fbpx
Wikipedia

Zhang Heng

Zhang Heng (Chinese: 張衡; AD 78–139), formerly romanized Chang Heng, was a Chinese polymathic scientist and statesman who lived during the Han dynasty. Educated in the capital cities of Luoyang and Chang'an, he achieved success as an astronomer, mathematician, seismologist, hydraulic engineer, inventor, geographer, cartographer, ethnographer, artist, poet, philosopher, politician, and literary scholar.

Zhang Heng
張衡
A stamp of Zhang Heng issued by China Post in 1955
BornAD 78
Nanyang, China
DiedAD 139 (aged 60–61)
Luoyang, China
Known forSeismometer, hydraulic-powered armillary sphere, pi calculation, poetry, universe model, lunar eclipse and solar eclipse theory
Scientific career
FieldsAstronomy, mathematics, seismology, hydraulic engineering, geography, ethnography, mechanical engineering, calendrical science, metaphysics, poetry, literature
Zhang Heng
Zhang's name in Traditional (top) and Simplified (bottom) Chinese characters
Traditional Chinese張衡
Simplified Chinese张衡

Zhang Heng began his career as a minor civil servant in Nanyang. Eventually, he became Chief Astronomer, Prefect of the Majors for Official Carriages, and then Palace Attendant at the imperial court. His uncompromising stance on historical and calendrical issues led to his becoming a controversial figure, preventing him from rising to the status of Grand Historian. His political rivalry with the palace eunuchs during the reign of Emperor Shun (r. 125–144) led to his decision to retire from the central court to serve as an administrator of Hejian Kingdom in present-day Hebei. Zhang returned home to Nanyang for a short time, before being recalled to serve in the capital once more in 138. He died there a year later, in 139.

Zhang applied his extensive knowledge of mechanics and gears in several of his inventions. He invented the world's first water-powered armillary sphere to assist astronomical observation;[1] improved the inflow water clock by adding another tank;[2] and invented the world's first seismoscope, which discerned the cardinal direction of an earthquake 500 km (310 mi) away.[1][3][4] He improved previous Chinese calculations for pi. In addition to documenting about 2,500 stars in his extensive star catalog, Zhang also posited theories about the Moon and its relationship to the Sun: specifically, he discussed the Moon's sphericity, its illumination by reflected sunlight on one side and the hidden nature of the other, and the nature of solar and lunar eclipses. His fu (rhapsody) and shi poetry were renowned in his time and studied and analyzed by later Chinese writers. Zhang received many posthumous honors for his scholarship and ingenuity; some modern scholars have compared his work in astronomy to that of the Greco-Roman Ptolemy (AD 86–161).

Life edit

Early life edit

Born in the town of Xi'e in Nanyang Commandery (north of the modern Nanyang City in Henan province), Zhang Heng came from a distinguished but not affluent family.[5][6][7] His grandfather Zhang Kan (張堪) had been governor of a commandery and one of the leaders who supported the restoration of the Han by Emperor Guangwu (r. 25–57), following the death of the usurping Wang Mang of the Xin (AD 9–23).[5][8][9][10] When he was ten, Zhang's father died, leaving him in the care of his mother and grandmother.[9]

An accomplished writer in his youth, Zhang left home in the year 95 to pursue his studies in the capitals of Chang'an and Luoyang.[5] While traveling to Luoyang, Zhang passed by a hot spring near Mount Li and dedicated one of his earliest fu poems to it.[11] This work, entitled "Fu on the Hot Springs" (Wēnquán fù 溫泉賦), describes the throngs of people attending the hot springs, which later became famous as the "Huaqing Hot Springs", a favorite retreat of imperial concubine Yang Guifei during the Tang dynasty.[12] After studying for some years at Luoyang's Taixue, he was well-versed in the classics and friends with several notable persons, including the mathematician and calligrapher Cui Yuan (78–143), the official and philosophical commentator Ma Rong (79–166), and the philosopher Wang Fu (78–163).[5][7] Government authorities offered Zhang appointments to several offices, including a position as one of the Imperial Secretaries, yet he acted modestly and declined.[5][11]

At age 23, Zhang returned home with the title "Officer of Merit in Nanyang", serving as the master of documents under the administration of Governor Bao De (in office from 103 to 111).[5][7][8] As he was charged with composing inscriptions and dirges for the governor, he gained experience in writing official documents.[8] As Officer of Merit in the commandery, he was also responsible for local appointments to office and recommendations to the capital of nominees for higher office.[13] He spent much of his time composing rhapsodies on the capital cities. When Bao De was recalled to the capital in 111 to serve as a minister of finance, Zhang continued his literary work at home in Xi'e.[5][8][11] Zhang Heng began his studies in astronomy at the age of 30 and began publishing his works on astronomy and mathematics.[8]

Official career edit

In 112, Zhang was summoned to the court of Emperor An (r. 106–125), who had heard of his expertise in mathematics.[8] When he was nominated to serve at the capital, Zhang was escorted by carriage—a symbol of his official status—to Luoyang, where he became a court gentleman working for the Imperial Secretariat.[5][8] He was promoted to Chief Astronomer for the court, serving his first term from 115 to 120 under Emperor An and his second under the succeeding emperor from 126 to 132.[8] As Chief Astronomer, Zhang was a subordinate of the Minister of Ceremonies, one of Nine Ministers ranked just below the Three Excellencies.[14] In addition to recording heavenly observations and portents, preparing the calendar, and reporting which days were auspicious and which ill-omened, Zhang was also in charge of an advanced literacy test for all candidates to the Imperial Secretariat and the Censorate, both of whose members were required to know at least 9,000 characters and all major writing styles.[14][15] Under Emperor An, Zhang also served as Prefect of the Majors for Official Carriages under the Ministry of Guards, in charge of receiving memorials to the throne (formal essays on policy and administration) as well as nominees for official appointments.[16][17]

 
 
Left: ceramic statues of horse-drawn chariots from the tomb of the wife of Liu Xu (劉胥), Prince Li of Guangling (廣陵厲王), a son of Emperor Wu of Han who committed suicide 53 BC; right: a Western Han terracotta cavalier figurine wearing robes and a hat; as Chief Astronomer, Zhang Heng earned a fixed salary and rank of 600 bushels of grain (which was mostly commuted to payments in coinage currency or bolts of silk), and so he would have worn a specified type of robe, ridden in a specified type of carriage, and held a unique emblem that marked his status in the official hierarchy.[18][19]

When the government official Dan Song proposed the Chinese calendar should be reformed in 123 to adopt certain apocryphal teachings, Zhang opposed the idea. He considered the teachings to be of questionable stature and believed they could introduce errors.[5] Others shared Zhang's opinion and the calendar was not altered, yet Zhang's proposal that apocryphal writings should be banned was rejected.[5] The officials Liu Zhen and Liu Taotu, members of a committee to compile the dynastic history Dongguan Hanji (東觀漢記), sought permission from the court to consult Zhang Heng.[5] However, Zhang was barred from assisting the committee due to his controversial views on apocrypha and his objection to the relegation of the Gengshi Emperor's (r. 23–25) role in the restoration of the Han dynasty as lesser than Emperor Guangwu's.[20][21] Liu Zhen and Liu Taotu were Zhang's only historian allies at court, and after their deaths Zhang had no further opportunities for promotion to the prestigious post of court historian.[20]

Despite this setback in his official career, Zhang was reappointed as Chief Astronomer in 126 after Emperor Shun of Han (r. 125–144) ascended to the throne.[18][22] His intensive astronomical work was rewarded only with the rank and salary of 600 bushels, or shi, of grain (mostly commuted to coin cash or bolts of silk).[18][23] To place this number in context, in a hierarchy of twenty official ranks, the lowest-paid official earned the rank and salary of 100 bushels and the highest-paid official earned 10,000 bushels during the Han.[24] The 600-bushel rank was the lowest the emperor could directly appoint to a central government position; any official of lower status was overseen by central or provincial officials of high rank.[25]

In 132, Zhang introduced an intricate seismoscope to the court, which he claimed could detect the precise cardinal direction of a distant earthquake.[26] On one occasion his device indicated that an earthquake had occurred in the northwest. As there was no perceivable tremor felt in the capital his political enemies were briefly able to relish the failure of his device,[26] until a messenger arrived shortly afterwards to report that an earthquake had occurred about 400 km (248 mi) to 500 km (310 mi) northwest of Luoyang in Gansu province.[26][27][28][29]

 
A pottery miniature of a palace made during the Han dynasty; as a palace attendant, Zhang Heng had personal access to Emperor Shun and the right to escort him

A year after Zhang presented his seismoscope to the court, officials and candidates were asked to provide comments about a series of recent earthquakes which could be interpreted as signs of displeasure from Heaven.[18] The ancient Chinese viewed natural calamities as cosmological punishments for misdeeds that were perpetrated by the Chinese ruler or his subordinates on earth. In Zhang's memorial discussing the reasons behind these natural disasters, he criticized the new recruitment system of Zuo Xiong which fixed the age of eligible candidates for the title "Filial and Incorrupt" at age forty.[18] The new system also transferred the power of the candidates' assessment to the Three Excellencies rather than the Generals of the Household, who by tradition oversaw the affairs of court gentlemen.[18] Although Zhang's memorial was rejected, his status was significantly elevated soon after to Palace Attendant, a position he used to influence the decisions of Emperor Shun.[17][18] With this prestigious new position, Zhang earned a salary of 2,000 bushels and had the right to escort the emperor.[30]

As Palace Attendant to Emperor Shun, Zhang Heng attempted to convince him that the court eunuchs represented a threat to the imperial court. Zhang pointed to specific examples of past court intrigues involving eunuchs, and convinced Shun that he should assume greater authority and limit their influence.[18] The eunuchs attempted to slander Zhang, who responded with a fu rhapsody called "Fu on Pondering the Mystery", which vents his frustration.[12] Rafe de Crespigny states that Zhang's rhapsody used imagery similar to Qu Yuan's (340–278 BC) poem "Li Sao" and focused on whether or not good men should flee the corrupted world or remain virtuous within it.[18][31]

 
Eastern Han tomb brick depicting the courtyard of a wealthy family's home. Zhang enjoyed a short period of retirement at his home in Xi'e, Nanyang, before being called back to the capital, where he died in 139.

