fbpx
Wikipedia

Gregorian calendar

The Gregorian calendar is the calendar used in most parts of the world.[1][a] It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years differently so as to make the average calendar year 365.2425 days long, more closely approximating the 365.2422-day 'tropical' or 'solar' year that is determined by the Earth's revolution around the Sun.

2023 in various calendars
Gregorian calendar2023
MMXXIII
Ab urbe condita2776
Armenian calendar1472
ԹՎ ՌՆՀԲ
Assyrian calendar6773
Baháʼí calendar179–180
Balinese saka calendar1944–1945
Bengali calendar1430
Berber calendar2973
British Regnal yearCha. 3 – 2 Cha. 3
Buddhist calendar2567
Burmese calendar1385
Byzantine calendar7531–7532
Chinese calendar壬寅年 (Water Tiger)
4719 or 4659
    — to —
癸卯年 (Water Rabbit)
4720 or 4660
Coptic calendar1739–1740
Discordian calendar3189
Ethiopian calendar2015–2016
Hebrew calendar5783–5784
Hindu calendars
 - Vikram Samvat2079–2080
 - Shaka Samvat1944–1945
 - Kali Yuga5123–5124
Holocene calendar12023
Igbo calendar1023–1024
Iranian calendar1401–1402
Islamic calendar1444–1445
Japanese calendarReiwa 5
(令和5年)
Javanese calendar1956–1957
Juche calendar112
Julian calendarGregorian minus 13 days
Korean calendar4356
Minguo calendarROC 112
民國112年
Nanakshahi calendar555
Thai solar calendar2566
Tibetan calendar阳水虎年
(male Water-Tiger)
2149 or 1768 or 996
    — to —
阴水兔年
(female Water-Rabbit)
2150 or 1769 or 997
Unix time1672531200 – 1704067199

The rule for leap years is:

Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100, but these centurial years are leap years if they are exactly divisible by 400. For example, the years 1700, 1800, and 1900 are not leap years, but the year 2000 is.

There were two reasons to establish the Gregorian calendar. First, the Julian calendar assumed incorrectly that the average solar year is exactly 365.25 days long, an overestimate of a little under one day per century, and thus has a leap year every four years without exception. The Gregorian reform shortened the average (calendar) year by 0.0075 days to stop the drift of the calendar with respect to the equinoxes.[3] Second, in the years since the First Council of Nicaea in AD 325,[b] the excess leap days introduced by the Julian algorithm had caused the calendar to drift such that the (Northern) spring equinox was occurring well before its nominal 21 March date. This date was important to the Christian churches because it is fundamental to the calculation of the date of Easter. To reinstate the association, the reform advanced the date by 10 days:[c] Thursday 4 October 1582 was followed by Friday 15 October 1582.[3] In addition, the reform also altered the lunar cycle used by the Church to calculate the date for Easter, because astronomical new moons were occurring four days before the calculated dates. It is notable that whilst the reform introduced minor changes, the calendar continued to be fundamentally based on the same geocentric theory as its predecessor.[4]

The reform was adopted initially by the Catholic countries of Europe and their overseas possessions. Over the next three centuries, the Protestant and Eastern Orthodox countries also moved to what they called the Improved calendar, with Greece being the last European country to adopt the calendar (for civil use only) in 1923.[5] To unambiguously specify a date during the transition period (in contemporary documents or in history texts), both notations were given, tagged as 'Old Style' or 'New Style' as appropriate. During the 20th century, most non-Western countries also adopted the calendar, at least for civil purposes.

Description

The Gregorian calendar, like the Julian calendar, is a solar calendar with 12 months of 28–31 days each. The year in both calendars consists of 365 days, with a leap day being added to February in the leap years. The months and length of months in the Gregorian calendar are the same as for the Julian calendar. The only difference is that the Gregorian reform omitted a leap day in three centurial years every 400 years and left the leap day unchanged.

A leap year normally occurs every four years: the leap day, historically, was inserted by doubling 24 February – there were indeed two days dated 24 February. However, for many years it has been customary to put the extra day at the end of the month of February, adding a 29 February for the leap day. Before the 1969 revision of its General Roman Calendar, the Catholic Church delayed February feasts after the 23rd by one day in leap years; Masses celebrated according to the previous calendar still reflect this delay.[6]

A year is divided into twelve months
No. Name Length in days
1 January 31
2 February 28 (29 in leap years)
3 March 31
4 April 30
5 May 31
6 June 30
7 July 31
8 August 31
9 September 30
10 October 31
11 November 30
12 December 31

Gregorian years are identified by consecutive year numbers.[7] A calendar date is fully specified by the year (numbered according to a calendar era, in this case Anno Domini or Common Era), the month (identified by name or number), and the day of the month (numbered sequentially starting from 1). Although the calendar year currently runs from 1 January to 31 December, at previous times year numbers were based on a different starting point within the calendar (see the "beginning of the year" section below).

Calendar cycles repeat completely every 400 years, which equals 146,097 days.[d][e] Of these 400 years, 303 are regular years of 365 days and 97 are leap years of 366 days. A mean calendar year is 365+97/400 days = 365.2425 days, or 365 days, 5 hours, 49 minutes and 12 seconds.[f] During intervals that do not contain any century common years (such as 1900), the calendar repeats every 28 years, during which February 29 will fall on each of the seven days of the week once and only once. All other dates of the year fall on each day exactly four times, each day of the week having gaps of 6 years, 5 years, 6 years, and 11 years, in that order.

Gregorian reform

The Gregorian calendar was a reform of the Julian calendar. It was instituted by papal bull Inter gravissimas dated 24 February 1582 by Pope Gregory XIII,[3] after whom the calendar is named. The motivation for the adjustment was to bring the date for the celebration of Easter to the time of year in which it was celebrated when it was introduced by the early Church. The error in the Julian calendar (its assumption that there are exactly 365.25 days in a year) had led to the date of the equinox according to the calendar drifting from the observed reality, and thus an error had been introduced into the calculation of the date of Easter. Although a recommendation of the First Council of Nicaea in 325 specified that all Christians should celebrate Easter on the same day, it took almost five centuries before virtually all Christians achieved that objective by adopting the rules of the Church of Alexandria (see Easter for the issues which arose).[g]

Background

Because the date of Easter is a function – the computus – of the date of the spring equinox in the northern hemisphere, the Catholic Church considered unacceptable the increasing divergence between the canonical date of the equinox and observed reality. Easter is celebrated on the Sunday after the ecclesiastical full moon on or after 21 March, which was adopted as an approximation to the March equinox.[9] European scholars had been well aware of the calendar drift since the early medieval period.

Bede, writing in the 8th century, showed that the accumulated error in his time was more than three days. Roger Bacon in c. 1200 estimated the error at seven or eight days. Dante, writing c. 1300, was aware of the need for calendar reform. An attempt to go forward with such a reform was undertaken by Pope Sixtus IV, who in 1475 invited Regiomontanus to the Vatican for this purpose. However, the project was interrupted by the death of Regiomontanus shortly after his arrival in Rome.[10] The increase of astronomical knowledge and the precision of observations towards the end of the 15th century made the question more pressing. Numerous publications over the following decades called for a calendar reform, among them two papers sent to the Vatican by the University of Salamanca in 1515 and 1578,[11] but the project was not taken up again until the 1540s, and implemented only under Pope Gregory XIII (r. 1572–1585).

Preparation

In 1545, the Council of Trent authorised Pope Paul III to reform the calendar, requiring that the date of the vernal equinox be restored to that which it held at the time of the First Council of Nicaea in 325 and that an alteration to the calendar be designed to prevent future drift. This would allow for more consistent and accurate scheduling of the feast of Easter.

In 1577, a Compendium was sent to expert mathematicians outside the reform commission for comments. Some of these experts, including Giambattista Benedetti and Giuseppe Moleto, believed Easter should be computed from the true motions of the Sun and Moon, rather than using a tabular method, but these recommendations were not adopted.[12] The reform adopted was a modification of a proposal made by the Calabrian doctor Aloysius Lilius (or Lilio).[13]

Lilius's proposal included reducing the number of leap years in four centuries from 100 to 97, by making three out of four centurial years common instead of leap years. He also produced an original and practical scheme for adjusting the epacts of the Moon when calculating the annual date of Easter, solving a long-standing obstacle to calendar reform.

Ancient tables provided the Sun's mean longitude.[14] The German mathematician Christopher Clavius, the architect of the Gregorian calendar, noted that the tables agreed neither on the time when the Sun passed through the vernal equinox nor on the length of the mean tropical year. Tycho Brahe also noticed discrepancies.[15] The Gregorian leap year rule (97 leap years in 400 years) was put forward by Petrus Pitatus of Verona in 1560. He noted that it is consistent with the tropical year of the Alfonsine tables and with the mean tropical year of Copernicus (De revolutionibus) and Erasmus Reinhold (Prutenic tables). The three mean tropical years in Babylonian sexagesimals as the excess over 365 days (the way they would have been extracted from the tables of mean longitude) were 0;14,33,9,57 (Alfonsine), 0;14,33,11,12 (Copernicus) and 0;14,33,9,24 (Reinhold). In decimal notation, these are equal to 0.24254606, 0.24255185, and 0.24254352, respectively. All values are the same to two sexagesimal places (0;14,33, equal to decimal 0.2425) and this is also the mean length of the Gregorian year. Thus Pitatus' solution would have commended itself to the astronomers.[16]

Lilius's proposals had two components. First, he proposed a correction to the length of the year. The mean tropical year is 365.24219 days long.[17] A commonly used value in Lilius's time, from the Alfonsine tables, is 365.2425463 days.[13] As the average length of a Julian year is 365.25 days, the Julian year is almost 11 minutes longer than the mean tropical year. The discrepancy results in a drift of about three days every 400 years. Lilius's proposal resulted in an average year of 365.2425 days (see Accuracy). At the time of Gregory's reform there had already been a drift of 10 days since the Council of Nicaea, resulting in the vernal equinox falling on 10 or 11 March instead of the ecclesiastically fixed date of 21 March, and if unreformed it would have drifted further. Lilius proposed that the 10-day drift should be corrected by deleting the Julian leap day on each of its ten occurrences over a period of forty years, thereby providing for a gradual return of the equinox to 21 March.

Lilius's work was expanded upon by Christopher Clavius in a closely argued, 800-page volume. He would later defend his and Lilius's work against detractors. Clavius's opinion was that the correction should take place in one move, and it was this advice that prevailed with Gregory.

The second component consisted of an approximation that would provide an accurate yet simple, rule-based calendar. Lilius's formula was a 10-day correction to revert the drift since the Council of Nicaea, and the imposition of a leap day in only 97 years in 400 rather than in 1 year in 4. The proposed rule was that "years divisible by 100 would be leap years only if they were divisible by 400 as well".

The 19-year cycle used for the lunar calendar required revision because the astronomical new moon was, at the time of the reform, four days before the calculated new moon.[9] It was to be corrected by one day every 300 or 400 years (8 times in 2500 years) along with corrections for the years that are no longer leap years (i.e. 1700, 1800, 1900, 2100, etc.) In fact, a new method for computing the date of Easter was introduced. The method proposed by Lilius was revised somewhat in the final reform.[18]

When the new calendar was put in use, the error accumulated in the 13 centuries since the Council of Nicaea was corrected by a deletion of 10 days. The Julian calendar day Thursday, 4 October 1582 was followed by the first day of the Gregorian calendar, Friday, 15 October 1582 (the cycle of weekdays was not affected).

First printed Gregorian calendar

 
Lunario Novo, Secondo la Nuova Riforma della Correttione del l'Anno Riformato da N.S. Gregorio XIII, printed in Rome by Vincenzo Accolti in 1582, one of the first printed editions of the new calendar.

