the elements (data page). The same is probably true of francium, but due to its extreme instability, this has never been experimentally confirmed. Copernicium and flerovium are expected to be liquids,[134][135] similar to mercury, and experimental evidence suggests that they are metals.[136][137][138]
  16. ^ See lists of metalloids. For example, a periodic table used by the American Chemical Society includes polonium as a metalloid,[151] but one used by the Royal Society of Chemistry does not,[152] and that included in the Encyclopædia Britannica does not refer to metalloids or semi-metals at all.[153] Classification can change even within a single work. For example, Sherwin and Weston's Chemistry of the Non-Metallic Elements (1966) has a periodic table on p. 7 classifying antimony as a nonmetal, but on p. 115 it is called a metal.[154]
  17. ^ See post-transition metal.
  18. ^ Demkov and Ostrovsky consider the potential   where   and   are constant parameters; this approaches a Coulomb potential for small  . When   satisfies the condition  , where  , the zero-energy solutions to the Schrödinger equation for this potential can be described analytically with Gegenbauer polynomials. As   passes through each of these values, a manifold containing all states with that value of   arises at zero energy and then becomes bound, recovering the Madelung order. Perturbation-theory considerations show that states with smaller   have lower energy, and that the s-orbitals (with  ) have their energies approaching the next   group.[206][84]
  19. ^ Technetium, promethium, astatine, neptunium, and plutonium were eventually discovered to occur in nature as well, albeit in tiny traces. See timeline of chemical element discoveries.
  20. ^ A simplistic interpretation of the relativistic Dirac equation runs into problems with electron orbitals at Z > 1/α ≈ 137; this would suggest that neutral atoms cannot exist beyond element 137, and that a periodic table of elements based on electron orbitals therefore breaks down at this point.[229] However, this argument presumes that the atomic nucleus is pointlike. A more accurate calculation must take into account the small, but nonzero, size of the nucleus, which pushes the limit to Z = 173. Moreover, it turns out that the prohibition is not against neutral atoms, but against bare nuclei: atoms with over 173 protons cannot be totally ionised because their 1s shell would be filled by spontaneous electron–positron pair production, but encounter no difficulties if their 1s shell is already filled.[230]

References

  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ An element zero (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the Chemical Galaxy. See Labarca, M. (2016). "An element of atomic number zero?". New Journal of Chemistry. 40 (11): 9002–06. doi:10.1039/C6NJ02076C.
  4. ^ Greenwood & Earnshaw, pp. 24–27
  5. ^ Gray, p. 6
  6. ^ a b Emsley, John (2011). Nature's Building Blocks: An A-Z guide to the elements (New ed.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7.
  7. ^ Silva, Robert J. (2006). "Fermium, Mendelevium, Nobelium and Lawrencium". In Morss, L. R.; Edelstein, N. M.; Fuger, J. (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  8. ^ a b c d e f g h Connelly, N. G.; Damhus, T.; Hartshorn, R. M.; Hutton, A. T. (2005). Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005 (PDF). RSC Publishing. p. 51. ISBN 978-0-85404-438-2. (PDF) from the original on 23 November 2018. Retrieved 26 November 2018.
  9. ^ a b c d e f g h i Fluck, E. (1988). "New Notations in the Periodic Table" (PDF). Pure Appl. Chem. 60 (3): 431–436. doi:10.1351/pac198860030431. S2CID 96704008. (PDF)

periodic, table, this, article, about, table, used, chemistry, physics, other, uses, disambiguation, periodic, table, also, known, periodic, table, elements, arranges, chemical, elements, into, rows, periods, columns, groups, icon, chemistry, widely, used, phy. This article is about the table used in chemistry and physics For other uses see Periodic table disambiguation The periodic table also known as the periodic table of the elements arranges the chemical elements into rows periods and columns groups It is an icon of chemistry and is widely used in physics and other sciences It is a depiction of the periodic law which says that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident The table is divided into four roughly rectangular areas called blocks Elements in the same group tend to show similar chemical characteristics Periodic table of the chemical elements showing the most or more commonly named sets of elements in periodic tables and a traditional dividing line between metals and nonmetals The f block actually fits between groups 2 and 3 it is usually shown at the foot of the table to save space Vertical horizontal and diagonal trends characterize the periodic table Metallic character increases going down a group and decreases from left to right across a period Nonmetallic character increases going from the bottom left of the periodic table to the top right The first periodic table to become generally accepted was that of the Russian chemist Dmitri Mendeleev in 1869 he formulated the periodic law as a dependence of chemical properties on atomic mass As not all elements were then known there were gaps in his periodic table and Mendeleev successfully used the periodic law to predict some properties of some of the missing elements The periodic law was recognized as a fundamental discovery in the late 19th century It was explained early in the 20th century with the discovery of atomic numbers and associated pioneering work in quantum mechanics both ideas serving to illuminate the internal structure of the atom A recognisably modern form of the table was reached in 1945 with Glenn T Seaborg s discovery that the actinides were in fact f block rather than d block elements The periodic table and law are now a central and indispensable part of modern chemistry The periodic table continues to evolve with the progress of science In nature only elements up to atomic number 94 exist to go further it was necessary to synthesise new elements in the laboratory Today while all the first 118 elements are known thereby completing the first seven rows of the table chemical characterisation is still needed for the heaviest elements to confirm that their properties match their positions It is not yet known how far the table will go beyond these seven rows and whether the patterns of the known part of the table will continue into this unknown region Some scientific discussion also continues regarding whether some elements are correctly positioned in today s table Many alternative representations of the periodic law exist and there is some discussion as to whether there is an optimal form of the periodic table Contents 1 Overview 1 1 Group names and numbers 1 2 Presentation forms 2 Atomic structures of the elements 2 1 The nucleus and its surrounding electrons 2 2 Electron configurations 2 2 1 The order of subshell filling 2 3 Electron configuration table 3 Variations 3 1 Period 1 3 2 Group 3 4 Periodic trends 4 1 Atomic radius 4 2 Ionisation energy 4 3 Electron affinity 4 4 Valence and oxidation states 4 5 Electronegativity 4 6 Metallicity 4 7 Further manifestations of periodicity 5 Classification of elements 6 History 6 1 Early history 6 2 Mendeleev 6 3 Atomic number 6 4 Electron shells 6 5 Synthetic elements 7 Future extension beyond the seventh period 8 Alternative periodic tables 9 See also 10 Notes 11 References 12 Bibliography 13 Further reading 14 External linksOverviewvtePeriodic tableGroup 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Hydrogen amp alkali metals Alkaline earth metals Triels Tetrels Pnicto gens Chal co gens Halo gens NoblegasesPeriod1 Hydro gen 1 H 1 0080 He lium 2 He 4 00262 Lith ium 3 Li 6 94 Beryl lium 4 Be 9 0122 Boron 5 B 10 81 Carbon 6 C 12 011 Nitro gen 7 N 14 007 Oxy gen 8 O 15 999 Fluor ine 9 F 18 998 Neon 10 Ne 20 1803 So dium 11 Na 22 990 Magne sium 12 Mg 24 305 Alumin ium 13 Al 26 982 Sili con 14 Si 28 085 Phos phorus 15 P 30 974 Sulfur 16 S 32 06 Chlor ine 17 Cl 35 45 Argon 18 Ar 39 954 Potas sium 19 K 39 098 Cal cium 20 Ca 40 078 Scan dium 21 Sc 44 956 Tita nium 22 Ti 47 867 Vana dium 23 V 50 942 Chrom ium 24 Cr 51 996 Manga nese 25 Mn 54 938 Iron 26 Fe 55 845 Cobalt 27 Co 58 933 Nickel 28 Ni 58 693 Copper 29 Cu 63 546 Zinc 30 Zn 65 38 Gallium 31 Ga 69 723 Germa nium 32 Ge 72 630 Arsenic 33 As 74 922 Sele nium 34 Se 78 971 Bromine 35 Br 79 904 Kryp ton 36 Kr 83 7985 Rubid ium 37 Rb 85 468 Stront ium 38 Sr 87 62 Yttrium 39 Y 88 906 Zirco nium 40 Zr 91 224 Nio bium 41 Nb 92 906 Molyb denum 42 Mo 95 95 Tech netium 43 Tc 97 Ruthe nium 44 Ru 101 07 Rho dium 45 Rh 102 91 Pallad ium 46 Pd 106 42 Silver 47 Ag 107 87 Cad mium 48 Cd 112 41 Indium 49 In 114 82 Tin 50 Sn 118 71 Anti mony 51 Sb 121 76 Tellur ium 52 Te 127 60 Iodine 53 I 126 90 Xenon 54 Xe 131 296 Cae sium 55 Cs 132 91 Ba rium 56 Ba 137 33 nbsp Lute tium 71 Lu 174 97 Haf nium 72 Hf 178 49 Tanta lum 73 Ta 180 95 Tung sten 74 W 183 84 Rhe nium 75 Re 186 21 Os mium 76 Os 190 23 Iridium 77 Ir 192 22 Plat inum 78 Pt 195 08 Gold 79 Au 196 97 Mer cury 80 Hg 200 59 Thallium 81 Tl 204 38 Lead 82 Pb 207 2 Bis muth 83 Bi 208 98 Polo nium 84 Po 209 Asta tine 85 At 210 Radon 86 Rn 222 7 Fran cium 87 Fr 223 Ra dium 88 Ra 226 nbsp Lawren cium 103 Lr 266 Ruther fordium 104 Rf 267 Dub nium 105 Db 268 Sea borgium 106 Sg 269 Bohr ium 107 Bh 270 Has sium 108 Hs 269 Meit nerium 109 Mt 278 Darm stadtium 110 Ds 281 Roent genium 111 Rg 282 Coper nicium 112 Cn 285 Nihon ium 113 Nh 286 Flerov ium 114 Fl 289 Moscov ium 115 Mc 290 Liver morium 116 Lv 293 Tenness ine 117 Ts 294 Oga nesson 118 Og 294 nbsp Lan thanum 57 La 138 91 Cerium 58 Ce 140 12 Praseo dymium 59 Pr 140 91 Neo dymium 60 Nd 144 24 Prome thium 61 Pm 145 Sama rium 62 Sm 150 36 Europ ium 63 Eu 151 96 Gadolin ium 64 Gd 157 25 Ter bium 65 Tb 158 93 Dyspro sium 66 Dy 162 50 Hol mium 67 Ho 164 93 Erbium 68 Er 167 26 Thulium 69 Tm 168 93 Ytter bium 70 Yb 173 05 nbsp Actin ium 89 Ac 227 Thor ium 90 Th 232 04 Protac tinium 91 Pa 231 04 Ura nium 92 U 238 03 Neptu nium 93 Np 237 Pluto nium 94 Pu 244 Ameri cium 95 Am 243 Curium 96 Cm 247 Berkel ium 97 Bk 247 Califor nium 98 Cf 251 Einstei nium 99 Es 252 Fer mium 100 Fm 257 Mende levium 101 Md 258 Nobel ium 102 No 259 Primordial From decay Synthetic Border shows natural occurrence of the elementStandard atomic weight Ar std E 1 Ca 40 078 Abridged value uncertainty omitted here 2 Po 209 mass number of the most stable isotopes block f block d block p block Each chemical element has a unique atomic number Z representing the number of protons in its nucleus 3 Most elements have multiple isotopes variants with the same number of protons but different numbers of neutrons For example carbon has three naturally occurring isotopes all of its atoms have six protons and most have six neutrons as well but about one per cent have seven neutrons and a very small fraction have eight neutrons Isotopes are never separated in the periodic table they are always grouped together under a single element When atomic mass is shown it is usually the weighted average of naturally occurring isotopes but if there are none the mass of the most stable isotope usually appears often in parentheses 4 In the standard periodic table the elements are listed in order of increasing atomic number Z A new row period is started when a new electron shell has its first electron Columns groups are determined by the electron configuration of the atom elements with the same number of electrons in a particular subshell fall into the same columns e g oxygen sulfur and selenium are in the same column because they all have four electrons in the outermost p subshell Elements with similar chemical properties generally fall into the same group in the periodic table although in the f block and to some respect in the d block the elements in the same period tend to have similar properties as well Thus it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it 5 The first 94 elements occur naturally the remaining 24 americium to oganesson 95 118 occur only when synthesized in laboratories Of the 94 naturally occurring elements 83 are primordial and 11 occur only in decay chains of primordial elements A few of the latter are so rare that they were not discovered in nature but were synthesized in the laboratory before it was determined that they do exist in nature after all technetium element 43 promethium element 61 astatine element 85 neptunium element 93 and plutonium element 94 6 No element heavier than einsteinium element 99 has ever been observed in macroscopic quantities in its pure form nor has astatine francium element 87 has been only photographed in the form of light emitted from microscopic quantities 300 000 atoms 7 Group names and numbers Under an international naming convention the groups are numbered numerically from 1 to 18 from the leftmost column the alkali metals to the rightmost column the noble gases The f block groups are ignored in this numbering 8 Groups can also be named by their first element e g the scandium group for group 3 8 Previously groups were known by Roman numerals In America the Roman numerals were followed by either an A if the group was in the s or p block or a B if the group was in the d block The Roman numerals used correspond to the last digit of today s naming convention e g the group 4 elements were group IVB and the group 14 elements were group IVA In Europe the lettering was similar except that A was used for groups 1 through 7 and B was used for groups 11 through 17 In addition groups 8 9 and 10 used to be treated as one triple sized group known collectively in both notations as group VIII In 1988 the new IUPAC International