fbpx
Wikipedia

Neutron activation

Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays, or particles such as beta particles, alpha particles, fission products, and neutrons (in nuclear fission). Thus, the process of neutron capture, even after any intermediate decay, often results in the formation of an unstable activation product. Such radioactive nuclei can exhibit half-lives ranging from small fractions of a second to many years.

Neutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive. All naturally occurring materials, including air, water, and soil, can be induced (activated) by neutron capture into some amount of radioactivity in varying degrees, as a result of the production of neutron-rich radioisotopes.[citation needed] Some atoms require more than one neutron to become unstable, which makes them harder to activate because the probability of a double or triple capture by a nucleus is below that of single capture. Water, for example, is made up of hydrogen and oxygen. Hydrogen requires a double capture to attain instability as tritium (hydrogen-3), while natural oxygen (oxygen-16) requires three captures to become unstable oxygen-19. Thus water is relatively difficult to activate, as compared to sodium chloride (NaCl), in which both the sodium and chlorine atoms become unstable with a single capture each. These facts were experienced first-hand at the Operation Crossroads atomic test series in 1946.

Examples

An example of this kind of a nuclear reaction occurs in the production of cobalt-60 within a nuclear reactor: The cobalt-60 then decays by the emission of a beta particle plus gamma rays into nickel-60. This reaction has a half-life of about 5.27 years, and due to the availability of cobalt-59 (100% of its natural abundance), this neutron bombarded isotope of cobalt is a valuable source of nuclear radiation (namely gamma radiation) for radiotherapy.[1]

59
27
Co
+ 1
0
n
60
27
Co

In other cases, and depending on the kinetic energy of the neutron, the capture of a neutron can cause nuclear fission—the splitting of the atomic nucleus into two smaller nuclei. If the fission requires an input of energy, that comes from the kinetic energy of the neutron. An example of this kind of fission in a light element can occur when the stable isotope of lithium, lithium-7, is bombarded with fast neutrons and undergoes the following nuclear reaction:

7
3
Li
+ 1
0
n
4
2
He
+ 3
1
H
+ 1
0
n
+ gamma rays + kinetic energy

In other words, the capture of a neutron by lithium-7 causes it to split into an energetic helium nucleus (alpha particle), a hydrogen-3 (tritium) nucleus and a free neutron. The Castle Bravo accident, in which the thermonuclear bomb test at Bikini Atoll in 1954 exploded with 2.5 times the expected yield, was caused by the unexpectedly high probability of this reaction.

In the areas around a pressurized water reactors or boiling water reactors during normal operation, a significant amount of radiation is produced due to the fast neutron activation of coolant water oxygen via a (n,p) reaction. The activated oxygen-16 nucleus emits a proton (hydrogen nucleus), and transmutes to nitrogen-16, which has a very short life (7.13 seconds) before decaying back to oxygen-16 (emitting 6.13 MeV beta particles).[2]

16
8
O
+ 1
0
n
1
1
p
+ 16
7
N
(Decays rapidly)
16
7
N

γ
+ 0
-1
e-
+ 16
8
O

This activation of the coolant water requires extra biological shielding around the nuclear reactor plant. It is the high energy gamma ray in the second reaction that causes the major concern. This is why water that has recently been inside a nuclear reactor core must be shielded until this radiation subsides. One to two minutes is generally sufficient.

In facilities that housed a cyclotron, the reinforced concrete foundation can become radioactive due to neutron activation. Six important long-lived radioactive isotopes (54Mn, 55Fe, 60Co, 65Zn, 133Ba, and 152Eu) can be found within concrete nuclei affected by neutrons.[3] The residual radioactivity is predominantly due to trace elements present, and thus the amount of radioactivity derived from cyclotron activation is minuscule, i.e., pCi/g or Bq/g. The release limit for facilities with residual radioactivity is 25 mrem/year.[4] An example of 55Fe production from iron rebar activation is shown below:

54
26
Fe
+ 1
0
n
55
26
Fe

Occurrence

Neutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive. Neutrons are only free in quantity in the microseconds of a nuclear weapon's explosion, in an active nuclear reactor, or in a spallation neutron source.

