fbpx
Wikipedia

Orbital period

The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

For celestial objects in general, the sidereal period (sidereal year) is referred to by the orbital period, determined by a 360° revolution of one body around its primary, e.g. Earth around the Sun, relative to the fixed stars projected in the sky. Orbital periods can be defined in several ways. The tropical period is more particularly about the position of the parent star. It is the basis for the solar year, and respectively the calendar year.

The synodic period incorporates not only the orbital relation to the parent star, but also to other celestial objects, making it not a mere different approach to the orbit of an object around its parent, but a period of orbital relations with other objects, normally Earth, and their orbits around the Sun. It applies to the elapsed time where planets return to the same kind of phenomenon or location, such as when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun. For example, Jupiter has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months.

Periods in astronomy are conveniently expressed in various units of time, often in hours, days, or years. They can be also defined under different specific astronomical definitions that are mostly caused by the small complex external gravitational influences of other celestial objects. Such variations also include the true placement of the centre of gravity between two astronomical bodies (barycenter), perturbations by other planets or bodies, orbital resonance, general relativity, etc. Most are investigated by detailed complex astronomical theories using celestial mechanics using precise positional observations of celestial objects via astrometry.

Related periods

There are many periods related to the orbits of objects, each of which are often used in the various fields of astronomy and astrophysics, particularly they must not be confused with other revolving periods like rotational periods. Examples of some of the common orbital ones include the following:

  • The sidereal period is the amount of time that it takes an object to make a full orbit, relative to the fixed stars, the sidereal year. This is the orbital period in an inertial (non-rotating) frame of reference.
  • The synodic period is the amount of time that it takes for an object to reappear at the same point in relation to two or more other objects. In common usage, these two objects are typically Earth and the Sun. The time between two successive oppositions or two successive conjunctions is also equal to the synodic period. For celestial bodies in the solar system, the synodic period (with respect to Earth and the Sun) differs from the tropical period owing to Earth's motion around the Sun. For example, the synodic period of the Moon's orbit as seen from Earth, relative to the Sun, is 29.5 mean solar days, since the Moon's phase and position relative to the Sun and Earth repeats after this period. This is longer than the sidereal period of its orbit around Earth, which is 27.3 mean solar days, owing to the motion of Earth around the Sun.
  • The draconitic period (also draconic period or nodal period), is the time that elapses between two passages of the object through its ascending node, the point of its orbit where it crosses the ecliptic from the southern to the northern hemisphere. This period differs from the sidereal period because both the orbital plane of the object and the plane of the ecliptic precess with respect to the fixed stars, so their intersection, the line of nodes, also precesses with respect to the fixed stars. Although the plane of the ecliptic is often held fixed at the position it occupied at a specific epoch, the orbital plane of the object still precesses, causing the draconitic period to differ from the sidereal period.[1]
  • The anomalistic period is the time that elapses between two passages of an object at its periapsis (in the case of the planets in the Solar System, called the perihelion), the point of its closest approach to the attracting body. It differs from the sidereal period because the object's semi-major axis typically advances slowly.
  • Also, the tropical period of Earth (a tropical year) is the interval between two alignments of its rotational axis with the Sun, also viewed as two passages of the object at a right ascension of 0 hr. One Earth year is slightly shorter than the period for the Sun to complete one circuit along the ecliptic (a sidereal year) because the inclined axis and equatorial plane slowly precess (rotate with respect to reference stars), realigning with the Sun before the orbit completes. This cycle of axial precession for Earth, known as precession of the equinoxes, recurs roughly every 25,772 years.[2]

Small body orbiting a central body

 
The semi-major axis (a) and semi-minor axis (b) of an ellipse

According to Kepler's Third Law, the orbital period T of two point masses orbiting each other in a circular or elliptic orbit is:[3]

 

where:

For all ellipses with a given semi-major axis the orbital period is the same, regardless of eccentricity.

Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period:

 

where

  • a is the orbit's semi-major axis,
  • G is the gravitational constant,
  • M is the mass of the more massive body,
  • T is the orbital period.

For instance, for completing an orbit every 24 hours around a mass of 100 kg, a small body has to orbit at a distance of 1.08 meters from the central body's center of mass.