Union of Pure and Applied Chemistry naming system 1 18 was put into use and the old group names I VIII were deprecated 9 vteGroups in the periodic tableIUPAC group 1a 2 b 3c 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Mendeleev I VIII IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIB IVB VB VIB VIIB dCAS US A B A IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIA IVA VA VIA VIIA VIIIAOld IUPAC Europe A B IA IIA IIIA IVA VA VIA VIIA VIIIB IB IIB IIIB IVB VB VIB VIIB 0Trivial namer H and alkali metals alkaline earth metals triels tetrels pnicto gens chal co gens halo gens noble gasesName by elementr lith ium group beryl lium group scan dium group titan ium group vana dium group chro mium group man ga nese group iron group co balt group nickel group cop per group zinc group boron group car bon group nitro gen group oxy gen group fluor ine group helium or neon groupPeriod 1 H HePeriod 2 Li Be B C N O F NePeriod 3 Na Mg Al Si P S Cl ArPeriod 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br KrPeriod 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I XePeriod 6 Cs Ba La Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At RnPeriod 7 Fr Ra Ac No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Oga Group 1 is composed of hydrogen H and the alkali metals Elements of the group have one s electron in the outer electron shell Hydrogen is not considered to be an alkali metal as it is not a metal though it is more analogous to them than any other group This makes the group somewhat exceptional b The 14 f block groups columns do not have a group number c The correct composition of group 3 is scandium Sc yttrium Y lutetium Lu and lawrencium Lr as shown here this is endorsed by 1988 9 and 2021 10 IUPAC reports on the question General inorganic chemistry texts often put scandium Sc yttrium Y lanthanum La and actinium Ac in group 3 so that Ce Lu and Th Lr become the f block between groups 3 and 4 this was based on incorrectly measured electron configurations from history 11 and Lev Landau and Evgeny Lifshitz already considered it incorrect in 1948 12 Arguments can still occasionally be encountered in the contemporary literature purporting to defend it but most authors consider them logically inconsistent 13 14 15 Some sources follow a compromise that puts La Lu and Ac Lr as the f block rows despite that giving 15 f block elements in each row which contradicts quantum mechanics leaving the heavier members of group 3 ambiguous 10 See also Group 3 element Composition d Group 18 the noble gases were not discovered at the time of Mendeleev s original table Later 1902 Mendeleev accepted the evidence for their existence and they could be placed in a new group 0 consistently and without breaking the periodic table principle r Group name as recommended by IUPAC Presentation forms Hydrogen HeliumLithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine NeonSodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine ArgonPotassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine KryptonRubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine XenonCaesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury element Thallium Lead Bismuth Polonium Astatine RadonFrancium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson 32 columns Hydrogen HeliumLithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine NeonSodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine ArgonPotassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine KryptonRubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine XenonCaesium Barium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury element Thallium Lead Bismuth Polonium Astatine RadonFrancium Radium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium YtterbiumActinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium18 columns For reasons of space 16 17 the periodic table is commonly presented with the f block elements cut out and positioned placed as a distinct part below the main body 18 16 9 It reduces the number of element columns from 32 to 18 16 Both forms represent the same periodic table 19 The form with the f block included in the main body is sometimes called the 32 column 19 or long form 20 the form with the f block cut out the 18 column 19 or medium long form 20 The 32 column form has the advantage of showing all elements in their correct sequence but it has the disadvantage of requiring more space 21 The form chosen is an editorial choice and does not imply any change of scientific claim or statement For example when discussing the composition of group 3 the options can be shown equally unprejudiced in both forms 22 Periodic tables usually at least show the elements symbols many also provide supplementary information about the elements either via colour coding or as data in the cells The above table shows the names and atomic numbers of the elements and also their blocks natural occurrences and standard atomic weights For the short lived elements without standard atomic weights the mass number of the most stable known isotope is used instead Other tables may include properties such as state of matter melting and boiling points densities as well as provide different classifications of the elements a Atomic structures of the elementsThe nucleus and its surrounding electrons Main article Atom nbsp 3D views of some hydrogen like atomic orbitals showing probability density and phase g orbitals and higher are not shown The smallest constituents of all normal matter are known as atoms Atoms are extremely small being about one ten billionth of a meter across thus their internal structure is governed by quantum mechanics 23 Atoms consist of a small positively charged nucleus made of positively charged protons and uncharged neutrons surrounded by a cloud of negatively charged electrons the charges cancel out so atoms are neutral 24 Electrons participate in chemical reactions but the nucleus does not 24 When atoms participate in chemical reactions they either gain or lose electrons to form positively or negatively charged ions or share electrons with each other 18 Atoms can be subdivided into different types based on the number of protons and thus also electrons they have 24 This is called the atomic number often symbolised Z 25 for Zahl German for number Each distinct atomic number therefore corresponds to a class of atom these classes are called the chemical elements 26 The chemical elements are what the periodic table classifies and organises Hydrogen is the element with atomic number 1 helium atomic number 2 lithium atomic number 3 and so on Each of these names can be further abbreviated by a one or two letter chemical symbol those for hydrogen helium and lithium are respectively H He and Li 19 Neutrons do not affect the atom s chemical identity but do affect its weight Atoms with the same number of protons but different numbers of neutrons are called isotopes of the same chemical element 19 Naturally occurring elements usually occur as mixes of different isotopes since each isotope usually occurs with a characteristic abundance naturally occurring elements have well defined atomic weights defined as the average mass of a naturally occurring atom of that element 27 Today 118 elements are known the first 94 of which are known to occur naturally on Earth at present 28 b Of the 94 natural elements eighty have a stable isotope and one more bismuth has an almost stable isotope with a half life over a billion times the age of the universe 31 Two more thorium and uranium have isotopes undergoing radioactive decay with a half life comparable to the age of the Earth The stable elements plus bismuth thorium and uranium make up the 83 primordial elements that survived from the Earth s formation c The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium d All 24 known artificial elements are radioactive 19 Electron configurations Main article Electron configuration The periodic table is a graphic description of the periodic law 35 which states that the properties and atomic structures of the chemical elements are a periodic function of their atomic number 36 Elements are placed in the periodic table according to their electron configurations 37 the periodic recurrences of which explain the trends in properties across the periodic table 38 An electron can be thought of as inhabiting an atomic orbital which characterises the probability it can be found in any particular region around the atom Their energies are quantised which is to say that they can only take discrete values Furthermore electrons obey the Pauli exclusion principle different electrons must always be in different states This allows classification of the possible states an electron can take in various energy levels known as shells divided into individual subshells which each contain one or more orbitals Each orbital can contain up to two electrons they are distinguished by a quantity known as spin conventionally labeled up or down 39 e In a cold atom one in its ground state electrons arrange themselves in such a way that the total energy they have is minimised by occupying the lowest energy orbitals available 41 Only the outermost electrons so called valence electrons have enough energy to break free of the nucleus and participate in chemical reactions with other atoms The others are called core electrons 42 ℓ n 0 1 2 3 4 5 6Orbital s p d f g h i Capacity of shell 2n2 43 1 1s 22 2s 2p 83 3s 3p 3d 184 4s 4p 4d 4f 325 5s 5p 5d 5f 5g 506 6s 6p 6d 6f 6g 6h 727 7s 7p 7d 7f 7g 7h 7i 98Capacity of subshell 2 6 10 14 18 22 26Elements are known with up to the first seven shells occupied The first shell contains only one orbital a spherical s orbital As it is in the first shell this is called the 1s orbital This can hold up to two electrons The second shell similarly contains a 2s orbital and it also contains three dumbbell shaped 2p orbitals and can thus fill up to eight electrons 2 1 2 3 8 The third shell contains one 3s orbital three 3p orbitals and five 3d orbitals and thus has a capacity of 2 1 2 3 2 5 18 The fourth shell contains one 4s orbital three 4p orbitals five 4d orbitals and seven 4f orbitals thus leading to a capacity of 2 1 2 3 2 5 2 7 32 16 Higher shells contain more types of orbitals that continue the pattern but such types of orbitals are not filled in the ground states of known elements 44 The subshell types are characterised by the quantum numbers Four numbers describe an orbital in an atom completely the principal quantum number n the azimuthal quantum number ℓ the orbital type the magnetic quantum number mℓ and the spin quantum number s 38 The order of subshell filling nbsp Idealized order of subshell filling according to the Madelung ruleThe sequence in which the subshells are filled is given in most cases by the Aufbau principle also known as the Madelung or Klechkovsky rule after Erwin Madelung and Vsevolod Klechkovsky respectively This rule was first observed empirically by Madelung and Klechkovsky and later authors gave it theoretical justification 45 46 47 48 The shells overlap in energies and the Madelung rule specifies the sequence of filling according to 46 1s 2s lt 2p 3s lt 3p 4s lt 3d lt 4p 5s lt 4d lt 5p 6s lt 4f lt 5d lt 6p 7s lt 5f lt 6d lt 7p Here the sign means much less than as opposed to lt meaning just less than 46 Phrased differently electrons enter orbitals in order of increasing n ℓ and if two orbitals are available with the same value of n ℓ the one with lower n is occupied first 44 48 In general orbitals with the same value of n ℓ are similar in energy but in the case of the s orbitals with ℓ 0 quantum effects raise their energy to approach that of the next n ℓ group Hence the periodic table is usually drawn to begin each row often called a period with the filling of a new s orbital which corresponds to the beginning of a new shell 46 47 16 Thus with the exception of the first row each period length appears twice 46 2 8 8 18 18 32 32 The overlaps get quite close at the point where the d orbitals enter the picture 49 and the order can shift slightly with atomic number 50 and atomic charge 51 f Starting from the simplest atom this lets us build up the periodic table one at a time in order of atomic number by considering the cases of single atoms In hydrogen there is only one electron which must go in the lowest energy orbital 1s This electron configuration is written 1s1 where the superscript indicates the number of electrons in the subshell Helium adds a second electron which also goes into 1s completely filling the first shell and giving the configuration 1s2 38 54 g Starting from the third element lithium the first shell is full so its third electron occupies a 2s orbital giving a 1s2 2s1 configuration The 2s electron is lithium s only valence electron as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms Thus the filled first shell is called a core shell for this and all heavier elements The 2s subshell is completed by the next element beryllium 1s2 2s2 The following elements then proceed to fill the 2p subshell Boron 1s2 2s2 2p1 puts its new electron in a 2p orbital carbon 1s2 2s2 2p2 fills a second 2p orbital and with nitrogen 1s2 2s2 2p3 all three 2p orbitals become singly occupied This is consistent with Hund s rule which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron Oxygen 1s2 2s2 2p4 fluorine 1s2 2s2 2p5 and neon 1s2 2s2 2p6 then complete the already singly filled 2p orbitals the last of these fills the second shell completely 38 54 Starting from element 11 sodium the second shell is full making the second shell a core shell for this and all heavier elements The eleventh electron begins the filling of the third shell by occupying a 3s orbital giving a configuration of 1s2 2s2 2p6 3s1 for sodium This