fbpx
Wikipedia

Halley's Comet

Halley's Comet, Comet Halley, or sometimes simply Halley, officially designated 1P/Halley, is a short-period comet visible from Earth every 75–79 years.[1] Halley is the only known short-period comet that is regularly visible to the naked eye from Earth, and thus the only naked-eye comet that can appear twice in a human lifetime.[15] It last appeared in the inner parts of the Solar System in 1986 and will next appear in mid-2061.

1P/Halley (Halley's Comet)
Halley's Comet on 8 March 1986
Discovery
Discovered byPrehistoric (observation)
Edmond Halley (recognition of periodicity)
Discovery date1758 (first predicted perihelion)
Orbital characteristics[1]
Epoch 4 August 2061 (2474040.5)
Aphelion35.14 au[2]
(aphelion: 9 December 2023)[2][3]
Perihelion0.59278 au[4]
(last perihelion: 9 February 1986)
(next perihelion: 28 July 2061)[4]
17.737 au
Eccentricity0.96658
74.7 yr
75y 5m 19d (perihelion to perihelion)
0.07323°
Inclination161.96°
59.396°
28 July 2061[4][5]
≈27 March 2134[6][5]
112.05°
Earth MOID0.075 au (11.2 million km)
(epoch 1968)[7]
TJupiter-0.598
Physical characteristics
Dimensions15 km × 8 km[8]
Mean diameter
11 km[7]
Mass2.2×1014 kg[9]
Mean density
0.6 g/cm3 (average)[10]
0.2–1.5 g/cm3 (est.)[11]
~0.002 km/s
2.2 d (52.8 h) (?)[12]
Albedo0.04[13]
28.2 (in 2003)[14]

Halley's periodic returns to the inner Solar System have been observed and recorded by astronomers around the world since at least 240 BC, but it was not until 1705 that the English astronomer Edmond Halley understood that these appearances were re-appearances of the same comet. As a result of this discovery, the comet is named after Halley.[16]

During its 1986 visit to the inner Solar System, Halley's Comet became the first comet to be observed in detail by spacecraft, providing the first observational data on the structure of a comet nucleus and the mechanism of coma and tail formation.[17][18] These observations supported a number of longstanding hypotheses about comet construction, particularly Fred Whipple's "dirty snowball" model, which correctly predicted that Halley would be composed of a mixture of volatile ices—such as water, carbon dioxide, and ammonia—and dust. The missions also provided data that substantially reformed and reconfigured these ideas; for instance, it is now understood that the surface of Halley is largely composed of dusty, non-volatile materials, and that only a small portion of it is icy.

Pronunciation edit

The common pronunciations of Comet Halley and Edmond Halley's surname have become largely unconnected over the years. Comet Halley is usually pronounced /ˈhæli/, rhyming with valley, or sometimes /ˈhli/, rhyming with daily.[19][20] As to the surname Halley, Colin Ronan, one of Edmond Halley's biographers, preferred /ˈhɔːli/, rhyming with crawly.[21] Spellings of Halley's name during his lifetime included Hailey, Haley, Hayley, Halley, Hawley, and Hawly, so its contemporary pronunciation is uncertain, but the version rhyming with valley seems to be preferred by current bearers of the surname.[22]

Computation of orbit edit

 
The orbital path of Halley, against the orbits of the planets (animation)

Halley was the first comet to be recognized as periodic. Until the Renaissance, the philosophical consensus on the nature of comets, promoted by Aristotle, was that they were disturbances in Earth's atmosphere. This idea was disproved in 1577 by Tycho Brahe, who used parallax measurements to show that comets must lie beyond the Moon. Many were still unconvinced that comets orbited the Sun, and assumed instead that they must follow straight paths through the Solar System.[23]

In 1687, Sir Isaac Newton published his Philosophiæ Naturalis Principia Mathematica, in which he outlined his laws of gravity and motion. His work on comets was decidedly incomplete. Although he had suspected that two comets that had appeared in succession in 1680 and 1681 were the same comet before and after passing behind the Sun (he was later found to be correct; see Newton's Comet),[24] he was unable to completely reconcile comets into his model.

Ultimately, it was Newton's friend, editor and publisher, Edmond Halley, who, in his 1705 Synopsis of the Astronomy of Comets, used Newton's new laws to calculate the gravitational effects of Jupiter and Saturn on cometary orbits.[25] Having compiled a list of 24 comet observations, he calculated that the orbital elements of a second comet that had appeared in 1682 were nearly the same as those of two comets that had appeared in 1531 (observed by Petrus Apianus) and 1607 (observed by Johannes Kepler).[25][26] Halley thus concluded that all three comets were, in fact, the same object returning about every 76 years, a period that has since been found to vary between 74 and 79 years. After a rough estimate of the perturbations the comet would sustain from the gravitational attraction of the planets, he predicted its return for 1758.[27] While he had personally observed the comet around perihelion in September 1682,[28] Halley died in 1742 before he could observe its predicted return.[29]

Halley's prediction of the comet's return proved to be correct, although it was not seen until 25 December 1758, by Johann Georg Palitzsch, a German farmer and amateur astronomer. It did not pass through its perihelion until 13 March 1759, the attraction of Jupiter and Saturn having caused a retardation of 618 days.[30] This effect was computed before its return (with a one-month error to 13 April)[31] by a team of three French mathematicians, Alexis Clairaut, Joseph Lalande, and Nicole-Reine Lepaute.[32] The confirmation of the comet's return was the first time anything other than planets had been shown to orbit the Sun. It was also one of the earliest successful tests of Newtonian physics, and a clear demonstration of its explanatory power.[33] The comet was first named in Halley's honour by French astronomer Nicolas-Louis de Lacaille in 1759.[33]

Some scholars have proposed that first-century Mesopotamian astronomers already had recognized Halley's Comet as periodic.[34] This theory notes a passage in the Babylonian Talmud, tractate Horayot[35] that refers to "a star which appears once in seventy years that makes the captains of the ships err."[36]

Researchers in 1981 attempting to calculate the past orbits of Halley by numerical integration starting from accurate observations in the seventeenth and eighteenth centuries could not produce accurate results further back than 837 owing to a close approach to Earth in that year. It was necessary to use ancient Chinese comet observations to constrain their calculations.[37]

Orbit and origin edit

Halley's orbital period has varied between 74 and 79 years since 240 BC.[33][38] Its orbit around the Sun is highly elliptical, with an orbital eccentricity of 0.967 (with 0 being a circle and 1 being a parabolic trajectory). The perihelion, the point in the comet's orbit when it is nearest the Sun, is 0.59 au (88 million km). This is between the orbits of Mercury and Venus. Its aphelion, or farthest distance from the Sun, is 35 au (5.2 billion km) (roughly the distance of Pluto). Unusual for an object in the Solar System, Halley's orbit is retrograde; it orbits the Sun in the opposite direction to the planets, or, clockwise from above the Sun's north pole. The orbit is inclined by 18° to the ecliptic, with much of it lying south of the ecliptic. (Because it is retrograde, the true inclination is 162°.)[39] Owing to the retrograde orbit, it has one of the highest velocities relative to the Earth of any object in the Solar System. The 1910 passage was at a relative velocity of 70.56 km/s (157,800 mph).[7] Because its orbit comes close to Earth's in two places, Halley is associated with two meteor showers: the Eta Aquariids in early May, and the Orionids in late October.[40] Halley is the parent body to the Orionids, while observations conducted around the time of Halley's appearance in 1986 suggested that the comet could additionally perturb the Eta Aquariids, although it might not be the parent of that shower.[41]

 
Orionid meteor originating from Halley's Comet streaking the sky below the Milky Way and to the right of Venus

Halley is classified as a periodic or short-period comet; one with an orbit lasting 200 years or less.[42] This contrasts it with long-period comets, whose orbits last for thousands of years. Periodic comets have an average inclination to the ecliptic of only ten degrees, and an orbital period of just 6.5 years, so Halley's orbit is atypical.[33] Most short-period comets (those with orbital periods shorter than 20 years and inclinations of 20–30 degrees or less) are called Jupiter-family comets. Those resembling Halley, with orbital periods of between 20 and 200 years and inclinations extending from zero to more than 90 degrees, are called Halley-type comets.[42][43] As of 2015, only 75 Halley-type comets have been observed, compared with 511 identified Jupiter-family comets.[44]

The orbits of the Halley-type comets suggest that they were originally long-period comets whose orbits were perturbed by the gravity of the giant planets and directed into the inner Solar System.[42] If Halley was once a long-period comet, it is likely to have originated in the Oort cloud,[43] a sphere of cometary bodies around 20,000–50,000 au from the Sun. Conversely the Jupiter-family comets are generally believed to originate in the Kuiper belt,[43] a flat disc of icy debris between 30 au (Neptune's orbit) and 50 au from the Sun (in the scattered disc). Another point of origin for the Halley-type comets was proposed in 2008, when a trans-Neptunian object with a retrograde orbit similar to Halley's was discovered, 2008 KV42, whose orbit takes it from just outside that of Uranus to twice the distance of Pluto. It may be a member of a new population of small Solar System bodies that serves as the source of Halley-type comets.[45]

Halley has probably been in its current orbit for 16,000–200,000 years, although it is not possible to numerically integrate its orbit for more than a few tens of apparitions, and close approaches before 837 AD can only be verified from recorded observations.[46] The non-gravitational effects can be crucial;[46] as Halley approaches the Sun, it expels jets of sublimating gas from its surface, which knock it very slightly off its orbital path. These orbital changes cause delays in its perihelion of four days on average.[47]

In 1989, Boris Chirikov and Vitold Vecheslavov performed an analysis of 46 apparitions of Halley's Comet taken from historical records and computer simulations. These studies showed that its dynamics were chaotic and unpredictable on long timescales.[48] Halley's projected lifetime could be as long as 10 million years. These studies also showed that many physical properties of Halley's Comet dynamics can be approximately described by a simple symplectic map, known as the Kepler map.[49] More recent work suggests that Halley will evaporate, or split in two, within the next few tens of thousands of years, or will be ejected from the Solar System within a few hundred thousand years.[50][43] Observations by D. W. Hughes suggest that Halley's nucleus has been reduced in mass by 80 to 90% over the last 2,000 to 3,000 revolutions.[18]

Structure and composition edit

 
The nucleus of Halley's Comet, imaged by the Giotto probe on 14 March 1986. The dark coloration of the nucleus can be observed, as well as the jets of dust and gas erupting from its surface.

The Giotto and Vega missions gave planetary scientists their first view of Halley's surface and structure. Like all comets, as Halley nears the Sun, its volatile compounds (those with low boiling points, such as water, carbon monoxide, carbon dioxide and other ices) begin to sublimate from the surface of its nucleus.[51] This causes the comet to develop a coma, or atmosphere, up to 100,000 kilometres (62,000 mi) across.[8] Evaporation of this dirty ice releases dust particles, which travel with the gas away from the nucleus. Gas molecules in the coma absorb solar light and then re-radiate it at different wavelengths, a phenomenon known as fluorescence, whereas dust particles scatter the solar light. Both processes are responsible for making the coma visible.[15] As a fraction of the gas molecules in the coma are ionized by the solar ultraviolet radiation,[15] pressure from the solar wind, a stream of charged particles emitted by the Sun, pulls the coma's ions out into a long tail, which may extend more than 100 million kilometres into space.[51][52] Changes in the flow of the solar wind can cause disconnection events, in which the tail completely breaks off from the nucleus.[17]

Despite the vast size of its coma, Halley's nucleus is relatively small: barely 15 kilometres (9.3 mi) long, 8 kilometres (5.0 mi) wide and perhaps 8 kilometres (5.0 mi) thick.[b] Its shape vaguely resembles that of a peanut shell.[8] Its mass is relatively low (roughly 2.2 × 1014 kg)[9] and its average density is about 0.6 grams per cubic centimetre (0.35 oz/cu in), indicating that it is made of a large number of small pieces, held together very loosely, forming a structure known as a rubble pile.[10] Ground-based observations of coma brightness suggested that Halley's rotation period was about 7.4 days. Images taken by the various spacecraft, along with observations of the jets and shell, suggested a period of 52 hours.[18] Given the irregular shape of the nucleus, Halley's rotation is likely to be complex.[51] Although only 25% of Halley's surface was imaged in detail during the flyby missions, the images revealed an extremely varied topography, with hills, mountains, ridges, depressions, and at least one crater.[18]

Halley is the most active of all the periodic comets, with others, such as Comet Encke and Comet Holmes, being one or two orders of magnitude less active.[18] Its day side (the side facing the Sun) is far more active than the night side. Spacecraft observations showed that the gases ejected from the nucleus were 80% water vapour, 17% carbon monoxide and 3–4% carbon dioxide,[53] with traces of hydrocarbons[54] although more-recent sources give a value of 10% for carbon monoxide and also include traces of methane and ammonia.[55] The dust particles were found to be primarily a mixture of carbon–hydrogen–oxygen–nitrogen (CHON) compounds common in the outer Solar System, and silicates, such as are found in terrestrial rocks.[51] The dust particles decreased in size down to the limits of detection (≈0.001 µm).[17] The ratio of deuterium to hydrogen in the water released by Halley was initially thought to be similar to that found in Earth's ocean water, suggesting that Halley-type comets may have delivered water to Earth in the distant past. Subsequent observations showed Halley's deuterium ratio to be far higher than that found in Earth's oceans, making such comets unlikely sources for Earth's water.[51]

Giotto provided the first evidence in support of Fred Whipple's "dirty snowball" hypothesis for comet construction; Whipple postulated that comets are icy objects warmed by the Sun as they approach the inner Solar System, causing ices on their surfaces to sublimate (change directly from a solid to a gas), and jets of volatile material to burst outward, creating the coma. Giotto showed that this model was broadly correct,[51] though with modifications. Halley's albedo, for instance, is about 4%, meaning that it reflects only 4% of the sunlight hitting it; about what one would expect for coal.[56] Thus, despite appearing brilliant white to observers on Earth, Halley's Comet is in fact pitch black. The surface temperature of evaporating "dirty ice" ranges from 170 K (−103 °C) at higher albedo to 220 K (−53 °C) at low albedo; Vega 1 found Halley's surface temperature to be in the range 300–400 K (27–127 °C). This suggested that only 10% of Halley's surface was active, and that large portions of it were coated in a layer of dark dust that retained heat.[17] Together, these observations suggested that Halley was in fact predominantly composed of non-volatile materials, and thus more closely resembled a "snowy dirtball" than a "dirty snowball".[18][57]

History edit

Before 1066 edit

 
Observation of Halley's Comet, recorded in cuneiform on a clay tablet between 22 and 28 September 164 BC, Babylon, Iraq. British Museum
(BM 41462 19 April 2021 at the Wayback Machine)

Halley may have been recorded as early as 467 BC, but this is uncertain. A comet was recorded in ancient Greece between 468 and 466 BC; its timing, location, duration, and associated meteor shower all suggest it was Halley.[58] According to Pliny the Elder, that same year a meteorite fell in the town of Aegospotami, in Thrace. He described it as brown in colour and the size of a wagon load.[59] Chinese chroniclers also mention a comet in that year.[60]

 
Report of Halley's Comet by Chinese astronomers in 240 BC (Shiji)

The first certain appearance of Halley's Comet in the historical record is a description from 240 BC, in the Chinese chronicle Records of the Grand Historian or Shiji, which describes a comet that appeared in the east and moved north.[61] The only surviving record of the 164 BC apparition is found on two fragmentary Babylonian tablets, now in the British Museum.[61]

The apparition of 87 BC was recorded in Babylonian tablets which state that the comet was seen "day beyond day" for a month.[62] This appearance may be recalled in the representation of Tigranes the Great, an Armenian king who is depicted on coins with a crown that features, according to Vahe Gurzadyan and R. Vardanyan, "a star with a curved tail [that] may represent the passage of Halley's Comet in 87 BC." Gurzadyan and Vardanyan argue that "Tigranes could have seen Halley's Comet when it passed closest to the Sun on August 6 in 87 BC" as the comet would have been a "most recordable event"; for ancient Armenians it could have heralded the New Era of the brilliant King of Kings.[63]

The apparition of 12 BC was recorded in the Book of Han by Chinese astronomers of the Han Dynasty who tracked it from August through October.[64] It passed within 0.16 au of Earth.[65] According to the Roman historian Cassius Dio, a comet appeared suspended over Rome for several days portending the death of Marcus Vipsanius Agrippa in that year.[66] Halley's appearance in 12 BC, only a few years distant from the conventionally assigned date of the birth of Jesus Christ, has led some theologians and astronomers to suggest that it might explain the biblical story of the Star of Bethlehem. There are other explanations for the phenomenon, such as planetary conjunctions, and there are also records of other comets that appeared closer to the date of Jesus' birth.[67]

 
Possible report of Halley's Comet in the Talmud (b. Horayot 10a)

If, as has been suggested, the reference by Yehoshua ben Hananiah in b. Horayot 10a to "a star which arises once in seventy years and misleads the sailors"[68] refers to Halley's Comet, it may be a reference to the 66 AD appearance, because this apparition was the only one to occur during Yehoshua ben Hananiah's lifetime.[69]

The 141 AD apparition was recorded in Chinese chronicles.[70] It was also recorded in the Tamil work Purananuru, in connection with the death of the south Indian Chera king Yanaikatchai Mantaran Cheral Irumporai.[71]

The 374 AD and 607 approaches each came within 0.09 au of Earth.[65] The 451 AD apparition was said to herald the defeat of Attila the Hun at the Battle of Chalons.[72]

The 684 AD apparition was recorded in Europe in one of the sources used by the compiler of the 1493 Nuremberg Chronicles, which contains an image 8 centuries after the event.[73] Chinese records also report it as the "broom star".[74][26]

The 760 AD apparition was recorded in the Zuqnin Chronicle's entry for iyyōr 1071 SE (May 760 AD), calling it a "white sign":[75]

The year [SE] one thousand seventy one (AD 759/760).