Literature and poetry edit

 
An Eastern Han earthenware figurine of the Queen Mother of the West. Zhang fantasized about her in his "Rhapsody on Contemplating the Mystery" (思玄賦), yet the pleasures of the flesh and immortality that she could offer were not tempting enough to sway his heart which was set elsewhere.[32]

While working for the central court, Zhang Heng had access to a variety of written materials located in the Archives of the Eastern Pavilion.[33] Zhang read many of the great works of history in his day and claimed he had found ten instances where the Records of the Grand Historian by Sima Qian (145–90 BC) and the Book of Han by Ban Gu (AD 32–92) differed from other ancient texts that were available to him.[5][34] His account was preserved and recorded in the 5th-century text of the Book of Later Han by Fan Ye (398–445).[34] His rhapsodies and other literary works displayed a deep knowledge of classic texts, Chinese philosophy, and histories.[5] He also compiled a commentary on the Taixuan (太玄, "Great Mystery") by the Daoist author Yang Xiong (53 BC–AD 18).[7][8][18]

Xiao Tong (501–531), a crown prince of the Liang dynasty (502–557), immortalized several of Zhang's works in his literary anthology Selections of Refined Literature (Wen xuan 文選). Zhang's fu rhapsodies include "Western Metropolis Rhapsody" (Xī jīng fù 西京賦), "Eastern Metropolis Rhapsody" (Dōng jīng fù 東京賦), "Southern Capital Rhapsody" (Nán dū fù 南都賦), "Rhapsody on Contemplating the Mystery" (Sī xuán fù 思玄賦), and "Rhapsody on Returning to the Fields" (Guī tián fù 歸田賦).[35] The latter fuses Daoist ideas with Confucianism and was a precursor to later Chinese metaphysical nature poetry, according to Liu Wu-chi.[36] A set of four short lyric poems (shi ) entitled "Lyric Poems on Four Sorrows" (Sì chóu shī 四愁詩), is also included with Zhang's preface. This set constitutes some of the earliest heptasyllabic shi Chinese poetry written.[37][38] While still in Luoyang, Zhang became inspired to write his "Western Metropolis Rhapsody" and "Eastern Metropolis Rhapsody", which were based on the "Rhapsody on the Two Capitals" by the historian Ban Gu.[5] Zhang's work was similar to Ban's, although the latter fully praised the contemporaneous Eastern Han regime while Zhang provided a warning that it could suffer the same fate as the Western Han if it too declined into a state of decadence and moral depravity.[5] These two works satirized and criticized what he saw as the excessive luxury of the upper classes.[11] Zhang's "Southern Capital Rhapsody" commemorated his home city of Nanyang, home of the restorer of the Han dynasty, Guangwu.[5]

In Zhang Heng's poem "Four Sorrows", he laments that he is unable to woo a beautiful woman due to the impediment of mountains, snows and rivers.[8][18] Scholars Rafe de Crespigny and David R. Knechtges claim that Zhang wrote this as an innuendo hinting at his inability to keep in contact with the emperor, hindered by unworthy rivals and petty men.[8][18] This poem is one of the first in China to have seven words per line.[37] His "Four Sorrows" reads:

 
 
A Western Han terracotta figurine of a serving lady and Han ceramic figures of women. In his poetry, Zhang Heng expressed his affinity for gracious and commendable women. As well as being a painter, Zhang also crafted figurine sculptures similar to this one.[17]

In another poem of his called "Stabilizing the Passions" (Dìng qíng fù 定情賦)—preserved in a Tang dynasty (618–907) encyclopedia, but referred to earlier by Tao Qian (365–427) in praise of Zhang's lyrical minimalism—Zhang displays his admiration for an attractive and exemplary woman.[39] This simpler type of fu poem influenced later works by the prominent official and scholar Cai Yong (132–192).[37] Zhang wrote:

 
Eastern Han tomb models of watchtowers; the one on the left has crossbowmen in the top balcony. Zhang wrote that Western Han emperors were entertained by displays of archery from the balconies of towers along Chang'an's Kunming Lake.

Zhang's long lyrical poems also revealed a great amount of information on urban layout and basic geography. His rhapsody "Sir Based-On-Nothing" provides details on terrain, palaces, hunting parks, markets, and prominent buildings of Chang'an, the Western Han capital.[11][35] Exemplifying his attention to detail, his rhapsody on Nanyang described gardens filled with spring garlic, summer bamboo shoots, autumn leeks, winter rape-turnips, perilla, evodia, and purple ginger.[40] Along with Sima Xiangru (179–117 BC), Zhang listed a variety of animals and hunting game inhabiting the park, which were divided in the northern and southern portions of the park according to where the animals had originally come from: northern or southern China.[41] Somewhat similar to the description of Sima Xiangru, Zhang described the Western Han emperors and their entourage enjoying boat outings, water plays, fishing, and displays of archery targeting birds and other animals with stringed arrows from the tops of tall towers along Chang'an's Kunming Lake.[42] The focus of Zhang's writing on specific places and their terrain, society, people, and their customs could also be seen as early attempts of ethnographic categorization.[43] In his poem "Xijing fu", Zhang shows that he was aware of the new foreign religion of Buddhism, introduced via the Silk Road, as well as the legend of the birth of Buddha with the vision of the white elephant bringing about conception.[44] In his "Western Metropolis Rhapsody" (西京賦), Zhang described court entertainments such as juedi (角抵), a form of theatrical wrestling accompanied by music in which participants butted heads with bull horn masks.[45]

 
Eastern Han tomb painting of two men engrossed in conversation; Zhang's shelun or hypothetical discourse, involved a written dialogue between imaginary or real persons to demonstrate how one could lead an exemplary life

With his "Responding to Criticism" (Ying jian 應間), a work modeled on Yang Xiong's "Justification Against Ridicule",[46] Zhang was an early writer and proponent of the Chinese literary genre shelun, or hypothetical discourse. Authors of this genre created a written dialogue between themselves and an imaginary person (or a real person of their entourage or association); the latter poses questions to the author on how to lead a successful life.[47] He also used it as a means to criticize himself for failing to obtain high office, but coming to the conclusion that the true gentleman displays virtue instead of greed for power.[18] In this work, Dominik Declercq asserts that the person urging Zhang to advance his career in a time of government corruption most likely represented the eunuchs or Empress Liang's (116–150) powerful relatives in the Liang clan.[22] Declercq states that these two groups would have been "anxious to know whether this famous scholar could be lured over to their side", but Zhang flatly rejected such an alignment by declaring in this politically charged piece of literature that his gentlemanly quest for virtue trumped any desire of his for power.[48]

Zhang wrote about the various love affairs of emperors dissatisfied with the imperial harem, going out into the city incognito to seek out prostitutes and sing-song girls. This was seen as a general criticism of the Eastern Han emperors and their imperial favorites, guised in the criticism of earlier Western Han emperors.[49] Besides criticizing the Western Han emperors for lavish decadence, Zhang also pointed out that their behavior and ceremonies did not properly conform with the Chinese cyclical beliefs in yin and yang.[50] In a poem criticizing the previous Western Han dynasty, Zhang wrote:

 
 
A late Eastern Han (25–220 AD) Chinese tomb mural showing lively scenes of a banquet (yànyǐn 宴飲), dance and music (wǔyuè 舞樂), acrobatics (bǎixì 百戲), and wrestling (xiāngbū 相扑), from the Dahuting Tomb, on the southern bank of the Suihe River in Zhengzhou, Henan province, China (just west of Xi County)

Achievements in science and technology edit

Mathematics edit

For centuries the Chinese approximated pi as 3; Liu Xin (d. CE 23) made the first known Chinese attempt at a more accurate calculation of 3.154, but there is no record detailing the method he used to obtain this figure.[51][52] In his work around 130,[53] Zhang Heng compared the celestial circle to the diameter of the earth, proportioning the former as 736 and the latter as 232, thus calculating pi as 3.1724.[54] In Zhang's day, the ratio 4:3 was given for the area of a square to the area of its inscribed circle and the volume of a cube and volume of the inscribed sphere should also be 42:32.[54] In formula, with D as diameter and V as volume, D3:V = 16:9 or V= D3; Zhang realized that the value for diameter in this formula was inaccurate, noting the discrepancy as the value taken for the ratio.[52][54] Zhang then attempted to remedy this by amending the formula with an additional  D3, hence V= D3 +  D3 =  D3.[54] With the ratio of the volume of the cube to the inscribed sphere at 8:5, the implied ratio of the area of the square to the circle is √8:√5.[54][55] From this formula, Zhang calculated pi as the square root of 10 (or approximately 3.162).[17][18][54][55][56] In the 3rd century, Liu Hui made the calculation more accurate with his π algorithm, which allowed him to obtain the value 3.14159.[57] Later, Zu Chongzhi (429–500) approximated pi as   or 3.141592, the most accurate calculation for pi the ancient Chinese would achieve.[58]

Astronomy edit

 
Printed star map of Su Song (1020–1101) showing the south polar projection
 
A Western Han dynasty Chinese silk banner from a 2nd-century BC tomb at Mawangdui; this funerary banner shows a sliver Moon in the top left and the Sun in the top right, both with their cosmological representations of the toad and raven, respectively.