In the special case of perfectly circular orbits, the orbital velocity is constant and equal (in m/s) to

 

where:

  • r is the circular orbit's radius in meters,
  • G is the gravitational constant,
  • M is the mass of the central body.

This corresponds to 1√2 times (≈ 0.707 times) the escape velocity.

Effect of central body's density

For a perfect sphere of uniform density, it is possible to rewrite the first equation without measuring the mass as:

 

where:

  • r is the sphere's radius
  • a is the orbit's semi-major axis in metres,
  • G is the gravitational constant,
  • ρ is the density of the sphere in kilograms per cubic metre.

For instance, a small body in circular orbit 10.5 cm above the surface of a sphere of tungsten half a metre in radius would travel at slightly more than 1 mm/s, completing an orbit every hour. If the same sphere were made of lead the small body would need to orbit just 6.7 mm above the surface for sustaining the same orbital period.

When a very small body is in a circular orbit barely above the surface of a sphere of any radius and mean density ρ (in kg/m3), the above equation simplifies to (since M =  = 4/3πa3ρ)

 

Thus the orbital period in low orbit depends only on the density of the central body, regardless of its size.

So, for the Earth as the central body (or any other spherically symmetric body with the same mean density, about 5,515 kg/m3,[4] e.g. Mercury with 5,427 kg/m3 and Venus with 5,243 kg/m3) we get:

T = 1.41 hours

and for a body made of water (ρ ≈ 1,000 kg/m3),[5] or bodies with a similar density, e.g. Saturn's moons Iapetus with 1,088 kg/m3 and Tethys with 984 kg/m3 we get:

T = 3.30 hours

Thus, as an alternative for using a very small number like G, the strength of universal gravity can be described using some reference material, such as water: the orbital period for an orbit just above the surface of a spherical body of water is 3 hours and 18 minutes. Conversely, this can be used as a kind of "universal" unit of time if we have a unit of mass, a unit of length, and a unit of density.

Two bodies orbiting each other

 
Log-log plot of period T vs semi-major axis a (average of aphelion and perihelion) of some Solar System orbits (crosses denoting Kepler's values) showing that a³/T² is constant (green line)

In celestial mechanics, when both orbiting bodies' masses have to be taken into account, the orbital period T can be calculated as follows:[6]

 

where:

  • a is the sum of the semi-major axes of the ellipses in which the centers of the bodies move, or equivalently, the semi-major axis of the ellipse in which one body moves, in the frame of reference with the other body at the origin (which is equal to their constant separation for circular orbits),
  • M1 + M2 is the sum of the masses of the two bodies,
  • G is the gravitational constant.

Note that the orbital period is independent of size: for a scale model it would be the same, when densities are the same, as M scales linearly with a3 (see also Orbit § Scaling in gravity).

In a parabolic or hyperbolic trajectory, the motion is not periodic, and the duration of the full trajectory is infinite.

Synodic period

One of the observable characteristics of two bodies which orbit a third body in different orbits, and thus have different orbital periods, is their synodic period, which is the time between conjunctions.

An example of this related period description is the repeated cycles for celestial bodies as observed from the Earth's surface, the synodic period, applying to the elapsed time where planets return to the same kind of phenomenon or location. For example, when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun. For example, Jupiter has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months.

If the orbital periods of the two bodies around the third are called T1 and T2, so that T1 < T2, their synodic period is given by:[7]

 

Examples of sidereal and synodic periods

Table of synodic periods in the Solar System, relative to Earth:[citation needed]

Object Sidereal period Synodic period
(yr) (d) (yr) (d)[8]
Mercury 0.240846 87.9691 days 0.317 115.88
Venus 0.615 224.7 days[9] 1.599 583.9
Earth 1 365.25636 solar days
Mars 1.881 687.0[10] 2.135 779.9
Jupiter 11.86 4331[11] 1.092 398.9
Saturn 29.46 10,747[12] 1.035 378.1
Uranus 84.01 30,589[13] 1.012 369.7
Neptune 164.8 59,800[14] 1.006 367.5
134340 Pluto 248.1 90,560[15] 1.004 366.7
Moon 0.0748 27.32 days 0.0809 29.5306
99942 Apophis (near-Earth asteroid) 0.886 7.769 2,837.6
4 Vesta 3.629 1.380 504.0
1 Ceres 4.600 1.278 466.7
10 Hygiea 5.557 1.219 445.4
2060 Chiron 50.42 1.020 372.6
50000 Quaoar 287.5 1.003 366.5
136199 Eris 557 1.002 365.9
90377 Sedna 12050 1.0001 365.3[citation needed]