In the month of iyyōr (May) a white sign was seen in the sky, before early twilight, in the north-east [quarter], in the Zodiac [sign] which is called Aries, to the north from these three stars in it, which are very shining. And it resembled in its shape a broom [...]

And the sign itself remained for fifteen nights, until dawn of the feast of Pentecost.

— Zuqnin Chronicle, fol.136v; Neuhäuser et al. (trans.)

In 837 AD, Halley's Comet may have passed as close as 0.03 au (3.2 million miles; 5.1 million kilometres) from Earth, by far its closest approach.[76][65] Its tail may have stretched 60 degrees across the sky. It was recorded by astronomers in China, Japan, Germany, the Byzantine Empire, and the Middle East;[64] Emperor Louis the Pious observed this appearance and devoted himself to prayer and penance, fearing that "by this token a change in the realm and the death of a prince are made known."[77]

In 912 AD, Halley is recorded in the Annals of Ulster, which state "A dark and rainy year. A comet appeared."[78]

1066 edit

 
Halley's Comet in 1066 depicted in the Bayeux Tapestry
 
Halley's Comet seen from London on 6 May 1066 as simulated by Stellarium. The Moon, Mars, Jupiter, and Saturn are also visible.

In 1066, the comet was seen in England and thought to be an omen: later that year Harold II of England died at the Battle of Hastings and William the Conqueror claimed the throne. The comet is represented on the Bayeux Tapestry and described in the tituli as a star. Surviving accounts from the period describe it as appearing to be four times the size of Venus, and shining with a light equal to a quarter of that of the Moon. Halley came within 0.10 au of Earth at that time.[65]

This appearance of the comet is also noted in the Anglo-Saxon Chronicle. Eilmer of Malmesbury may have seen Halley in 989 and 1066, as recorded by William of Malmesbury:

Not long after, a comet, portending (they say) a change in governments, appeared, trailing its long flaming hair through the empty sky: concerning which there was a fine saying of a monk of our monastery called Æthelmær. Crouching in terror at the sight of the gleaming star, "You've come, have you?", he said. "You've come, you source of tears to many mothers. It is long since I saw you; but as I see you now you are much more terrible, for I see you brandishing the downfall of my country."[79]

The Irish Annals of the Four Masters recorded the comet as "A star [that] appeared on the seventh of the Calends of May, on Tuesday after Little Easter, than whose light the brilliance or light of The Moon was not greater; and it was visible to all in this manner till the end of four nights afterwards."[78] Chaco Native Americans in New Mexico may have recorded the 1066 apparition in their petroglyphs.[80]

The Italo-Byzantine chronicle of Lupus the Protospatharios mentions that a "comet-star" appeared in the sky in the year 1067 (the chronicle is erroneous, as the event occurred in 1066, and by Robert he means William).

The Emperor Constantine Ducas died in the month of May, and his son Michael received the Empire. And in this year there appeared a comet star, and the Norman count Robert [sic] fought a battle with Harold, King of the English, and Robert was victorious and became king over the people of the English.[81]

1145–1378 edit

 
Illustration on the Eadwine Psalter (fol.10r), from circa 1150, portraying a comet that's possibly Halley's Comet – and describing it as "the long-haired star"
 
The Adoration of the Magi (circa 1305) by Giotto, who purportedly modelled the star of Bethlehem on Halley, which had been sighted 4 years before that painting.

The 1145 apparition was recorded by the monk Eadwine. The 1986 apparition exhibited a fan tail similar to Eadwine's drawing.[74]

Some claim that Genghis Khan was inspired to turn his conquests toward Europe by the 1222 apparition.[82]

The 1301 apparition may have been seen by the artist Giotto di Bondone, who represented the Star of Bethlehem as a fire-colored comet in the Nativity section of his Arena Chapel cycle, completed in 1305.[74]

Its 1378 appearance is recorded in the Annales Mediolanenses[83] as well as in East Asian sources.[84]

1456 edit

In 1456, the year of Halley's next apparition, the Ottoman Empire invaded the Kingdom of Hungary, culminating in the siege of Belgrade in July of that year. In a papal bull, Pope Callixtus III ordered special prayers be said for the city's protection. In 1470, the humanist scholar Bartolomeo Platina wrote in his Lives of the Popes that,[85]

A hairy and fiery star having then made its appearance for several days, the mathematicians declared that there would follow grievous pestilence, dearth and some great calamity. Calixtus, to avert the wrath of God, ordered supplications that if evils were impending for the human race He would turn all upon the Turks, the enemies of the Christian name. He likewise ordered, to move God by continual entreaty, that notice should be given by the bells to call the faithful at midday to aid by their prayers those engaged in battle with the Turk.

 
1456 comet in Zodiac

Platina's account is not mentioned in official records. In the 18th century, a Frenchman further embellished the story, in anger at the Church, by claiming that the Pope had "excommunicated" the comet, though this story was most likely his own invention.[86]

Halley's apparition of 1456 was also witnessed in Kashmir and depicted in great detail by Śrīvara, a Sanskrit poet and biographer to the Sultans of Kashmir. He read the apparition as a cometary portent of doom foreshadowing the imminent fall of Sultan Zayn al-Abidin (AD 1418/1420–1470).[87]

After witnessing a bright light in the sky which most historians have identified as Halley's Comet, Zara Yaqob, Emperor of Ethiopia from 1434 to 1468, founded the city of Debre Berhan (tr. City of Light) and made it his capital for the remainder of his reign.[88]

1531 edit

 
Illustration of the 1531 appearance on Petrus Apianus' Astronomicum Caesareum, noting that a comet's tail always points away from the sun

Petrus Apianus and Girolamo Fracastoro described comet's visit in 1531, with the former even including graphics in his publication.

In the Sikh scriptures of the Guru Granth Sahib, the founder of the faith Guru Nanak makes reference to "a long star that has risen" at Ang 1110, and it is believed by some Sikh scholars to be a reference to Halley's appearance in 1531.[89]

1531–1759 edit

 
"I must entreat you to procure for me of Mr Flamsteed what he has observed of the Comett of 1682 particularly in the month of September, for I am more and more confirmed that we have seen that Comett now three times, since yͤ Yeare 1531, he will not deny it you, though I know he will me." —Excerpt of Halley's letter to Newton about comet's orbits (28 September 1695)

Halley's periodic returns have been subject to scientific investigation since the 16th century. The three apparitions from 1531 to 1682 were noted by Edmond Halley, enabling him to predict it would return.[90] One key breakthrough occurred when Halley talked with Newton about his ideas of the laws of motion. Newton also helped Halley get Flamsteed's data on the 1682 apparition.[91] By studying data on the 1531, 1607, and 1682 comets, he came to the conclusion these were the same comet, and presented his findings in 1696.[91]

One difficulty was accounting for variations in the comet's orbital period, which was over a year longer between 1531 and 1607 than it was between 1607 and 1682.[92] Newton had theorized that such delays were caused by the gravity of other comets, but Halley found that Jupiter and Saturn would cause the appropriate delays.[92] In the decades that followed, more refined mathematics would be worked on, notable by Paris Observatory; the work on Halley also provided a boost to Newton and Kepler's rules for celestial motions.[91] (See also #Computation of orbit)

Illustrations of prior comet appearances in
the January 1910 Popular Science Monthly magazine
1682 1759 1835
     

1835 edit

 
An 1835 watercolour painting depicting observation of the 1835 apparition

At Markree Observatory in Ireland, an E. J. Cooper used a Cauchoix of Paris lens telescope with an aperture of 340 millimetres (13.3 in) to sketch Halley's comet in 1835.[93]

The comet was also sketched by F.W. Bessel.[94] Streams of vapour observed during the comet's 1835 apparition prompted astronomer Friedrich Wilhelm Bessel to propose that the jet forces of evaporating material could be great enough to significantly alter a comet's orbit.[95]

An interview in 1910, of someone who was a teenager at the time of the 1835 apparition had this to say:[96]

When the comet was first seen, it appeared in the western sky, its head toward the north and tail towards the south, about horizontal and considerably above the horizon and quite a distance south of the Sun. It could be plainly seen directly after sunset every day, and was visible for a long time, perhaps a month ...

They go on to describe the comet's tail as being more broad and not as long as the comet of 1843 they had also witnessed.[96]

Famous astronomers across the world made observations starting August 1835, including Struve at Dorpat observatory, and Sir John Herschel, who made of observations from the Cape of Good Hope.[97] In the United States telescopic observations were made from Yale College.[97] The new observations helped confirm early appearances of this comet including its 1456 and 1378 apparitions.[97]

At Yale College in Connecticut, the comet was first reported on 31 August 1835 by astronomers D. Olmstead and E. Loomis.[98] In Canada reports were made from Newfoundland and also Quebec.[98] Reports came in from all over by later 1835, and often reported in newspapers of this time in Canada.[98]

Several accounts of the 1835 apparition were made by observers who survived until the 1910 return, where increased interest in the comet led to their being interviewed.[98]

Astrophotography was not known to have been attempted until 1839, as photography was still being invented in the 1830s, too late to photograph the apparition of 1P/Halley in 1835.[99]

The time to Halley's return in 1910 would be only 74.42 years, one of the shortest known periods of its return, which is calculated to be as long as 79 years owing to the effects of the planets.[100]

At Paris Observatory Halley's Comet 1835 apparition was observed with a Lerebours telescope of 24.4 cm (9.6 in) aperture by the astronomer François Arago.[101] Arago recorded polimetric observations of Halley, and suggested that the tail might be sunlight reflecting off a sparsely distributed material; he had earlier made similar observations of Comet Tralles of 1819.[102]

1910 edit

 
Halley in April 1910, from Harvard's Southern Hemisphere Station, taken with an 8-inch Bache Doublet

The 1910 approach, which came into naked-eye view around 10 April[65] and came to perihelion on 20 April,[65] was notable for several reasons: it was the first approach of which photographs exist, and the first for which spectroscopic data were obtained.[17] Furthermore, the comet made a relatively close approach of 0.15 au,[65] making it a spectacular sight. Indeed, on 19 May, Earth actually passed through the tail of the comet.[103][104] One of the substances discovered in the tail by spectroscopic analysis was the toxic gas cyanogen,[105] which led press to misquote[citation needed] the astronomer Camille Flammarion by stating he claimed that, when Earth passed through the tail, the gas "would impregnate the atmosphere and possibly snuff out all life on the planet."[106] This misquoting by press to sell more papers[speculation?] led to panicked buying of gas masks and quack "anti-comet pills" and "anti-comet umbrellas" by the public.[107] Flammarion and other astronomers were quick to point out, the gas is so diffused that the world suffered no ill effects from the passage through the tail.[106]

The comet added to the unrest in China on the eve of the Xinhai Revolution that would end the last dynasty in 1911. As James Hutson, a missionary in Sichuan Province at the time, recorded,

The people believe that it indicates calamity such as war, fire, pestilence, and a change of dynasty. In some places on certain days the doors were unopened for half a day, no water was carried and many did not even drink water as it was rumoured that pestilential vapour was being poured down upon the earth from the comet."[108]

The 1910 visitation is also recorded as being the travelling companion of Hedley Churchward, the first known English Muslim to make the Haj pilgrimage to Mecca. However, his explanation of its scientific predictability did not meet with favour in the Holy City.[109]

The comet was used in an advertising campaign of Le Bon Marché, a well-known department store in Paris.[110]

The comet was also fertile ground for hoaxes. One that reached major newspapers claimed that the Sacred Followers, a supposed Oklahoma religious group, attempted to sacrifice a virgin to ward off the impending disaster, but were stopped by the police.[111]

American satirist and writer Mark Twain was born on 30 November 1835, exactly two weeks after the comet's perihelion. In his autobiography, published in 1909, he said,

I came in with Halley's comet in 1835. It is coming again next year, and I expect to go out with it. It will be the greatest disappointment of my life if I don't go out with Halley's comet. The Almighty has said, no doubt: "Now here are these two unaccountable freaks; they came in together, they must go out together."[112][113]

Twain died on 21 April 1910, the day following the comet's subsequent perihelion.[114] The 1985 fantasy film The Adventures of Mark Twain was inspired by the quotation.

Halley's 1910 apparition is distinct from the Great Daylight Comet of 1910, which surpassed Halley in brilliance and was actually visible in broad daylight for a short period, approximately four months before Halley made its appearance.[115][116]

1986 edit

 
Halley's Comet as seen on 21 March 1986
 
Kuiper Airborne Observatory's imaging of Halley's Comet in April 1986
 
Animation of 1P/Halley orbit - 1986 apparition
  1P/Halley ·   Earth ·   Sun

The 1986 apparition of Halley's Comet was the least favourable on record. In February 1986, the comet and the Earth were on opposite sides of the Sun, creating the worst possible viewing circumstances for Earth observers during the previous 2,000 years.[117] Halley's closest approach was 0.42 au.[118] Additionally, increased light pollution from urbanization caused many people to fail in attempts to see the comet. With the help of binoculars, observation from areas outside cities was more successful.[119] Further, the comet appeared brightest when it was almost invisible from the northern hemisphere in March and April 1986,[120] with best opportunities occurring when the comet could be sighted close to the horizon at dawn and dusk, if not obscured by clouds.