configuration is abbreviated Ne 3s1 where Ne represents neon s configuration Magnesium Ne 3s2 finishes this 3s orbital and the following six elements aluminium silicon phosphorus sulfur chlorine and argon fill the three 3p orbitals Ne 3s2 3p1 through Ne 3s2 3p6 38 54 This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon and is the basis for the periodicity of chemical properties that the periodic table illustrates 38 at regular but changing intervals of atomic numbers the properties of the chemical elements approximately repeat 35 The first eighteen elements can thus be arranged as the start of a periodic table Elements in the same column have the same number of valence electrons and have analogous valence electron configurations these columns are called groups The single exception is helium which has two valence electrons like beryllium and magnesium but is typically placed in the column of neon and argon to emphasise that its outer shell is full Some contemporary authors question even this single exception preferring to consistently follow the valence configurations and place helium over beryllium There are eight columns in this periodic table fragment corresponding to at most eight outer shell electrons 18 A period begins when a new shell starts filling 16 Finally the colouring illustrates the blocks the elements in the s block coloured red are filling s orbitals while those in the p block coloured yellow are filling p orbitals 16 1H 2He 2 1 2 elements1s 0p3Li 4Be 5B 6C 7N 8O 9F 10Ne 2 1 3 8 elements 2s 2p11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 2 1 3 8 elements3s 3pStarting the next row for potassium and calcium the 4s subshell is the lowest in energy and therefore they fill it 38 54 Potassium adds one electron to the 4s shell Ar 4s1 and calcium then completes it Ar 4s2 However starting from scandium Ar 3d1 4s2 the 3d subshell becomes the next highest in energy The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons and so the occupation is not quite consistently filling the 3d orbitals one at a time The precise energy ordering of 3d and 4s changes along the row and also changes depending on how many electrons are removed from the atom For example due to the repulsion between the 3d electrons and the 4s ones at chromium the 4s energy level becomes slightly higher than 3d and so it becomes more profitable to have a Ar 3d5 4s1 configuration than an Ar 3d4 4s2 one A similar anomaly occurs at copper 38 These are violations of the Madelung rule Such anomalies however do not have any chemical significance 51 as the various configurations are so close in energy to each other 49 that the presence of a nearby atom can shift the balance 38 The periodic table therefore ignores these and considers only idealised configurations 37 At zinc Ar 3d10 4s2 the 3d orbitals are completely filled with a total of ten electrons 38 54 Next come the 4p orbitals completing the row which are filled progressively by gallium Ar 3d10 4s2 4p1 through krypton Ar 3d10 4s2 4p6 in a manner analogous to the previous p block elements 38 54 From gallium onwards the 3d orbitals form part of the electronic core and no longer participate in chemistry 53 The s and p block elements which fill their outer shells are called main group elements the d block elements coloured blue below which fill an inner shell are called transition elements or transition metals since they are all metals 56 The next eighteen elements fill the 5s orbitals rubidium and strontium then 4d yttrium through cadmium again with a few anomalies along the way and then 5p indium through xenon 16 54 Again from indium onward the 4d orbitals are in the core 54 57 Hence the fifth row has the same structure as the fourth 16 1H 2He 2 1 2 elements1s 0d 0p3Li 4Be 5B 6C 7N 8O 9F 10Ne 2 1 3 8 elements2s 0d 2p11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 2 1 3 8 elements3s 0d 3p19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se 35Br 36Kr 2 1 3 5 18 elements 4s 3d 4p37Rb 38Sr 39Y 40Zr 41Nb 42Mo 43Tc 44Ru 45Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb 52Te 53I 54Xe 2 1 3 5 18 elements5s 4d 5pThe sixth row of the table likewise starts with two s block elements caesium and barium 54 After this the first f block elements coloured green below begin to appear starting with lanthanum These are sometimes termed inner transition elements 56 As there are now not only 4f but also 5d and 6s subshells at similar energies competition occurs once again with many irregular configurations 49 this resulted in some dispute about where exactly the f block is supposed to begin but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle 13 Even though lanthanum does not itself fill the 4f subshell as a single atom because of repulsion between electrons 51 its 4f orbitals are low enough in energy to participate in chemistry 58 At ytterbium the seven 4f orbitals are completely filled with fourteen electrons thereafter a series of ten transition elements lutetium through mercury follows 54 59 60 61 and finally six main group elements thallium through radon complete the period 54 62 From lutetium onwards the 4f orbitals are in the core 54 and from thallium onwards so are the 5d orbitals 54 53 63 The seventh row is analogous to the sixth row 7s fills francium and radium then 5f actinium to nobelium then 6d lawrencium to copernicium and finally 7p nihonium to oganesson 54 Starting from lawrencium the 5f orbitals are in the core 54 and probably the 6d orbitals join the core starting from nihonium 54 64 h Again there are a few anomalies along the way 16 for example as single atoms neither actinium nor thorium actually fills the 5f subshell and lawrencium does not fill the 6d shell but all these subshells can still become filled in chemical environments 66 67 68 For a very long time the seventh row was incomplete as most of its elements do not occur in nature The missing elements beyond uranium started to be synthesised in the laboratory in 1940 when neptunium was made 69 The row was completed with the synthesis of tennessine in 2010 70 the last element oganesson had already been made in 2002 71 and the last elements in this seventh row were given names in 2016 72 1H 2He 2 1 2 elements1s 0f 0d 0p3Li 4Be 5B 6C 7N 8O 9F 10Ne 2 1 3 8 elements2s 0f 0d 2p11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 2 1 3 8 elements3s 0f 0d 3p19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se 35Br 36Kr 2 1 3 5 18 elements4s 0f 3d 4p37Rb 38Sr 39Y 40Zr 41Nb 42Mo 43Tc 44Ru 45Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb 52Te 53I 54Xe 2 1 3 5 18 elements5s 0f 4d 5p55Cs 56Ba 57La 58Ce 59Pr 60Nd 61Pm 62Sm 63Eu 64Gd 65Tb 66Dy 67Ho 68Er 69Tm 70Yb 71Lu 72Hf 73Ta 74W 75Re 76Os 77Ir 78Pt 79Au 80Hg 81Tl 82Pb 83Bi 84Po 85At 86Rn 2 1 3 5 7 32 elements 6s 4f 5d 6p87Fr 88Ra 89Ac 90Th 91Pa 92U 93Np 94Pu 95Am 96Cm 97Bk 98Cf 99Es 100Fm 101Md 102No 103Lr 104Rf 105Db 106Sg 107Bh 108Hs 109Mt 110Ds 111Rg 112Cn 113Nh 114Fl 115Mc 116Lv 117Ts 118Og 2 1 3 5 7 32 elements7s 5f 6d 7pThis completes the modern periodic table with all seven rows completely filled to capacity 72 Electron configuration table The following table shows the electron configuration of a neutral gas phase atom of each element Different configurations can be favoured in different chemical environments 51 The main group elements have entirely regular electron configurations the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level For the last ten elements 109 118 experimental data is lacking 73 and therefore calculated configurations have been shown instead 74 Completely filled subshells have been greyed out vteElectron configurations of the chemical elements neutral gaseous atoms in the ground state Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181s 1H1 2He2 He 2s 2p 3Li1 4Be2 5B2 1 6C2 2 7N2 3 8O2 4 9F2 5 10Ne26 Ne 3s 3p 11Na1 12Mg2 13Al2 1 14Si2 2 15P2 3 16S2 4 17Cl2 5 18Ar26 Ar 4s 3d 4p 19K1 20Ca2 21Sc2 1 22Ti2 2 23V2 3 24Cr15 25Mn2 5 26Fe2 6 27Co2 7 28Ni2 8 29Cu110 30Zn210 31Ga210 1 32Ge210 2 33As210 3 34Se210 4 35Br210 5 36Kr2106 Kr 5s 4d 5p 37Rb1 38Sr2 39Y2 1 40Zr2 2 41Nb14 42Mo15 43Tc2 5 44Ru17 45Rh18 46Pd 10 47Ag110 48Cd210 49In210 1 50Sn210 2 51Sb210 3 52Te210 4 53I210 5 54Xe2106 Xe 6s 4f 5d 6p 55Cs1 56Ba2 57La2 1 58Ce2 11 59Pr2 3 60Nd2 4 61Pm2 5 62Sm2 6 63Eu2 7 64Gd2 71 65Tb2 9 66Dy2 10 67Ho2 11 68Er2 12 69Tm2 13 70Yb214 71Lu214 1 72Hf214 2 73Ta214 3 74W214 4 75Re214 5 76Os214 6 77Ir214 7 78Pt114 9 79Au11410 80Hg21410 81Tl21410 1 82Pb21410 2 83Bi21410 3 84Po21410 4 85At21410 5 86Rn214106 Rn 7s 5f 6d 7p 87Fr1 88Ra2 89Ac2 1 90Th2 2 91Pa2 21 92U2 31 93Np2 41 94Pu2 6 95Am2 7 96Cm2 71 97Bk2 9 98Cf2 10 99Es2 11 100Fm2 12 101Md2 13 102No214 103Lr214 1 104Rf214 2 105Db214 3 106Sg214 4 107Bh214 5 108Hs214 6 109Mt214 7 110Ds214 8 111Rg214 9 112Cn21410 113Nh21410 1 114Fl21410 2 115Mc21410 3 116Lv21410 4 117Ts21410 5 118Og214106s block f block d block p blockVariationsPeriod 1 Main article Period 1 element Although the modern periodic table is standard today the placement of the period 1 elements hydrogen and helium remains an open issue under discussion and some variation can be found 53 75 Following electron configurations hydrogen would be placed in group 1 and helium would be placed in group 2 53 The group 1 placement of hydrogen is common but helium is almost always placed in group 18 with the other noble gases 19 The debate has to do with conflicting understandings of the extent to which chemical or electronic properties should decide periodic table placement 75 Like the group 1 metals hydrogen has one electron in its outermost shell 76 and typically loses its only electron in chemical reactions 77 Hydrogen has some metal like chemical properties being able to displace some metals from their salts 77 But it forms a diatomic nonmetallic gas at standard conditions unlike the alkali metals which are reactive solid metals This and hydrogen s formation of hydrides in which it gains an electron brings it close to the properties of the halogens which do the same 77 though it is rarer for hydrogen to form H than H 78 Moreover the lightest two halogens fluorine and chlorine are gaseous like hydrogen at standard conditions 77 Some properties of hydrogen are not a good fit for either group hydrogen is neither highly oxidising nor highly reducing and is not reactive with water 78 Hydrogen thus has properties corresponding to both those of the alkali metals and the halogens but matches neither group perfectly and is thus difficult to place by its chemistry 77 Therefore while the electronic placement of hydrogen in group 1 predominates some rarer arrangements show either hydrogen in group 17 79 duplicate hydrogen in both groups 1 and 17 80 81 or float it separately from all groups 81 82 53 This last option has nonetheless been criticised by the chemist and philosopher of science Eric Scerri on the grounds that it appears to imply that hydrogen is above the periodic law altogether unlike all the other elements 83 Helium is the only element that routinely occupies a position in the periodic table that is not consistent with its electronic structure It has two electrons in its outermost shell whereas the other noble gases have eight and it is an s block element whereas all other noble gases are p block elements However it is unreactive at standard conditions and has a full outer shell these properties are like the noble gases in group 18 but not at all like the reactive alkaline earth metals of group 2 For these reasons helium is nearly universally placed in group 18 19 which its properties best match 53 a proposal to move helium to group 2 was rejected by IUPAC in 1988 for these reasons 9 Nonetheless helium is still occasionally placed in group 2 today 84 and some of its physical and chemical properties are closer to the group 2 elements and support the electronic placement 76 53 Solid helium crystallises in a hexagonal close packed structure which matches beryllium and magnesium in group 2 but not the other noble gases in group 18 85 Recent theoretical developments in noble gas chemistry in which helium is expected to show less inertness than neon and to form HeO LiF 2 with a structure similar to the analogous beryllium compound but with no expected neon analogue have resulted in more chemists advocating a placement of helium in group 2 86 87 88 89 The first row anomaly in the periodic table is cited in support of this reassignment since helium as the first s block element before the alkaline earth metals stands out as anomalous in a way that helium as the first noble gas does not 86 For example a large difference in atomic radii between the first and second members of each main group is seen in groups 1 and 13 17 it exists between neon and argon and between helium and beryllium but not between helium and neon Moving helium to group 2 makes this trend consistent in groups 2 and 18 as well 90 91 Tables that float both hydrogen and helium outside all groups may rarely be encountered 82 53 54 Group 3 Main article Group 3 element Composition Group 3 Sc Y Lu Lr nbsp Hydrogen HeliumLithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine NeonSodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine ArgonPotassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine KryptonRubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine XenonCaesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury element Thallium Lead Bismuth Polonium Astatine RadonFrancium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson Group 3 Sc Y La Ac nbsp Hydrogen HeliumLithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine NeonSodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine ArgonPotassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine KryptonRubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine XenonCaesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury element Thallium Lead Bismuth Polonium Astatine RadonFrancium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson In many periodic tables the f block is shifted one element to the right so that lanthanum and actinium become d block elements in group 3 and Ce Lu and Th Lr form the f block thereby splitting the d block into two very uneven portions This is a holdover from early mistaken measurements of electron configurations 11 The 4f shell is completely filled at ytterbium and for that reason Lev Landau and Evgeny Lifshitz in 1948 considered it incorrect to group lutetium as an f block element 12 They did not yet take the step of removing lanthanum from the d block as well but Jun Kondō realised in 1963 that lanthanum s low temperature superconductivity implied the activity of its 4f shell 92 In 1965 David C Hamilton linked this observation to its position in the periodic table and argued that the f block should be composed of the elements La Yb and Ac No 58 Since then physical chemical and electronic evidence has supported this assignment 11 9 as shown here and as supported by IUPAC reports dating from 1988 when the 1 18 group numbers were recommended 9 and 2021 10 The variation nonetheless still exists because most textbook writers are not aware of the issue 11 A third form can sometimes be encountered in which the spaces below yttrium in group 3 are left empty such as the table appearing on the IUPAC web site 19 but this is inconsistent with quantum mechanics by making the f block 15 elements wide La Lu and Ac Lr even though only 14 electrons can fit in an f subshell 10 Several arguments in favour of Sc Y La Ac can be encountered in the literature 93 94 95 but they have been challenged as being logically inconsistent 13 14 15 For example it has been argued that lanthanum and actinium cannot be f block elements because their atoms have not begun to fill the f subshells 96 But the same is true of thorium which is never disputed as an f block element 10 11 and this argument overlooks the problem on the other end that the f shells complete filling at ytterbium and nobelium matching the Sc Y Lu Lr form not at lutetium and lawrencium as in Sc Y La Ac 97 Such exceptions have in any case never been considered as relevant for positioning any other elements on the periodic table 20 The relevant fact for placement 37 59 is that lanthanum and actinium like thorium have valence f orbitals that can become occupied in chemical environments whereas lutetium and lawrencium do not 54 98 Thus the relationship between yttrium and lanthanum is only a secondary relationship between elements with the same number of valence electrons but different kinds of valence orbitals such as that between chromium and uranium whereas the relationship between yttrium and lutetium is primary sharing both valence electron count and valence orbital type 54 Periodic trendsMain article Periodic trends As chemical reactions involve the valence electrons 18 elements with similar outer electron configurations may be expected to react similarly and form compounds with similar proportions of elements in them 99 Such elements are placed in the same group and thus there tend to be clear similarities and trends in chemical behaviour as one proceeds down a group 100 As analogous configurations occur at regular intervals the properties of the elements thus exhibit periodic recurrences hence the name of the periodic table and the periodic law These periodic recurrences were noticed well before the underlying theory that explains them was developed 101 102 Atomic radius Historically the physical size of atoms was unknown until the early 20th century The first calculated estimate of the atomic radius of hydrogen was published by physicist Arthur Haas in 1910 to within an order of magnitude a factor of 10 of the accepted value the Bohr radius 0 529 A In his model Haas used a single electron configuration based on the classical atomic model proposed by J J Thomson in 1904 often called the plum pudding model 103 Atomic radii the size of atoms are dependent on the sizes of their outermost orbitals 90 They generally decrease going left to right along the main group elements because the nuclear charge increases but the outer electrons are still in the same shell However going down a column the radii generally increase because the outermost electrons are in higher shells that are thus further away from the nucleus 18 104 The first row of each block is abnormally small due to an effect called kainosymmetry or primogenic repulsion 105 the 1s 2p 3d and 4f subshells have no inner analogues to which they would be orthogonal Higher s p d and f subshells experience strong repulsion from their inner analogues which have approximately the same angular distribution of charge and must expand to avoid this This makes significant differences arise between the small 2p elements which prefer multiple bonding and the larger 3p and higher p elements which do not 90 Similar anomalies arise for the 1s 2p 3d 4f and the hypothetical 5g elements 106 the degree of this first row anomaly is highest for the s block is moderate for the p block and is less pronounced for the d and f blocks 107 In the transition elements an inner shell is filling but the size of the atom is still determined by the outer electrons The increasing nuclear charge across the series and the increased number of inner electrons for shielding somewhat compensate each other so the decrease in radius is smaller 104 The 4p and 5d atoms coming immediately after new types of transition series are first introduced are smaller than would have been expected 108 because the added core 3d and 4f subshells provide only incomplete shielding of the nuclear charge for the outer electrons Hence for example gallium atoms are slightly smaller than aluminium atoms 90 Together with kainosymmetry this results in an even odd difference between the periods except in the s block i that is sometimes known as secondary periodicity elements in even periods have smaller atomic radii and prefer to lose fewer electrons while elements in odd periods except the first differ in the opposite direction Thus for example many properties in the p block show a zigzag rather than a smooth trend along the group For example phosphorus and antimony in odd periods of group 15 readily reach the 5 oxidation state whereas nitrogen arsenic and bismuth in even periods prefer to stay at 3 107 109 Thallium and lead atoms are about the same size as indium and tin atoms respectively but from bismuth to radon the 6p atoms are larger than the analogous 5p atoms This happens because when atomic nuclei become highly charged special relativity becomes needed to gauge the effect of the nucleus on the electron cloud These relativistic effects result in heavy elements increasingly having differing properties compared to their lighter homologues in the periodic table Spin orbit interaction splits the p subshell one p orbital is relativistically stabilised and shrunken it fills in thallium and lead but the other two filling in bismuth through radon are relativistically destabilised and expanded 90 Relativistic effects also explain why gold is golden and mercury is a liquid at room temperature 110 111 They are expected to become very strong in the late seventh period potentially leading to a collapse of periodicity 112 Electron configurations are only clearly known until element 108 hassium and experimental chemistry beyond 108 has only been done for 112 copernicium 113 nihonium and 114 flerovium so the chemical characterisation of the heaviest elements remains a topic of current research 113 Ionisation energy nbsp Graph of first ionisation energies of the elements in electronvolts predictions used for elements 105 118 The first ionisation energy of an atom is the energy required to remove an electron from it This varies with the atomic radius ionisation energy increases left to right and down to up because electrons that are closer to the nucleus are held more tightly and are more difficult to remove Ionisation energy thus is minimised at the first element of each period hydrogen and the alkali metals and then generally rises until it reaches the noble gas at the right edge of the period 18 There are some exceptions to this trend such as oxygen where the electron being removed is paired and thus interelectronic repulsion makes it easier to remove than expected 114 In the transition series the outer electrons are preferentially lost even though the inner orbitals are filling For example in the 3d series the 4s electrons are lost first even though the 3d orbitals are being filled The shielding effect of adding an extra 3d electron approximately compensates the rise in nuclear charge and therefore the ionisation energies stay mostly constant though there is a small increase especially at the end of each transition series 115 As metal atoms tend to lose electrons in chemical reactions ionisation energy is generally correlated with chemical reactivity although there are other factors involved as well 115 Electron affinity nbsp Trend in electron affinitiesThe opposite property to ionisation energy is the electron affinity which is the energy released when adding an electron to the atom 116 A passing electron will be more readily attracted to an atom if it feels the pull of the nucleus more strongly and especially if there is an available partially filled outer orbital that can accommodate it Therefore electron affinity tends to increase down to up and left to right The exception is the last column the noble gases which have a full shell and have no room for another electron This gives the halogens in the next to last column the highest electron affinities 18 Some atoms like the noble gases have no electron affinity they cannot form stable gas phase anions 117 The noble gases having high ionisation energies and no electron affinity have little inclination towards gaining or losing electrons and are generally unreactive 18 Some exceptions to the trends occur oxygen and fluorine have lower electron affinities than their heavier homologues sulfur and chlorine because they are small atoms and hence the newly added electron would experience significant repulsion from the already present ones For the nonmetallic elements electron affinity likewise somewhat correlates with reactivity but not perfectly since other factors are involved For example fluorine has a lower electron affinity than chlorine because of extreme interelectronic repulsion for the very small fluorine atom but is more reactive 116 Valence and oxidation states The valence of an element can be defined either as the number of hydrogen atoms that can combine with it to form a simple binary hydride or as twice the number of oxygen atoms that can combine with it to form a simple binary oxide that is not a peroxide or a superoxide The valences of the main group elements are directly related to the group number the hydrides in the main groups 1 2 and 13 17 follow the formulae MH MH2 MH3 MH4 MH3 MH2 and finally MH The highest oxides instead increase in valence following the formulae M2O MO M2O3 MO2 M2O5 MO3 M2O7 j Today the notion of valence has been extended by that of the oxidation state which is the formal charge left on an element when all other elements in a compound have been removed as their ions 99 The electron configuration suggests a ready explanation from the number of electrons available for bonding 99 although a full explanation requires considering the energy that would be released in forming compounds with different valences rather than simply considering electron configurations alone 118 For example magnesium forms Mg2 rather than Mg cations when dissolved in water because the latter would spontaneously disproportionate into Mg0 and Mg2 cations This is because the enthalpy of hydration surrounding the cation with water molecules increases in magnitude with the charge and radius of the ion In Mg the outermost orbital which determines ionic radius is still 3s so the hydration enthalpy is small and insufficient to compensate the energy required to remove the electron but ionising again to Mg2 uncovers the core 2p subshell making the hydration enthalpy large enough to allow magnesium II compounds to form For similar reasons the common oxidation states of the heavier p block elements where the ns electrons become lower in energy than the np tend to vary by steps of 2 because that is necessary to uncover an inner subshell and decrease the ionic radius e g Tl uncovers 6s and Tl3 uncovers 5d so once thallium loses two electrons it tends to lose the third one as well Analogous arguments based on orbital hybridisation can be used for the less electronegative p block elements 119 k For transition metals common oxidation states are nearly always at least 2 for similar reasons uncovering the next subshell this holds even for the metals with anomalous dx 1s1 or dx 2s0 configurations except for silver because repulsion between d electrons means that the movement of the second electron from the s to the d subshell does not appreciably change its ionisation energy 120 Because ionising the transition metals further does not uncover any new inner subshells their oxidation states tend to vary by steps of 1 instead 119 The lanthanides and late actinides generally show a stable 3 oxidation state removing the outer s electrons and then usually one electron from the n 2 f orbitals that are similar in energy to ns 121 The common and maximum oxidation states of the d and f block elements tend to depend on the ionisation energies As the energy difference between the n 1 d and ns orbitals rises along each transition series it becomes less energetically favourable