fbpx
Wikipedia

Cubic crystal system

In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

A rock containing three crystals of pyrite (FeS2). The crystal structure of pyrite is primitive cubic, and this is reflected in the cubic symmetry of its natural crystal facets.
A network model of a primitive cubic system
The primitive and cubic close-packed (also known as face-centered cubic) unit cells

There are three main varieties of these crystals:

  • Primitive cubic (abbreviated cP and alternatively called simple cubic)
  • Body-centered cubic (abbreviated cI or bcc)
  • Face-centered cubic (abbreviated cF or fcc)

Note: the term fcc is often used in synonym for the cubic close-packed or ccp structure occurring in metals. However,fcc stands for a face-centered-cubic Bravais lattice, which is not necessarily close-packed when a motif is set onto the lattice points. E.g. the diamond and the zincblende lattices are fcc but not close-packed. Each is subdivided into other variants listed below. Although the unit cells in these crystals are conventionally taken to be cubes, the primitive unit cells often are not.

Bravais lattices

The three Bravais lattices in the cubic crystal system are:

Bravais lattice Primitive
cubic
Body-centered
cubic
Face-centered
cubic
Pearson symbol cP cI cF
Unit cell      

The primitive cubic lattice (cP) consists of one lattice point on each corner of the cube; this means each simple cubic unit cell has in total one lattice point. Each atom at a lattice point is then shared equally between eight adjacent cubes, and the unit cell therefore contains in total one atom (18 × 8).[1]

The body-centered cubic lattice (cI) has one lattice point in the center of the unit cell in addition to the eight corner points. It has a net total of two lattice points per unit cell (18 × 8 + 1).[1]

The face-centered cubic lattice (cF) has lattice points on the faces of the cube, that each gives exactly one half contribution, in addition to the corner lattice points, giving a total of 4 lattice points per unit cell (18 × 8 from the corners plus 12 × 6 from the faces).

The face-centered cubic lattice is closely related to the hexagonal close packed (hcp) system, where two systems differ only in the relative placements of their hexagonal layers. The [111] plane of a face-centered cubic lattice is a hexagonal grid.

Attempting to create a base-centered cubic lattice (i.e., putting an extra lattice point in the center of each horizontal face) results in a simple tetragonal Bravais lattice.

Coordination number (CN) is the number of nearest neighbors of a central atom in the structure.[1] Each sphere in a cP lattice has coordination number 6, in a cI lattice 8, and in a cF lattice 12.

Atomic packing factor (APF) is the fraction of volume that is occupied by atoms. The cP lattice has an APF of about 0.524 , the cI lattice an APF of about 0.680, and the cF lattice an APF of about 0.740.

Crystal classes

The isometric crystal system class names, point groups (in Schönflies notation, Hermann–Mauguin notation, orbifold, and Coxeter notation), type, examples, international tables for crystallography space group number,[2] and space groups are listed in the table below. There are a total 36 cubic space groups.

No. Point group Type Example Space groups
Name[3] Schön. Intl Orb. Cox. Primitive Face-centered Body-centered
195–197 Tetartoidal T 23 332 [3,3]+ enantiomorphic Ullmannite, Sodium chlorate P23 F23 I23
198–199 P213 I213
200–204 Diploidal Th 2/m3
(m3)
3*2 [3+,4] centrosymmetric Pyrite Pm3, Pn3 Fm3, Fd3 I3
205–206 Pa3 Ia3
207–211 Gyroidal O 432 432 [3,4]+ enantiomorphic Petzite P432, P4232 F432, F4132 I432
212–214 P4332, P4132 I4132
215–217 Hextetrahedral Td 43m *332 [3,3] Sphalerite P43m F43m I43m
218–220 P43n F43c I43d
221–230 Hexoctahedral Oh 4/m32/m
(m3m)
*432 [3,4] centrosymmetric Galena, Halite Pm3m, Pn3n, Pm3n, Pn3m Fm3m, Fm3c, Fd3m, Fd3c Im3m, Ia3d

Other terms for hexoctahedral are: normal class, holohedral, ditesseral central class, galena type.

Single element structures

 
Visualisation of a diamond cubic unit cell: 1. Components of a unit cell, 2. One unit cell, 3. A lattice of 3 x 3 x 3 unit cells

As a rule, since atoms in a solid attract each other, the more tightly packed arrangements of atoms tend to be more common. (Loosely packed arrangements do occur, though, for example if the orbital hybridization demands certain bond angles.) Accordingly, the primitive cubic structure, with especially low atomic packing factor, is rare in nature, but is found in polonium.[4][5] The bcc and fcc, with their higher densities, are both quite common in nature. Examples of bcc include iron, chromium, tungsten, and niobium. Examples of fcc include aluminium, copper, gold and silver.

Another important cubic crystal structure is the diamond cubic structure, which can appear in carbon, silicon, germanium, and tin. Unlike fcc and bcc, this structure is not a lattice, since it contains multiple atoms in its primitive cell. Other cubic elemental structures include the A15 structure found in tungsten, and the extremely complicated structure of manganese.

Multi-element structures

Compounds that consist of more than one element (e.g. binary compounds) often have crystal structures based on the cubic crystal system. Some of the more common ones are listed here. These structures can be viewed as two or more interpenetrating sublattices where each sublattice occupies the interstitial sites of the others.

Caesium chloride structure

 
A caesium chloride unit cell. The two colors of spheres represent the two types of atoms.

One structure is the "interpenetrating primitive cubic" structure, also called a "caesium chloride" structure. This structure is often confused for a body-centered cubic structure, because the arrangement of atoms is the same. The true structure is shown in the graphic showing two individual primitive cubic structures that are superimposed within each other with the corner of one structure in the center of the cube of the other structure.  It helps to convince yourself that it is not body-centered cubic because there is no translational symmetry along the ½, ½, ½, plane, the chloride would be translated into a cesium, not another chloride.[6]

 
This graphic shows the interlocking simple cubic lattices of cesium and chlorine. You can see them separately and as they are interlocked in what looks like a body-centered cubic arrangement

It works the same way for the NaCl structure described in the next section.  If you take out the Cl atoms, the leftover Na atoms still form an FCC structure, not a simple cubic structure.

In the unit cell of CsCl, each ion is at the center of a cube of ions of the opposite kind, so the coordination number is eight. The central cation is coordinated to 8 anions on the corners of a cube as shown, and similarly, the central anion is coordinated to 8 cations on the corners of a cube. Alternately, one could view this lattice as a simple cubic structure with a secondary atom in its cubic void.

In addition to caesium chloride itself, the structure also appears in certain other alkali halides when prepared at low temperatures or high pressures.[7] Generally, this structure is more likely to be formed from two elements whose ions are of roughly the same size (for example, ionic radius of Cs+ = 167 pm, and Cl = 181 pm).

The space group of the caesium chloride (CsCl) structure is called Pm3m (in Hermann–Mauguin notation), or "221" (in the International Tables for Crystallography). The Strukturbericht designation is "B2".[8]

There are nearly a hundred rare earth intermetallic compounds that crystalize in the CsCl structure, including many binary compounds of rare earths with magnesium,[9] and with elements in groups 11, 12,[10][11] and 13. Other compounds showing caesium chloride like structure are CsBr, CsI, high-temperature RbCl, AlCo, AgZn, BeCu, MgCe, RuAl and SrTl.[citation needed]

Rock-salt structure

 
The rock-salt crystal structure. Each atom has six nearest neighbours, with octahedral geometry.

The space group of the rock-salt or halite (sodium chloride) structure is denoted as Fm3m (in Hermann–Mauguin notation), or "225" (in the International Tables for Crystallography). The Strukturbericht designation is "B1".[12]

In the rock-salt structure, each of the two atom types forms a separate face-centered cubic lattice, with the two lattices interpenetrating so as to form a 3D checkerboard pattern. The rock-salt structure has octahedral coordination: Each atom's nearest neighbors consist of six atoms of the opposite type, positioned like the six vertices of a regular octahedron. In sodium chloride there is a 1:1 ratio of sodium to chlorine atoms.  The structure can also be described as an FCC lattice of sodium with chlorine occupying each octahedral void or vice versa.[6]

Examples of compounds with this structure include sodium chloride itself, along with almost all other alkali halides, and "many divalent metal oxides, sulfides, selenides, and tellurides".[7] According to the radius ratio rule, this structure is more likely to be formed if the cation is somewhat smaller than the anion (a cation/anion radius ratio of 0.414 to 0.732).

The interatomic distance (distance between cation and anion, or half the unit cell length a) in some rock-salt-structure crystals are: 2.3 Å (2.3 × 10−10 m) for NaF,[13] 2.8 Å for NaCl,[14] and 3.2 Å for SnTe.[15] Most of the alkali metal hydrides and halides have the rock salt structure, though a few have the caesium chloride structure instead.