In an atomic weapon neutrons are only generated for from 1 to 50 microseconds, but in huge numbers. Most are absorbed by the metallic bomb casing, which is only just starting to be affected by the explosion within it. The neutron activation of the soon-to-be vaporized metal is responsible for a significant portion of the nuclear fallout in nuclear bursts high in the atmosphere. In other types of activation, neutrons may irradiate soil that is dispersed in a mushroom cloud at or near the Earth's surface, resulting in fallout from activation of soil chemical elements.

Effects on materials over time

In any location with high neutron fluxes, such as within the cores of nuclear reactors, neutron activation contributes to material erosion; periodically the lining materials themselves must be disposed of, as low-level radioactive waste. Some materials are more subject to neutron activation than others, so a suitably chosen low-activation material can significantly reduce this problem (see International Fusion Materials Irradiation Facility). For example, Chromium-51 will form by neutron activation in chrome steel (which contains Cr-50) that is exposed to a typical reactor neutron flux.[5]

Carbon-14, most frequently but not solely, generated by the neutron activation of atmospheric nitrogen-14 with a thermal neutron, is (together with its dominant natural production pathway from cosmic ray-air interactions and historical production from atmospheric nuclear testing) also generated in comparatively minute amounts inside many designs of nuclear reactors which contain nitrogen gas impurities in their fuel cladding, coolant water and by neutron activation of the oxygen contained in the water itself. Fast breeder reactors (FBR) produce about an order of magnitude less C-14 than the most common reactor type, the pressurized water reactor, as FBRs do not use water as a primary coolant.[6]

Uses

Radiation safety

For physicians and radiation safety officers, activation of sodium in the human body to sodium-24, and phosphorus to phosphorus-32, can give a good immediate estimate of acute accidental neutron exposure.[7]

Neutron detection

One way to demonstrate that nuclear fusion has occurred inside a fusor device is to use a Geiger counter to measure the gamma ray radioactivity that is produced from a sheet of aluminium foil.

In the ICF fusion approach, the fusion yield of the experiment (directly proportional to neutron production) is usually determined by measuring the gamma-ray emissions of aluminium or copper neutron activation targets.[8] Aluminium can capture a neutron and generate radioactive sodium-24, which has a half life of 15 hours[9][10] and a beta decay energy of 5.514 MeV.[11]

The activation of a number of test target elements such as sulfur, copper, tantalum, and gold have been used to determine the yield of both pure fission[12][13] and thermonuclear weapons.[14]

Materials analysis

Neutron activation analysis is one of the most sensitive and precise methods of trace element analysis. It requires no sample preparation or solubilization and can therefore be applied to objects that need to be kept intact such as a valuable piece of art. Although the activation induces radioactivity in the object, its level is typically low and its lifetime may be short, so that its effects soon disappear. In this sense, neutron activation is a non-destructive analysis method.

Neutron activation analysis can be done in situ. For example, aluminium (Al-27) can be activated by capturing relatively low-energy neutrons to produce the isotope Al-28, which decays with a half-life of 2.3 minutes with a decay energy of 4.642 MeV.[15] This activated isotope is used in oil drilling to determine the clay content (clay is generally an alumino-silicate) of the underground area under exploration.[16]

Historians can use accidental neutron activation to authenticate atomic artifacts and materials subjected to neutron fluxes from fission incidents. For example, one of the fairly unique isotopes found in trinitite, and therefore with its absence likely signifying a fake sample of the mineral, is a barium neutron activation product, the barium in the Trinity device coming from the slow explosive lens employed in the device, known as Baratol.[17]

