fbpx
Wikipedia

Fern

The ferns (Polypodiopsida or Polypodiophyta) are a group of vascular plants (plants with xylem and phloem) that reproduce via spores and have neither seeds nor flowers. They differ from mosses by being vascular, i.e., having specialized tissues that conduct water and nutrients and in having life cycles in which the branched sporophyte is the dominant phase.

Ferns
Temporal range: Middle Devonian[1]Present
Scientific classification
Kingdom: Plantae
Clade: Tracheophytes
Division: Polypodiophyta
Class: Polypodiopsida
Cronquist, Takht. & W.Zimm.
Subclasses[2]
Synonyms
  • Filicatae Kubitski 1990
  • Filices
  • Filicophyta Endlicher 1836
  • Monilophyta Cantino & Donoghue 2007
  • Pteridopsida Ritgen 1828

Ferns have complex leaves called megaphylls, that are more complex than the microphylls of clubmosses. Most ferns are leptosporangiate ferns. They produce coiled fiddleheads that uncoil and expand into fronds. The group includes about 10,560 known extant species. Ferns are defined here in the broad sense, being all of the Polypodiopsida, comprising both the leptosporangiate (Polypodiidae) and eusporangiate ferns, the latter group including horsetails, whisk ferns, marattioid ferns, and ophioglossoid ferns.

Ferns first appear in the fossil record about 360 million years ago in the late Devonian period, but Polypodiales, the group that makes up 80% of living fern diversity, did not appear and diversify until the Cretaceous, contemporaneous with the rise of flowering plants that came to dominate the world's flora.

Ferns are not of major economic importance, but some are used for food, medicine, as biofertilizer, as ornamental plants, and for remediating contaminated soil. They have been the subject of research for their ability to remove some chemical pollutants from the atmosphere. Some fern species, such as bracken (Pteridium aquilinum) and water fern (Azolla filiculoides), are significant weeds worldwide. Some fern genera, such as Azolla, can fix nitrogen and make a significant input to the nitrogen nutrition of rice paddies. They also play certain roles in folklore.

Description edit

Sporophyte edit

Extant ferns are herbaceous perennials and most lack woody growth.[3] When woody growth is present, it is found in the stem.[4] Their foliage may be deciduous or evergreen,[5] and some are semi-evergreen depending on the climate.[6] Like the sporophytes of seed plants, those of ferns consist of stems, leaves and roots. Ferns differ from spermatophytes in that they reproduce by spores rather than having flowers and producing seeds.[4] However, they also differ from spore-producing bryophytes in that, like seed plants, they are polysporangiophytes, their sporophytes branching and producing many sporangia. Also unlike bryophytes, fern sporophytes are free-living and only briefly dependent on the maternal gametophyte.

The green, photosynthetic part of the plant is technically a megaphyll and in ferns, it is often called a frond. New leaves typically expand by the unrolling of a tight spiral called a crozier or fiddlehead into fronds.[7] This uncurling of the leaf is termed circinate vernation. Leaves are divided into two types: sporophylls and tropophylls. Sporophylls produce spores; tropophylls do not. Fern spores are borne in sporangia which are usually clustered to form sori. The sporangia may be covered with a protective coating called an indusium. The arrangement of the sporangia is important in classification.[4]

In monomorphic ferns, the fertile and sterile leaves looks morphologically the same, and both are able to photosynthesize. In hemidimorphic ferns, just a portion of the fertile leaf is different from the sterile leaves. In dimorphic (holomorphic) ferns, the two types of leaves are morphologically distinct.[8] The fertile leaves are much narrower than the sterile leaves, and may have no green tissue at all, as in the Blechnaceae and Lomariopsidaceae.

 
Croziers, fronds, and rhizomes of bracken. In this species the stems grow underground, allowing the plant to spread horizontally.

The anatomy of fern leaves can be anywhere from simple to highly divided, or even indeterminate (e.g. Gleicheniaceae, Lygodiaceae). The divided forms are pinnate, where the leaf segments are completely separated from one other, or pinnatifid (partially pinnate), where the leaf segments are still partially connected. When the fronds are branched more than once, it can also be a combination of the pinnatifid are pinnate shapes. If the leaf blades are divided twice, the plant has bipinnate fronds, and tripinnate fronds if they branch three times, and all the way to tetra- and pentapinnate fronds.[9][10] In tree ferns, the main stalk that connects the leaf to the stem (known as the stipe), often has multiple leaflets. The leafy structures that grow from the stipe are known as pinnae and are often again divided into smaller pinnules.[11]

Fern stems are often loosely called rhizomes, even though they grow underground only in some of the species. Epiphytic species and many of the terrestrial ones have above-ground creeping stolons (e.g., Polypodiaceae), and many groups have above-ground erect semi-woody trunks (e.g., Cyatheaceae, the scaly tree ferns). These can reach up to 20 meters (66 ft) tall in a few species (e.g., Cyathea brownii on Norfolk Island and Cyathea medullaris in New Zealand).[12]

Roots are underground non-photosynthetic structures that take up water and nutrients from soil. They are always fibrous and are structurally very similar to the roots of seed plants.

Gametophyte edit

As in all vascular plants, the sporophyte is the dominant phase or generation in the life cycle. The gametophytes of ferns, however, are very different from those of seed plants. They are free-living and resemble liverworts, whereas those of seed plants develop within the spore wall and are dependent on the parent sporophyte for their nutrition. A fern gametophyte typically consists of:

  • Prothallus: A green, photosynthetic structure that is one cell thick, usually heart or kidney shaped, 3–10 mm long and 2–8 mm broad. The prothallus produces gametes by means of:
    • Antheridia: Small spherical structures that produce flagellate sperm.
    • Archegonia: A flask-shaped structure that produces a single egg at the bottom, reached by the sperm by swimming down the neck.
  • Rhizoids: root-like structures (not true roots) that consist of single greatly elongated cells, that absorb water and mineral salts over the whole structure. Rhizoids anchor the prothallus to the soil.

Taxonomy edit

Carl Linnaeus (1753) originally recognized 15 genera of ferns and fern allies, classifying them in class Cryptogamia in two groups, Filices (e.g. Polypodium) and Musci (mosses).[13][14][15] By 1806 this had increased to 38 genera,[16] and has progressively increased since (see Schuettpelz et al (2018)). Ferns were traditionally classified in the class Filices, and later in a Division of the Plant Kingdom named Pteridophyta or Filicophyta. Pteridophyta is no longer recognised as a valid taxon because it is paraphyletic. The ferns are also referred to as Polypodiophyta or, when treated as a subdivision of Tracheophyta (vascular plants), Polypodiopsida, although this name sometimes only refers to leptosporangiate ferns. Traditionally, all of the spore producing vascular plants were informally denominated the pteridophytes, rendering the term synonymous with ferns and fern allies. This can be confusing because members of the division Pteridophyta were also denominated pteridophytes (sensu stricto).

Traditionally, three discrete groups have been denominated ferns: two groups of eusporangiate ferns, the families Ophioglossaceae (adder's tongues, moonworts, and grape ferns) and Marattiaceae; and the leptosporangiate ferns. The Marattiaceae are a primitive group of tropical ferns with large, fleshy rhizomes and are now thought to be a sibling taxon to the leptosporangiate ferns. Several other groups of species were considered fern allies: the clubmosses, spikemosses, and quillworts in Lycopodiophyta; the whisk ferns of Psilotaceae; and the horsetails of Equisetaceae. Since this grouping is polyphyletic, the term fern allies should be abandoned, except in a historical context.[17] More recent genetic studies demonstrated that the Lycopodiophyta are more distantly related to other vascular plants, having radiated evolutionarily at the base of the vascular plant clade, while both the whisk ferns and horsetails are as closely related to leptosporangiate ferns as the ophioglossoid ferns and Marattiaceae. In fact, the whisk ferns and ophioglossoid ferns are demonstrably a clade, and the horsetails and Marattiaceae are arguably another clade.

Molecular phylogenetics edit

Smith et al. (2006) carried out the first higher-level pteridophyte classification published in the molecular phylogenetic era, and considered the ferns as monilophytes, as follows:[18]

Molecular data, which remain poorly constrained for many parts of the plants' phylogeny, have been supplemented by morphological observations supporting the inclusion of Equisetaceae in the ferns, notably relating to the construction of their sperm and peculiarities of their roots.[18]

The leptosporangiate ferns are sometimes called "true ferns".[19] This group includes most plants familiarly known as ferns. Modern research supports older ideas based on morphology that the Osmundaceae diverged early in the evolutionary history of the leptosporangiate ferns; in certain ways this family is intermediate between the eusporangiate ferns and the leptosporangiate ferns. Rai and Graham (2010) broadly supported the primary groups, but queried their relationships, concluding that "at present perhaps the best that can be said about all relationships among the major lineages of monilophytes in current studies is that we do not understand them very well".[20] Grewe et al. (2013) confirmed the inclusion of horsetails within ferns sensu lato, but also suggested that uncertainties remained in their precise placement.[21] Other classifications have raised Ophioglossales to the rank of a fifth class, separating the whisk ferns and ophioglossoid ferns.[21]

Phylogeny edit

The ferns are related to other groups as shown in the following cladogram:[17][22][23][2]

Tracheophyta

Lycophytes  

Euphyllophyta

Ferns  

Spermatophyta
(seed plants)
(vascular plants)

Nomenclature and subdivision edit

The classification of Smith et al. in 2006 treated ferns as four classes:[18][24]

In addition they defined 11 orders and 37 families.[18] That system was a consensus of a number of studies, and was further refined.[21][25] The phylogenetic relationships are shown in the following cladogram (to the level of orders).[18][26][21] This division into four major clades was then confirmed using morphology alone.[27]


Tracheophyta

Lycopodiophytes (club mosses, spike mosses, quillworts)

Euphyllophytes

Spermatophytes (seed plants)

Ferns
Psilotopsida

Psilotales (whisk ferns)  

Ophioglossales (grapeferns etc.)