A month after having decreed the reform, the pope (with a brief of 3 April 1582) granted to one Antoni Lilio the exclusive right to publish the calendar for a period of ten years. The Lunario Novo secondo la nuova riforma[h] was printed by Vincenzo Accolti, one of the first calendars printed in Rome after the reform, notes at the bottom that it was signed with papal authorization and by Lilio (Con licentia delli Superiori... et permissu Ant(onii) Lilij). The papal brief was revoked on 20 September 1582, because Antonio Lilio proved unable to keep up with the demand for copies.[19]

Adoption

Although Gregory's reform was enacted in the most solemn of forms available to the Church, the bull had no authority beyond the Catholic Church (of which he was the supreme religious authority) and the Papal States (which he personally ruled). The changes that he was proposing were changes to the civil calendar, over which he had no authority. They required adoption by the civil authorities in each country to have legal effect.

The bull Inter gravissimas became the law of the Catholic Church in 1582, but it was not recognised by Protestant Churches, Eastern Orthodox Churches, Oriental Orthodox Churches, and a few others. Consequently, the days on which Easter and related holidays were celebrated by different Christian Churches again diverged.

On 29 September 1582, Philip II of Spain decreed the change from the Julian to the Gregorian calendar.[20] This affected much of Roman Catholic Europe, as Philip was at the time ruler over Spain and Portugal as well as much of Italy. In these territories, as well as in the Polish–Lithuanian Commonwealth[21] (ruled by Anna Jagiellon) and in the Papal States, the new calendar was implemented on the date specified by the bull, with Julian Thursday, 4 October 1582, being followed by Gregorian Friday, 15 October. The Spanish and Portuguese colonies followed somewhat later de facto because of delay in communication.[22] The other major Catholic power of Western Europe, France, adopted the change a few months later: 9 December was followed by 20 December.[23]

Many Protestant countries initially objected to adopting a Catholic innovation; some Protestants feared the new calendar was part of a plot to return them to the Catholic fold. For example, the British could not bring themselves to adopt the Catholic system explicitly: the Annexe to their Calendar (New Style) Act 1750 established a computation for the date of Easter that achieved the same result as Gregory's rules, without actually referring to him.[24]

Britain and the British Empire (including the eastern part of what is now the United States) adopted the Gregorian calendar in 1752. Sweden followed in 1753.

Prior to 1917, Turkey used the lunar Islamic calendar with the Hijri era for general purposes and the Julian calendar for fiscal purposes. The start of the fiscal year was eventually fixed at 1 March and the year number was roughly equivalent to the Hijri year (see Rumi calendar). As the solar year is longer than the lunar year this originally entailed the use of "escape years" every so often when the number of the fiscal year would jump. From 1 March 1917 the fiscal year became Gregorian, rather than Julian. On 1 January 1926 the use of the Gregorian calendar was extended to include use for general purposes and the number of the year became the same as in most other countries.

Adoption by country

Difference between Gregorian and Julian calendar dates

Conversion from Julian to Gregorian dates.[25]
Gregorian range Julian range Difference
From 15 October 1582
to 28 February 1700
From 5 October 1582
to 18 February 1700
10 days
From 1 March 1700
to 28 February 1800
From 19 February 1700
to 17 February 1800
11 days
From 1 March 1800
to 28 February 1900
From 18 February 1800
to 16 February 1900
12 days
From 1 March 1900
to 28 February 2100
From 17 February 1900
to 15 February 2100
13 days
From 1 March 2100
to 28 February 2200
From 16 February 2100
to 14 February 2200
14 days

This section always places the intercalary day on 29 February even though it was always obtained by doubling 24 February (the bissextum (twice sixth) or bissextile day) until the late Middle Ages. The Gregorian calendar is proleptic before 1582 (calculated backwards on the same basis, for years before 1582), and the difference between Gregorian and Julian calendar dates increases by three days every four centuries (all date ranges are inclusive).

The following equation gives the number of days (actually, dates) that the Gregorian calendar is ahead of the Julian calendar, called the "secular difference" between the two calendars. A negative difference means the Julian calendar is ahead of the Gregorian calendar.[26]

 

where   is the secular difference and   is the year using astronomical year numbering, that is, use (year BC) − 1 for BC years.   means that if the result of the division is not an integer it is rounded down to the nearest integer. Thus during the 1900s, 1900/400 = 4, while during the −500s, −500/400 = −2.

The general rule, in years which are leap years in the Julian calendar but not the Gregorian, is:

Up to 28 February in the calendar being converted from, add one day less or subtract one day more than the calculated value. Give February the appropriate number of days for the calendar being converted into. When subtracting days to calculate the Gregorian equivalent of 29 February (Julian), 29 February is discounted. Thus if the calculated value is −4 the Gregorian equivalent of this date is 24 February.[27]

Beginning of the year

Country Start numbered year
on 1 January
Adoption of
Gregorian calendar
Roman Empire 153 BC
Denmark Gradual change from
13th to 16th centuries[28]
1700
Papal States 1583 1582
Holy Roman Empire (Catholic states) 1544 1583
Spain, Poland, Portugal 1556 1582
Holy Roman Empire (Protestant states) 1559 1700[k]
Sweden 1559 1753
France 1564[30] 1582[n 1]
Southern Netherlands 1576[31] 1582
Lorraine 1579 1582[l]
Dutch Republic 1583 1582
Scotland 1600[32][33] 1752
Russia 1700[34] 1918
Tuscany 1750[35] 1582[36]
Great Britain and the British Empire
except Scotland
1752[32] 1752
Republic of Venice 1522 1582

The year used in dates during the Roman Republic and the Roman Empire was the consular year, which began on the day when consuls first entered office—probably 1 May before 222 BC, 15 March from 222 BC and 1 January from 153 BC.[37] The Julian calendar, which began in 45 BC, continued to use 1 January as the first day of the new year. Even though the year used for dates changed, the civil year always displayed its months in the order January to December from the Roman Republican period until the present.

During the Middle Ages, under the influence of the Catholic Church, many Western European countries moved the start of the year to one of several important Christian festivals—25 December (Christmas), 25 March (Annunciation), or Easter (France),[38] while the Byzantine Empire began its year on 1 September and Russia did so on 1 March until 1492 when the new year was moved to 1 September.[39]

In common usage, 1 January was regarded as New Year's Day and celebrated as such,[40] but from the 12th century until 1751 the legal year in England began on 25 March (Lady Day).[41] So, for example, the Parliamentary record lists the execution of Charles I on 30 January as occurring in 1648 (as the year did not end until 24 March),[42] although later histories adjust the start of the year to 1 January and record the execution as occurring in 1649.[43]

Most Western European countries changed the start of the year to 1 January before they adopted the Gregorian calendar. For example, Scotland changed the start of the Scottish New Year to 1 January in 1600 (this means that 1599 was a short year). England, Ireland and the British colonies changed the start of the year to 1 January in 1752 (so 1751 was a short year with only 282 days). Later in 1752 in September the Gregorian calendar was introduced throughout Britain and the British colonies (see the section Adoption). These two reforms were implemented by the Calendar (New Style) Act 1750.[44]

In some countries, an official decree or law specified that the start of the year should be 1 January. For such countries, a specific year when a 1 January-year became the norm can be identified. In other countries, the customs varied, and the start of the year moved back and forth as fashion and influence from other countries dictated various customs.

Neither the papal bull nor its attached canons explicitly fix such a date, though it is implied by two tables of saint's days, one labelled 1582 which ends on 31 December,[citation needed] and another for any full year that begins on 1 January.[citation needed] It also specifies its epact relative to 1 January, in contrast with the Julian calendar, which specified it relative to 22 March. The old date was derived from the Greek system: the earlier Supputatio Romana specified it relative to 1 January.

  1. ^ In 1793 France abandoned the Gregorian calendar in favour of the French Republican Calendar. This change was reverted in 1805.

Dual dating

 
Memorial plaque to John Etty in All Saints' Church, North Street, York, recording his date of death as 28 January 170+8/9

During the period between 1582, when the first countries adopted the Gregorian calendar, and 1923, when the last European country adopted it, it was often necessary to indicate the date of some event in both the Julian calendar and in the Gregorian calendar, for example, "10/21 February 1750/51", where the dual year accounts for some countries already beginning their numbered year on 1 January while others were still using some other date. Even before 1582, the year sometimes had to be double-dated because of the different beginnings of the year in various countries. Woolley, writing in his biography of John Dee (1527–1608/9), notes that immediately after 1582 English letter writers "customarily" used "two dates" on their letters, one OS and one NS.[45]

Old Style and New Style dates

"Old Style" (O.S.) and "New Style" (N.S.) indicate dating systems before and after a calendar change, respectively. Usually, this is the change from the Julian calendar to the Gregorian calendar as enacted in various European countries between 1582 and the early 20th century.

In England, Wales, Ireland and Britain's American colonies, there were two calendar changes, both in 1752. The first adjusted the start of a new year from Lady Day (25 March) to 1 January (which Scotland had done from 1600), while the second discarded the Julian calendar in favour of the Gregorian calendar, removing 11 days from the September 1752 calendar to do so.[46][47] To accommodate the two calendar changes, writers used dual dating to identify a given day by giving its date according to both styles of dating.

For countries such as Russia where no start of year adjustment took place, O.S. and N.S. simply indicate the Julian and Gregorian dating systems. Many Eastern Orthodox countries continue to use the older Julian calendar for religious purposes.

Proleptic Gregorian calendar

Extending the Gregorian calendar backwards to dates preceding its official introduction produces a proleptic calendar, which should be used with some caution. For ordinary purposes, the dates of events occurring prior to 15 October 1582 are generally shown as they appeared in the Julian calendar, with the year starting on 1 January, and no conversion to their Gregorian equivalents. For example, the Battle of Agincourt is universally considered to have been fought on 25 October 1415 which is Saint Crispin's Day.

Usually, the mapping of new dates onto old dates with a start of year adjustment works well with little confusion for events that happened before the introduction of the Gregorian calendar. But for the period between the first introduction of the Gregorian calendar on 15 October 1582 and its introduction in Britain on 14 September 1752, there can be considerable confusion between events in continental western Europe and in British domains in English language histories.

Events in continental western Europe are usually reported in English language histories as happening under the Gregorian calendar. For example, the Battle of Blenheim is always given as 13 August 1704. Confusion occurs when an event affects both. For example, William III of England set sail from the Netherlands on 11 November 1688 (Gregorian calendar) and arrived at Brixham in England on 5 November 1688 (Julian calendar).

Shakespeare and Cervantes seemingly died on exactly the same date (23 April 1616), but Cervantes predeceased Shakespeare by ten days in real time (as Spain used the Gregorian calendar, but Britain used the Julian calendar). This coincidence encouraged UNESCO to make 23 April the World Book and Copyright Day.

Astronomers avoid this ambiguity by the use of the Julian day number.

For dates before the year 1, unlike the proleptic Gregorian calendar used in the international standard ISO 8601, the traditional proleptic Gregorian calendar (like the Julian calendar) does not have a year 0 and instead uses the ordinal numbers 1, 2, ... both for years AD and BC. Thus the traditional time line is 2 BC, 1 BC, AD 1, and AD 2. ISO 8601 uses astronomical year numbering which includes a year 0 and negative numbers before it. Thus the ISO 8601 time line is −0001, 0000, 0001, and 0002.