Alkaline earth metal chalcogenides with the rock salt structure
Oxides Sulfides Selenides Tellurides Polonides
Magnesium Magnesium oxide Magnesium sulfide Magnesium selenide[17] Magnesium telluride[18] (NiAs structure)
Calcium Calcium oxide Calcium sulfide Calcium selenide[19] Calcium telluride Calcium polonide[20]
Strontium Strontium oxide Strontium sulfide Strontium selenide Strontium telluride Strontium polonide[20]
Barium Barium oxide Barium sulfide Barium selenide Barium telluride Barium polonide[20]
Rare-earth[21] and actinoid pnictides with the rock salt structure
Nitrides Phosphides Arsenides Antimonides Bismuthides
Scandium Scandium nitride Scandium phosphide Scandium arsenide[22] Scandium antimonide[23] Scandium bismuthide[24]
Yttrium Yttrium nitride Yttrium phosphide Yttrium arsenide[25] Yttrium antimonide Yttrium bismuthide[26]
Lanthanum Lanthanum nitride[27] Lanthanum phosphide[28] Lanthanum arsenide[25] Lanthanum antimonide Lanthanum bismuthide[29]
Cerium Cerium nitride[27] Cerium phosphide[28] Cerium arsenide[25] Cerium antimonide Cerium bismuthide[29]
Praseodymium Praseodymium nitride[27] Praseodymium phosphide[28] Praseodymium arsenide[25] Praseodymium antimonide[30] Praseodymium bismuthide[29]
Neodymium Neodymium nitride[27] Neodymium phosphide[28] Neodymium arsenide[25] Neodymium antimonide[30] Neodymium bismuthide[29]
Promethium ? ? ? ? ?
Samarium Samarium nitride[27] Samarium phosphide[28] Samarium arsenide[25] Samarium antimonide[30] Samarium bismuthide[29]
Europium Europium nitride[27] Europium phosphide (Na2O2 structure)[31] (unstable)[32]
Gadolinium Gadolinium nitride[27] Gadolinium phosphide Gadolinium arsenide[25] Gadolinium antimonide[30] Gadolinium bismuthide[29]
Terbium Terbium nitride[27] Terbium phosphide Terbium arsenide[25] Terbium antimonide[30] Terbium bismuthide[29]
Dysprosium Dysprosium nitride[27] Dysprosium phosphide Dysprosium arsenide Dysprosium antimonide Dysprosium bismuthide[29]
Holmium Holmium nitride[27] Holmium phosphide Holmium arsenide[25] Holmium antimonide Holmium bismuthide[29]
Erbium Erbium nitride[27] Erbium phosphide Erbium arsenide[25] Erbium antimonide Erbium bismuthide[29]
Thulium Thulium nitride[27] Thulium phosphide Thulium arsenide Thulium antimonide Thulium bismuthide[29]
Ytterbium Ytterbium nitride[27] Ytterbium phosphide Ytterbium arsenide[25] Ytterbium antimonide (unstable)[33][34]
Lutetium Lutetium nitride[27] Lutetium phosphide Lutetium arsenide Lutetium antimonide Lutetium bismuthide
Actinium ? ? ? ? ?
Thorium Thorium nitride[35] Thorium phosphide[35] Thorium arsenide[35] Thorium antimonide[35] (CsCl structure)
Protactinium ? ? ? ? ?
Uranium Uranium nitride[35] Uranium monophosphide[35] Uranium arsenide[35] Uranium antimonide[35] Uranium bismuthide[36]
Neptunium Neptunium nitride Neptunium phosphide Neptunium arsenide Neptunium antimonide Neptunium bismuthide[36]
Plutonium Plutonium nitride[35] Plutonium phosphide[35] Plutonium arsenide[35] Plutonium antimonide[35] Plutonium bismuthide[36]
Americium Americium nitride[36] Americium phosphide[36] Americium arsenide[36] Americium antimonide[36] Americium bismuthide[36]
Curium Curium nitride[37] Curium phosphide[37] Curium arsenide[37] Curium antimonide[37] Curium bismuthide[37]
Berkelium Berkelium nitride[37] Berkelium phosphide[37] Berkelium arsenide[37] ? Berkelium bismuthide[37]
Californium ? ? Californium arsenide[37] ? Californium bismuthide[37]
Rare-earth and actinoid chalcogenides with the rock salt structure
Oxides Sulfides Selenides Tellurides Polonides
Scandium (unstable)[38] Scandium monosulfide
Yttrium Yttrium monosulfide[39]
Lanthanum Lanthanum monosulfide[40]
Cerium Cerium monosulfide[40] Cerium monoselenide[41] Cerium monotelluride[41]
Praseodymium Praseodymium monosulfide[40] Praseodymium monoselenide[41] Praseodymium monotelluride[41]
Neodymium Neodymium monosulfide[40] Neodymium monoselenide[41] Neodymium monotelluride[41]
Promethium ? ? ? ?
Samarium Samarium monosulfide[40] Samarium monoselenide Samarium monotelluride Samarium monopolonide[42]
Europium Europium monoxide Europium monosulfide[40] Europium monoselenide[43] Europium monotelluride[43] Europium monopolonide[42]
Gadolinium (unstable)[38] Gadolinium monosulfide[40]
Terbium Terbium monosulfide[40] Terbium monopolonide[42]
Dysprosium Dysprosium monosulfide[40] Dysprosium monopolonide[42]
Holmium Holmium monosulfide[40] Holmium monopolonide[42]
Erbium Erbium monosulfide[40]
Thulium Thulium monosulfide[40] Thulium monopolonide[42]
Ytterbium Ytterbium monoxide Ytterbium monosulfide[40] Ytterbium monopolonide[42]
Lutetium (unstable)[38][44] Lutetium monosulfide[40] Lutetium monopolonide[42]
Actinium ? ? ? ?
Thorium Thorium monosulfide[35] Thorium monoselenide[35] (CsCl structure)[45]
Protactinium ? ? ? ?
Uranium Uranium monosulfide[35] Uranium monoselenide[35] Uranium monotelluride[35]
Neptunium Neptunium monosulfide Neptunium monoselenide Neptunium monotelluride
Plutonium Plutonium monosulfide[35] Plutonium monoselenide[35] Plutonium monotelluride[35]
Americium Americium monosulfide[36] Americium monoselenide[36] Americium monotelluride[36]
Curium Curium monosulfide[37] Curium monoselenide[37] Curium monotelluride[37]
Transition metal carbides and nitrides with the rock salt structure
Carbides Nitrides
Titanium Titanium carbide Titanium nitride
Zirconium Zirconium carbide Zirconium nitride
Hafnium Hafnium carbide Hafnium nitride[46]
Vanadium Vanadium carbide Vanadium nitride
Niobium Niobium carbide Niobium nitride
Tantalum Tantalum carbide (CoSn structure)
Chromium (unstable)[47] Chromium nitride

Many transition metal monoxides also have the rock salt structure (TiO, VO, CrO, MnO, FeO, CoO, NiO, CdO). The early actinoid monocarbides also have this structure (ThC, PaC, UC, NpC, PuC).[37] Other compounds showing rock salt like structure are TiB,[48] ZrB,[49] PbS, PbSe, PbTe, SnTe, AgF, AgCl, and AgBr.

Fluorite structure

Much like the rock salt structure, the fluorite structure (AB2) is also an Fm3m structure but has 1:2 ratio of ions. The anti-fluorite structure is nearly identical, except the positions of the anions and cations are switched in the structure. They are designated Wyckoff positions 4a and 8c whereas the rock-salt structure positions are 4a and 4b.[50][51]

Zincblende structure

 
A zincblende unit cell

The space group of the Zincblende structure is called F43m (in Hermann–Mauguin notation), or 216.[52][53] The Strukturbericht designation is "B3".[54]

The Zincblende structure (also written "zinc blende") is named after the mineral zincblende (sphalerite), one form of zinc sulfide (β-ZnS). As in the rock-salt structure, the two atom types form two interpenetrating face-centered cubic lattices. However, it differs from rock-salt structure in how the two lattices are positioned relative to one another. The zincblende structure has tetrahedral coordination: Each atom's nearest neighbors consist of four atoms of the opposite type, positioned like the four vertices of a regular tetrahedron. In zinc sulfide the ratio of zinc to sulfur is 1:1.[6] Altogether, the arrangement of atoms in zincblende structure is the same as diamond cubic structure, but with alternating types of atoms at the different lattice sites. The structure can also be described as an FCC lattice of zinc with sulfur atoms occupying half of the tetrahedral voids or vice versa.[6]

Examples of compounds with this structure include zincblende itself, lead(II) nitrate, many compound semiconductors (such as gallium arsenide and cadmium telluride), and a wide array of other binary compounds.[citation needed] The boron group pnictogenides usually have a zincblende structure, though the nitrides are more common in the wurtzite structure, and their zincblende forms are less well known polymorphs.[55][56]

Copper halides with the zincblende structure
Fluorides Chorlorides Bromides Iodides
Copper Copper(I) fluoride Copper(I) chloride Copper(I) bromide Copper(I) iodide
Beryllium and Group 12 chalcogenides with the zincblende structure
Sulfides Selenides Tellurides Polonides
Beryllium Beryllium sulfide Beryllium selenide Beryllium telluride Beryllium polonide[57][58]
Zinc Zinc sulfide Zinc selenide Zinc telluride Zinc polonide
Cadmium Cadmium sulfide Cadmium selenide Cadmium telluride Cadmium polonide
Mercury Mercury sulfide Mercury selenide Mercury telluride -

This group is also known as the II-VI family of compounds, most of which can be made in both the zincblende (cubic) or wurtzite (hexagonal) form.