In his publication of AD 120 called The Spiritual Constitution of the Universe (靈憲, Ling Xian, lit. "Sublime Model"),[18][59] Zhang Heng theorized that the universe was like an egg "as round as a crossbow pellet" with the stars on the shell and the Earth as the central yolk.[4][60] This universe theory is congruent with the geocentric model as opposed to the heliocentric model. Although the ancient Warring States (403–221 BC) Chinese astronomers Shi Shen and Gan De had compiled China's first star catalogue in the 4th century BC, Zhang nonetheless catalogued 2,500 stars which he placed in a "brightly shining" category (the Chinese estimated the total to be 14,000), and he recognized 124 constellations.[18][60] In comparison, this star catalogue featured many more stars than the 850 documented by the Greek astronomer Hipparchus (c. 190 – c. 120 BC) in his catalogue, and more than Ptolemy (AD 83–161), who catalogued over 1,000.[61] Zhang supported the "radiating influence" theory to explain solar and lunar eclipses, a theory which was opposed by Wang Chong (AD 27–97).[62] In the Ling Xian, Zhang wrote:

夫日譬猶火,月譬猶水,火則外光,水則含景。故月光生於日之所照,魄生於日之所蔽,當日則光盈,就日則光盡也。
The Sun is like fire and the Moon like water. The fire gives out light and the water reflects it. Thus the Moon's brightness is produced from the radiance of the Sun, and the Moon's darkness is due to (the light of) the Sun being obstructed. The side which faces the Sun is fully lit, and the side which is away from it is dark.

衆星被燿,因水轉光。當日之衝,光常不合者,蔽於地也。是謂闇虛。在星星微,月過則食。
The planets (as well as the Moon) have the nature of water and reflect light. The light pouring forth from the Sun does not always reach the Moon owing to the obstruction of the Earth itself—this is called "ànxū", a lunar eclipse. When (a similar effect) happens with a planet (we call it) an occultation; when the Moon passes across (the Sun's path) then there is a solar eclipse.

— Zhang Heng (AD 120), Sublime Model (Joseph Needham, trans.)[63]

Zhang Heng viewed these astronomical phenomena in supernatural terms as well. The signs of comets, eclipses, and movements of heavenly bodies could all be interpreted by him as heavenly guides on how to conduct affairs of state.[18] Contemporary writers also wrote about eclipses and the sphericity of heavenly bodies. The music theorist and mathematician Jing Fang (78–37 BC) wrote about the spherical shape of the Sun and Moon while discussing eclipses:

The Moon and the planets are Yin; they have shape but no light. This they receive only when the Sun illuminates them. The former masters regarded the Sun as round like a crossbow bullet, and they thought the Moon had the nature of a mirror. Some of them recognized the Moon as a ball too. Those parts of the Moon which the Sun illuminates look bright, those parts which it does not, remain dark.[64]

The theory posited by Zhang and Jing was supported by later pre-modern scientists such as Shen Kuo (1031–1095), who expanded on the reasoning of why the Sun and Moon were spherical.[65] The theory of the celestial sphere surrounding a flat, square Earth was later criticized by the Jin-dynasty scholar-official Yu Xi (fl. 307–345). He suggested that the Earth could be round like the heavens, a spherical Earth theory fully accepted by mathematician Li Ye (1192–1279) but not by mainstream Chinese science until European influence in the 17th century.[66]

Extra tank for inflow clepsydra edit

 
Han dynasty paintings on tile; being conscious of time, the Chinese believed in guardian spirits for the divisions of day and night, such as these two guardians here representing 11 pm to 1 am (left) and 5 am to 7 am (right)

The outflow clepsydra was a timekeeping device used in China as long ago as the Shang dynasty (c. 1600–c. 1050 BC), and certainly by the Zhou dynasty (1122–256 BC).[67] The inflow clepsydra with an indicator rod on a float had been known in China since the beginning of the Han dynasty in 202 BC and had replaced the outflow type.[67] The Han Chinese noted the problem with the falling pressure head in the reservoir, which slowed the timekeeping of the device as the inflow vessel was filled.[67] Zhang Heng was the first to address this problem, indicated in his writings from 117, by adding an extra compensating tank between the reservoir and the inflow vessel.[2][18] Zhang also mounted two statuettes of a Chinese immortal and a heavenly guard on the top of the inflow clepsydra, the two of which would guide the indicator rod with their left hand and point out the graduations with their right.[68] Joseph Needham states that this was perhaps the ancestor of all clock jacks that would later sound the hours found in mechanical clocks by the 8th century, but he notes that these figures did not actually move like clock jack figurines or sound the hours.[68] Many additional compensation tanks were added to later clepsydras in the tradition of Zhang Heng. In 610 the Sui dynasty (581–618) engineers Geng Xun and Yuwen Kai crafted an unequal-armed steelyard balance able to make seasonal adjustments in the pressure head of the compensating tank, so that it could control the rate of water flow for different lengths of day and night during the year.[69] Zhang mentioned a "jade dragon's neck", which in later times meant a siphon.[70] He wrote of the floats and indicator-rods of the inflow clepsydra as follows:

以銅為器,再疊差置,實以清水,下各開孔,以玉虯吐漏水入兩壺。右為夜,左為晝。
Bronze vessels are made and placed one above the other at different levels; they are filled with pure water. Each has at the bottom a small opening in the form of a 'jade dragon's neck'. The water dripping (from above) enters two inflow receivers (alternately), the left one being for the night and the right one for the day.

蓋上又鑄金銅仙人,居左壺;為胥徒,居右壺。皆以左手抱箭,右手指刻,以別天時早晚。
On the covers of each (inflow receiver) there are small cast statuettes in gilt bronze; the left (night) one is an immortal and the right (day) one is a policeman. These figures guide the indicator-rod (lit. arrow) with their left hands, and indicate the graduations on it with their right hands, thus giving the time.[70]

Water-powered armillary sphere edit

 
The original diagram of Su Song's (1020–1101) clock tower, featuring an armillary sphere powered by a waterwheel, escapement mechanism, and chain drive

Zhang Heng is the first person known to have applied hydraulic motive power (i.e. by employing a waterwheel and clepsydra) to rotate an armillary sphere, an astronomical instrument representing the celestial sphere.[71][72][73] The Greek astronomer Eratosthenes (276–194 BC) invented the first armillary sphere in 255 BC. The Chinese armillary sphere was fully developed by 52 BC, with the astronomer Geng Shouchang's (耿壽昌) addition of a permanently fixed equatorial ring.[74] In AD 84 the astronomers Fu An and Jia Kui added the ecliptic ring, and finally Zhang Heng added the horizon and meridian rings.[18][74] This invention is described and attributed to Zhang in quotations by Hsu Chen and Li Shan, referencing his book Lou Shui Chuan Hun Thien I Chieh (Apparatus for Rotating an Armillary Sphere by Clepsydra Water). It was likely not an actual book by Zhang, but a chapter from his Hun I or Hun I Thu Chu, written in 117 AD.[75] His water-powered armillary influenced the design of later Chinese water clocks and led to the discovery of the escapement mechanism by the 8th century.[76] The historian Joseph Needham (1900–1995) states:

What were the factors leading to the first escapement clock in China? The chief tradition leading to Yi Xing (AD 725 ) was of course the succession of 'pre-clocks' which had started with Zhang Heng about 125. Reason has been given for believing that these applied power to the slow turning movement of computational armillary spheres and celestial globes by means of a water-wheel using clepsydra drip, which intermittently exerted the force of a lug to act on the teeth of a wheel on a polar-axis shaft. Zhang Heng in his turn had composed this arrangement by uniting the armillary rings of his predecessors into the equatorial armillary sphere, and combining it with the principles of the water-mills and hydraulic trip-hammers which had become so widespread in Chinese culture in the previous century.[76]

Zhang did not initiate the Chinese tradition of hydraulic engineering, which began during the mid Zhou dynasty (c. 6th century BC), through the work of engineers such as Sunshu Ao and Ximen Bao.[77] Zhang's contemporary, Du Shi, (d. AD 38) was the first to apply the motive power of waterwheels to operate the bellows of a blast furnace to make pig iron, and the cupola furnace to make cast iron.[78][79] Zhang provided a valuable description of his water-powered armillary sphere in the treatise of 125, stating:

