fbpx
Wikipedia

STS-35

STS-35 was the tenth flight of Space Shuttle Columbia, the 38th shuttle mission. It was devoted to astronomical observations with ASTRO-1, a Spacelab observatory consisting of four telescopes. The mission launched from Kennedy Space Center in Florida on December 2, 1990.

STS-35
ASTRO-1 in Columbia's payload bay
NamesSpace Transportation System-35
Mission typeAstronomical observations
OperatorNASA
COSPAR ID1990-106A
SATCAT no.20980
Mission duration8 days, 23 hours, 5 minutes, 8 seconds (achieved)
Distance travelled6,000,658 km (3,728,636 mi)
Orbits completed144
Spacecraft properties
SpacecraftSpace Shuttle Columbia
Launch mass121,344 kg (267,518 lb)
Landing mass102,208 kg (225,330 lb)
Payload mass12,095 kg (26,665 lb)
Crew
Crew size7
Members
Start of mission
Launch dateDecember 2, 1990, 06:49:01 UTC
RocketSpace Shuttle Columbia
Launch siteKennedy Space Center, LC-39B
ContractorRockwell International
End of mission
Landing dateDecember 11, 1990, 05:54:09 UTC
Landing siteEdwards Air Force Base,
Runway 22
Orbital parameters
Reference systemGeocentric orbit
RegimeLow Earth orbit
Perigee altitude352 km (219 mi)
Apogee altitude362 km (225 mi)
Inclination28.46°
Period91.70 minutes
Instruments

STS-35 mission patch

Back row: Robert A. Parker, Ronald Parise, Jeffrey A. Hoffman, Samuel T. Durrance
Front row: Guy S. Gardner, Vance D. Brand, John M. Lounge
← STS-38 (37)
STS-37 (39) →
 

Crew edit

Position Astronaut [1]
Commander Vance D. Brand
Fourth and last spaceflight
Pilot Guy S. Gardner
Second and last spaceflight
Mission Specialist 1 Jeffrey A. Hoffman
Second spaceflight
Mission Specialist 2 John M. Lounge
Third and last spaceflight
Mission Specialist 3 Robert A. Parker
Second and last spaceflight
Payload Specialist 1 Samuel T. Durrance
First spaceflight
Payload Specialist 2 Ronald A. Parise
First spaceflight

Backup crew edit

Position Astronaut
Payload Specialist 1 Kenneth H. Nordsieck
First spaceflight
Payload Specialist 2 John-David F. Bartoe
Second spaceflight

Crew seating arrangements edit

Seat[2] Launch Landing  
Seats 1–4 are on the Flight Deck. Seats 5–7 are on the Middeck.
S1 Brand Brand
S2 Gardner Gardner
S3 Hoffman Parker
S4 Lounge Lounge
S5 Parker Hoffman
S6 Durrance Durrance
S7 Parise Parise

Crew notes edit

Prior to the Challenger disaster, this mission was slated to launch in March 1986 as STS-61-E. Jon A. McBride was originally assigned to command this mission, which would have been his second spaceflight. He chose to retire from NASA in May 1989 and was replaced as mission commander by Vance D. Brand. In addition, Richard N. Richards (as pilot) and David C. Leestma (as mission specialist), were replaced by Guy S. Gardner and John M. Lounge respectively. Fifty-nine year-old Brand was the oldest astronaut to fly into space until F. Story Musgrave, 61 on STS-80 in 1996, and U.S. Senator John H. Glenn Jr., 77 when he flew on STS-95 in 1998.

Preparations and launch edit

 
Columbia on Pad 39A with Discovery on Pad 39B in the distance.
 
Columbia finally heads aloft on December 2, 1990.

The much-delayed ASTRO-1 had originally been manifested to fly on what would have been the next shuttle mission after Challenger's ill-fated STS-51-L as STS-61-E in March 1986. The mission was remanifested as STS-35 during the long stand-down after the accident with the addition of the Broad Band X-ray Telescope (BBXRT-01), and the original ASTRO-1 payload was brought out of storage and recertified for flight.[3] Columbia rolled out to Pad 39A in late April 1990 for a scheduled launch date of May 16, 1990. Following the Flight Readiness Review (FRR), announcement of a firm launch date was delayed to change a faulty freon coolant loop proportional valve in the orbiter's coolant system. At the subsequent Delta FRR, the date was set for May 30, 1990. Launch on May 30 was scrubbed during tanking due to a minor hydrogen leak in the tail service mast on the mobile launcher platform and a major leak in the external tank/orbiter quick disconnect assembly. Hydrogen was also detected in the orbiter's aft compartment and believed to be associated with a leak involving the 43 cm (17 in) umbilical assembly.