This group is also known as the III-V family of compounds.

 
The structure of the Heusler compounds with formula X2YZ (e. g., Co2MnSi).

Heusler structure

The Heusler structure, based on the structure of Cu2MnAl, is a common structure for ternary compounds involving transition metals. It has the space group Fm3m (No. 225), and the Strukturbericht designation is L21. Together with the closely related half-Heusler and inverse-Huesler compounds, there are hundreds of examples.

Iron monosilicide structure

 
Diagram of the iron monosilicide structure.

The space group of the iron monosilicide structure is P213 (No. 198), and the Strukturbericht designation is B20. This is a chiral structure, and is sometimes associated with helimagnetic properties. There are four atoms of each element for a total of eight atoms in the unit cell.

Examples occur among the transition metal silicides and germanides, as well as a few other compounds such as gallium palladide.

Transition metal silicides and germanides with the FeSi structure
Silicides Germanides
Manganese Manganese monosilicide Manganese germanide
Iron Iron monosilicide Iron germanide
Cobalt Cobalt monosilicide Cobalt germanide
Chromium Chromium(IV) silicide Chromium(IV) germanide

Weaire–Phelan structure

 
Weaire–Phelan structure

A Weaire–Phelan structure has Pm3n (223) symmetry.

It has three orientations of stacked tetradecahedrons with pyritohedral cells in the gaps. It is found as a crystal structure in chemistry where it is usually known as a "type I clathrate structure". Gas hydrates formed by methane, propane, and carbon dioxide at low temperatures have a structure in which water molecules lie at the nodes of the Weaire–Phelan structure and are hydrogen bonded together, and the larger gas molecules are trapped in the polyhedral cages.