The equatorial ring goes around the belly of the armillary sphere 91 and 5/19 (degrees) away from the pole. The circle of the ecliptic also goes round the belly of the instrument at an angle of 24 (degrees) with the equator. Thus at the summer solstice the ecliptic is 67 (degrees) and a fraction away from the pole, while at the winter solstice it is 115 (degrees) and a fraction away. Hence (the points) where the ecliptic and the equator intersect should give the north polar distances of the spring and autumn equinoxes. But now (it has been recorded that) the spring equinox is 90 and 1/4 (degrees) away from the pole, and the autumn equinox is 92 and 1/4 (degrees) away. The former figure is adopted only because it agrees with the (results obtained by the) method of measuring solstitial sun shadows as embodied in the Xia (dynasty) calendar.[80]

Zhang Heng's water-powered armillary sphere had profound effects on Chinese astronomy and mechanical engineering in later generations. His model and its complex use of gears greatly influenced the water-powered instruments of later astronomers such as Yi Xing (683–727), Zhang Sixun (fl. 10th century), Su Song (1020–1101), Guo Shoujing (1231–1316), and many others. Water-powered armillary spheres in the tradition of Zhang Heng's were used in the eras of the Three Kingdoms (220–280) and Jin dynasty (266–420), yet the design for it was temporarily out of use between 317 and 418, due to invasions of northern Xiongnu nomads.[81] Zhang Heng's old instruments were recovered in 418, when Emperor Wu of Liu Song (r. 420–422) captured the ancient capital of Chang'an. Although still intact, the graduation marks and the representations of the stars, Moon, Sun, and planets were quite worn down by time and rust.[81] In 436, the emperor ordered Qian Luozhi, the Secretary of the Bureau of Astronomy and Calendar, to recreate Zhang's device, which he managed to do successfully.[81] Qian's water-powered celestial globe was still in use at the time of the Liang dynasty (502–557), and successive models of water-powered armillary spheres were designed in subsequent dynasties.[81]

Zhang's seismoscope edit

 
A replica of Zhang Heng's seismoscope, the Houfeng didong yi, featured in the Chabot Space & Science Center in Oakland, California

From the earliest times, the Chinese were concerned with the destructive force of earthquakes. It was recorded in Sima Qian's Records of the Grand Historian of 91 BC that in 780 BC an earthquake had been powerful enough to divert the courses of three rivers.[82] It was not known at the time that earthquakes were caused by the shifting of tectonic plates in the Earth's crust; instead, the people of the ancient Zhou dynasty explained them as disturbances with cosmic yin and yang, along with the heavens' displeasure with acts committed (or the common peoples' grievances ignored) by the current ruling dynasty.[82] These theories were ultimately derived from the ancient text of the Yijing (Book of Changes), in its fifty-first hexagram.[83] There were other early theories about earthquakes, developed by those such as the ancient Greeks. Anaxagoras (c. 500–428 BC) believed that they were caused by excess water near the surface crust of the earth bursting into the Earth's hollows; Democritus (c. 460–370 BC) believed that the saturation of the Earth with water caused them; Anaximenes (c. 585–c. 525 BC) believed they were the result of massive pieces of the Earth falling into the cavernous hollows due to drying; and Aristotle (384–322 BC) believed they were caused by instability of vapor (pneuma) caused by the drying of the moist Earth by the Sun's rays.[83]

During the Han dynasty, many learned scholars—including Zhang Heng—believed in the "oracles of the winds".[84] These oracles of the occult observed the direction, force, and timing of the winds, to speculate about the operation of the cosmos and to predict events on Earth.[85] These ideas influenced Zhang Heng's views on the cause of earthquakes.

In 132, Zhang Heng presented to the Han court what many historians consider to be his most impressive invention, the first seismoscope. A seismoscope records the motions of Earth's shaking, but unlike a seismometer, it does not retain a time record of those motions.[86] It was named "earthquake weathervane" (hòufēng dìdòngyí 候風地動儀),[87] and it was able to roughly determine the direction (out of eight directions) where the earthquake came from.[18][72] According to the Book of Later Han (compiled by Fan Ye in the 5th century), his bronze urn-shaped device, with a swinging pendulum inside, was able to detect the direction of an earthquake hundreds of miles/kilometers away.[88][89] This was essential for the Han government in sending quick aid and relief to regions devastated by this type of natural disaster.[3][90][91] The Book of Later Han records that, on one occasion, Zhang's device was triggered, though no observer had felt any seismic disturbance; several days later a messenger arrived from the west and reported that an earthquake had occurred in Longxi (modern Gansu Province), the same direction that Zhang's device had indicated, and thus the court was forced to admit the efficacy of the device.[92]

To indicate the direction of a distant earthquake, Zhang's device dropped a bronze ball from one of eight tubed projections shaped as dragon heads; the ball fell into the mouth of a corresponding metal object shaped as a toad, each representing a direction like the points on a compass rose.[93] His device had eight mobile arms (for all eight directions) connected with cranks having catch mechanisms at the periphery.[94] When tripped, a crank and right angle lever would raise a dragon head and release a ball which had been supported by the lower jaw of the dragon head.[94] His device also included a vertical pin passing through a slot in the crank, a catch device, a pivot on a projection, a sling suspending the pendulum, an attachment for the sling, and a horizontal bar supporting the pendulum.[94] Wang Zhenduo (王振鐸) argued that the technology of the Eastern Han era was sophisticated enough to produce such a device, as evidenced by contemporary levers and cranks used in other devices such as crossbow triggers.[95]

 
Japanese seismologist Akitsune Imamura, who reconstructed Zhang Heng's seismoscope in 1939 while working at Tokyo University

Later Chinese of subsequent periods were able to reinvent Zhang's seismoscope. They included the 6th-century mathematician and surveyor Xindu Fang of the Northern Qi dynasty (550–577) and the astronomer and mathematician Lin Xiaogong of the Sui dynasty (581–618).[96] Like Zhang, Xindu Fang and Lin Xiaogong were given imperial patronage for their services in craftsmanship of devices for the court.[97] By the time of the Yuan dynasty (1271–1368), it was acknowledged that all devices previously made were preserved, except for that of the seismoscope.[98] This was discussed by the scholar Zhou Mi around 1290, who remarked that the books of Xindu Fang and Lin Xiaogong detailing their seismological devices were no longer to be found.[98] Horwitz, Kreitner, and Needham speculate if Tang dynasty (618–907) era seismographs found their way to contemporary Japan; according to Needham, "instruments of apparently traditional type there in which a pendulum carries pins projecting in many directions and able to pierce a surrounding paper cylinder, have been described."[99]

Hong-sen Yan states that modern replicas of Zhang's device have failed to reach the level of accuracy and sensitivity described in Chinese historical records.[100] Wang Zhenduo presented two different models of the seismoscope based on the ancient descriptions of Zhang's device.[101] In his 1936 reconstruction, the central pillar (du zhu) of the device was a suspended pendulum acting as a movement sensor, while the central pillar of his second model in 1963 was an inverted pendulum.[101] According to Needham, while working in the Seismological Observatory of Tokyo University in 1939, Akitsune Imamura and Hagiwara made a reconstruction of Zhang's device.[95][102] While it was John Milne and Wang Zhenduo who argued early on that Zhang's "central pillar" was a suspended pendulum, Imamura was the first to propose an inverted model.[103] He argued that transverse shock would have rendered Wang's immobilization mechanism ineffective, as it would not have prevented further motion that could knock other balls out of their position.[95] On June 13, 2005, modern Chinese seismologists announced that they had successfully created a replica of the instrument.[104]

Anthony J. Barbieri-Low, a professor of early Chinese history at the University of California, Santa Barbara, names Zhang Heng as one of several high-ranking Eastern-Han officials who engaged in crafts that were traditionally reserved for artisans (gong 工), such as mechanical engineering.[105] Barbieri-Low speculates that Zhang only designed his seismoscope, but did not actually craft the device himself. He asserts that this would most likely have been the job of artisans commissioned by Zhang.[106] He writes: "Zhang Heng was an official of moderately high rank and could not be seen sweating in the foundries with the gong artisans and the government slaves. Most likely, he worked collaboratively with the professional casters and mold makers in the imperial workshops."[106]

Cartography edit

 
An early Western-Han (202 BC – AD 9) silk map found in tomb 3 of Mawangdui, depicting the Kingdom of Changsha and Kingdom of Nanyue in southern China (note: the south direction is oriented at the top, north at the bottom)