In the case of a planet's moon, the synodic period usually means the Sun-synodic period, namely, the time it takes the moon to complete its illumination phases, completing the solar phases for an astronomer on the planet's surface. The Earth's motion does not determine this value for other planets because an Earth observer is not orbited by the moons in question. For example, Deimos's synodic period is 1.2648 days, 0.18% longer than Deimos's sidereal period of 1.2624 d.[citation needed]

Synodic periods relative to other planets

The concept of synodic period applies not just to the Earth, but also to other planets as well, and the formula for computation is the same as the one given above. Here is a table which lists the synodic periods of some planets relative to each other:

Orbital period (years)
Relative to Mars Jupiter Saturn Chiron Uranus Neptune Pluto Quaoar Eris
Sun 1.881 11.86 29.46 50.42 84.01 164.8 248.1 287.5 557.0
Mars 2.236 2.009 1.954 1.924 1.903 1.895 1.893 1.887
Jupiter 19.85 15.51 13.81 12.78 12.46 12.37 12.12
Saturn 70.87 45.37 35.87 33.43 32.82 31.11
2060 Chiron 126.1 72.65 63.28 61.14 55.44
Uranus 171.4 127.0 118.7 98.93
Neptune 490.8 386.1 234.0
Pluto 1810.4 447.4
50000 Quaoar 594.2

Binary stars

Binary star Orbital period.
AM Canum Venaticorum 17.146 minutes
Beta Lyrae AB 12.9075 days
Alpha Centauri AB 79.91 years
Proxima CentauriAlpha Centauri AB 500,000 years or more

See also

Notes

  1. ^ Oliver Montenbruck, Eberhard Gill (2000). Satellite Orbits: Models, Methods, and Applications. Springer Science & Business Media. p. 50. ISBN 978-3-540-67280-7.
  2. ^ "Precession of the Earth's Axis - Wolfram Demonstrations Project". demonstrations.wolfram.com. Retrieved 2019-02-10.
  3. ^ Bate, Mueller & White (1971), p. 33.
  4. ^ Density of the Earth, wolframalpha.com
  5. ^ Density of water, wolframalpha.com
  6. ^ Bradley W. Carroll, Dale A. Ostlie. An introduction to modern astrophysics. 2nd edition. Pearson 2007.
  7. ^ Hannu Karttunen; et al. (2016). Fundamental Astronomy (6th ed.). Springer. p. 145. ISBN 9783662530450. Retrieved December 7, 2018.
  8. ^ "Questions and Answers - Sten's Space Blog". www.astronomycafe.net.
  9. ^ "Planetary Fact Sheet". nssdc.gsfc.nasa.gov.
  10. ^ "Planetary Fact Sheet". nssdc.gsfc.nasa.gov.
  11. ^ "Planetary Fact Sheet". nssdc.gsfc.nasa.gov.
  12. ^ "Planetary Fact Sheet". nssdc.gsfc.nasa.gov.
  13. ^ "Planetary Fact Sheet". nssdc.gsfc.nasa.gov.
  14. ^ "Planetary Fact Sheet". nssdc.gsfc.nasa.gov.
  15. ^ "Planetary Fact Sheet". nssdc.gsfc.nasa.gov.