See also

References

  1. ^ a b c P. M. de Wolff, N. V. Belov, E. F. Bertaut, M. J. Buerger, J. D. H. Donnay, W. Fischer, Th. Hahn, V. A. Koptsik, A. L. Mackay, H. Wondratschek, A. J. C. Wilson and S. C. Abrahams (1985). "Nomenclature for crystal families, Bravais-lattice types and arithmetic classes. Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Symmetry". Acta Crystallographica Section A. 41 (3): 278. doi:10.1107/S0108767385000587.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Prince, E., ed. (2006). International Tables for Crystallography. International Union of Crystallography. doi:10.1107/97809553602060000001. ISBN 978-1-4020-4969-9. S2CID 146060934.
  3. ^ Crystallography and Minerals Arranged by Crystal Form, Webmineral
  4. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  5. ^ The original discovery was in J. Chem. Phys. 14, 569 (1946).
  6. ^ a b c d "Cubic Lattices and Close Packing". 3 October 2013. from the original on 2020-11-01.
  7. ^ a b Seitz, Modern Theory of Solids (1940), p.49
  8. ^ The CsCl (B2) Structure 2008-09-15 at the Wayback Machine
  9. ^ Saccone, A.; Delfino, S.; Macció, D.; Ferro, R. (1993). "Magnesium-rare earth phase diagrams: Experimental investigation of the Ho-Mg system". Journal of Phase Equilibria. Springer Science and Business Media LLC. 14 (3): 280–287. doi:10.1007/bf02668225. ISSN 1054-9714. S2CID 95011597.
  10. ^ Kanematu, K; T. Alfieri, G.; Banks, E. (1969). "Magnetic Studies of Rare Earth Zinc Compounds with CsCl Structure". Journal of the Physical Society of Japan. Physical Society of Japan. 26 (2): 244–248. Bibcode:1969JPSJ...26..244K. doi:10.1143/jpsj.26.244. ISSN 0031-9015.
  11. ^ Buschow, K. H. J. (1974). "Magnetic properties of CsCl‐type rare‐earth cadmium compounds". The Journal of Chemical Physics. AIP Publishing. 61 (11): 4666–4670. Bibcode:1974JChPh..61.4666B. doi:10.1063/1.1681788. ISSN 0021-9606.
  12. ^ The NaCl (B1) Structure 2008-10-19 at the Wayback Machine
  13. ^ Sundquist, J. J.; Lin, C. C. (1981). "Electronic structure of the F centre in a sodium fluoride crystal". Journal of Physics C: Solid State Physics. 14 (32): 4797–4805. Bibcode:1981JPhC...14.4797S. doi:10.1088/0022-3719/14/32/016.
  14. ^ Abrahams, S. C.; Bernstein, J. L. (1965). "Accuracy of an automatic diffractometer. Measurement of the sodium chloride structure factors". Acta Crystallogr. 18 (5): 926–932. doi:10.1107/S0365110X65002244.
  15. ^ Kao, W.; Peretti, E. (1970). "The ternary subsystem Sn4As3-SnAs-SnTe". Journal of the Less Common Metals. 22: 39–50. doi:10.1016/0022-5088(70)90174-8.
  16. ^ a b c J. Aigueperse, P. Mollard, D. Devilliers, M. Chemla, R. Faron, R. Romano, J. P. Cuer, "Fluorine Compounds, Inorganic" (section 4) in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a11_307.
  17. ^ Broch, Einar (1927-06-01). "Präzisionsbestimmungen der Gitterkonstanten der Verbindungen MgO, MgS, MgSe, MnO und MnSe". Zeitschrift für Physikalische Chemie (in German). Walter de Gruyter GmbH. 127U (1): 446–454. doi:10.1515/zpch-1927-12724. ISSN 2196-7156. S2CID 100227546.
  18. ^ Mir, Showkat H.; Jha, Prakash C.; Dabhi, Shweta; Jha, Prafulla K. (2016). "Ab initio study of phase stability, lattice dynamics and thermodynamic properties of magnesium chalcogenides". Materials Chemistry and Physics. Elsevier BV. 175: 54–61. doi:10.1016/j.matchemphys.2016.02.066. ISSN 0254-0584.
  19. ^ Louail, L.; Haddadi, K.; Maouche, D.; Ali Sahraoui, F.; Hachemi, A. (2008). "Electronic band structure of calcium selenide under pressure". Physica B: Condensed Matter. Elsevier BV. 403 (18): 3022–3026. Bibcode:2008PhyB..403.3022L. doi:10.1016/j.physb.2008.03.009. ISSN 0921-4526.
  20. ^ a b c Brown, S.A.; Brown, P.L. (2019). The Aqueous Chemistry of Polonium and the Practical Application of its Thermochemistry. Elsevier Science. p. 25. ISBN 978-0-12-819309-9. Retrieved 2022-01-08.
  21. ^ Hulliger, F. (1979). "Chapter 33 Rare earth pnictides". Handbook on the Physics and Chemistry of Rare Earths. Vol. 4. Elsevier. pp. 153–236. doi:10.1016/s0168-1273(79)04006-x. ISBN 9780444852168. ISSN 0168-1273.
  22. ^ Gschneidner, K. A.; Calderwood, F. W. (1986). "The As−Sc (Arsenic-Scandium) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 7 (4): 348–349. doi:10.1007/bf02873011. ISSN 0197-0216.
  23. ^ Hayashi, J; Shirotani, I; Hirano, K; Ishimatsu, N; Shimomura, O; Kikegawa, T (2003). "Structural phase transition of ScSb and YSb with a NaCl-type structure at high pressures". Solid State Communications. Elsevier BV. 125 (10): 543–546. Bibcode:2003SSCom.125..543H. doi:10.1016/s0038-1098(02)00889-x. ISSN 0038-1098.
  24. ^ Horovitz, C.T. (2012). Scandium Its Occurrence, Chemistry Physics, Metallurgy, Biology and Technology. Elsevier Science. p. 273. ISBN 978-0-323-14451-3. Retrieved 2022-01-06.
  25. ^ a b c d e f g h i j k Ono, S.; Despault, J.G.; Calvert, L.D.; Taylor, J.B. (1970). "Rare-earth arsenides". Journal of the Less Common Metals. Elsevier BV. 22 (1): 51–59. doi:10.1016/0022-5088(70)90175-x. ISSN 0022-5088.
  26. ^ Schmidt, F.A.; McMasters, O.D.; Lichtenberg, R.R. (1969). "The yttrium-bismuth alloy system". Journal of the Less Common Metals. Elsevier BV. 18 (3): 215–220. doi:10.1016/0022-5088(69)90159-3. ISSN 0022-5088.
  27. ^ a b c d e f g h i j k l m n Natali, F.; Ruck, B.J.; Plank, N.O.V.; Trodahl, H.J.; Granville, S.; Meyer, C.; Lambrecht, W.R.L. (2013). "Rare-earth mononitrides". Progress in Materials Science. Elsevier BV. 58 (8): 1316–1360. arXiv:1208.2410. doi:10.1016/j.pmatsci.2013.06.002. ISSN 0079-6425. S2CID 118566136.
  28. ^ a b c d e Ono, S.; Nomura, K.; Hayakawa, H. (1974). "Syntheses of new rare-earth phosphides". Journal of the Less Common Metals. Elsevier BV. 38 (2–3): 119–130. doi:10.1016/0022-5088(74)90055-1. ISSN 0022-5088.
  29. ^ a b c d e f g h i j k Yoshihara, K.; Taylor, J.B.; Calvert, L.D.; Despault, J.G. (1975). "Rare-earth bismuthides". Journal of the Less Common Metals. Elsevier BV. 41 (2): 329–337. doi:10.1016/0022-5088(75)90038-7. ISSN 0022-5088.
  30. ^ a b c d e Hayashi, J.; Shirotani, I.; Tanaka, Y.; Adachi, T.; Shimomura, O.; Kikegawa, T. (2000). "Phase transitions of LnSb (Ln=lanthanide) with NaCl-type structure at high pressures". Solid State Communications. Elsevier BV. 114 (11): 561–565. Bibcode:2000SSCom.114..561H. doi:10.1016/s0038-1098(00)00113-7. ISSN 0038-1098.
  31. ^ Gschneidner, K. A.; Calderwood, F. W. (1986). "The As−Eu (Arsenic-Europium) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 7 (3): 279–283. doi:10.1007/bf02869009. ISSN 0197-0216.
  32. ^ Taylor, J. B.; Calvert, L. D.; Wang, Y. (1979-04-01). "Powder data for some new europium antimonides and bismuthides". Journal of Applied Crystallography. International Union of Crystallography (IUCr). 12 (2): 249–251. doi:10.1107/s0021889879012309. ISSN 0021-8898.
  33. ^ Okamoto, H. (1999). "Bi-Yb (bismuth-ytterbium)". Journal of Phase Equilibria. Springer Science and Business Media LLC. 20 (4): 453. doi:10.1361/105497199770335640. ISSN 1054-9714.
  34. ^ Duan, Xu; Wu, Fan; Chen, Jia; Zhang, Peiran; Liu, Yang; Yuan, Huiqiu; Cao, Chao (2018-11-02). "Tunable electronic structure and topological properties of LnPn (Ln=Ce, Pr, Sm, Gd, Yb; Pn=Sb, Bi)". Communications Physics. Springer Science and Business Media LLC. 1 (1): 71. Bibcode:2018CmPhy...1...71D. doi:10.1038/s42005-018-0074-8. ISSN 2399-3650.
  35. ^ a b c d e f g h i j k l m n o p q r s t Kruger, O.L.; Moser, J.B. (1967). "Lattice constants and melting points of actinide-group IVA-VIA compounds with NaCl-type structures". Journal of Physics and Chemistry of Solids. Elsevier BV. 28 (11): 2321–2325. Bibcode:1967JPCS...28.2321K. doi:10.1016/0022-3697(67)90257-0. ISSN 0022-3697.
  36. ^ a b c d e f g h i j k Vogt, O.; Mattenberger, K. (1995). "The magnetism of localized or nearly localized 4f and 5f shells". Journal of Alloys and Compounds. Elsevier BV. 223 (2): 226–236. doi:10.1016/0925-8388(94)09005-x. ISSN 0925-8388.
  37. ^ a b c d e f g h i j k l m n o Benedict, U.; Holzapfel, W.B. (1993). "Chapter 113 High-pressure studies — Structural aspects". Lanthanides/Actinides: Physics I. Handbook on the Physics and Chemistry of Rare Earths. Vol. 17. Elsevier. pp. 245–300. doi:10.1016/s0168-1273(05)80030-3. ISBN 9780444815026. ISSN 0168-1273.
  38. ^ a b c Leger, J.M.; Yacoubi, N.; Loriers, J. (1981). "Synthesis of rare earth monoxides". Journal of Solid State Chemistry. Elsevier BV. 36 (3): 261–270. Bibcode:1981JSSCh..36..261L. doi:10.1016/0022-4596(81)90436-9. ISSN 0022-4596.
  39. ^ Roedhammer, P.; Reichardt, W.; Holtzberg, F. (1978-02-13). "Soft-Mode Behavior in the Phonon Dispersion of YS". Physical Review Letters. American Physical Society (APS). 40 (7): 465–468. Bibcode:1978PhRvL..40..465R. doi:10.1103/physrevlett.40.465. ISSN 0031-9007.
  40. ^ a b c d e f g h i j k l m n Didchenko, R.; Gortsema, F.P. (1963). "Some electric and magnetic properties of rare earth monosulfides and nitrides". Journal of Physics and Chemistry of Solids. Elsevier BV. 24 (7): 863–870. Bibcode:1963JPCS...24..863D. doi:10.1016/0022-3697(63)90062-3. ISSN 0022-3697.
  41. ^ a b c d e f Smolensky, G. A.; Adamjan, V. E.; Loginov, G. M. (1968). "Antiferromagnetic Properties of Light Rare Earth Monochalcogenides". Journal of Applied Physics. AIP Publishing. 39 (2): 786–790. Bibcode:1968JAP....39..786S. doi:10.1063/1.2163619. ISSN 0021-8979.
  42. ^ a b c d e f g h Kershner, C.J.; DeSando, R.J.; Heidelberg, R.F.; Steinmeyer, R.H. (1966). "Rare earth polonides". Journal of Inorganic and Nuclear Chemistry. Elsevier BV. 28 (8): 1581–1588. doi:10.1016/0022-1902(66)80054-4. ISSN 0022-1902.
  43. ^ a b Wachter, P. (1972). "The optical electrical and magnetic properties of the europium chalcogenides and the rare earth pnictides". C R C Critical Reviews in Solid State Sciences. Informa UK Limited. 3 (2): 189–241. doi:10.1080/10408437208244865. ISSN 0011-085X.
  44. ^ Meyer, G (1991). Synthesis of Lanthanide and Actinide Compounds. Dordrecht: Springer Netherlands. p. 237. ISBN 978-94-011-3758-4. OCLC 840310000.
  45. ^ D'Eye, R. W. M.; Sellman, P. G. (1954). "The thorium–tellurium system". J. Chem. Soc. Royal Society of Chemistry (RSC): 3760–3766. doi:10.1039/jr9540003760. ISSN 0368-1769.
  46. ^ Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren (2011-09-28). "Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations". Materials. MDPI AG. 4 (10): 1648–1692. Bibcode:2011Mate....4.1648F. doi:10.3390/ma4101648. ISSN 1996-1944. PMC 5448873. PMID 28824101.
  47. ^ Venkatraman, M.; Neumann, J. P. (1990). "The C-Cr (Carbon-Chromium) System". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 11 (2): 152–159. doi:10.1007/bf02841701. ISSN 0197-0216.
  48. ^ Murray, J. L.; Liao, P. K.; Spear, K. E. (1986). "The B−Ti (Boron-Titanium) system". Bulletin of Alloy Phase Diagrams. Springer Science and Business Media LLC. 7 (6): 550–555. doi:10.1007/bf02869864. ISSN 0197-0216.
  49. ^ Glaser, Frank W.; Post, Benjamin (1953). "System Zirconium-Boron". JOM. Springer Science and Business Media LLC. 5 (9): 1117–1118. Bibcode:1953JOM.....5i1117G. doi:10.1007/bf03397597. ISSN 1047-4838.
  50. ^ "Fluorite". aflow.org. Retrieved 2020-05-22.
  51. ^ "Rock Salt". aflow.org. Retrieved 2020-05-22.
  52. ^ L. Kantorovich (2004). Quantum Theory of the Solid State. Springer. p. 32. ISBN 1-4020-2153-4.
  53. ^ Birkbeck College, University of London
  54. ^ The Zincblende (B3) Structure October 19, 2008, at the Wayback Machine
  55. ^ Wang, L.D.; Kwok, H.S. (2000). "Cubic aluminum nitride and gallium nitride thin films prepared by pulsed laser deposition". Applied Surface Science. Elsevier BV. 154–155 (1–4): 439–443. Bibcode:2000ApSS..154..439W. doi:10.1016/s0169-4332(99)00372-4. ISSN 0169-4332.
  56. ^ Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi (2014-02-04). "Field-effect transistors based on cubic indium nitride". Scientific Reports. Springer Science and Business Media LLC. 4 (1): 3951. Bibcode:2014NatSR...4E3951O. doi:10.1038/srep03951. ISSN 2045-2322. PMC 3912472. PMID 24492240.
  57. ^ Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. p. 899. ISBN 978-0-08-022057-4..
  58. ^ Moyer, Harvey V. (1956). "Chemical Properties of Polonium". In Moyer, Harvey V. (ed.). Polonium (Report). Oak Ridge, Tenn.: United States Atomic Energy Commission. pp. 33–96. doi:10.2172/4367751. TID-5221..