The Wei (220–265) and Jin dynasty (266–420) cartographer and official Pei Xiu (224–271) was the first in China to describe in full the geometric grid reference for maps that allowed for precise measurements using a graduated scale, as well as topographical elevation.[107][108] However, map-making in China had existed since at least the 4th century BC with the Qin state maps found in Gansu in 1986.[109] Pinpointed accuracy of the winding courses of rivers and familiarity with scaled distance had been known since the Qin and Han dynasty, respectively, as evidenced by their existing maps, while the use of a rectangular grid had been known in China since the Han as well.[110][111] Historian Howard Nelson states that, although the accounts of Zhang Heng's work in cartography are somewhat vague and sketchy, there is ample written evidence that Pei Xiu derived the use of the rectangular grid reference from the maps of Zhang Heng.[112] Rafe de Crespigny asserts that it was Zhang who established the rectangular grid system in Chinese cartography.[18] Needham points out that the title of his book Flying Bird Calendar may have been a mistake, and that the book is more accurately entitled Bird's Eye Map.[113] Historian Florian C. Reiter notes that Zhang's narrative "Guitian fu" contains a phrase about applauding the maps and documents of Confucius of the Zhou dynasty, which Reiter suggests places maps (tu) on a same level of importance with documents (shu).[114] It is documented that a physical geography map was first presented by Zhang Heng in 116 AD, called a Ti Hsing Thu.[115]

Odometer and south-pointing chariot edit

Zhang Heng is often credited with inventing the first odometer,[17][60] an achievement also attributed to Archimedes (c. 287–212 BC) and Heron of Alexandria (fl. AD 10–70). Similar devices were used by the Roman and Han-Chinese empires at about the same period. By the 3rd century, the Chinese had termed the device the jili guche (記里鼓車, "li-recording drum carriage" (the modern measurement of li = 500 m/1640 ft).[116]

 
Odometer cart from a stone rubbing of an Eastern Han dynasty tomb, c. 125

Ancient Chinese texts describe the mechanical carriage's functions; after one li was traversed, a mechanically driven wooden figure struck a drum, and after ten li had been covered, another wooden figure struck a gong or a bell with its mechanically operated arm.[116] However, there is evidence to suggest that the invention of the odometer was a gradual process in Han dynasty China that centered on the "huang men"—court people (i.e. eunuchs, palace officials, attendants and familiars, actors, acrobats, etc.) who followed the musical procession of the royal "drum-chariot".[117] There is speculation that at some time during the 1st century BC the beating of drums and gongs was mechanically driven by the rotation of the road wheels.[117] This might have actually been the design of Luoxia Hong (c. 110 BC), yet by at least 125 the mechanical odometer carriage was already known, as it was depicted in a mural of the Xiao Tang Shan Tomb.[117]

The south-pointing chariot was another mechanical device credited to Zhang Heng.[17] It was a non-magnetic compass vehicle in the form of a two-wheeled chariot. Differential gears driven by the chariot's wheels allowed a wooden figurine (in the shape of a Chinese state minister) to constantly point to the south, hence its name. The Song Shu (c. AD 500 ) records that Zhang Heng re-invented it from a model used in the Zhou dynasty era, but the violent collapse of the Han dynasty unfortunately did not allow it to be preserved. Whether Zhang Heng invented it or not, Ma Jun (200–265) succeeded in creating the chariot in the following century.[118]

Legacy edit

Science and technology edit

 
A Florentine marble carving of Ptolemy (86–161), who created an Earth-centered universe theory that the scholars Jin Guantao, Fan Hongye, and Liu Qingfeng compare with Zhang Heng's theory published in 125[119]

Zhang Heng's mechanical inventions influenced later Chinese inventors such as Yi Xing, Zhang Sixun, Su Song, and Guo Shoujing. Su Song directly named Zhang's water-powered armillary sphere as the inspiration for his 11th-century clock tower.[120] The cosmic model of nine points of Heaven corresponding with nine regions of earth conceived in the work of the scholar-official Chen Hongmou (1696–1771) followed in the tradition of Zhang's book Spiritual Constitution of the Universe.[121] The seismologist John Milne, who created the modern seismograph in 1876 alongside Thomas Gray and James A. Ewing at the Imperial College of Engineering in Tokyo, commented in 1886 on Zhang Heng's contributions to seismology.[122][123] The historian Joseph Needham emphasized his contributions to pre-modern Chinese technology, stating that Zhang was noted even in his day for being able to "make three wheels rotate as if they were one."[124] More than one scholar has described Zhang as a polymath.[7][29][38][91] However, some scholars also point out that Zhang's writing lacks concrete scientific theories.[119] Comparing Zhang with his contemporary, Ptolemy (83–161) of Roman Egypt, Jin Guantao, Fan Hongye, and Liu Qingfeng state:

Based on the theories of his predecessors, Zhang Heng systematically developed the celestial sphere theory. An armillary constructed on the basis of his hypotheses bears a remarkable similarity to Ptolemy's earth-centered theory. However, Zhang Heng did not definitely propose a theoretical model like Ptolemy's earth-centered one. It is astonishing that the celestial model Zhang Heng constructed was almost a physical model of Ptolemy's earth-centered theory. Only a single step separates the celestial globe from the earth-centered theory, but Chinese astronomers never took that step.
Here we can see how important the exemplary function of the primitive scientific structure is. In order to use the Euclidean system of geometry as a model for the development of astronomical theory, Ptolemy first had to select hypotheses which could serve as axioms. He naturally regarded circular motion as fundamental and then used the circular motion of deferents and epicycles in his earth-centered theory. Although Zhang Heng understood that the sun, moon and planets move in circles, he lacked a model for a logically structured theory and so could not establish a corresponding astronomical theory. Chinese astronomy was most interested in extracting the algebraic features of planetary motion (that is, the length of the cyclic periods) to establish astronomical theories. Thus astronomy was reduced to arithmetic operations, extracting common multiples and divisors from the observed cyclic motions of the heavenly bodies.[119]

Poetic literature edit

Zhang's poetry was widely read during his life and after his death. In addition to the compilation of Xiao Tong mentioned above, the Eastern Wu official Xue Zong (d. 237) wrote commentary on Zhang's poems "Dongjing fu" and "Xijing fu".[125] The influential poet Tao Qian wrote that he admired the poetry of Zhang Heng for its "curbing extravagant diction and aiming at simplicity", in regards to perceived tranquility and rectitude correlating with the simple but effective language of the poet.[126] Tao wrote that both Zhang Heng and Cai Yong "avoided inflated language, aiming chiefly at simplicity", and adding that their "compositions begin by giving free expression to their fancies but end on a note of quiet, serving admirably to restrain undisciplined and passionate nature".[127]

Posthumous honors edit

Zhang was given great honors in life and in death. The philosopher and poet Fu Xuan (217–278) of the Wei and Jin dynasties once lamented in an essay over the fact that Zhang Heng was never placed in the Ministry of Works. Writing highly of Zhang and the 3rd-century mechanical engineer Ma Jun, Fu Xuan wrote, "Neither of them was ever an official of the Ministry of Works, and their ingenuity did not benefit the world. When (authorities) employ personnel with no regard to special talent, and having heard of genius neglect even to test it—is this not hateful and disastrous?"[128]

In honor of Zhang's achievements in science and technology, his friend Cui Ziyu (Cui Yuan) wrote a memorial inscription on his burial stele, which has been preserved in the Guwen yuan.[8] Cui stated, "[Zhang Heng's] mathematical computations exhausted (the riddles of) the heavens and the earth. His inventions were comparable even to those of the Author of Change. The excellence of his talent and the splendour of his art were one with those of the gods."[129] The minor official Xiahou Zhan (243–291) of the Wei dynasty made an inscription for his own commemorative stele to be placed at Zhang Heng's tomb. It read: "Ever since gentlemen have composed literary texts, none has been as skillful as the Master [Zhang Heng] in choosing his words well ... if only the dead could rise, oh I could then turn to him for a teacher!"[130]

Several things have been named after Zhang in modern times, including the lunar crater Chang Heng,[131] the asteroid 1802 Zhang Heng,[132] and the mineral zhanghengite. In 2018, China launched a research satellite called China Seismo-Electromagnetic Satellite (CSES) which is also named Zhangheng-1 (ZH-1).[133]