Months

The Gregorian calendar continued to employ the Julian months, which have Latinate names and irregular numbers of days:

Europeans sometimes attempt to remember the number of days in each month by memorizing some form of the traditional verse "Thirty Days Hath September". It appears in Latin,[65] Italian,[66] French[67] and Portuguese,[68] and belongs to a broad oral tradition but the earliest currently attested form of the poem is the English marginalia inserted into a calendar of saints c. 1425:[69][70]

 
The knuckle mnemonic for the days of the months of the year

Variations appeared in Mother Goose and continue to be taught at schools. The unhelpfulness of such involved mnemonics has been parodied as "Thirty days hath September / But all the rest I can't remember"[71] but it has also been called "probably the only sixteenth-century poem most ordinary citizens know by heart".[72] A common nonverbal alternative is the knuckle mnemonic, considering the knuckles of one's hands as months with 31 days and the lower spaces between them as the months with fewer days. Using two hands, one may start from either pinkie knuckle as January and count across, omitting the space between the index knuckles (July and August). The same procedure can be done using the knuckles of a single hand, returning from the last (July) to the first (August) and continuing through. A similar mnemonic is to move up a piano keyboard in semitones from an F key, taking the white keys as the longer months and the black keys as the shorter ones.

Weeks

In conjunction with the system of months, there is a system of weeks. A physical or electronic calendar provides conversion from a given date to the weekday and shows multiple dates for a given weekday and month. Calculating the day of the week is not very simple, because of the irregularities in the Gregorian system. When the Gregorian calendar was adopted by each country, the weekly cycle continued uninterrupted. For example, in the case of the few countries that adopted the reformed calendar on the date proposed by Gregory XIII for the calendar's adoption, Friday, 15 October 1582, the preceding date was Thursday, 4 October 1582 (Julian calendar).

Opinions vary about the numbering of the days of the week. ISO 8601, in common use worldwide, starts with Monday=1; printed monthly calendar grids often list Mondays in the first (left) column of dates and Sundays in the last. In North America, the week typically begins on Sunday and ends on Saturday.

Accuracy

The Gregorian calendar improves the approximation made by the Julian calendar by skipping three Julian leap days in every 400 years, giving an average year of 365.2425 mean solar days long.[73] This approximation has an error of about one day per 3,030 years[74] with respect to the current value of the mean tropical year. However, because of the precession of the equinoxes, which is not constant, and the movement of the perihelion (which affects the Earth's orbital speed) the error with respect to the astronomical vernal equinox is variable; using the average interval between vernal equinoxes near 2000 of 365.24237 days[75] implies an error closer to 1 day every 7,700 years. By any criterion, the Gregorian calendar is substantially more accurate than the 1 day in 128 years error of the Julian calendar (average year 365.25 days).

In the 19th century, Sir John Herschel proposed a modification to the Gregorian calendar with 969 leap days every 4,000 years, instead of 970 leap days that the Gregorian calendar would insert over the same period.[76] This would reduce the average year to 365.24225 days. Herschel's proposal would make the year 4000, and multiples thereof, common instead of leap. While this modification has often been proposed since, it has never been officially adopted.[77]

On time scales of thousands of years, the Gregorian calendar falls behind the astronomical seasons. This is because the Earth's speed of rotation is gradually slowing down, which makes each day slightly longer over time (see tidal acceleration and leap second) while the year maintains a more uniform duration.

Calendar seasonal error

 

This image shows the difference between the Gregorian calendar and the astronomical seasons.

The y-axis is the date in June and the x-axis is Gregorian calendar years.

Each point is the date and time of the June solstice in that particular year. The error shifts by about a quarter of a day per year. Centurial years are ordinary years, unless they are divisible by 400, in which case they are leap years. This causes a correction in the years 1700, 1800, 1900, 2100, 2200, and 2300.

For instance, these corrections cause 23 December 1903 to be the latest December solstice, and 20 December 2096 to be the earliest solstice—about 2.35 days of variation compared with the astronomical event.

Proposed reforms

The following are proposed reforms of the Gregorian calendar:

See also

Precursors of the Gregorian reform

Notes

  1. ^ Many countries that use other calendars for religious purposes, use the Gregorian calendar as their civil calendar. Notable exceptions include Iran and Afghanistan, which use the solar Hijri calendar.
  2. ^ rather than 45 BC when the Roman Empire adopted the Julian calendar.
  3. ^ By the time Great Britain and its possessions adopted the reform with effect from 1752, the gap had increased to eleven days; when Russia and Greece did so (for their civil calendars) in the 20th century, the jump was 13 days. For other countries and territories, see List of adoption dates of the Gregorian calendar by country.
  4. ^ The cycle described applies to the solar, or civil, calendar. If one also considers the ecclesiastical lunar rules, the lunisolar Easter computus cycle repeats only after 5,700,000 years of 2,081,882,250 days in 70,499,183 lunar months, based on an assumed mean lunar month of 29 days 12 hours 44 minutes 2+49928114/70499183 seconds. (Seidelmann (1992), p. 582) [To properly function as an Easter computus, this lunisolar cycle must have the same mean year as the Gregorian solar cycle, and indeed that is exactly the case.]
  5. ^ The extreme length of the Gregorian Easter computus is due to its being the product of the 19-year Metonic cycle, the thirty different possible values of the epact, and the least common multiple (10,000) of the 400-year and 2,500-year solar and lunar correction cycles.[8]
  6. ^ The same result is obtained by summing the fractional parts implied by the rule: 365 + 1/41/100 + 1/400 = 365 + 0.25 − 0.01 + 0.0025 = 365.2425
  7. ^ The last major Christian region to accept the Alexandrian rules was the Carolingian Empire (most of Western Europe) during 780–800. The last monastery in England to accept the Alexandrian rules did so in 931, and a few churches in southwest Asia beyond the eastern border of the Byzantine Empire continued to use rules that differed slightly, causing four dates for Easter to differ every 532 years.
  8. ^ "New Almanac according to the new reform".
  9. ^ a b In the Old Swiss Confederacy, Helvetic Republic, or Switzerland, adoptions were made between 1584 and 1811. Some Catholic cantons switched in 1584, some Protestant in 1700/1701. For a complete list see List of adoption dates of the Gregorian calendar per country.
  10. ^ 1919 in the regions comprising the former Kingdoms of Serbia and Montenegro (present-day Kosovo, Montenegro, Serbia and North Macedonia). The western and northern regions of what became Yugoslavia were already using the Gregorian calendar. For example, most of Slovenia adopted the Gregorian calendar at the same time as Austria in 1583. Coastal Croatia, which was at the time ruled by Venice, adopted the Gregorian calendar in 1582. Inland Croatia, ruled by the Habsburgs, adopted it in 1587 along with Hungary. The Gregorian calendar was used in Bosnia and Herzegovina since the 16th century by the Catholic population and was formally adopted for government use in 1878 following occupation by Austria-Hungary.
  11. ^ Protestant states in Germany used an astronomical Easter from 1700 to 1774, based on Kepler's Rudolphine Tables, differing from the Gregorian Easter twice, one week early in 1724 and 1744.[29]
  12. ^ Lorraine reverted to Julian in 1735 and adopted Gregorian again in 1760