The approach of the comet was first detected by astronomers David C. Jewitt and G. Edward Danielson on 16 October 1982 using the 5.1 m Hale telescope at Mount Palomar and a CCD camera.[121]

The first visual observance of the comet on its 1986 return was by an amateur astronomer, Stephen James O'Meara, on 24 January 1985. O'Meara used a home-built 610-millimetre (24 in) telescope on top of Mauna Kea to detect the magnitude 19.6 comet.[122] The first to observe Halley's Comet with the naked eye during its 1986 apparition were Stephen Edberg (then serving as the coordinator for amateur observations at the NASA Jet Propulsion Laboratory) and Charles Morris on 8 November 1985.[123][124]

Although the comet's retrograde orbit and high inclination made it difficult to send a space probe to it,[125] the 1986 apparition gave scientists the opportunity to study the comet closely and several probes were launched to do so. The Soviet Vega 1 probe began returning images of Halley on 4 March 1986, captured the first-ever image of its nucleus,[18] and made its flyby on 6 March. It was followed by the Vega 2 probe, making its flyby on 9 March. On 14 March, the Giotto space probe, launched by the European Space Agency, made the closest pass of the comet's nucleus.[18] There also were two Japanese probes, Suisei and Sakigake. Unofficially, the numerous probes became known as the Halley Armada.[126]

Based on data retrieved by the largest ultraviolet space telescope of the time, Astron, during its Halley's Comet observations in December 1985, a group of Soviet scientists developed a model of the comet's coma.[127] The comet also was observed from space by the International Cometary Explorer (ICE). Originally the International Sun-Earth Explorer 3, the spacecraft departed the Sun-Earth L1 Lagrangian point in order to intercept comets 21P/Giacobini-Zinner and Halley.[128] ICE flew about 40.2 million km (25 million mi) from Halley's Comet on 28 March 1986.[129][130]

Two U.S. Space Shuttle missions—STS-51-L and STS-61-E—had been scheduled to observe Halley's Comet from low Earth orbit. The STS-51-L mission carried the Shuttle-Pointed Tool for Astronomy (SPARTAN-203) satellite, also called the Halley's Comet Experiment Deployable (HCED).[131] The mission ended in disaster when the Space Shuttle Challenger exploded in flight, killing all seven astronauts onboard.[132] Scheduled for March 1986, STS-61-E was a Columbia mission carrying the ASTRO-1 platform to study the comet,[133] but the mission was canceled following the Challenger disaster and ASTRO-1 would not fly until late 1990 on STS-35.[134]

After 1986 edit

 
Halley's Comet observed in 2003 at 28 au from the Sun

On 12 February 1991, at a distance of 14.4 au (2.15×109 km) from the Sun, Halley displayed an outburst that lasted for several months, releasing a cloud of dust 300,000 km (190,000 mi) across.[51] The outburst likely started in December 1990, and then the comet brightened from magnitude 24.3 to magnitude 18.9.[135] Halley was most recently observed in 2003 by three of the Very Large Telescopes at Paranal, Chile, when Halley's magnitude was 28.2. The telescopes observed Halley, at the faintest and farthest any comet has ever been imaged, in order to verify a method for finding very faint trans-Neptunian objects.[14] Astronomers are now able to observe the comet at any point in its orbit.[14]

On 9 December 2023, Halley's Comet reached the farthest and slowest point in its orbit from the Sun when it was traveling at 0.91 km/s (2,000 mph) with respect to the Sun.[2][3]

2061 edit

 
Animation of 1P/Halley orbit - 2061 apparition
  Sun ·   Venus ·   Earth ·   Jupiter ·   1P/Halley

The next perihelion of Halley's Comet is 28 July 2061,[4][5] when it will be better positioned for observation than during the 1985–1986 apparition, as it will be on the same side of the Sun as Earth.[38] The closest approach to Earth will be one day after perihelion.[7] It is expected to have an apparent magnitude of −0.3, compared with only +2.1 for the 1986 apparition.[136] On 9 September 2060, Halley will pass within 0.98 au (147,000,000 km) of Jupiter, and then on 20 August 2061 will pass within 0.0543 au (8,120,000 km) of Venus.[7]

2134 edit

Halley will come to perihelion on 27 March 2134.[6][5] Then on 7 May 2134, Halley will pass within 0.092 au (13,800,000 km) of Earth.[7] Its apparent magnitude is expected to be −2.0.[136]

Apparitions edit

Halley's calculations enabled the comet's earlier appearances to be found in the historical record. The following table sets out the astronomical designations for every apparition of Halley's Comet from 240 BC, the earliest documented widespread sighting.[7][137] For example, "1P/1982 U1, 1986 III, 1982i" indicates that for the perihelion in 1986, Halley was the first period comet known (designated 1P) and this apparition was the first seen in half-month U (the second half of October)[138] in 1982 (giving 1P/1982 U1); it was the third comet past perihelion in 1986 (1986 III); and it was the ninth comet spotted in 1982 (provisional designation 1982i). The perihelion dates of each apparition are shown.[139] The perihelion dates farther from the present are approximate, mainly because of uncertainties in the modelling of non-gravitational effects. Perihelion dates of 1531 and earlier are in the Julian calendar, while perihelion dates 1607 and after are in the Gregorian calendar.[140]

Designation Year BC/AD Gap (years) Date of perihelion[1] Visible duration Earth approach[65] Description[141]
1P/−239 K1, −239 240 BC 25 May 15–25 May First confirmed sighting.
1P/−163 U1, −163 164 BC 76 12 Nov Seen by Babylonians.
1P/−86 Q1, −86 87 BC 77 6 August 6–19 August Seen by the Babylonians and Chinese.
1P/−11 Q1, −11 12 BC 75 10 October August – 10 October 0.16 au Watched by Chinese for two months.
1P/66 B1, 66 66 78 25 January 25–26 January May be the comet described in Josephus's The Jewish War as "A comet of the kind called Xiphias, because their tails appear to represent the blade of a sword" that supposedly heralded the destruction of the Second Temple in 70 AD.[66]
1P/141 F1, 141 141 75 22 March 22–25 March Described by the Chinese as bluish-white in colour. Described in Tamil literature and death of Chera (Yanaikatchai Mantaran Cheral Irumporai) king after appearance of comet.[142]
1P/218 H1, 218 218 77 17 May 6 April – 17 May Described by the Roman historian Dion Cassius as "a very fearful star".
1P/295 J1, 295 295 77 20 April 7–20 April Seen in China, but not spectacular.
1P/374 E1, 374 374 79 16 February 13–16 February 0.09 au Comet passed 13.5 million kilometres from Earth.
1P/451 L1, 451 451 77 28 June 28 June – 3 July Appeared before the defeat of Attila the Hun at the Battle of Chalons. The 451AD orbital period was 79.29 years.[1]
1P/530 Q1, 530 530 79 27 September 27 September – 15 November Noted in China and Europe, but not spectacular.
1P/607 H1, 607 607 77 15 March 15–26 March 0.09 au Comet passed 13.5 million kilometres from Earth.
1P/684 R1, 684 684 77 2 October 2 October – 26 November First known Japanese records of the comet. Seen in Europe and depicted 800 years later in the Nuremberg Chronicle. Attempts have been made to connect an ancient Maya depiction of God L to the event.[143]
1P/760 K1, 760 760 76 20 May 20 May – 10 June Seen in China, at the same time as another comet.
1P/837 F1, 837 837 77 28 February 25–28 February 0.033 au[76] Closest-ever approach to the Earth (5 million km). Tail stretched halfway across the sky. Appeared as bright as Venus.
1P/912 J1, 912 912 75 18 July 18–27 July Seen briefly in China and Japan.
1P/989 N1, 989 989 77 5 September 2–5 September Seen in China, Japan, and (possibly) Korea.
1P/1066 G1, 1066 1066 77 20 March January – 25 March 0.10 au Seen for over two months in China. Recorded in England and depicted on the later Bayeux tapestry which portrayed the events of that year.
1P/1145 G1, 1145 1145 79 18 April 15–19 April Depicted on the Eadwine Psalter, with the remark that such "hairy stars" appeared rarely, "and then as a portent".
1P/1222 R1, 1222 1222 77 28 September 10–28 September Described by Japanese astronomers as being "as large as the half Moon . . . Its colour was white but its rays were red".
1P/1301 R1, 1301 1301 79 25 October 22–31 October Seen by Giotto di Bondone and included in his painting The Adoration of the Magi. Chinese astronomers compared its brilliance to that of the first-magnitude star Procyon.
1P/1378 S1, 1378 1378 77 10 November 9–14 November Passed within 10 degrees of the north celestial pole, more northerly than at any time during the past 2000 years. This is the last appearance of the comet for which eastern records are better than Western ones.
1P/1456 K1, 1456 1456 78 9 June 8 January – 9 June Observed in Italy by Paolo Toscanelli, who said its head was "as large as the eye of an ox", with a tail "fan-shaped like that of a peacock". Arabs said the tail resembled a Turkish scimitar. Turkish forces attacked Belgrade.
1P/1531 P1, 1531 1531 75 26 August 26 August Seen by Peter Apian, who noted that its tail always pointed away from the Sun. This sighting was included in Halley's table.
1P/1607 S1, 1607 1607 76 27 October 27 October Seen by Johannes Kepler. This sighting was included in Halley's table.
1P/1682 Q1, 1682 1682 75 15 September 15 September Seen by Edmond Halley at Islington.
1P/1758 Y1, 1759 I 1758 76 13 March 13 March – 25 December Return predicted by Halley. First seen by Johann Palitzsch on 1758 December 25.
1P/1835 P1, 1835 III 1835 77 16 November August – 16 November First seen at the Observatory of the Roman College in August.[144] Studied by John Herschel at the Cape of Good Hope.
1P/1909 R1, 1910 II, 1909c 1910 75 20 April 20 April – 20 May 0.151 au[7] Photographed for the first time. Earth passed through the comet's tail on 20 May.
1P/1982 U1, 1986 III, 1982i 1986 76 9 February 9 February 0.417 au Reached perihelion on 9 February, closest to Earth (63 million km) on 10 April. Nucleus photographed by the European space probe Giotto and the Soviet probes Vega 1 and 2.
2061 75 28 July 28 July 2061[4][5] 0.477 au Next return with perihelion on 28 July 2061[4][5] and Earth approach one day later on 29 July 2061[7]
2134 73 27 March 27 March 2134[6][5] 0.092 au[7] Subsequent return with perihelion on 27 March 2134 and Earth approach on 7 May 2134
2209 75 3 February 3 February 2209[145] 0.515 au[145] Best-fit for February 2209 perihelion passage and April Earth approach