Semiconductor production

Neutron irradiation may be used for float-zone silicon slices (wafers) to trigger fractional transmutation of Si atoms into phosphorus (P) and therefore doping it into n-type silicon [18]: 366 

 

See also

References

  1. ^ Manual for reactor produced radioisotopes from the International Atomic Energy Agency
  2. ^ Neeb, Karl Heinz (1997). The Radiochemistry of Nuclear Power Plants with Light Water Reactors. Berlin-New York: Walter de Gruyter. p. 227. ISBN 3-11-013242-7.
  3. ^ Vichi, Sara (2016). "Efficiency calibration of a portable CZT detector for". Radiation Effects and Defects in Solids. 171: 705–713. doi:10.1080/10420150.2016.1244675. S2CID 99556734.
  4. ^ Nuclear Regulatory Commission 10 CFR 20.1402. "Standards for Protection Against Radiation".
  5. ^ . Archived from the original on 2014-03-05. Retrieved 2014-03-05.
  6. ^ "IAEA Technical report series no.421, Management of Waste Containing Tritium and Carbon-14" (PDF).
  7. ^ ORNL Report 2013-10-01 at the Wayback Machine on determination of dose from criticality accidents
  8. ^ Stephen Padalino; Heather Oliver & Joel Nyquist. "DT neutron yield measurements using neutron activation of aluminum". LLE Collaborators: Vladimir Smalyukand, Nancy Rogers.
  9. ^ "4 Identified radioactive isotopes". Aanda.org. 1998-03-02. Retrieved 2019-11-14.
  10. ^ . November 29, 2014 . Archived from the original on 2014-11-29. {{cite web}}: Missing or empty |title= (help)
  11. ^ [1] 2006-07-05 at the Wayback Machine
  12. ^ Kerr, George D.; Young, Robert W.; Cullings, Harry M.; Christy, Robert F. (2005). (PDF). In Robert W. Young, George D. Kerr (ed.). Reassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki – Dosimetry System 2002. The Radiation Effects Research Foundation. pp. 42–43. Archived from the original (PDF) on 2015-08-10. Retrieved 2014-03-13.
  13. ^ Malik, John (September 1985). "The Yields of the Hiroshima and Nagasaki Explosions" (PDF). Los Alamos National Laboratory. Retrieved March 9, 2014.
  14. ^ US Army (1952). Operation Ivy Final Report Joint Task Force 132 (PDF). (PDF) from the original on March 11, 2014.
  15. ^ [2] 2006-07-05 at the Wayback Machine
  16. ^ "Search Results - Schlumberger Oilfield Glossary". www.glossary.oilfield.slb.com.
  17. ^ Parekh, PP; Semkow, TM; Torres, MA; Haines, DK; Cooper, JM; Rosenberga, PM; Kittoa, ME (2006). "Radioactivity in Trinitite six decades later" (PDF). Journal of Environmental Radioactivity. 85 (1): 103–120. CiteSeerX 10.1.1.494.5179. doi:10.1016/j.jenvrad.2005.01.017. PMID 16102878.
  18. ^ Sze, S. M. (2012). Semiconductor devices : physics and technology. M. K. Lee (3 ed.). New York, NY: Wiley. ISBN 978-0-470-53794-7. OCLC 869833419.

External links

  • Handbook on Nuclear Activation Cross-Sections, IAEA, 1974
  • Decay Data in MIRD Format from the National Nuclear Data Center at Brookhaven National Laboratory
  • The chart of the Nuclides
  • Discovery of the Chromium isotopes, Chromium-55 by Cr-54 neutron capture
  • ORILL : 1D transmutation, fuel depletion, and radiological protection code

Further reading

  • US Army (1952). Operation Ivy Final Report Joint Task Force 132 (PDF). (PDF) from the original on March 11, 2014.