Citations

  1. ^ Dershowitz & Reingold (2008), p. 45. "The calendar in use today in most of the world is the Gregorian or new-style calendar designed by a commission assembled by Pope Gregory XIII in the sixteenth century.".
  2. ^ "Introduction to Calendars". United States Naval Observatory. n.d. Retrieved 9 May 2022.
  3. ^ a b c See Wikisource English translation of the (Latin) 1582 papal bull Inter gravissimas.
  4. ^ Applebaum, Wilbur (2000). "Clavius, Christoph (1538-1612)". Encyclopedia of the Scientific Revolution: From Copernicus to Newton. Garland Publishing. ISBN 0-8153-1503-1.
  5. ^ Blegen (2013).
  6. ^ Richards (1998), p. 101.
  7. ^ Clause 3.2.1 ISO 8601
  8. ^ Walker (1945), p. 218.
  9. ^ a b Richards (2013), p. 599.
  10. ^ Ben-Menahem, Ari (2009). Historical Encyclopedia of Natural and Mathematical Sciences. Vol. 1. p. 863. ISBN 9783540688310.
  11. ^ Carabias Torres (2012), p. 241.
  12. ^ Ziggelaar (1983), pp. 211, 214.
  13. ^ a b Moyer (1983).
  14. ^ * See, for example, Tabule illustrissimi principis regis alfonsii (Prague 1401−4). A full set of Alphonsine Tables (including tables for mean motions, conjunctions of Sun and Moon, equation of time, spherical astronomy, longitudes and latitudes of cities, star tables, eclipse tables).
    • For an example of the information provided see Jacques Cassini, Tables astronomiques du soleil, de la lune, des planètes, des étoiles fixes, et des satellites de Jupiter et de Saturne (Paris 1740), available at [1] (go forward ten pages to Table III on p. 10).
  15. ^
    • Dreyer, J L E (2014). Tycho Brahe. Cambridge. p. 52. ISBN 978-1-108-06871-0. He remarks that both the Alphonsine and the Prutenic Tables are several hours wrong with regard to the time of the equinoxes and solstices.
    • North, J (1989). The Universal frame: historical essays in astronomy, natural philosophy and scientific method. London. p. 29. ISBN 978-0-907628-95-8. He noted on one occasion that the Alphonsine tables differed from the Prutenic by nineteen hours as to the time of the vernal equinox of 1588.
  16. ^ Swerdlow (1986).
  17. ^ Meeus & Savoie (1992).
  18. ^ Ziggelaar (1983), p. 220.
  19. ^ Mezzi, E.; Vizza, F. (2010). Luigi Lilio Medico Astronomo e Matematico di Cirò. Reggio Calabria: Laruffa Editore. pp. 14, 52. citing as primary references: Biblioteca Nazionale Centrale die Firenze, Magl. 5.10.5/a, ASV A.A., Arm. I‑XVIII, 5506, f. 362r.
  20. ^ Kamen, Henry (1998). Philip of Spain. Yale University Press. p. 248. ISBN 978-0300078008.
  21. ^ Cohen, Jennie. "6 Things You May Not Know About the Gregorian Calendar". HISTORY. Retrieved 23 July 2021.
  22. ^ ""Pragmatica" on the Ten Days of the Year". World Digital Library. 1584.: the first known South American imprint, produced in 1584 by Antonio Ricardo, of a four-page edict issued by King Philip II of Spain in 1582, decreeing the change from the Julian to the Gregorian calendar.[dead link]
  23. ^ "The Calendar FAQ: The Gregorian Calendar". Tondering.dk. Retrieved 3 May 2022.
  24. ^ "Calendar (New Style) Act 1750, Section 3". Parliament of Great Britain – via National Archives.
  25. ^ A more extensive list is available at Conversion between Julian and Gregorian calendars
  26. ^ Blackburn & Holford-Strevens (1999), p. 788.
  27. ^
    • Evans, James (1998). The history and practice of ancient astronomy. Oxford: Oxford University Press. p. 169. ISBN 0-19-509539-1..
    • Explanatory Supplement to The Astronomical Ephemeris and The American Ephemeris and Nautical Almanac. London: Her Majesty's Stationery Office. 1961. p. 417.
  28. ^ Herluf Nielsen: Kronologi (2nd ed., Dansk Historisk Fællesforening, Copenhagen 1967), pp. 48–50.
  29. ^ Lamont, Roscoe (1920), "The reform of the Julian calendar", Popular Astronomy, 28: 18–32, Bibcode:1920PA.....28...18L
  30. ^ "Calendrier grégorien en France". www.henk-reints.nl.
  31. ^ Per decree of 16 June 1575. Hermann Grotefend, "Osteranfang 13 July 2016 at the Wayback Machine" (Easter beginning), Zeitrechnung de Deutschen Mittelalters und der Neuzeit 28 June 2016 at the Wayback Machine (Chronology of the German Middle Ages and modern times) (1891–1898)
  32. ^ a b Blackburn & Holford-Strevens (1999), p. 784.
  33. ^ John James Bond, Handy-book of rules and tables for verifying dates with the Christian era Scottish decree on pp. xvii–xviii.
  34. ^ Roscoe Lamont, The reform of the Julian calendar 30 December 2015 at the Wayback Machine, Popular Astronomy 28 (1920) 18–32. Decree of Peter the Great is on pp. 23–24.
  35. ^ *Alexandre Dumas, Storia del governo della Toscana: sotto La casa de'Medici.
  36. ^ Lorenzo Cattini, Legislazione toscana raccolta e illustrata, vol. 10, p. 208.
  37. ^ "Roman Dates: Eponymous Years". Tyndalehouse.com. Retrieved 14 September 2010.
  38. ^ Spathaky, Mike. "Old Style and New Style Dates and the change to the Gregorian Calendar: A summary for genealogists".
  39. ^ S. I. Seleschnikow: Wieviel Monde hat ein Jahr? (Aulis-Verlag, Leipzig/Jena/Berlin 1981, p. 149), which is a German translation of С. И. Селешников: История календаря и хронология (Издательство "Наука", Moscow 1977). The relevant chapter is available online here: История календаря в России и в СССР (Calendar history in Russia and the USSR) 17 October 2009 at the Wayback Machine. Anno Mundi 7000 lasted from 1 March 1492 to 31 August 1492. (in Russian)
  40. ^ Tuesday 31 December 1661 29 September 2007 at the Wayback Machine, The Diary of Samuel Pepys 1 March 2021 at the Wayback Machine "I sat down to end my journell for this year, ..."
  41. ^ Nørby, Toke. The Perpetual Calendar: What about England 30 August 2007 at the Wayback Machine Version 29 February 2000
  42. ^ "House of Commons Journal Volume 8, 9 June 1660 (Regicides)". British History Online. Retrieved 18 March 2007.
  43. ^ "Death warrant of Charles I". National Archives.
  44. ^ Nørby, Toke. The Perpetual Calendar 12 November 2019 at the Wayback Machine
  45. ^ Woolley, Benjamin (2001). The Queen's Conjurer: The science and magic of Dr. John Dee, adviser to Queen Elizabeth I. New York: Henry Holt. p. 173.
  46. ^ Poole 1995, pp. 95–139.
  47. ^ Spathaky, Mike Old Style and New Style Dates and the change to the Gregorian Calendar 11 October 2014 at the Wayback Machine. "Before 1752, parish registers, in addition to a new year heading after 24th March showing, for example '1733', had another heading at the end of the following December indicating '1733/4'. This showed where the Historical Year 1734 started even though the Civil Year 1733 continued until 24th March. ... We as historians have no excuse for creating ambiguity and must keep to the notation described above in one of its forms. It is no good writing simply 20th January 1745, for a reader is left wondering whether we have used the Civil or the Historical Year. The date should either be written 20th January 1745 OS (if indeed it was Old Style) or as 20th January 1745/6. The hyphen (1745-6) is best avoided as it can be interpreted as indicating a period of time."
  48. ^ "January, n.", Oxford English Dictionary, Oxford: Oxford University Press.
  49. ^ a b c "February, n.", Oxford English Dictionary.
  50. ^ a b c d e f g Liberman, Anatoly (7 March 2007), "On a Self-Congratulatory Note", Oxford Etymologist Archives, Oxford: Oxford University Press.
  51. ^ "March, n.", Oxford English Dictionary.
  52. ^ "April, n.", Oxford English Dictionary.
  53. ^ It's not unusual for month names to be based on natural descriptions but this etymology is sometimes doubted since no other Roman months have such names.[50]
  54. ^ Plutarch, Life of Numa, Ch. xix.
  55. ^
    • Scullard, Festivals and Ceremonies of the Roman Republic, p. 96.
    • Forsythe, Time in Roman Religion, p. 10.
  56. ^ This derivation was apparently a popular one in ancient Rome, given by Plutarch[54] but rejected by Varro and Cincius.[where?][55]
  57. ^ a b "May, n.", Oxford English Dictionary.
  58. ^ "June, n.", Oxford English Dictionary.
  59. ^ "July, n.", Oxford English Dictionary.
  60. ^ "August, n.", Oxford English Dictionary.
  61. ^ "September, n.", Oxford English Dictionary.
  62. ^ "October, n.", Oxford English Dictionary.
  63. ^ "November, n.", Oxford English Dictionary.
  64. ^ "December, n.", Oxford English Dictionary.
  65. ^
    • Ballew, Pat (1 September 2015), "On This Day in Math", Pat's Blog.
    • Anianus, Computus Metricus Manualis, Strasbourg. (in Latin)
  66. ^ Onofri, Francesca Romana; et al. (2012), Italian for Dummies, Berlitz, pp. 101–2, ISBN 9781118258767.
  67. ^ Bond, Otto Ferdinand; et al. (1918), Military Manual of Elementary French, Austin: E.L. Steck, p. 11.
  68. ^ Portella, Mathias Rodrigues (1738), Cartapacio de syllaba, e figuras, conforme a ordem dos mais cartapacios de Grammatica..., Western Lisbon: Officina de Antonio Pedrozo Galram, pp. 121.
  69. ^ a b Bryan, Roger (30 October 2011), "The Oldest Rhyme in the Book", The Times, London: Times Newspapers.
  70. ^
    • Misstear, Rachael (16 January 2012), , Wales Online, Media Wales, archived from the original on 6 February 2012.
    • "Memorable Mnemonics", Today, London: BBC Radio 4, 30 November 2011.
  71. ^ The Cincinnati Enquirer, Cincinnati, 20 September 1924, p. 6.
  72. ^ Holland, Norman N. (1992), The Critical I, New York: Columbia University Press, p. 64–5, ISBN 9780231076517.
  73. ^ Seidelmann (1992), pp. 580–581.
  74. ^ Using value from Richards (2013, p. 587) for tropical year in mean solar days, the calculation is 1/(365.2425-365.24217)
  75. ^ Meeus & Savoie (1992), p. 42.
  76. ^ Herschel, John (1849). Outlines of Astronomy. p. 629.
  77. ^ Steel, Duncan (2000). Marking Time: The Epic Quest to Invent the Perfect Calendar. John Wiley & Sons. p. 185. ISBN 978-0-471-29827-4.

References

  • Barsoum, Ignatius A. (2003). The Scattered Pearls. Piscataway: Georgias Press.
  • Blackburn, Bonnie; Holford-Strevens, Leofranc (1999). The Oxford Companion to the Year. Oxford University Press. ISBN 9780192142313..
  • Blackburn, Bonnie; Holford-Strevens, Leofranc (2003). The Oxford Companion to the Year: An exploration of calendar customs and time-reckoning (corrected reprinting of 1999 ed.). Oxford University Press. ISBN 9780192142313.
  • Blegen, Carl W. (25 December 2013). Vogeikoff-Brogan, Natalia (ed.). "An Odd Christmas". From the Archivist's Notebook. Retrieved 1 April 2018.
  • Borkowski, K. M. (1991). "The tropical calendar and solar year". Journal of the Royal Astronomical Society of Canada. 85 (3): 21–130. Bibcode:1991JRASC..85..121B.
  • Carabias Torres, A. M (2012). Salamanca y la medida del tiempo (in Spanish). Salamanca: Ediciones Universidad de Salamanca.
  • Coyne, G. V.; Hoskin, M. A.; Pedersen, O., eds. (1983). Gregorian Reform of the Calendar. Vatican Conference to Commemorate its 400th Anniversary, 1582–1982. Vatican City: Pontifical Academy of Sciences, Vatican Observatory (Pontificia Academia Scientarum, Specola Vaticana).
  • Dershowitz, D.; Reingold, E. M (2008). Calendrical Calculations (3rd ed.). Cambridge: Cambridge University Press.
  • Duncan, D. E (1999). Calendar: Humanity's Epic Struggle To Determine A True And Accurate Year. HarperCollins. ISBN 9780380793242.
  • Gregory XIII (1582). Inter Gravissimas [Amongst the most serious tasks of our pastoral office]. Translated by Wikisource.
  • Meeus, J.; Savoie, D. (1992). "The history of the tropical year". Journal of the British Astronomical Association. 102 (1): 40–42. Bibcode:1992JBAA..102...40M.
  • Morrison, L. V.; Stephenson, F. R. (2004). "Historical values of the Earth's clock error ΔT and the calculation of eclipses". Journal for the History of Astronomy. 35, part 3 (120): 327–336. Bibcode:2004JHA....35..327M. doi:10.1177/002182860403500305. S2CID 119021116.
  • Moyer, Gordon (May 1982). "The Gregorian Calendar". Scientific American. Vol. 246, no. 5. pp. 144–152.
  • Moyer, Gordon (1983). Coyne, G. V.; Hoskin, M. A.; Pedersen, O. (eds.). Aloisius Lilius and the Compendium Novae Rationis Restituendi Kalendarium. Gregorian Reform of the Calendar: Proceedings of the Vatican Conference to Commemorate its 400th Anniversary. Vatican City: Pontifical Academy of Sciences, Specolo Vaticano. pp. 171–188.
  • Pattie, T.S. (1976). "An unexpected effect of the change in calendar in 1752" (PDF). British Library Journal.
  • Pedersen, O (1983). Coyne, G. V.; Hoskin, M. A.; Pedersen, O. (eds.). The Ecclesiastical Calendar and the Life of the Church. Gregorian Reform of the Calendar: Proceedings of the Vatican Conference to Commemorate its 400th Anniversary. Vatican City: Pontifical Academy of Sciences, Specolo Vaticano. pp. 17–74.
  • Poole, Robert (1995). "'Give us our eleven days!': calendar reform in eighteenth-century England". Past & Present. Oxford Academic. 149 (1): 95–139. doi:10.1093/past/149.1.95. from the original on 5 December 2014.
  • Richards, E. G. (1998). Mapping Time: The Calendar and its History. Oxford University Press.
  • Richards, E. G. (2013). "Calendars". In Urban, S. E.; Seidelmann, P. K. (eds.). Explanatory Supplement to the Astronomical Almanac (3rd ed.). Mill Valley CA: University Science Books. pp. 585–624. ISBN 978-1-891389-85-6.
  • Seidelmann, P. K., ed. (1992). Explanatory Supplement to the Astronomical Almanac (2nd ed.). Sausalito, CA: University Science Books.
  • Swerdlow, N. M. (1986). "The Length of the Year in the Original Proposal for the Gregorian Calendar". Journal for the History of Astronomy. 17 (49): 109–118. Bibcode:1986JHA....17..109S. doi:10.1177/002182868601700204. S2CID 118491152.
  • Walker, G. W. (June 1945). "Easter Intervals". Popular Astronomy. Vol. 53, no. 6. pp. 162–178, 218–232. Bibcode:1945PA.....53..218W.
  • Ziggelaar, A. (1983). Coyne, G. V.; Hoskin, M. A.; Pedersen, O. (eds.). The Papal Bull of 1582 Promulgating a Reform of the Calendar. Gregorian Reform of the Calendar: Proceedings of the Vatican Conference to Commemorate its 400th Anniversary. Vatican City: Pontifical Academy of Sciences, Specolo Vaticano. pp. 201–239.