Bibliography

  • Bate, Roger B.; Mueller, Donald D.; White, Jerry E. (1971), Fundamentals of Astrodynamics, Dover

External links

orbital, period, confused, with, rotation, period, music, album, orbital, period, album, orbital, period, also, revolution, period, amount, time, given, astronomical, object, takes, complete, orbit, around, another, object, astronomy, usually, applies, planets. Not to be confused with Rotation period For the music album see Orbital Period album The orbital period also revolution period is the amount of time a given astronomical object takes to complete one orbit around another object In astronomy it usually applies to planets or asteroids orbiting the Sun moons orbiting planets exoplanets orbiting other stars or binary stars For celestial objects in general the sidereal period sidereal year is referred to by the orbital period determined by a 360 revolution of one body around its primary e g Earth around the Sun relative to the fixed stars projected in the sky Orbital periods can be defined in several ways The tropical period is more particularly about the position of the parent star It is the basis for the solar year and respectively the calendar year The synodic period incorporates not only the orbital relation to the parent star but also to other celestial objects making it not a mere different approach to the orbit of an object around its parent but a period of orbital relations with other objects normally Earth and their orbits around the Sun It applies to the elapsed time where planets return to the same kind of phenomenon or location such as when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun For example Jupiter has a synodic period of 398 8 days from Earth thus Jupiter s opposition occurs once roughly every 13 months Periods in astronomy are conveniently expressed in various units of time often in hours days or years They can be also defined under different specific astronomical definitions that are mostly caused by the small complex external gravitational influences of other celestial objects Such variations also include the true placement of the centre of gravity between two astronomical bodies barycenter perturbations by other planets or bodies orbital resonance general relativity etc Most are investigated by detailed complex astronomical theories using celestial mechanics using precise positional observations of celestial objects via astrometry Contents 1 Related periods 2 Small body orbiting a central body 3 Effect of central body s density 4 Two bodies orbiting each other 5 Synodic period 6 Examples of sidereal and synodic periods 6 1 Synodic periods relative to other planets 7 Binary stars 8 See also 9 Notes 10 Bibliography 11 External linksRelated periods EditSee also Lunar month Types There are many periods related to the orbits of objects each of which are often used in the various fields of astronomy and astrophysics particularly they must not be confused with other revolving periods like rotational periods Examples of some of the common orbital ones include the following The sidereal period is the amount of time that it takes an object to make a full orbit relative to the fixed stars the sidereal year This is the orbital period in an inertial non rotating frame of reference The synodic period is the amount of time that it takes for an object to reappear at the same point in relation to two or more other objects In common usage these two objects are typically Earth and the Sun The time between two successive oppositions or two successive conjunctions is also equal to the synodic period For celestial bodies in the solar system the synodic period with respect to Earth and the Sun differs from the tropical period owing to Earth s motion around the Sun For example the synodic period of the Moon s orbit as seen from Earth relative to the Sun is 29 5 mean solar days since the Moon s phase and position relative to the Sun and Earth repeats after this period This is longer than the sidereal period of its orbit around Earth which is 27 3 mean solar days owing to the motion of Earth around the Sun The draconitic period also draconic period or nodal period is the time that elapses between two passages of the object through its ascending node the point of its orbit where it crosses the ecliptic from the southern to the northern hemisphere This period differs from the sidereal period because both the orbital plane of the object and the plane of the ecliptic precess with respect to the fixed stars so their intersection the line of nodes also precesses with respect to the fixed stars Although the plane of the ecliptic is often held fixed at the position it occupied at a specific epoch the orbital plane of the object still precesses causing the draconitic period to differ from the sidereal period 1 The anomalistic period is the time