fbpx
Wikipedia

Unbiquadium

Unbiquadium, also known as element 124 or eka-uranium, is a hypothetical chemical element; it has placeholder symbol Ubq and atomic number 124. Unbiquadium and Ubq are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbiquadium is expected to be a g-block superactinide and the sixth element in the 8th period. Unbiquadium has attracted attention, as it may lie within the island of stability, leading to longer half-lives, especially for 308Ubq which is predicted to have a magic number of neutrons (184).

Unbiquadium, 124Ubq
Theoretical element
Unbiquadium
Pronunciation/ˌnbˈkwɒdiəm/ (OON-by-KWOD-ee-əm)
Alternative nameselement 124, eka-uranium
Unbiquadium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Ubq

unbitriumunbiquadiumunbipentium
Atomic number (Z)124
Groupg-block groups (no number)
Periodperiod 8 (theoretical, extended table)
Block  g-block
Electron configurationpredictions vary, see text
Physical properties
Phase at STPunknown
Atomic properties
Oxidation states(+6) (predicted)[1]
Other properties
CAS Number54500-72-0
History
NamingIUPAC systematic element name
| references

Despite several searches, unbiquadium has not been synthesized, nor have any naturally occurring isotopes been found to exist. It is believed that the synthesis of unbiquadium will be far more challenging than that of lighter undiscovered elements, and nuclear instability may pose further difficulties in identifying unbiquadium, unless the island of stability has a stronger stabilizing effect than predicted in this region.

As a member of the superactinide series, unbiquadium is expected to bear some resemblance to its possible lighter congener uranium. The valence electrons of unbiquadium are expected to participate in chemical reactions fairly easily, though relativistic effects may significantly influence some of its properties; for example, the electron configuration has been calculated to differ considerably from the one predicted by the Aufbau principle.

Introduction edit

Synthesis of superheavy nuclei edit

 
A graphic depiction of a nuclear fusion reaction. Two nuclei fuse into one, emitting a neutron. Reactions that created new elements to this moment were similar, with the only possible difference that several singular neutrons sometimes were released, or none at all.

A superheavy[a] atomic nucleus is created in a nuclear reaction that combines two other nuclei of unequal size[b] into one; roughly, the more unequal the two nuclei in terms of mass, the greater the possibility that the two react.[7] The material made of the heavier nuclei is made into a target, which is then bombarded by the beam of lighter nuclei. Two nuclei can only fuse into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to electrostatic repulsion. The strong interaction can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus.[8] The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the speed of light. However, if too much energy is applied, the beam nucleus can fall apart.[8]

Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for approximately 10−20 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus.[8][9] This happens because during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed.[8] Each pair of a target and a beam is characterized by its cross section—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur.[c] This fusion may occur as a result of the quantum effect in which nuclei can tunnel through electrostatic repulsion. If the two nuclei can stay close for past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium.[8]

External videos
  Visualization of unsuccessful nuclear fusion, based on calculations from the Australian National University[11]

The resulting merger is an excited state[12]—termed a compound nucleus—and thus it is very unstable.[8] To reach a more stable state, the temporary merger may fission without formation of a more stable nucleus.[13] Alternatively, the compound nucleus may eject a few neutrons, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a gamma ray. This happens in approximately 10−16 seconds after the initial nuclear collision and results in creation of a more stable nucleus.[13] The definition by the IUPAC/IUPAP Joint Working Party (JWP) states that a chemical element can only be recognized as discovered if a nucleus of it has not decayed within 10−14 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire its outer electrons and thus display its chemical properties.[14][d]

Decay and detection edit

The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam.[16] In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products)[e] and transferred to a surface-barrier detector, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival.[16] The transfer takes about 10−6 seconds; in order to be detected, the nucleus must survive this long.[19] The nucleus is recorded again once its decay is registered, and the location, the energy, and the time of the decay are measured.[16]

Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, its influence on the outermost nucleons (protons and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, and its range is not limited.[20] Total binding energy provided by the strong interaction increases linearly with the number of nucleons, whereas electrostatic repulsion increases with the square of the atomic number, i.e. the latter grows faster and becomes increasingly important for heavy and superheavy nuclei.[21][22] Superheavy nuclei are thus theoretically predicted[23] and have so far been observed[24] to predominantly decay via decay modes that are caused by such repulsion: alpha decay and spontaneous fission.[f] Almost all alpha emitters have over 210 nucleons,[26] and the lightest nuclide primarily undergoing spontaneous fission has 238.[27] In both decay modes, nuclei are inhibited from decaying by corresponding energy barriers for each mode, but they can be tunnelled through.[21][22]

 
Scheme of an apparatus for creation of superheavy elements, based on the Dubna Gas-Filled Recoil Separator set up in the Flerov Laboratory of Nuclear Reactions in JINR. The trajectory within the detector and the beam focusing apparatus changes because of a dipole magnet in the former and quadrupole magnets in the latter.[28]

Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus.[29] Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart and produces various nuclei in different instances of identical nuclei fissioning.[22] As the atomic number increases, spontaneous fission rapidly becomes more important: spontaneous fission partial half-lives decrease by 23 orders of magnitude from uranium (element 92) to nobelium (element 102),[30] and by 30 orders of magnitude from thorium (element 90) to fermium (element 100).[31] The earlier liquid drop model thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the fission barrier for nuclei with about 280 nucleons.[22][32] The later nuclear shell model suggested that nuclei with about 300 nucleons would form an island of stability in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives.[22][32] Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived actinides and the predicted island are deformed, and gain additional stability from shell effects.[33] Experiments on lighter superheavy nuclei,[34] as well as those closer to the expected island,[30] have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei.[g]

Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be easily determined.[h] (That all decays within a decay chain were indeed related to each other is established by the location of these decays, which must be in the same place.)[16] The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy (or more specifically, the kinetic energy of the emitted particle).[i] Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.[j]

The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.[k]

History edit

Synthesis attempts edit

Because complete nuclear shells (or, equivalently, a magic number of protons or neutrons) may confer additional stability on the nuclei of superheavy elements, moving closer to the center of the island of stability, it was thought that the synthesis of element 124 or nearby elements would populate longer-lived nuclei within the island. Scientists at GANIL (Grand Accélérateur National d'Ions Lourds) attempted to measure the direct and delayed fission of compound nuclei of elements with Z = 114, 120, and 124 in order to probe shell effects in this region and to pinpoint the next spherical proton shell. In 2006, with full results published in 2008, the team provided results from a reaction involving the bombardment of a natural germanium target with uranium ions:[45]

238
92
U
+ nat
32
Ge
308,310,311,312,314
Ubq
* → fission

The team reported that they had been able to identify compound nuclei fissioning with half-lives > 10−18 s. This result suggests a strong stabilizing effect at Z = 124 and points to the next proton shell at Z > 120, not at Z = 114 as previously thought. A compound nucleus is a loose combination of nucleons that have not arranged themselves into nuclear shells yet. It has no internal structure and is held together only by the collision forces between the target and projectile nuclei. It is estimated that it requires around 10−14 s for the nucleons to arrange themselves into nuclear shells, at which point the compound nucleus becomes a nuclide, and this number is used by IUPAC as the minimum half-life a claimed isotope must have to potentially be recognised as being discovered. Thus, the GANIL experiments do not count as a discovery of element 124.[45]

The fission of the compound nucleus 312124 was also studied in 2006 at the tandem ALPI heavy-ion accelerator at the Laboratori Nazionali di Legnaro (Legnaro National Laboratories) in Italy:[46]

232
90
Th
+ 80
34
Se
312
Ubq
* → fission

Similarly to previous experiments conducted at the JINR (Joint Institute for Nuclear Research), fission fragments clustered around doubly magic nuclei such as 132Sn (Z = 50, N = 82), revealing a tendency for superheavy nuclei to expel such doubly magic nuclei in fission.[47] The average number of neutrons per fission from the 312124 compound nucleus (relative to lighter systems) was also found to increase, confirming that the trend of heavier nuclei emitting more neutrons during fission continues into the superheavy mass region.[46]

Possible natural occurrence edit

A study in 1976 by a group of American researchers from several universities proposed that primordial superheavy elements, mainly livermorium, unbiquadium, unbihexium, and unbiseptium, could be a cause of unexplained radiation damage (particularly radiohalos) in minerals.[48] Unbiquadium was then suggested to exist in nature with its possible congener uranium in detectable quantities, at a relative abundance of 10−11.[49] Such unbiquadium nuclei were thought to undergo alpha decay with very long half-lives down to flerovium, which would then exist in natural lead at a similar concentration (10−11) and undergo spontaneous fission.[49][50] This prompted many researchers to search for them in nature from 1976 to 1983. A group led by Tom Cahill, a professor at the University of California at Davis, claimed in 1976 that they had detected alpha particles and X-rays with the right energies to cause the damage observed, supporting the presence of these elements. Others claimed that none had been detected, and questioned the proposed characteristics of primordial superheavy nuclei.[51] In particular, they cited that the magic number N = 228 necessary for enhanced stability would create a neutron-excessive nucleus in unbiquadium that would not be beta-stable. This activity was also proposed to be caused by nuclear transmutations in natural cerium, raising further ambiguity upon this claimed observation of superheavy elements.[52]

The possible extent of primordial superheavy elements on Earth today is uncertain. Even if they are confirmed to have caused the radiation damage long ago, they might now have decayed to mere traces, or even be completely gone.[53] It is also uncertain if such superheavy nuclei may be produced naturally at all, as spontaneous fission is expected to terminate the r-process responsible for heavy element formation between mass number 270 and 290, well before elements such as unbiquadium may be formed.[54]

Naming edit

Using the 1979 IUPAC recommendations, the element should be temporarily called unbiquadium (symbol Ubq) until it is discovered, the discovery is confirmed, and a permanent name chosen.[55] Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations are mostly ignored among scientists who work theoretically or experimentally on superheavy elements, who call it "element 124", with the symbol E124, (124), or 124.[56] Some researchers have also referred to unbiquadium as eka-uranium,[50] a name derived from the system Dmitri Mendeleev used to predict unknown elements, though such an extrapolation might not work for g-block elements with no known congeners and eka-uranium would instead refer to element 144[57] or 146[58] when the term is meant to denote the element directly below uranium.