Further reading

  • Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., Wiley, ISBN 0-471-80580-7

External links

  • Making crystal structure with Molview

cubic, crystal, system, crystallography, cubic, isometric, crystal, system, crystal, system, where, unit, cell, shape, cube, this, most, common, simplest, shapes, found, crystals, minerals, rock, containing, three, crystals, pyrite, fes2, crystal, structure, p. In crystallography the cubic or isometric crystal system is a crystal system where the unit cell is in the shape of a cube This is one of the most common and simplest shapes found in crystals and minerals A rock containing three crystals of pyrite FeS2 The crystal structure of pyrite is primitive cubic and this is reflected in the cubic symmetry of its natural crystal facets A network model of a primitive cubic system The primitive and cubic close packed also known as face centered cubic unit cells There are three main varieties of these crystals Primitive cubic abbreviated cP and alternatively called simple cubic Body centered cubic abbreviated cI or bcc Face centered cubic abbreviated cF or fcc Note the term fcc is often used in synonym for the cubic close packed or ccp structure occurring in metals However fcc stands for a face centered cubic Bravais lattice which is not necessarily close packed when a motif is set onto the lattice points E g the diamond and the zincblende lattices are fcc but not close packed Each is subdivided into other variants listed below Although the unit cells in these crystals are conventionally taken to be cubes the primitive unit cells often are not Contents 1 Bravais lattices 2 Crystal classes 3 Single element structures 4 Multi element structures 4 1 Caesium chloride structure 4 2 Rock salt structure 4 3 Fluorite structure 4 4 Zincblende structure 4 5 Heusler structure 4 6 Iron monosilicide structure 5 Weaire Phelan structure 6 See also 7 References 8 Further reading 9 External linksBravais lattices EditFurther information Bravais lattice The three Bravais lattices in the cubic crystal system are Bravais lattice Primitivecubic Body centeredcubic Face centeredcubicPearson symbol cP cI cFUnit cell The primitive cubic lattice cP consists of one lattice point on each corner of the cube this means each simple cubic unit cell has in total one lattice point Each atom at a lattice point is then shared equally between eight adjacent cubes and the unit cell therefore contains in total one atom 1 8 8 1 The body centered cubic lattice cI has one lattice point in the center of the unit cell in addition to the eight corner points It has a net total of two lattice points per unit cell 1 8 8 1 1 The face centered cubic lattice cF has lattice points on the faces of the cube that each gives exactly one half contribution in addition to the corner lattice points giving a total of 4 lattice points per unit cell 1 8 8 from the corners plus 1 2 6 from the faces The face centered cubic lattice is closely related to the hexagonal close packed hcp system where two systems differ only in the relative placements of their hexagonal layers The 111 plane of a face centered cubic lattice is a hexagonal grid Attempting to create a base centered cubic lattice i e putting an extra lattice point in the center of each horizontal face results in a simple tetragonal Bravais lattice Coordination number CN is the number of nearest neighbors of a central atom in the structure 1 Each sphere in a cP lattice has coordination number 6 in a cI lattice 8 and in a cF lattice 12 Atomic packing factor APF is the fraction of volume that is occupied by atoms The cP lattice has an APF of about 0 524 the cI lattice an APF of about 0 680 and the cF lattice an APF of about 0 740 Crystal classes EditFurther information Crystallographic point group The isometric crystal system class names point groups in Schonflies notation Hermann Mauguin notation orbifold and Coxeter notation type examples international tables for crystallography space group number 2 and space groups are listed in the table below There are a total 36 cubic space groups No Point group Type Example Space groupsName 3 Schon Intl Orb Cox Primitive Face centered Body centered195 197 Tetartoidal T 23 332 3 3 enantiomorphic Ullmannite Sodium chlorate P23 F23 I23198 199 P213 I213200 204 Diploidal Th 2 m3 m3 3 2 3 4 centrosymmetric Pyrite Pm3 Pn3 Fm3 Fd3 I3205 206 Pa3 Ia3207 211 Gyroidal O 432 432 3 4 enantiomorphic Petzite P432 P4232 F432 F4132 I432212 214 P4332 P4132 I4132215 217 Hextetrahedral Td 4 3m 332 3 3 Sphalerite P4 3m F4 3m I4 3m218 220 P4 3n F4 3c I4 3d221 230 Hexoctahedral Oh 4 m3 2 m m3 m 432 3 4 centrosymmetric Galena Halite Pm3 m Pn3 n Pm3 n Pn3 m Fm3 m Fm3 c Fd3 m Fd3 c Im3 m Ia3 dOther terms for hexoctahedral are normal class holohedral ditesseral central class galena type Single element structures Edit Visualisation of a diamond cubic unit cell 1 Components of a unit cell 2 One unit cell 3 A lattice of 3 x 3 x 3 unit cells See also Periodic table crystal structure As a rule since atoms in a solid attract each other the more tightly packed arrangements of atoms tend to be more common Loosely packed arrangements do occur though for example if the orbital hybridization demands certain bond angles Accordingly the primitive cubic structure with especially low atomic packing factor is rare in nature but is found in polonium 4 5 The bcc and fcc with their higher densities are both quite common in nature Examples of bcc include iron chromium tungsten and niobium Examples of fcc include aluminium copper gold and silver Another important cubic crystal structure is the diamond cubic structure which can appear in carbon silicon germanium and tin Unlike fcc and bcc this structure is not a lattice since it contains multiple atoms in its primitive cell Other cubic elemental structures include the A15 structure found in tungsten and the extremely complicated structure of manganese Multi element structures EditCompounds that consist of more than one element e g binary compounds often have crystal structures based on the cubic crystal system Some of the more common ones are listed here These structures can be viewed as two or more interpenetrating sublattices where each sublattice occupies the interstitial sites of the others Caesium chloride structure Edit See also Category Caesium chloride crystal structure A caesium chloride unit cell The two colors of spheres represent the two types of atoms One structure is the interpenetrating primitive cubic structure also called a caesium chloride structure This structure is often confused for a body centered cubic structure because the arrangement of atoms is the same The true structure is shown in the graphic showing two individual primitive cubic structures that are superimposed within each other with the corner of one structure in the center of the cube of the other structure It helps to convince yourself that it is not body centered cubic because there is no translational symmetry along the plane the chloride would be translated into a cesium not another chloride 6 This graphic shows the interlocking simple cubic lattices of cesium and chlorine You can see them separately and as they are interlocked in what looks like a body centered cubic arrangement It works the same way for the NaCl structure described in the next section If you take out the Cl atoms the leftover Na atoms still form an FCC structure not a simple cubic structure In the unit cell of CsCl each ion is at the center of a cube of ions of the opposite kind so the coordination number is eight The central cation is coordinated to 8 anions on the corners of a cube as shown and similarly the central anion is coordinated to 8 cations on the corners of a cube Alternately one could view this lattice as a simple cubic structure with a secondary atom in its cubic void In addition to caesium chloride itself the structure also appears in certain other alkali halides when prepared at low temperatures or high pressures 7 Generally this structure is more likely to be formed from two elements whose ions are of roughly the same size for example ionic radius of Cs 167 pm and Cl 181 pm The space group of the caesium chloride CsCl structure is called Pm3 m in Hermann Mauguin notation or 221 in the