External links

  • Gregorian calendar on In Our Time at the BBC
  • Calendar Converter
  • Inter Gravissimas (Latin and French plus English)
  • History of Gregorian Calendar 6 January 2014 at the Wayback Machine
  • The Perpetual Calendar Gregorian Calendar adoption dates for many countries.
  • World records for mentally calculating the day of the week in the Gregorian Calendar
  • – Frequently Asked Questions about Calendars
  • Today's date (Gregorian) in over 800 more-or-less obscure foreign languages

gregorian, calendar, calendar, religious, holidays, periods, liturgical, year, this, year, common, year, starting, sunday, confused, with, georgian, calendar, calendar, used, most, parts, world, introduced, october, 1582, pope, gregory, xiii, modification, rep. For the calendar of religious holidays and periods see Liturgical year For this year s Gregorian calendar see Common year starting on Sunday Not to be confused with Georgian calendar The Gregorian calendar is the calendar used in most parts of the world 1 a It was introduced in October 1582 by Pope Gregory XIII as a modification of and replacement for the Julian calendar The principal change was to space leap years differently so as to make the average calendar year 365 2425 days long more closely approximating the 365 2422 day tropical or solar year that is determined by the Earth s revolution around the Sun 2023 in various calendarsGregorian calendar2023MMXXIIIAb urbe condita2776Armenian calendar1472ԹՎ ՌՆՀԲAssyrian calendar6773Bahaʼi calendar179 180Balinese saka calendar1944 1945Bengali calendar1430Berber calendar2973British Regnal year1 Cha 3 2 Cha 3Buddhist calendar2567Burmese calendar1385Byzantine calendar7531 7532Chinese calendar壬寅年 Water Tiger 4719 or 4659 to 癸卯年 Water Rabbit 4720 or 4660Coptic calendar1739 1740Discordian calendar3189Ethiopian calendar2015 2016Hebrew calendar5783 5784Hindu calendars Vikram Samvat2079 2080 Shaka Samvat1944 1945 Kali Yuga5123 5124Holocene calendar12023Igbo calendar1023 1024Iranian calendar1401 1402Islamic calendar1444 1445Japanese calendarReiwa 5 令和5年 Javanese calendar1956 1957Juche calendar112Julian calendarGregorian minus 13 daysKorean calendar4356Minguo calendarROC 112民國112年Nanakshahi calendar555Thai solar calendar2566Tibetan calendar阳水虎年 male Water Tiger 2149 or 1768 or 996 to 阴水兔年 female Water Rabbit 2150 or 1769 or 997Unix time1672531200 1704067199The rule for leap years is Every year that is exactly divisible by four is a leap year except for years that are exactly divisible by 100 but these centurial years are leap years if they are exactly divisible by 400 For example the years 1700 1800 and 1900 are not leap years but the year 2000 is United States Naval Observatory 2 There were two reasons to establish the Gregorian calendar First the Julian calendar assumed incorrectly that the average solar year is exactly 365 25 days long an overestimate of a little under one day per century and thus has a leap year every four years without exception The Gregorian reform shortened the average calendar year by 0 0075 days to stop the drift of the calendar with respect to the equinoxes 3 Second in the years since the First Council of Nicaea in AD 325 b the excess leap days introduced by the Julian algorithm had caused the calendar to drift such that the Northern spring equinox was occurring well before its nominal 21 March date This date was important to the Christian churches because it is fundamental to the calculation of the date of Easter To reinstate the association the reform advanced the date by 10 days c Thursday 4 October 1582 was followed by Friday 15 October 1582 3 In addition the reform also altered the lunar cycle used by the Church to calculate the date for Easter because astronomical new moons were occurring four days before the calculated dates It is notable that whilst the reform introduced minor changes the calendar continued to be fundamentally based on the same geocentric theory as its predecessor 4 The reform was adopted initially by the Catholic countries of Europe and their overseas possessions Over the next three centuries the Protestant and Eastern Orthodox countries also moved to what they called the Improved calendar with Greece being the last European country to adopt the calendar for civil use only in 1923 5 To unambiguously specify a date during the transition period in contemporary documents or in history texts both notations were given tagged as Old Style or New Style as appropriate During the 20th century most non Western countries also adopted the calendar at least for civil purposes Contents 1 Description 2 Gregorian reform 2 1 Background 2 2 Preparation 2 2 1 First printed Gregorian calendar 2 3 Adoption 2 3 1 Adoption by country 3 Difference between Gregorian and Julian calendar dates 4 Beginning of the year 5 Dual dating 5 1 Old Style and New Style dates 6 Proleptic Gregorian calendar 7 Months 8 Weeks 9 Accuracy 9 1 Calendar seasonal error 10 Proposed reforms 11 See also 12 Notes 13 Citations 14 References 15 External linksDescriptionThe Gregorian calendar like the Julian calendar is a solar calendar with 12 months of 28 31 days each The year in both calendars consists of 365 days with a leap day being added to February in the leap years The months and length of months in the Gregorian calendar are the same as for the Julian calendar The only difference is that the Gregorian reform omitted a leap day in three centurial years every 400 years and left the leap day unchanged A leap year normally occurs every four years the leap day historically was inserted by doubling 24 February there were indeed two days dated 24 February However for many years it has been customary to put the extra day at the end of the month of February adding a 29 February for the leap day Before the 1969 revision of its General Roman Calendar the Catholic Church delayed February feasts after the 23rd by one day in leap years Masses celebrated according to the previous calendar still reflect this delay 6 A year is divided into twelve months No Name Length in days1 January 312 February 28 29 in leap years 3 March 314 April 305 May 316 June 307 July 318 August 319 September 3010 October 3111 November 3012 December 31Gregorian years are identified by consecutive year numbers 7 A calendar date is fully specified by the year numbered according to a calendar era in this case Anno Domini or Common Era the month identified by name or number and the day of the month numbered sequentially starting from 1 Although the calendar year currently runs from 1 January to 31 December at previous times year numbers were based on a different starting point within the calendar see the beginning of the year section below Calendar cycles repeat completely every 400 years which equals 146 097 days d e Of these 400 years 303 are regular years of 365 days and 97 are leap years of 366 days A mean calendar year is 365 97 400 days 365 2425 days or 365 days 5 hours 49 minutes and 12 seconds f During intervals that do not contain any century common years such as 1900 the calendar repeats every 28 years during which February 29 will fall on each of the seven days of the week once and only once All other dates of the year fall on each day exactly four times each day of the week having gaps of 6 years 5 years 6 years and 11 years in that order Gregorian reform Christopher Clavius 1538 1612 one of the main authors of the reform Pope Gregory XIII portrait by Lavinia Fontana 16C First page of the papal bull Inter gravissimas Detail of the pope s tomb by Camillo Rusconi completed 1723 Antonio Lilio is genuflecting before the pope presenting his printed calendar The Gregorian calendar was a reform of the Julian calendar It was instituted by papal bull Inter gravissimas dated 24 February 1582 by Pope Gregory XIII 3 after whom the calendar is named The motivation for the adjustment was to bring the date for the celebration of Easter to the time of year in which it was celebrated when it was introduced by the early Church The error in the Julian calendar its assumption that there are exactly 365 25 days in a year had led to the date of the equinox according to the calendar drifting from the observed reality and thus an error had been introduced into the calculation of the date of Easter Although a recommendation of the First Council of Nicaea in 325 specified that all Christians should celebrate Easter on the same day it took almost five centuries before virtually all Christians achieved that objective by adopting the rules of the Church of Alexandria see Easter for the issues which arose g Background Because the date of Easter is a function the computus of the date of the spring equinox in the northern hemisphere the Catholic Church considered unacceptable the increasing divergence between the canonical date of the equinox and observed reality Easter is celebrated on the Sunday after the ecclesiastical full moon on or after 21 March which was adopted as an approximation to the March equinox 9 European scholars had been well aware of the calendar drift since the early medieval period Bede writing in the 8th century showed that the accumulated error in his time was more than three days Roger Bacon in c 1200 estimated the error at seven or eight days Dante writing c 1300 was aware of the need for calendar reform An attempt to go forward with such a reform was undertaken by Pope Sixtus IV who in 1475 invited Regiomontanus to the Vatican for this purpose However the project was interrupted by the death of Regiomontanus shortly after his arrival in Rome 10 The increase of astronomical knowledge and the precision of observations towards the end of the 15th century made the question more pressing Numerous publications over the following decades called for a calendar reform among them two papers sent to the Vatican by the University of Salamanca in 1515 and 1578 11 but the project was not taken up again until the 1540s and implemented only under Pope Gregory XIII r 1572 1585 Preparation In 1545 the Council of Trent authorised Pope Paul III to reform the calendar requiring that the date of the vernal equinox be restored to that which it held at the time of the First Council of Nicaea in 325 and that an alteration to the calendar be designed to prevent future drift This would allow for more consistent and accurate scheduling of the feast of Easter In 1577 a Compendium was sent to expert mathematicians outside the reform commission for comments Some of these experts including Giambattista Benedetti and Giuseppe Moleto believed Easter should be computed from the true motions of the Sun and Moon rather than using a tabular method but these recommendations were not adopted 12 The reform adopted was a modification of a proposal made by the Calabrian doctor Aloysius Lilius or Lilio 13 Lilius s proposal included reducing the number of leap years in four centuries from 100 to 97 by making three out of four centurial years common instead of leap years He also produced an original and practical scheme for adjusting the epacts of the Moon when calculating the annual date of Easter solving a long standing obstacle to calendar reform Ancient tables provided the Sun s mean longitude 14 The German mathematician Christopher Clavius the architect of the Gregorian calendar noted that the tables agreed neither on the time when the Sun passed through the vernal equinox nor on the length of the mean tropical year Tycho Brahe also noticed discrepancies 15 The Gregorian leap year rule 97 leap years in 400 years was put forward by Petrus Pitatus of Verona in 1560 He noted that it is consistent with the tropical year of the Alfonsine tables and with the mean tropical year of Copernicus De revolutionibus and Erasmus Reinhold Prutenic tables The three mean tropical years in Babylonian sexagesimals as the excess over 365 days the way they would have been extracted from the tables of mean longitude were 0 14 33 9 57 Alfonsine 0 14 33 11 12 Copernicus and 0 14 33 9 24 Reinhold In decimal notation these are equal to 0 24254606 0 24255185 and 0 24254352 respectively All values are the same to two sexagesimal places 0 14 33 equal to decimal 0 2425 and this is also the mean length of the Gregorian year Thus Pitatus solution would have commended itself to the astronomers 16 Lilius s proposals had two components First he proposed a correction to the length of the year The mean tropical year is 365 24219 days long 17 A commonly used value in Lilius s time from the Alfonsine tables is 365 2425463 days 13 As the average length of a Julian year is 365 25 days the Julian year is almost 11 minutes longer than the mean tropical year The discrepancy results in a drift of about three days every 400 years Lilius s proposal resulted in an average year of 365 2425 days see Accuracy At the time of Gregory s reform there had already been a drift of 10 days since the Council of Nicaea resulting in the vernal equinox falling on 10 or 11 March instead of the ecclesiastically fixed date of 21 March and if unreformed it would have drifted further Lilius proposed that the 10 day drift should be corrected by deleting the Julian leap day on each of its ten occurrences over a period of forty years thereby providing for a gradual return of the equinox to 21 March Lilius s work was expanded upon by Christopher Clavius in a closely argued 