Prospects for future synthesis edit

Every element from mendelevium onward was produced in fusion-evaporation reactions, culminating in the discovery of the heaviest known element oganesson in 2002[59][60] and more recently tennessine in 2010.[61] These reactions approached the limit of current technology; for example, the synthesis of tennessine required 22 milligrams of 249Bk and an intense 48Ca beam for six months. The intensity of beams in superheavy element research cannot exceed 1012 projectiles per second without damaging the target and detector, and producing larger quantities of increasingly rare and unstable actinide targets is impractical.[62] Consequently, future experiments must be done at facilities such as the superheavy element factory (SHE-factory) at the Joint Institute for Nuclear Research (JINR) or RIKEN, which will allow experiments to run for longer stretches of time with increased detection capabilities and enable otherwise inaccessible reactions.[63] Even so, it is expected to be a great challenge to continue past elements 120 or 121 given short predicted half-lives and low predicted cross sections.[64]

The production of new superheavy elements will require projectiles heavier than 48Ca, which was successfully used in the discovery of elements 114–118, though this necessitates more symmetric reactions which are less favorable.[65] Hence, it is likely that the reactions between 58Fe and a 249Cf[64] or 251Cf target are most promising.[66] Studies on the fission of various superheavy compound nuclei have found that the dynamics of 48Ca- and 58Fe-induced reactions are similar, suggesting that 58Fe projectiles may be viable in producing superheavy nuclei up to Z = 124 or possibly 125.[62][67] It is also possible that a reaction with 251Cf will produce the compound nucleus 309Ubq* with 185 neutrons, immediately above the N = 184 shell closure. For this reason, the compound nucleus is predicted to have relatively high survival probability and low neutron separation energy, leading to the 1n–3n channels and isotopes 306–308Ubq with a relatively high cross section.[66] These dynamics are highly speculative, as the cross section may be far lower should trends in the production of elements 112–118 continue or the fission barriers be lower than expected, regardless of shell effects, leading to decreased stability against spontaneous fission (which is of growing importance).[64] Nonetheless, the prospect of reaching the N = 184 shell on the proton-rich side of the chart of nuclides by increasing proton number has long been considered; already in 1970, Soviet nuclear physicist Georgy Flyorov suggested bombarding a plutonium target with zinc projectiles to produce isotopes of element 124 at the N = 184 shell.[68]

Predicted properties edit

Nuclear stability and isotopes edit

 
This nuclear chart used by the Japan Atomic Energy Agency predicts the decay modes of nuclei up to Z = 149 and N = 256. For unbiquadium (Z = 124), there are predicted regions of increased stability around N = 184 and N = 228, though many intermediate isotopes are theoretically susceptible to spontaneous fission with half-lives shorter than 1 nanosecond.[69]

Unbiquadium is of interest to researchers because of its possible location near the center of an island of stability, a theoretical region comprising longer-lived superheavy nuclei. Such an island of stability was first proposed by University of California professor Glenn Seaborg,[70] specifically predicting a region of stability centered at element 126 (unbihexium) and encompassing nearby elements, including unbiquadium, with half-lives possibly as long as 109 years.[49] In known elements, the stability of nuclei decreases greatly with the increase in atomic number after uranium, the heaviest primordial element, so that all observed isotopes with an atomic number above 101 decay radioactively with a half-life under a day. Nevertheless, there is a slight increase in nuclear stability in nuclides around atomic numbers 110114, which suggests the presence of an island of stability. This is attributed to the possible closure of nuclear shells in the superheavy mass region, with stabilizing effects that may lead to half-lives on the order of years or longer for some as-yet undiscovered isotopes of these elements.[49][65] While still unproven, the existence of superheavy elements as heavy as oganesson provides evidence of such stabilizing effects, as elements with an atomic number greater than approximately 104 are extremely unstable in models neglecting magic numbers.[71]

In this region of the periodic table, N = 184 and N = 228 have been proposed as closed neutron shells,[72] and various atomic numbers have been proposed as closed proton shells, including Z = 124.[l] The island of stability is characterized by longer half-lives of nuclei located near these magic numbers, though the extent of stabilizing effects is uncertain due to predictions of weakening of the proton shell closures and possible loss of double magicity.[72] More recent research predicts the island of stability to instead be centered at beta-stable copernicium isotopes 291Cn and 293Cn,[65][73] which would place unbiquadium well above the island and result in short half-lives regardless of shell effects. A 2016 study on the decay properties of unbiquadium isotopes 284–339Ubq predicts that 284–304Ubq lie outside the proton drip line and thus may be proton emitters, 305–323Ubq may undergo alpha decay, with some chains terminating as far as flerovium, and heavier isotopes will decay by spontaneous fission.[74] These results, as well as those from a quantum-tunneling model, predict no half-lives over a millisecond for isotopes lighter than 319Ubq,[75] as well as especially short half-lives for 309–314Ubq in the sub-microsecond range[74] due to destabilizing effects immediately above the shell at N = 184. This renders the identification of many unbiquadium isotopes nearly impossible with current technology, as detectors cannot distinguish rapid successive signals from alpha decays in a time period shorter than microseconds.[64][m]

Increasingly short spontaneous fission half-lives of superheavy nuclei and the possible domination of fission over alpha decay will also probably determine the stability of unbiquadium isotopes.[64][73] While some fission half-lives constituting a "sea of instability" may be on the order of 10−18 s as a consequence of very low fission barriers, especially in even–even nuclei due to pairing effects, stabilizing effects at N = 184 and N = 228 may allow the existence of relatively long-lived isotopes.[69] For N = 184, fission half-lives may increase, though alpha half-lives are still expected to be on the order of microseconds or less, despite the shell closure at 308Ubq. It is also possible that the island of stability may shift to the N = 198 region, where total half-lives may be on the order of seconds,[73] in contrast to neighboring isotopes that would undergo fission in less than a microsecond. In the neutron-rich region around N = 228, alpha half-lives are also predicted to increase with increasing neutron number, meaning that the stability of such nuclei would primarily depend on the location of the beta-stability line and resistance to fission. One early calculation by P. Moller, a physicist at Los Alamos National Laboratory, estimates the total half-life of 352Ubq (with N = 228) to be around 67 seconds, and possibly the longest in the N = 228 region.[49][76]

Chemical edit

Unbiquadium is the fourth member of the superactinide series and should be similar to uranium: both elements have six valence electrons over a noble gas core. In the superactinide series, the Aufbau principle is expected to break down due to relativistic effects, and an overlap of the 5g, 6f, 7d, and 8p orbitals is expected. The ground state electron configuration of unbiquadium is thus predicted to be [Og] 6f3 8s2 8p1[77] or 6f2 8s2 8p2,[78] in contrast to [Og] 5g4 8s2 derived from Aufbau. This predicted overlap of orbitals and uncertainty in order of filling, especially for f and g orbitals, renders predictions of chemical and atomic properties of these elements very difficult.[79]

One predicted oxidation state of unbiquadium is +6, which would exist in the halides UbqX6 (X = a halogen), analogous to the known +6 oxidation state in uranium.[1] Like the other early superactinides, the binding energies of unbiquadium's valence electrons are predicted to be small enough that all six should easily participate in chemical reactions.[57] The predicted electron configuration of the Ubq5+ ion is [Og] 6f1.[1]