Equisetopsida

Equisetales (horsetails)  


Subsequently, Chase and Reveal considered both lycopods and ferns as subclasses of a class Equisetopsida (Embryophyta) encompassing all land plants. This is referred to as Equisetopsida sensu lato to distinguish it from the narrower use to refer to horsetails alone, Equisetopsida sensu stricto. They placed the lycopods into subclass Lycopodiidae and the ferns, keeping the term monilophytes, into five subclasses, Equisetidae, Ophioglossidae, Psilotidae, Marattiidae and Polypodiidae, by dividing Smith's Psilotopsida into its two orders and elevating them to subclass (Ophioglossidae and Psilotidae).[23] Christenhusz et al.[a] (2011) followed this use of subclasses but recombined Smith's Psilotopsida as Ophioglossidae, giving four subclasses of ferns again.[28]

Christenhusz and Chase (2014) developed a new classification of ferns and lycopods. They used the term Polypodiophyta for the ferns, subdivided like Smith et al. into four groups (shown with equivalents in the Smith system), with 21 families, approximately 212 genera and 10,535 species;[17]

This was a considerable reduction in the number of families from the 37 in the system of Smith et al., since the approach was more that of lumping rather than splitting. For instance a number of families were reduced to subfamilies. Subsequently, a consensus group was formed, the Pteridophyte Phylogeny Group (PPG), analogous to the Angiosperm Phylogeny Group, publishing their first complete classification in November 2016. They recognise ferns as a class, the Polypodiopsida, with four subclasses as described by Christenhusz and Chase, and which are phylogenetically related as in this cladogram:

In the Pteridophyte Phylogeny Group classification of 2016 (PPG I), the Polypodiopsida consist of four subclasses, 11 orders, 48 families, 319 genera, and an estimated 10,578 species.[31] Thus Polypodiopsida in the broad sense (sensu lato) as used by the PPG (Polypodiopsida sensu PPG I) needs to be distinguished from the narrower usage (sensu stricto) of Smith et al. (Polypodiopsida sensu Smith et al.)[2] Classification of ferns remains unresolved and controversial with competing viewpoints (splitting vs lumping) between the systems of the PPG on the one hand and Christenhusz and Chase on the other, respectively. In 2018, Christenhusz and Chase explicitly argued against recognizing as many genera as PPG I.[15][32]

Comparison of fern subdivisions in some classifications
Smith et al. (2006)[18] Chase & Reveal (2009)[23] Christenhusz et al. (2011)[28] Christenhusz & Chase (2014, 2018)[17][33] PPG I (2016)[2]
ferns
(no rank)
monilophytes
(no rank)
ferns (monilophytes)
(no rank)
ferns (Polypodiophyta)
(no rank)
 Class Polypodiopsida
Class Equisetopsida   Subclass Equisetidae   Subclass Equisetidae   Subclass Equisetidae  Subclass Equisetidae
Class Psilotopsida   Subclass Ophioglossidae
  Subclass Psilotidae
  Subclass Ophioglossidae   Subclass Ophioglossidae  Subclass Ophioglossidae
Class Marattiopsida   Subclass Marattiidae   Subclass Marattiidae   Subclass Marattiidae  Subclass Marattiidae
Class Polypodiopsida   Subclass Polypodiidae   Subclass Polypodiidae   Subclass Polypodiidae  Subclass Polypodiidae

Evolution and biogeography edit

Fern-like taxa (Wattieza) first appear in the fossil record in the middle Devonian period, ca. 390 Mya. By the Triassic, the first evidence of ferns related to several modern families appeared. The great fern radiation occurred in the late Cretaceous, when many modern families of ferns first appeared.[34][1][35][36] Ferns evolved to cope with low-light conditions present under the canopy of angiosperms.

Remarkably, the photoreceptor neochrome in the two orders Cyatheales and Polypodiales, integral to their adaptation to low-light conditions, was obtained via horizontal gene transfer from hornworts, a bryophyte lineage.[37]

Due to the very large genome seen in most ferns, it was suspected they might have gone through whole genome duplications, but DNA sequencing has shown that their genome size is caused by the accumulation of mobile DNA like transposons and other genetic elements that infect genomes and get copied over and over again.[38]

Distribution and habitat edit

Ferns are widespread in their distribution, with the greatest richness in the tropics and least in arctic areas. The greatest diversity occurs in tropical rainforests.[39] New Zealand, for which the fern is a symbol, has about 230 species, distributed throughout the country.[40] It is a common plant in European forests.

Ecology edit

Fern species live in a wide variety of habitats, from remote mountain elevations, to dry desert rock faces, bodies of water or open fields. Ferns in general may be thought of as largely being specialists in marginal habitats, often succeeding in places where various environmental factors limit the success of flowering plants. Some ferns are among the world's most serious weed species, including the bracken fern growing in the Scottish highlands, or the mosquito fern (Azolla) growing in tropical lakes, both species forming large aggressively spreading colonies. There are four particular types of habitats that ferns are found in: moist, shady forests; crevices in rock faces, especially when sheltered from the full sun; acid wetlands including bogs and swamps; and tropical trees, where many species are epiphytes (something like a quarter to a third of all fern species).[41]

Especially the epiphytic ferns have turned out to be hosts of a huge diversity of invertebrates. It is assumed that bird's-nest ferns alone contain up to half the invertebrate biomass within a hectare of rainforest canopy.[42]

Many ferns depend on associations with mycorrhizal fungi. Many ferns grow only within specific pH ranges; for instance, the climbing fern (Lygodium palmatum) of eastern North America will grow only in moist, intensely acid soils, while the bulblet bladder fern (Cystopteris bulbifera), with an overlapping range, is found only on limestone.

The spores are rich in lipids, protein and calories, so some vertebrates eat these. The European woodmouse (Apodemus sylvaticus) has been found to eat the spores of Culcita macrocarpa, and the bullfinch (Pyrrhula murina) and the New Zealand lesser short-tailed bat (Mystacina tuberculata) also eat fern spores.[43]

Life cycle edit

Ferns are vascular plants differing from lycophytes by having true leaves (megaphylls), which are often pinnate. They differ from seed plants (gymnosperms and angiosperms) in reproducing by means of spores and lacking flowers and seeds. Like all land plants, they have a life cycle referred to as alternation of generations, characterized by alternating diploid sporophytic and haploid gametophytic phases. The diploid sporophyte has 2n paired chromosomes, where n varies from species to species. The haploid gametophyte has n unpaired chromosomes, i.e. half the number of the sporophyte. The gametophyte of ferns is a free-living organism, whereas the gametophyte of the gymnosperms and angiosperms is dependent on the sporophyte.

The life cycle of a typical fern proceeds as follows:

  1. A diploid sporophyte phase produces haploid spores by meiosis (a process of cell division which reduces the number of chromosomes by a half).
  2. A spore grows into a free-living haploid gametophyte by mitosis (a process of cell division which maintains the number of chromosomes). The gametophyte typically consists of a photosynthetic prothallus.
  3. The gametophyte produces gametes (often both sperm and eggs on the same prothallus) by mitosis.
  4. A mobile, flagellate sperm fertilizes an egg that remains attached to the prothallus.
  5. The fertilized egg is now a diploid zygote and grows by mitosis into a diploid sporophyte (the typical fern plant).

Sometimes a gametophyte can give rise to sporophyte traits like roots or sporangia without the rest of the sporophyte.[44]

Uses edit

Ferns are not as important economically as seed plants, but have considerable importance in some societies. Some ferns are used for food, including the fiddleheads of Pteridium aquilinum (bracken), Matteuccia struthiopteris (ostrich fern), and Osmundastrum cinnamomeum (cinnamon fern). Diplazium esculentum is also used in the tropics (for example in budu pakis, a traditional dish of Brunei[45]) as food. Tubers from the "para", Ptisana salicina (king fern) are a traditional food in New Zealand and the South Pacific. Fern tubers were used for food 30,000 years ago in Europe.[46][47] Fern tubers were used by the Guanches to make gofio in the Canary Islands. Ferns are generally not known to be poisonous to humans.[48] Licorice fern rhizomes were chewed by the natives of the Pacific Northwest for their flavor.[49] Some species of ferns are carcinogenic, and the British Royal Horticultural Society has advised not to consume any species for health reasons of both humans and livestock.[50]

Ferns of the genus Azolla, commonly known as water fern or mosquito ferns are very small, floating plants that do not resemble ferns. The mosquito ferns are used as a biological fertilizer in the rice paddies of southeast Asia, taking advantage of their ability to fix nitrogen from the air into compounds that can then be used by other plants.