See also edit

References edit

  1. ^ a b c d "1P/Halley Orbit". Minor Planet Center. from the original on 4 July 2022. Retrieved 28 June 2022. (epoch 451 is 79.29 years)
  2. ^ a b c "Horizons Batch for 1P/Halley (90000030) on 2023-Dec-09" (Aphelion occurs when rdot flips from positive to negative). JPL Horizons. from the original on 1 July 2022. Retrieved 1 July 2022. (JPL#73 Soln.date: 2022-Jun-07)
  3. ^ a b DNews (3 September 2013). "Let's Plan For a Rendezvous With Halley's Comet". Seeker. Retrieved 29 October 2019.
  4. ^ a b c d e f "Horizons Batch for 1P/Halley (90000030) on 2061-Jul-28" (Perihelion occurs when rdot flips from negative to positive @ 2061-Jul-28 17:20 UT). JPL Horizons. from the original on 27 May 2022. Retrieved 28 June 2022. (JPL#73 Soln.date: 2022-Jun-07)
  5. ^ a b c d e f g Kinoshita, Kazuo (3 October 2003). "1P/Halley past, present and future orbital elements". Comet Orbit.
  6. ^ a b c "Horizons Batch for 1P/Halley (90000030) on 2134-Mar-27" (Perihelion occurs when rdot flips from negative to positive). JPL Horizons. from the original on 28 June 2022. Retrieved 28 June 2022. (JPL#73 Soln.date: 2022-Jun-07)
  7. ^ a b c d e f g h i j "JPL Small-Body Database Browser: 1P/Halley" (11 January 1994 last obs). Jet Propulsion Laboratory. from the original on 27 April 2015. Retrieved 28 June 2022.
  8. ^ a b c "What Have We Learned About Halley's Comet?". Astronomical Society of the Pacific (No. 6 – Fall 1986). 1986. Retrieved 16 December 2008.
  9. ^ a b Cevolani, Giordano; Bortolotti, Giuseppe; Hajduk, Anton (1987). "Halley, comet's mass loss and age". Il Nuovo Cimento C. Società Italiana di Fisica [Italian Physical Society]. 10 (5): 587–591. Bibcode:1987NCimC..10..587C. doi:10.1007/BF02507255. S2CID 120603847.
  10. ^ a b Sagdeev, Roald Z.; Elyasberg, Pavel E.; Moroz, Vasily I. (1988). "Is the nucleus of Comet Halley a low density body?". Nature. 331 (6153): 240–242. Bibcode:1988Natur.331..240S. doi:10.1038/331240a0. S2CID 4335780.
  11. ^ Peale, Stanton J. (1989). "On the density of Halley's comet". Icarus. 82 (1): 36–49. Bibcode:1989Icar...82...36P. doi:10.1016/0019-1035(89)90021-3. densities obtained by this procedure are in reasonable agreement with intuitive expectations of densities near 1 g/cm3, the uncertainties in several parameters and assumptions expand the error bars so far as to make the constraints on the density uniformative ... suggestion that cometary nuclei tend to by very fluffy, ... should not yet be adopted as a paradigm of cometary physics.
  12. ^ Peale, Stanton J.; Lissauer, Jack J. (1989). "Rotation of Halley's Comet". Icarus. 79 (2): 396–430. Bibcode:1989Icar...79..396P. doi:10.1016/0019-1035(89)90085-7.
  13. ^ Britt, Robert Roy (29 November 2001). . Space.com. Archived from the original on 4 January 2014. Retrieved 16 December 2008.
  14. ^ a b c "New Image of Comet Halley in the Cold". European Southern Observatory. 1 September 2003. Retrieved 26 February 2018.
  15. ^ a b c Delehanty, Marc. . AstronomyToday. Archived from the original on 4 September 2011. Retrieved 15 March 2007.
  16. ^ Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. Retrieved 16 June 2020 – via Internet Archive.
  17. ^ a b c d e Mendis, D. Asoka (1988). "A Postencounter view of comets". Annual Review of Astronomy and Astrophysics. 26 (1): 11–49. Bibcode:1988ARA&A..26...11M. doi:10.1146/annurev.aa.26.090188.000303.
  18. ^ a b c d e f g h Keller, Horst Uwe; Britt, Daniel; Buratti, Bonnie J.; Thomas, Nicolas (2005). "In Situ Observations of Cometary Nuclei" (PDF). In Festou, Michel; Keller, Horst Uwe; Weaver, Harold A. (eds.). Comets II. University of Arizona Press. pp. 211–222. ISBN 978-0-8165-2450-1.
  19. ^ "Halley". Merriam–Webster Online. Retrieved 21 December 2009.
  20. ^ Ridpath, Ian (1985). "Saying Hallo to Halley". Revised extracts from "A Comet Called Halley" by Ian Ridpath, published by Cambridge University Press in 1985. Retrieved 8 May 2015.
  21. ^ That is, with the vowel of hall and in some accents homophonous withholly.
  22. ^ "New York Times Science Q&A". The New York Times. 14 May 1985. Retrieved 9 January 2011.
  23. ^ Lancaster-Brown, Peter; Halley & His Comet, pp. 14, 25
  24. ^ Lancaster-Brown, Peter; Halley & His Comet, p. 35
  25. ^ a b Lancaster-Brown, Peter; Halley & His Comet, p. 76
  26. ^ a b Ley, Willy (October 1967). "The Worst of All the Comets". For Your Information. Galaxy Science Fiction. pp. 96–105.
  27. ^ Lancaster-Brown, Peter; Halley & His Comet, p. 78
  28. ^ Yeomans, Donald Keith; Rahe, Jürgen; Freitag, Ruth S. (1986). "The History of Comet Halley". Journal of the Royal Astronomical Society of Canada. 80: 81. Bibcode:1986JRASC..80...62Y.
  29. ^ Lancaster-Brown, Peter; Halley & His Comet, p. 80
  30. ^ Lancaster-Brown, Peter; Halley & His Comet, p. 86
  31. ^ Sagan, Carl; Druyan, Ann; Comet, p. 74
  32. ^ Lancaster-Brown, Peter; Halley & His Comet, pp. 84–85
  33. ^ a b c d Hughes, David W.; et al. (1987). "The History of Halley's Comet". Philosophical Transactions of the Royal Society A. 323 (1572): 349–367. Bibcode:1987RSPTA.323..349H. doi:10.1098/rsta.1987.0091. JSTOR 37959. S2CID 123592786.
  34. ^ Brodetsky, Selig. "Astronomy in the Babylonian Talmud". Jewish Review. 1911: 60.
  35. ^ "Tractate Horioth chapter 3".
  36. ^ Rayner, John D. (1998). A Jewish Understanding of the World. Berghahn Books. pp. 108–111. ISBN 1-57181-973-8.
  37. ^ Stephenson, F. Richard; Yau, Kevin K. C., "Oriental tales of Halley's Comet", New Scientist, vol. 103, no. 1423, pp. 30–32, 27 September 1984 ISSN 0262-4079
  38. ^ a b Yeomans, Donald Keith; Rahe, Jürgen; Freitag, Ruth S. (1986). "The History of Comet Halley". Journal of the Royal Astronomical Society of Canada. 80: 70. Bibcode:1986JRASC..80...62Y.
  39. ^ Nakano, Syuichi (2001). "OAA computing sectioncircular". Oriental Astronomical Association. Retrieved 15 May 2007.
  40. ^ "Meteor Streams". Jet Propulsion Laboratory. Retrieved 15 March 2007.
  41. ^ Mitra, Umasankar (1987). "An Investigation Into the Association Between Eta-Aquarid Meteor Shower and Halley's Comet". Bulletin of the Astronomical Society of India. 15: 23. Bibcode:1987BASI...15...23M.
  42. ^ a b c Morbidelli, Alessandro (2005). "Origin and dynamical evolution of comets and their reservoirs". arXiv:astro-ph/0512256.
  43. ^ a b c d Jewitt, David C. (2002). "From Kuiper Belt Object to Cometary Nucleus: The Missing Ultrared Matter". The Astronomical Journal. 123 (2): 1039–1049. Bibcode:2002AJ....123.1039J. doi:10.1086/338692. S2CID 122240711.
  44. ^ Fernández, Yanga R. (28 July 2015). "List of Jupiter-Family and Halley-Family Comets". University of Central Florida: Physics. Retrieved 6 September 2015.
  45. ^ Gladman, Brett J.; et al. (2009). "Discovery of the first retrograde transneptunian object". The Astrophysical Journal. 697 (2): L91–L94. Bibcode:2009ApJ...697L..91G. doi:10.1088/0004-637X/697/2/L91.
  46. ^ a b Olsson-Steel, Duncan I. (1987). "The dynamical lifetime of comet P/Halley". Astronomy and Astrophysics. 187 (1–2): 909–912. Bibcode:1987A&A...187..909O.
  47. ^ Yeomans, Donald Keith (1991). Comets: A Chronological History of Observation, Science, Myth, and Folklore. Wiley and Sons. pp. 260–261. ISBN 0-471-61011-9.
  48. ^ Chirikov, Boris V.; Vecheslavov, Vitold V. (1989). "Chaotic dynamics of comet Halley" (PDF). Astronomy and Astrophysics. 221 (1): 146–154. Bibcode:1989A&A...221..146C.
  49. ^ Lages, José; Shepelyansky, Dima L.; Shevchenko, Ivan I. (2018). "Kepler map". Scholarpedia. 13 (2): 33238. Bibcode:2018SchpJ..1333238L. doi:10.4249/scholarpedia.33238.
  50. ^ Williams, Matt (12 June 2015). "What Is Halley's Comet?". Universe today.
  51. ^ a b c d e f g Brandt, John C. "McGraw−Hill AccessScience: Halley's Comet". McGraw-Hill. Retrieved 27 November 2009.
  52. ^ Crovisier, Jacques; Encrenaz, Thérèse (2000). Comet Science. Cambridge University Press. ISBN 978-0-521-64591-1.
  53. ^ Woods, Thomas N.; Feldman, Paul D.; Dymond, Kenneth F.; Sahnow, David J. (1986). "Rocket ultraviolet spectroscopy of comet Halley and abundance of carbon monoxide and carbon". Nature. 324 (6096): 436–438. Bibcode:1986Natur.324..436W. doi:10.1038/324436a0. S2CID 4333809.
  54. ^ Chyba, Christopher F.; Sagan, Carl (1987). "Infrared emission by organic grains in the coma of comet Halley". Nature. 330 (6146): 350–353. Bibcode:1987Natur.330..350C. doi:10.1038/330350a0. S2CID 4351413.
  55. ^ "Giotto:Halley". European Space Agency. 2006. Retrieved 5 December 2009.
  56. ^ Weaver, Harold A.; et al. (1997). "The Activity and Size of the Nucleus of Comet Hale–Bopp (C/1995 O1)". Science. 275 (5308): 1900–1904. Bibcode:1997Sci...275.1900W. doi:10.1126/science.275.5308.1900. PMID 9072959. S2CID 25489175.
  57. ^ "Voyages to Comets". NASA. 2005. Retrieved 5 December 2009.
  58. ^ Rincon, Paul (10 September 2010). "Halley's comet 'was spotted by the ancient Greeks'". BBC News.
  59. ^ Yeomans, Donald Keith (1991). Comets: A Chronological History of Observation, Science, Myth, and Folklore. Wiley and Sons. p. 4. ISBN 0-471-61011-9.
  60. ^ Vilyev, Mikhail Anatolyevich; 1917; "Investigations on the Theory of Motion of Halley's Comet", cited by Dubyago, Alexander Dmitriyevich; 1961; "The Determination of Orbits", Ch. 1; The Macmillan Company, New York
  61. ^ a b Kronk, Gary W. (1999). Cometography, vol. 1: Ancient-1799. Cambridge University Press. p. 14. ISBN 978-0-521-58504-0.
  62. ^ Stephenson, F. Richard; Yau, Kevin K. C.; Hunger, Hermann (1985). "Records of Halley's Comet on Babylonian tablets". Nature. 314 (6012): 587–592. Bibcode:1985Natur.314..587S. doi:10.1038/314587a0. S2CID 33251962.
  63. ^ Gurzadyan, Vahe G.; Vardanyan, Ruben (4 August 2004). "Halley's Comet of 87 BC on the coins of Armenian king Tigranes?". Astronomy & Geophysics. 45 (4): 4.06. arXiv:physics/0405073. Bibcode:2004A&G....45d...6G. doi:10.1046/j.1468-4004.2003.45406.x. S2CID 119357985.
  64. ^ a b Kronk, Gary W. "1P/Halley". cometography.com. from the original on 23 November 2017. Retrieved 13 October 2008.
  65. ^ a b c d e f g h Yeomans, Donald Keith (1998). "Great Comets in History". Jet Propulsion Laboratory. Retrieved 15 March 2007.
  66. ^ a b Chambers, George F. (1909). The Story of the Comets. The Clarenden Press. p. 123.
  67. ^ Humphreys, Colin (1995). "The Star of Bethlehem". Science and Christian Belief. 5: 83–101.
  68. ^ "Horayot 10a:19". www.sefaria.org. Retrieved 14 February 2022.
  69. ^ Ne'eman, Yuval (1983). "Astronomy in Israel: From Og's Circle to the Wise Observatory". Tel-Aviv University. Retrieved 15 March 2007.
  70. ^ Ravené, Gustave (1897). "The Appearance of Halley's Comet in AD 141". The Observatory. 20: 203–205. Bibcode:1897Obs....20..203R.
  71. ^ Yanaikatchai Mantaran Cheral Irumporai
  72. ^ O'Toole, Thomas (1985). "A Comet Lights the Imagination". The New York Times. Retrieved 13 September 2018.
  73. ^ Ridpath, Ian. "The History Of Halley's Comet".
  74. ^ a b c Olson, Roberta J.; Pasachoff, Jay M. (1986). "New information on Comet Halley as depicted by Giotto di Bondone and other Western artists". In ESA, Proceedings of the 20th ESLAB Symposium on the Exploration of Halley's Comet. 3: 201–213. Bibcode:1986ESASP.250c.201O.
  75. ^ Neuhäuser, D.L.; Neuhäuser, R.; Mugrauer, M.; Harrak, A.; Chapman, J. (August 2021). "Orbit determination just from historical observations? Test case: The comet of AD 760 is identified as 1P/Halley". Icarus. ScienceDirect, Elsevier. 364. arXiv:2107.07241. Bibcode:2021Icar..36414278N. doi:10.1016/j.icarus.2020.114278.
  76. ^ a b "Horizons Batch for 1P/Halley (90000015) on 837AD-Apr-10" (Earth approach occurs when deldot flips from negative to positive @ 837-Apr-10 12:13). JPL Horizons. from the original on 30 June 2022. Retrieved 29 June 2022. (SAO/837)
  77. ^ Son of Charlemagne: A Contemporary Life of Louis the Pious. Translated by Cabaniss, Allen. Syracuse: Syracuse University Press. 1961. p. 113. ISBN 978-0-8156-2031-0.
  78. ^ a b "The Annals of Ulster AD 431–1201". Corpus of Electronic Texts. University College Cork. Retrieved 7 January 2010.
  79. ^ William of Malmesbury; Gesta regum Anglorum / The history of the English Kings, edited and translated by Mynors, R. A. B.; Thomson, R. M.; and Winterbottom, M.; 2 vols., Oxford Medieval Texts (1998–99), p. 121
  80. ^ Brazil, Ben (18 September 2005). "Chaco Canyon mystery tour". The LA Times. from the original on 9 January 2021. Retrieved 11 November 2021.
  81. ^ The Chronicle of Lupus Protospatharios.
  82. ^ Johnson, George (28 March 1997). "Comets Breed Fear, Fascination and Web Sites". The New York Times. Retrieved 27 September 2009.
  83. ^ Rerum Italicarum Scriptores, ed. Ludovico Antonio Muratori (Milan, 1730) v. 16 col. 770.
  84. ^ Kronk, Gary W. (1999). Cometography, vol. 1: Ancient-1799. Cambridge University Press. pp. 253–255. ISBN 978-0-521-58504-0.
  85. ^ Emerson, Edwin. Comet lore, Halley's comet in history and astronomy. New York, Printed by the Schilling press. p. 74. Retrieved 1 October 2017.
  86. ^ Botley, Cicely M. (1971). "The Legend of 1P/Halley 1456". The Observatory. 91: 125–126. Bibcode:1971Obs....91..125B.
  87. ^ Slaje, Walter; inter alia, realia: "An Apparition of Halley's Comet in Kashmir observed by Śrīvara in AD 1456" in Steiner, Roland (ed.); Highland Philology: Results of a Text-Related Kashmir Panel at the 31st DOT, Marburg 2010, Studia Indologica Universitatis Halensis, 4, Halle 2012: 33–48
  88. ^ The founding of Debre Berhan is described in the Ethiopian Royal Chronicles (Pankhurst, Richard; Oxford University Press, Addis Ababa, 1967, pp. 36–38).
  89. ^ Kapoor, R.C. (10 July 2017). "Records of sighting of Halley's Comet in the 1531 apparition and an eclipse in Guru Nanak's references". Current Science. 113 (1): 173–179. JSTOR 26163925.
  90. ^ Grier, David Alan (2005). "The First Anticipated Return: Halley's Comet 1758". When Computers Were Human. Princeton: Princeton University Press. pp. 11–25. ISBN 0-691-09157-9.
  91. ^ a b c Broughton, P. (1985). "The First Predicted Return of Comet Halley". Journal for the History of Astronomy. 16 (2): 123–132. Bibcode:1985JHA....16..123B. doi:10.1177/002182868501600203. S2CID 118670662.
  92. ^ a b Sagan, Carl; Druyan, Ann; Comet, p. 57
  93. ^ "History of the Cauchoix objective".
  94. ^ "Comet Halley in 1835". Smithsonian National Air and Space Museum. Retrieved 18 November 2019.
  95. ^ Sagan, Carl; Druyan, Ann; Comet, p. 117
  96. ^ a b Todd, William G. (1910). "Saw Halley's Comet in 1835". Popular Astronomy. 18: 127. Bibcode:1910PA.....18..127T.
  97. ^ a b c Lynn, W. T. (1909). "Halley's Comet in 1835". The Observatory. 32: 175–177. Bibcode:1909Obs....32..175L.
  98. ^ a b c d Smith, J. A. (1986). "Halley's Comet: Canadian Observations and Reactions 1835–36 and 1910". Journal of the Royal Astronomical Society of Canada. 80 (1): 1–15. Bibcode:1986JRASC..80....1S.
  99. ^ . David Reneke | Space and Astronomy News - Space News, Astronomy News, Telescopes, Astrophotography, UFOs. Archived from the original on 30 October 2015. Retrieved 29 October 2019.
  100. ^ "In Depth | 1P/Halley". NASA Solar System Exploration. Retrieved 7 November 2019.
  101. ^ Lequeux, James (8 September 2015). François Arago: A 19th Century French Humanist and Pioneer in Astrophysics. Springer. ISBN 978-3-319-20723-0.
  102. ^ "From François Arago to small bodies exploration: Polarimetry as a tool to reveal properties of thin dust clouds in the Solar system and beyon" (PDF).
  103. ^ Ridpath, Ian (1985). "Through the comet's tail". Revised extracts from "A Comet Called Halley" by Ian Ridpath, published by Cambridge University Press in 1985. Retrieved 19 June 2011.
  104. ^ Nunnally, Brian (16 May 2011). "This Week in Science History: Halley's Comet". pfizer: ThinkScience Now. Archived from the original on 17 December 2012. Retrieved 19 June 2011.
  105. ^ anonymous (8 February 1910). "Yerkes Observatory Finds Cyanogen in Spectrum of Halley's Comet". The New York Times. Retrieved 15 November 2009.
  106. ^ a b Strauss, Mark (November 2009). "Ten Notable Apocalypses That (Obviously) Didn't Happen". Smithsonian. Archived from the original on 6 August 2017. Retrieved 14 November 2009.
  107. ^ anonymous (2009). "Interesting Facts About Comets". Universe Today. Retrieved 15 January 2009.
  108. ^ Hutson, James; Chinese Life in the Tibetan Foothills, 1921 (See section: Eclipses and Comets, p. 207)
  109. ^ From Drury Lane to Mecca. Being an account of the strange life and adventures of Hedley Churchward, Sampson Low, London, 1931
  110. ^ https://bibnum.obspm.fr/ark:/11287/z750B, digital library of Paris Observatory
  111. ^ Johnson, George (28 March 1997). "Comets Breed Fear, Fascination and Web Sites". The New York Times. Retrieved 27 September 2009. When Halley's comet made its appearance in 1910, an Oklahoma religious group, known as the Sacred Followers, tried to sacrifice a virgin to ward off catastrophe. (They were stopped by the police.)
  112. ^ Paine, Albert Bigelow (1912). Mark Twain, a biography: the personal and literary life of Samuel Langhorne Clemens. Harper & Brothers. p. 1511.
  113. ^ Metcalf, Miranda. . Smithsonian Libraries. Archived from the original on 11 June 2010. Retrieved 16 December 2009.
  114. ^ anonymous (1910). "The Death of Mark Twain". Chautauquan. The University of Virginia Library. Retrieved 16 December 2009.
  115. ^ Bortle, John E. (13 January 2010). . Sky & Telescope Magazine. Archived from the original on 4 February 2012. Retrieved 15 January 2010.
  116. ^ Bortle, John E. (1998). "The Bright Comet Chronicles". International Comet Quarterly. Retrieved 24 October 2010.
  117. ^ Broughton, R. Peter (1979). "The visibility of Halley's comet". Journal of the Royal Astronomical Society of Canada. 73: 24–36. Bibcode:1979JRASC..73...24B.
  118. ^ "Comet Halley Summary". Jet Propulsion Laboratory. 1985. Retrieved 11 July 2011.
  119. ^ (PDF). Australian Astronomical Association. 2004. Archived from the original (PDF) on 16 June 2005. Retrieved 2 December 2009.
  120. ^ "Last Chance For Good Comet-Viewing". Ocala Star-Banner. Associated Press. 1 April 1986. p. 14. Retrieved 2 December 2009.
  121. ^ "Comet Halley Recovered". European Space Agency. 2006. Retrieved 16 January 2010.
  122. ^ Browne, Malcolm W. (20 August 1985). "Telescope Builders See Halley's Comet From Vermont Hilltop". The New York Times. Retrieved 10 January 2008. (Horizons shows the nucleus @ APmag +20.5; the coma up to APmag +14.3)
  123. ^ anonymous (12 November 1985). "First Naked-Eye Sighting of Halley's Comet Reported". Los Angeles Times. Retrieved 2 December 2009.
  124. ^ "First Naked-Eye Sighting of Halley's Comet Reported". New York Times. 12 November 1985. Retrieved 21 July 2010.
  125. ^ Ley, Willy (September 1968). "Mission to a Comet". For Your Information. Galaxy Science Fiction. pp. 101–110.
  126. ^ . Japan Aerospace Exploration Agency. 2008. Archived from the original on 14 January 2013. Retrieved 2 December 2009.
  127. ^ Boyarchuk, Alexander A.; Grinin, Vladimir P.; Zvereva, A. M.; Petrov, Peter P.; Sheikhet, A. I. (1986). "A model for the coma of Comet Halley, based on the Astron ultraviolet spectrophotometry". Pis'ma v Astronomicheskii Zhurnal (in Russian). 12: 291–296. Bibcode:1986PAZh...12..696B.
  128. ^ Murdin, Paul (2000). "International Cometary Explorer (ICE)". Encyclopedia of Astronomy and Astrophysics. Institute of Physics Publishing. Bibcode:2000eaa..bookE4650.. doi:10.1888/0333750888/4650. hdl:2060/19920003890. ISBN 0-333-75088-8.
  129. ^ "In Depth | ISEE-3/ICE". NASA Solar System Exploration. Retrieved 25 June 2021.
  130. ^ Siddiqi, Asif A. (2018). Beyond Earth: A Chronicle of Deep Space Exploration. United States: NASA History Program Office. pp. 149–150. ISBN 9781626830424.
  131. ^ "Spartan 203 (Spartan Halley, HCED)". space.skyrocket.de. Retrieved 6 September 2011.
  132. ^ "STS-51L". NASA Kennedy Space Center. 5 December 2005. Retrieved 7 January 2010.
  133. ^ Shayler, David J.; Burgess, Colin (2007). "Ending of Eras". NASA's Scientist-Astronauts. Praxis. pp. 431–476. ISBN 978-0-387-21897-7. Retrieved 7 January 2009.
  134. ^ . NASA. Archived from the original on 14 August 2011. Retrieved 7 January 2010.
  135. ^ Prialnik, Dina; Bar-Nun, Akiva (1992). "Crystallization of amorphous ice as the cause of Comet P/Halley's outburst at 14 AU". Astronomy and Astrophysics. 258 (2): L9–L12. Bibcode:1992A&A...258L...9P. PMID 11538062.
  136. ^ a b Odenwald, Sten. . NASA. Archived from the original on 6 August 2011. Retrieved 29 November 2009.
  137. ^ "Comet names and designations". International Comet Quarterly. Retrieved 20 January 2011.
  138. ^ Schmude, Richard M. (2010). Comets and How to Observe Them. Springer. p. 3. ISBN 978-1-4419-5790-0.
  139. ^ Marsden, Brian G.; Williams, Gareth V. (1996). "Catalogue of Cometary Orbits 1996. 11th edition". Catalogue of Cometary Orbits. International Astronomical Union. Bibcode:1996cco..book.....M.
  140. ^ Brady, Joseph L. (1982). "Halley's Comet AD 1986 to 2647 BC". Journal of the British Astronomical Association. Lawrence Livermore Laboratory, University of California. 92: 209. Bibcode:1982JBAA...92..209B.
  141. ^ Ridpath, Ian (1985). "Returns of Halley's Comet". Revised extracts from "A Comet Called Halley" by Ian Ridpath, published by Cambridge University Press in 1985. Retrieved 15 January 2022.
  142. ^ The poets Kurunkozhiyur Kizhaar and Koodaloor Kizhaar, who were present at the death of the king, state that the death was portended by a falling star (possibly a comet) seven days previous to the occurrence.
  143. ^ Star Gods of the Maya: Astronomy in Art, Folklore, and Calendars
  144. ^ Dumouchel, Etienne (1836). "Vermischte Nachrichten". Astronomische Nachrichten. 13 (1): 16.
  145. ^ a b "Horizons Batch for 1P/Halley (90000030) on 2209-Feb-03 and 2209-Apr-10" (Perihelion occurs when rdot flips from negative to positive). JPL Horizons. from the original on 30 June 2022. Retrieved 30 June 2022. (JPL#73 Soln.date: 2022-Jun-07)