to ionise further electrons Thus the early transition metal groups tend to prefer higher oxidation states but the 2 oxidation state becomes more stable for the late transition metal groups The highest formal oxidation state thus increases from 3 at the beginning of each d block row to 7 or 8 in the middle e g OsO4 and then to 2 at the end 120 The lanthanides and late actinides usually have high fourth ionisation energies and hence rarely surpass the 3 oxidation state whereas early actinides have low fourth ionisation energies and so for example neptunium and plutonium can reach 7 120 121 As elements in the same group share the same valence configurations they usually exhibit similar chemical behaviour For example the alkali metals in the first group all have one valence electron and form a very homogeneous class of elements they are all soft and reactive metals However there are many factors involved and groups can often be rather hetereogeneous For instance hydrogen also has one valence electron and is in the same group as the alkali metals but its chemical behaviour is quite different The stable elements of group 14 comprise a nonmetal carbon two semiconductors silicon and germanium and two metals tin and lead they are nonetheless united by having four valence electrons 122 This often leads to similarities in maximum and minimum oxidation states e g sulfur and selenium in group 16 both have maximum oxidation state 6 as in SO3 and SeO3 and minimum oxidation state 2 as in sulfides and selenides but not always e g oxygen is not known to form oxidation state 6 despite being in the same group as sulfur and selenium 54 Electronegativity Another important property of elements is their electronegativity Atoms can form covalent bonds to each other by sharing electrons in pairs creating an overlap of valence orbitals The degree to which each atom attracts the shared electron pair depends on the atom s electronegativity 123 the tendency of an atom towards gaining or losing electrons 18 The more electronegative atom will tend to attract the electron pair more and the less electronegative or more electropositive one will attract it less In extreme cases the electron can be thought of as having been passed completely from the more electropositive atom to the more electronegative one though this is a simplification The bond then binds two ions one positive having given up the electron and one negative having accepted it and is termed an ionic bond 18 Electronegativity depends on how strongly the nucleus can attract an electron pair and so it exhibits a similar variation to the other properties already discussed electronegativity tends to fall going up to down and rise going left to right The alkali and alkaline earth metals are among the most electropositive elements while the chalcogens halogens and noble gases are among the most electronegative ones 123 Electronegativity is generally measured on the Pauling scale on which the most electronegative reactive atom fluorine is given electronegativity 4 0 and the least electronegative atom caesium is given electronegativity 0 79 18 In fact neon is the most electronegative element but the Pauling scale cannot measure its electronegativity because it does not form covalent bonds with most elements 124 An element s electronegativity varies with the identity and number of the atoms it is bonded to as well as how many electrons it has already lost an atom becomes more electronegative when it has lost more electrons 123 This sometimes makes a large difference lead in the 2 oxidation state has electronegativity 1 87 on the Pauling scale while lead in the 4 oxidation state has electronegativity 2 33 125 Metallicity A simple substance is a substance formed from atoms of one chemical element The simple substances of the more electronegative atoms tend to share electrons form covalent bonds with each other They form either small molecules like hydrogen or oxygen whose atoms bond in pairs or giant structures stretching indefinitely like carbon or silicon The noble gases simply stay as single atoms as they already have a full shell 18 Substances composed of discrete molecules or single atoms are held together by weaker attractive forces between the molecules such as the London dispersion force as electrons move within the molecules they create momentary imbalances of electrical charge which induce similar imbalances on nearby molecules and create synchronised movements of electrons across many neighbouring molecules 126 The more electropositive atoms however tend to instead lose electrons creating a sea of electrons engulfing cations 18 The outer orbitals of one atom overlap to share electrons with all its neighbours creating a giant structure of molecular orbitals extending over all the atoms 127 This negatively charged sea pulls on all the ions and keeps them together in a metallic bond Elements forming such bonds are often called metals those which do not are often called nonmetals 18 Some elements can form multiple simple substances with different structures these are called allotropes For example diamond and graphite are two allotropes of carbon 122 l The metallicity of an element can be predicted from electronic properties When atomic orbitals overlap during metallic or covalent bonding they create both bonding and antibonding molecular orbitals of equal capacity with the antibonding orbitals of higher energy Net bonding character occurs when there are more electrons in the bonding orbitals than there are in the antibonding orbitals Metallic bonding is thus possible when the number of electrons delocalised by each atom is less than twice the number of orbitals contributing to the overlap This is the situation for elements in groups 1 through 13 they also have too few valence electrons to form giant covalent structures where all atoms take equivalent positions and so almost all of them metallise The exceptions are hydrogen and boron which have too high an ionisation energy Hydrogen thus forms a covalent H2 molecule and boron forms a giant covalent structure based on icosahedral B12 clusters In a metal the bonding and antibonding orbitals have overlapping energies creating a single band that electrons can freely flow through allowing for electrical conduction 129 In group 14 both metallic and covalent bonding become possible In a diamond crystal covalent bonds between carbon atoms are strong because they have a small atomic radius and thus the nucleus has more of a hold on the electrons Therefore the bonding orbitals that result are much lower in energy than the antibonding orbitals and there is no overlap so electrical conduction becomes impossible carbon is a nonmetal However covalent bonding becomes weaker for larger atoms and the energy gap between the bonding and antibonding orbitals decreases Therefore silicon and germanium have smaller band gaps and are semiconductors electrons can cross the gap when thermally excited The band gap disappears in tin so that tin and lead become metals 129 Elements in groups 15 through 17 have too many electrons to form giant covalent molecules that stretch in all three dimensions For the lighter elements the bonds in small diatomic molecules are so strong that a condensed phase is disfavoured thus nitrogen N2 oxygen O2 white phosphorus and yellow arsenic P4 and As4 sulfur and red selenium S8 and Se8 and the stable halogens F2 Cl2 Br2 and I2 readily form covalent molecules with few atoms The heavier ones tend to form long chains e g red phosphorus grey selenium tellurium or layered structures e g carbon as graphite black phosphorus grey arsenic grey antimony bismuth that only extend in one or two rather than three dimensions Both kinds of structures can be found as allotropes of phosphorus arsenic and selenium although the long chained allotropes are more stable in all three As these structures do not use all their orbitals for bonding they end up with bonding nonbonding and antibonding bands in order of increasing energy Similarly to group 14 the band gaps shrink for the heavier elements and free movement of electrons between the chains or layers becomes possible Thus for example black phosphorus black arsenic grey selenium tellurium and iodine are semiconductors grey arsenic grey antimony and bismuth are semimetals exhibiting quasi metallic conduction with a very small band overlap and polonium and probably astatine are true metals 129 Finally the natural group 18 elements all stay as individual atoms 129 m The dividing line between metals and nonmetals is roughly diagonal from top left to bottom right with the transition series appearing to the left of this diagonal as they have many available orbitals for overlap This is expected as metallicity tends to be correlated with electropositivity and the willingness to lose electrons which increases right to left and up to down Thus the metals greatly outnumber the nonmetals Elements near the borderline are difficult to classify they tend to have properties that are intermediate between those of metals and nonmetals and may have some properties characteristic of both They are often termed semimetals or metalloids 18 The term semimetal used in this sense should not be confused with its strict physical sense having to do with band structure bismuth is physically a semimetal but is generally considered a metal by chemists 131 The following table considers the most stable allotropes at standard conditions The elements coloured yellow form simple substances that are well characterised by metallic bonding Elements coloured light blue form giant network covalent structures whereas those coloured dark blue form small covalently bonded molecules that are held together by weaker van der Waals forces The noble gases are coloured in violet their molecules are single atoms and no covalent bonding occurs Greyed out cells are for elements which have not been prepared in sufficient quantities for their most stable allotropes to have been characterised in this way Theoretical considerations and current experimental evidence suggest that all of those elements would metallise if they could form condensed phases 129 except perhaps for oganesson 132 n vteBonding of simple substances in the periodic table1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Group Period1 H He2 Li Be B C N O F Ne3 Na Mg Al Si P S Cl Ar4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts OgMetallic Network covalent Molecular covalent Single atoms Unknown Background color shows bonding of simple substances in the periodic table If there are several the most stable allotrope is considered nbsp Iron a metal nbsp Sulfur a nonmetal nbsp Arsenic an element often called a semi metal or metalloidGenerally metals are shiny and dense 18 They usually have high melting and boiling points due to the strength of the metallic bond and are often malleable and ductile easily stretched and shaped because the atoms can move relative to each other without breaking the metallic bond 141 They conduct electricity because their electrons are free to move in all three dimensions Similarly they conduct heat which is transferred by the electrons as extra kinetic energy they move faster These properties persist in the liquid state as although the crystal structure is destroyed on melting the atoms still touch and the metallic bond persists though it is weakened 141 Metals tend to be reactive towards nonmetals 18 Some exceptions can be found to these generalisations for example manganese 142 arsenic antimony 143 and bismuth are brittle 144 chromium is extremely hard 145 gallium rubidium caesium and mercury are liquid at or close to room temperature o and noble metals such as gold are chemically very inert 146 147 Nonmetals exhibit different properties Those forming giant covalent crystals exhibit high melting and boiling points as it takes considerable energy to overcome the strong covalent bonds Those forming discrete molecules are held together mostly by dispersion forces which are more easily overcome thus they tend to have lower melting and boiling points 148 and many are liquids or gases at room temperature 18 Nonmetals are often dull looking They tend to be reactive towards metals except for the noble gases which are inert towards most substances 18 They are brittle when solid as their atoms are held tightly in place They are less dense and conduct electricity poorly 18 because there are no mobile electrons 149 Near the borderline band gaps are small and thus many elements in that region are semiconductors such as silicon germanium 149 selenium and tellurium 129 Again there are exceptions for example diamond has the highest thermal conductivity of all known materials greater than any metal 150 It is common to designate a class of metalloids straddling the boundary between metals and nonmetals as elements in that region are intermediate in both physical and chemical properties 18 However no consensus exists in the literature for precisely which elements should be so designated When such a category is used silicon germanium arsenic and tellurium are almost always included and boron and antimony usually are but most sources include other elements as well without agreement on which extra elements should be added and some others subtract from this list instead p Further manifestations of periodicity There are some other relationships throughout the periodic table between elements that are not in the same group such as the diagonal relationships between elements that are diagonally adjacent e g lithium and magnesium 107 Some similarities can also be found between the main groups and the transition metal groups or between the early actinides and early transition metals when the elements have the same number of valence electrons Thus uranium somewhat