Ferns have proved resistant to phytophagous insects. The gene that express the protein Tma12 in an edible fern, Tectaria macrodonta, has been transferred to cotton plants, which became resistant to whitefly infestations.[51]

Many ferns are grown in horticulture as landscape plants, for cut foliage and as houseplants, especially the Boston fern (Nephrolepis exaltata) and other members of the genus Nephrolepis. The bird's nest fern (Asplenium nidus) is also popular, as are the staghorn ferns (genus Platycerium). Perennial (also known as hardy) ferns planted in gardens in the northern hemisphere also have a considerable following.[52]

Several ferns, such as bracken[53] and Azolla[54] species are noxious weeds or invasive species. Further examples include Japanese climbing fern (Lygodium japonicum), sensitive fern (Onoclea sensibilis) and Giant water fern (Salvinia molesta), one of the world's worst aquatic weeds.[55][56] The important fossil fuel coal consists of the remains of primitive plants, including ferns.[57]

Culture edit

 
Ferns in the Victorian era: Blätter des Manns Walfarn by Alois Auer, Vienna: Imperial Printing Office, 1853

Pteridology edit

The study of ferns and other pteridophytes is called pteridology. A pteridologist is a specialist in the study of pteridophytes in a broader sense that includes the more distantly related lycophytes.

Pteridomania edit

Pteridomania was a Victorian era craze which involved fern collecting and fern motifs in decorative art including pottery, glass, metals, textiles, wood, printed paper, and sculpture "appearing on everything from christening presents to gravestones and memorials." The fashion for growing ferns indoors led to the development of the Wardian case, a glazed cabinet that would exclude air pollutants and maintain the necessary humidity.[58]

Other applications edit

 
Barnsley fern created using a chaos game, through an Iterated function system[59]

The Barnsley fern is a fractal named after the British mathematician Michael Barnsley who first described it in his book Fractals Everywhere. A self-similar structure is described by a mathematical function, applied repeatedly at different scales to create a frond pattern.[59]

The dried form of ferns was used in other arts, such as a stencil or directly inked for use in a design. The botanical work, The Ferns of Great Britain and Ireland, is a notable example of this type of nature printing. The process, patented by the artist and publisher Henry Bradbury, impressed a specimen on to a soft lead plate. The first publication to demonstrate this was Alois Auer's The Discovery of the Nature Printing-Process.

Fern bars were popular in America in the 1970s and 80s.

Folklore edit

Ferns figure in folklore, for example in legends about mythical flowers or seeds.[60] In Slavic folklore, ferns are believed to bloom once a year, during the Ivan Kupala night. Although alleged to be exceedingly difficult to find, anyone who sees a fern flower is thought to be guaranteed to be happy and rich for the rest of their life. Similarly, Finnish tradition holds that one who finds the seed of a fern in bloom on Midsummer night will, by possession of it, be guided and be able to travel invisibly to the locations where eternally blazing Will o' the wisps called aarnivalkea mark the spot of hidden treasure. These spots are protected by a spell that prevents anyone but the fern-seed holder from ever knowing their locations.[61] In Wicca, ferns are thought to have magical properties such as a dried fern can be thrown into hot coals of a fire to exorcise evil spirits, or smoke from a burning fern is thought to drive away snakes and such creatures.[62]

New Zealand edit

Ferns are the national emblem of New Zealand and feature on its passport and in the design of its national airline, Air New Zealand, and of its rugby team, the All Blacks.

Organisms confused with ferns edit

Misnomers edit

Several non-fern plants (and even animals) are called ferns and are sometimes confused with ferns. These include:

Fern-like flowering plants edit

Some flowering plants such as palms and members of the carrot family have pinnate leaves that somewhat resemble fern fronds. However, these plants have fully developed seeds contained in fruits, rather than the microscopic spores of ferns.

See also edit

Notes edit

  1. ^ President, International Association of Pteridologists

References edit

  1. ^ a b Stein et al 2007.
  2. ^ a b c d e Pteridophyte Phylogeny Group 2016.
  3. ^ Mauseth, James D. (September 2008). Botany: an Introduction to Plant Biology. Jones & Bartlett Publishers. p. 492. ISBN 978-1-4496-4720-9.
  4. ^ a b c Levyns, M. R. (1966). A Guide to the Flora of the Cape Peninsula (2nd Revised ed.). Juta & Company. OCLC 621340.
  5. ^ Fernández, Helena; Kumar, Ashwani; Revilla, Maria Angeles (11 November 2010). Working with Ferns: Issues and Applications. Springer. p. 175. ISBN 978-1-4419-7162-3.
  6. ^ Hodgson, Larry (1 January 2005). Making the Most of Shade: How to Plan, Plant, and Grow a Fabulous Garden that Lightens Up the Shadows. Rodale. p. 329. ISBN 978-1-57954-966-4.
  7. ^ McCausland 2019.
  8. ^ Understanding the contribution of LFY and PEBP flowering genes to fern leaf dimorphism - Botany 2019
  9. ^ Fern Structure - Forest Service
  10. ^ Fern Structure - Forest Service
  11. ^ . Basic Biology. Archived from the original on 19 April 2015. Retrieved 6 December 2014.
  12. ^ Large, Mark F.; Braggins, John E. (2004). Tree Ferns. Timber Press. ISBN 0881926302.
  13. ^ Underwood 1903.
  14. ^ Linnaeus 1753.
  15. ^ a b Schuettpelz et al 2018.
  16. ^ Swartz 1806.
  17. ^ a b c d Christenhusz & Chase 2014.
  18. ^ a b c d e f Smith et al.2006.
  19. ^ Stace, Clive (2010b). New Flora of the British Isles (3rd ed.). Cambridge, UK: Cambridge University Press. p. xxviii. ISBN 978-0-521-70772-5.
  20. ^ Rai, Hardeep S. & Graham, Sean W. (2010). "Utility of a large, multigene plastid data set in inferring higher-order relationships in ferns and relatives (monilophytes)". American Journal of Botany. 97 (9): 1444–1456. doi:10.3732/ajb.0900305. PMID 21616899., p. 1450
  21. ^ a b c d Grewe, Felix; et al. (2013). "Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes". BMC Evolutionary Biology. 13 (1): 1–16. doi:10.1186/1471-2148-13-8. ISSN 1471-2148. PMC 3553075. PMID 23311954.
  22. ^ Cantino et al 2007.
  23. ^ a b c Chase & Reveal 2009.
  24. ^ Schuettpelz 2007, Table I.
  25. ^ Karol, Kenneth G.; et al. (2010). "Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages". BMC Evolutionary Biology. 10 (1): 321–336. doi:10.1186/1471-2148-10-321. ISSN 1471-2148. PMC 3087542. PMID 20969798.
  26. ^ Li, F-W; Kuo, L-Y; Rothfels, CJ; Ebihara, A; Chiou, W-L; et al. (2011). "rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns". PLOS ONE. 6 (10): e26597. Bibcode:2011PLoSO...626597L. doi:10.1371/journal.pone.0026597. PMC 3197659. PMID 22028918.
  27. ^ Schneider et al 2009.
  28. ^ a b Christenhusz et al 2011.
  29. ^ Nitta, Joel H.; Schuettpelz, Eric; Ramírez-Barahona, Santiago; Iwasaki, Wataru; et al. (2022). "An Open and Continuously Updated Fern Tree of Life". Frontiers in Plant Science. 13: 909768. doi:10.3389/fpls.2022.909768. PMC 9449725. PMID 36092417.
  30. ^ "Tree viewer: interactive visualization of FTOL". FTOL v1.3.0. 2022. Retrieved 12 December 2022.
  31. ^ Christenhusz & Byng 2016.
  32. ^ Christenhusz & Chase 2018.
  33. ^ Christenhusz et al 2018.
  34. ^ UCMP 2019.
  35. ^ Berry 2009.
  36. ^ Bomfleur et al 2014.
  37. ^ Li, F.-W.; Villarreal, J. C.; Kelly, S.; et al. (6 May 2014). "Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns". Proceedings of the National Academy of Sciences. 111 (18): 6672–6677. Bibcode:2014PNAS..111.6672L. doi:10.1073/pnas.1319929111. PMC 4020063. PMID 24733898.
  38. ^ Genes for seeds arose early in plant evolution, ferns reveal
  39. ^ EB 2019.
  40. ^ SLH 2018.
  41. ^ Schuettpelz 2007, Part I.
  42. ^ "Ferns Brimming With Life". Science | AAAS. 2 June 2004.
  43. ^ Walker, Matt (19 February 2010). "A mouse that eats ferns like a dinosaur". BBC Earth News. Retrieved 20 February 2010.
  44. ^ The Ferns (Filicales): Volume 1, Analytical Examination of the Criteria of Comparison: Treated Comparatively with a View to their Natural Classification
  45. ^ Indigenous Fermented Foods of Southeast Asia. 2015.
  46. ^ Van Gilder Cooke, Sonia (23 October 2010). "Stone Age humans liked their burgers in a bun". New Scientist, p. 18.
  47. ^ Revedin, Anna et al. (18 October 2010). "Thirty thousand-year-old evidence of plant food processing". PNAS.
  48. ^ Pelton, Robert (2011). The Official Pocket Edible Plant Survival Manual. Freedom and Liberty Foundation Press. p. 25. BNID 2940013382145.
  49. ^ Moerman, Daniel E. (27 October 2010). Native American Food Plants: An Ethnobotanical Dictionary. Timber Press. p. 190. ISBN 978-1-60469-189-4.
  50. ^ . Archived from the original on 11 November 2011. Retrieved 19 December 2011.
  51. ^ Shukla, Anoop Kumar; Upadhyay, Santosh Kumar; Mishra, Manisha; et al. (26 October 2016). "Expression of an insecticidal fern protein in cotton protects against whitefly". Nature Biotechnology. 34 (10): 1046–1051. doi:10.1038/nbt.3665. PMID 27598229. S2CID 384923.
  52. ^ "Ferns: A Classic Shade Garden Plant". extension.sdstate.edu. Retrieved 30 May 2023.
  53. ^ "Datasheet: Pteridium aquilinum (bracken)". CAB International. 2018. Retrieved 11 February 2019.
  54. ^ "Datasheet: Azolla filiculoides (water fern)". CAB International. 2018. Retrieved 11 February 2019.
  55. ^ "| Center for Aquatic and Invasive Plants | University of Florida, IFAS". plants.ifas.ufl.edu. Retrieved 30 May 2023.
  56. ^ Moran, Robbin (2004). A Natural History of Ferns. Timber Press. ISBN 0-88192-667-1.
  57. ^ "Fossils, Kentucky Geological Survey, University of Kentucky". www.uky.edu. Retrieved 30 May 2023.
  58. ^ Boyd, Peter D. A. (2 January 2002). "Pteridomania - the Victorian passion for ferns". Antique Collecting. Revised: web version. 28 (6): 9–12. Retrieved 2 October 2007.
  59. ^ a b Fractals Everywhere, Boston, MA: Academic Press, 1993, ISBN 0-12-079062-9
  60. ^ May 1978.
  61. ^ "Traditional Finnish Midsummer celebration". Saunalahti.fi. Retrieved 7 September 2013.
  62. ^ Cunningham, Scott (1999). Cunningham's Encyclopedia of Magical Herbs. Llewellyn. p. 102.