neutron, activation, process, which, neutron, radiation, induces, radioactivity, materials, occurs, when, atomic, nuclei, capture, free, neutrons, becoming, heavier, entering, excited, states, excited, nucleus, decays, immediately, emitting, gamma, rays, parti. Neutron activation is the process in which neutron radiation induces radioactivity in materials and occurs when atomic nuclei capture free neutrons becoming heavier and entering excited states The excited nucleus decays immediately by emitting gamma rays or particles such as beta particles alpha particles fission products and neutrons in nuclear fission Thus the process of neutron capture even after any intermediate decay often results in the formation of an unstable activation product Such radioactive nuclei can exhibit half lives ranging from small fractions of a second to many years Neutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive All naturally occurring materials including air water and soil can be induced activated by neutron capture into some amount of radioactivity in varying degrees as a result of the production of neutron rich radioisotopes citation needed Some atoms require more than one neutron to become unstable which makes them harder to activate because the probability of a double or triple capture by a nucleus is below that of single capture Water for example is made up of hydrogen and oxygen Hydrogen requires a double capture to attain instability as tritium hydrogen 3 while natural oxygen oxygen 16 requires three captures to become unstable oxygen 19 Thus water is relatively difficult to activate as compared to sodium chloride NaCl in which both the sodium and chlorine atoms become unstable with a single capture each These facts were experienced first hand at the Operation Crossroads atomic test series in 1946 Contents 1 Examples 2 Occurrence 3 Effects on materials over time 4 Uses 4 1 Radiation safety 4 1 1 Neutron detection 4 1 2 Materials analysis 4 2 Semiconductor production 5 See also 6 References 7 External links 8 Further readingExamples EditMain article Neutron capture An example of this kind of a nuclear reaction occurs in the production of cobalt 60 within a nuclear reactor The cobalt 60 then decays by the emission of a beta particle plus gamma rays into nickel 60 This reaction has a half life of about 5 27 years and due to the availability of cobalt 59 100 of its natural abundance this neutron bombarded isotope of cobalt is a valuable source of nuclear radiation namely gamma radiation for radiotherapy 1 5927 Co 10 n 6027 CoIn other cases and depending on the kinetic energy of the neutron the capture of a neutron can cause nuclear fission the splitting of the atomic nucleus into two smaller nuclei If the fission requires an input of energy that comes from the kinetic energy of the neutron An example of this kind of fission in a light element can occur when the stable isotope of lithium lithium 7 is bombarded with fast neutrons and undergoes the following nuclear reaction 73 Li 10 n 42 He 31 H 10 n gamma rays kinetic energyIn other words the capture of a neutron by lithium 7 causes it to split into an energetic helium nucleus alpha particle a hydrogen 3 tritium nucleus and a free neutron The Castle Bravo accident in which the thermonuclear bomb test at Bikini Atoll in 1954 exploded with 2 5 times the expected yield was caused by the unexpectedly high probability of this reaction In the areas around a pressurized water reactors or boiling water reactors during normal operation a significant amount of radiation is produced due to the fast neutron activation of coolant water oxygen via a n p reaction The activated oxygen 16 nucleus emits a proton hydrogen nucleus and transmutes to nitrogen 16 which has a very short life 7 13 seconds before decaying back to oxygen 16 emitting 6 13 MeV beta particles 2 168 O 10 n 11 p 167 N Decays rapidly 167 N g 0 1 e 168 OThis activation of the coolant water requires extra biological shielding around the nuclear reactor plant It is the high energy gamma ray in the second reaction that causes the major concern This is why water that has recently been inside a nuclear reactor core must be shielded until this radiation subsides One to two minutes is generally sufficient In facilities that housed a cyclotron the reinforced concrete foundation can become radioactive