Notes edit

  1. ^ In nuclear physics, an element is called heavy if its atomic number is high; lead (element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 103 (although there are other definitions, such as atomic number greater than 100[2] or 112;[3] sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical superactinide series).[4] Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
  2. ^ In 2009, a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric 136Xe + 136Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as 2.5 pb.[5] In comparison, the reaction that resulted in hassium discovery, 208Pb + 58Fe, had a cross section of ~20 pb (more specifically, 19+19
    -11
     pb), as estimated by the discoverers.[6]
  3. ^ The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section. For example, in the 28
    14
    Si
    + 1
    0
    n
    28
    13
    Al
    + 1
    1
    p
    reaction, cross section changes smoothly from 370 mb at 12.3 MeV to 160 mb at 18.3 MeV, with a broad peak at 13.5 MeV with the maximum value of 380 mb.[10]
  4. ^ This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.[15]
  5. ^ This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle.[17] Such separation can also be aided by a time-of-flight measurement and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.[18]
  6. ^ Not all decay modes are caused by electrostatic repulsion. For example, beta decay is caused by the weak interaction.[25]
  7. ^ It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus. However, it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to form one.[30]
  8. ^ Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for superheavy nuclei.[35] The first direct measurement of mass of a superheavy nucleus was reported in 2018 at LBNL.[36] Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).[37]
  9. ^ If the decay occurred in a vacuum, then since total momentum of an isolated system before and after the decay must be preserved, the daughter nucleus would also receive a small velocity. The ratio of the two velocities, and accordingly the ratio of the kinetic energies, would thus be inverse to the ratio of the two masses. The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus (an exact fraction of the former).[26] The calculations hold for an experiment as well, but the difference is that the nucleus does not move after the decay because it is tied to the detector.
  10. ^ Spontaneous fission was discovered by Soviet physicist Georgy Flerov,[38] a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility.[39] In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles.[15] They thus preferred to link new isotopes to the already known ones by successive alpha decays.[38]
  11. ^ For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in Stockholm, Stockholm County, Sweden.[40] There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, nobelium. It was later shown that the identification was incorrect.[41] The following year, RL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later.[41] JINR insisted that they were the first to create the element and suggested a name of their own for the new element, joliotium;[42] the Soviet name was also not accepted (JINR later referred to the naming of the element 102 as "hasty").[43] This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992.[43] The name "nobelium" remained unchanged on account of its widespread usage.[44]
  12. ^ Atomic numbers 114, 120, 122, and 126 have also been proposed as closed proton shells in different models.
  13. ^ While such nuclei may be synthesized and a series of decay signals may be registered, decays faster than one microsecond may pile up with subsequent signals and thus be indistinguishable, especially when multiple uncharacterized nuclei may be formed and emit a series of similar alpha particles. The main difficulty is thus attributing the decays to the correct parent nucleus, as a superheavy atom that decays before reaching the detector will not be registered at all.

References edit

  1. ^ a b c Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.
  2. ^ Krämer, K. (2016). "Explainer: superheavy elements". Chemistry World. Retrieved 2020-03-15.
  3. ^ . Lawrence Livermore National Laboratory. Archived from the original on 2015-09-11. Retrieved 2020-03-15.
  4. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons. pp. 1–16. doi:10.1002/9781119951438.eibc2632. ISBN 978-1-119-95143-8. S2CID 127060181.
  5. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe". Physical Review C. 79 (2): 024608. doi:10.1103/PhysRevC.79.024608. ISSN 0556-2813.
  6. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (1984). (PDF). Zeitschrift für Physik A. 317 (2): 235–236. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. S2CID 123288075. Archived from the original (PDF) on 7 June 2015. Retrieved 20 October 2012.
  7. ^ Subramanian, S. (28 August 2019). "Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist". Bloomberg Businessweek. Retrieved 2020-01-18.
  8. ^ a b c d e f Ivanov, D. (2019). "Сверхтяжелые шаги в неизвестное" [Superheavy steps into the unknown]. nplus1.ru (in Russian). Retrieved 2020-02-02.
  9. ^ Hinde, D. (2017). "Something new and superheavy at the periodic table". The Conversation. Retrieved 2020-01-30.
  10. ^ Kern, B. D.; Thompson, W. E.; Ferguson, J. M. (1959). "Cross sections for some (n, p) and (n, α) reactions". Nuclear Physics. 10: 226–234. Bibcode:1959NucPh..10..226K. doi:10.1016/0029-5582(59)90211-1.
  11. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.). "Comparing Experimental and Theoretical Quasifission Mass Angle Distributions". European Physical Journal Web of Conferences. 86: 00061. Bibcode:2015EPJWC..8600061W. doi:10.1051/epjconf/20158600061. hdl:1885/148847. ISSN 2100-014X.
  12. ^ "Nuclear Reactions" (PDF). pp. 7–8. Retrieved 2020-01-27. Published as Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. (2005). "Nuclear Reactions". Modern Nuclear Chemistry. John Wiley & Sons, Inc. pp. 249–297. doi:10.1002/0471768626.ch10. ISBN 978-0-471-76862-3.
  13. ^ a b Krása, A. (2010). "Neutron Sources for ADS". Faculty of Nuclear Sciences and Physical Engineering. Czech Technical University in Prague: 4–8. S2CID 28796927.
  14. ^ Wapstra, A. H. (1991). "Criteria that must be satisfied for the discovery of a new chemical element to be recognized" (PDF). Pure and Applied Chemistry. 63 (6): 883. doi:10.1351/pac199163060879. ISSN 1365-3075. S2CID 95737691.
  15. ^ a b Hyde, E. K.; Hoffman, D. C.; Keller, O. L. (1987). "A History and Analysis of the Discovery of Elements 104 and 105". Radiochimica Acta. 42 (2): 67–68. doi:10.1524/ract.1987.42.2.57. ISSN 2193-3405. S2CID 99193729.
  16. ^ a b c d Chemistry World (2016). "How to Make Superheavy Elements and Finish the Periodic Table [Video]". Scientific American. Retrieved 2020-01-27.
  17. ^ Hoffman, Ghiorso & Seaborg 2000, p. 334.
  18. ^ Hoffman, Ghiorso & Seaborg 2000, p. 335.
  19. ^ Zagrebaev, Karpov & Greiner 2013, p. 3.
  20. ^ Beiser 2003, p. 432.
  21. ^ a b Pauli, N. (2019). "Alpha decay" (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. Retrieved 2020-02-16.
  22. ^ a b c d e Pauli, N. (2019). "Nuclear fission" (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. Retrieved 2020-02-16.
  23. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). "Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory". Physical Review C. 87 (2): 024320–1. arXiv:1208.1215. Bibcode:2013PhRvC..87b4320S. doi:10.1103/physrevc.87.024320. ISSN 0556-2813.
  24. ^ Audi et al. 2017, pp. 030001-129–030001-138.
  25. ^ Beiser 2003, p. 439.
  26. ^ a b Beiser 2003, p. 433.
  27. ^ Audi et al. 2017, p. 030001-125.
  28. ^ Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. (2017). "On the volatility of nihonium (Nh, Z = 113)". The European Physical Journal A. 53 (7): 158. Bibcode:2017EPJA...53..158A. doi:10.1140/epja/i2017-12348-8. ISSN 1434-6001. S2CID 125849923.
  29. ^ Beiser 2003, p. 432–433.
  30. ^ a b c Oganessian, Yu. (2012). "Nuclei in the "Island of Stability" of Superheavy Elements". Journal of Physics: Conference Series. 337 (1): 012005-1–012005-6. Bibcode:2012JPhCS.337a2005O. doi:10.1088/1742-6596/337/1/012005. ISSN 1742-6596.