See also edit

References edit

Citation edit

  1. ^ a b Needham (1986), Volume 4, Part 2, 30.
  2. ^ a b Needham (1986), Volume 4, Part 2, 479 footnote e.
  3. ^ a b Wright (2001), 66.
  4. ^ a b Huang (1997), 64.
  5. ^ a b c d e f g h i j k l m n o p Crespigny (2007), 1049.
  6. ^ Xiao and Knechtges (1996), 397.
  7. ^ a b c d e Yan (2007), 127.
  8. ^ a b c d e f g h i j k l Xiao & Knechtges (1996), 398.
  9. ^ a b Asiapac (2004), 120.
  10. ^ Loewe (1968), 105.
  11. ^ a b c d e Neinhauser et al. (1986), 211.
  12. ^ a b Fraser (2014): 371.
  13. ^ Crespigny (2007), 1229.
  14. ^ a b Crespigny (2007), 1222.
  15. ^ Bielenstein (1980), 9 & 19.
  16. ^ Crespigny (2007), 1049 & 1223.
  17. ^ a b c d e f Yan (2007), 128.
  18. ^ a b c d e f g h i j k l m n o p q r s t u Crespigny (2007), 1050.
  19. ^ Loewe (1968), 38–39 & 42.
  20. ^ a b Crespigny (2007), 1049–1050.
  21. ^ Mansvelt-Beck (1990), 26.
  22. ^ a b Declercq (1998), 65.
  23. ^ Loewe (1968), 42.
  24. ^ Wang (1949), 137.
  25. ^ Wang (1949), 142 & 145.
  26. ^ a b c Minford & Lau (2002), 307.
  27. ^ Balchin (2003), 26–27.
  28. ^ Needham (1986), Volume 3, 627.
  29. ^ a b Krebs (2003), 31.
  30. ^ Crespigny (2007), 1225.
  31. ^ Neinhauser et al. (1986), 211–212.
  32. ^ Loewe (2005), 37.
  33. ^ Harper (1987), 262.
  34. ^ a b Lu (1995), 57.
  35. ^ a b Lewis (2006), 184.
  36. ^ Liu (1990), 54.
  37. ^ a b c Neinhauser et al. (1986), 212.
  38. ^ a b Mair (2001), 251.
  39. ^ Hightower (1954), 170–171.
  40. ^ Knechtges (1997), 232.
  41. ^ Schafer (1968), 329–330.
  42. ^ Bulling (1962), 312 & 314.
  43. ^ Lewis (2006), 238.
  44. ^ Wu (1986), 271–272.
  45. ^ Loewe (1990), 142–144.
  46. ^ Fraser (2014): 370.
  47. ^ Declercq (1998), 1–4.
  48. ^ Declercq (1998), 65–66.
  49. ^ Lewis (2006), 184–185.
  50. ^ Bulling (1962), 314–315.
  51. ^ Needham (1986), Volume 3, 99–100.
  52. ^ a b Arndt and Haenel (2001), 176.
  53. ^ Needham (1986), Volume 3, 100.
  54. ^ a b c d e f Berggren, Borwein & Borwein (2004), 27.
  55. ^ a b Arndt and Haenel (2001), 177.
  56. ^ Wilson (2001), 16.
  57. ^ Needham (1986), Volume 3, 100–101.
  58. ^ Berggren, Borwein & Borwein (2004), 20 & 24–26.
  59. ^ Fraser (2014): 374.
  60. ^ a b c Balchin (2003), 27.
  61. ^ Jones (1991), 1.
  62. ^ Needham (1986), Volume 3, 411–413.
  63. ^ Needham (1986), Volume 3, 414.
  64. ^ Needham (1986), Volume 3, 227.
  65. ^ Needham (1986), Volume 3, 415–416.
  66. ^ Needham (1986), Volume 3, pp. 220, 498–499.
  67. ^ a b c Needham (1986), Volume 4, Part 2, 479.
  68. ^ a b Needham (1986), Volume 4, Part 2, 164.
  69. ^ Needham (1986), Volume 4, Part 2, 480.
  70. ^ a b Needham (1986), Volume 3, 320.
  71. ^ Needham (1986), Volume 4, Part 2, 30.
  72. ^ a b Morton & Lewis (2005), 70.
  73. ^ Loewe (1968), 107.
  74. ^ a b Needham (1986), Volume 3, 343.
  75. ^ Needham (1965), Volume 4, Part 1, 486.
  76. ^ a b Needham (1986), Volume 4, Part 2, 532.
  77. ^ Needham (1986), Volume 4, Part 3, 271.
  78. ^ Needham (1986), Volume 4, Part 2, 370.
  79. ^ Wagner (2001), 75–76.
  80. ^ Needham (1986), Volume 3, 355–356.
  81. ^ a b c d Needham (1986), Volume 4, Part 2, 483.
  82. ^ a b Needham (1986), Volume 3, 624.
  83. ^ a b Needham (1986), Volume 3, 625.
  84. ^ Loewe (1988), 509, 513, 515.
  85. ^ Loewe (1988), 509.
  86. ^ Stein and Wysession (2002), 400.
  87. ^ Fraser (2014): 375.
  88. ^ Neehdam (1986), Volume 4, Part 2, 484.
  89. ^ Loewe (1968), 106.
  90. ^ Needham (1986), Volume 4, Part 2, 484; Needham (1986), Volume 3, 632.
  91. ^ a b Dillon (1998), 378.
  92. ^ Fraser (2014): 376.
  93. ^ Needham (1986), Volume 3, 627–628.
  94. ^ a b c Needham (1986), Volume 3, 629.
  95. ^ a b c Needham (1986), Volume 3, 630.
  96. ^ Needham (1986), Volume 3, 632–633.
  97. ^ Needham (1986), Volume 3, 633.
  98. ^ a b Needham (1986), Volume 3, 633–634.
  99. ^ Needham (1986), Volume 3, 635.
  100. ^ Yan (2007), 131.
  101. ^ a b Yan (2007), 131–132.
  102. ^ Yan (2007), 132.
  103. ^ Needham (1986), Volume 3, 628 & 630.
  104. ^ People's Daily Online (June 13, 2005). China resurrects world's earliest seismograph. Retrieved on 2005-06-13.
  105. ^ Barbieri-Low (2007), 201–203.
  106. ^ a b Barbieri-Low (2007), 204.
  107. ^ Needham (1986), Volume 3, 538–540.
  108. ^ Hsu (1993), 97.
  109. ^ Hsu (1993), 90.
  110. ^ Needham (1986), Volume 3, 106–107.
  111. ^ Hsu (1993), 90 & 97.
  112. ^ Nelson (1974), 359.
  113. ^ Needham (1986), Volume 3, 538. "the title may have referred to a Bird's Eye Map ... that Chang Heng occupied himself with map-making is sure ... a physical geograph map was presented by him".
  114. ^ Reiter (1990), 320.
  115. ^ Needham (1986), Volume 3, 538.
  116. ^ a b Needham (1986), Volume 4, Part 2, 281.
  117. ^ a b c Needham (1986), Volume 4, Part 2, 283.
  118. ^ Needham (1986), Volume 4, Part 2, 40.
  119. ^ a b c Jin, Fan, and Liu (1996), 170.
  120. ^ Needham (1986), Volume 4, Part 2, 466.
  121. ^ Rowe (2001), 88.
  122. ^ Needham (1986), Volume 3, 626.
  123. ^ Yan (2007), 124.
  124. ^ Needham (1986), Volume 4, Part 2, 85–86.
  125. ^ Cutter (1984), 11 (footnote 61), 15, (footnote 80), 26 (footnote 141).
  126. ^ Yim-tze (1989), 63.
  127. ^ Hightower (1954), 169–170.
  128. ^ Needham (1986), Volume 4, Part 2, 42.
  129. ^ Needham (1986), Volume 3, 359.
  130. ^ Declercq (1998), 247.
  131. ^ Lunar Names Proposed, 290.
  132. ^ Schmadel (2003), 144.
  133. ^ "Long March 2D launches Zhangheng-1 Earthquake investigator – NASASpaceFlight.com". www.nasaspaceflight.com. 2 February 2018. Retrieved 2018-02-05.