Bibliography edit

External links edit

  • Synopsis of the Astronomy of Comets (1706 reprint of Halley's 1705 paper)
  • Halley's nucleus by Giotto spacecraft (ESA link)
  • cometography.com
  • 1P/Halley at CometBase database
  • seds.org
  • Orbital simulation from JPL (Java) / Ephemeris
  • Donald Keith Yeomans, "Great Comets in History"
  • A brief history of Halley's Comet (Ian Ridpath)
  • Photographs of 1910 approach taken from the Lick Observatory from the Lick Observatory Records Digital Archive, UC Santa Cruz Library's Digital Collections 20 May 2019 at the Wayback Machine


Numbered comets
Previous
(periodic comet navigator)
1P/Halley Next
2P/Encke

halley, comet, other, uses, disambiguation, comet, halley, sometimes, simply, halley, officially, designated, halley, short, period, comet, visible, from, earth, every, years, halley, only, known, short, period, comet, that, regularly, visible, naked, from, ea. For other uses see Halley s Comet disambiguation Halley s Comet Comet Halley or sometimes simply Halley officially designated 1P Halley is a short period comet visible from Earth every 75 79 years 1 Halley is the only known short period comet that is regularly visible to the naked eye from Earth and thus the only naked eye comet that can appear twice in a human lifetime 15 It last appeared in the inner parts of the Solar System in 1986 and will next appear in mid 2061 1P Halley Halley s Comet Halley s Comet on 8 March 1986DiscoveryDiscovered byPrehistoric observation Edmond Halley recognition of periodicity Discovery date1758 first predicted perihelion Orbital characteristics 1 Epoch 4 August 2061 2474040 5 Aphelion35 14 au 2 aphelion 9 December 2023 2 3 Perihelion0 59278 au 4 last perihelion 9 February 1986 next perihelion 28 July 2061 4 Semi major axis17 737 auEccentricity0 96658Orbital period sidereal 74 7 yr75y 5m 19d perihelion to perihelion Mean anomaly0 07323 Inclination161 96 Longitude of ascending node59 396 Time of perihelion28 July 2061 4 5 27 March 2134 6 5 Argument of perihelion112 05 Earth MOID0 075 au 11 2 million km epoch 1968 7 TJupiter 0 598Physical characteristicsDimensions15 km 8 km 8 Mean diameter11 km 7 Mass2 2 1014 kg 9 Mean density0 6 g cm3 average 10 0 2 1 5 g cm3 est 11 Escape velocity 0 002 km sSynodic rotation period2 2 d 52 8 h 12 Albedo0 04 13 Apparent magnitude28 2 in 2003 14 Halley s periodic returns to the inner Solar System have been observed and recorded by astronomers around the world since at least 240 BC but it was not until 1705 that the English astronomer Edmond Halley understood that these appearances were re appearances of the same comet As a result of this discovery the comet is named after Halley 16 During its 1986 visit to the inner Solar System Halley s Comet became the first comet to be observed in detail by spacecraft providing the first observational data on the structure of a comet nucleus and the mechanism of coma and tail formation 17 18 These observations supported a number of longstanding hypotheses about comet construction particularly Fred Whipple s dirty snowball model which correctly predicted that Halley would be composed of a mixture of volatile ices such as water carbon dioxide and ammonia and dust The missions also provided data that substantially reformed and reconfigured these ideas for instance it is now understood that the surface of Halley is largely composed of dusty non volatile materials and that only a small portion of it is icy Contents 1 Pronunciation 2 Computation of orbit 3 Orbit and origin 4 Structure and composition 5 History 5 1 Before 1066 5 2 1066 5 3 1145 1378 5 4 1456 5 5 1531 5 6 1531 1759 5 7 1835 5 8 1910 5 9 1986 5 10 After 1986 5 11 2061 5 12 2134 5 13 Apparitions 6 See also 7 References 8 Bibliography 9 External linksPronunciation editThe common pronunciations of Comet Halley and Edmond Halley s surname have become largely unconnected over the years Comet Halley is usually pronounced ˈ h ae l i rhyming with valley or sometimes ˈ h eɪ l i rhyming with daily 19 20 As to the surname Halley Colin Ronan one of Edmond Halley s biographers preferred ˈ h ɔː l i rhyming with crawly 21 Spellings of Halley s name during his lifetime included Hailey Haley Hayley Halley Hawley and Hawly so its contemporary pronunciation is uncertain but the version rhyming with valley seems to be preferred by current bearers of the surname 22 Computation of orbit edit nbsp The orbital path of Halley against the orbits of the planets animation Halley was the first comet to be recognized as periodic Until the Renaissance the philosophical consensus on the nature of comets promoted by Aristotle was that they were disturbances in Earth s atmosphere This idea was disproved in 1577 by Tycho Brahe who used parallax measurements to show that comets must lie beyond the Moon Many were still unconvinced that comets orbited the Sun and assumed instead that they must follow straight paths through the Solar System 23 In 1687 Sir Isaac Newton published his Philosophiae Naturalis Principia Mathematica in which he outlined his laws of gravity and motion His work on comets was decidedly incomplete Although he had suspected that two comets that had appeared in succession in 1680 and 1681 were the same comet before and after passing behind the Sun he was later found to be correct see Newton s Comet 24 he was unable to completely reconcile comets into his model Ultimately it was Newton s friend editor and publisher Edmond Halley who in his 1705 Synopsis of the Astronomy of Comets used Newton s new laws to calculate the gravitational effects of Jupiter and Saturn on cometary orbits 25 Having compiled a list of 24 comet observations he calculated that the orbital elements of a second comet that had appeared in 1682 were nearly the same as those of two comets that had appeared in 1531 observed by Petrus Apianus and 1607 observed by Johannes Kepler 25 26 Halley thus concluded that all three comets were in fact the same object returning about every 76 years a period that has since been found to vary between 74 and 79 years After a rough estimate of the perturbations the comet would sustain from the gravitational attraction of the planets he predicted its return for 1758 27 While he had personally observed the comet around perihelion in September 1682 28 Halley died in 1742 before he could observe its predicted return 29 Halley s prediction of the comet s return proved to be correct although it was not seen until 25 December 1758 by Johann Georg Palitzsch a German farmer and amateur astronomer It did not pass through its perihelion until 13 March 1759 the attraction of Jupiter and Saturn having caused a retardation of 618 days 30 This effect was computed before its return with a one month error to 13 April 31 by a team of three French mathematicians Alexis Clairaut Joseph Lalande and Nicole Reine Lepaute 32 The confirmation of the comet s return was the first time anything other than planets had been shown to orbit the Sun It was also one of the earliest successful tests of Newtonian physics and a clear demonstration of its explanatory power 33 The comet was first named in Halley s honour by French astronomer Nicolas Louis de Lacaille in 1759 33 Some scholars have proposed that first century Mesopotamian astronomers already had recognized Halley s Comet as periodic 34 This theory notes a passage in the Babylonian Talmud tractate Horayot 35 that refers to a star which appears once in seventy years that makes the captains of the ships err 36 Researchers in 1981 attempting to calculate the past orbits of Halley by numerical integration starting from accurate observations in the seventeenth and eighteenth centuries could not produce accurate results further back than 837 owing to a close approach to Earth in that year It was necessary to use ancient Chinese comet observations to constrain their calculations 37 Orbit and origin editHalley s orbital period has varied between 74 and 79 years since 240 BC 33 38 Its orbit around the Sun is highly elliptical with an orbital eccentricity of 0 967 with 0 being a circle and 1 being a parabolic trajectory The perihelion the point in the comet s orbit when it is nearest the Sun is 0 59 au 88 million km This is between the orbits of Mercury and Venus Its aphelion or farthest distance from the Sun is 35 au 5 2 billion km roughly the distance of Pluto Unusual for an object in the Solar System Halley s orbit is retrograde it orbits the Sun in the opposite direction to the planets or clockwise from above the Sun s north pole The orbit is inclined by 18 to the ecliptic with much of it lying south of the ecliptic Because it is retrograde the true inclination is 162 39 Owing to the retrograde orbit it has one of the highest velocities relative to the Earth of any object in the Solar System The 1910 passage was at a relative velocity of 70 56 km s 157 800 mph 7 Because its orbit comes close to Earth s in two places Halley is associated with two meteor showers the Eta Aquariids in early May and the Orionids in late October 40 Halley is the parent body to the Orionids while observations conducted around the time of Halley s appearance in 1986 suggested that the comet could additionally perturb the Eta Aquariids although it might not be the parent of that shower 41 nbsp Orionid meteor originating from Halley s Comet streaking the sky below the Milky Way and to the right of VenusHalley is classified as a periodic or short period comet one with an orbit lasting 200 years or less 42 This contrasts it with long period comets whose orbits last for thousands of years Periodic comets have an average inclination to the ecliptic of only ten degrees and an orbital period of just 6 5 years so Halley s orbit is atypical 33 Most short period comets those with orbital periods shorter than 20 years and inclinations of 20 30 degrees or less are called Jupiter family comets Those resembling Halley with orbital periods of between 20 and 200 years and inclinations extending from zero to more than 90 degrees are called Halley type comets 42 43 As of 2015 update only 75 Halley type comets have been observed compared with 511 identified Jupiter family comets 44 The orbits of the Halley type comets suggest that they were originally long period comets whose orbits were perturbed by the gravity of the giant planets and directed into the inner Solar System 42 If Halley was once a long period comet it is likely to have originated in the Oort cloud 43 a sphere of cometary bodies around 20 000 50 000 au from the Sun Conversely the Jupiter family comets are generally believed to originate in the Kuiper belt 43 a flat disc of icy debris between 30 au Neptune s orbit and 50 au from the Sun in the scattered disc Another point of origin for the Halley type comets was proposed in 2008 when a trans Neptunian object with a retrograde orbit similar to Halley s was discovered 2008 KV42 whose orbit takes it from just outside that of Uranus to twice the distance of Pluto It may be a member of a new population of small Solar System bodies that serves as the source of Halley type comets 45 Halley has probably been in its current orbit for 16 000 200 000 years although it is not possible to numerically integrate its orbit for more than a few tens of apparitions and close approaches before 837 AD can only be verified from recorded observations 46 The non gravitational effects can be crucial 46 as Halley approaches the Sun it expels jets of sublimating gas from its surface which knock it very slightly off its orbital path These orbital changes cause delays in its perihelion of four days on average 47 In 1989 Boris Chirikov and Vitold Vecheslavov performed an analysis of 46 apparitions of Halley s Comet taken from historical records and computer simulations These studies showed that its dynamics were chaotic and unpredictable on long timescales 48 Halley s projected lifetime could be as long as 10 million years These studies also showed that many physical properties of Halley s Comet dynamics can be approximately described by a simple symplectic map known as the Kepler map 49 More recent work suggests that Halley will evaporate or split in two within the next few tens of thousands of years or will be ejected from the Solar System within a few hundred thousand years 50 43 Observations by D W Hughes suggest that Halley s nucleus has been reduced in mass by 80 to 90 over the last 2 000 to 3 000 revolutions 18 Structure and composition edit nbsp The nucleus of Halley s Comet imaged by the Giotto probe on 14 March 1986 The dark coloration of the nucleus can be observed as well as the jets of dust and gas erupting from its surface The Giotto and Vega missions gave planetary scientists their first view of Halley s surface and structure Like all comets as Halley nears the Sun its volatile compounds those with low boiling points such as water carbon monoxide carbon dioxide and other ices begin to sublimate from the surface of its nucleus 51 This causes the comet to develop a coma or atmosphere up to 100 000 kilometres 62 000 mi across 8 Evaporation of this dirty ice releases dust particles which travel with the gas away from the nucleus Gas molecules in the coma absorb solar light and then re radiate it at different wavelengths a phenomenon known as fluorescence whereas dust particles scatter the solar light Both processes are responsible for making the coma visible 15 As a fraction of the gas molecules in the coma are ionized by the solar ultraviolet radiation 15 pressure from the solar wind a stream of charged particles emitted by the Sun pulls the coma s ions out into a long tail which may extend more than 100 million kilometres into space 51 52 Changes in the flow of the solar wind can cause disconnection events in which the tail completely breaks off from the nucleus 17 Despite the vast size of its coma Halley s nucleus is relatively small barely 15 kilometres 9 3 mi long 8 kilometres 5 0 mi wide and perhaps 8 kilometres 5 0 mi thick b Its shape vaguely resembles that of a peanut shell 8 Its mass is relatively low roughly 2 2 1014 kg 9 and its average density is about 0 6 grams per cubic centimetre 0 35 oz cu in indicating that it is made of a large number of small pieces held together very loosely forming a structure known as a rubble pile 10 Ground based observations of coma brightness suggested that Halley s rotation period was about 7 4 days Images taken by the various spacecraft along with observations of the jets and shell suggested a period of 52 hours 18 Given the irregular shape of the nucleus Halley s rotation is likely to be complex 51 Although only 25 of Halley s surface was imaged in detail during the flyby missions the images revealed an extremely varied topography with hills mountains ridges depressions and at least one crater 18 Halley is the most active of all the periodic comets with others such as Comet Encke and Comet Holmes being one or two orders of magnitude less active 18 Its day side the side facing the Sun is far more active than the night side Spacecraft observations showed that the gases ejected from the nucleus were 80 water vapour 17 carbon monoxide and 3 4 carbon dioxide 53 with traces of hydrocarbons 54 although more recent sources give a value of 10 for carbon monoxide and also include traces of methane and ammonia 55 The dust particles were found to be primarily a mixture of carbon hydrogen oxygen nitrogen CHON compounds common in the outer Solar System and silicates such as are found in terrestrial rocks 51 The dust particles decreased in size down to the limits of detection 0 001 µm 17 The ratio of deuterium to hydrogen in the water released by Halley was initially thought to be similar to that found in Earth s ocean water suggesting that Halley type comets may have delivered water to Earth in the distant past Subsequent observations showed Halley s deuterium ratio to be far higher than that found in Earth s oceans making such comets unlikely sources for Earth s water 51 Giotto provided the first evidence in support of Fred Whipple s dirty snowball hypothesis for comet construction Whipple postulated that comets are icy objects warmed by the Sun as they approach the inner Solar System causing ices on their surfaces to sublimate change directly from a solid to a gas and jets of volatile material to burst outward creating the coma Giotto showed that this model was broadly correct 51 though with modifications Halley s albedo for instance is about 4 meaning that it reflects only 4 of the sunlight hitting it about what one would expect for coal 56 Thus despite appearing brilliant white to observers on Earth Halley s Comet is in fact pitch black The surface temperature of evaporating dirty ice ranges from 170 K 103 C at higher albedo to 220 K 53 C at low albedo Vega 1 found Halley s surface temperature to be