  31. ^ Moller, P.; Nix, J. R. (1994). Fission properties of the heaviest elements (PDF). Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. University of North Texas. Retrieved 2020-02-16.
  32. ^ a b Oganessian, Yu. Ts. (2004). "Superheavy elements". Physics World. 17 (7): 25–29. doi:10.1088/2058-7058/17/7/31. Retrieved 2020-02-16.
  33. ^ Schädel, M. (2015). "Chemistry of the superheavy elements". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2037): 20140191. Bibcode:2015RSPTA.37340191S. doi:10.1098/rsta.2014.0191. ISSN 1364-503X. PMID 25666065.
  34. ^ Hulet, E. K. (1989). Biomodal spontaneous fission. 50th Anniversary of Nuclear Fission, Leningrad, USSR. Bibcode:1989nufi.rept...16H.
  35. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). "A beachhead on the island of stability". Physics Today. 68 (8): 32–38. Bibcode:2015PhT....68h..32O. doi:10.1063/PT.3.2880. ISSN 0031-9228. OSTI 1337838. S2CID 119531411.
  36. ^ Grant, A. (2018). "Weighing the heaviest elements". Physics Today. doi:10.1063/PT.6.1.20181113a. S2CID 239775403.
  37. ^ Howes, L. (2019). "Exploring the superheavy elements at the end of the periodic table". Chemical & Engineering News. Retrieved 2020-01-27.
  38. ^ a b Robinson, A. E. (2019). "The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War". Distillations. Retrieved 2020-02-22.
  39. ^ "Популярная библиотека химических элементов. Сиборгий (экавольфрам)" [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru (in Russian). Retrieved 2020-01-07. Reprinted from "Экавольфрам" [Eka-tungsten]. Популярная библиотека химических элементов. Серебро – Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond] (in Russian). Nauka. 1977.
  40. ^ "Nobelium - Element information, properties and uses | Periodic Table". Royal Society of Chemistry. Retrieved 2020-03-01.
  41. ^ a b Kragh 2018, pp. 38–39.
  42. ^ Kragh 2018, p. 40.
  43. ^ a b Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993). "Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" (PDF). Pure and Applied Chemistry. 65 (8): 1815–1824. doi:10.1351/pac199365081815. S2CID 95069384. (PDF) from the original on 25 November 2013. Retrieved 7 September 2016.
  44. ^ Commission on Nomenclature of Inorganic Chemistry (1997). "Names and symbols of transfermium elements (IUPAC Recommendations 1997)" (PDF). Pure and Applied Chemistry. 69 (12): 2471–2474. doi:10.1351/pac199769122471.
  45. ^ a b Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. p. 588. ISBN 978-0-19-960563-7.
  46. ^ a b Thomas, R.G.; Saxena, A.; Sahu, P.K.; et al. (2007). "Fission and binary fragmentation reactions in 80Se+208Pb and 80Se+232Th systems". Physical Review C. 75: 024604–1–024604–9. doi:10.1103/PhysRevC.75.024604. hdl:2158/776924.
  47. ^ see Flerov lab annual reports 2000–2004 inclusive http://www1.jinr.ru/Reports/Reports_eng_arh.html
  48. ^ Hoffman, Ghiorso & Seaborg 2000, p. 413.
  49. ^ a b c d e Lodhi, M.A.K., ed. (March 1978). Superheavy Elements: Proceedings of the International Symposium on Superheavy Elements. Lubbock, Texas: Pergamon Press. ISBN 0-08-022946-8.
  50. ^ a b Maly, J.; Walz, D.R. (1980). "Search for superheavy elements among fossil fission tracks in zircon" (PDF).
  51. ^ Hoffman, Ghiorso & Seaborg 2000, p. 416–417.
  52. ^ Hoffman, Ghiorso & Seaborg 2000, p. 417.
  53. ^ Emsley, John (2011). Nature's Building Blocks: An A–Z Guide to the Elements (New ed.). New York: Oxford University Press. p. 592. ISBN 978-0-19-960563-7.
  54. ^ Petermann, I; Langanke, K.; Martínez-Pinedo, G.; et al. (2012). "Have superheavy elements been produced in nature?". European Physical Journal A. 48 (122): 122. arXiv:1207.3432. Bibcode:2012EPJA...48..122P. doi:10.1140/epja/i2012-12122-6. S2CID 119264543.
  55. ^ Chatt, J. (1979). "Recommendations for the naming of elements of atomic numbers greater than 100". Pure and Applied Chemistry. 51 (2): 381–384. doi:10.1351/pac197951020381.
  56. ^ Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1724. ISBN 1-4020-3555-1.
  57. ^ a b Fricke, B.; Greiner, W.; Waber, J. T. (1971). "The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements". Theoretica Chimica Acta. 21 (3): 235–260. doi:10.1007/BF01172015. S2CID 117157377.
  58. ^ Nefedov, V.I.; Trzhaskovskaya, M.B.; Yarzhemskii, V.G. (2006). "Electronic Configurations and the Periodic Table for Superheavy Elements" (PDF). Doklady Physical Chemistry. 408 (2): 149–151. doi:10.1134/S0012501606060029. ISSN 0012-5016. S2CID 95738861.
  59. ^ Oganessian, YT; et al. (2002). . Communication of the Joint Institute for Nuclear Research. Archived from the original on 22 July 2011.
  60. ^ (Press release). Livermore. 3 December 2006. Archived from the original on 17 October 2011. Retrieved 18 January 2008.
  61. ^ Oganessian, YT; Abdullin, F; Bailey, PD; et al. (April 2010). "Synthesis of a New Element with Atomic Number 117" (PDF). Physical Review Letters. 104 (142502): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  62. ^ a b Roberto, JB (2015). "Actinide Targets for Super-Heavy Element Research" (PDF). cyclotron.tamu.edu. Texas A & M University. Retrieved 30 October 2018.
  63. ^ Hagino, Kouichi; Hofmann, Sigurd; Miyatake, Hiroari; Nakahara, Hiromichi (July 2012). [Implementation of the 2011 Research Achievement Review (Interim Review)] (PDF). www.riken.jp (in Japanese). RIKEN. Archived from the original (PDF) on 2019-03-30. Retrieved 5 May 2017.
  64. ^ a b c d e Karpov, A; Zagrebaev, V; Greiner, W (2015). "Superheavy Nuclei: which regions of nuclear map are accessible in the nearest studies" (PDF). cyclotron.tamu.edu. Texas A & M University. Retrieved 30 October 2018.
  65. ^ a b c Zagrebaev, Karpov & Greiner 2013.
  66. ^ a b Rykaczewski, Krzysztof P. (July 2016). "Super Heavy Elements and Nuclei" (PDF). people.nscl.msu.edu. MSU. Retrieved 30 April 2017.
  67. ^ JINR (1998–2014). "JINR Publishing Department: Annual Reports (Archive)". jinr.ru. JINR. Retrieved 23 September 2016.
  68. ^ Flerov, G. N. (1970). "Synthesis and Search for Heavy Transuranium Elements" (PDF). jinr.ru. Retrieved 23 November 2018.
  69. ^ a b Koura, H. (2011). Decay modes and a limit of existence of nuclei in the superheavy mass region (PDF). 4th International Conference on the Chemistry and Physics of the Transactinide Elements. Retrieved 18 November 2018.
  70. ^ Considine, Glenn D.; Kulik, Peter H. (2002). Van Nostrand's scientific encyclopedia (9 ed.). Wiley-Interscience. ISBN 978-0-471-33230-5. OCLC 223349096.
  71. ^ Möller, P. (2016). "The limits of the nuclear chart set by fission and alpha decay" (PDF). EPJ Web of Conferences. 131: 03002:1–8. Bibcode:2016EPJWC.13103002M. doi:10.1051/epjconf/201613103002.
  72. ^ a b Koura, H.; Chiba, S. (2013). "Single-Particle Levels of Spherical Nuclei in the Superheavy and Extremely Superheavy Mass Region". Journal of the Physical Society of Japan. 82 (1). 014201. Bibcode:2013JPSJ...82a4201K. doi:10.7566/JPSJ.82.014201.
  73. ^ a b c Palenzuela, Y. M.; Ruiz, L. F.; Karpov, A.; Greiner, W. (2012). "Systematic Study of Decay Properties of Heaviest Elements" (PDF). Bulletin of the Russian Academy of Sciences: Physics. 76 (11): 1165–1171. Bibcode:2012BRASP..76.1165P. doi:10.3103/s1062873812110172. ISSN 1062-8738. S2CID 120690838.
  74. ^ a b Santhosh, K.P.; Priyanka, B.; Nithya, C. (2016). "Feasibility of observing the α decay chains from isotopes of SHN with Z = 128, Z = 126, Z = 124 and Z = 122". Nuclear Physics A. 955 (November 2016): 156–180. arXiv:1609.05498. Bibcode:2016NuPhA.955..156S. doi:10.1016/j.nuclphysa.2016.06.010. S2CID 119219218.
  75. ^ Chowdhury, R.P.; Samanta, C.; Basu, D.N. (2008). "Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130". Atomic Data and Nuclear Data Tables. 94 (6): 781–806. arXiv:0802.4161. Bibcode:2008ADNDT..94..781C. doi:10.1016/j.adt.2008.01.003. S2CID 96718440.
  76. ^ Bemis, C.E.; Nix, J.R. (1977). "Superheavy elements - the quest in perspective" (PDF). Comments on Nuclear and Particle Physics. 7 (3): 65–78. ISSN 0010-2709.
  77. ^ Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  78. ^ Umemoto, Koichiro; Saito, Susumu (1996). "Electronic Configurations of Superheavy Elements". Journal of the Physical Society of Japan. 65 (10): 3175–9. Bibcode:1996JPSJ...65.3175U. doi:10.1143/JPSJ.65.3175. Retrieved 31 January 2021.
  79. ^ Seaborg (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 2010-03-16.