Leakage at the 43 cm (17 in) umbilical was confirmed by a mini-tanking test on June 6, 1990. The leakage could not be repaired at the pad, and the vehicle was rolled back to the Vehicle Assembly Building (VAB) June 12, 1990, demated, and transferred to the Orbiter Processing Facility (OPF). The orbiter-side 43 cm (17 in) umbilical assembly was replaced with one borrowed from Endeavour, then still under construction. The external tank (ET) was then fitted with new umbilical hardware. The ASTRO-1 payload was reserviced regularly and remained in Columbia's cargo bay during orbiter repairs and reprocessing.

Columbia was rolled out to Pad A for the second time on August 9, 1990, to support a September 1, 1990, launch date. Two days before launch, the avionics box on the BBXRT-01 portion of the ASTRO-1 payload malfunctioned and had to be changed and retested. Launch was rescheduled for September 6, 1990. During tanking, high concentrations of hydrogen were again detected in the orbiter's aft compartment, forcing another postponement. NASA managers concluded that Columbia had experienced separate hydrogen leaks from the beginning: one of the umbilical assembly (now replaced) and one or more which had resurfaced in the aft compartment. Suspicion focused on the package of three hydrogen recirculation pumps in the aft compartment. These were replaced and retested. A damaged Teflon cover seal in the main engine number three hydrogen prevalve was replaced. Launch was rescheduled for September 18, 1990. The fuel leak in the aft compartment resurfaced during tanking, and the launch was scrubbed again. The STS-35 mission was put on hold until problem resolved by a special tiger team assigned by the Space Shuttle director.

Columbia was transferred to Pad B on October 8, 1990, to make room for Atlantis on Mission STS-38. Tropical storm Klaus forced another rollback to the VAB on October 9, 1990. The vehicle was transferred to Pad B again on October 14, 1990. Another mini-tanking test was conducted on October 30, 1990, using special sensors and video cameras and employing a see-through Plexiglas aft compartment door. No excessive hydrogen leakage was detected. With the problem resolved, the flight had only to wait for the completion of STS-38, imparting another four-week delay. A scheduled launch date of November 30, 1990, was moved by several days due to concerns that observations of astronomical targets would be adversely affected. Liftoff on December 2, 1990, was delayed by 21 minutes to allow the U.S. Air Force time to observe low-level clouds that might impede the tracking of the Shuttle's ascent. Liftoff finally occurred on December 2, 1990, 1:49:01 a.m. EST, the ninth night launch in shuttle history and the second for Columbia. A nominal ascent to orbit followed. This was one of the most delayed launches of the Space Shuttle program.

Mission highlights edit

 
MS Robert A. Parker manually points ASTRO-1's instruments using a toggle on the aft flight deck.
 
Passing over Lake Eyre, Australia.

The primary payload of mission STS-35 was ASTRO-1, the fifth flight of the Spacelab system and the second with the Igloo and two pallets train configuration. The primary objectives were round-the-clock observations of the celestial sphere in ultraviolet and X-ray spectral wavelengths with the ASTRO-1 observatory, consisting of four telescopes: Hopkins Ultraviolet Telescope (HUT); Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); Ultraviolet Imaging Telescope (UIT), mounted on the Instrument Pointing System (IPS). The Instrument Pointing System consisted of a three-axis gimbal system mounted on a gimbal support structure connected to a Spacelab pallet at one end and the aft end of the payload at the other, a payload clamping system for support of the mounted experiment during launch and landing, and a control system based on the inertial reference of a three-axis gyro package and operated by a gimbal-mounted microcomputer.[4] The Broad-Band X-Ray Telescope (BBXRT) and its Two-Axis Pointing System (TAPS) rounded out the instrument complement in the aft payload bay.