International Tables for Crystallography The Strukturbericht designation is B2 8 There are nearly a hundred rare earth intermetallic compounds that crystalize in the CsCl structure including many binary compounds of rare earths with magnesium 9 and with elements in groups 11 12 10 11 and 13 Other compounds showing caesium chloride like structure are CsBr CsI high temperature RbCl AlCo AgZn BeCu MgCe RuAl and SrTl citation needed Rock salt structure Edit See also Category Rock salt crystal structure The rock salt crystal structure Each atom has six nearest neighbours with octahedral geometry The space group of the rock salt or halite sodium chloride structure is denoted as Fm3 m in Hermann Mauguin notation or 225 in the International Tables for Crystallography The Strukturbericht designation is B1 12 In the rock salt structure each of the two atom types forms a separate face centered cubic lattice with the two lattices interpenetrating so as to form a 3D checkerboard pattern The rock salt structure has octahedral coordination Each atom s nearest neighbors consist of six atoms of the opposite type positioned like the six vertices of a regular octahedron In sodium chloride there is a 1 1 ratio of sodium to chlorine atoms The structure can also be described as an FCC lattice of sodium with chlorine occupying each octahedral void or vice versa 6 Examples of compounds with this structure include sodium chloride itself along with almost all other alkali halides and many divalent metal oxides sulfides selenides and tellurides 7 According to the radius ratio rule this structure is more likely to be formed if the cation is somewhat smaller than the anion a cation anion radius ratio of 0 414 to 0 732 The interatomic distance distance between cation and anion or half the unit cell length a in some rock salt structure crystals are 2 3 A 2 3 10 10 m for NaF 13 2 8 A for NaCl 14 and 3 2 A for SnTe 15 Most of the alkali metal hydrides and halides have the rock salt structure though a few have the caesium chloride structure instead Alkali metal hydrides and halides with the rock salt structure Hydrides Fluorides Chlorides Bromides IodidesLithium Lithium hydride Lithium fluoride 16 Lithium chloride Lithium bromide Lithium iodideSodium Sodium hydride Sodium fluoride 16 Sodium chloride Sodium bromide Sodium iodidePotassium Potassium hydride Potassium fluoride 16 Potassium chloride Potassium bromide Potassium iodideRubidium Rubidium hydride Rubidium fluoride Rubidium chloride Rubidium bromide Rubidium iodideCaesium Caesium hydride Caesium fluoride CsCl structure Alkaline earth metal chalcogenides with the rock salt structure Oxides Sulfides Selenides Tellurides PolonidesMagnesium Magnesium oxide Magnesium sulfide Magnesium selenide 17 Magnesium telluride 18 NiAs structure Calcium Calcium oxide Calcium sulfide Calcium selenide 19 Calcium telluride Calcium polonide 20 Strontium Strontium oxide Strontium sulfide Strontium selenide Strontium telluride Strontium polonide 20 Barium Barium oxide Barium sulfide Barium selenide Barium telluride Barium polonide 20 Rare earth 21 and actinoid pnictides with the rock salt structure Nitrides Phosphides Arsenides Antimonides BismuthidesScandium Scandium nitride Scandium phosphide Scandium arsenide 22 Scandium antimonide 23 Scandium bismuthide 24 Yttrium Yttrium nitride Yttrium phosphide Yttrium arsenide 25 Yttrium antimonide Yttrium bismuthide 26 Lanthanum Lanthanum nitride 27 Lanthanum phosphide 28 Lanthanum arsenide 25 Lanthanum antimonide Lanthanum bismuthide 29 Cerium Cerium nitride 27 Cerium phosphide 28 Cerium arsenide 25 Cerium antimonide Cerium bismuthide 29 Praseodymium Praseodymium nitride 27 Praseodymium phosphide 28 Praseodymium arsenide 25 Praseodymium antimonide 30 Praseodymium bismuthide 29 Neodymium Neodymium nitride 27 Neodymium phosphide 28 Neodymium arsenide 25 Neodymium antimonide 30 Neodymium bismuthide 29 Promethium Samarium Samarium nitride 27 Samarium phosphide 28 Samarium arsenide 25 Samarium antimonide 30 Samarium bismuthide 29 Europium Europium nitride 27 Europium phosphide Na2O2 structure 31 unstable 32 Gadolinium Gadolinium nitride 27 Gadolinium phosphide Gadolinium arsenide 25 Gadolinium antimonide 30 Gadolinium bismuthide 29 Terbium Terbium nitride 27 Terbium phosphide Terbium arsenide 25 Terbium antimonide 30 Terbium bismuthide 29 Dysprosium Dysprosium nitride 27 Dysprosium phosphide Dysprosium arsenide Dysprosium antimonide Dysprosium bismuthide 29 Holmium Holmium nitride 27 Holmium phosphide Holmium arsenide 25 Holmium antimonide Holmium bismuthide 29 Erbium Erbium nitride 27 Erbium phosphide Erbium arsenide 25 Erbium antimonide Erbium bismuthide 29 Thulium Thulium nitride 27 Thulium phosphide Thulium arsenide Thulium antimonide Thulium bismuthide 29 Ytterbium Ytterbium nitride 27 Ytterbium phosphide Ytterbium arsenide 25 Ytterbium antimonide unstable 33 34 Lutetium Lutetium nitride 27 Lutetium phosphide Lutetium arsenide Lutetium antimonide Lutetium bismuthideActinium Thorium Thorium nitride 35 Thorium phosphide 35 Thorium arsenide 35 Thorium antimonide 35 CsCl structure Protactinium Uranium Uranium nitride 35 Uranium monophosphide 35 Uranium arsenide 35 Uranium antimonide 35 Uranium bismuthide 36 Neptunium Neptunium nitride Neptunium phosphide Neptunium arsenide Neptunium antimonide Neptunium bismuthide 36 Plutonium Plutonium nitride 35 Plutonium phosphide 35 Plutonium arsenide 35 Plutonium antimonide 35 Plutonium bismuthide 36 Americium Americium nitride 36 Americium phosphide 36 Americium arsenide 36 Americium antimonide 36 Americium bismuthide 36 Curium Curium nitride 37 Curium phosphide 37 Curium arsenide 37 Curium antimonide 37 Curium bismuthide 37 Berkelium Berkelium nitride 37 Berkelium phosphide 37 Berkelium arsenide 37 Berkelium bismuthide 37 Californium Californium arsenide 37 Californium bismuthide 37 Rare earth and actinoid chalcogenides with the rock salt structure Oxides Sulfides Selenides Tellurides PolonidesScandium unstable 38 Scandium monosulfideYttrium Yttrium monosulfide 39 Lanthanum Lanthanum monosulfide 40 Cerium Cerium monosulfide 40 Cerium monoselenide 41 Cerium monotelluride 41 Praseodymium Praseodymium monosulfide 40 Praseodymium monoselenide 41 Praseodymium monotelluride 41 Neodymium Neodymium monosulfide 40 Neodymium monoselenide 41 Neodymium monotelluride 41 Promethium Samarium Samarium monosulfide 40 Samarium monoselenide Samarium monotelluride Samarium monopolonide 42 Europium Europium monoxide Europium monosulfide 40 Europium monoselenide 43 Europium monotelluride 43 Europium monopolonide 42 Gadolinium unstable 38 Gadolinium monosulfide 40 Terbium Terbium monosulfide 40 Terbium monopolonide 42 Dysprosium Dysprosium monosulfide 40 Dysprosium monopolonide 42 Holmium Holmium monosulfide 40 Holmium monopolonide 42 Erbium Erbium monosulfide 40 Thulium Thulium monosulfide 40 Thulium monopolonide 42 Ytterbium Ytterbium monoxide Ytterbium monosulfide 40 Ytterbium monopolonide 42 Lutetium unstable 38 44 Lutetium monosulfide 40 Lutetium monopolonide 42 Actinium Thorium Thorium monosulfide 35 Thorium monoselenide 35 CsCl structure 45 Protactinium Uranium Uranium monosulfide 35 Uranium monoselenide 35 Uranium monotelluride 35 Neptunium Neptunium monosulfide Neptunium monoselenide Neptunium monotelluridePlutonium Plutonium monosulfide 35 Plutonium monoselenide 35 Plutonium monotelluride 35 Americium Americium monosulfide 36 Americium monoselenide 36 Americium monotelluride 36 Curium Curium monosulfide 37 Curium monoselenide 37 Curium monotelluride 37 Transition metal carbides and nitrides with the rock salt structure Carbides NitridesTitanium Titanium carbide Titanium nitrideZirconium Zirconium carbide Zirconium nitrideHafnium Hafnium carbide Hafnium nitride 46 Vanadium Vanadium carbide Vanadium nitrideNiobium Niobium carbide Niobium nitrideTantalum Tantalum carbide CoSn structure Chromium unstable 47 Chromium nitrideMany transition metal monoxides also have the rock salt structure TiO VO CrO MnO FeO CoO NiO CdO The early actinoid monocarbides also have this structure ThC PaC UC NpC PuC 37 Other compounds showing rock salt like structure are TiB 48 ZrB 49 PbS PbSe PbTe SnTe AgF AgCl and AgBr Fluorite structure Edit Main article Fluorite structure See also Category Fluorite