Bibliography edit

Books edit

  • Christenhusz, Maarten M. J.; Fay, Michael; Byng, James W. (2018). The Global Flora: Special Edition: GLOVAP Nomenclature Part 1. Plant Gateway Ltd. ISBN 978-0-9929993-6-0.
  • Linnaeus, Carl (1753). "Cryptogamia: Filices Musci". Species Plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Vol. 1. Stockholm: Impensis Laurentii Salvii. pp. 1061–1100, 1100–1130., see also Species Plantarum
  • Lord, Thomas R. (2006). Ferns and Fern Allies of Pennsylvania. Indiana, PA: Pinelands Press. Ferns and Fern Allies of Pennsylvania - Thomas Reeves Lord
  • Moran, Robbin C. (2004). A Natural History of Ferns. Portland, OR: Timber Press. ISBN 0-88192-667-1.
  • Ranker, Tom A.; Haufler, Christopher H. (2008). Biology and Evolution of Ferns and Lycophytes. Cambridge University Press. ISBN 978-0-521-87411-3.
  • Swartz, Olof (1806). Synopsis filicum: earum genera et species systematice complectens: adjectis lycopodineis, et descriptionibus novarum et rariorum specierum: cum tabulis aeneis quinque. Kiliae: Impensis Bibliopolii novi academici.

Journal articles edit

  • Berry, Chris (2009). "The Middle Devonian plant collections of Francois Stockmans reconsidered". Geologica Belgica. 12 (1–2): 25–30.
  • Bomfleur, B.; McLoughlin, S.; Vajda, V. (20 March 2014). "Fossilized Nuclei and Chromosomes Reveal 180 Million Years of Genomic Stasis in Royal Ferns". Science. 343 (6177): 1376–1377. Bibcode:2014Sci...343.1376B. doi:10.1126/science.1249884. PMID 24653037. S2CID 38248823.
  • Cantino, Philip D.; Doyle, James A.; Graham, Sean W.; Judd, Walter S.; Olmstead, Richard G.; Soltis, Douglas E.; Soltis, Pamela S.; Donoghue, Michael J. (1 August 2007). "Towards a Phylogenetic Nomenclature of Tracheophyta". Taxon. 56 (3): 822. doi:10.2307/25065865. JSTOR 25065865.
  • Chase, Mark W. & Reveal, James L. (2009). "A phylogenetic classification of the land plants to accompany APG III". Botanical Journal of the Linnean Society. 161 (2): 122–127. doi:10.1111/j.1095-8339.2009.01002.x.
  • Christenhusz, Maarten J. M. & Byng, J. W. (2016). "The number of known plants species in the world and its annual increase". Phytotaxa. Magnolia Press. 261 (3): 201–217. doi:10.11646/phytotaxa.261.3.1.
  • Christenhusz, M. J. M.; Zhang, X. C.; Schneider, H. (18 February 2011). "A linear sequence of extant families and genera of lycophytes and ferns". Phytotaxa. 19 (1): 7. doi:10.11646/phytotaxa.19.1.2.
  • Christenhusz, Maarten J. M.; Chase, Mark W. (2014). "Trends and concepts in fern classification". Annals of Botany. 113 (4): 571–594. doi:10.1093/aob/mct299. PMC 3936591. PMID 24532607.
  • Christenhusz, Maarten J. M.; Chase, Mark W. (1 June 2018). "PPG recognises too many fern genera". Taxon. 67 (3): 481–487. doi:10.12705/673.2.
  • May, Lenore Wile (1978). "The economic uses and associated folklore of ferns and fern allies". The Botanical Review. 44 (4): 491–528. doi:10.1007/BF02860848. S2CID 42101599.
  • Melan, M. A.; Whittier, D. P. (1990). "Effects of Inorganic Nitrogen Sources on Spore Germination and Gametophyte Growth in Botrychium Dissectum". Plant, Cell and Environment. 13 (5): 477–82. doi:10.1111/j.1365-3040.1990.tb01325.x.
  • Pryer, Kathleen M.; Schneider, Harald; Smith, Alan R.; Cranfill, Raymond; Wolf, Paul G.; Hunt, Jeffrey S.; Sipes, Sedonia D. (2001). "Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants". Nature. 409 (6820): 618–622. Bibcode:2001Natur.409..618S. doi:10.1038/35054555. PMID 11214320. S2CID 4367248.
  • Pryer, Kathleen M.; Schuettpelz, Eric; Wolf, Paul G.; Schneider, Harald; Smith, Alan R.; Cranfill, Raymond (2004). "Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences". American Journal of Botany. 91 (10): 1582–1598. doi:10.3732/ajb.91.10.1582. PMID 21652310.
  • Pteridophyte Phylogeny Group (November 2016). "A community-derived classification for extant lycophytes and ferns". Journal of Systematics and Evolution. 54 (6): 563–603. doi:10.1111/jse.12229. S2CID 39980610.
  • Schneider, Harald; Smith, Alan R.; Pryer, Kathleen M. (1 July 2009). "Is Morphology Really at Odds with Molecules in Estimating Fern Phylogeny?". Systematic Botany. 34 (3): 455–475. doi:10.1600/036364409789271209. S2CID 85855934.
  • Schuettpelz, Eric (2007). "Table 1". The evolution and diversification of epiphytic ferns (PDF) (PhD thesis). Duke University.
  • Schuettpelz, Eric; Rouhan, Germinal; Pryer, Kathleen M.; Rothfels, Carl J.; Prado, Jefferson; Sundue, Michael A.; Windham, Michael D.; Moran, Robbin C.; Smith, Alan R. (1 June 2018). "Are there too many fern genera?". Taxon. 67 (3): 473–480. doi:10.12705/673.1.
  • Smith, Alan R.; Kathleen M. Pryer; Eric Schuettpelz; Petra Korall; Harald Schneider; Paul G. Wolf (2006). "A classification for extant ferns" (PDF). Taxon. 55 (3): 705–731. doi:10.2307/25065646. JSTOR 25065646.
  • Stein, W. E.; Mannolini, F.; Hernick, L. V.; Landling, E.; Berry, C. M. (2007). "Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa". Nature. 446 (7138): 904–907. Bibcode:2007Natur.446..904S. doi:10.1038/nature05705. PMID 17443185. S2CID 2575688.
  • Radoslaw Janusz Walkowiak (2017). "Classification of Pteridophytes - Short classification of the ferns" (PDF). IEA Paper. doi:10.13140/RG.2.2.29934.20809.
  • Underwood, L. M. (1903). "The early writers on ferns and their collections.— I. Linnaeus, 1707-1778". Torreya. 3 (10): 145–150. ISSN 0096-3844. JSTOR 40594126.

Websites edit

  • McCausland, Jim (22 February 2019). . Garden plants. Sunset Magazine. Archived from the original on 30 October 2021. Retrieved 22 November 2019.
  • "Pteridopsida: Fossil Record". Plants: Pteridopsida. University of California Museum of Paleontology. Retrieved 23 November 2019.
  • "Classifying and identifying ferns". Science Learning Hub. The University of Waikato. 3 September 2018. Retrieved 24 November 2019.
  • Mickel, John T.; Wagner, Warren H.; Gifford, Ernest M.; et al. (4 February 2019). "Fern". Encyclopædia Britannica. Retrieved 24 November 2019.
  • Hassler, Michael; Schmitt, Bernd (2 November 2019). . World Ferns. Botanical Garden of the Karlsruhe Institute of Technology. Archived from the original on 2 September 2017. Retrieved 25 November 2019.
  • Pryer, Kathleen M.; Smith, Alan R.; Rothfels, Carl (2009). "Polypodiopsida". Tree of Life.
  • Watson, L. and M. J. Dallwitz (2004 onwards). The Ferns (Filicopsida) of the British Isles. 3 March 2016 at the Wayback Machine
  • Ferns and Pteridomania in Victorian Scotland.
  • American Fern Society
  • British Pteridological Society