800 page volume He would later defend his and Lilius s work against detractors Clavius s opinion was that the correction should take place in one move and it was this advice that prevailed with Gregory The second component consisted of an approximation that would provide an accurate yet simple rule based calendar Lilius s formula was a 10 day correction to revert the drift since the Council of Nicaea and the imposition of a leap day in only 97 years in 400 rather than in 1 year in 4 The proposed rule was that years divisible by 100 would be leap years only if they were divisible by 400 as well The 19 year cycle used for the lunar calendar required revision because the astronomical new moon was at the time of the reform four days before the calculated new moon 9 It was to be corrected by one day every 300 or 400 years 8 times in 2500 years along with corrections for the years that are no longer leap years i e 1700 1800 1900 2100 etc In fact a new method for computing the date of Easter was introduced The method proposed by Lilius was revised somewhat in the final reform 18 When the new calendar was put in use the error accumulated in the 13 centuries since the Council of Nicaea was corrected by a deletion of 10 days The Julian calendar day Thursday 4 October 1582 was followed by the first day of the Gregorian calendar Friday 15 October 1582 the cycle of weekdays was not affected First printed Gregorian calendar Lunario Novo Secondo la Nuova Riforma della Correttione del l Anno Riformato da N S Gregorio XIII printed in Rome by Vincenzo Accolti in 1582 one of the first printed editions of the new calendar A month after having decreed the reform the pope with a brief of 3 April 1582 granted to one Antoni Lilio the exclusive right to publish the calendar for a period of ten years The Lunario Novo secondo la nuova riforma h was printed by Vincenzo Accolti one of the first calendars printed in Rome after the reform notes at the bottom that it was signed with papal authorization and by Lilio Con licentia delli Superiori et permissu Ant onii Lilij The papal brief was revoked on 20 September 1582 because Antonio Lilio proved unable to keep up with the demand for copies 19 Adoption Main article Adoption of the Gregorian calendar Although Gregory s reform was enacted in the most solemn of forms available to the Church the bull had no authority beyond the Catholic Church of which he was the supreme religious authority and the Papal States which he personally ruled The changes that he was proposing were changes to the civil calendar over which he had no authority They required adoption by the civil authorities in each country to have legal effect The bull Inter gravissimas became the law of the Catholic Church in 1582 but it was not recognised by Protestant Churches Eastern Orthodox Churches Oriental Orthodox Churches and a few others Consequently the days on which Easter and related holidays were celebrated by different Christian Churches again diverged On 29 September 1582 Philip II of Spain decreed the change from the Julian to the Gregorian calendar 20 This affected much of Roman Catholic Europe as Philip was at the time ruler over Spain and Portugal as well as much of Italy In these territories as well as in the Polish Lithuanian Commonwealth 21 ruled by Anna Jagiellon and in the Papal States the new calendar was implemented on the date specified by the bull with Julian Thursday 4 October 1582 being followed by Gregorian Friday 15 October The Spanish and Portuguese colonies followed somewhat later de facto because of delay in communication 22 The other major Catholic power of Western Europe France adopted the change a few months later 9 December was followed by 20 December 23 Many Protestant countries initially objected to adopting a Catholic innovation some Protestants feared the new calendar was part of a plot to return them to the Catholic fold For example the British could not bring themselves to adopt the Catholic system explicitly the Annexe to their Calendar New Style Act 1750 established a computation for the date of Easter that achieved the same result as Gregory s rules without actually referring to him 24 Britain and the British Empire including the eastern part of what is now the United States adopted the Gregorian calendar in 1752 Sweden followed in 1753 Prior to 1917 Turkey used the lunar Islamic calendar with the Hijri era for general purposes and the Julian calendar for fiscal purposes The start of the fiscal year was eventually fixed at 1 March and the year number was roughly equivalent to the Hijri year see Rumi calendar As the solar year is longer than the lunar year this originally entailed the use of escape years every so often when the number of the fiscal year would jump From 1 March 1917 the fiscal year became Gregorian rather than Julian On 1 January 1926 the use of the Gregorian calendar was extended to include use for general purposes and the number of the year became the same as in most other countries Adoption by country This is a brief summary For a comprehensive table see List of adoption dates of the Gregorian calendar per country Year Country ies Areas1582 Spain Portugal France Polish Lithuanian Commonwealth Italy Catholic Low Countries Luxembourg and colonies thereof1584 Kingdom of Bohemia some Catholic Swiss cantons i 1610 Prussia1648 Alsace1682 Strasbourg1700 Protestant Low Countries Norway Denmark some Protestant Swiss cantons i 1752 Great Britain Ireland and the First British Empire 1707 1783 1753 Sweden and Finland1873 Japan1875 Egypt1896 Korea1912 China Albania1915 Latvia Lithuania1916 Bulgaria1917 Ottoman Empire1918 Russia Estonia1919 Romania Yugoslavia j 1923 Greece1926 Turkey common era years Gregorian dates in use since 1917 Ottoman adoption 2016 Saudi ArabiaDifference between Gregorian and Julian calendar datesConversion from Julian to Gregorian dates 25 Gregorian range Julian range DifferenceFrom 15 October 1582to 28 February 1700 From 5 October 1582to 18 February 1700 10 daysFrom 1 March 1700to 28 February 1800 From 19 February 1700to 17 February 1800 11 daysFrom 1 March 1800to 28 February 1900 From 18 February 1800to 16 February 1900 12 daysFrom 1 March 1900to 28 February 2100 From 17 February 1900to 15 February 2100 13 daysFrom 1 March 2100to 28 February 2200 From 16 February 2100to 14 February 2200 14 daysThis section always places the intercalary day on 29 February even though it was always obtained by doubling 24 February the bissextum twice sixth or bissextile day until the late Middle Ages The Gregorian calendar is proleptic before 1582 calculated backwards on the same basis for years before 1582 and the difference between Gregorian and Julian calendar dates increases by three days every four centuries all date ranges are inclusive The following equation gives the number of days actually dates that the Gregorian calendar is ahead of the Julian calendar called the secular difference between the two calendars A negative difference means the Julian calendar is ahead of the Gregorian calendar 26 D Y 100 Y 400 2 displaystyle D left lfloor Y 100 right rfloor left lfloor Y 400 right rfloor 2 where D displaystyle D is the secular difference and Y displaystyle Y is the year using astronomical year numbering that is use year BC 1 for BC years x displaystyle left lfloor x right rfloor means that if the result of the division is not an integer it is rounded down to the nearest integer Thus during the 1900s 1900 400 4 while during the 500s 500 400 2 The general rule in years which are leap years in the Julian calendar but not the Gregorian is Up to 28 February in the calendar being converted from add one day less or subtract one day more than the calculated value Give February the appropriate number of days for the calendar being converted into When subtracting days to calculate the Gregorian equivalent of 29 February Julian 29 February is discounted Thus if the calculated value is 4 the Gregorian equivalent of this date is 24 February 27 Beginning of the yearThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Gregorian calendar news newspapers books scholar JSTOR March 2021 Learn how and when to remove this template message Country Start numbered yearon 1 January Adoption ofGregorian calendarRoman Empire 153 BCDenmark Gradual change from13th to 16th centuries 28 1700Papal States 1583 1582Holy Roman Empire Catholic states 1544 1583Spain Poland Portugal 1556 1582Holy Roman Empire Protestant states 1559 1700 k Sweden 1559 1753France 1564 30 1582 n 1 Southern Netherlands 1576 31 1582Lorraine 1579 1582 l Dutch Republic 1583 1582Scotland 1600 32 33 1752Russia 1700 34 1918Tuscany 1750 35 1582 36 Great Britain and the British Empireexcept Scotland 1752 32 1752Republic of Venice 1522 1582The year used in dates during the Roman Republic and the Roman Empire was the consular year which began on the day when consuls first entered office probably 1 May before 222 BC 15 March from 222 BC and 1 January from 153 BC 37 The Julian calendar which began in 45 BC continued to use 1 January as the first day of the new year Even though the year used for dates changed the civil year always displayed its months in the order January to December from the Roman Republican period until the present During the Middle Ages under the influence of the Catholic Church many Western European countries moved the start of the year to one of several important Christian festivals 25 December Christmas 25 March Annunciation or Easter France 38 while the Byzantine Empire began its year on 1 September and Russia did so on 1 March until 1492 when the new year was moved to 1 September 39 In common usage 1 January was regarded as New Year s Day and celebrated as such 40 but from the 12th century until 1751 the legal year in England began on 25 March Lady Day 41 So for example the Parliamentary record lists the execution of Charles I on 30 January as occurring in 1648 as the year did not end until 24 March 42 although later histories adjust the start of the year to 1 January and record the execution as occurring in 1649 43 Most Western European countries changed the start of the year to 1 January before they adopted the Gregorian calendar For example Scotland changed the start of the Scottish New Year to 1 January in 1600 this means that 1599 was a short year England Ireland and the British colonies changed the start of the year to 1 January in 1752 so 1751 was a short year with only 282 days Later in 1752 in September the Gregorian calendar was introduced throughout Britain and the British colonies see the section Adoption These two reforms were implemented by the Calendar New Style Act 1750 44 In some countries an official decree or law specified that the start of the year should be 1 January For such countries a specific year when a 1 January year became the norm can be identified In other countries the customs varied and the start of the year moved back and forth as fashion and influence from other countries dictated various customs Neither the papal bull nor its attached canons explicitly fix such a date though it is implied by two tables of saint s days one labelled 1582 which ends on 31 December citation needed and another for any full year that begins on 1 January citation needed It also specifies its epact relative to 1 January in contrast with the Julian calendar which specified it relative to 22 March The old date was derived from the Greek system the earlier Supputatio Romana specified it relative to 1 January In 1793 France abandoned the Gregorian calendar in favour of the French Republican Calendar This change was reverted in 1805 Dual dating Memorial plaque to John Etty in All Saints Church North Street York recording his date of death as 28 January 170 8 9 Main article Dual dating During the period between 1582 when the first countries adopted the Gregorian calendar and 1923 when the last European country adopted it it was often necessary to indicate the date of some event in both the Julian calendar and in the Gregorian calendar for example 10 21 February 1750 51 where the dual year accounts for some countries already beginning their numbered year on 1 January while others were still using some other date Even before 1582 the year sometimes had to be double dated because of the different beginnings of the year in various countries Woolley writing in his biography of John Dee 1527 1608 9 notes that immediately after 1582 English letter writers customarily used two dates on their letters one OS and one NS 45 Old Style and New Style dates Main articles Old Style and New Style dates and Calendar New Style Act 1750 Old Style O S and New Style N S indicate dating systems before and after a calendar change respectively Usually this is the change from the Julian calendar to the Gregorian calendar as enacted in various European countries between 1582 and the early 20th century In England Wales Ireland and Britain s American colonies there were two calendar changes both in 1752 The first adjusted the start of a new year from Lady Day 25 March to 1 January which Scotland had done from 1600 while the second discarded the Julian calendar in favour of the Gregorian calendar removing 11 days from the September 1752 calendar to do so 46 47 To accommodate the two calendar changes writers used dual dating to identify a given day by giving