The crew split into shifts after reaching orbit, with Gardner, Parker, and Parise comprising the Red Team; the Blue Team consisted of Hoffman, Durrance, and Lounge. Commander Brand was unassigned to either team and helped coordinate mission activities. The telescopes were powered up and raised from their stowed position by the Red Team 11 hours into the flight. Observations began under the Blue Team 16 hours into the mission after the instruments were checked out.[5] In a typical ASTRO-1 ultraviolet observation, the flight crew member on duty maneuvered the Shuttle to point the cargo bay in the general direction of the astronomical object to be observed. The mission specialist commanded the pointing system to aim the telescopes toward the target. They also locked on to guide stars to help the pointing system remain stable despite orbiter thruster firings. The payload specialist set up each instrument for the upcoming observation, identified the celestial target on the guide television, and provided the necessary pointing corrections for placing the object precisely in the telescope's field of view. He then started the instrument observation sequences and monitored the data being recorded. Because the many observations created a heavy workload, the payload and mission specialists worked together to perform these complicated operations and evaluate the quality of observations. Each observation took between 10 minutes to a little over an hour.[6]

Issues with the pointing precision of the IPS and the sequential overheating failures of both data display units (used for pointing telescopes and operating experiments) during the mission impacted crew-aiming procedures and forced ground teams at Marshall Space Flight Center (MSFC) to aim the telescopes with fine-tuning by the flight crew. BBXRT-01 was directed from the outset by ground-based operators at Goddard Space Flight Center (GSFC) and was not affected. The X-ray telescope required little attention from the crew. A crew member would turn on the BBXRT and the TAPS at the beginning of operations and then turn them off when the operations concluded. After the telescope was activated, researchers at Goddard could "talk" to the telescope via computer. Before science operations began, stored commands were loaded into the BBXRT computer system. Then, when the astronauts positioned the Shuttle in the general direction of the source, the TAPS automatically pointed the BBXRT at the object. Since the Shuttle could be oriented in only one direction at a time, X-ray observations had to be coordinated carefully with ultraviolet observations. Despite the pointing problems, the full suite of telescopes obtained 231 observations of 130 celestial objects over a combined span of 143 hours. Science teams at Marshall and Goddard estimated that 70% of the mission objectives were completed.[7] ASTRO-1 was the first shuttle mission controlled in part from the Spacelab Mission Operations Control facility at MSFC in Huntsville, Alabama.

During the flight, the crew experienced trouble dumping waste water due to a blocked waste water line, but managed to compensate using spare containers. Problems also affected one RCC thruster and an onboard text and graphics teleprinter used for receiving flight plan updates.

Additional payloads and experiments edit

 
Sam Durrance and Jeffrey Hoffman during the first classroom lesson broadcast from space. Also the first necktie worn in space.

Conducting short-wave radio transmissions between ground-based amateur radio operators and a Shuttle-based amateur radio operator was the basis for the Shuttle Amateur Radio Experiment (SAREX-II). SAREX communicated with amateur stations in line-of-sight of the orbiter in one of four transmission modes: voice, Slow-scan television (SSTV), data or (uplink only) Fast scan television (FSTV). The voice mode was operated in the attended mode while SSTV, data or FSTV could be operated in either attended or unattended modes. During the mission, SAREX was operated by Payload Specialist Ron Parise, a licensed operator (WA4SIR), during periods when he was not scheduled for orbiter or other payload activities.[8] A ground-based experiment to calibrate electro-optical sensors at Air Force Maui Optical Site (AMOS) in Hawaii was also conducted during the mission. The Space Classroom Program, Assignment: The Stars project was carried out to spark student interest in science, mathematics and technology. Mission Specialist Hoffman conducted the first classroom lesson taught from space on December 7, 1990, in support of this objective, covering material on the electromagnetic spectrum and the ASTRO-1 observatory. A supporting lesson was taught from the ASTRO-1 control center in Huntsville.

Landing edit

 
Columbia touches down.