Bibliography edit

unbiquadium, redirects, here, other, uses, disambiguation, also, known, element, uranium, hypothetical, chemical, element, placeholder, symbol, atomic, number, temporary, iupac, name, symbol, respectively, until, element, discovered, confirmed, permanent, name. Ubq redirects here For other uses see Ubq disambiguation Unbiquadium also known as element 124 or eka uranium is a hypothetical chemical element it has placeholder symbol Ubq and atomic number 124 Unbiquadium and Ubq are the temporary IUPAC name and symbol respectively until the element is discovered confirmed and a permanent name is decided upon In the periodic table unbiquadium is expected to be a g block superactinide and the sixth element in the 8th period Unbiquadium has attracted attention as it may lie within the island of stability leading to longer half lives especially for 308Ubq which is predicted to have a magic number of neutrons 184 Unbiquadium 124UbqTheoretical elementUnbiquadiumPronunciation ˌ uː n b aɪ ˈ k w ɒ d i e m wbr OON by KWOD ee em Alternative nameselement 124 eka uraniumUnbiquadium in the periodic tableHydrogen HeliumLithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine NeonSodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine ArgonPotassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine KryptonRubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine XenonCaesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury element Thallium Lead Bismuth Polonium Astatine RadonFrancium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine OganessonUnunennium Unbinilium Unquadtrium Unquadquadium Unquadpentium Unquadhexium Unquadseptium Unquadoctium Unquadennium Unpentnilium Unpentunium Unpentbium Unpenttrium Unpentquadium Unpentpentium Unpenthexium Unpentseptium Unpentoctium Unpentennium Unhexnilium Unhexunium Unhexbium Unhextrium Unhexquadium Unhexpentium Unhexhexium Unhexseptium Unhexoctium Unhexennium Unseptnilium Unseptunium UnseptbiumUnbiunium Unbibium Unbitrium Unbiquadium Unbipentium Unbihexium Unbiseptium Unbioctium Unbiennium Untrinilium Untriunium Untribium Untritrium Untriquadium Untripentium Untrihexium Untriseptium Untrioctium Untriennium Unquadnilium Unquadunium Unquadbium Ubq unbitrium unbiquadium unbipentiumAtomic number Z 124Groupg block groups no number Periodperiod 8 theoretical extended table Block g blockElectron configurationpredictions vary see textPhysical propertiesPhase at STPunknownAtomic propertiesOxidation states 6 predicted 1 Other propertiesCAS Number54500 72 0HistoryNamingIUPAC systematic element nameviewtalkedit referencesDespite several searches unbiquadium has not been synthesized nor have any naturally occurring isotopes been found to exist It is believed that the synthesis of unbiquadium will be far more challenging than that of lighter undiscovered elements and nuclear instability may pose further difficulties in identifying unbiquadium unless the island of stability has a stronger stabilizing effect than predicted in this region As a member of the superactinide series unbiquadium is expected to bear some resemblance to its possible lighter congener uranium The valence electrons of unbiquadium are expected to participate in chemical reactions fairly easily though relativistic effects may significantly influence some of its properties for example the electron configuration has been calculated to differ considerably from the one predicted by the Aufbau principle Contents 1 Introduction 1 1 Synthesis of superheavy nuclei 1 2 Decay and detection 2 History 2 1 Synthesis attempts 2 2 Possible natural occurrence 2 3 Naming 3 Prospects for future synthesis 4 Predicted properties 4 1 Nuclear stability and isotopes 4 2 Chemical 5 Notes 6 References 7 BibliographyIntroduction editThis section is an excerpt from Superheavy element Introduction edit Synthesis of superheavy nuclei edit nbsp A graphic depiction of a nuclear fusion reaction Two nuclei fuse into one emitting a neutron Reactions that created new elements to this moment were similar with the only possible difference that several singular neutrons sometimes were released or none at all A superheavy a atomic nucleus is created in a nuclear reaction that combines two other nuclei of unequal size b into one roughly the more unequal the two nuclei in terms of mass the greater the possibility that the two react 7 The material made of the heavier nuclei is made into a target which is then bombarded by the beam of lighter nuclei Two nuclei can only fuse into one if they approach each other closely enough normally nuclei all positively charged repel each other due to electrostatic repulsion The strong interaction can overcome this repulsion but only within a very short distance from a nucleus beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus 8 The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one tenth of the speed of light However if too much energy is applied the beam nucleus can fall apart 8 Coming close enough alone is not enough for two nuclei to fuse when two nuclei approach each other they usually remain together for approximately 10 20 seconds and then part ways not necessarily in the same composition as before the reaction rather than form a single nucleus 8 9 This happens because during the attempted formation of a single nucleus electrostatic repulsion tears apart the nucleus that is being formed 8 Each pair of a target and a beam is characterized by its cross section the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur c This fusion may occur as a result of the quantum effect in which nuclei can tunnel through electrostatic repulsion If the two nuclei can stay close for past that phase multiple nuclear interactions result in redistribution of energy and an energy equilibrium 8 External videos nbsp Visualization of unsuccessful nuclear fusion based on calculations from the Australian National University 11 The resulting merger is an excited state 12 termed a compound nucleus and thus it is very unstable 8 To reach a more stable state the temporary merger may fission without formation of a more stable nucleus 13 Alternatively the compound nucleus may eject a few neutrons which would carry away the excitation energy if the latter is not sufficient for a neutron expulsion the merger would produce a gamma ray This happens in approximately 10 16 seconds after the initial nuclear collision and results in creation of a more stable nucleus 13 The definition by the IUPAC IUPAP Joint Working Party JWP states that a chemical element can only be recognized as discovered if a nucleus of it has not decayed within 10 14 seconds This value was chosen as an estimate of how long it takes a nucleus to acquire its outer electrons and thus display its chemical properties 14 d Decay and detection edit The beam passes through the target and reaches the next chamber the separator if a new nucleus is produced it is carried with this beam 16 In the separator the newly produced nucleus is separated from other nuclides that of the original beam and any other reaction products e and transferred to a surface barrier detector which stops the nucleus The exact location of the upcoming impact on the detector is marked also marked are its energy and the time of the arrival 16 The transfer takes about 10 6 seconds in order to be detected the nucleus must survive this long 19 The nucleus is recorded again once its decay is registered and the location the energy and the time of the decay are measured 16 Stability of a nucleus is provided by the strong interaction However its range is very short as nuclei become larger its influence on the outermost nucleons protons and neutrons weakens At the same time the nucleus is torn apart by electrostatic repulsion between protons and its range is not limited 20 Total binding energy provided by the strong interaction increases linearly with the number of nucleons whereas electrostatic repulsion increases with the square of the atomic number i e the latter grows faster and becomes increasingly important for heavy and superheavy nuclei 21 22 Superheavy nuclei are thus theoretically predicted 23 and have so far been observed 24 to predominantly decay via decay modes that are caused by such repulsion alpha decay and spontaneous fission f Almost all alpha emitters have over 210 nucleons 26 and the lightest nuclide primarily undergoing spontaneous fission has 238 27 In both decay modes nuclei are inhibited from decaying by corresponding energy barriers for each mode but they can be tunnelled through 21 22 nbsp Scheme of an apparatus for creation of superheavy elements based on the Dubna Gas Filled Recoil Separator set up in the Flerov Laboratory of Nuclear Reactions in JINR The trajectory within the detector and the beam focusing apparatus changes because of a dipole magnet in the former and quadrupole magnets in the latter 28 Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus 29 Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart and produces various nuclei in different instances of identical nuclei fissioning 22 As the atomic number increases spontaneous fission rapidly becomes more important spontaneous fission partial half lives decrease by 23 orders of magnitude from uranium element 92 to nobelium element 102 30 and by 30 orders of magnitude from thorium element 90 to fermium element 100 31 The earlier liquid drop model thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the fission barrier for nuclei with about 280 nucleons 22 32 The later nuclear shell model suggested that nuclei with about 300 nucleons would form an island of stability in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half lives 22 32 Subsequent discoveries suggested that the predicted island might be further than originally anticipated they also showed that nuclei intermediate between the long lived actinides and the predicted island are deformed and gain additional stability from shell effects 33 Experiments on lighter superheavy nuclei 34 as well as those closer to the expected island 30 have shown greater than previously anticipated stability against spontaneous fission showing the importance of shell effects on nuclei g Alpha decays are registered by the emitted alpha particles and the decay products are easy to determine before the actual decay if such a decay or a series of consecutive decays produces a known nucleus the original product of a reaction can be easily determined h That all decays within a decay chain were indeed related to each other is established by the location of these decays which must be in the same place 16 The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy or more specifically the kinetic energy of the emitted particle i Spontaneous fission however produces various