due to neutron activation Six important long lived radioactive isotopes 54Mn 55Fe 60Co 65Zn 133Ba and 152Eu can be found within concrete nuclei affected by neutrons 3 The residual radioactivity is predominantly due to trace elements present and thus the amount of radioactivity derived from cyclotron activation is minuscule i e pCi g or Bq g The release limit for facilities with residual radioactivity is 25 mrem year 4 An example of 55Fe production from iron rebar activation is shown below 5426 Fe 10 n 5526 FeOccurrence EditNeutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive Neutrons are only free in quantity in the microseconds of a nuclear weapon s explosion in an active nuclear reactor or in a spallation neutron source In an atomic weapon neutrons are only generated for from 1 to 50 microseconds but in huge numbers Most are absorbed by the metallic bomb casing which is only just starting to be affected by the explosion within it The neutron activation of the soon to be vaporized metal is responsible for a significant portion of the nuclear fallout in nuclear bursts high in the atmosphere In other types of activation neutrons may irradiate soil that is dispersed in a mushroom cloud at or near the Earth s surface resulting in fallout from activation of soil chemical elements Effects on materials over time EditIn any location with high neutron fluxes such as within the cores of nuclear reactors neutron activation contributes to material erosion periodically the lining materials themselves must be disposed of as low level radioactive waste Some materials are more subject to neutron activation than others so a suitably chosen low activation material can significantly reduce this problem see International Fusion Materials Irradiation Facility For example Chromium 51 will form by neutron activation in chrome steel which contains Cr 50 that is exposed to a typical reactor neutron flux 5 Carbon 14 most frequently but not solely generated by the neutron activation of atmospheric nitrogen 14 with a thermal neutron is together with its dominant natural production pathway from cosmic ray air interactions and historical production from atmospheric nuclear testing also generated in comparatively minute amounts inside many designs of nuclear reactors which contain nitrogen gas impurities in their fuel cladding coolant water and by neutron activation of the oxygen contained in the water itself Fast breeder reactors FBR produce about an order of magnitude less C 14 than the most common reactor type the pressurized water reactor as FBRs do not use water as a primary coolant 6 Uses EditRadiation safety Edit For physicians and radiation safety officers activation of sodium in the human body to sodium 24 and phosphorus to phosphorus 32 can give a good immediate estimate of acute accidental neutron exposure 7 Neutron detection Edit One way to demonstrate that nuclear fusion has occurred inside a fusor device is to use a Geiger counter to measure the gamma ray radioactivity that is produced from a sheet of aluminium foil In the ICF fusion approach the fusion yield of the experiment directly proportional to neutron production is usually determined by measuring the gamma ray emissions of aluminium or copper neutron activation targets 8 Aluminium can capture a neutron and generate radioactive sodium 24 which has a half life of 15 hours 9 10 and a beta decay energy of 5 514 MeV 11 The activation of a number of test target elements such as sulfur copper tantalum and gold have been used to determine the yield of both pure fission 12 13 and thermonuclear weapons 14 Materials analysis Edit Main article Neutron activation analysis Neutron activation analysis is one of the most sensitive and precise methods of trace element analysis It requires no sample preparation or solubilization and can therefore be applied to objects that need to be kept intact such as a valuable piece of art Although the activation induces radioactivity in the object its level is typically low and its lifetime may be short so that its effects soon disappear In this sense neutron activation is a non destructive analysis method Neutron activation analysis can be done in situ For example aluminium Al 27 can be activated by capturing relatively low energy neutrons to produce the isotope Al 28 which decays with a half life of 2 3 minutes