The mission was cut short by one day due to impending bad weather at the primary landing site, Edwards Air Force Base, California. The Orbital Maneuvering System (OMS) engines were fired at 8:48 p.m. PST over the Indian Ocean to deorbit the spacecraft, which landed on Runway 22 at Edwards Air Force Base, California, at 9:54 p.m. PST, on December 10, 1990, after a mission duration of 8 days, 23 hours, 5 minutes, and 8 seconds. This was the fourth night landing of the shuttle program. Rollout distance: 3.184 km (1.978 mi)). Rollout time: 58 seconds. Columbia returned to KSC on December 20, 1990, on the Shuttle Carrier Aircraft (SCA). Landing weight: 102,208 kg (225,330 lb).

Image gallery edit

See also edit

References edit

  1. ^ "Columbia Makes Successful Night Launch". Statesman Journal. Salem, Oregon. Gannett News Service. December 2, 1990. p. 3 – via Newspapers.com.
  2. ^ "STS-35". Spacefacts. Retrieved February 26, 2014.
  3. ^ STS-35 Press Kit, p.40, PAO, 1990   This article incorporates text from this source, which is in the public domain.
  4. ^ STS-35 Press Kit, p.31, PAO, 1990   This article incorporates text from this source, which is in the public domain.
  5. ^ Space Shuttle Columbia: Her Missions and Crews, p.129, Ben Evans, 2005
  6. ^ STS-35 Press Kit, p.35, PAO, 1990   This article incorporates text from this source, which is in the public domain.
  7. ^ Space Shuttle Columbia: Her Missions and Crews, p. 133, Ben Evans, 2005
  8. ^ STS-35 Press Kit, p. 41, PAO, 1990   This article incorporates text from this source, which is in the public domain.

External links edit

  • NASA mission summary August 14, 2011, at the Wayback Machine
  • STS-35 Video Highlights December 25, 2014, at the Wayback Machine
  • Jack A. Jones Collection, The University of Alabama in Huntsville Archives and Special Collections Files of Jack A. Jones, mission manager for Astro-1.