External links edit

  •   Data related to Pteridophyta at Wikispecies
  •   Media related to Polypodiopsida at Wikimedia Commons

fern, this, article, about, group, plants, other, uses, disambiguation, disambiguation, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, remo. This article is about a group of plants For other uses see Fern disambiguation and Ferns disambiguation This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Fern news newspapers books scholar JSTOR August 2023 Learn how and when to remove this template message The ferns Polypodiopsida or Polypodiophyta are a group of vascular plants plants with xylem and phloem that reproduce via spores and have neither seeds nor flowers They differ from mosses by being vascular i e having specialized tissues that conduct water and nutrients and in having life cycles in which the branched sporophyte is the dominant phase FernsTemporal range Middle Devonian 1 Present PreꞒ Ꞓ O S D C P T J K Pg NPsilotalesEquisetalesMarattialesOsmundalesHymenophyllalesGleichenialesCyathealesPolypodialesScientific classificationKingdom PlantaeClade TracheophytesDivision PolypodiophytaClass PolypodiopsidaCronquist Takht amp W Zimm Subclasses 2 Stauropterididae Zygopterididae Equisetidae Marattiidae Ophioglossidae PolypodiidaeSynonymsFilicatae Kubitski 1990 Filices Filicophyta Endlicher 1836 Monilophyta Cantino amp Donoghue 2007 Pteridopsida Ritgen 1828Ferns have complex leaves called megaphylls that are more complex than the microphylls of clubmosses Most ferns are leptosporangiate ferns They produce coiled fiddleheads that uncoil and expand into fronds The group includes about 10 560 known extant species Ferns are defined here in the broad sense being all of the Polypodiopsida comprising both the leptosporangiate Polypodiidae and eusporangiate ferns the latter group including horsetails whisk ferns marattioid ferns and ophioglossoid ferns Ferns first appear in the fossil record about 360 million years ago in the late Devonian period but Polypodiales the group that makes up 80 of living fern diversity did not appear and diversify until the Cretaceous contemporaneous with the rise of flowering plants that came to dominate the world s flora Ferns are not of major economic importance but some are used for food medicine as biofertilizer as ornamental plants and for remediating contaminated soil They have been the subject of research for their ability to remove some chemical pollutants from the atmosphere Some fern species such as bracken Pteridium aquilinum and water fern Azolla filiculoides are significant weeds worldwide Some fern genera such as Azolla can fix nitrogen and make a significant input to the nitrogen nutrition of rice paddies They also play certain roles in folklore Contents 1 Description 1 1 Sporophyte 1 2 Gametophyte 2 Taxonomy 2 1 Molecular phylogenetics 2 2 Phylogeny 2 3 Nomenclature and subdivision 2 4 Evolution and biogeography 3 Distribution and habitat 4 Ecology 4 1 Life cycle 5 Uses 6 Culture 6 1 Pteridology 6 2 Pteridomania 6 3 Other applications 6 4 Folklore 6 5 New Zealand 7 Organisms confused with ferns 7 1 Misnomers 7 2 Fern like flowering plants 8 See also 9 Notes 10 References 11 Bibliography 11 1 Books 11 2 Journal articles 11 3 Websites 12 External linksDescription editSporophyte edit Extant ferns are herbaceous perennials and most lack woody growth 3 When woody growth is present it is found in the stem 4 Their foliage may be deciduous or evergreen 5 and some are semi evergreen depending on the climate 6 Like the sporophytes of seed plants those of ferns consist of stems leaves and roots Ferns differ from spermatophytes in that they reproduce by spores rather than having flowers and producing seeds 4 However they also differ from spore producing bryophytes in that like seed plants they are polysporangiophytes their sporophytes branching and producing many sporangia Also unlike bryophytes fern sporophytes are free living and only briefly dependent on the maternal gametophyte The green photosynthetic part of the plant is technically a megaphyll and in ferns it is often called a frond New leaves typically expand by the unrolling of a tight spiral called a crozier or fiddlehead into fronds 7 This uncurling of the leaf is termed circinate vernation Leaves are divided into two types sporophylls and tropophylls Sporophylls produce spores tropophylls do not Fern spores are borne in sporangia which are usually clustered to form sori The sporangia may be covered with a protective coating called an indusium The arrangement of the sporangia is important in classification 4 In monomorphic ferns the fertile and sterile leaves looks morphologically the same and both are able to photosynthesize In hemidimorphic ferns just a portion of the fertile leaf is different from the sterile leaves In dimorphic holomorphic ferns the two types of leaves are morphologically distinct 8 The fertile leaves are much narrower than the sterile leaves and may have no green tissue at all as in the Blechnaceae and Lomariopsidaceae nbsp Croziers fronds and rhizomes of bracken In this species the stems grow underground allowing the plant to spread horizontally The anatomy of fern leaves can be anywhere from simple to highly divided or even indeterminate e g Gleicheniaceae Lygodiaceae The divided forms are pinnate where the leaf segments are completely separated from one other or pinnatifid partially pinnate where the leaf segments are still partially connected When the fronds are branched more than once it can also be a combination of the pinnatifid are pinnate shapes If the leaf blades are divided twice the plant has bipinnate fronds and tripinnate fronds if they branch three times and all the way to tetra and pentapinnate fronds 9 10 In tree ferns the main stalk that connects the leaf to the stem known as the stipe often has multiple leaflets The leafy structures that grow from the stipe are known as pinnae and are often again divided into smaller pinnules 11 Fern stems are often loosely called rhizomes even though they grow underground only in some of the species Epiphytic species and many of the terrestrial ones have above ground creeping stolons e g Polypodiaceae and many groups have above ground erect semi woody trunks e g Cyatheaceae the scaly tree ferns These can reach up to 20 meters 66 ft tall in a few species e g Cyathea brownii on Norfolk Island and Cyathea medullaris in New Zealand 12 Roots are underground non photosynthetic structures that take up water and nutrients from soil They are always fibrous and are structurally very similar to the roots of seed plants Gametophyte edit As in all vascular plants the sporophyte is the dominant phase or generation in the life cycle The gametophytes of ferns however are very different from those of seed plants They are free living and resemble liverworts whereas those of seed plants develop within the spore wall and are dependent on the parent sporophyte for their nutrition A fern gametophyte typically consists of Prothallus A green photosynthetic structure that is one cell thick usually heart or kidney shaped 3 10 mm long and 2 8 mm broad The prothallus produces gametes by means of Antheridia Small spherical structures that produce flagellate sperm Archegonia A flask shaped structure that produces a single egg at the bottom reached by the sperm by swimming down the neck Rhizoids root like structures not true roots that consist of single greatly elongated cells that absorb water and mineral salts over the whole structure Rhizoids anchor the prothallus to the soil Taxonomy editCarl Linnaeus 1753 originally recognized 15 genera of ferns and fern allies classifying them in class Cryptogamia in two groups Filices e g Polypodium and Musci mosses 13 14 15 By 1806 this had increased to 38 genera 16 and has progressively increased since see Schuettpelz et al 2018 Ferns were traditionally classified in the class Filices and later in a Division of the Plant Kingdom named Pteridophyta or Filicophyta Pteridophyta is no longer recognised as a valid taxon because it is paraphyletic The ferns are also referred to as Polypodiophyta or when treated as a subdivision of Tracheophyta vascular plants Polypodiopsida although this name sometimes only refers to leptosporangiate ferns Traditionally all of the spore producing vascular plants were informally denominated the pteridophytes rendering the term synonymous with ferns and fern allies This can be confusing because members of the division Pteridophyta were also denominated pteridophytes sensu stricto Traditionally three discrete groups have been denominated ferns two groups of eusporangiate ferns the families Ophioglossaceae adder s tongues moonworts and grape ferns and Marattiaceae and the leptosporangiate ferns The Marattiaceae are a primitive group of tropical ferns with large fleshy rhizomes and are now thought to be a sibling taxon to the leptosporangiate ferns Several other groups of species were considered fern allies the clubmosses spikemosses and quillworts in Lycopodiophyta the whisk ferns of Psilotaceae and the horsetails of Equisetaceae Since this grouping is polyphyletic the term fern allies should be abandoned except in a historical context 17 More recent genetic studies demonstrated that the Lycopodiophyta are more distantly related to other vascular plants having radiated evolutionarily at the base of the vascular plant clade while both the whisk ferns and horsetails are as closely related to leptosporangiate ferns as the ophioglossoid ferns and Marattiaceae In fact the whisk ferns and ophioglossoid ferns are demonstrably a clade and the horsetails and Marattiaceae are arguably another clade Molecular phylogenetics edit Smith et al 2006 carried out the first higher level pteridophyte classification published in the molecular phylogenetic era and considered the ferns as monilophytes as follows 18 Division