that elapses between two passages of an object at its periapsis in the case of the planets in the Solar System called the perihelion the point of its closest approach to the attracting body It differs from the sidereal period because the object s semi major axis typically advances slowly Also the tropical period of Earth a tropical year is the interval between two alignments of its rotational axis with the Sun also viewed as two passages of the object at a right ascension of 0 hr One Earth year is slightly shorter than the period for the Sun to complete one circuit along the ecliptic a sidereal year because the inclined axis and equatorial plane slowly precess rotate with respect to reference stars realigning with the Sun before the orbit completes This cycle of axial precession for Earth known as precession of the equinoxes recurs roughly every 25 772 years 2 Small body orbiting a central body Edit The semi major axis a and semi minor axis b of an ellipse According to Kepler s Third Law the orbital period T of two point masses orbiting each other in a circular or elliptic orbit is 3 T 2 p a 3 m displaystyle T 2 pi sqrt frac a 3 mu where a is the orbit s semi major axis m GM is the standard gravitational parameter G is the gravitational constant M is the mass of the more massive body For all ellipses with a given semi major axis the orbital period is the same regardless of eccentricity Inversely for calculating the distance where a body has to orbit in order to have a given orbital period a G M T 2 4 p 2 3 displaystyle a sqrt 3 frac GMT 2 4 pi 2 where a is the orbit s semi major axis G is the gravitational constant M is the mass of the more massive body T is the orbital period For instance for completing an orbit every 24 hours around a mass of 100 kg a small body has to orbit at a distance of 1 08 meters from the central body s center of mass In the special case of perfectly circular orbits the orbital velocity is constant and equal in m s to v o G M r displaystyle v text o sqrt frac GM r where r is the circular orbit s radius in meters G is the gravitational constant M is the mass of the central body This corresponds to 1 2 times 0 707 times the escape velocity Effect of central body s density EditFor a perfect sphere of uniform density it is possible to rewrite the first equation without measuring the mass as T a 3 r 3 3 p G r displaystyle T sqrt frac a 3 r 3 frac 3 pi G rho where r is the sphere s radius a is the orbit s semi major axis in metres G is the gravitational constant r is the density of the sphere in kilograms per cubic metre For instance a small body in circular orbit 10 5 cm above the surface of a sphere of tungsten half a metre in radius would travel at slightly more than 1 mm s completing an orbit every hour If the same sphere were made of lead the small body would need to orbit just 6 7 mm above the surface for sustaining the same orbital period When a very small body is in a circular orbit barely above the surface of a sphere of any radius and mean density r in kg m3 the above equation simplifies to since M Vr 4 3 p a3r T 3 p G r displaystyle T sqrt frac 3 pi G rho Thus the orbital period in low orbit depends only on the density of the central body regardless of its size So for the Earth as the central body or any other spherically symmetric body with the same mean density about 5 515 kg m3 4 e g Mercury with 5 427 kg m3 and Venus with 5 243 kg m3 we get T 1 41 hoursand for a body made of water r 1 000 kg m3 5 or bodies with a similar density e g Saturn s moons Iapetus with 1 088 kg m3 and Tethys with 984 kg m3 we get T 3 30 hoursThus as an alternative for using a very small number like G the strength of universal gravity can be described using some reference material such as water the orbital period for an orbit just above the surface of a spherical body of water is 3 hours and 18 minutes Conversely this can be used as a kind of universal unit of time if we have a unit of mass a unit of length and a unit of density Two bodies orbiting each other Edit Log log plot of period T vs semi major axis a average of aphelion and perihelion of some Solar System orbits crosses denoting Kepler s values showing that a T is constant green line In celestial mechanics when both orbiting bodies masses have to be taken into account the orbital period T can be calculated as follows 6 T 2 p a 3 G M 1 M 2 displaystyle T 2 pi sqrt frac a 3 G left M 1 M 2 right where a is the sum of the semi major axes of the ellipses in which the centers of the bodies move or equivalently the semi major axis of the ellipse in which one body moves in the frame of reference with the other body at the origin which is equal to their constant separation for circular orbits M1 M2 is the sum of the masses of the two bodies G is the gravitational constant Note that the orbital period is independent of