Bibliography edit

  • Arndt, Jörg; Haenel, Christoph (2001). Pi — Unleashed. Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-56735-3. ISBN 978-3-540-66572-4. S2CID 46515097.
  • Asiapac Editorial. (2004). Origins of Chinese Science and Technology. Translated by Yang Liping and Y.N. Han. Singapore: Asiapac Books Pte. Ltd. ISBN 981-229-376-0.
  • Balchin, Jon. (2003). Science: 100 Scientists Who Changed the World. New York: Enchanted Lion Books. ISBN 1-59270-017-9.
  • Barbieri-Low, Anthony J. (2007). Artisans in Early Imperial China. Seattle & London: University of Washington Press. ISBN 0-295-98713-8.
  • Berggren, Lennart; Borwein, Jonathan; Borwein, Peter (2004). Pi: A Source Book. doi:10.1007/978-1-4757-4217-6. ISBN 978-1-4419-1915-1.
  • Bielenstein, Hans (1980). The Bureaucracy of Han Times. doi:10.1017/CBO9780511759727. ISBN 9780521225106.
  • Bulling, A. (1962). "A Landscape Representation of the Western Han Period". Artibus Asiae. 25 (4): 293–317. doi:10.2307/3249129. JSTOR 3249129.
  • De Crespigny, Rafe (2007). A Biographical Dictionary of Later Han to the Three Kingdoms (23-220 AD). doi:10.1163/ej.9789004156050.i-1311. ISBN 9789047411840.
  • Cutter, Robert Joe (1984). "Cao Zhi's (192-232) Symposium Poems". Chinese Literature: Essays, Articles, Reviews. 6 (1/2): 1–32. doi:10.2307/823444. JSTOR 823444.
  • Declercq, Dominik (1998). Writings Against the State: Political Rhetorics in Third and Fourth Century China. Leiden: Koninklijke Brill NV.
  • Dillon, Michael. (1998). China: A Historical and Cultural Dictionary. Surrey: Routledge Curzon Press. ISBN 0-7007-0439-6.
  • Fraser, Ian W. (2014). "Zhang Heng 张衡", in Kerry Brown, ed., The Berkshire Dictionary of Chinese Biography (pp. 369–376). Great Barrington, MA: Berkshire Publishing. ISBN 1-933782-66-8.
  • Harper, Donald (1987). "Wang Yen-shou's Nightmare Poem". Harvard Journal of Asiatic Studies. 47 (1): 239–283. doi:10.2307/2719162. JSTOR 2719162.
  • Hightower, James Robert (1954). "The Fu of T'ao Ch'ien". Harvard Journal of Asiatic Studies. 17 (1/2): 169–230. doi:10.2307/2718131. JSTOR 2718131.
  • Hsu, Mei-Ling (1993). "The Qin maps: A clue to later Chinese cartographic development". Imago Mundi. 45: 90–100. doi:10.1080/03085699308592766.
  • Huang, Ray (1997). China: A Macro History. New York: An East Gate Book, M. E. SHARPE Inc.
  • Guantao, Jin; Hongye, Fan; Qingfeng, Liu (1996). "Historical Changes in the Structure of Science and Technology (Part Two, A Commentary)". Chinese Studies in the History and Philosophy of Science and Technology. Boston Studies in the Philosophy of Science. Vol. 179. pp. 165–183. doi:10.1007/978-94-015-8717-4_14. ISBN 978-90-481-4546-1.
  • Jones, Kenneth Glyn. (1991). Messier's Nebulae and Star Clusters. Cambridge: Cambridge University Press. ISBN 0-521-37079-5.
  • Krebs, Robert E. (2003). The Basics of Earth Science. Westport: Greenwood Press of Greenwood Publishing Group, Inc. ISBN 0-313-31930-8.
  • Knechtges, David R. (1997). "Gradually Entering the Realm of Delight: Food and Drink in Early Medieval China". Journal of the American Oriental Society. 117 (2): 229–239. doi:10.2307/605487. JSTOR 605487.
  • Knechtges, David R. (2014). "Zhang Heng 張衡". In Knechtges, David R.; Chang, Taiping (eds.). Ancient and Early Medieval Chinese Literature: A Reference Guide, Part Four. Leiden: Brill. pp. 2141–55. ISBN 978-90-04-27217-0.
  • Lewis, Mark Edward (2006). The Construction of Space in Early China. New York: State University of New York Press. ISBN 0-7914-6607-8.
  • Liu, Wu-chi. (1990). An Introduction to Chinese Literature. Westport: Greenwood Press of Greenwood Publishing Group. ISBN 0-313-26703-0.
  • Loewe, Michael (1988). "The oracles of the clouds and the Winds". Bulletin of the School of Oriental and African Studies. 51 (3): 500–520. doi:10.1017/S0041977X00116490. S2CID 130430336.
  • Loewe, Michael. (1968). Everyday Life in Early Imperial China during the Han Period 202 BC-AD 220. London: B.T. Batsford Ltd.; New York: G.P. Putnam's Sons.
  • Loewe, Michael. (1990). "The Juedi Games: a re-enactment of the battle between Chiyou and Xianyuan", in Thought and Law in Qin and Han China: Studies dedicated to Anthony Huslewé on the occasion of his eightieth birthday, 140–157, edited by W.L. Idema and E. Zürcher. Leiden: E.J. Brill. ISBN 90-04-09269-2.
  • Loewe, Michael. (2005). Faith, Myth, and Reason in Han China. Indianapolis: Hacket Publishing Company, Inc. ISBN 0-87220-756-0.
  • Lu, Zongli (1995). "Problems concerning the Authenticity of Shih chi 123 Reconsidered". Chinese Literature: Essays, Articles, Reviews. 17: 51–68. doi:10.2307/495553. JSTOR 495553.
  • "Lunar Names Proposed". Science News. 90 (16): 290. 1966. doi:10.2307/3950717. JSTOR 3950717.
  • Mair, Victor H. (2001). The Columbia History of Chinese Literature. New York: Columbia University Press. ISBN 0-231-10984-9.
  • Mansvelt-Beck, B.J. (1990). The Treatises of Later Han: Their Author, Sources, Contents, and Place in Chinese Historiography. Leiden: E.J. Brill. ISBN 90-04-08895-4.
  • Minford, John and Joseph S.M. Lau. (2002). Classical Chinese literature: an anthology of translations. New York: Columbia University Press. ISBN 0-231-09676-3.
  • Morton, W. Scott and Charlton M. Lewis (2005). China: Its History and Culture. New York: McGraw-Hill, Inc.
  • Needham, Joseph (1986). Science and Civilization in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth. Cambridge: Cambridge University Press. reprinted: Taipei: Caves Books, Ltd.
  • Needham, Joseph (1965). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 1: Physics. Cambridge: Cambridge University Press.
  • Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 2: Mechanical Engineering. Cambridge: Cambridge University Press. reprinted: Taipei: Caves Books, Ltd.
  • Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 3: Civil Engineering and Nautics . Cambridge: Cambridge University Press. reprinted: Taipei: Caves Books, Ltd.
  • Neinhauser, William H., Charles Hartman, Y.W. Ma, and Stephen H. West. (1986). The Indiana Companion to Traditional Chinese Literature: Volume 1. Bloomington: Indiana University Press. ISBN 0-253-32983-3.
  • Nelson, Howard (1974). "Chinese Maps: An Exhibition at the British Library". The China Quarterly. 58: 357–362. doi:10.1017/S0305741000011346. S2CID 154338508.
  • Reiter, Florian C. (1990). "Some Remarks on the Chinese Word t'u "Chart, Plan, Design"". Oriens. 32: 308–327. doi:10.2307/1580636. JSTOR 1580636.
  • Rowe, William T. (2001). Saving the World: Chen Hongmou and Elite Consciousness in Eighteenth-Century China. Stanford: Stanford University Press. ISBN 0-8047-4818-7.
  • Schafer, Edward H. (1968). "Hunting Parks and Animal Enclosures in Ancient China". Journal of the Economic and Social History of the Orient. 11 (3): 318–343. doi:10.2307/3596278. JSTOR 3596278.
  • Schmadel, Lutz D. (2003). Dictionary of Minor Planet Names. doi:10.1007/978-3-540-29925-7. ISBN 978-3-540-00238-3.
  • Stein, S., and M. E. Wysession. (2002). An Introduction to Seismology, Earthquakes, and Earth Structure. London: Wiley-Blackwell. ASIN B010WFPEOO.
  • Wagner, Donald B. (2001). The State and the Iron Industry in Han China. Copenhagen: Nordic Institute of Asian Studies Publishing. ISBN 87-87062-83-6.
  • Yu-Ch'Uan, Wang (1949). "An Outline of the Central Government of the Former Han Dynasty". Harvard Journal of Asiatic Studies. 12 (1/2): 134–187. doi:10.2307/2718206. JSTOR 2718206.
  • Wilson, Robin J. (2001). Stamping Through Mathematics. New York: Springer-Verlag New York, Inc.
  • Wright, David Curtis (2001) The History of China. Westport: Greenwood Press.
  • Hung, Wu (1986). "Buddhist Elements in Early Chinese Art (2nd and 3rd Centuries A.D.)". Artibus Asiae. 47 (3/4): 263–352. doi:10.2307/3249974. JSTOR 3249974.
  • Xiao, Tong and David Knechtges. (1996). Wen Xuan, Or, Selections of Refined Literature. Princeton: Princeton University Press. ISBN 0-691-02126-0.
  • Yan, Hong-sen (2007). Reconstruction Designs of Lost Ancient Chinese Machinery. History of Mechanism and Machine Science. Vol. 3. doi:10.1007/978-1-4020-6460-9. ISBN 978-1-4020-6459-3.
  • Kwong, Yim-tze (1989). "Naturalness and Authenticity: The Poetry of Tao Qian". Chinese Literature: Essays, Articles, Reviews. 11: 35–77. doi:10.2307/495526. JSTOR 495526.

Further reading edit

  • Lien, Y. Edmund (2011). Zhang Heng, Eastern Han Polymath, His Life and Works (PhD thesis). University of Washington.