in the range 300 400 K 27 127 C This suggested that only 10 of Halley s surface was active and that large portions of it were coated in a layer of dark dust that retained heat 17 Together these observations suggested that Halley was in fact predominantly composed of non volatile materials and thus more closely resembled a snowy dirtball than a dirty snowball 18 57 History editBefore 1066 edit nbsp Observation of Halley s Comet recorded in cuneiform on a clay tablet between 22 and 28 September 164 BC Babylon Iraq British Museum BM 41462 Archived 19 April 2021 at the Wayback Machine Halley may have been recorded as early as 467 BC but this is uncertain A comet was recorded in ancient Greece between 468 and 466 BC its timing location duration and associated meteor shower all suggest it was Halley 58 According to Pliny the Elder that same year a meteorite fell in the town of Aegospotami in Thrace He described it as brown in colour and the size of a wagon load 59 Chinese chroniclers also mention a comet in that year 60 nbsp Report of Halley s Comet by Chinese astronomers in 240 BC Shiji The first certain appearance of Halley s Comet in the historical record is a description from 240 BC in the Chinese chronicle Records of the Grand Historian or Shiji which describes a comet that appeared in the east and moved north 61 The only surviving record of the 164 BC apparition is found on two fragmentary Babylonian tablets now in the British Museum 61 The apparition of 87 BC was recorded in Babylonian tablets which state that the comet was seen day beyond day for a month 62 This appearance may be recalled in the representation of Tigranes the Great an Armenian king who is depicted on coins with a crown that features according to Vahe Gurzadyan and R Vardanyan a star with a curved tail that may represent the passage of Halley s Comet in 87 BC Gurzadyan and Vardanyan argue that Tigranes could have seen Halley s Comet when it passed closest to the Sun on August 6 in 87 BC as the comet would have been a most recordable event for ancient Armenians it could have heralded the New Era of the brilliant King of Kings 63 The apparition of 12 BC was recorded in the Book of Han by Chinese astronomers of the Han Dynasty who tracked it from August through October 64 It passed within 0 16 au of Earth 65 According to the Roman historian Cassius Dio a comet appeared suspended over Rome for several days portending the death of Marcus Vipsanius Agrippa in that year 66 Halley s appearance in 12 BC only a few years distant from the conventionally assigned date of the birth of Jesus Christ has led some theologians and astronomers to suggest that it might explain the biblical story of the Star of Bethlehem There are other explanations for the phenomenon such as planetary conjunctions and there are also records of other comets that appeared closer to the date of Jesus birth 67 nbsp Possible report of Halley s Comet in the Talmud b Horayot 10a If as has been suggested the reference by Yehoshua ben Hananiah in b Horayot 10a to a star which arises once in seventy years and misleads the sailors 68 refers to Halley s Comet it may be a reference to the 66 AD appearance because this apparition was the only one to occur during Yehoshua ben Hananiah s lifetime 69 The 141 AD apparition was recorded in Chinese chronicles 70 It was also recorded in the Tamil work Purananuru in connection with the death of the south Indian Chera king Yanaikatchai Mantaran Cheral Irumporai 71 The 374 AD and 607 approaches each came within 0 09 au of Earth 65 The 451 AD apparition was said to herald the defeat of Attila the Hun at the Battle of Chalons 72 The 684 AD apparition was recorded in Europe in one of the sources used by the compiler of the 1493 Nuremberg Chronicles which contains an image 8 centuries after the event 73 Chinese records also report it as the broom star 74 26 The 760 AD apparition was recorded in the Zuqnin Chronicle s entry for iyyōr 1071 SE May 760 AD calling it a white sign 75 The year SE one thousand seventy one AD 759 760 In the month of iyyōr May a white sign was seen in the sky before early twilight in the north east quarter in the Zodiac sign which is called Aries to the north from these three stars in it which are very shining And it resembled in its shape a broom And the sign itself remained for fifteen nights until dawn of the feast of Pentecost Zuqnin Chronicle fol 136v Neuhauser et al trans In 837 AD Halley s Comet may have passed as close as 0 03 au 3 2 million miles 5 1 million kilometres from Earth by far its closest approach 76 65 Its tail may have stretched 60 degrees across the sky It was recorded by astronomers in China Japan Germany the Byzantine Empire and the Middle East 64 Emperor Louis the Pious observed this appearance and devoted himself to prayer and penance fearing that by this token a change in the realm and the death of a prince are made known 77 In 912 AD Halley is recorded in the Annals of Ulster which state A dark and rainy year A comet appeared 78 nbsp The Zuqnin Chronicle s mention of Halley s Comet in 760 AD alongside an illustration that includes the relative positions of Aries Mars and Saturn in the sky nbsp The Annals of Ulster s entry for the year 912 It ends with Cometis apparuit i e A comet appeared 1066 edit nbsp Halley s Comet in 1066 depicted in the Bayeux Tapestry nbsp Halley s Comet seen from London on 6 May 1066 as simulated by Stellarium The Moon Mars Jupiter and Saturn are also visible In 1066 the comet was seen in England and thought to be an omen later that year Harold II of England died at the Battle of Hastings and William the Conqueror claimed the throne The comet is represented on the Bayeux Tapestry and described in the tituli as a star Surviving accounts from the period describe it as appearing to be four times the size of Venus and shining with a light equal to a quarter of that of the Moon Halley came within 0 10 au of Earth at that time 65 This appearance of the comet is also noted in the Anglo Saxon Chronicle Eilmer of Malmesbury may have seen Halley in 989 and 1066 as recorded by William of Malmesbury Not long after a comet portending they say a change in governments appeared trailing its long flaming hair through the empty sky concerning which there was a fine saying of a monk of our monastery called AEthelmaer Crouching in terror at the sight of the gleaming star You ve come have you he said You ve come you source of tears to many mothers It is long since I saw you but as I see you now you are much more terrible for I see you brandishing the downfall of my country 79 The Irish Annals of the Four Masters recorded the comet as A star that appeared on the seventh of the Calends of May on Tuesday after Little Easter than whose light the brilliance or light of The Moon was not greater and it was visible to all in this manner till the end of four nights afterwards 78 Chaco Native Americans in New Mexico may have recorded the 1066 apparition in their petroglyphs 80 The Italo Byzantine chronicle of Lupus the Protospatharios mentions that a comet star appeared in the sky in the year 1067 the chronicle is erroneous as the event occurred in 1066 and by Robert he means William The Emperor Constantine Ducas died in the month of May and his son Michael received the Empire And in this year there appeared a comet star and the Norman count Robert sic fought a battle with Harold King of the English and Robert was victorious and became king over the people of the English 81 1145 1378 edit nbsp Illustration on the Eadwine Psalter fol 10r from circa 1150 portraying a comet that s possibly Halley s Comet and describing it as the long haired star nbsp The Adoration of the Magi circa 1305 by Giotto who purportedly modelled the star of Bethlehem on Halley which had been sighted 4 years before that painting The 1145 apparition was recorded by the monk Eadwine The 1986 apparition exhibited a fan tail similar to Eadwine s drawing 74 Some claim that Genghis Khan was inspired to turn his conquests toward Europe by the 1222 apparition 82 The 1301 apparition may have been seen by the artist Giotto di Bondone who represented the Star of Bethlehem as a fire colored comet in the Nativity section of his Arena Chapel cycle completed in 1305 74 Its 1378 appearance is recorded in the Annales Mediolanenses 83 as well as in East Asian sources 84 1456 edit In 1456 the year of Halley s next apparition the Ottoman Empire invaded the Kingdom of Hungary culminating in the siege of Belgrade in July of that year In a papal bull Pope Callixtus III ordered special prayers be said for the city s protection In 1470 the humanist scholar Bartolomeo Platina wrote in his Lives of the Popes that 85 A hairy and fiery star having then made its appearance for several days the mathematicians declared that there would follow grievous pestilence dearth and some great calamity Calixtus to avert the wrath of God ordered supplications that if evils were impending for the human race He would turn all upon the Turks the enemies of the Christian name He likewise ordered to move God by continual entreaty that notice should be given by the bells to call the faithful at midday to aid by their prayers those engaged in battle with the Turk nbsp 1456 comet in ZodiacPlatina s account is not mentioned in official records In the 18th century a Frenchman further embellished the story in anger at the Church by claiming that the Pope had excommunicated the comet though this story was most likely his own invention 86 Halley s apparition of 1456 was also witnessed in Kashmir and depicted in great detail by Srivara a Sanskrit poet and biographer to the Sultans of Kashmir He read the apparition as a cometary portent of doom foreshadowing the imminent fall of Sultan Zayn al Abidin AD 1418 1420 1470 87 After witnessing a bright light in the sky which most historians have identified as Halley s Comet Zara Yaqob Emperor of Ethiopia from 1434 to 1468 founded the city of Debre Berhan tr City of Light and made it his capital for the remainder of his reign 88 1531 edit nbsp Illustration of the 1531 appearance on Petrus Apianus Astronomicum Caesareum noting that a comet s tail always points away from the sunPetrus Apianus and Girolamo Fracastoro described comet s visit in 1531 with the former even including graphics in his publication In the Sikh scriptures of the Guru Granth Sahib the founder of the faith Guru Nanak makes reference to a long star that has risen at Ang 1110 and it is believed by some Sikh scholars to be a reference to Halley s appearance in 1531 89 1531 1759 edit nbsp I must entreat you to procure for me of Mr Flamsteed what he has observed of the Comett of 1682 particularly in the month of September for I am more and more confirmed that we have seen that Comett now three times since y Yeare 1531 he will not deny it you though I know he will me Excerpt of Halley s letter to Newton about comet s orbits 28 September 1695 Halley s periodic returns have been subject to scientific investigation since the 16th century The three apparitions from 1531 to 1682 were noted by Edmond Halley enabling him to predict it would return 90 One key breakthrough occurred when Halley talked with Newton about his ideas of the laws of motion Newton also helped Halley get Flamsteed s data on the 1682 apparition 91 By studying data on the 1531 1607 and 1682 comets he came to the conclusion these were the same comet and presented his findings in 1696 91 One difficulty was accounting for variations in the comet s orbital period which was over a year longer between 1531 and 1607 than it was between 1607 and 1682 92 Newton had theorized that such delays were caused by the gravity of other comets but Halley found that Jupiter and Saturn would cause the appropriate delays 92 In the decades that followed more refined mathematics would be worked on notable by Paris Observatory the work on Halley also provided a boost to Newton and Kepler s rules for celestial motions 91 See also Computation of orbit Illustrations of prior comet appearances in the January 1910 Popular Science Monthly magazine 1682 1759 1835 nbsp nbsp nbsp 1835 edit nbsp An 1835 watercolour painting depicting observation of the 1835 apparitionAt Markree Observatory in Ireland an E J Cooper used a Cauchoix of Paris lens telescope with an aperture of 340 millimetres 13 3 in to sketch Halley s comet in 1835 93 The comet was also sketched by F W Bessel 94 Streams of vapour observed during the comet s 1835 apparition prompted astronomer Friedrich Wilhelm Bessel to propose that the jet forces of evaporating material could be great enough to significantly alter a comet s orbit 95 An interview in 1910 of someone who was a teenager at the time of the 1835 apparition had this to say 96 When the comet was first seen it appeared in the western sky its head toward the north and tail towards the south about horizontal and considerably above the horizon and quite a distance south of the Sun It could be plainly seen directly after sunset every day and was visible for a long time perhaps a month They go on to describe the comet s tail as being more broad and not as long as the comet of 1843 they had also witnessed 96 Famous astronomers across the world made observations starting August 1835 including Struve at Dorpat observatory and Sir John Herschel who made of observations from the Cape of Good Hope 97 In the United States telescopic observations were made from Yale College 97 The new observations helped confirm early appearances of this comet including its 1456 and 1378 apparitions 97 At Yale College in Connecticut the comet was first reported on 31 August 1835 by astronomers D Olmstead and E Loomis 98 In Canada reports were made from Newfoundland and also Quebec 98 Reports came in from all over by later 1835 and often reported in newspapers of this time in Canada 98 Several accounts of the 1835 apparition were made by observers who survived until the 1910 return where increased interest in the comet led to their being interviewed 98 Astrophotography was not known to have been attempted until 1839 as photography was still being invented in the 1830s too late to photograph the apparition of 1P Halley in 1835 99 The time to Halley s return in 1910 would be only 74 42 years one of the shortest known periods of its return which is calculated to be as long as 79 years owing to the effects of the planets 100 At Paris Observatory Halley s Comet 1835 apparition was observed with a Lerebours telescope of 24 4 cm 9 6 in aperture by the astronomer Francois Arago 101 Arago recorded polimetric observations of Halley and suggested that the tail might be sunlight reflecting off a sparsely distributed material he had earlier made similar observations of Comet Tralles of 1819 102 1910 edit nbsp Halley in April 1910 from Harvard s Southern Hemisphere Station taken with an 8 inch Bache DoubletThe 1910 approach which came into naked eye view around 10 April 65 and came to perihelion on 20 April 65 was notable for several reasons it was the first approach of which photographs exist and the first for which spectroscopic data were obtained 17 Furthermore the comet made a relatively close approach of 0 15 au 65 making it a spectacular sight Indeed on 19 May Earth actually passed through the tail of the comet 103 104 One of the substances discovered in the tail by spectroscopic analysis was the toxic gas cyanogen 105 which led press to misquote citation needed the astronomer Camille Flammarion by stating he claimed that when Earth passed through the tail the gas would impregnate the atmosphere and possibly snuff out all life on the planet 106 This misquoting by press to sell more papers speculation led to panicked buying of gas masks and quack anti comet pills and anti comet umbrellas by the public 107 Flammarion and other astronomers were quick to point out the gas is so diffused that the world suffered no ill effects from the passage through the tail 106 The comet added to the unrest in China on the eve of the Xinhai Revolution that would end the last dynasty in 1911 As James Hutson a missionary in Sichuan Province at the time recorded The people believe that it indicates calamity such as war fire pestilence and a change of dynasty In some places on certain days the doors were unopened for half a day no water was carried and many did not even drink water as it was rumoured that pestilential vapour was being poured down upon the earth from the comet 108 The 1910 visitation is also recorded as being the travelling companion of Hedley Churchward the first known English Muslim to make the Haj pilgrimage to Mecca However his explanation of its scientific predictability did not meet with favour in the Holy City 109 The comet was used in an advertising campaign of Le Bon Marche a well known department store in Paris 110 The