its date according to both styles of dating For countries such as Russia where no start of year adjustment took place O S and N S simply indicate the Julian and Gregorian dating systems Many Eastern Orthodox countries continue to use the older Julian calendar for religious purposes Proleptic Gregorian calendarMain article Proleptic Gregorian calendar This section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed October 2020 Learn how and when to remove this template message Extending the Gregorian calendar backwards to dates preceding its official introduction produces a proleptic calendar which should be used with some caution For ordinary purposes the dates of events occurring prior to 15 October 1582 are generally shown as they appeared in the Julian calendar with the year starting on 1 January and no conversion to their Gregorian equivalents For example the Battle of Agincourt is universally considered to have been fought on 25 October 1415 which is Saint Crispin s Day Usually the mapping of new dates onto old dates with a start of year adjustment works well with little confusion for events that happened before the introduction of the Gregorian calendar But for the period between the first introduction of the Gregorian calendar on 15 October 1582 and its introduction in Britain on 14 September 1752 there can be considerable confusion between events in continental western Europe and in British domains in English language histories Events in continental western Europe are usually reported in English language histories as happening under the Gregorian calendar For example the Battle of Blenheim is always given as 13 August 1704 Confusion occurs when an event affects both For example William III of England set sail from the Netherlands on 11 November 1688 Gregorian calendar and arrived at Brixham in England on 5 November 1688 Julian calendar Shakespeare and Cervantes seemingly died on exactly the same date 23 April 1616 but Cervantes predeceased Shakespeare by ten days in real time as Spain used the Gregorian calendar but Britain used the Julian calendar This coincidence encouraged UNESCO to make 23 April the World Book and Copyright Day Astronomers avoid this ambiguity by the use of the Julian day number For dates before the year 1 unlike the proleptic Gregorian calendar used in the international standard ISO 8601 the traditional proleptic Gregorian calendar like the Julian calendar does not have a year 0 and instead uses the ordinal numbers 1 2 both for years AD and BC Thus the traditional time line is 2 BC 1 BC AD 1 and AD 2 ISO 8601 uses astronomical year numbering which includes a year 0 and negative numbers before it Thus the ISO 8601 time line is 0001 0000 0001 and 0002 MonthsThe Gregorian calendar continued to employ the Julian months which have Latinate names and irregular numbers of days January 31 days from Latin mensis Ianuarius Month of Janus 48 the Roman god of gates doorways beginnings and endings February 28 days in common and 29 in leap years from Latin mensis Februarius Month of the Februa the Roman festival of purgation and purification 49 50 cognate with fever 49 the Etruscan death god Februus Purifier citation needed and the Proto Indo European word for sulfur 49 March 31 days from Latin mensis Martius Month of Mars 51 the Roman war god 50 April 30 days from Latin mensis Aprilis of uncertain meaning 52 but usually derived from some form of the verb aperire to open 53 or the name of the goddess Aphrodite 50 56 May 31 days from Latin mensis Maius Month of Maia 57 a Roman vegetation goddess 50 whose name is cognate with Latin magnus great 57 and English major June 30 days from Latin mensis Iunius Month of Juno 58 the Roman goddess of marriage childbirth and rule 50 July 31 days from Latin mensis Iulius Month of Julius Caesar the month of Caesar s birth instituted in 44 BC 59 as part of his calendrical reforms 50 August 31 days from Latin mensis Augustus Month of Augustus instituted by Augustus in 8 BC in agreement with July and from the occurrence during the month of several important events during his rise to power 60 September 30 days from Latin mensis september seventh month of the ten month Roman year of Romulus c 750 BC 61 October 31 days from Latin mensis octōber eighth month of the ten month Roman year of Romulus c 750 BC 62 November 30 days from Latin mensis november ninth month of the ten month Roman year of Romulus c 750 BC 63 December 31 days from Latin mensis december tenth month of the ten month Roman year of Romulus c 750 BC 64 Europeans sometimes attempt to remember the number of days in each month by memorizing some form of the traditional verse Thirty Days Hath September It appears in Latin 65 Italian 66 French 67 and Portuguese 68 and belongs to a broad oral tradition but the earliest currently attested form of the poem is the English marginalia inserted into a calendar of saints c 1425 69 70 Thirti dayes hath novembir April june and Septembir Of xxviij is but oon And alle the remenaunt xxx and j 69 Thirty days have November April June and September Of 28 is but one And all the remnant 30 and 1 The knuckle mnemonic for the days of the months of the year Variations appeared in Mother Goose and continue to be taught at schools The unhelpfulness of such involved mnemonics has been parodied as Thirty days hath September But all the rest I can t remember 71 but it has also been called probably the only sixteenth century poem most ordinary citizens know by heart 72 A common nonverbal alternative is the knuckle mnemonic considering the knuckles of one s hands as months with 31 days and the lower spaces between them as the months with fewer days Using two hands one may start from either pinkie knuckle as January and count across omitting the space between the index knuckles July and August The same procedure can be done using the knuckles of a single hand returning from the last July to the first August and continuing through A similar mnemonic is to move up a piano keyboard in semitones from an F key taking the white keys as the longer months and the black keys as the shorter ones WeeksMain article Seven day week In conjunction with the system of months there is a system of weeks A physical or electronic calendar provides conversion from a given date to the weekday and shows multiple dates for a given weekday and month Calculating the day of the week is not very simple because of the irregularities in the Gregorian system When the Gregorian calendar was adopted by each country the weekly cycle continued uninterrupted For example in the case of the few countries that adopted the reformed calendar on the date proposed by Gregory XIII for the calendar s adoption Friday 15 October 1582 the preceding date was Thursday 4 October 1582 Julian calendar Opinions vary about the numbering of the days of the week ISO 8601 in common use worldwide starts with Monday 1 printed monthly calendar grids often list Mondays in the first left column of dates and Sundays in the last In North America the week typically begins on Sunday and ends on Saturday AccuracyThe Gregorian calendar improves the approximation made by the Julian calendar by skipping three Julian leap days in every 400 years giving an average year of 365 2425 mean solar days long 73 This approximation has an error of about one day per 3 030 years 74 with respect to the current value of the mean tropical year However because of the precession of the equinoxes which is not constant and the movement of the perihelion which affects the Earth s orbital speed the error with respect to the astronomical vernal equinox is variable using the average interval between vernal equinoxes near 2000 of 365 24237 days 75 implies an error closer to 1 day every 7 700 years By any criterion the Gregorian calendar is substantially more accurate than the 1 day in 128 years error of the Julian calendar average year 365 25 days In the 19th century Sir John Herschel proposed a modification to the Gregorian calendar with 969 leap days every 4 000 years instead of 970 leap days that the Gregorian calendar would insert over the same period 76 This would reduce the average year to 365 24225 days Herschel s proposal would make the year 4000 and multiples thereof common instead of leap While this modification has often been proposed since it has never been officially adopted 77 On time scales of thousands of years the Gregorian calendar falls behind the astronomical seasons This is because the Earth s speed of rotation is gradually slowing down which makes each day slightly longer over time see tidal acceleration and leap second while the year maintains a more uniform duration Calendar seasonal error This image shows the difference between the Gregorian calendar and the astronomical seasons The y axis is the date in June and the x axis is Gregorian calendar years Each point is the date and time of the June solstice in that particular year The error shifts by about a quarter of a day per year Centurial years are ordinary years unless they are divisible by 400 in which case they are leap years This causes a correction in the years 1700 1800 1900 2100 2200 and 2300 For instance these corrections cause 23 December 1903 to be the latest December solstice and 20 December 2096 to be the earliest solstice about 2 35 days of variation compared with the astronomical event Proposed reformsThe following are proposed reforms of the Gregorian calendar Holocene calendar International Fixed Calendar also called the International Perpetual calendar World Calendar World Season Calendar Leap week calendars Pax Calendar Symmetry454 Hanke Henry Permanent CalendarSee also Christianity portalCalendar New Style Act 1750 Calendar reform Conversion between Julian and Gregorian calendars Doomsday rule French revolutionary calendar Hebrew calendar Dionysius Exiguus Inter gravissimas in English Wikisource Julian day History of calendars ISO 8601 an international standard for the representation of dates and times which uses the Gregorian calendar see Section 3 2 1 List of adoption dates of the Gregorian calendar per country List of calendars Old Calendarists Greek Old Calendarists Revised Julian calendar Milankovic used in Eastern OrthodoxyPrecursors of the Gregorian reform Johannes de Sacrobosco De Anni Ratione On reckoning the years c 1235 Roger Bacon Opus Majus Greater Work c 1267Notes Many countries that use other calendars for religious purposes use the Gregorian calendar as their civil calendar Notable exceptions include Iran and Afghanistan which use the solar Hijri calendar rather than 45 BC when the Roman Empire adopted the Julian calendar By the time Great Britain and its possessions adopted the reform with effect from 1752 the gap had increased to eleven days when Russia and Greece did so for their civil calendars in the 20th century the jump was 13 days For other countries and territories see List of adoption dates of the Gregorian calendar by country The cycle described applies to the solar or civil calendar If one also considers the ecclesiastical lunar rules the lunisolar Easter computus cycle repeats only after 5 700 000 years of 2 081 882 250 days in 70 499 183 lunar months based on an assumed mean lunar month of 29 days 12 hours 44 minutes 2 49928114 70499183 seconds Seidelmann 1992 p 582 To properly function as an Easter computus this lunisolar cycle must have the same mean year as the Gregorian solar cycle and indeed that is exactly the case The extreme length of the Gregorian Easter computus is due to its being the product of the 19 year Metonic cycle the thirty different possible values of the epact and the least common multiple 10 000 of the 400 year and 2 500 year solar and lunar correction cycles 8 The same result is obtained by summing the fractional parts implied by the rule 365 1 4 1 100 1 400 365 0 25 0 01 0 0025 365 2425 The last major Christian region to accept the Alexandrian rules was the Carolingian Empire most of Western Europe during 780 800 The last monastery in England to accept the Alexandrian rules did so in 931 and a few churches in southwest Asia beyond the eastern border of the Byzantine Empire continued to use rules that differed slightly causing four dates for Easter to differ every 532 years New Almanac according to the new reform a b In the Old Swiss Confederacy Helvetic Republic or Switzerland adoptions were made between 1584 and 1811 Some Catholic cantons switched in 1584 some Protestant in 1700 1701 For a complete list see List of adoption dates of the Gregorian calendar per country 1919 in the regions comprising the former Kingdoms of Serbia and Montenegro present day Kosovo Montenegro Serbia and North Macedonia The western and northern regions of what became Yugoslavia were already using the Gregorian calendar For example most of Slovenia adopted the Gregorian calendar at the same time as Austria in 1583 Coastal Croatia which was at the time ruled by Venice adopted the Gregorian calendar in 1582 Inland Croatia ruled by the Habsburgs adopted it in 1587 along with Hungary The Gregorian calendar was used in Bosnia and Herzegovina since the 16th century by the Catholic population and was formally adopted for government use in 1878 following occupation by Austria Hungary Protestant states in Germany used an astronomical Easter from 1700 to 1774 based on Kepler s