resembles chromium and tungsten in group 6 107 as all three have six valence electrons 155 Relationships between elements with the same number of valence electrons but different types of valence orbital have been called secondary or isodonor relationships they usually have the same maximum oxidation states but not the same minimum oxidation states For example chlorine and manganese both have 7 as their maximum oxidation state e g Cl2O7 and Mn2O7 but their respective minimum oxidation states are 1 e g HCl and 3 K2 Mn CO 4 Elements with the same number of valence vacancies but different numbers of valence electrons are related by a tertiary or isoacceptor relationship they have similar minimum but not maximum oxidation states For example hydrogen and chlorine both have 1 as their minimum oxidation state in hydrides and chlorides but hydrogen s maximum oxidation state is 1 e g H2O while chlorine s is 7 54 Many other physical properties of the elements exhibit periodic variation in accordance with the periodic law such as melting points boiling points heats of fusion heats of vaporisation atomisation energy and so on Similar periodic variations appear for the compounds of the elements which can be observed by comparing hydrides oxides sulfides halides and so on 123 Chemical properties are more difficult to describe quantitatively but likewise exhibit their own periodicities Examples include the variation in the acidic and basic properties of the elements and their compounds the stabilities of compounds and methods of isolating the elements 99 Periodicity is and has been used very widely to predict the properties of unknown new elements and new compounds and is central to modern chemistry 156 Classification of elements nbsp A periodic table colour coded to show some commonly used sets of similar elements The categories and their boundaries differ somewhat between sources 151 Lutetium and lawrencium in group 3 are also transition metals 54 Alkali metals Alkaline earth metals Lanthanides Actinides Transition metals Other metals Metalloids Other nonmetals Halogens Noble gasesMany terms have been used in the literature to describe sets of elements that behave similarly The group names alkali metal alkaline earth metal triel tetrel pnictogen chalcogen halogen and noble gas are acknowledged by IUPAC the other groups can be referred to by their number or by their first element e g group 6 is the chromium group 8 157 Some divide the p block elements from groups 13 to 16 by metallicity 153 151 although there is neither an IUPAC definition nor a precise consensus on exactly which elements should be considered metals nonmetals or semi metals sometimes called metalloids 153 151 8 Neither is there a consensus on what the metals succeeding the transition metals ought to be called with post transition metal and poor metal being among the possibilities having been used q Some advanced monographs exclude the elements of group 12 from the transition metals on the grounds of their sometimes quite different chemical properties but this is not a universal practice 158 and IUPAC does not presently mention it as allowable in its Principles of Chemical Nomenclature 159 The lanthanides are considered to be the elements La Lu which are all very similar to each other historically they included only Ce Lu but lanthanum became included by common usage 8 The rare earth elements or rare earth metals add scandium and yttrium to the lanthanides 8 Analogously the actinides are considered to be the elements Ac Lr historically Th Lr 8 although variation of properties in this set is much greater than within the lanthanides 51 IUPAC recommends the names lanthanoids and actinoids to avoid ambiguity as the ide suffix typically denotes a negative ion however lanthanides and actinides remain common 8 With the increasing recognition of lutetium and lawrencium as d block elements some authors began to define the lanthanides as La Yb and the actinides as Ac No matching the f block 53 11 160 161 162 Many more categorisations exist and are used according to certain disciplines In astrophysics a metal is defined as any element with atomic number greater than 2 i e anything except hydrogen and helium 163 The term semimetal has a different definition in physics than it does in chemistry bismuth is a semimetal by physical definitions but chemists generally consider it a metal 164 A few terms are widely used but without any very formal definition such as heavy metal which has been given such a wide range of definitions that it has been criticised as effectively meaningless 165 The scope of terms varies significantly between authors For example according to IUPAC the noble gases extend to include the whole group including the very radioactive superheavy element oganesson 166 However among those who specialise in the superheavy elements this is not often done in this case noble gas is typically taken to imply the unreactive behaviour of the lighter elements of the group Since calculations generally predict that oganesson should not be particularly inert due to relativistic effects and may not even be a gas at room temperature if it could be produced in bulk its status as a noble gas is often questioned in this context 167 Furthermore national variations are sometimes encountered in Japan alkaline earth metals often do not include beryllium and magnesium as their behaviour is different from the heavier group 2 metals 168 HistoryMain article History of the periodic table See also Timeline of chemical element discoveries nbsp Mendeleev s 1869 periodic tableEarly history In 1817 German physicist Johann Wolfgang Dobereiner began to formulate one of the earliest attempts to classify the elements 169 In 1829 he found that he could form some of the elements into groups of three with the members of each group having related properties He termed these groups triads 170 171 Chlorine bromine and iodine formed a triad as did calcium strontium and barium lithium sodium and potassium and sulfur selenium and tellurium Today all these triads form part of modern day groups 172 Various chemists continued his work and were able to identify more and more relationships between small groups of elements However they could not build one scheme that encompassed them all 173 nbsp Newland s table of the elements in 1866 John Newlands published a letter in the Chemical News in February 1863 on the periodicity among the chemical elements 174 In 1864 Newlands published an article in the Chemical News showing that if the elements are arranged in the order of their atomic weights those having consecutive numbers frequently either belong to the same group or occupy similar positions in different groups and he pointed out that each eighth element starting from a given one is in this arrangement a kind of repetition of the first like the eighth note of an octave in music The Law of Octaves 174 However Newlands formulation only worked well for the main group elements and encountered serious problems with the others 54 German chemist Lothar Meyer noted the sequences of similar chemical and physical properties repeated at periodic intervals According to him if the atomic weights were plotted as ordinates i e vertically and the atomic volumes as abscissas i e horizontally the curve obtained a series of maximums and minimums the most electropositive elements would appear at the peaks of the curve in the order of their atomic weights In 1864 a book of his was published it contained an early version of the periodic table containing 28 elements and classified elements into six families by their valence for the first time elements had been grouped according to their valence Works on organizing the elements by atomic weight had until then been stymied by inaccurate measurements of the atomic weights 175 In 1868 he revised his table but this revision was published as a draft only after his death 176 Mendeleev nbsp Dmitri MendeleevThe definitive breakthrough came from the Russian chemist Dmitri Mendeleev Although other chemists including Meyer had found some other versions of the periodic system at about the same time Mendeleev was the most dedicated to developing and defending his system and it was his system that most affected the scientific community 177 On 17 February 1869 1 March 1869 in the Gregorian calendar Mendeleev began arranging the elements and comparing them by their atomic weights He began with a few elements and over the course of the day his system grew until it encompassed most of the known elements After he found a consistent arrangement his printed table appeared in May 1869 in the journal of the Russian Chemical Society 178 When elements did not appear to fit in the system he boldly predicted that either valencies or atomic weights had been measured incorrectly or that there was a missing element yet to be discovered 54 In 1871 Mendeleev published a long article including an updated form of his table that made his predictions for unknown elements explicit Mendeleev predicted the properties of three of these unknown elements in detail as they would be missing heavier homologues of boron aluminium and silicon he named them eka boron eka aluminium and eka silicon eka being Sanskrit for one 178 179 45 nbsp Mendeleev s 1871 periodic tableIn 1875 the French chemist Paul Emile Lecoq de Boisbaudran working without knowledge of Mendeleev s prediction discovered a new element in a sample of the mineral sphalerite and named it gallium He isolated the element and began determining its properties Mendeleev reading de Boisbaudran s publication sent a letter claiming that gallium was his predicted eka aluminium Although Lecoq de Boisbaudran was initially sceptical and suspected that Mendeleev was trying to take credit for his discovery he later admitted that Mendeleev was correct 180 In 1879 the Swedish chemist Lars Fredrik Nilson discovered a new element which he named scandium it turned out to be eka boron Eka silicon was found in 1886 by German chemist Clemens Winkler who named it germanium The properties of gallium scandium and germanium matched what Mendeleev had predicted 181 In 1889 Mendeleev noted at the Faraday Lecture to the Royal Institution in London that he had not expected to live long enough to mention their discovery to the Chemical Society of Great Britain as a confirmation of the exactitude and generality of the periodic law 182 Even the discovery of the noble gases at the close of the 19th century which Mendeleev had not predicted fitted neatly into his scheme as an eighth main group 183 Mendeleev nevertheless had some trouble fitting the known lanthanides into his scheme as they did not exhibit the periodic change in valencies that the other elements did After much investigation the Czech chemist Bohuslav Brauner suggested in 1902 that the lanthanides could all be placed together in one group on the periodic table He named this the asteroid hypothesis as an astronomical analogy just as there is an asteroid belt instead of a single planet between Mars and Jupiter so the place below yttrium was thought to be occupied by all the lanthanides instead of just one element 20 Atomic number nbsp Periodic table of van den BroekAfter the internal structure of the atom was probed amateur Dutch physicist Antonius van den Broek proposed in 1913 that the nuclear charge determined the placement of elements in the periodic table 184 185 The New Zealand physicist Ernest Rutherford coined the word atomic number for this nuclear charge 186 In van der Broek s published article he illustrated the first electronic periodic table showing the elements arranged according to the number of their electrons 187 Rutherford confirmed in his 1914 paper that Bohr had accepted the view of van der Broek 188 nbsp Henry MoseleyThe same year English physicist Henry Moseley using X ray spectroscopy confirmed van den Broek s proposal experimentally Moseley determined the value of the nuclear charge of each element from aluminium to gold and showed that Mendeleev s ordering actually places the elements in sequential order by nuclear charge 189 Nuclear charge is identical to proton count and determines the value of the atomic number Z of each element Using atomic number gives a definitive integer based sequence for the elements Moseley s research immediately resolved discrepancies between atomic weight and chemical properties these were cases such as tellurium and iodine where atomic number increases but atomic weight decreases 184 Although Moseley was soon killed in World War I the Swedish physicist Manne Siegbahn continued his work up to uranium and established that it was the element with the highest atomic number then known 92 190 Based on Moseley and Siegbahn s research it was also known which atomic numbers corresponded to missing elements yet to be found 184 Electron shells The Danish physicist Niels Bohr applied Max Planck s idea of quantisation to the atom He concluded that the energy levels of electrons were quantised only a discrete set of stable energy states were allowed Bohr then attempted to understand periodicity through electron configurations surmising in 1913 that the inner electrons should be responsible for the chemical properties of the element 191 192 In 1913 he produced the first electronic periodic table based on a quantum atom 193 Bohr called his electron shells rings in 1913 atomic orbitals within shells did not exist at the time of his planetary model Bohr explains in Part 3 of his famous 1913 paper that the maximum electrons in a shell is eight writing We see further that a ring of n electrons cannot rotate in a single ring round a nucleus of charge ne unless n lt 8 For smaller atoms the electron shells would be filled as follows rings of electrons will only join if they contain equal