nuclei as products so the original nuclide cannot be determined from its daughters j The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors location energy and time of arrival of a particle to the detector and those of its decay The physicists analyze this data and seek to conclude that it was indeed caused by a new element and could not have been caused by a different nuclide than the one claimed Often provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects errors in interpreting data have been made k History editSynthesis attempts edit Because complete nuclear shells or equivalently a magic number of protons or neutrons may confer additional stability on the nuclei of superheavy elements moving closer to the center of the island of stability it was thought that the synthesis of element 124 or nearby elements would populate longer lived nuclei within the island Scientists at GANIL Grand Accelerateur National d Ions Lourds attempted to measure the direct and delayed fission of compound nuclei of elements with Z 114 120 and 124 in order to probe shell effects in this region and to pinpoint the next spherical proton shell In 2006 with full results published in 2008 the team provided results from a reaction involving the bombardment of a natural germanium target with uranium ions 45 23892 U nat32 Ge 308 310 311 312 314 Ubq fissionThe team reported that they had been able to identify compound nuclei fissioning with half lives gt 10 18 s This result suggests a strong stabilizing effect at Z 124 and points to the next proton shell at Z gt 120 not at Z 114 as previously thought A compound nucleus is a loose combination of nucleons that have not arranged themselves into nuclear shells yet It has no internal structure and is held together only by the collision forces between the target and projectile nuclei It is estimated that it requires around 10 14 s for the nucleons to arrange themselves into nuclear shells at which point the compound nucleus becomes a nuclide and this number is used by IUPAC as the minimum half life a claimed isotope must have to potentially be recognised as being discovered Thus the GANIL experiments do not count as a discovery of element 124 45 The fission of the compound nucleus 312124 was also studied in 2006 at the tandem ALPI heavy ion accelerator at the Laboratori Nazionali di Legnaro Legnaro National Laboratories in Italy 46 23290 Th 8034 Se 312 Ubq fissionSimilarly to previous experiments conducted at the JINR Joint Institute for Nuclear Research fission fragments clustered around doubly magic nuclei such as 132Sn Z 50 N 82 revealing a tendency for superheavy nuclei to expel such doubly magic nuclei in fission 47 The average number of neutrons per fission from the 312124 compound nucleus relative to lighter systems was also found to increase confirming that the trend of heavier nuclei emitting more neutrons during fission continues into the superheavy mass region 46 Possible natural occurrence edit A study in 1976 by a group of American researchers from several universities proposed that primordial superheavy elements mainly livermorium unbiquadium unbihexium and unbiseptium could be a cause of unexplained radiation damage particularly radiohalos in minerals 48 Unbiquadium was then suggested to exist in nature with its possible congener uranium in detectable quantities at a relative abundance of 10 11 49 Such unbiquadium nuclei were thought to undergo alpha decay with very long half lives down to flerovium which would then exist in natural lead at a similar concentration 10 11 and undergo spontaneous fission 49 50 This prompted many researchers to search for them in nature from 1976 to 1983 A group led by Tom Cahill a professor at the University of California at Davis claimed in 1976 that they had detected alpha particles and X rays with the right energies to cause the damage observed supporting the presence of these elements Others claimed that none had been detected and questioned the proposed characteristics of primordial superheavy nuclei 51 In particular they cited that the magic number N 228 necessary for enhanced stability would create a neutron excessive nucleus in unbiquadium that would not be beta stable This activity was also proposed to be caused by nuclear transmutations in natural cerium raising further ambiguity upon this claimed observation of superheavy elements 52 The possible extent of primordial superheavy elements on Earth today is uncertain Even if they are confirmed to have caused the radiation damage long ago they might now have decayed to mere traces or even be completely gone 53 It is also uncertain if such superheavy nuclei may be produced naturally at all as spontaneous fission is expected to terminate the r process responsible for heavy element formation between mass number 270 and 290 well before elements such as unbiquadium may be formed 54 Naming edit Using the 1979 IUPAC recommendations the element should be temporarily called unbiquadium symbol Ubq until it is discovered the discovery is confirmed and a permanent name chosen 55 Although widely used in the chemical community on all levels from chemistry classrooms to advanced textbooks the recommendations are mostly ignored among scientists who work theoretically or experimentally on superheavy elements who call it element 124 with the symbol E124 124 or 124 56 Some researchers have also referred to unbiquadium as eka uranium 50 a name derived from the system Dmitri Mendeleev used to predict unknown elements though such an extrapolation might not work for g block elements with no known congeners and eka uranium would instead refer to element 144 57 or 146 58 when the term is meant to denote the element directly below uranium Prospects for future synthesis editEvery element from mendelevium onward was produced in fusion evaporation reactions culminating in the discovery of the heaviest known element oganesson in 2002 59 60 and more recently tennessine in 2010 61 These reactions approached the limit of current technology for example the synthesis of tennessine required 22 milligrams of 249Bk and an intense 48Ca beam for six months The intensity of beams in superheavy element research cannot exceed 1012 projectiles per second without damaging the target and detector and producing larger quantities of increasingly rare and unstable actinide targets is impractical 62 Consequently future experiments must be done at facilities such as the superheavy element factory SHE factory at the Joint Institute for Nuclear Research JINR or RIKEN which will allow experiments to run for longer stretches of time with increased detection capabilities and enable otherwise inaccessible reactions 63 Even so it is expected to be a great challenge to continue past elements 120 or 121 given short predicted half lives and low predicted cross sections 64 The production of new superheavy elements will require projectiles heavier than 48Ca which was successfully used in the discovery of elements 114 118 though this necessitates more symmetric reactions which are less favorable 65 Hence it is likely that the reactions between 58Fe and a 249Cf 64 or 251Cf target are most promising 66 Studies on the fission of various superheavy compound nuclei have found that the dynamics of 48Ca and 58Fe induced reactions are similar suggesting that 58Fe projectiles may be viable in producing superheavy nuclei up to Z 124 or possibly 125 62 67 It is also possible that a reaction with 251Cf will produce the compound nucleus 309Ubq with 185 neutrons immediately above the N 184 shell closure For this reason the compound nucleus is predicted to have relatively high survival probability and low neutron separation energy leading to the 1n 3n channels and isotopes 306 308Ubq with a relatively high cross section 66 These dynamics are highly speculative as the cross section may be far lower should trends in the production of elements 112 118 continue or the fission barriers be lower than expected regardless of shell effects leading to decreased stability against spontaneous fission which is of growing importance 64 Nonetheless the prospect of reaching the N 184 shell on the proton rich side of the chart of nuclides by increasing proton number has long been considered already in 1970 Soviet nuclear physicist Georgy Flyorov suggested bombarding a plutonium target with zinc projectiles to produce isotopes of element 124 at the N 184 shell 68 Predicted properties editNuclear stability and isotopes edit nbsp This nuclear chart used by the Japan Atomic Energy Agency predicts the decay modes of nuclei up to Z 149 and N 256 For unbiquadium Z 124 there are predicted regions of increased stability around N 184 and N 228 though many intermediate isotopes are theoretically susceptible to spontaneous fission with half lives shorter than 1 nanosecond 69 Unbiquadium is of interest to researchers because of its possible location near the center of an island of stability a theoretical region comprising longer lived superheavy nuclei Such an island of stability was first proposed by University of California professor Glenn Seaborg 70 specifically predicting a region of stability centered at element 126 unbihexium and encompassing nearby elements including unbiquadium with half lives possibly as long as 109 years 49 In known elements the stability of nuclei decreases greatly with the increase in atomic number after uranium the heaviest primordial element so that all observed isotopes with an atomic number above 101 decay radioactively with a half life under a day Nevertheless there is a slight increase in nuclear stability in nuclides around atomic numbers 110 114 which suggests the presence of an island of stability This is attributed to the possible closure of nuclear shells in the superheavy mass region with stabilizing effects that may lead to half lives on the order of years or longer for some as yet undiscovered isotopes of these elements 49 65 While still unproven the existence of superheavy elements as heavy as oganesson provides evidence of such stabilizing effects as elements with an atomic number greater than approximately 104 are extremely unstable in models neglecting magic numbers 71 In this region of the periodic table N 184 and N 228 have been proposed as closed neutron shells 72 and various atomic numbers have been proposed as closed proton shells including Z 124 l The island of stability is characterized by longer half lives of nuclei located near these magic numbers though the extent of stabilizing effects is uncertain due to predictions of weakening of the proton shell closures and possible loss of double magicity 72 More recent research predicts the island of stability to instead be centered at beta stable copernicium isotopes 291Cn and 293Cn 65 73 which