crystal structure Much like the rock salt structure the fluorite structure AB2 is also an Fm3 m structure but has 1 2 ratio of ions The anti fluorite structure is nearly identical except the positions of the anions and cations are switched in the structure They are designated Wyckoff positions 4a and 8c whereas the rock salt structure positions are 4a and 4b 50 51 Zincblende structure Edit See also Category Zincblende crystal structure A zincblende unit cell The space group of the Zincblende structure is called F4 3m in Hermann Mauguin notation or 216 52 53 The Strukturbericht designation is B3 54 The Zincblende structure also written zinc blende is named after the mineral zincblende sphalerite one form of zinc sulfide b ZnS As in the rock salt structure the two atom types form two interpenetrating face centered cubic lattices However it differs from rock salt structure in how the two lattices are positioned relative to one another The zincblende structure has tetrahedral coordination Each atom s nearest neighbors consist of four atoms of the opposite type positioned like the four vertices of a regular tetrahedron In zinc sulfide the ratio of zinc to sulfur is 1 1 6 Altogether the arrangement of atoms in zincblende structure is the same as diamond cubic structure but with alternating types of atoms at the different lattice sites The structure can also be described as an FCC lattice of zinc with sulfur atoms occupying half of the tetrahedral voids or vice versa 6 Examples of compounds with this structure include zincblende itself lead II nitrate many compound semiconductors such as gallium arsenide and cadmium telluride and a wide array of other binary compounds citation needed The boron group pnictogenides usually have a zincblende structure though the nitrides are more common in the wurtzite structure and their zincblende forms are less well known polymorphs 55 56 Copper halides with the zincblende structure Fluorides Chorlorides Bromides IodidesCopper Copper I fluoride Copper I chloride Copper I bromide Copper I iodideBeryllium and Group 12 chalcogenides with the zincblende structure Sulfides Selenides Tellurides PolonidesBeryllium Beryllium sulfide Beryllium selenide Beryllium telluride Beryllium polonide 57 58 Zinc Zinc sulfide Zinc selenide Zinc telluride Zinc polonideCadmium Cadmium sulfide Cadmium selenide Cadmium telluride Cadmium polonideMercury Mercury sulfide Mercury selenide Mercury telluride This group is also known as the II VI family of compounds most of which can be made in both the zincblende cubic or wurtzite hexagonal form Group 13 pnictogenides with the zincblende structure Nitrides Phosphides Arsenides AntimonidesBoron Boron nitride Boron phosphide Boron arsenide Boron antimonideAluminium Aluminium nitride Aluminium phosphide Aluminium arsenide Aluminium antimonideGallium Gallium nitride Gallium phosphide Gallium arsenide Gallium antimonideIndium Indium nitride Indium phosphide Indium arsenide Indium antimonideThis group is also known as the III V family of compounds The structure of the Heusler compounds with formula X2YZ e g Co2MnSi Heusler structure Edit Main article Heusler compound The Heusler structure based on the structure of Cu2MnAl is a common structure for ternary compounds involving transition metals It has the space group Fm3 m No 225 and the Strukturbericht designation is L21 Together with the closely related half Heusler and inverse Huesler compounds there are hundreds of examples Iron monosilicide structure Edit See also Category Iron monosilicide structure type Diagram of the iron monosilicide structure The space group of the iron monosilicide structure is P213 No 198 and the Strukturbericht designation is B20 This is a chiral structure and is sometimes associated with helimagnetic properties There are four atoms of each element for a total of eight atoms in the unit cell Examples occur among the transition metal silicides and germanides as well as a few other compounds such as gallium palladide Transition metal silicides and germanides with the FeSi structure Silicides GermanidesManganese Manganese monosilicide Manganese germanideIron Iron monosilicide Iron germanideCobalt Cobalt monosilicide Cobalt germanideChromium Chromium IV silicide Chromium IV germanideWeaire Phelan structure Edit Weaire Phelan structure A Weaire Phelan structure has Pm3 n 223 symmetry It has three orientations of stacked tetradecahedrons with pyritohedral cells in the gaps It is found as a crystal structure in chemistry where it is usually known as a type I clathrate structure Gas hydrates formed by methane propane and carbon dioxide at low temperatures have a structure in which water molecules lie at the nodes of the Weaire Phelan structure and are hydrogen bonded together and the larger gas molecules are trapped in the polyhedral cages See also EditAtomium building which is a model of a bcc unit cell with vertical body diagonal Close packing Dislocations Reciprocal latticeReferences Edit a b c P M de Wolff N V Belov E F Bertaut M J Buerger J D H Donnay W Fischer Th Hahn V A Koptsik A L Mackay H Wondratschek A J C Wilson and S C Abrahams 1985 Nomenclature for crystal families Bravais lattice types and arithmetic classes Report of the International Union of Crystallography Ad Hoc Committee on the Nomenclature of Symmetry Acta Crystallographica Section A 41 3 278 doi 10 1107 S0108767385000587 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Prince E ed 2006 International Tables for Crystallography International Union of Crystallography doi 10 1107 97809553602060000001 ISBN 978 1 4020 4969 9 S2CID 146060934 Crystallography and Minerals Arranged by Crystal Form Webmineral Greenwood Norman N Earnshaw Alan 1997 Chemistry of the Elements 2nd ed Butterworth Heinemann ISBN 978 0 08 037941 8 The original discovery was in J Chem Phys 14 569 1946 a b c d Cubic Lattices and Close Packing 3 October 2013 Archived from the original on 2020 11 01 a b Seitz Modern Theory of Solids 1940 p 49 The CsCl B2 Structure Archived 2008 09 15 at the Wayback Machine Saccone A Delfino S Maccio D Ferro R 1993 Magnesium rare earth phase diagrams Experimental investigation of the Ho Mg system Journal of Phase Equilibria Springer Science and Business Media LLC 14 3 280 287 doi 10 1007 bf02668225 ISSN 1054 9714 S2CID 95011597 Kanematu K T Alfieri G Banks E 1969 Magnetic Studies of Rare Earth Zinc Compounds with CsCl Structure Journal of the Physical Society of Japan Physical Society of Japan 26 2 244 248 Bibcode 1969JPSJ 26 244K doi 10 1143 jpsj 26 244 ISSN 0031 9015 Buschow K H J 1974 Magnetic properties of CsCl type rare earth cadmium compounds The Journal of Chemical Physics AIP Publishing 61 11 4666 4670 Bibcode 1974JChPh 61 4666B doi 10 1063 1 1681788 ISSN 0021 9606 The NaCl B1 Structure Archived 2008 10 19 at the Wayback Machine Sundquist J J Lin C C 1981 Electronic structure of the F centre in a sodium fluoride crystal Journal of Physics C Solid State Physics 14 32 4797 4805 Bibcode 1981JPhC 14 4797S doi 10 1088 0022 3719 14 32 016 Abrahams S C Bernstein J L 1965 Accuracy of an automatic diffractometer Measurement of the sodium chloride structure factors Acta Crystallogr 18 5 926 932 doi 10 1107 S0365110X65002244 Kao W Peretti E 1970 The ternary subsystem Sn4As3 SnAs SnTe Journal of the Less Common Metals 22 39 50 doi 10 1016 0022 5088 70 90174 8 a b c J Aigueperse P Mollard D Devilliers M Chemla R Faron R Romano J P Cuer Fluorine Compounds Inorganic section 4 in Ullmann s Encyclopedia of Industrial Chemistry Wiley VCH Weinheim 2005 doi 10 1002 14356007 a11 307 Broch Einar 1927 06 01 Prazisionsbestimmungen der Gitterkonstanten der Verbindungen MgO MgS MgSe MnO und MnSe Zeitschrift fur Physikalische Chemie in German Walter de Gruyter GmbH 127U 1 446 454 doi 10 1515 zpch 1927 12724 ISSN 2196 7156 S2CID 100227546 Mir Showkat H Jha Prakash C Dabhi Shweta Jha Prafulla K 2016 Ab initio study of phase stability lattice dynamics and thermodynamic properties of magnesium chalcogenides Materials Chemistry and Physics Elsevier BV 175 54 61 doi 10 1016 j matchemphys 2016 02 066 ISSN 0254 0584 Louail L Haddadi K Maouche D Ali Sahraoui F Hachemi A 2008 Electronic band structure of calcium selenide under pressure Physica B Condensed Matter Elsevier BV 403 18 3022 