numbers of electrons and that accordingly the numbers of electrons on inner rings will only be 2 4 8 However in larger atoms the innermost shell would contain eight electrons on the other hand the periodic system of the elements strongly suggests that already in neon N 10 an inner ring of eight electrons will occur His proposed electron configurations for the atoms shown to the right mostly do not accord with those now known 194 195 Bohr s electron configurations for light elements Element Electrons per shell4 2 26 2 47 4 38 4 2 29 4 4 110 8 211 8 2 116 8 4 2 218 8 8 2The first one to systematically expand and correct the chemical potentials of Bohr s atomic theory was Walther Kossel in 1914 and in 1916 Kossel explained that in the periodic table new elements would be created as electrons were added to the outer shell In Kossel s paper he writes This leads to the conclusion that the electrons which are added further should be put into concentric rings or shells on each of which only a certain number of electrons namely eight in our case should be arranged As soon as one ring or shell is completed a new one has to be started for the next element the number of electrons which are most easily accessible and lie at the outermost periphery increases again from element to element and therefore in the formation of each new shell the chemical periodicity is repeated 196 197 In a 1919 paper Irving Langmuir postulated the existence of cells which we now call orbitals which could each only contain two electrons each and these were arranged in equidistant layers which we now call shells He made an exception for the first shell to only contain two electrons 198 The chemist Charles Rugeley Bury suggested in 1921 that eight and eighteen electrons in a shell form stable configurations Bury proposed that the electron configurations in transitional elements depended upon the valence electrons in their outer shell 199 He introduced the word transition to describe the elements now known as transition metals or transition elements 200 Prompted by Bohr Wolfgang Pauli took up the problem of electron configurations in 1923 Pauli extended Bohr s scheme to use four quantum numbers and formulated his exclusion principle which stated that no two electrons could have the same four quantum numbers This explained the lengths of the periods in the periodic table 2 8 18 and 32 which corresponded to the number of electrons that each shell could occupy 201 In 1925 Friedrich Hund arrived at configurations close to the modern ones 202 As a result of these advances periodicity became based on the number of chemically active or valence electrons rather than by the valences of the elements 54 The Aufbau principle that describes the electron configurations of the elements was first empirically observed by Erwin Madelung in 1926 44 though the first to publish it was Vladimir Karapetoff in 1930 203 204 In 1961 Vsevolod Klechkovsky derived the first part of the Madelung rule that orbitals fill in order of increasing n ℓ from the Thomas Fermi model 205 the complete rule was derived from a similar potential in 1971 by Yury N Demkov and Valentin N Ostrovsky 206 r nbsp Periodic table of Alfred Werner 1905 the first appearance of the long form 20 The quantum theory clarified the transition metals and lanthanides as forming their own separate groups transitional between the main groups although some chemists had already proposed tables showing them this way before then the English chemist Henry Bassett did so in 1892 the Danish chemist Julius Thomsen in 1895 and the Swiss chemist Alfred Werner in 1905 Bohr used Thomsen s form in his 1922 Nobel Lecture Werner s form is very similar to the modern 32 column form In particular this supplanted Brauner s asteroidal hypothesis 20 The exact position of the lanthanides and thus the composition of group 3 remained under dispute for decades longer because their electron configurations were initially measured incorrectly 11 86 On chemical grounds Bassett Werner and Bury grouped scandium and yttrium with lutetium rather than lanthanum the former two left an empty space below yttrium as lutetium had not yet been discovered 20 199 Hund assumed in 1927 that all the lanthanide atoms had configuration Xe 4f0 145d16s2 on account of their prevailing trivalency it is now known that the relationship between chemistry and electron configuration is more complicated than that 207 Early spectroscopic evidence seemed to confirm this and thus the periodic table was structured to have group 3 as scandium yttrium lanthanum and actinium with fourteen f elements breaking up the d block between lanthanum and hafnium 11 But it was later discovered that this is only true for four of the fifteen lanthanides lanthanum cerium gadolinium and lutetium and that the other lanthanide atoms do not have a d electron In particular ytterbium completes the 4f shell and thus Soviet physicists Lev Landau and Evgeny Lifshitz noted in 1948 that lutetium is correctly regarded as a d block rather than an f block element 12 that bulk lanthanum is an f metal was first suggested by Jun Kondō in 1963 on the grounds of its low temperature superconductivity 92 This clarified the importance of looking at low lying excited states of atoms that can play a role in chemical environments when classifying elements by block and positioning them on the table 58 59 11 Many authors subsequently rediscovered this correction based on physical chemical and electronic concerns and applied it to all the relevant elements thus making group 3 contain scandium yttrium lutetium and lawrencium 58 9 86 and having lanthanum through ytterbium and actinium through nobelium as the f block rows 58 9 this corrected version achieves consistency with the Madelung rule and vindicates Bassett Werner and Bury s initial chemical placement 20 In 1988 IUPAC released a report supporting this composition of group 3 9 a decision that was reaffirmed in 2021 10 Variation can still be found in textbooks on the composition of group 3 22 and some argumentation against this format is still published today 13 but chemists and physicists who have considered the matter largely agree on group 3 containing scandium yttrium lutetium and lawrencium and challenge the counterarguments as being inconsistent 13 Synthetic elements nbsp Glenn T SeaborgBy 1936 the pool of missing elements from hydrogen to uranium had shrunk to four elements 43 61 85 and 87 remained missing Element 43 eventually became the first element to be synthesised artificially via nuclear reactions rather than discovered in nature It was discovered in 1937 by Italian chemists Emilio Segre and Carlo Perrier who named their discovery technetium after the Greek word for artificial 208 Elements 61 promethium and 85 astatine were likewise produced artificially in 1945 and 1940 respectively element 87 francium became the last element to be discovered in nature by French chemist Marguerite Perey in 1939 209 s The elements beyond uranium were likewise discovered artificially starting with Edwin McMillan and Philip Abelson s 1940 discovery of neptunium via bombardment of uranium with neutrons 69 Glenn T Seaborg and his team at the Lawrence Berkeley National Laboratory LBNL continued discovering transuranium elements starting with plutonium in 1941 and discovered that contrary to previous thinking the elements from actinium onwards were congeners of the lanthanides rather than transition metals 210 Bassett 1892 Werner 1905 and the French engineer Charles Janet 1928 had previously suggested this but their ideas did not then receive general acceptance 20 Seaborg thus called them the actinides 210 Elements up to 101 named mendelevium in honour of Mendeleev were synthesised up to 1955 either through neutron or alpha particle irradiation or in nuclear explosions in the cases of 99 einsteinium and 100 fermium 69 A significant controversy arose with elements 102 through 106 in the 1960s and 1970s as competition arose between the LBNL team now led by Albert Ghiorso and a team of Soviet scientists at the Joint Institute for Nuclear Research JINR led by Georgy Flyorov Each team claimed discovery and in some cases each proposed their own name for the element creating an element naming controversy that lasted decades These elements were made by bombardment of actinides with light ions 211 IUPAC at first adopted a hands off approach preferring to wait and see if a consensus would be forthcoming But as it was also the height of the Cold War it became clear that this would not happen As such IUPAC and the International Union of Pure and Applied Physics IUPAP created a Transfermium Working Group TWG fermium being element 100 in 1985 to set out criteria for discovery 212 which were published in 1991 213 After some further controversy these elements received their final names in 1997 including seaborgium 106 in honour of Seaborg 214 The TWG s criteria were used to arbitrate later element discovery claims from LBNL and JINR as well as from research institutes in Germany GSI and Japan Riken 215 Currently consideration of discovery claims is performed by a IUPAC IUPAP Joint Working Party After priority was assigned the elements were officially added to the periodic table and the discoverers were invited to propose their names 19 By 2016 this had occurred for all elements up to 118 therefore completing the periodic table s first seven rows 19 216 The discoveries of elements beyond 106 were made possible by techniques devised by Yuri Oganessian at the JINR cold fusion bombardment of lead and bismuth by heavy ions made possible the 1981 2004 discoveries of elements 107 through 112 at GSI and 113 at Riken and he led the JINR team in collaboration with American scientists to discover elements 114 through 118 using hot fusion bombardment of actinides by calcium ions in 1998 2010 217 218 The heaviest known element oganesson 118 is named in Oganessian s honour Element 114 is named flerovium in honour of his predecessor and mentor Flyorov 218 In celebration of the periodic table s 150th anniversary the United Nations declared the year 2019 as the International Year of the Periodic Table celebrating one of the most significant achievements in science 219 The discovery criteria set down by the TWG were updated in 2020 in response to experimental and theoretical progress that had not been foreseen in 1991 220 Today the periodic table is among the most recognisable icons of chemistry 75 IUPAC is involved today with many processes relating to the periodic table the recognition and naming of new elements recommending group numbers and collective names and the updating of atomic weights 19 Future extension beyond the seventh periodMain article Extended periodic table See also Island of stability The most recently named elements nihonium 113 moscovium 115 tennessine 117 and oganesson 118 completed the seventh row of the periodic table 19 Future elements would have to begin an eighth row These elements may be referred to either by their atomic numbers e g element 119 or by the IUPAC systematic element names adopted in 1978 which directly relate to the atomic numbers e g ununennium for element 119 derived from Latin unus one Greek ennea nine and the traditional ium suffix for metallic elements 19 All attempts to synthesise such elements have failed so far An attempt to make element 119 has been ongoing since 2018 at the Riken research institute in Japan The Joint Institute for Nuclear Research in Russia also plans to make its own attempts at synthesising the first few period 8 elements 221 222 223 If the eighth period follows the pattern set by the earlier periods then it would contain fifty elements filling the 8s 5g 6f 7d and finally 8p subshells in that order But there is present discussion regarding whether this would truly be the case as calculations predict that by this point relativistic effects should result in significant deviations from the Madelung rule Various different models have been suggested All agree that the eighth period should begin like the previous ones with two 8s elements and that there should then follow a new series of g block elements filling up the 5g orbitals but the precise configurations calculated for these 5g elements vary widely between sources Beyond this 5g series calculations do not agree on what exactly should follow Filling of the 5g 6f 7d and 8p shells is indeed expected to occur in approximately that order but they are likely to be intermingled with each other and with the 9s and 9p subshells so that it is not clear which elements should go in which groups anymore 224 225 226 55 227 Eric Scerri has raised the question of whether an extended periodic table should take into account the failure of the Madelung rule in this region or if such exceptions should be ignored 227 The shell structure may also be fairly formal at this point already the electron distribution in an oganesson atom is expected to be rather uniform with no discernible shell structure 228 Nuclear stability will likely prove a decisive factor constraining the number of possible elements t It depends on the balance between the electric repulsion between protons and the strong force binding protons and neutrons together 231 Protons and neutrons are arranged in shells just like electrons and so a closed shell can significantly increase stability the known superheavy nuclei exist because of such a shell closure They are probably close to a predicted island of stability where superheavy nuclides should have significantly longer half lives predictions range from minutes or days to millions or billions of years 232 233 However as the number of protons increases beyond about 126 this stabilising effect should vanish as a closed shell is passed It is not clear if any further out shell