would place unbiquadium well above the island and result in short half lives regardless of shell effects A 2016 study on the decay properties of unbiquadium isotopes 284 339Ubq predicts that 284 304Ubq lie outside the proton drip line and thus may be proton emitters 305 323Ubq may undergo alpha decay with some chains terminating as far as flerovium and heavier isotopes will decay by spontaneous fission 74 These results as well as those from a quantum tunneling model predict no half lives over a millisecond for isotopes lighter than 319Ubq 75 as well as especially short half lives for 309 314Ubq in the sub microsecond range 74 due to destabilizing effects immediately above the shell at N 184 This renders the identification of many unbiquadium isotopes nearly impossible with current technology as detectors cannot distinguish rapid successive signals from alpha decays in a time period shorter than microseconds 64 m Increasingly short spontaneous fission half lives of superheavy nuclei and the possible domination of fission over alpha decay will also probably determine the stability of unbiquadium isotopes 64 73 While some fission half lives constituting a sea of instability may be on the order of 10 18 s as a consequence of very low fission barriers especially in even even nuclei due to pairing effects stabilizing effects at N 184 and N 228 may allow the existence of relatively long lived isotopes 69 For N 184 fission half lives may increase though alpha half lives are still expected to be on the order of microseconds or less despite the shell closure at 308Ubq It is also possible that the island of stability may shift to the N 198 region where total half lives may be on the order of seconds 73 in contrast to neighboring isotopes that would undergo fission in less than a microsecond In the neutron rich region around N 228 alpha half lives are also predicted to increase with increasing neutron number meaning that the stability of such nuclei would primarily depend on the location of the beta stability line and resistance to fission One early calculation by P Moller a physicist at Los Alamos National Laboratory estimates the total half life of 352Ubq with N 228 to be around 67 seconds and possibly the longest in the N 228 region 49 76 Chemical edit Unbiquadium is the fourth member of the superactinide series and should be similar to uranium both elements have six valence electrons over a noble gas core In the superactinide series the Aufbau principle is expected to break down due to relativistic effects and an overlap of the 5g 6f 7d and 8p orbitals is expected The ground state electron configuration of unbiquadium is thus predicted to be Og 6f3 8s2 8p1 77 or 6f2 8s2 8p2 78 in contrast to Og 5g4 8s2 derived from Aufbau This predicted overlap of orbitals and uncertainty in order of filling especially for f and g orbitals renders predictions of chemical and atomic properties of these elements very difficult 79 One predicted oxidation state of unbiquadium is 6 which would exist in the halides UbqX6 X a halogen analogous to the known 6 oxidation state in uranium 1 Like the other early superactinides the binding energies of unbiquadium s valence electrons are predicted to be small enough that all six should easily participate in chemical reactions 57 The predicted electron configuration of the Ubq5 ion is Og 6f1 1 Notes edit In nuclear physics an element is called heavy if its atomic number is high lead element 82 is one example of such a heavy element The term superheavy elements typically refers to elements with atomic number greater than 103 although there are other definitions such as atomic number greater than 100 2 or 112 3 sometimes the term is presented an equivalent to the term transactinide which puts an upper limit before the beginning of the hypothetical superactinide series 4 Terms heavy isotopes of a given element and heavy nuclei mean what could be understood in the common language isotopes of high mass for the given element and nuclei of high mass respectively In 2009 a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric 136Xe 136Xe reaction They failed to observe a single atom in such a reaction putting the upper limit on the cross section the measure of probability of a nuclear reaction as 2 5 pb 5 In comparison the reaction that resulted in hassium discovery 208Pb 58Fe had a cross section of 20 pb more specifically 19 19 11 pb as estimated by the discoverers 6 The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section For example in the 2814 Si 10 n 2813 Al 11 p reaction cross section changes smoothly from 370 mb at 12 3 MeV to 160 mb at 18 3 MeV with a broad peak at 13 5 MeV with the maximum value of 380 mb 10 This figure also marks the generally accepted upper limit for lifetime of a compound nucleus 15 This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle 17 Such separation can also be aided by a time of flight measurement and a recoil energy measurement a combination of the two may allow to estimate the mass of a nucleus 18 Not all decay modes are caused by electrostatic repulsion For example beta decay is caused by the weak interaction 25 It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus However it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to form one 30 Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus such measurement is called indirect Direct measurements are also possible but for the most part they have remained unavailable for superheavy nuclei 35 The first direct measurement of mass of a superheavy nucleus was reported in 2018 at LBNL 36 Mass was determined from the location of a nucleus after the transfer the location helps determine its trajectory which is linked to the mass to charge ratio of the nucleus since the transfer was done in presence of a magnet 37 If the decay occurred in a vacuum then since total momentum of an isolated system before and after the decay must be preserved the daughter nucleus would also receive a small velocity The ratio of the two velocities and accordingly the ratio of the kinetic energies would thus be inverse to the ratio of the two masses The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus an exact fraction of the former 26 The calculations hold for an experiment as well but the difference is that the nucleus does not move after the decay because it is tied to the detector Spontaneous fission was discovered by Soviet physicist Georgy Flerov 38 a leading scientist at JINR and thus it was a hobbyhorse for the facility 39 In contrast the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element They believed spontaneous fission had not been studied enough to use it for identification of a new element since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles 15 They thus preferred to link new isotopes to the already known ones by successive alpha decays 38 For instance element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in Stockholm Stockholm County Sweden 40 There were no earlier definitive claims of creation of this element and the element was assigned a name by its Swedish American and British discoverers nobelium It was later shown that the identification was incorrect 41 The following year RL was unable to reproduce the Swedish results and announced instead their synthesis of the element that claim was also disproved later 41 JINR insisted that they were the first to create the element and suggested a name of their own for the new element joliotium 42 the Soviet name was also not accepted JINR later referred to the naming of the element 102 as hasty 43 This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements signed 29 September 1992 43 The name nobelium remained unchanged on account of its widespread usage 44 Atomic numbers 114 120 122 and 126 have also been proposed as closed proton shells in different models While such nuclei may be synthesized and a series of decay signals may be registered decays faster than one microsecond may pile up with subsequent signals and thus be indistinguishable especially when multiple uncharacterized nuclei may be formed and emit a series of similar alpha particles The main difficulty is thus attributing the decays to the correct parent nucleus as a superheavy atom that decays before reaching the detector will not be registered at all References edit a b c Pyykko Pekka 2011 A suggested periodic table up to Z 172 based on Dirac Fock calculations on atoms and ions Physical Chemistry Chemical Physics 13 1 161 8 Bibcode 2011PCCP 13 161P doi 10 1039 c0cp01575j PMID 20967377 Kramer K 2016 Explainer superheavy elements Chemistry World Retrieved 2020 03 15 Discovery of Elements 113 and 115 Lawrence Livermore National Laboratory Archived from the original on 2015 09 11 Retrieved 2020 03 15 Eliav E Kaldor U Borschevsky A 2018 Electronic Structure of the Transactinide Atoms In Scott R A ed Encyclopedia of Inorganic and Bioinorganic Chemistry John Wiley amp Sons pp 1 16 doi 10 1002 9781119951438 eibc2632 ISBN 978 1 119 95143 8 S2CID 127060181 Oganessian Yu Ts Dmitriev S N Yeremin A V et al 2009 Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe 136Xe Physical Review C 79 2 024608 doi 10 1103 PhysRevC 79 024608 ISSN 0556 2813 Munzenberg G Armbruster P Folger H et al 1984 The identification of element 108 PDF Zeitschrift fur Physik A 317 2 235 236 Bibcode 1984ZPhyA 317 235M doi 10 1007 BF01421260 S2CID 123288075 Archived from the original PDF on 7 June 2015 Retrieved 20 October 2012 Subramanian S 28 August 2019 Making New Elements Doesn t Pay Just Ask This Berkeley Scientist Bloomberg Businessweek Retrieved 2020 01 18 a b c d e f Ivanov D 2019 Sverhtyazhelye shagi v neizvestnoe Superheavy steps into the unknown nplus1 ru in Russian Retrieved 2020 02 02 Hinde D 2017 Something new and superheavy at the periodic table The Conversation Retrieved 2020 01 30 Kern B D Thompson W E Ferguson J M 1959 Cross sections for some n p and n a reactions Nuclear Physics 10 226 234 Bibcode 1959NucPh 10 226K doi 10 1016 0029 5582 59 90211 1 Wakhle A Simenel C Hinde D J et al 2015 Simenel C Gomes P R S Hinde D J et al eds Comparing Experimental and Theoretical Quasifission Mass Angle Distributions European Physical Journal Web of Conferences 86 00061 Bibcode 2015EPJWC 8600061W doi 10 1051 epjconf 20158600061 hdl 1885 148847 ISSN 2100 014X Nuclear Reactions PDF pp 7 8 Retrieved 2020 01 27 Published as Loveland W D Morrissey D J Seaborg G T 2005 Nuclear Reactions Modern Nuclear Chemistry John Wiley amp Sons Inc pp 249 297 doi 10 1002 0471768626 ch10 ISBN 978 0 471 76862 3 a b Krasa A 2010 Neutron Sources for ADS Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 4 8 S2CID 28796927 Wapstra A H 1991 Criteria that must be satisfied for the discovery of a new chemical element to be recognized