comet was also fertile ground for hoaxes One that reached major newspapers claimed that the Sacred Followers a supposed Oklahoma religious group attempted to sacrifice a virgin to ward off the impending disaster but were stopped by the police 111 American satirist and writer Mark Twain was born on 30 November 1835 exactly two weeks after the comet s perihelion In his autobiography published in 1909 he said I came in with Halley s comet in 1835 It is coming again next year and I expect to go out with it It will be the greatest disappointment of my life if I don t go out with Halley s comet The Almighty has said no doubt Now here are these two unaccountable freaks they came in together they must go out together 112 113 Twain died on 21 April 1910 the day following the comet s subsequent perihelion 114 The 1985 fantasy film The Adventures of Mark Twain was inspired by the quotation Halley s 1910 apparition is distinct from the Great Daylight Comet of 1910 which surpassed Halley in brilliance and was actually visible in broad daylight for a short period approximately four months before Halley made its appearance 115 116 nbsp A photograph of Halley s Comet taken during its 1910 approach nbsp Infographic from the January 1910 issue of Popular Science Monthly magazine showing how Halley s tail points away from the Sun as it passes through the inner Solar System1986 edit nbsp Halley s Comet as seen on 21 March 1986 nbsp Kuiper Airborne Observatory s imaging of Halley s Comet in April 1986 nbsp Animation of 1P Halley orbit 1986 apparition 1P Halley Earth SunThe 1986 apparition of Halley s Comet was the least favourable on record In February 1986 the comet and the Earth were on opposite sides of the Sun creating the worst possible viewing circumstances for Earth observers during the previous 2 000 years 117 Halley s closest approach was 0 42 au 118 Additionally increased light pollution from urbanization caused many people to fail in attempts to see the comet With the help of binoculars observation from areas outside cities was more successful 119 Further the comet appeared brightest when it was almost invisible from the northern hemisphere in March and April 1986 120 with best opportunities occurring when the comet could be sighted close to the horizon at dawn and dusk if not obscured by clouds The approach of the comet was first detected by astronomers David C Jewitt and G Edward Danielson on 16 October 1982 using the 5 1 m Hale telescope at Mount Palomar and a CCD camera 121 The first visual observance of the comet on its 1986 return was by an amateur astronomer Stephen James O Meara on 24 January 1985 O Meara used a home built 610 millimetre 24 in telescope on top of Mauna Kea to detect the magnitude 19 6 comet 122 The first to observe Halley s Comet with the naked eye during its 1986 apparition were Stephen Edberg then serving as the coordinator for amateur observations at the NASA Jet Propulsion Laboratory and Charles Morris on 8 November 1985 123 124 Although the comet s retrograde orbit and high inclination made it difficult to send a space probe to it 125 the 1986 apparition gave scientists the opportunity to study the comet closely and several probes were launched to do so The Soviet Vega 1 probe began returning images of Halley on 4 March 1986 captured the first ever image of its nucleus 18 and made its flyby on 6 March It was followed by the Vega 2 probe making its flyby on 9 March On 14 March the Giotto space probe launched by the European Space Agency made the closest pass of the comet s nucleus 18 There also were two Japanese probes Suisei and Sakigake Unofficially the numerous probes became known as the Halley Armada 126 Based on data retrieved by the largest ultraviolet space telescope of the time Astron during its Halley s Comet observations in December 1985 a group of Soviet scientists developed a model of the comet s coma 127 The comet also was observed from space by the International Cometary Explorer ICE Originally the International Sun Earth Explorer 3 the spacecraft departed the Sun Earth L1 Lagrangian point in order to intercept comets 21P Giacobini Zinner and Halley 128 ICE flew about 40 2 million km 25 million mi from Halley s Comet on 28 March 1986 129 130 Two U S Space Shuttle missions STS 51 L and STS 61 E had been scheduled to observe Halley s Comet from low Earth orbit The STS 51 L mission carried the Shuttle Pointed Tool for Astronomy SPARTAN 203 satellite also called the Halley s Comet Experiment Deployable HCED 131 The mission ended in disaster when the Space Shuttle Challenger exploded in flight killing all seven astronauts onboard 132 Scheduled for March 1986 STS 61 E was a Columbia mission carrying the ASTRO 1 platform to study the comet 133 but the mission was canceled following the Challenger disaster and ASTRO 1 would not fly until late 1990 on STS 35 134 nbsp 1986 USSR miniature sheet featuring Edmond Halley Comet Halley Vega 1 Vega 2 Giotto Suisei Planet A nbsp Daily motion across sky during the 1986 passage of Halley s CometAfter 1986 edit nbsp Halley s Comet observed in 2003 at 28 au from the SunOn 12 February 1991 at a distance of 14 4 au 2 15 109 km from the Sun Halley displayed an outburst that lasted for several months releasing a cloud of dust 300 000 km 190 000 mi across 51 The outburst likely started in December 1990 and then the comet brightened from magnitude 24 3 to magnitude 18 9 135 Halley was most recently observed in 2003 by three of the Very Large Telescopes at Paranal Chile when Halley s magnitude was 28 2 The telescopes observed Halley at the faintest and farthest any comet has ever been imaged in order to verify a method for finding very faint trans Neptunian objects 14 Astronomers are now able to observe the comet at any point in its orbit 14 On 9 December 2023 Halley s Comet reached the farthest and slowest point in its orbit from the Sun when it was traveling at 0 91 km s 2 000 mph with respect to the Sun 2 3 2061 edit nbsp Animation of 1P Halley orbit 2061 apparition Sun Venus Earth Jupiter 1P HalleyThe next perihelion of Halley s Comet is 28 July 2061 4 5 when it will be better positioned for observation than during the 1985 1986 apparition as it will be on the same side of the Sun as Earth 38 The closest approach to Earth will be one day after perihelion 7 It is expected to have an apparent magnitude of 0 3 compared with only 2 1 for the 1986 apparition 136 On 9 September 2060 Halley will pass within 0 98 au 147 000 000 km of Jupiter and then on 20 August 2061 will pass within 0 0543 au 8 120 000 km of Venus 7 2134 edit Halley will come to perihelion on 27 March 2134 6 5 Then on 7 May 2134 Halley will pass within 0 092 au 13 800 000 km of Earth 7 Its apparent magnitude is expected to be 2 0 136 Apparitions edit Halley s calculations enabled the comet s earlier appearances to be found in the historical record The following table sets out the astronomical designations for every apparition of Halley s Comet from 240 BC the earliest documented widespread sighting 7 137 For example 1P 1982 U1 1986 III 1982i indicates that for the perihelion in 1986 Halley was the first period comet known designated 1P and this apparition was the first seen in half month U the second half of October 138 in 1982 giving 1P 1982 U1 it was the third comet past perihelion in 1986 1986 III and it was the ninth comet spotted in 1982 provisional designation 1982i The perihelion dates of each apparition are shown 139 The perihelion dates farther from the present are approximate mainly because of uncertainties in the modelling of non gravitational effects Perihelion dates of 1531 and earlier are in the Julian calendar while perihelion dates 1607 and after are in the Gregorian calendar 140 Designation Year BC AD Gap years Date of perihelion 1 Visible duration Earth approach 65 Description 141 1P 239 K1 239 240 BC 25 May 15 25 May First confirmed sighting 1P 163 U1 163 164 BC 76 12 Nov Seen by Babylonians 1P 86 Q1 86 87 BC 77 6 August 6 19 August Seen by the Babylonians and Chinese 1P 11 Q1 11 12 BC 75 10 October August 10 October 0 16 au Watched by Chinese for two months 1P 66 B1 66 66 78 25 January 25 26 January May be the comet described in Josephus s The Jewish War as A comet of the kind called Xiphias because their tails appear to represent the blade of a sword that supposedly heralded the destruction of the Second Temple in 70 AD 66 1P 141 F1 141 141 75 22 March 22 25 March Described by the Chinese as bluish white in colour Described in Tamil literature and death of Chera Yanaikatchai Mantaran Cheral Irumporai king after appearance of comet 142 1P 218 H1 218 218 77 17 May 6 April 17 May Described by the Roman historian Dion Cassius as a very fearful star 1P 295 J1 295 295 77 20 April 7 20 April Seen in China but not spectacular 1P 374 E1 374 374 79 16 February 13 16 February 0 09 au Comet passed 13 5 million kilometres from Earth 1P 451 L1 451 451 77 28 June 28 June 3 July Appeared before the defeat of Attila the Hun at the Battle of Chalons The 451AD orbital period was 79 29 years 1 1P 530 Q1 530 530 79 27 September 27 September 15 November Noted in China and Europe but not spectacular 1P 607 H1 607 607 77 15 March 15 26 March 0 09 au Comet passed 13 5 million kilometres from Earth 1P 684 R1 684 684 77 2 October 2 October 26 November First known Japanese records of the comet Seen in Europe and depicted 800 years later in the Nuremberg Chronicle Attempts have been made to connect an ancient Maya depiction of God L to the event 143 1P 760 K1 760 760 76 20 May 20 May 10 June Seen in China at the same time as another comet 1P 837 F1 837 837 77 28 February 25 28 February 0 033 au 76 Closest ever approach to the Earth 5 million km Tail stretched halfway across the sky Appeared as bright as Venus 1P 912 J1 912 912 75 18 July 18 27 July Seen briefly in China and Japan 1P 989 N1 989 989 77 5 September 2 5 September Seen in China Japan and possibly Korea 1P 1066 G1 1066 1066 77 20 March January 25 March 0 10 au Seen for over two months in China Recorded in England and depicted on the later Bayeux tapestry which portrayed the events of that year 1P 1145 G1 1145 1145 79 18 April 15 19 April Depicted on the Eadwine Psalter with the remark that such hairy stars appeared rarely and then as a portent 1P 1222 R1 1222 1222 77 28 September 10 28 September Described by Japanese astronomers as being as large as the half Moon Its colour was white but its rays were red 1P 1301 R1 1301 1301 79 25 October 22 31 October Seen by Giotto di Bondone and included in his painting The Adoration of the Magi Chinese astronomers compared its brilliance to that of the first magnitude star Procyon 1P 1378 S1 1378 1378 77 10 November 9 14 November Passed within 10 degrees of the north celestial pole more northerly than at any time during the past 2000 years This is the last appearance of the comet for which eastern records are better than Western ones 1P 1456 K1 1456 1456 78 9 June 8 January 9 June Observed in Italy by Paolo Toscanelli who said its head was as large as the eye of an ox with a tail fan shaped like that of a peacock Arabs said the tail resembled a Turkish scimitar Turkish forces attacked Belgrade 1P 1531 P1 1531 1531 75 26 August 26 August Seen by Peter Apian who noted that its tail always pointed away from the Sun This sighting was included in Halley s table 1P 1607 S1 1607 1607 76 27 October 27 October Seen by Johannes Kepler This sighting was included in Halley s table 1P 1682 Q1 1682 1682 75 15 September 15 September Seen by Edmond Halley at Islington 1P 1758 Y1 1759 I 1758 76 13 March 13 March 25 December Return predicted by Halley First seen by Johann Palitzsch on 1758 December 25 1P 1835 P1 1835 III 1835 77 16 November August 16 November First seen at the Observatory of the Roman College in August 144 Studied by John Herschel at the Cape of Good Hope 1P 1909 R1 1910 II 1909c 1910 75 20 April 20 April 20 May 0 151 au 7 Photographed for the first time Earth passed through the comet s tail on 20 May 1P 1982 U1 1986 III 1982i 1986 76 9 February 9 February 0 417 au Reached perihelion on 9 February closest to Earth 63 million km on 10 April Nucleus photographed by the European space probe Giotto and the Soviet probes Vega 1 and 2 2061 75 28 July 28 July 2061 4 5 0 477 au Next return with perihelion on 28 July 2061 4 5 and Earth approach one day later on 29 July 2061 7 2134 73 27 March 27 March 2134 6 5 0 092 au 7 Subsequent return with perihelion on 27 March 2134 and Earth approach on 7 May 21342209 75 3 February 3 February 2209 145 0 515 au 145 Best fit for February 2209 perihelion passage and April Earth approachSee also editHalley s Comet in fiction Kepler orbit List of Halley type cometsReferences edit a b c d 1P Halley Orbit Minor Planet Center Archived from the original on 4 July 2022 Retrieved 28 June 2022 epoch 451 is 79 29 years a b c Horizons Batch for 1P Halley 90000030 on 2023 Dec 09 Aphelion occurs when rdot flips from positive to negative JPL Horizons Archived from the original on 1 July 2022 Retrieved 1 July 2022 JPL 73 Soln date 2022 Jun 07 a b DNews 3 September 2013 Let s Plan For a Rendezvous With Halley s Comet Seeker Retrieved 29 October 2019 a b c d e f Horizons Batch for 1P Halley 90000030 on 2061 Jul 28 Perihelion occurs when rdot flips from negative to positive 2061 Jul 28 17 20 UT JPL Horizons Archived from the original on 27 May 2022 Retrieved 28 June 2022 JPL 73 Soln date 2022 Jun 07 a b c d e f g Kinoshita Kazuo 3 October 2003 1P Halley past present and future orbital elements Comet Orbit a b c Horizons Batch for 1P Halley 90000030 on 2134 Mar 27 Perihelion occurs when rdot flips from negative to positive JPL Horizons Archived from the original on 28 June 2022 Retrieved 28 June 2022 JPL 73 Soln date 2022 Jun 07 a b c d e f g h i j JPL Small Body Database Browser 1P Halley 11 January 1994 last obs Jet Propulsion Laboratory Archived from the original on 27 April 2015 Retrieved 28 June 2022 a b c What Have We Learned About Halley s Comet Astronomical Society of the Pacific No 6 Fall 1986 1986 Retrieved 16 December 2008 a b Cevolani Giordano Bortolotti Giuseppe Hajduk Anton 1987 Halley comet s mass loss and age Il Nuovo Cimento C Societa Italiana di Fisica Italian Physical Society 10 5 587 591 Bibcode 1987NCimC 10 587C doi 10 1007 BF02507255 S2CID 120603847 a b Sagdeev Roald Z Elyasberg Pavel E Moroz Vasily I 1988 Is the nucleus of Comet Halley a low density body Nature 331 6153 240 242 Bibcode 1988Natur 331 240S doi 10 1038 331240a0 S2CID 4335780 Peale Stanton J 1989 On the density of Halley s comet Icarus 82 1 36 49 Bibcode 1989Icar 82 36P doi 10 1016 0019 1035 89 90021 3 densities obtained by this procedure are in reasonable agreement with intuitive expectations of densities near 1 g cm3 the uncertainties in several parameters and assumptions expand the error bars so far as to make the constraints on the density uniformative suggestion that cometary nuclei tend to by very fluffy should not yet be adopted as a paradigm of cometary physics Peale Stanton J Lissauer Jack J 1989 Rotation of Halley s Comet Icarus 79 2 396 430 Bibcode 1989Icar 79 396P doi 10 1016 0019 1035 89 90085 7 Britt Robert Roy 29 November 2001 Comet Borrelly Puzzle Darkest Object in the Solar System Space com Archived from the original on 4 January 2014 Retrieved 16 December 2008 a b c New Image of Comet Halley in the Cold European Southern Observatory 1 September 2003 Retrieved 26 February 2018 a b c Delehanty Marc Comets awesome celestial objects AstronomyToday Archived from the original on 4 September 2011 Retrieved 15 March 2007 Halley Edmund 1705 A synopsis of the astronomy of comets Oxford John Senex Retrieved 16 June 2020 via Internet Archive a b c d e Mendis D Asoka 1988 A Postencounter view of comets Annual Review of Astronomy and Astrophysics 26 1 11 49 Bibcode 1988ARA amp A 26 11M doi 10 1146 annurev aa 26 090188 000303 a b c d e f g h Keller Horst Uwe Britt Daniel Buratti Bonnie J Thomas Nicolas 2005 In Situ Observations of Cometary Nuclei PDF In Festou Michel Keller Horst Uwe Weaver Harold A eds Comets II University of Arizona Press pp 211 222 ISBN 978 0 8165 2450 1 Halley Merriam Webster Online Retrieved 21 December 2009 Ridpath Ian 1985 Saying Hallo to Halley Revised extracts from A Comet Called Halley by Ian Ridpath published by Cambridge University Press in 1985 Retrieved 8 May 2015 That is with the vowel of hall and in some accents homophonous withholly New York Times Science Q amp A The New York Times 14 May 1985 Retrieved 9 January 2011 Lancaster Brown Peter Halley amp His Comet pp 14 25 Lancaster Brown Peter Halley amp His Comet p 35 a b Lancaster Brown Peter Halley amp His Comet p 76 a b Ley Willy October 1967 The Worst of All the Comets For Your Information Galaxy Science Fiction pp 96 105 Lancaster Brown Peter Halley amp His Comet p 