tenth, flight, space, shuttle, columbia, 38th, shuttle, mission, devoted, astronomical, observations, with, astro, spacelab, observatory, consisting, four, telescopes, mission, launched, from, kennedy, space, center, florida, december, 1990, astro, columbia, p. STS 35 was the tenth flight of Space Shuttle Columbia the 38th shuttle mission It was devoted to astronomical observations with ASTRO 1 a Spacelab observatory consisting of four telescopes The mission launched from Kennedy Space Center in Florida on December 2 1990 STS 35ASTRO 1 in Columbia s payload bayNamesSpace Transportation System 35Mission typeAstronomical observationsOperatorNASACOSPAR ID1990 106ASATCAT no 20980Mission duration8 days 23 hours 5 minutes 8 seconds achieved Distance travelled6 000 658 km 3 728 636 mi Orbits completed144Spacecraft propertiesSpacecraftSpace Shuttle ColumbiaLaunch mass121 344 kg 267 518 lb Landing mass102 208 kg 225 330 lb Payload mass12 095 kg 26 665 lb CrewCrew size7MembersVance D BrandGuy S GardnerJeffrey A HoffmanJohn M LoungeRobert A ParkerSamuel T DurranceRonald PariseStart of missionLaunch dateDecember 2 1990 06 49 01 UTCRocketSpace Shuttle ColumbiaLaunch siteKennedy Space Center LC 39BContractorRockwell InternationalEnd of missionLanding dateDecember 11 1990 05 54 09 UTCLanding siteEdwards Air Force Base Runway 22Orbital parametersReference systemGeocentric orbitRegimeLow Earth orbitPerigee altitude352 km 219 mi Apogee altitude362 km 225 mi Inclination28 46 Period91 70 minutesInstrumentsASTRO 1Broad Band X ray Telescope BBXRT 01 Fast scan television FSTV Hopkins Ultraviolet Telescope HUT Instrument Pointing System IPS Shuttle Amateur Radio Experiment SAREX II Slow scan television SSTV Two Axis Pointing System TAPS Ultraviolet Imaging Telescope UIT Wisconsin Ultraviolet Photo Polarimeter Experiment WUPPE STS 35 mission patch Back row Robert A Parker Ronald Parise Jeffrey A Hoffman Samuel T DurranceFront row Guy S Gardner Vance D Brand John M LoungeSpace Shuttle program STS 38 37 STS 37 39 Contents 1 Crew 1 1 Backup crew 1 2 Crew seating arrangements 1 3 Crew notes 2 Preparations and launch 3 Mission highlights 4 Additional payloads and experiments 5 Landing 6 Image gallery 7 See also 8 References 9 External linksCrew editPosition Astronaut 1 Commander Vance D BrandFourth and last spaceflightPilot Guy S GardnerSecond and last spaceflightMission Specialist 1 Jeffrey A HoffmanSecond spaceflightMission Specialist 2 John M LoungeThird and last spaceflightMission Specialist 3 Robert A ParkerSecond and last spaceflightPayload Specialist 1 Samuel T DurranceFirst spaceflightPayload Specialist 2 Ronald A PariseFirst spaceflightBackup crew edit Position AstronautPayload Specialist 1 Kenneth H NordsieckFirst spaceflightPayload Specialist 2 John David F BartoeSecond spaceflightCrew seating arrangements edit Seat 2 Launch Landing nbsp Seats 1 4 are on the Flight Deck Seats 5 7 are on the Middeck S1 Brand BrandS2 Gardner GardnerS3 Hoffman ParkerS4 Lounge LoungeS5 Parker HoffmanS6 Durrance DurranceS7 Parise PariseCrew notes edit Prior to the Challenger disaster this mission was slated to launch in March 1986 as STS 61 E Jon A McBride was originally assigned to command this mission which would have been his second spaceflight He chose to retire from NASA in May 1989 and was replaced as mission commander by Vance D Brand In addition Richard N Richards as pilot and David C Leestma as mission specialist were replaced by Guy S Gardner and John M Lounge respectively Fifty nine year old Brand was the oldest astronaut to fly into space until F Story Musgrave 61 on STS 80 in 1996 and U S Senator John H Glenn Jr 77 when he flew on STS 95 in 1998 Preparations and launch edit nbsp Columbia on Pad 39A with Discovery on Pad 39B in the distance nbsp Columbia finally heads aloft on December 2 1990 The much delayed ASTRO 1 had originally been manifested to fly on what would have been the next shuttle mission after Challenger s ill fated STS 51 L as STS 61 E in March 1986 The mission was remanifested as STS 35 during the long stand down after the accident with the addition of the Broad Band X ray Telescope BBXRT 01 and the original ASTRO 1 payload was brought out of storage and recertified for flight 3 Columbia rolled out to Pad 39A in late April 1990 for a scheduled launch date of May 16 1990 Following the Flight Readiness Review FRR announcement of a firm launch date was delayed to change a faulty freon coolant loop proportional valve in the orbiter s coolant system At the subsequent Delta FRR the date was set for May 30 1990 Launch on May 30 was scrubbed during tanking due to a minor hydrogen leak in the tail service mast on the mobile launcher platform and a major leak in the external tank orbiter quick disconnect assembly Hydrogen was also detected in the orbiter s aft compartment and believed to be associated with a leak involving the 43 cm 17 in umbilical assembly Leakage at the 43 cm 17 in umbilical was confirmed by a mini tanking test on June 6 1990 The leakage could not be repaired at the pad and the vehicle was rolled back to the Vehicle Assembly Building VAB June 12 1990 demated and transferred to the Orbiter Processing Facility OPF The orbiter side 43 cm 17 in umbilical assembly was replaced with one borrowed from Endeavour then still under construction The external tank ET was then