Tracheophyta tracheophytes vascular plants Sub division Euphyllophytina euphyllophytes Infradivision Moniliformopses monilophytes Infradivision Spermatophyta seed plants 260 000 species Subdivision Lycopodiophyta lycophytes less than 1 of extant vascular plantsMolecular data which remain poorly constrained for many parts of the plants phylogeny have been supplemented by morphological observations supporting the inclusion of Equisetaceae in the ferns notably relating to the construction of their sperm and peculiarities of their roots 18 The leptosporangiate ferns are sometimes called true ferns 19 This group includes most plants familiarly known as ferns Modern research supports older ideas based on morphology that the Osmundaceae diverged early in the evolutionary history of the leptosporangiate ferns in certain ways this family is intermediate between the eusporangiate ferns and the leptosporangiate ferns Rai and Graham 2010 broadly supported the primary groups but queried their relationships concluding that at present perhaps the best that can be said about all relationships among the major lineages of monilophytes in current studies is that we do not understand them very well 20 Grewe et al 2013 confirmed the inclusion of horsetails within ferns sensu lato but also suggested that uncertainties remained in their precise placement 21 Other classifications have raised Ophioglossales to the rank of a fifth class separating the whisk ferns and ophioglossoid ferns 21 Phylogeny edit The ferns are related to other groups as shown in the following cladogram 17 22 23 2 Tracheophyta Lycophytes nbsp Euphyllophyta Ferns nbsp Spermatophyta Gymnosperms nbsp Angiosperms nbsp seed plants vascular plants Nomenclature and subdivision edit Further information List of fern families The classification of Smith et al in 2006 treated ferns as four classes 18 24 Equisetopsida Sphenopsida 1 order Equisetales Horsetails 15 species Psilotopsida 2 orders whisk ferns and ophioglossoid ferns 92 species Marattiopsida 1 order Marattiales 150 species Polypodiopsida Filicopsida 7 orders leptosporangiate ferns 9 000 speciesIn addition they defined 11 orders and 37 families 18 That system was a consensus of a number of studies and was further refined 21 25 The phylogenetic relationships are shown in the following cladogram to the level of orders 18 26 21 This division into four major clades was then confirmed using morphology alone 27 Tracheophyta Lycopodiophytes club mosses spike mosses quillworts Euphyllophytes Spermatophytes seed plants Ferns Psilotopsida Psilotales whisk ferns nbsp Ophioglossales grapeferns etc Equisetopsida Equisetales horsetails nbsp Marattiopsida Marattiales nbsp Polypodiopsida Osmundales nbsp Hymenophyllales filmy ferns nbsp Gleicheniales nbsp SchizaealesSalviniales heterosporous Cyatheales tree ferns nbsp Polypodiales nbsp EusporangiateFerns LeptosporangiateFernsSubsequently Chase and Reveal considered both lycopods and ferns as subclasses of a class Equisetopsida Embryophyta encompassing all land plants This is referred to as Equisetopsida sensu lato to distinguish it from the narrower use to refer to horsetails alone Equisetopsida sensu stricto They placed the lycopods into subclass Lycopodiidae and the ferns keeping the term monilophytes into five subclasses Equisetidae Ophioglossidae Psilotidae Marattiidae and Polypodiidae by dividing Smith s Psilotopsida into its two orders and elevating them to subclass Ophioglossidae and Psilotidae 23 Christenhusz et al a 2011 followed this use of subclasses but recombined Smith s Psilotopsida as Ophioglossidae giving four subclasses of ferns again 28 Christenhusz and Chase 2014 developed a new classification of ferns and lycopods They used the term Polypodiophyta for the ferns subdivided like Smith et al into four groups shown with equivalents in the Smith system with 21 families approximately 212 genera and 10 535 species 17 Equisetidae Equisetopsida monotypic Equisetales Equisetaceae Equisetum horsetails 20 species Ophioglossidae Psilotopsida 2 monotypic orders 92 species Marattiidae Marattiopsida 1 monotypic order Marattiales Marattiaceae 2 subfamilies 130 species Polypodiidae Polypodiopsida 7 ordersThis was a considerable reduction in the number of families from the 37 in the system of Smith et al since the approach was more that of lumping rather than splitting For instance a number of families were reduced to subfamilies Subsequently a consensus group was formed the Pteridophyte Phylogeny Group PPG analogous to the Angiosperm Phylogeny Group publishing their first complete classification in November 2016 They recognise ferns as a class the Polypodiopsida with four subclasses as described by Christenhusz and Chase and which are phylogenetically related as in this cladogram Christenhusz and Chase 2014 2 Nitta et al 2022 29 and Fern Tree of life 30 Polypodiopsida Equisetidae EquisetalesOphioglossidae PsilotalesOphioglossalesMarattiidae MarattialesPolypodiidae OsmundalesHymenophyllalesGleichenialesSchizaealesSalvinialesCyathealesPolypodiales Equisetidae EquisetalesOphioglossidae PsilotalesOphioglossalesMarattiidae MarattialesPolypodiidae OsmundalesHymenophyllalesGleichenialesSchizaealesSalvinialesCyathealesPolypodialesIn the Pteridophyte Phylogeny Group classification of 2016 PPG I the Polypodiopsida consist of four subclasses 11 orders 48 families 319 genera and an estimated 10 578 species 31 Thus Polypodiopsida in the broad sense sensu lato as used by the PPG Polypodiopsida sensu PPG I needs to be distinguished from the narrower usage sensu stricto of Smith et al Polypodiopsida sensu Smith et al 2 Classification of ferns remains unresolved and controversial with competing viewpoints splitting vs lumping between the systems of the PPG on the one hand and Christenhusz and Chase on the other respectively In 2018 Christenhusz and Chase explicitly argued against recognizing as many genera as PPG I 15 32 Comparison of fern subdivisions in some classifications Smith et al 2006 18 Chase amp Reveal 2009 23 Christenhusz et al 2011 28 Christenhusz amp Chase 2014 2018 17 33 PPG I 2016 2 ferns no rank monilophytes no rank ferns monilophytes no rank ferns Polypodiophyta no rank Class PolypodiopsidaClass Equisetopsida Subclass Equisetidae Subclass Equisetidae Subclass Equisetidae Subclass EquisetidaeClass Psilotopsida Subclass Ophioglossidae Subclass Psilotidae Subclass Ophioglossidae Subclass Ophioglossidae Subclass OphioglossidaeClass Marattiopsida Subclass Marattiidae Subclass Marattiidae Subclass Marattiidae Subclass MarattiidaeClass Polypodiopsida Subclass Polypodiidae Subclass Polypodiidae Subclass Polypodiidae Subclass PolypodiidaeEvolution and biogeography edit Fern like taxa Wattieza first appear in the fossil record in the middle Devonian period ca 390 Mya By the Triassic the first evidence of ferns related to several modern families appeared The great fern radiation occurred in the late Cretaceous when many modern families of ferns first appeared 34 1 35 36 Ferns evolved to cope with low light conditions present under the canopy of angiosperms Remarkably the photoreceptor neochrome in the two orders Cyatheales and Polypodiales integral to their adaptation to low light conditions was obtained via horizontal gene transfer from hornworts a bryophyte lineage 37 Due to the very large genome seen in most ferns it was suspected they might have gone through whole genome duplications but DNA sequencing has shown that their genome size is caused by the accumulation of mobile DNA like transposons and other genetic elements that infect genomes and get copied over and over again 38 Distribution and habitat editFerns are widespread in their distribution with the greatest richness in the tropics and least in arctic areas The greatest diversity occurs in tropical rainforests 39 New Zealand for which the fern is a symbol has about 230 species distributed throughout the country 40 It is a common plant in European forests Ecology editFern species live in a wide variety of habitats from remote mountain elevations to dry desert rock faces bodies of water or open fields Ferns in general may be thought of as largely being specialists in marginal habitats often succeeding in places where various environmental factors limit the success of flowering plants Some ferns are among the world s most serious weed species including the bracken fern growing in the Scottish highlands or the mosquito fern Azolla growing in tropical lakes both species forming large aggressively spreading colonies There are four particular types of habitats that ferns are found in moist shady forests crevices in rock faces especially when sheltered from the full sun acid wetlands including bogs and swamps and tropical trees where many species are epiphytes something like a quarter to a third of all fern species 41 Especially the epiphytic ferns have turned out to be hosts of a huge diversity of invertebrates It is assumed that bird s nest ferns alone contain up to half the invertebrate biomass within a hectare of rainforest canopy 42 Many ferns depend on associations with mycorrhizal fungi Many ferns grow only within specific pH ranges for instance the climbing fern Lygodium palmatum of eastern North America will grow only in moist intensely acid soils while the bulblet bladder fern Cystopteris bulbifera with an overlapping range is found only on limestone The spores are rich in lipids protein and calories so some vertebrates eat these The European woodmouse Apodemus sylvaticus has been found to eat the spores of Culcita macrocarpa and the bullfinch Pyrrhula murina and the New Zealand lesser short tailed bat Mystacina tuberculata also eat fern spores 43 nbsp In undergrowth below coast redwoods California nbsp Fern bed under a forest canopy Virginia nbsp On a wall nbsp Asplenium hart s tongue fern in a gryke in limestone pavement nbsp Epiphytic ferns in