78 Yeomans Donald Keith Rahe Jurgen Freitag Ruth S 1986 The History of Comet Halley Journal of the Royal Astronomical Society of Canada 80 81 Bibcode 1986JRASC 80 62Y Lancaster Brown Peter Halley amp His Comet p 80 Lancaster Brown Peter Halley amp His Comet p 86 Sagan Carl Druyan Ann Comet p 74 Lancaster Brown Peter Halley amp His Comet pp 84 85 a b c d Hughes David W et al 1987 The History of Halley s Comet Philosophical Transactions of the Royal Society A 323 1572 349 367 Bibcode 1987RSPTA 323 349H doi 10 1098 rsta 1987 0091 JSTOR 37959 S2CID 123592786 Brodetsky Selig Astronomy in the Babylonian Talmud Jewish Review 1911 60 Tractate Horioth chapter 3 Rayner John D 1998 A Jewish Understanding of the World Berghahn Books pp 108 111 ISBN 1 57181 973 8 Stephenson F Richard Yau Kevin K C Oriental tales of Halley s Comet New Scientist vol 103 no 1423 pp 30 32 27 September 1984 ISSN 0262 4079 a b Yeomans Donald Keith Rahe Jurgen Freitag Ruth S 1986 The History of Comet Halley Journal of the Royal Astronomical Society of Canada 80 70 Bibcode 1986JRASC 80 62Y Nakano Syuichi 2001 OAA computing sectioncircular Oriental Astronomical Association Retrieved 15 May 2007 Meteor Streams Jet Propulsion Laboratory Retrieved 15 March 2007 Mitra Umasankar 1987 An Investigation Into the Association Between Eta Aquarid Meteor Shower and Halley s Comet Bulletin of the Astronomical Society of India 15 23 Bibcode 1987BASI 15 23M a b c Morbidelli Alessandro 2005 Origin and dynamical evolution of comets and their reservoirs arXiv astro ph 0512256 a b c d Jewitt David C 2002 From Kuiper Belt Object to Cometary Nucleus The Missing Ultrared Matter The Astronomical Journal 123 2 1039 1049 Bibcode 2002AJ 123 1039J doi 10 1086 338692 S2CID 122240711 Fernandez Yanga R 28 July 2015 List of Jupiter Family and Halley Family Comets University of Central Florida Physics Retrieved 6 September 2015 Gladman Brett J et al 2009 Discovery of the first retrograde transneptunian object The Astrophysical Journal 697 2 L91 L94 Bibcode 2009ApJ 697L 91G doi 10 1088 0004 637X 697 2 L91 a b Olsson Steel Duncan I 1987 The dynamical lifetime of comet P Halley Astronomy and Astrophysics 187 1 2 909 912 Bibcode 1987A amp A 187 909O Yeomans Donald Keith 1991 Comets A Chronological History of Observation Science Myth and Folklore Wiley and Sons pp 260 261 ISBN 0 471 61011 9 Chirikov Boris V Vecheslavov Vitold V 1989 Chaotic dynamics of comet Halley PDF Astronomy and Astrophysics 221 1 146 154 Bibcode 1989A amp A 221 146C Lages Jose Shepelyansky Dima L Shevchenko Ivan I 2018 Kepler map Scholarpedia 13 2 33238 Bibcode 2018SchpJ 1333238L doi 10 4249 scholarpedia 33238 Williams Matt 12 June 2015 What Is Halley s Comet Universe today a b c d e f g Brandt John C McGraw Hill AccessScience Halley s Comet McGraw Hill Retrieved 27 November 2009 Crovisier Jacques Encrenaz Therese 2000 Comet Science Cambridge University Press ISBN 978 0 521 64591 1 Woods Thomas N Feldman Paul D Dymond Kenneth F Sahnow David J 1986 Rocket ultraviolet spectroscopy of comet Halley and abundance of carbon monoxide and carbon Nature 324 6096 436 438 Bibcode 1986Natur 324 436W doi 10 1038 324436a0 S2CID 4333809 Chyba Christopher F Sagan Carl 1987 Infrared emission by organic grains in the coma of comet Halley Nature 330 6146 350 353 Bibcode 1987Natur 330 350C doi 10 1038 330350a0 S2CID 4351413 Giotto Halley European Space Agency 2006 Retrieved 5 December 2009 Weaver Harold A et al 1997 The Activity and Size of the Nucleus of Comet Hale Bopp C 1995 O1 Science 275 5308 1900 1904 Bibcode 1997Sci 275 1900W doi 10 1126 science 275 5308 1900 PMID 9072959 S2CID 25489175 Voyages to Comets NASA 2005 Retrieved 5 December 2009 Rincon Paul 10 September 2010 Halley s comet was spotted by the ancient Greeks BBC News Yeomans Donald Keith 1991 Comets A Chronological History of Observation Science Myth and Folklore Wiley and Sons p 4 ISBN 0 471 61011 9 Vilyev Mikhail Anatolyevich 1917 Investigations on the Theory of Motion of Halley s Comet cited by Dubyago Alexander Dmitriyevich 1961 The Determination of Orbits Ch 1 The Macmillan Company New York a b Kronk Gary W 1999 Cometography vol 1 Ancient 1799 Cambridge University Press p 14 ISBN 978 0 521 58504 0 Stephenson F Richard Yau Kevin K C Hunger Hermann 1985 Records of Halley s Comet on Babylonian tablets Nature 314 6012 587 592 Bibcode 1985Natur 314 587S doi 10 1038 314587a0 S2CID 33251962 Gurzadyan Vahe G Vardanyan Ruben 4 August 2004 Halley s Comet of 87 BC on the coins of Armenian king Tigranes Astronomy amp Geophysics 45 4 4 06 arXiv physics 0405073 Bibcode 2004A amp G 45d 6G doi 10 1046 j 1468 4004 2003 45406 x S2CID 119357985 a b Kronk Gary W 1P Halley cometography com Archived from the original on 23 November 2017 Retrieved 13 October 2008 a b c d e f g h Yeomans Donald Keith 1998 Great Comets in History Jet Propulsion Laboratory Retrieved 15 March 2007 a b Chambers George F 1909 The Story of the Comets The Clarenden Press p 123 Humphreys Colin 1995 The Star of Bethlehem Science and Christian Belief 5 83 101 Horayot 10a 19 www sefaria org Retrieved 14 February 2022 Ne eman Yuval 1983 Astronomy in Israel From Og s Circle to the Wise Observatory Tel Aviv University Retrieved 15 March 2007 Ravene Gustave 1897 The Appearance of Halley s Comet in AD 141 The Observatory 20 203 205 Bibcode 1897Obs 20 203R Yanaikatchai Mantaran Cheral Irumporai O Toole Thomas 1985 A Comet Lights the Imagination The New York Times Retrieved 13 September 2018 Ridpath Ian The History Of Halley s Comet a b c Olson Roberta J Pasachoff Jay M 1986 New information on Comet Halley as depicted by Giotto di Bondone and other Western artists In ESA Proceedings of the 20th ESLAB Symposium on the Exploration of Halley s Comet 3 201 213 Bibcode 1986ESASP 250c 201O Neuhauser D L Neuhauser R Mugrauer M Harrak A Chapman J August 2021 Orbit determination just from historical observations Test case The comet of AD 760 is identified as 1P Halley Icarus ScienceDirect Elsevier 364 arXiv 2107 07241 Bibcode 2021Icar 36414278N doi 10 1016 j icarus 2020 114278 a b Horizons Batch for 1P Halley 90000015 on 837AD Apr 10 Earth approach occurs when deldot flips from negative to positive 837 Apr 10 12 13 JPL Horizons Archived from the original on 30 June 2022 Retrieved 29 June 2022 SAO 837 Son of Charlemagne A Contemporary Life of Louis the Pious Translated by Cabaniss Allen Syracuse Syracuse University Press 1961 p 113 ISBN 978 0 8156 2031 0 a b The Annals of Ulster AD 431 1201 Corpus of Electronic Texts University College Cork Retrieved 7 January 2010 William of Malmesbury Gesta regum Anglorum The history of the English Kings edited and translated by Mynors R A B Thomson R M and Winterbottom M 2 vols Oxford Medieval Texts 1998 99 p 121 Brazil Ben 18 September 2005 Chaco Canyon mystery tour The LA Times Archived from the original on 9 January 2021 Retrieved 11 November 2021 The Chronicle of Lupus Protospatharios Johnson George 28 March 1997 Comets Breed Fear Fascination and Web Sites The New York Times Retrieved 27 September 2009 Rerum Italicarum Scriptores ed Ludovico Antonio Muratori Milan 1730 v 16 col 770 Kronk Gary W 1999 Cometography vol 1 Ancient 1799 Cambridge University Press pp 253 255 ISBN 978 0 521 58504 0 Emerson Edwin Comet lore Halley s comet in history and astronomy New York Printed by the Schilling press p 74 Retrieved 1 October 2017 Botley Cicely M 1971 The Legend of 1P Halley 1456 The Observatory 91 125 126 Bibcode 1971Obs 91 125B Slaje Walter inter alia realia An Apparition of Halley s Comet in Kashmir observed by Srivara in AD 1456 in Steiner Roland ed Highland Philology Results of a Text Related Kashmir Panel at the 31st DOT Marburg 2010 Studia Indologica Universitatis Halensis 4 Halle 2012 33 48 The founding of Debre Berhan is described in the Ethiopian Royal Chronicles Pankhurst Richard Oxford University Press Addis Ababa 1967 pp 36 38 Kapoor R C 10 July 2017 Records of sighting of Halley s Comet in the 1531 apparition and an eclipse in Guru Nanak s references Current Science 113 1 173 179 JSTOR 26163925 Grier David Alan 2005 The First Anticipated Return Halley s Comet 1758 When Computers Were Human Princeton Princeton University Press pp 11 25 ISBN 0 691 09157 9 a b c Broughton P 1985 The First Predicted Return of Comet Halley Journal for the History of Astronomy 16 2 123 132 Bibcode 1985JHA 16 123B doi 10 1177 002182868501600203 S2CID 118670662 a b Sagan Carl Druyan Ann Comet p 57 History of the Cauchoix objective Comet Halley in 1835 Smithsonian National Air and Space Museum Retrieved 18 November 2019 Sagan Carl Druyan Ann Comet p 117 a b Todd William G 1910 Saw Halley s Comet in 1835 Popular Astronomy 18 127 Bibcode 1910PA 18 127T a b c Lynn W T 1909 Halley s Comet in 1835 The Observatory 32 175 177 Bibcode 1909Obs 32 175L a b c d Smith J A 1986 Halley s Comet Canadian Observations and Reactions 1835 36 and 1910 Journal of the Royal Astronomical Society of Canada 80 1 1 15 Bibcode 1986JRASC 80 1S The First Astronomy Photograph In History January 2 1839 David Reneke Space and Astronomy News Space News Astronomy News Telescopes Astrophotography UFOs Archived from the original on 30 October 2015 Retrieved 29 October 2019 In Depth 1P Halley NASA Solar System Exploration Retrieved 7 November 2019 Lequeux James 8 September 2015 Francois Arago A 19th Century French Humanist and Pioneer in Astrophysics Springer ISBN 978 3 319 20723 0 From Francois Arago to small bodies exploration Polarimetry as a tool to reveal properties of thin dust clouds in the Solar system and beyon PDF Ridpath Ian 1985 Through the comet s tail Revised extracts from A Comet Called Halley by Ian Ridpath published by Cambridge University Press in 1985 Retrieved 19 June 2011 Nunnally Brian 16 May 2011 This Week in Science History Halley s Comet pfizer ThinkScience Now Archived from the original on 17 December 2012 Retrieved 19 June 2011 anonymous 8 February 1910 Yerkes Observatory Finds Cyanogen in Spectrum of Halley s Comet The New York Times Retrieved 15 November 2009 a b Strauss Mark November 2009 Ten Notable Apocalypses That Obviously Didn t Happen Smithsonian Archived from the original on 6 August 2017 Retrieved 14 November 2009 anonymous 2009 Interesting Facts About Comets Universe Today Retrieved 15 January 2009 Hutson James Chinese Life in the Tibetan Foothills 1921 See section Eclipses and Comets p 207 From Drury Lane to Mecca Being an account of the strange life and adventures of Hedley Churchward Sampson Low London 1931 https bibnum obspm fr ark 11287 z750B digital library of Paris Observatory Johnson George 28 March 1997 Comets Breed Fear Fascination and Web Sites The New York Times Retrieved 27 September 2009 When Halley s comet made its appearance in 1910 an Oklahoma religious group known as the Sacred Followers tried to sacrifice a virgin to ward off catastrophe They were stopped by the police Paine Albert Bigelow 1912 Mark Twain a biography the personal and literary life of Samuel Langhorne Clemens Harper amp Brothers p 1511 Metcalf Miranda Mark Twain s birthday Smithsonian Libraries Archived from the original on 11 June 2010 Retrieved 16 December 2009 anonymous 1910 The Death of Mark Twain Chautauquan The University of Virginia Library Retrieved 16 December 2009 Bortle John E 13 January 2010 The Great Daylight Comet of 1910 Sky amp Telescope Magazine Archived from the original on 4 February 2012 Retrieved 15 January 2010 Bortle John E 1998 The Bright Comet Chronicles International Comet Quarterly Retrieved 24 October 2010 Broughton R Peter 1979 The visibility of Halley s comet Journal of the Royal Astronomical Society of Canada 73 24 36 Bibcode 1979JRASC 73 24B Comet Halley Summary Jet Propulsion Laboratory 1985 Retrieved 11 July 2011 Australian Astronomy Comets PDF Australian Astronomical Association 2004 Archived from the original PDF on 16 June 2005 Retrieved 2 December 2009 Last Chance For Good Comet Viewing Ocala Star Banner Associated Press 1 April 1986 p 14 Retrieved 2 December 2009 Comet Halley Recovered European Space Agency 2006 Retrieved 16 January 2010 Browne Malcolm W 20 August 1985 Telescope Builders See Halley s Comet From Vermont Hilltop The New York Times Retrieved 10 January 2008 Horizons shows the nucleus APmag 20 5 the coma up to APmag 14 3 anonymous 12 November 1985 First Naked Eye Sighting of Halley s Comet Reported Los Angeles Times Retrieved 2 December 2009 First Naked Eye Sighting of Halley s Comet Reported New York Times 12 November 1985 Retrieved 21 July 2010 Ley Willy September 1968 Mission to a Comet For Your Information Galaxy Science Fiction pp 101 110 Suisei Japan Aerospace Exploration Agency 2008 Archived from the original on 14 January 2013 Retrieved 2 December 2009 Boyarchuk Alexander A Grinin Vladimir P Zvereva A M Petrov Peter P Sheikhet A I 1986 A model for the coma of Comet Halley based on the Astron ultraviolet spectrophotometry Pis ma v Astronomicheskii Zhurnal in Russian 12 291 296 Bibcode 1986PAZh 12 696B Murdin Paul 2000 International Cometary Explorer ICE Encyclopedia of Astronomy and Astrophysics Institute of Physics Publishing Bibcode 2000eaa bookE4650 doi 10 1888 0333750888 4650 hdl 2060 19920003890 ISBN 0 333 75088 8 In Depth ISEE 3 ICE NASA Solar System Exploration Retrieved 25 June 2021 Siddiqi Asif A 2018 Beyond Earth A Chronicle of Deep Space Exploration United States NASA History Program Office pp 149 150 ISBN 9781626830424 Spartan 203 Spartan Halley HCED space skyrocket de Retrieved 6 September 2011 STS 51L NASA Kennedy Space Center 5 December 2005 Retrieved 7 January 2010 Shayler David J Burgess Colin 2007 Ending of Eras NASA s Scientist Astronauts Praxis pp 431 476 ISBN 978 0 387 21897 7 Retrieved 7 January 2009 STS 35 38 NASA Archived from the original on 14 August 2011 Retrieved 7 January 2010 Prialnik Dina Bar Nun Akiva 1992 Crystallization of amorphous ice as the cause of Comet P Halley s outburst at 14 AU Astronomy and Astrophysics 258 2 L9 L12 Bibcode 1992A amp A 258L 9P PMID 11538062 a b Odenwald Sten When will Halley s Comet return NASA Archived from the original on 6 August 2011 Retrieved 29 November 2009 Comet names and designations International Comet Quarterly Retrieved 20 January 2011 Schmude Richard M 2010 Comets and How to Observe Them Springer p 3 ISBN 978 1 4419 5790 0 Marsden Brian G Williams Gareth V 1996 Catalogue of Cometary Orbits 1996 11th edition Catalogue of Cometary Orbits International Astronomical Union Bibcode 1996cco book M Brady Joseph L 1982 Halley s Comet AD 1986 to 2647 BC Journal of the British Astronomical Association Lawrence Livermore Laboratory University of California 92 209 Bibcode 1982JBAA 92 209B Ridpath Ian 1985 Returns of Halley s Comet Revised extracts from A Comet Called Halley by Ian Ridpath published by Cambridge University Press in 1985 Retrieved 15 January 2022 The poets Kurunkozhiyur Kizhaar and Koodaloor Kizhaar who were present at the death of the king state that the death was portended by a falling star possibly a comet seven days previous to the occurrence Star Gods of the Maya Astronomy in Art Folklore and Calendars Dumouchel Etienne 1836 Vermischte Nachrichten Astronomische Nachrichten 13 1 16 a b Horizons Batch for 1P Halley 90000030 on 2209 Feb 03 and 2209 Apr 10 Perihelion occurs when rdot flips from negative to positive JPL Horizons Archived from the original on 30 June 2022 Retrieved 30 June 2022 JPL 73 Soln date 2022 Jun 07 Bibliography editGore Rick December 1986 Halley s Comet 86 National Geographic Vol 170 no 6 pp 758 785 ISSN 0027 9358 OCLC 643483454 Lancaster Brown Peter 1985 Halley amp His Comet Blandford Press ISBN 0 7137 1447 6 Needham Joseph 1959 Comets meteors and meteorites Science and Civilisation in China Volume 3 Mathematics and the Sciences of the Heavens and the Earth Cambridge University Press pp 430 433 ISBN 978 0 521 05801 8 Sagan Carl Druyan Ann 1985 Comet Random House ISBN 0 394 54908 2 External links edit nbsp Wikimedia Commons has media related to Comet Halley Synopsis of the Astronomy of Comets 1706 reprint of Halley s 1705 paper Halley s nucleus by Giotto spacecraft ESA link Image of Halley in 1986 by Giotto spacecraft NASA link cometography com 1P Halley at CometBase database seds org Orbital simulation from JPL Java Ephemeris Donald Keith Yeomans Great Comets in History A brief history of Halley s Comet Ian Ridpath Photographs of 1910 approach taken from the Lick Observatory from the Lick Observatory Records Digital Archive UC Santa Cruz Library s Digital Collections Archived 20 May 2019 at the Wayback Machine Numbered cometsPrevious periodic comet navigator 1P Halley Next2P Encke Portals nbsp Astronomy nbsp Stars nbsp Spaceflight nbsp Outer space nbsp Solar System Retrieved from https en wikipedia org w index php title Halley 27s Comet amp oldid 1197426988, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.