3026 Bibcode 2008PhyB 403 3022L doi 10 1016 j physb 2008 03 009 ISSN 0921 4526 a b c Brown S A Brown P L 2019 The Aqueous Chemistry of Polonium and the Practical Application of its Thermochemistry Elsevier Science p 25 ISBN 978 0 12 819309 9 Retrieved 2022 01 08 Hulliger F 1979 Chapter 33 Rare earth pnictides Handbook on the Physics and Chemistry of Rare Earths Vol 4 Elsevier pp 153 236 doi 10 1016 s0168 1273 79 04006 x ISBN 9780444852168 ISSN 0168 1273 Gschneidner K A Calderwood F W 1986 The As Sc Arsenic Scandium system Bulletin of Alloy Phase Diagrams Springer Science and Business Media LLC 7 4 348 349 doi 10 1007 bf02873011 ISSN 0197 0216 Hayashi J Shirotani I Hirano K Ishimatsu N Shimomura O Kikegawa T 2003 Structural phase transition of ScSb and YSb with a NaCl type structure at high pressures Solid State Communications Elsevier BV 125 10 543 546 Bibcode 2003SSCom 125 543H doi 10 1016 s0038 1098 02 00889 x ISSN 0038 1098 Horovitz C T 2012 Scandium Its Occurrence Chemistry Physics Metallurgy Biology and Technology Elsevier Science p 273 ISBN 978 0 323 14451 3 Retrieved 2022 01 06 a b c d e f g h i j k Ono S Despault J G Calvert L D Taylor J B 1970 Rare earth arsenides Journal of the Less Common Metals Elsevier BV 22 1 51 59 doi 10 1016 0022 5088 70 90175 x ISSN 0022 5088 Schmidt F A McMasters O D Lichtenberg R R 1969 The yttrium bismuth alloy system Journal of the Less Common Metals Elsevier BV 18 3 215 220 doi 10 1016 0022 5088 69 90159 3 ISSN 0022 5088 a b c d e f g h i j k l m n Natali F Ruck B J Plank N O V Trodahl H J Granville S Meyer C Lambrecht W R L 2013 Rare earth mononitrides Progress in Materials Science Elsevier BV 58 8 1316 1360 arXiv 1208 2410 doi 10 1016 j pmatsci 2013 06 002 ISSN 0079 6425 S2CID 118566136 a b c d e Ono S Nomura K Hayakawa H 1974 Syntheses of new rare earth phosphides Journal of the Less Common Metals Elsevier BV 38 2 3 119 130 doi 10 1016 0022 5088 74 90055 1 ISSN 0022 5088 a b c d e f g h i j k Yoshihara K Taylor J B Calvert L D Despault J G 1975 Rare earth bismuthides Journal of the Less Common Metals Elsevier BV 41 2 329 337 doi 10 1016 0022 5088 75 90038 7 ISSN 0022 5088 a b c d e Hayashi J Shirotani I Tanaka Y Adachi T Shimomura O Kikegawa T 2000 Phase transitions of LnSb Ln lanthanide with NaCl type structure at high pressures Solid State Communications Elsevier BV 114 11 561 565 Bibcode 2000SSCom 114 561H doi 10 1016 s0038 1098 00 00113 7 ISSN 0038 1098 Gschneidner K A Calderwood F W 1986 The As Eu Arsenic Europium system Bulletin of Alloy Phase Diagrams Springer Science and Business Media LLC 7 3 279 283 doi 10 1007 bf02869009 ISSN 0197 0216 Taylor J B Calvert L D Wang Y 1979 04 01 Powder data for some new europium antimonides and bismuthides Journal of Applied Crystallography International Union of Crystallography IUCr 12 2 249 251 doi 10 1107 s0021889879012309 ISSN 0021 8898 Okamoto H 1999 Bi Yb bismuth ytterbium Journal of Phase Equilibria Springer Science and Business Media LLC 20 4 453 doi 10 1361 105497199770335640 ISSN 1054 9714 Duan Xu Wu Fan Chen Jia Zhang Peiran Liu Yang Yuan Huiqiu Cao Chao 2018 11 02 Tunable electronic structure and topological properties of LnPn Ln Ce Pr Sm Gd Yb Pn Sb Bi Communications Physics Springer Science and Business Media LLC 1 1 71 Bibcode 2018CmPhy 1 71D doi 10 1038 s42005 018 0074 8 ISSN 2399 3650 a b c d e f g h i j k l m n o p q r s t Kruger O L Moser J B 1967 Lattice constants and melting points of actinide group IVA VIA compounds with NaCl type structures Journal of Physics and Chemistry of Solids Elsevier BV 28 11 2321 2325 Bibcode 1967JPCS 28 2321K doi 10 1016 0022 3697 67 90257 0 ISSN 0022 3697 a b c d e f g h i j k Vogt O Mattenberger K 1995 The magnetism of localized or nearly localized 4f and 5f shells Journal of Alloys and Compounds Elsevier BV 223 2 226 236 doi 10 1016 0925 8388 94 09005 x ISSN 0925 8388 a b c d e f g h i j k l m n o Benedict U Holzapfel W B 1993 Chapter 113 High pressure studies Structural aspects Lanthanides Actinides Physics I Handbook on the Physics and Chemistry of Rare Earths Vol 17 Elsevier pp 245 300 doi 10 1016 s0168 1273 05 80030 3 ISBN 9780444815026 ISSN 0168 1273 a b c Leger J M Yacoubi N Loriers J 1981 Synthesis of rare earth monoxides Journal of Solid State Chemistry Elsevier BV 36 3 261 270 Bibcode 1981JSSCh 36 261L doi 10 1016 0022 4596 81 90436 9 ISSN 0022 4596 Roedhammer P Reichardt W Holtzberg F 1978 02 13 Soft Mode Behavior in the Phonon Dispersion of YS Physical Review Letters American Physical Society APS 40 7 465 468 Bibcode 1978PhRvL 40 465R doi 10 1103 physrevlett 40 465 ISSN 0031 9007 a b c d e f g h i j k l m n Didchenko R Gortsema F P 1963 Some electric and magnetic properties of rare earth monosulfides and nitrides Journal of Physics and Chemistry of Solids Elsevier BV 24 7 863 870 Bibcode 1963JPCS 24 863D doi 10 1016 0022 3697 63 90062 3 ISSN 0022 3697 a b c d e f Smolensky G A Adamjan V E Loginov G M 1968 Antiferromagnetic Properties of Light Rare Earth Monochalcogenides Journal of Applied Physics AIP Publishing 39 2 786 790 Bibcode 1968JAP 39 786S doi 10 1063 1 2163619 ISSN 0021 8979 a b c d e f g h Kershner C J DeSando R J Heidelberg R F Steinmeyer R H 1966 Rare earth polonides Journal of Inorganic and Nuclear Chemistry Elsevier BV 28 8 1581 1588 doi 10 1016 0022 1902 66 80054 4 ISSN 0022 1902 a b Wachter P 1972 The optical electrical and magnetic properties of the europium chalcogenides and the rare earth pnictides C R C Critical Reviews in Solid State Sciences Informa UK Limited 3 2 189 241 doi 10 1080 10408437208244865 ISSN 0011 085X Meyer G 1991 Synthesis of Lanthanide and Actinide Compounds Dordrecht Springer Netherlands p 237 ISBN 978 94 011 3758 4 OCLC 840310000 D Eye R W M Sellman P G 1954 The thorium tellurium system J Chem Soc Royal Society of Chemistry RSC 3760 3766 doi 10 1039 jr9540003760 ISSN 0368 1769 Friedrich Alexandra Winkler Bjorn Juarez Arellano Erick A Bayarjargal Lkhamsuren 2011 09 28 Synthesis of Binary Transition Metal Nitrides Carbides and Borides from the Elements in the Laser Heated Diamond Anvil Cell and Their Structure Property Relations Materials MDPI AG 4 10 1648 1692 Bibcode 2011Mate 4 1648F doi 10 3390 ma4101648 ISSN 1996 1944 PMC 5448873 PMID 28824101 Venkatraman M Neumann J P 1990 The C Cr Carbon Chromium System Bulletin of Alloy Phase Diagrams Springer Science and Business Media LLC 11 2 152 159 doi 10 1007 bf02841701 ISSN 0197 0216 Murray J L Liao P K Spear K E 1986 The B Ti Boron Titanium system Bulletin of Alloy Phase Diagrams Springer Science and Business Media LLC 7 6 550 555 doi 10 1007 bf02869864 ISSN 0197 0216 Glaser Frank W Post Benjamin 1953 System Zirconium Boron JOM Springer Science and Business Media LLC 5 9 1117 1118 Bibcode 1953JOM 5i1117G doi 10 1007 bf03397597 ISSN 1047 4838 Fluorite aflow org Retrieved 2020 05 22 Rock Salt aflow org Retrieved 2020 05 22 L Kantorovich 2004 Quantum Theory of the Solid State Springer p 32 ISBN 1 4020 2153 4 Birkbeck College University of London The Zincblende B3 Structure Archived October 19 2008 at the Wayback Machine Wang L D Kwok H S 2000 Cubic aluminum nitride and gallium nitride thin films prepared by pulsed laser deposition Applied Surface Science Elsevier BV 154 155 1 4 439 443 Bibcode 2000ApSS 154 439W doi 10 1016 s0169 4332 99 00372 4 ISSN 0169 4332 Oseki Masaaki Okubo Kana Kobayashi Atsushi Ohta Jitsuo Fujioka Hiroshi 2014 02 04 Field effect transistors based on cubic indium nitride Scientific Reports Springer Science and Business Media LLC 4 1 3951 Bibcode 2014NatSR 4E3951O doi 10 1038 srep03951 ISSN 2045 2322 PMC 3912472 PMID 24492240 Greenwood Norman N Earnshaw Alan 1984 Chemistry of the Elements Oxford Pergamon Press p 899 ISBN 978 0 08 022057 4 Moyer Harvey V 1956 Chemical Properties of Polonium In Moyer Harvey V ed Polonium Report Oak Ridge Tenn United States Atomic Energy Commission pp 33 96 doi 10 2172 4367751 TID 5221 Further reading EditHurlbut Cornelius S Klein Cornelis 1985 Manual of Mineralogy 20th ed Wiley ISBN 0 471 80580 7External links EditJMol simulations by Graz University Simple cubic BCC FCC HCPMaking crystal structure with Molview Retrieved from https en wikipedia org w index php title Cubic crystal system amp oldid 1136198447, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.