fitted with new umbilical hardware The ASTRO 1 payload was reserviced regularly and remained in Columbia s cargo bay during orbiter repairs and reprocessing Columbia was rolled out to Pad A for the second time on August 9 1990 to support a September 1 1990 launch date Two days before launch the avionics box on the BBXRT 01 portion of the ASTRO 1 payload malfunctioned and had to be changed and retested Launch was rescheduled for September 6 1990 During tanking high concentrations of hydrogen were again detected in the orbiter s aft compartment forcing another postponement NASA managers concluded that Columbia had experienced separate hydrogen leaks from the beginning one of the umbilical assembly now replaced and one or more which had resurfaced in the aft compartment Suspicion focused on the package of three hydrogen recirculation pumps in the aft compartment These were replaced and retested A damaged Teflon cover seal in the main engine number three hydrogen prevalve was replaced Launch was rescheduled for September 18 1990 The fuel leak in the aft compartment resurfaced during tanking and the launch was scrubbed again The STS 35 mission was put on hold until problem resolved by a special tiger team assigned by the Space Shuttle director Columbia was transferred to Pad B on October 8 1990 to make room for Atlantis on Mission STS 38 Tropical storm Klaus forced another rollback to the VAB on October 9 1990 The vehicle was transferred to Pad B again on October 14 1990 Another mini tanking test was conducted on October 30 1990 using special sensors and video cameras and employing a see through Plexiglas aft compartment door No excessive hydrogen leakage was detected With the problem resolved the flight had only to wait for the completion of STS 38 imparting another four week delay A scheduled launch date of November 30 1990 was moved by several days due to concerns that observations of astronomical targets would be adversely affected Liftoff on December 2 1990 was delayed by 21 minutes to allow the U S Air Force time to observe low level clouds that might impede the tracking of the Shuttle s ascent Liftoff finally occurred on December 2 1990 1 49 01 a m EST the ninth night launch in shuttle history and the second for Columbia A nominal ascent to orbit followed This was one of the most delayed launches of the Space Shuttle program Mission highlights edit nbsp MS Robert A Parker manually points ASTRO 1 s instruments using a toggle on the aft flight deck nbsp Passing over Lake Eyre Australia The primary payload of mission STS 35 was ASTRO 1 the fifth flight of the Spacelab system and the second with the Igloo and two pallets train configuration The primary objectives were round the clock observations of the celestial sphere in ultraviolet and X ray spectral wavelengths with the ASTRO 1 observatory consisting of four telescopes Hopkins Ultraviolet Telescope HUT Wisconsin Ultraviolet Photo Polarimeter Experiment WUPPE Ultraviolet Imaging Telescope UIT mounted on the Instrument Pointing System IPS The Instrument Pointing System consisted of a three axis gimbal system mounted on a gimbal support structure connected to a Spacelab pallet at one end and the aft end of the payload at the other a payload clamping system for support of the mounted experiment during launch and landing and a control system based on the inertial reference of a three axis gyro package and operated by a gimbal mounted microcomputer 4 The Broad Band X Ray Telescope BBXRT and its Two Axis Pointing System TAPS rounded out the instrument complement in the aft payload bay The crew split into shifts after reaching orbit with Gardner Parker and Parise comprising the Red Team the Blue Team consisted of Hoffman Durrance and Lounge Commander Brand was unassigned to either team and helped coordinate mission activities The telescopes were powered up and raised from their stowed position by the Red Team 11 hours into the flight Observations began under the Blue Team 16 hours into the mission after the instruments were checked out 5 In a typical ASTRO 1 ultraviolet observation the flight crew member on duty maneuvered the Shuttle to point the cargo bay in the general direction of the astronomical object to be observed The mission specialist commanded the pointing system to aim the telescopes toward the target They also locked on to guide stars to help the pointing system remain stable despite orbiter thruster firings The payload specialist set up each instrument for the upcoming observation identified the celestial target on the guide television and provided the necessary pointing corrections for placing the object precisely in the telescope s field of view He then started the instrument observation sequences and monitored the data being recorded Because the many observations created a heavy workload the payload and mission specialists worked together to perform these complicated operations and evaluate the quality of observations Each observation took between 10 minutes to a little over an hour 6 Issues with the pointing precision of the IPS and the sequential overheating failures of both data display units used for pointing telescopes and operating experiments during the mission impacted crew aiming procedures and forced ground teams at Marshall Space Flight Center MSFC to aim the telescopes with fine tuning