closures exist due to an expected smearing out of distinct nuclear shells as is already expected for the electron shells at oganesson 234 Furthermore even if later shell closures exist it is not clear if they would allow such heavy elements to exist 235 236 237 153 As such it may be that the periodic table practically ends around element 120 as elements become too short lived to observe the era of discovering new elements would thus be close to its end 153 238 Alternatively quark matter may become stable at high mass numbers in which the nucleus is composed of freely flowing up and down quarks instead of binding them into protons and neutrons this would create a continent of stability instead of an island 239 240 Other effects may come into play for example in very heavy elements the 1s electrons are likely to spend a significant amount of time so close to the nucleus that they are actually inside it which would make them vulnerable to electron capture 241 Even if eighth row elements can exist producing them is likely to be difficult and it should become even more difficult as atomic number rises 242 Although the 8s elements are expected to be reachable with present means the first few 5g elements are expected to require new technology 243 if they can be produced at all 244 Experimentally characterising these elements chemically would also pose a great challenge 221 Alternative periodic tablesMain article Types of periodic tables nbsp Otto Theodor Benfey s spiral periodic table 1964 The periodic law may be represented in multiple ways of which the standard periodic table is only one 245 Within 100 years of the appearance of Mendeleev s table in 1869 Edward G Mazurs had collected an estimated 700 different published versions of the periodic table 155 246 Many forms retain the rectangular structure including Charles Janet s left step periodic table pictured below and the modernised form of Mendeleev s original 8 column layout that is still common in Russia Other periodic table formats have been shaped much more exotically such as spirals Otto Theodor Benfey s pictured to the right circles and triangles 247 Alternative periodic tables are often developed to highlight or emphasize chemical or physical properties of the elements that are not as apparent in traditional periodic tables with different ones skewed more towards emphasizing chemistry or physics at either end 248 The standard form which remains by far the most common is somewhere in the middle 248 The many different forms of the periodic table have prompted the questions of whether there is an optimal or definitive form of the periodic table and if so what it might be There are no current consensus answers to either question 249 248 Janet s left step table is being increasingly discussed as a candidate for being the optimal or most fundamental form Scerri has written in support of it as it clarifies helium s nature as an s block element increases regularity by having all period lengths repeated faithfully follows Madelung s rule by making each period correspond to one value of n ℓ and regularises atomic number triads and the first row anomaly trend While he notes that its placement of helium atop the alkaline earth metals can be seen a disadvantage from a chemical perspective he counters this by appealing to the first row anomaly pointing out that the periodic table fundamentally reduces to quantum mechanics and that it is concerned with abstract elements and hence atomic properties rather than macroscopic properties 250 vteLeft step periodic table by Charles Janet f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 p1 p2 p3 p4 p5 p6 s1 s21s H He2s Li Be2p 3s B C N O F Ne Na Mg3p 4s Al Si P S Cl Ar K Ca3d 4p 5s Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr4d 5p 6s Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba4f 5d 6p 7s La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra5f 6d 7p 8s Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og Uue Ubnf block d block p block s block This form of periodic table is congruent with the order in which electron shells are ideally filled according to the Madelung rule as shown in the accompanying sequence in the left margin read from top to bottom left to right The experimentally determined ground state electron configurations of the elements differ from the configurations predicted by the Madelung rule in twenty instances but the Madelung predicted configurations are always at least close to the ground state The last two elements shown elements 119 and 120 have not yet been synthesized See alsoNucleosynthesisNotes See for example the periodic table poster sold by Sigma Aldrich The question of how many natural elements there are is quite complicated and is not fully resolved In the early Solar System shorter lived elements had not yet decayed away and consequently there were more than 94 naturally occurring elements Curium element 96 is the longest lived element beyond the first 94 and is probably still being brought to Earth via cosmic rays but it has not been found 28 Elements up to 99 einsteinium have been observed in Przybylski s Star 29 Elements up to 100 fermium probably occurred in the natural nuclear fission reactor at Oklo Mine Gabon but they have long since decayed away 6 Even heavier elements may be produced in the r process via supernovae or neutron star mergers but this has not been confirmed It is not clear how far they would extend past 100 and how long they would last calculations suggest that nuclides of mass number around 280 to 290 are formed in the r process but quickly beta decay to nuclides that suffer spontaneous fission so that 99 9 of the produced superheavy nuclides would decay within a month 30 If instead they were sufficiently long lived they might similarly be brought to Earth via cosmic rays but again none have been found 28 The half life of plutonium s most stable isotope is just long enough that it should also be a primordial element A 1971 study claimed to have detected primordial plutonium 32 but a more recent study from 2012 could not detect it 33 Tiny traces of plutonium are also continually brought to Earth via cosmic rays 34 Strictly speaking one cannot draw an orbital such that the electron is guaranteed to be inside it but it can be drawn to guarantee a 90 probability of this for example 40 Once two to four electrons are removed the d and f orbitals usually become lower in energy than the s ones 51 1s 2s lt 2p 3s lt 3p 3d lt 4s lt 4p 4d lt 5s lt 5p 4f lt 5d lt 6s lt 6p 5f lt 6d lt 7s lt 7p and in the limit for extremely highly charged ions orbitals simply fill in the order of increasing n instead There is a gradual transition between the limiting situations of highly charged ions increasing n and neutral atoms Madelung s rule 44 Also the ordering of the orbitals between each changes somewhat throughout each period For example the ordering in argon and potassium is 3p 4s lt 4p 3d by calcium it has become 3p 4s lt 3d lt 4p from scandium to copper it is 3p 3d lt 4s lt 4p and from zinc to krypton it is 3p lt 3d 4s lt 4p 50 as the d orbitals fall into the core at gallium 52 53 In fact electron configurations represent a first order approximation an atom really exists in a superposition of multiple configurations and electrons in an atom are indistinguishable 14 The elements in the d and f blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment 51 In some of the undiscovered g block elements it is predicted that mixing of configurations should become so important that the result can no longer be well described by a single configuration 55 Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated but they are all expected to be too unstable to observe 65 Properties of the p block elements nevertheless do affect the succeeding s block elements The 3s shell in sodium is above a kainosymmetric 2p core but the 4s shell in potassium is above the much larger 3p core Hence while one would have already expected potassium atoms to be larger than sodium atoms the size difference is greater than usual 90 There are many lower oxides as well for example phosphorus in group 15 forms two oxides P2O3 and P2O5 99 The normally forbidden intermediate oxidation states may be stabilised by forming dimers as in Cl3Ga GaCl3 2 gallium in the 2 oxidation state or S2F10 sulfur in the 5 oxidation state 119 The boundary between dispersion forces and metallic bonding is gradual like that between ionic and covalent bonding Characteristic metallic properties do not appear in small mercury clusters but do appear in large ones 128 All this describes the situation at standard pressure Under sufficiently high pressure the band gaps of any solid drop to zero and metallisation occurs Thus for example at about 170 kbar iodine becomes a metal 129 and metallic hydrogen should form at pressures of about four million atmospheres 130 Descriptions of the structures formed by the elements can be found throughout Greenwood and Earnshaw There are two borderline cases Arsenic s most stable form conducts electricity like a metal but the bonding is significantly more localised to the nearest neighbours than it is for the similar structures of antimony and bismuth 133 Carbon as graphite shows metallic conduction parallel to its planes but is a semiconductor perpendicular to them Some computations predict copernicium and flerovium to be nonmetallic 134 135 but the most recent experiments on them suggest that they are metallic 136 137 138 Astatine is calculated to metallise at standard conditions 139 so presumably tennessine should as well 140 See melting points of the elements data page The same is probably true of francium but due to its extreme instability this has never been experimentally confirmed Copernicium and flerovium are expected to be liquids 134 135 similar to mercury and experimental evidence suggests that they are metals 136 137 138 See lists of metalloids For example a periodic table used by the American Chemical Society includes polonium as a metalloid 151 but one used by the Royal Society of Chemistry does not 152 and that included in the Encyclopaedia Britannica does not refer to metalloids or semi metals at all 153 Classification can change even within a single work For example Sherwin and Weston s Chemistry of the Non Metallic Elements 1966 has a periodic table on p 7 classifying antimony as a nonmetal but on p 115 it is called a metal 154 See post transition metal Demkov and Ostrovsky consider the potential U 1 2 r 2 v r R r R 2 displaystyle U 1 2 r frac 2v rR r R 2 nbsp where R displaystyle R nbsp and v displaystyle v nbsp are constant parameters this approaches a Coulomb potential for small r displaystyle r nbsp When v displaystyle v nbsp satisfies the condition v v N 1 4 R 2 N N 1 displaystyle v v N frac 1 4 R 2 N N 1 nbsp where N n l displaystyle N n l nbsp the zero energy solutions to the Schrodinger equation for this potential can be described analytically with Gegenbauer polynomials As v displaystyle v nbsp passes through each of these values a manifold containing all states with that value of N displaystyle N nbsp arises at zero energy and then becomes bound recovering the Madelung order Perturbation theory considerations show that states with smaller n displaystyle n nbsp have lower energy and that the s orbitals with l 0 displaystyle l 0 nbsp have their energies approaching the next n l displaystyle n l nbsp group 206 84 Technetium promethium astatine neptunium and plutonium were eventually discovered to occur in nature as well albeit in tiny traces See timeline of chemical element discoveries A simplistic interpretation of the relativistic Dirac equation runs into problems with electron orbitals at Z gt 1 a 137 this would suggest that neutral atoms cannot exist beyond element 137 and that a periodic table of elements based on electron orbitals therefore breaks down at this point 229 However this argument presumes that the atomic nucleus is pointlike A more accurate calculation must take into account the small but nonzero size of the nucleus which pushes the limit to Z 173 Moreover it turns out that the prohibition is not against neutral atoms but against bare nuclei atoms with over 173 protons cannot be totally ionised because their 1s shell would be filled by spontaneous electron positron pair production but encounter no difficulties if their 1s shell is already filled 230 References Meija Juris et al 2016 Atomic weights of the elements 2013 IUPAC Technical Report Pure and Applied Chemistry 88 3 265 91 doi 10 1515 pac 2015 0305 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline et al 4 May 2022 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 An element zero i e a substance composed purely of neutrons is included in a few alternate presentations for example in the Chemical Galaxy See Labarca M 2016 An element of atomic number zero New Journal of Chemistry 40 11 9002 06 doi 10 1039 C6NJ02076C Greenwood amp Earnshaw pp 24 27 Gray p 6 a b Emsley John 2011 Nature s Building Blocks An A Z guide to the elements New ed New York NY Oxford University Press ISBN 978 0 19 960563 7 Silva Robert J 2006 Fermium Mendelevium Nobelium and Lawrencium In Morss L R Edelstein N M Fuger J eds The Chemistry of the Actinide and Transactinide Elements 3rd ed Dordrecht Springer Science Business Media ISBN 978 1 4020 3555 5 a b c d e f g h Connelly N G Damhus T Hartshorn R M Hutton A T 2005 Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005 PDF RSC Publishing p 51 ISBN 978 0 85404 438 2 Archived PDF from the original on 23 November 2018 Retrieved 26 November 2018 a b c d e f g h i Fluck E 1988 New Notations in the Periodic Table PDF Pure Appl Chem 60 3 431 436 doi 10 1351 pac198860030431 S2CID 96704008 Archived PDF, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.