India nbsp Azolla duckweed fern coveringthe Canning River Western AustraliaLife cycle edit Ferns are vascular plants differing from lycophytes by having true leaves megaphylls which are often pinnate They differ from seed plants gymnosperms and angiosperms in reproducing by means of spores and lacking flowers and seeds Like all land plants they have a life cycle referred to as alternation of generations characterized by alternating diploid sporophytic and haploid gametophytic phases The diploid sporophyte has 2n paired chromosomes where n varies from species to species The haploid gametophyte has n unpaired chromosomes i e half the number of the sporophyte The gametophyte of ferns is a free living organism whereas the gametophyte of the gymnosperms and angiosperms is dependent on the sporophyte The life cycle of a typical fern proceeds as follows A diploid sporophyte phase produces haploid spores by meiosis a process of cell division which reduces the number of chromosomes by a half A spore grows into a free living haploid gametophyte by mitosis a process of cell division which maintains the number of chromosomes The gametophyte typically consists of a photosynthetic prothallus The gametophyte produces gametes often both sperm and eggs on the same prothallus by mitosis A mobile flagellate sperm fertilizes an egg that remains attached to the prothallus The fertilized egg is now a diploid zygote and grows by mitosis into a diploid sporophyte the typical fern plant Sometimes a gametophyte can give rise to sporophyte traits like roots or sporangia without the rest of the sporophyte 44 nbsp Sorus of monarch fern with sporangium nbsp Gametophyte thallus and sporophyte ascendant frond of Onoclea sensibilisUses editFerns are not as important economically as seed plants but have considerable importance in some societies Some ferns are used for food including the fiddleheads of Pteridium aquilinum bracken Matteuccia struthiopteris ostrich fern and Osmundastrum cinnamomeum cinnamon fern Diplazium esculentum is also used in the tropics for example in budu pakis a traditional dish of Brunei 45 as food Tubers from the para Ptisana salicina king fern are a traditional food in New Zealand and the South Pacific Fern tubers were used for food 30 000 years ago in Europe 46 47 Fern tubers were used by the Guanches to make gofio in the Canary Islands Ferns are generally not known to be poisonous to humans 48 Licorice fern rhizomes were chewed by the natives of the Pacific Northwest for their flavor 49 Some species of ferns are carcinogenic and the British Royal Horticultural Society has advised not to consume any species for health reasons of both humans and livestock 50 Ferns of the genus Azolla commonly known as water fern or mosquito ferns are very small floating plants that do not resemble ferns The mosquito ferns are used as a biological fertilizer in the rice paddies of southeast Asia taking advantage of their ability to fix nitrogen from the air into compounds that can then be used by other plants Ferns have proved resistant to phytophagous insects The gene that express the protein Tma12 in an edible fern Tectaria macrodonta has been transferred to cotton plants which became resistant to whitefly infestations 51 Many ferns are grown in horticulture as landscape plants for cut foliage and as houseplants especially the Boston fern Nephrolepis exaltata and other members of the genus Nephrolepis The bird s nest fern Asplenium nidus is also popular as are the staghorn ferns genus Platycerium Perennial also known as hardy ferns planted in gardens in the northern hemisphere also have a considerable following 52 Several ferns such as bracken 53 and Azolla 54 species are noxious weeds or invasive species Further examples include Japanese climbing fern Lygodium japonicum sensitive fern Onoclea sensibilis and Giant water fern Salvinia molesta one of the world s worst aquatic weeds 55 56 The important fossil fuel coal consists of the remains of primitive plants including ferns 57 Culture edit nbsp Ferns in the Victorian era Blatter des Manns Walfarn by Alois Auer Vienna Imperial Printing Office 1853Pteridology edit The study of ferns and other pteridophytes is called pteridology A pteridologist is a specialist in the study of pteridophytes in a broader sense that includes the more distantly related lycophytes Pteridomania edit Pteridomania was a Victorian era craze which involved fern collecting and fern motifs in decorative art including pottery glass metals textiles wood printed paper and sculpture appearing on everything from christening presents to gravestones and memorials The fashion for growing ferns indoors led to the development of the Wardian case a glazed cabinet that would exclude air pollutants and maintain the necessary humidity 58 Other applications edit nbsp Barnsley fern created using a chaos game through an Iterated function system 59 The Barnsley fern is a fractal named after the British mathematician Michael Barnsley who first described it in his book Fractals Everywhere A self similar structure is described by a mathematical function applied repeatedly at different scales to create a frond pattern 59 The dried form of ferns was used in other arts such as a stencil or directly inked for use in a design The botanical work The Ferns of Great Britain and Ireland is a notable example of this type of nature printing The process patented by the artist and publisher Henry Bradbury impressed a specimen on to a soft lead plate The first publication to demonstrate this was Alois Auer s The Discovery of the Nature Printing Process Fern bars were popular in America in the 1970s and 80s Folklore edit Ferns figure in folklore for example in legends about mythical flowers or seeds 60 In Slavic folklore ferns are believed to bloom once a year during the Ivan Kupala night Although alleged to be exceedingly difficult to find anyone who sees a fern flower is thought to be guaranteed to be happy and rich for the rest of their life Similarly Finnish tradition holds that one who finds the seed of a fern in bloom on Midsummer night will by possession of it be guided and be able to travel invisibly to the locations where eternally blazing Will o the wisps called aarnivalkea mark the spot of hidden treasure These spots are protected by a spell that prevents anyone but the fern seed holder from ever knowing their locations 61 In Wicca ferns are thought to have magical properties such as a dried fern can be thrown into hot coals of a fire to exorcise evil spirits or smoke from a burning fern is thought to drive away snakes and such creatures 62 New Zealand edit Ferns are the national emblem of New Zealand and feature on its passport and in the design of its national airline Air New Zealand and of its rugby team the All Blacks Organisms confused with ferns editMisnomers edit Several non fern plants and even animals are called ferns and are sometimes confused with ferns These include Asparagus fern This may apply to one of several species of the monocot genus Asparagus which are flowering plants Sweetfern A flowering shrub of the genus Comptonia Air fern A group of animals called hydrozoans that are distantly related to jellyfish and corals They are harvested dried dyed green and then sold as a plant that can live on air While it may look like a fern it is merely the skeleton of this colonial animal Fern bush Chamaebatiaria millefolium a rose family shrub with fern like leaves Fern tree Jacaranda mimosifolia an ornamental tree of the order Lamiales Fern leaf tree Filicium decipiens an ornamental tree of the order Sapindales Fern like flowering plants edit Some flowering plants such as palms and members of the carrot family have pinnate leaves that somewhat resemble fern fronds However these plants have fully developed seeds contained in fruits rather than the microscopic spores of ferns See also editBritish Pteridological Society Chirosia betuleti Fern gall Fern spike Fern sports Paisley design Pteridophyte Silver fern flagNotes edit President International Association of PteridologistsReferences edit a b Stein et al 2007 a b c d e Pteridophyte Phylogeny Group 2016 Mauseth James D September 2008 Botany an Introduction to Plant Biology Jones amp Bartlett Publishers p 492 ISBN 978 1 4496 4720 9 a b c Levyns M R 1966 A Guide to the Flora of the Cape Peninsula 2nd Revised ed Juta amp Company OCLC 621340 Fernandez Helena Kumar Ashwani Revilla Maria Angeles 11 November 2010 Working with Ferns Issues and Applications Springer p 175 ISBN 978 1 4419 7162 3 Hodgson Larry 1 January 2005 Making the Most of Shade How to Plan Plant and Grow a Fabulous Garden that Lightens Up the Shadows Rodale p 329 ISBN 978 1 57954 966 4 McCausland 2019 Understanding the contribution of LFY and PEBP flowering genes to fern leaf dimorphism Botany 2019 Fern Structure Forest Service Fern Structure Forest Service Fern Fronds Basic Biology Archived from the original on 19 April 2015 Retrieved 6 December 2014 Large Mark F Braggins John E 2004 Tree Ferns Timber Press ISBN 0881926302 Underwood 1903 Linnaeus 1753 a b Schuettpelz et al 2018 Swartz 1806 a b c d Christenhusz amp Chase 2014 a b c d e f Smith et al 2006 Stace Clive 2010b New Flora of the British Isles 3rd ed Cambridge UK Cambridge University Press p xxviii ISBN 978 0 521 70772 5 Rai Hardeep S amp Graham Sean W 2010 Utility of a large multigene plastid data set in inferring higher order relationships in ferns and relatives monilophytes American Journal of Botany 97 9 1444 1456 doi 10 3732 ajb 0900305 PMID 21616899 p 1450 a b c d Grewe Felix et al 2013 Complete plastid genomes from Ophioglossum californicum Psilotum nudum and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes BMC Evolutionary Biology 13 1 1 16 doi 10 1186 1471 2148 13 8 ISSN 1471 2148 PMC 3553075 PMID 23311954 Cantino et al 2007 a b c Chase amp Reveal 2009 Schuettpelz 2007 