by the flight crew BBXRT 01 was directed from the outset by ground based operators at Goddard Space Flight Center GSFC and was not affected The X ray telescope required little attention from the crew A crew member would turn on the BBXRT and the TAPS at the beginning of operations and then turn them off when the operations concluded After the telescope was activated researchers at Goddard could talk to the telescope via computer Before science operations began stored commands were loaded into the BBXRT computer system Then when the astronauts positioned the Shuttle in the general direction of the source the TAPS automatically pointed the BBXRT at the object Since the Shuttle could be oriented in only one direction at a time X ray observations had to be coordinated carefully with ultraviolet observations Despite the pointing problems the full suite of telescopes obtained 231 observations of 130 celestial objects over a combined span of 143 hours Science teams at Marshall and Goddard estimated that 70 of the mission objectives were completed 7 ASTRO 1 was the first shuttle mission controlled in part from the Spacelab Mission Operations Control facility at MSFC in Huntsville Alabama During the flight the crew experienced trouble dumping waste water due to a blocked waste water line but managed to compensate using spare containers Problems also affected one RCC thruster and an onboard text and graphics teleprinter used for receiving flight plan updates Additional payloads and experiments edit nbsp Sam Durrance and Jeffrey Hoffman during the first classroom lesson broadcast from space Also the first necktie worn in space Conducting short wave radio transmissions between ground based amateur radio operators and a Shuttle based amateur radio operator was the basis for the Shuttle Amateur Radio Experiment SAREX II SAREX communicated with amateur stations in line of sight of the orbiter in one of four transmission modes voice Slow scan television SSTV data or uplink only Fast scan television FSTV The voice mode was operated in the attended mode while SSTV data or FSTV could be operated in either attended or unattended modes During the mission SAREX was operated by Payload Specialist Ron Parise a licensed operator WA4SIR during periods when he was not scheduled for orbiter or other payload activities 8 A ground based experiment to calibrate electro optical sensors at Air Force Maui Optical Site AMOS in Hawaii was also conducted during the mission The Space Classroom Program Assignment The Stars project was carried out to spark student interest in science mathematics and technology Mission Specialist Hoffman conducted the first classroom lesson taught from space on December 7 1990 in support of this objective covering material on the electromagnetic spectrum and the ASTRO 1 observatory A supporting lesson was taught from the ASTRO 1 control center in Huntsville Landing edit nbsp Columbia touches down The mission was cut short by one day due to impending bad weather at the primary landing site Edwards Air Force Base California The Orbital Maneuvering System OMS engines were fired at 8 48 p m PST over the Indian Ocean to deorbit the spacecraft which landed on Runway 22 at Edwards Air Force Base California at 9 54 p m PST on December 10 1990 after a mission duration of 8 days 23 hours 5 minutes and 8 seconds This was the fourth night landing of the shuttle program Rollout distance 3 184 km 1 978 mi Rollout time 58 seconds Columbia returned to KSC on December 20 1990 on the Shuttle Carrier Aircraft SCA Landing weight 102 208 kg 225 330 lb Image gallery edit nbsp ASTRO 1 undergoes processing post Challenger nbsp ASTRO 1 aboard Columbia in the Orbiter Processing Facility nbsp Namibia from orbit nbsp Traditional inflight portrait nbsp Payload Specialists Durrance and Parise work out nbsp Another view of the observatory nbsp The payload in its stowed configuration nbsp Columbia heads back to KSCSee also edit nbsp Spaceflight portal nbsp Wikimedia Commons has media related to STS 35 List of human spaceflights List of Space Shuttle missions Outline of space science Space ShuttleReferences edit Columbia Makes Successful Night Launch Statesman Journal Salem Oregon Gannett News Service December 2 1990 p 3 via Newspapers com STS 35 Spacefacts Retrieved February 26 2014 STS 35 Press Kit p 40 PAO 1990 nbsp This article incorporates text from this source which is in the public domain STS 35 Press Kit p 31 PAO 1990 nbsp This article incorporates text from this source which is in the public domain Space Shuttle Columbia Her Missions and Crews p 129 Ben Evans 2005 STS 35 Press Kit p 35 PAO 1990 nbsp This article incorporates text from this source which is in the public domain Space Shuttle Columbia Her Missions and Crews p 133 Ben Evans 2005 STS 35 Press Kit p 41 PAO 1990 nbsp This article incorporates text from this source which is in the public domain External links editNASA mission summary Archived August 14 2011 at the Wayback Machine STS 35 Video Highlights Archived December 25 2014 at the Wayback Machine Jack A Jones Collection The University of Alabama in Huntsville Archives and Special Collections Files of Jack A Jones mission manager for Astro 1 Retrieved from https en wikipedia org w index php title STS 35 amp oldid 1200794312, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.