PDF Pure and Applied Chemistry 63 6 883 doi 10 1351 pac199163060879 ISSN 1365 3075 S2CID 95737691 a b Hyde E K Hoffman D C Keller O L 1987 A History and Analysis of the Discovery of Elements 104 and 105 Radiochimica Acta 42 2 67 68 doi 10 1524 ract 1987 42 2 57 ISSN 2193 3405 S2CID 99193729 a b c d Chemistry World 2016 How to Make Superheavy Elements and Finish the Periodic Table Video Scientific American Retrieved 2020 01 27 Hoffman Ghiorso amp Seaborg 2000 p 334 Hoffman Ghiorso amp Seaborg 2000 p 335 Zagrebaev Karpov amp Greiner 2013 p 3 Beiser 2003 p 432 a b Pauli N 2019 Alpha decay PDF Introductory Nuclear Atomic and Molecular Physics Nuclear Physics Part Universite libre de Bruxelles Retrieved 2020 02 16 a b c d e Pauli N 2019 Nuclear fission PDF Introductory Nuclear Atomic and Molecular Physics Nuclear Physics Part Universite libre de Bruxelles Retrieved 2020 02 16 Staszczak A Baran A Nazarewicz W 2013 Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory Physical Review C 87 2 024320 1 arXiv 1208 1215 Bibcode 2013PhRvC 87b4320S doi 10 1103 physrevc 87 024320 ISSN 0556 2813 Audi et al 2017 pp 030001 129 030001 138 Beiser 2003 p 439 a b Beiser 2003 p 433 Audi et al 2017 p 030001 125 Aksenov N V Steinegger P Abdullin F Sh et al 2017 On the volatility of nihonium Nh Z 113 The European Physical Journal A 53 7 158 Bibcode 2017EPJA 53 158A doi 10 1140 epja i2017 12348 8 ISSN 1434 6001 S2CID 125849923 Beiser 2003 p 432 433 a b c Oganessian Yu 2012 Nuclei in the Island of Stability of Superheavy Elements Journal of Physics Conference Series 337 1 012005 1 012005 6 Bibcode 2012JPhCS 337a2005O doi 10 1088 1742 6596 337 1 012005 ISSN 1742 6596 Moller P Nix J R 1994 Fission properties of the heaviest elements PDF Dai 2 Kai Hadoron Tataikei no Simulation Symposium Tokai mura Ibaraki Japan University of North Texas Retrieved 2020 02 16 a b Oganessian Yu Ts 2004 Superheavy elements Physics World 17 7 25 29 doi 10 1088 2058 7058 17 7 31 Retrieved 2020 02 16 Schadel M 2015 Chemistry of the superheavy elements Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 373 2037 20140191 Bibcode 2015RSPTA 37340191S doi 10 1098 rsta 2014 0191 ISSN 1364 503X PMID 25666065 Hulet E K 1989 Biomodal spontaneous fission 50th Anniversary of Nuclear Fission Leningrad USSR Bibcode 1989nufi rept 16H Oganessian Yu Ts Rykaczewski K P 2015 A beachhead on the island of stability Physics Today 68 8 32 38 Bibcode 2015PhT 68h 32O doi 10 1063 PT 3 2880 ISSN 0031 9228 OSTI 1337838 S2CID 119531411 Grant A 2018 Weighing the heaviest elements Physics Today doi 10 1063 PT 6 1 20181113a S2CID 239775403 Howes L 2019 Exploring the superheavy elements at the end of the periodic table Chemical amp Engineering News Retrieved 2020 01 27 a b Robinson A E 2019 The Transfermium Wars Scientific Brawling and Name Calling during the Cold War Distillations Retrieved 2020 02 22 Populyarnaya biblioteka himicheskih elementov Siborgij ekavolfram Popular library of chemical elements Seaborgium eka tungsten n t ru in Russian Retrieved 2020 01 07 Reprinted from Ekavolfram Eka tungsten Populyarnaya biblioteka himicheskih elementov Serebro Nilsborij i dalee Popular library of chemical elements Silver through nielsbohrium and beyond in Russian Nauka 1977 Nobelium Element information properties and uses Periodic Table Royal Society of Chemistry Retrieved 2020 03 01 a b Kragh 2018 pp 38 39 Kragh 2018 p 40 a b Ghiorso A Seaborg G T Oganessian Yu Ts et al 1993 Responses on the report Discovery of the Transfermium elements followed by reply to the responses by Transfermium Working Group PDF Pure and Applied Chemistry 65 8 1815 1824 doi 10 1351 pac199365081815 S2CID 95069384 Archived PDF from the original on 25 November 2013 Retrieved 7 September 2016 Commission on Nomenclature of Inorganic Chemistry 1997 Names and symbols of transfermium elements IUPAC Recommendations 1997 PDF Pure and Applied Chemistry 69 12 2471 2474 doi 10 1351 pac199769122471 a b Emsley John 2011 Nature s Building Blocks An A Z Guide to the Elements New ed New York NY Oxford University Press p 588 ISBN 978 0 19 960563 7 a b Thomas R G Saxena A Sahu P K et al 2007 Fission and binary fragmentation reactions in 80Se 208Pb and 80Se 232Th systems Physical Review C 75 024604 1 024604 9 doi 10 1103 PhysRevC 75 024604 hdl 2158 776924 see Flerov lab annual reports 2000 2004 inclusive http www1 jinr ru Reports Reports eng arh html Hoffman Ghiorso amp Seaborg 2000 p 413 a b c d e Lodhi M A K ed March 1978 Superheavy Elements Proceedings of the International Symposium on Superheavy Elements Lubbock Texas Pergamon Press ISBN 0 08 022946 8 a b Maly J Walz D R 1980 Search for superheavy elements among fossil fission tracks in zircon PDF Hoffman Ghiorso amp Seaborg 2000 p 416 417 Hoffman Ghiorso amp Seaborg 2000 p 417 Emsley John 2011 Nature s Building Blocks An A Z Guide to the Elements New ed New York Oxford University Press p 592 ISBN 978 0 19 960563 7 Petermann I Langanke K Martinez Pinedo G et al 2012 Have superheavy elements been produced in nature European Physical Journal A 48 122 122 arXiv 1207 3432 Bibcode 2012EPJA 48 122P doi 10 1140 epja i2012 12122 6 S2CID 119264543 Chatt J 1979 Recommendations for the naming of elements of atomic numbers greater than 100 Pure and Applied Chemistry 51 2 381 384 doi 10 1351 pac197951020381 Haire Richard G 2006 Transactinides and the future elements In Morss Edelstein Norman M Fuger Jean eds The Chemistry of the Actinide and Transactinide Elements 3rd ed Dordrecht The Netherlands Springer Science Business Media p 1724 ISBN 1 4020 3555 1 a b Fricke B Greiner W Waber J T 1971 The continuation of the periodic table up to Z 172 The chemistry of superheavy elements Theoretica Chimica Acta 21 3 235 260 doi 10 1007 BF01172015 S2CID 117157377 Nefedov V I Trzhaskovskaya M B Yarzhemskii V G 2006 Electronic Configurations and the Periodic Table for Superheavy Elements PDF Doklady Physical Chemistry 408 2 149 151 doi 10 1134 S0012501606060029 ISSN 0012 5016 S2CID 95738861 Oganessian YT et al 2002 Element 118 results from the first 249 Cf 48 Ca experiment Communication of the Joint Institute for Nuclear Research Archived from the original on 22 July 2011 Livermore scientists team with Russia to discover element 118 Press release Livermore 3 December 2006 Archived from the original on 17 October 2011 Retrieved 18 January 2008 Oganessian YT Abdullin F Bailey PD et al April 2010 Synthesis of a New Element with Atomic Number 117 PDF Physical Review Letters 104 142502 142502 Bibcode 2010PhRvL 104n2502O doi 10 1103 PhysRevLett 104 142502 PMID 20481935 a b Roberto JB 2015 Actinide Targets for Super Heavy Element Research PDF cyclotron tamu edu Texas A amp M University Retrieved 30 October 2018 Hagino Kouichi Hofmann Sigurd Miyatake Hiroari Nakahara Hiromichi July 2012 平成23年度 研究業績レビュー 中間レビュー の実施について Implementation of the 2011 Research Achievement Review Interim Review PDF www riken jp in Japanese RIKEN Archived from the original PDF on 2019 03 30 Retrieved 5 May 2017 a b c d e Karpov A Zagrebaev V Greiner W 2015 Superheavy Nuclei which regions of nuclear map are accessible in the nearest studies PDF cyclotron tamu edu Texas A amp M University Retrieved 30 October 2018 a b c Zagrebaev Karpov amp Greiner 2013 a b Rykaczewski Krzysztof P July 2016 Super Heavy Elements and Nuclei PDF people nscl msu edu MSU Retrieved 30 April 2017 JINR 1998 2014 JINR Publishing Department Annual Reports Archive jinr ru JINR Retrieved 23 September 2016 Flerov G N 1970 Synthesis and Search for Heavy Transuranium Elements PDF jinr ru Retrieved 23 November 2018 a b Koura H 2011 Decay modes and a limit of existence of nuclei in the superheavy mass region PDF 4th International Conference on the Chemistry and Physics of the Transactinide Elements Retrieved 18 November 2018 Considine Glenn D Kulik Peter H 2002 Van Nostrand s scientific encyclopedia 9 ed Wiley Interscience ISBN 978 0 471 33230 5 OCLC 223349096 Moller P 2016 The limits of the nuclear chart set by fission and alpha decay PDF EPJ Web of Conferences 131 03002 1 8 Bibcode 2016EPJWC 13103002M doi 10 1051 epjconf 201613103002 a b Koura H Chiba S 2013 Single Particle Levels of Spherical Nuclei in the Superheavy and Extremely Superheavy Mass Region Journal of the Physical Society of Japan 82 1 014201 Bibcode 2013JPSJ 82a4201K doi 10 7566 JPSJ 82 014201 a b c Palenzuela Y M Ruiz L F Karpov A Greiner W 2012 Systematic Study of Decay Properties of Heaviest Elements PDF Bulletin of the Russian Academy of Sciences Physics 76 11 1165 1171 Bibcode 2012BRASP 76 1165P doi 10 3103 s1062873812110172 ISSN 1062 8738 S2CID 120690838 a b Santhosh K P Priyanka B Nithya C 2016 Feasibility of observing the a decay chains from isotopes of SHN with Z 128 Z 126 Z 124 and Z 122 Nuclear Physics A 955 November 2016 156 180 arXiv 1609 05498 Bibcode 2016NuPhA 955 156S doi 10 1016 j nuclphysa 2016 06 010 S2CID 119219218 Chowdhury R P Samanta C Basu D N 2008 Nuclear half lives for a radioactivity of elements with 100 Z 130 Atomic Data and Nuclear Data Tables 94 6 781 806 arXiv 0802 4161 Bibcode 2008ADNDT 94 781C doi 10 1016 j adt 2008 01 003 S2CID 96718440 Bemis C E Nix J R 1977 Superheavy elements the quest in perspective PDF Comments on Nuclear and Particle Physics 7 3 65 78 ISSN 0010 2709 Hoffman Darleane C Lee Diana M Pershina Valeria 2006 Transactinides and the future elements In Morss Edelstein Norman M Fuger Jean eds The Chemistry of the Actinide and Transactinide Elements 3rd ed Dordrecht The Netherlands Springer Science Business Media ISBN 1 4020 3555 1 Umemoto Koichiro Saito Susumu 1996 Electronic Configurations of Superheavy Elements Journal of the Physical Society of Japan 65 10 3175 9 Bibcode 1996JPSJ 65 3175U doi 10 1143 JPSJ 65 3175 Retrieved 31 January 2021 Seaborg c 2006 transuranium element chemical element Encyclopaedia Britannica Retrieved 2010 03 16 Bibliography editAudi G Kondev F G Wang M et al 2017 The NUBASE2016 evaluation of nuclear properties PDF Chinese Physics C 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 Beiser A 2003 Concepts of modern physics 6th ed McGraw Hill ISBN 978 0 07 244848 1 OCLC 48965418 Hoffman D C Ghiorso A Seaborg G T 2000 The Transuranium People The Inside Story World Scientific ISBN 978 1 78 326244 1 Kragh H 2018 From Transuranic to Superheavy Elements A Story of Dispute and Creation Springer ISBN 978 3 319 75813 8 Zagrebaev V Karpov A Greiner W 2013 Future of superheavy element research Which nuclei could be synthesized within the next few years PDF Journal of Physics Conference Series 420 1 012001 arXiv 1207 5700 Bibcode 2013JPhCS 420a2001Z doi 10 1088 1742 6596 420 1 012001 ISSN 1742 6588 S2CID 55434734 Retrieved from https en wikipedia org w index php title Unbiquadium amp oldid 1190741060, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.