Rudolphine Tables differing from the Gregorian Easter twice one week early in 1724 and 1744 29 Lorraine reverted to Julian in 1735 and adopted Gregorian again in 1760Citations Dershowitz amp Reingold 2008 p 45 The calendar in use today in most of the world is the Gregorian or new style calendar designed by a commission assembled by Pope Gregory XIII in the sixteenth century Introduction to Calendars United States Naval Observatory n d Retrieved 9 May 2022 a b c See Wikisource English translation of the Latin 1582 papal bull Inter gravissimas Applebaum Wilbur 2000 Clavius Christoph 1538 1612 Encyclopedia of the Scientific Revolution From Copernicus to Newton Garland Publishing ISBN 0 8153 1503 1 Blegen 2013 Richards 1998 p 101 Clause 3 2 1 ISO 8601 Walker 1945 p 218 a b Richards 2013 p 599 Ben Menahem Ari 2009 Historical Encyclopedia of Natural and Mathematical Sciences Vol 1 p 863 ISBN 9783540688310 Carabias Torres 2012 p 241 Ziggelaar 1983 pp 211 214 a b Moyer 1983 See for example Tabule illustrissimi principis regis alfonsii Prague 1401 4 A full set of Alphonsine Tables including tables for mean motions conjunctions of Sun and Moon equation of time spherical astronomy longitudes and latitudes of cities star tables eclipse tables For an example of the information provided see Jacques Cassini Tables astronomiques du soleil de la lune des planetes des etoiles fixes et des satellites de Jupiter et de Saturne Paris 1740 available at 1 go forward ten pages to Table III on p 10 Dreyer J L E 2014 Tycho Brahe Cambridge p 52 ISBN 978 1 108 06871 0 He remarks that both the Alphonsine and the Prutenic Tables are several hours wrong with regard to the time of the equinoxes and solstices North J 1989 The Universal frame historical essays in astronomy natural philosophy and scientific method London p 29 ISBN 978 0 907628 95 8 He noted on one occasion that the Alphonsine tables differed from the Prutenic by nineteen hours as to the time of the vernal equinox of 1588 Swerdlow 1986 Meeus amp Savoie 1992 Ziggelaar 1983 p 220 Mezzi E Vizza F 2010 Luigi Lilio Medico Astronomo e Matematico di Ciro Reggio Calabria Laruffa Editore pp 14 52 citing as primary references Biblioteca Nazionale Centrale die Firenze Magl 5 10 5 a ASV A A Arm I XVIII 5506 f 362r Kamen Henry 1998 Philip of Spain Yale University Press p 248 ISBN 978 0300078008 Cohen Jennie 6 Things You May Not Know About the Gregorian Calendar HISTORY Retrieved 23 July 2021 Pragmatica on the Ten Days of the Year World Digital Library 1584 the first known South American imprint produced in 1584 by Antonio Ricardo of a four page edict issued by King Philip II of Spain in 1582 decreeing the change from the Julian to the Gregorian calendar dead link The Calendar FAQ The Gregorian Calendar Tondering dk Retrieved 3 May 2022 Calendar New Style Act 1750 Section 3 Parliament of Great Britain via National Archives A more extensive list is available at Conversion between Julian and Gregorian calendars Blackburn amp Holford Strevens 1999 p 788 Evans James 1998 The history and practice of ancient astronomy Oxford Oxford University Press p 169 ISBN 0 19 509539 1 Explanatory Supplement to The Astronomical Ephemeris and The American Ephemeris and Nautical Almanac London Her Majesty s Stationery Office 1961 p 417 Herluf Nielsen Kronologi 2nd ed Dansk Historisk Faellesforening Copenhagen 1967 pp 48 50 Lamont Roscoe 1920 The reform of the Julian calendar Popular Astronomy 28 18 32 Bibcode 1920PA 28 18L Calendrier gregorien en France www henk reints nl Per decree of 16 June 1575 Hermann Grotefend Osteranfang Archived 13 July 2016 at the Wayback Machine Easter beginning Zeitrechnung de Deutschen Mittelalters und der Neuzeit Archived 28 June 2016 at the Wayback Machine Chronology of the German Middle Ages and modern times 1891 1898 a b Blackburn amp Holford Strevens 1999 p 784 John James Bond Handy book of rules and tables for verifying dates with the Christian era Scottish decree on pp xvii xviii Roscoe Lamont The reform of the Julian calendar Archived 30 December 2015 at the Wayback Machine Popular Astronomy 28 1920 18 32 Decree of Peter the Great is on pp 23 24 Alexandre Dumas Storia del governo della Toscana sotto La casa de Medici Il calendario fiorentino Archived 10 March 2017 at the Wayback Machine Lorenzo Cattini Legislazione toscana raccolta e illustrata vol 10 p 208 Roman Dates Eponymous Years Tyndalehouse com Retrieved 14 September 2010 Spathaky Mike Old Style and New Style Dates and the change to the Gregorian Calendar A summary for genealogists S I Seleschnikow Wieviel Monde hat ein Jahr Aulis Verlag Leipzig Jena Berlin 1981 p 149 which is a German translation of S I Seleshnikov Istoriya kalendarya i hronologiya Izdatelstvo Nauka Moscow 1977 The relevant chapter is available online here Istoriya kalendarya v Rossii i v SSSR Calendar history in Russia and the USSR Archived 17 October 2009 at the Wayback Machine Anno Mundi 7000 lasted from 1 March 1492 to 31 August 1492 in Russian Tuesday 31 December 1661 Archived 29 September 2007 at the Wayback Machine The Diary of Samuel Pepys Archived 1 March 2021 at the Wayback Machine I sat down to end my journell for this year Norby Toke The Perpetual Calendar What about England Archived 30 August 2007 at the Wayback Machine Version 29 February 2000 House of Commons Journal Volume 8 9 June 1660 Regicides British History Online Retrieved 18 March 2007 Death warrant of Charles I National Archives Norby Toke The Perpetual Calendar Archived 12 November 2019 at the Wayback Machine Woolley Benjamin 2001 The Queen s Conjurer The science and magic of Dr John Dee adviser to Queen Elizabeth I New York Henry Holt p 173 Poole 1995 pp 95 139 Spathaky Mike Old Style and New Style Dates and the change to the Gregorian Calendar Archived 11 October 2014 at the Wayback Machine Before 1752 parish registers in addition to a new year heading after 24th March showing for example 1733 had another heading at the end of the following December indicating 1733 4 This showed where the Historical Year 1734 started even though the Civil Year 1733 continued until 24th March We as historians have no excuse for creating ambiguity and must keep to the notation described above in one of its forms It is no good writing simply 20th January 1745 for a reader is left wondering whether we have used the Civil or the Historical Year The date should either be written 20th January 1745 OS if indeed it was Old Style or as 20th January 1745 6 The hyphen 1745 6 is best avoided as it can be interpreted as indicating a period of time January n Oxford English Dictionary Oxford Oxford University Press a b c February n Oxford English Dictionary a b c d e f g Liberman Anatoly 7 March 2007 On a Self Congratulatory Note Oxford Etymologist Archives Oxford Oxford University Press March n Oxford English Dictionary April n Oxford English Dictionary It s not unusual for month names to be based on natural descriptions but this etymology is sometimes doubted since no other Roman months have such names 50 Plutarch Life of Numa Ch xix Scullard Festivals and Ceremonies of the Roman Republic p 96 Forsythe Time in Roman Religion p 10 This derivation was apparently a popular one in ancient Rome given by Plutarch 54 but rejected by Varro and Cincius where 55 a b May n Oxford English Dictionary June n Oxford English Dictionary July n Oxford English Dictionary August n Oxford English Dictionary September n Oxford English Dictionary October n Oxford English Dictionary November n Oxford English Dictionary December n Oxford English Dictionary Ballew Pat 1 September 2015 On This Day in Math Pat s Blog Anianus Computus Metricus Manualis Strasbourg in Latin Onofri Francesca Romana et al 2012 Italian for Dummies Berlitz pp 101 2 ISBN 9781118258767 Bond Otto Ferdinand et al 1918 Military Manual of Elementary French Austin E L Steck p 11 Portella Mathias Rodrigues 1738 Cartapacio de syllaba e figuras conforme a ordem dos mais cartapacios de Grammatica Western Lisbon Officina de Antonio Pedrozo Galram pp 121 a b Bryan Roger 30 October 2011 The Oldest Rhyme in the Book The Times London Times Newspapers Misstear Rachael 16 January 2012 Welsh Author Digs Deep to Find Medieval Origins of Thirty Days Hath Verse Wales Online Media Wales archived from the original on 6 February 2012 Memorable Mnemonics Today London BBC Radio 4 30 November 2011 The Cincinnati Enquirer Cincinnati 20 September 1924 p 6 Holland Norman N 1992 The Critical I New York Columbia University Press p 64 5 ISBN 9780231076517 Seidelmann 1992 pp 580 581 Using value from Richards 2013 p 587 for tropical year in mean solar days the calculation is 1 365 2425 365 24217 Meeus amp Savoie 1992 p 42 Herschel John 1849 Outlines of Astronomy p 629 Steel Duncan 2000 Marking Time The Epic Quest to Invent the Perfect Calendar John Wiley amp Sons p 185 ISBN 978 0 471 29827 4 ReferencesBarsoum Ignatius A 2003 The Scattered Pearls Piscataway Georgias Press Blackburn Bonnie Holford Strevens Leofranc 1999 The Oxford Companion to the Year Oxford University Press ISBN 9780192142313 Blackburn Bonnie Holford Strevens Leofranc 2003 The Oxford Companion to the Year An exploration of calendar customs and time reckoning corrected reprinting of 1999 ed Oxford University Press ISBN 9780192142313 Blegen Carl W 25 December 2013 Vogeikoff Brogan Natalia ed An Odd Christmas From the Archivist s Notebook Retrieved 1 April 2018 Borkowski K M 1991 The tropical calendar and solar year Journal of the Royal Astronomical Society of Canada 85 3 21 130 Bibcode 1991JRASC 85 121B Carabias Torres A M 2012 Salamanca y la medida del tiempo in Spanish Salamanca Ediciones Universidad de Salamanca Coyne G V Hoskin M A Pedersen O eds 1983 Gregorian Reform of the Calendar Vatican Conference to Commemorate its 400th Anniversary 1582 1982 Vatican City Pontifical Academy of Sciences Vatican Observatory Pontificia Academia Scientarum Specola Vaticana Dershowitz D Reingold E M 2008 Calendrical Calculations 3rd ed Cambridge Cambridge University Press Duncan D E 1999 Calendar Humanity s Epic Struggle To Determine A True And Accurate Year HarperCollins ISBN 9780380793242 Gregory XIII 1582 Inter Gravissimas Amongst the most serious tasks of our pastoral office Translated by Wikisource Meeus J Savoie D 1992 The history of the tropical year Journal of the British Astronomical Association 102 1 40 42 Bibcode 1992JBAA 102 40M Morrison L V Stephenson F R 2004 Historical values of the Earth s clock error DT and the calculation of eclipses Journal for the History of Astronomy 35 part 3 120 327 336 Bibcode 2004JHA 35 327M doi 10 1177 002182860403500305 S2CID 119021116 Moyer Gordon May 1982 The Gregorian Calendar Scientific American Vol 246 no 5 pp 144 152 Moyer Gordon 1983 Coyne G V Hoskin M A Pedersen O eds Aloisius Lilius and theCompendium Novae Rationis Restituendi Kalendarium Gregorian Reform of the Calendar Proceedings of the Vatican Conference to Commemorate its 400th Anniversary Vatican City Pontifical Academy of Sciences Specolo Vaticano pp 171 188 Pattie T S 1976 An unexpected effect of the change in calendar in 1752 PDF British Library Journal Pedersen O 1983 Coyne G V Hoskin M A Pedersen O eds The Ecclesiastical Calendar and the Life of the Church Gregorian Reform of the Calendar Proceedings of the Vatican Conference to Commemorate its 400th Anniversary Vatican City Pontifical Academy of Sciences Specolo Vaticano pp 17 74 Poole Robert 1995 Give us our eleven days calendar reform in eighteenth century England Past amp Present Oxford Academic 149 1 95 139 doi 10 1093 past 149 1 95 Archived from the original on 5 December 2014 Richards E G 1998 Mapping Time The Calendar and its History Oxford University Press Richards E G 2013 Calendars In Urban S E Seidelmann P K eds Explanatory Supplement to the Astronomical Almanac 3rd ed Mill Valley CA University Science Books pp 585 624 ISBN 978 1 891389 85 6 Seidelmann P K ed 1992 Explanatory Supplement to the Astronomical Almanac 2nd ed Sausalito CA University Science Books Swerdlow N M 1986 The Length of the Year in the Original Proposal for the Gregorian Calendar Journal for the History of Astronomy 17 49 109 118 Bibcode 1986JHA 17 109S doi 10 1177 002182868601700204 S2CID 118491152 Walker G W June 1945 Easter Intervals Popular Astronomy Vol 53 no 6 pp 162 178 218 232 Bibcode 1945PA 53 218W Ziggelaar A 1983 Coyne G V Hoskin M A Pedersen O eds The Papal Bull of 1582 Promulgating a Reform of the Calendar Gregorian Reform of the Calendar Proceedings of the Vatican Conference to Commemorate its 400th Anniversary Vatican City Pontifical Academy of Sciences Specolo Vaticano pp 201 239 External links Wikisource has original text related to this article Inter gravissimas in English Gregorian calendar on In Our Time at the BBC Calendar Converter Inter Gravissimas Latin and French plus English History of Gregorian Calendar Archived 6 January 2014 at the Wayback Machine The Perpetual Calendar Gregorian Calendar adoption dates for many countries World records for mentally calculating the day of the week in the Gregorian Calendar The Calendar FAQ Frequently Asked Questions about Calendars Today s date Gregorian in over 800 more or less obscure foreign languages Retrieved from https en wikipedia org w index php title Gregorian calendar amp oldid 1137399276, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.