size for a scale model it would be the same when densities are the same as M scales linearly with a3 see also Orbit Scaling in gravity In a parabolic or hyperbolic trajectory the motion is not periodic and the duration of the full trajectory is infinite Synodic period EditOne of the observable characteristics of two bodies which orbit a third body in different orbits and thus have different orbital periods is their synodic period which is the time between conjunctions An example of this related period description is the repeated cycles for celestial bodies as observed from the Earth s surface the synodic period applying to the elapsed time where planets return to the same kind of phenomenon or location For example when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun For example Jupiter has a synodic period of 398 8 days from Earth thus Jupiter s opposition occurs once roughly every 13 months If the orbital periods of the two bodies around the third are called T1 and T2 so that T1 lt T2 their synodic period is given by 7 1 T s y n 1 T 1 1 T 2 displaystyle frac 1 T mathrm syn frac 1 T 1 frac 1 T 2 Examples of sidereal and synodic periods EditTable of synodic periods in the Solar System relative to Earth citation needed Object Sidereal period Synodic period yr d yr d 8 Mercury 0 240846 87 9691 days 0 317 115 88Venus 0 615 224 7 days 9 1 599 583 9Earth 1 365 25636 solar days Mars 1 881 687 0 10 2 135 779 9Jupiter 11 86 4331 11 1 092 398 9Saturn 29 46 10 747 12 1 035 378 1Uranus 84 01 30 589 13 1 012 369 7Neptune 164 8 59 800 14 1 006 367 5134340 Pluto 248 1 90 560 15 1 004 366 7Moon 0 0748 27 32 days 0 0809 29 530699942 Apophis near Earth asteroid 0 886 7 769 2 837 64 Vesta 3 629 1 380 504 01 Ceres 4 600 1 278 466 710 Hygiea 5 557 1 219 445 42060 Chiron 50 42 1 020 372 650000 Quaoar 287 5 1 003 366 5136199 Eris 557 1 002 365 990377 Sedna 12050 1 0001 365 3 citation needed In the case of a planet s moon the synodic period usually means the Sun synodic period namely the time it takes the moon to complete its illumination phases completing the solar phases for an astronomer on the planet s surface The Earth s motion does not determine this value for other planets because an Earth observer is not orbited by the moons in question For example Deimos s synodic period is 1 2648 days 0 18 longer than Deimos s sidereal period of 1 2624 d citation needed Synodic periods relative to other planets Edit The concept of synodic period applies not just to the Earth but also to other planets as well and the formula for computation is the same as the one given above Here is a table which lists the synodic periods of some planets relative to each other Orbital period years Relative to Mars Jupiter Saturn Chiron Uranus Neptune Pluto Quaoar ErisSun 1 881 11 86 29 46 50 42 84 01 164 8 248 1 287 5 557 0Mars 2 236 2 009 1 954 1 924 1 903 1 895 1 893 1 887Jupiter 19 85 15 51 13 81 12 78 12 46 12 37 12 12Saturn 70 87 45 37 35 87 33 43 32 82 31 112060 Chiron 126 1 72 65 63 28 61 14 55 44Uranus 171 4 127 0 118 7 98 93Neptune 490 8 386 1 234 0Pluto 1810 4 447 450000 Quaoar 594 2Binary stars EditBinary star Orbital period AM Canum Venaticorum 17 146 minutesBeta Lyrae AB 12 9075 daysAlpha Centauri AB 79 91 yearsProxima Centauri Alpha Centauri AB 500 000 years or moreSee also EditGeosynchronous orbit derivation Rotation period time that it takes to complete one revolution around its axis of rotation Satellite revisit period Sidereal time Sidereal year Opposition astronomy List of periodic cometsNotes Edit Oliver Montenbruck Eberhard Gill 2000 Satellite Orbits Models Methods and Applications Springer Science amp Business Media p 50 ISBN 978 3 540 67280 7 Precession of the Earth s Axis Wolfram Demonstrations Project demonstrations wolfram com Retrieved 2019 02 10 Bate Mueller amp White 1971 p 33 Density of the Earth wolframalpha com Density of water wolframalpha com Bradley W Carroll Dale A Ostlie An introduction to modern astrophysics 2nd edition Pearson 2007 Hannu Karttunen et al 2016 Fundamental Astronomy 6th ed Springer p 145 ISBN 9783662530450 Retrieved December 7 2018 Questions and Answers Sten s Space Blog www astronomycafe net Planetary Fact Sheet nssdc gsfc nasa gov Planetary Fact Sheet nssdc gsfc nasa gov Planetary Fact Sheet nssdc gsfc nasa gov Planetary Fact Sheet nssdc gsfc nasa gov Planetary Fact Sheet nssdc gsfc nasa gov Planetary Fact Sheet nssdc gsfc nasa gov Planetary Fact Sheet nssdc gsfc nasa gov Bibliography EditBate Roger B Mueller Donald D White Jerry E 1971 Fundamentals of Astrodynamics DoverExternal links Edit Look up synodic in Wiktionary the free dictionary Portals Physics Mathematics Astronomy Stars Spaceflight Outer space Solar System Retrieved from https en wikipedia org w index php title Orbital period amp oldid 1132647676, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.