Table I Karol Kenneth G et al 2010 Complete plastome sequences of Equisetum arvense and Isoetes flaccida implications for phylogeny and plastid genome evolution of early land plant lineages BMC Evolutionary Biology 10 1 321 336 doi 10 1186 1471 2148 10 321 ISSN 1471 2148 PMC 3087542 PMID 20969798 Li F W Kuo L Y Rothfels CJ Ebihara A Chiou W L et al 2011 rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns PLOS ONE 6 10 e26597 Bibcode 2011PLoSO 626597L doi 10 1371 journal pone 0026597 PMC 3197659 PMID 22028918 Schneider et al 2009 a b Christenhusz et al 2011 Nitta Joel H Schuettpelz Eric Ramirez Barahona Santiago Iwasaki Wataru et al 2022 An Open and Continuously Updated Fern Tree of Life Frontiers in Plant Science 13 909768 doi 10 3389 fpls 2022 909768 PMC 9449725 PMID 36092417 Tree viewer interactive visualization of FTOL FTOL v1 3 0 2022 Retrieved 12 December 2022 Christenhusz amp Byng 2016 Christenhusz amp Chase 2018 Christenhusz et al 2018 UCMP 2019 Berry 2009 Bomfleur et al 2014 Li F W Villarreal J C Kelly S et al 6 May 2014 Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns Proceedings of the National Academy of Sciences 111 18 6672 6677 Bibcode 2014PNAS 111 6672L doi 10 1073 pnas 1319929111 PMC 4020063 PMID 24733898 Genes for seeds arose early in plant evolution ferns reveal EB 2019 SLH 2018 Schuettpelz 2007 Part I Ferns Brimming With Life Science AAAS 2 June 2004 Walker Matt 19 February 2010 A mouse that eats ferns like a dinosaur BBC Earth News Retrieved 20 February 2010 The Ferns Filicales Volume 1 Analytical Examination of the Criteria of Comparison Treated Comparatively with a View to their Natural Classification Indigenous Fermented Foods of Southeast Asia 2015 Van Gilder Cooke Sonia 23 October 2010 Stone Age humans liked their burgers in a bun New Scientist p 18 Revedin Anna et al 18 October 2010 Thirty thousand year old evidence of plant food processing PNAS Pelton Robert 2011 The Official Pocket Edible Plant Survival Manual Freedom and Liberty Foundation Press p 25 BNID 2940013382145 Moerman Daniel E 27 October 2010 Native American Food Plants An Ethnobotanical Dictionary Timber Press p 190 ISBN 978 1 60469 189 4 Dol Sot Bibimbap Archived from the original on 11 November 2011 Retrieved 19 December 2011 Shukla Anoop Kumar Upadhyay Santosh Kumar Mishra Manisha et al 26 October 2016 Expression of an insecticidal fern protein in cotton protects against whitefly Nature Biotechnology 34 10 1046 1051 doi 10 1038 nbt 3665 PMID 27598229 S2CID 384923 Ferns A Classic Shade Garden Plant extension sdstate edu Retrieved 30 May 2023 Datasheet Pteridium aquilinum bracken CAB International 2018 Retrieved 11 February 2019 Datasheet Azolla filiculoides water fern CAB International 2018 Retrieved 11 February 2019 Center for Aquatic and Invasive Plants University of Florida IFAS plants ifas ufl edu Retrieved 30 May 2023 Moran Robbin 2004 A Natural History of Ferns Timber Press ISBN 0 88192 667 1 Fossils Kentucky Geological Survey University of Kentucky www uky edu Retrieved 30 May 2023 Boyd Peter D A 2 January 2002 Pteridomania the Victorian passion for ferns Antique Collecting Revised web version 28 6 9 12 Retrieved 2 October 2007 a b Fractals Everywhere Boston MA Academic Press 1993 ISBN 0 12 079062 9 May 1978 Traditional Finnish Midsummer celebration Saunalahti fi Retrieved 7 September 2013 Cunningham Scott 1999 Cunningham s Encyclopedia of Magical Herbs Llewellyn p 102 Bibliography editBooks edit Christenhusz Maarten M J Fay Michael Byng James W 2018 The Global Flora Special Edition GLOVAP Nomenclature Part 1 Plant Gateway Ltd ISBN 978 0 9929993 6 0 Linnaeus Carl 1753 Cryptogamia Filices Musci Species Plantarum exhibentes plantas rite cognitas ad genera relatas cum differentiis specificis nominibus trivialibus synonymis selectis locis natalibus secundum systema sexuale digestas Vol 1 Stockholm Impensis Laurentii Salvii pp 1061 1100 1100 1130 see also Species Plantarum Lord Thomas R 2006 Ferns and Fern Allies of Pennsylvania Indiana PA Pinelands Press Ferns and Fern Allies of Pennsylvania Thomas Reeves Lord Moran Robbin C 2004 A Natural History of Ferns Portland OR Timber Press ISBN 0 88192 667 1 Ranker Tom A Haufler Christopher H 2008 Biology and Evolution of Ferns and Lycophytes Cambridge University Press ISBN 978 0 521 87411 3 Swartz Olof 1806 Synopsis filicum earum genera et species systematice complectens adjectis lycopodineis et descriptionibus novarum et rariorum specierum cum tabulis aeneis quinque Kiliae Impensis Bibliopolii novi academici Journal articles edit Berry Chris 2009 The Middle Devonian plant collections of Francois Stockmans reconsidered Geologica Belgica 12 1 2 25 30 Bomfleur B McLoughlin S Vajda V 20 March 2014 Fossilized Nuclei and Chromosomes Reveal 180 Million Years of Genomic Stasis in Royal Ferns Science 343 6177 1376 1377 Bibcode 2014Sci 343 1376B doi 10 1126 science 1249884 PMID 24653037 S2CID 38248823 Cantino Philip D Doyle James A Graham Sean W Judd Walter S Olmstead Richard G Soltis Douglas E Soltis Pamela S Donoghue Michael J 1 August 2007 Towards a Phylogenetic Nomenclature of Tracheophyta Taxon 56 3 822 doi 10 2307 25065865 JSTOR 25065865 Chase Mark W amp Reveal James L 2009 A phylogenetic classification of the land plants to accompany APG III Botanical Journal of the Linnean Society 161 2 122 127 doi 10 1111 j 1095 8339 2009 01002 x Christenhusz Maarten J M amp Byng J W 2016 The number of known plants species in the world and its annual increase Phytotaxa Magnolia Press 261 3 201 217 doi 10 11646 phytotaxa 261 3 1 Christenhusz M J M Zhang X C Schneider H 18 February 2011 A linear sequence of extant families and genera of lycophytes and ferns Phytotaxa 19 1 7 doi 10 11646 phytotaxa 19 1 2 Christenhusz Maarten J M Chase Mark W 2014 Trends and concepts in fern classification Annals of Botany 113 4 571 594 doi 10 1093 aob mct299 PMC 3936591 PMID 24532607 Christenhusz Maarten J M Chase Mark W 1 June 2018 PPG recognises too many fern genera Taxon 67 3 481 487 doi 10 12705 673 2 May Lenore Wile 1978 The economic uses and associated folklore of ferns and fern allies The Botanical Review 44 4 491 528 doi 10 1007 BF02860848 S2CID 42101599 Melan M A Whittier D P 1990 Effects of Inorganic Nitrogen Sources on Spore Germination and Gametophyte Growth in Botrychium Dissectum Plant Cell and Environment 13 5 477 82 doi 10 1111 j 1365 3040 1990 tb01325 x Pryer Kathleen M Schneider Harald Smith Alan R Cranfill Raymond Wolf Paul G Hunt Jeffrey S Sipes Sedonia D 2001 Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants Nature 409 6820 618 622 Bibcode 2001Natur 409 618S doi 10 1038 35054555 PMID 11214320 S2CID 4367248 Pryer Kathleen M Schuettpelz Eric Wolf Paul G Schneider Harald Smith Alan R Cranfill Raymond 2004 Phylogeny and evolution of ferns monilophytes with a focus on the early leptosporangiate divergences American Journal of Botany 91 10 1582 1598 doi 10 3732 ajb 91 10 1582 PMID 21652310 Pteridophyte Phylogeny Group November 2016 A community derived classification for extant lycophytes and ferns Journal of Systematics and Evolution 54 6 563 603 doi 10 1111 jse 12229 S2CID 39980610 Schneider Harald Smith Alan R Pryer Kathleen M 1 July 2009 Is Morphology Really at Odds with Molecules in Estimating Fern Phylogeny Systematic Botany 34 3 455 475 doi 10 1600 036364409789271209 S2CID 85855934 Schuettpelz Eric 2007 Table 1 The evolution and diversification of epiphytic ferns PDF PhD thesis Duke University Schuettpelz Eric Rouhan Germinal Pryer Kathleen M Rothfels Carl J Prado Jefferson Sundue Michael A Windham Michael D Moran Robbin C Smith Alan R 1 June 2018 Are there too many fern genera Taxon 67 3 473 480 doi 10 12705 673 1 Smith Alan R Kathleen M Pryer Eric Schuettpelz Petra Korall Harald Schneider Paul G Wolf 2006 A classification for extant ferns PDF Taxon 55 3 705 731 doi 10 2307 25065646 JSTOR 25065646 Stein W E Mannolini F Hernick L V Landling E Berry C M 2007 Giant cladoxylopsid trees resolve the enigma of the Earth s earliest forest stumps at Gilboa Nature 446 7138 904 907 Bibcode 2007Natur 446 904S doi 10 1038 nature05705 PMID 17443185 S2CID 2575688 Radoslaw Janusz Walkowiak 2017 Classification of Pteridophytes Short classification of the ferns PDF IEA Paper doi 10 13140 RG 2 2 29934 20809 Underwood L M 1903 The early writers on ferns and their collections I Linnaeus 1707 1778 Torreya 3 10 145 150 ISSN 0096 3844 JSTOR 40594126 Websites edit McCausland Jim 22 February 2019 Rediscover ferns Garden plants Sunset Magazine Archived from the original on 30 October 2021 Retrieved 22 November 2019 Pteridopsida Fossil Record Plants Pteridopsida University of California Museum of Paleontology Retrieved 23 November 2019 Classifying and identifying ferns Science Learning Hub The University of Waikato 3 September 2018 Retrieved 24 November 2019 Mickel John T Wagner Warren H Gifford Ernest M et al 4 February 2019 Fern Encyclopaedia Britannica Retrieved 24 November 2019 Hassler Michael Schmitt Bernd 2 November 2019 Checklist of Ferns and Lycophytes of the World World Ferns Botanical Garden of the Karlsruhe Institute of Technology Archived from the original on 2 September 2017 Retrieved 25 November 2019 Pryer Kathleen M Smith Alan R Rothfels Carl 2009 Polypodiopsida Tree of Life A classification of the ferns and their allies A fern book bibliography Register of fossil Pteridophyta Watson L and M J Dallwitz 2004 onwards The Ferns Filicopsida of the British Isles Archived 3 March 2016 at the Wayback Machine Ferns and Pteridomania in Victorian Scotland Non seed plant images at bioimages vanderbilt edu American Fern Society British Pteridological SocietyExternal links edit nbsp Data related to Pteridophyta at Wikispecies nbsp Media related to Polypodiopsida at Wikimedia Commons Retrieved from https en wikipedia org w index php title Fern amp oldid 1193309388, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.