with a decay energy of 4 642 MeV 15 This activated isotope is used in oil drilling to determine the clay content clay is generally an alumino silicate of the underground area under exploration 16 Historians can use accidental neutron activation to authenticate atomic artifacts and materials subjected to neutron fluxes from fission incidents For example one of the fairly unique isotopes found in trinitite and therefore with its absence likely signifying a fake sample of the mineral is a barium neutron activation product the barium in the Trinity device coming from the slow explosive lens employed in the device known as Baratol 17 Semiconductor production Edit Neutron irradiation may be used for float zone silicon slices wafers to trigger fractional transmutation of Si atoms into phosphorus P and therefore doping it into n type silicon 18 366 Si 14 30 n e u t r o n Si 14 31 g r a y 2 62 h r P 15 31 b r a y displaystyle ce 14 30 Si neutron xrightarrow ce 14 31 Si gamma ray xrightarrow 2 62hr ce 15 31 P beta ray See also EditInduced radioactivity Neutron activation analysis Phosphorus 32 produced when sulfur captures a neutron Salted bomb Table of nuclidesReferences Edit Manual for reactor produced radioisotopes from the International Atomic Energy Agency Neeb Karl Heinz 1997 The Radiochemistry of Nuclear Power Plants with Light Water Reactors Berlin New York Walter de Gruyter p 227 ISBN 3 11 013242 7 Vichi Sara 2016 Efficiency calibration of a portable CZT detector for Radiation Effects and Defects in Solids 171 705 713 doi 10 1080 10420150 2016 1244675 S2CID 99556734 Nuclear Regulatory Commission 10 CFR 20 1402 Standards for Protection Against Radiation Table of Isotopes decay data Archived from the original on 2014 03 05 Retrieved 2014 03 05 IAEA Technical report series no 421 Management of Waste Containing Tritium and Carbon 14 PDF ORNL Report Archived 2013 10 01 at the Wayback Machine on determination of dose from criticality accidents Stephen Padalino Heather Oliver amp Joel Nyquist DT neutron yield measurements using neutron activation of aluminum LLE Collaborators Vladimir Smalyukand Nancy Rogers 4 Identified radioactive isotopes Aanda org 1998 03 02 Retrieved 2019 11 14 November 29 2014 https web archive org web 20141129070410 http kubchemistry weebly com uploads 6 9 8 7 6987088 chapter 22 nuclear reactions ppt Archived from the original on 2014 11 29 a href Template Cite web html title Template Cite web cite web a Missing or empty title help 1 Archived 2006 07 05 at the Wayback Machine Kerr George D Young Robert W Cullings Harry M Christy Robert F 2005 Bomb Parameters PDF In Robert W Young George D Kerr ed Reassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki Dosimetry System 2002 The Radiation Effects Research Foundation pp 42 43 Archived from the original PDF on 2015 08 10 Retrieved 2014 03 13 Malik John September 1985 The Yields of the Hiroshima and Nagasaki Explosions PDF Los Alamos National Laboratory Retrieved March 9 2014 US Army 1952 Operation Ivy Final Report Joint Task Force 132 PDF Archived PDF from the original on March 11 2014 2 Archived 2006 07 05 at the Wayback Machine Search Results Schlumberger Oilfield Glossary www glossary oilfield slb com Parekh PP Semkow TM Torres MA Haines DK Cooper JM Rosenberga PM Kittoa ME 2006 Radioactivity in Trinitite six decades later PDF Journal of Environmental Radioactivity 85 1 103 120 CiteSeerX 10 1 1 494 5179 doi 10 1016 j jenvrad 2005 01 017 PMID 16102878 Sze S M 2012 Semiconductor devices physics and technology M K Lee 3 ed New York NY Wiley ISBN 978 0 470 53794 7 OCLC 869833419 External links EditNeutron Activation Analysis web Handbook on Nuclear Activation Cross Sections IAEA 1974 Decay Data in MIRD Format from the National Nuclear Data Center at Brookhaven National Laboratory Neutron capture as it relates to nucleosynthesis Neutron capture and the Chart of the nuclides The chart of the Nuclides Discovery of the Chromium isotopes Chromium 55 by Cr 54 neutron capture ORILL 1D transmutation fuel depletion and radiological protection codeFurther reading EditUS Army 1952 Operation Ivy Final Report Joint Task Force 132 PDF Archived PDF from the original on March 11 2014 Retrieved from https en wikipedia org w index php title Neutron activation amp oldid 1131083160, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.