zhang, heng, other, uses, disambiguation, this, chinese, name, family, name, zhang, chinese, 張衡, formerly, romanized, chang, heng, chinese, polymathic, scientist, statesman, lived, during, dynasty, educated, capital, cities, luoyang, chang, achieved, success, . For other uses see Zhang Heng disambiguation In this Chinese name the family name is Zhang Zhang Heng Chinese 張衡 AD 78 139 formerly romanized Chang Heng was a Chinese polymathic scientist and statesman who lived during the Han dynasty Educated in the capital cities of Luoyang and Chang an he achieved success as an astronomer mathematician seismologist hydraulic engineer inventor geographer cartographer ethnographer artist poet philosopher politician and literary scholar Zhang Heng張衡A stamp of Zhang Heng issued by China Post in 1955BornAD 78Nanyang ChinaDiedAD 139 aged 60 61 Luoyang ChinaKnown forSeismometer hydraulic powered armillary sphere pi calculation poetry universe model lunar eclipse and solar eclipse theoryScientific careerFieldsAstronomy mathematics seismology hydraulic engineering geography ethnography mechanical engineering calendrical science metaphysics poetry literature Zhang HengZhang s name in Traditional top and Simplified bottom Chinese charactersTraditional Chinese張衡Simplified Chinese张衡TranscriptionsStandard MandarinHanyu PinyinZhang HengWade GilesChang1 Heng2IPA ʈʂa ŋ xe ŋ WuSuzhouneseTsan GhenYue CantoneseYale RomanizationCheung HahngJyutpingZoeng1 Hang4IPA tsœːŋ hɐŋ Southern MinHokkien POJTiong HingMiddle ChineseMiddle Chineseʈjang haengOld ChineseBaxter Sagart 2014 C trang gˤrang Zhang Heng began his career as a minor civil servant in Nanyang Eventually he became Chief Astronomer Prefect of the Majors for Official Carriages and then Palace Attendant at the imperial court His uncompromising stance on historical and calendrical issues led to his becoming a controversial figure preventing him from rising to the status of Grand Historian His political rivalry with the palace eunuchs during the reign of Emperor Shun r 125 144 led to his decision to retire from the central court to serve as an administrator of Hejian Kingdom in present day Hebei Zhang returned home to Nanyang for a short time before being recalled to serve in the capital once more in 138 He died there a year later in 139 Zhang applied his extensive knowledge of mechanics and gears in several of his inventions He invented the world s first water powered armillary sphere to assist astronomical observation 1 improved the inflow water clock by adding another tank 2 and invented the world s first seismoscope which discerned the cardinal direction of an earthquake 500 km 310 mi away 1 3 4 He improved previous Chinese calculations for pi In addition to documenting about 2 500 stars in his extensive star catalog Zhang also posited theories about the Moon and its relationship to the Sun specifically he discussed the Moon s sphericity its illumination by reflected sunlight on one side and the hidden nature of the other and the nature of solar and lunar eclipses His fu rhapsody and shi poetry were renowned in his time and studied and analyzed by later Chinese writers Zhang received many posthumous honors for his scholarship and ingenuity some modern scholars have compared his work in astronomy to that of the Greco Roman Ptolemy AD 86 161 Contents 1 Life 1 1 Early life 1 2 Official career 2 Literature and poetry 3 Achievements in science and technology 3 1 Mathematics 3 2 Astronomy 3 3 Extra tank for inflow clepsydra 3 4 Water powered armillary sphere 3 5 Zhang s seismoscope 3 6 Cartography 3 7 Odometer and south pointing chariot 4 Legacy 4 1 Science and technology 4 2 Poetic literature 4 3 Posthumous honors 5 See also 6 References 6 1 Citation 6 2 Bibliography 7 Further readingLife editFurther information History of the Han dynasty Early life edit Born in the town of Xi e in Nanyang Commandery north of the modern Nanyang City in Henan province Zhang Heng came from a distinguished but not affluent family 5 6 7 His grandfather Zhang Kan 張堪 had been governor of a commandery and one of the leaders who supported the restoration of the Han by Emperor Guangwu r 25 57 following the death of the usurping Wang Mang of the Xin AD 9 23 5 8 9 10 When he was ten Zhang s father died leaving him in the care of his mother and grandmother 9 An accomplished writer in his youth Zhang left home in the year 95 to pursue his studies in the capitals of Chang an and Luoyang 5 While traveling to Luoyang Zhang passed by a hot spring near Mount Li and dedicated one of his earliest fu poems to it 11 This work entitled Fu on the Hot Springs Wenquan fu 溫泉賦 describes the throngs of people attending the hot springs which later became famous as the Huaqing Hot Springs a favorite retreat of imperial concubine Yang Guifei during the Tang dynasty 12 After studying for some years at Luoyang s Taixue he was well versed in the classics and friends with several notable persons including the mathematician and calligrapher Cui Yuan 78 143 the official and philosophical commentator Ma Rong 79 166 and the philosopher Wang Fu 78 163 5 7 Government authorities offered Zhang appointments to several offices including a position as one of the Imperial Secretaries yet he acted modestly and declined 5 11 At age 23 Zhang returned home with the title Officer of Merit in Nanyang serving as the master of documents under the administration of Governor Bao De in office from 103 to 111 5 7 8 As he was charged with composing inscriptions and dirges for the governor he gained experience in writing official documents 8 As Officer of Merit in the commandery he was also responsible for local appointments to office and recommendations to the capital of nominees for higher office 13 He spent much of his time composing rhapsodies on the capital cities When Bao De was recalled to the capital in 111 to serve as a minister of finance Zhang continued his literary work at home in Xi e 5 8 11 Zhang Heng began his studies in astronomy at the age of 30 and began publishing his works on astronomy and mathematics 8 Official career edit Further information Government of the Han dynasty In 112 Zhang was summoned to the court of Emperor An r 106 125 who had heard of his expertise in mathematics 8 When he was nominated to serve at the capital Zhang was escorted by carriage a symbol of his official status to Luoyang where he became a court gentleman working for the Imperial Secretariat 5 8 He was promoted to Chief Astronomer for the court serving his first term from 115 to 120 under Emperor An and his second under the succeeding emperor from 126 to 132 8 As Chief Astronomer Zhang was a subordinate of the Minister of Ceremonies one of Nine Ministers ranked just below the Three Excellencies 14 In addition to recording heavenly observations and portents preparing the calendar and reporting which days were auspicious and which ill omened Zhang was also in charge of an advanced literacy test for all candidates to the Imperial Secretariat and the Censorate both of whose members were required to know at least 9 000 characters and all major writing styles 14 15 Under Emperor An Zhang also served as Prefect of the Majors for Official Carriages under the Ministry of Guards in charge of receiving memorials to the throne formal essays on policy and administration as well as nominees for official appointments 16 17 nbsp nbsp Left ceramic statues of horse drawn chariots from the tomb of the wife of Liu Xu 劉胥 Prince Li of Guangling 廣陵厲王 a son of Emperor Wu of Han who committed suicide 53 BC right a Western Han terracotta cavalier figurine wearing robes and a hat as Chief Astronomer Zhang Heng earned a fixed salary and rank of 600 bushels of grain which was mostly commuted to payments in coinage currency or bolts of silk and so he would have worn a specified type of robe ridden in a specified type of carriage and held a unique emblem that marked his status in the official hierarchy 18 19 When the government official Dan Song proposed the Chinese calendar should be reformed in 123 to adopt certain apocryphal teachings Zhang opposed the idea He considered the teachings to be of questionable stature and believed they could introduce errors 5 Others shared Zhang s opinion and the calendar was not altered yet Zhang s proposal that apocryphal writings should be banned was rejected 5 The officials Liu Zhen and Liu Taotu members of a committee to compile the dynastic history Dongguan Hanji 東觀漢記 sought permission from the court to consult Zhang Heng 5 However Zhang was barred from assisting the committee due to his controversial views on apocrypha and his objection to the relegation of the Gengshi Emperor s r 23 25 role in the restoration of the Han dynasty as lesser than Emperor Guangwu s 20 21 Liu Zhen and Liu Taotu were Zhang s only historian allies at court and after their deaths Zhang had no further opportunities for promotion to the prestigious post of court historian 20 Despite this setback in his official career Zhang was reappointed as Chief Astronomer in 126 after Emperor Shun of Han r 125 144 ascended to the throne 18 22 His intensive astronomical work was rewarded only with the rank and salary of 600 bushels or shi of grain mostly commuted to coin cash or bolts of silk 18 23 To place this number in context in a hierarchy of twenty official ranks the lowest paid official earned the rank and salary of 100 bushels and the highest paid official earned 10 000 bushels during the Han 24 The 600 bushel rank was the lowest the emperor could directly appoint to a central government position any official of lower status was overseen by central or provincial officials of high rank 25 In 132 Zhang introduced an intricate seismoscope to the court which he claimed could detect the precise cardinal direction of a distant earthquake 26 On one occasion his device indicated that an earthquake had occurred in the northwest As there was no perceivable tremor felt in the capital his political enemies were briefly able to relish the failure of his device 26 until a messenger arrived shortly afterwards to report that an earthquake had occurred about 400 km 248 mi to 500 km 310 mi northwest of Luoyang in Gansu province 26 27 28 29 nbsp A pottery miniature of a palace made during the Han dynasty as a palace attendant Zhang Heng had personal access to Emperor Shun and the right to escort him A year after Zhang presented his seismoscope to the court officials and candidates were asked to provide comments about a series of recent earthquakes which could be interpreted as signs of displeasure from Heaven 18 The ancient Chinese viewed natural calamities as cosmological punishments for misdeeds that were perpetrated by the Chinese ruler or his subordinates on earth In Zhang s memorial discussing the reasons behind these natural disasters he criticized the new recruitment system of Zuo Xiong which fixed the age of eligible candidates for the title Filial and Incorrupt at age forty 18 The new system also transferred the power of the candidates assessment to the Three Excellencies rather than the Generals of the Household who by tradition oversaw the affairs of court gentlemen 18 Although Zhang s memorial was rejected his status was significantly elevated soon after to Palace Attendant a position he used to influence the decisions of Emperor Shun 17 18 With this prestigious new position Zhang earned a salary of 2 000 bushels and had the right to escort the emperor 30 As Palace Attendant to Emperor Shun Zhang Heng attempted to convince him that the court eunuchs represented a threat to the imperial court Zhang pointed to specific examples of past court intrigues involving eunuchs and convinced Shun that he should assume greater authority and limit their influence 18 The eunuchs attempted to slander Zhang who responded with a fu rhapsody called Fu on Pondering the Mystery which vents his frustration 12 Rafe de Crespigny states that Zhang s rhapsody used imagery similar to Qu Yuan s 340 278 BC poem Li Sao and focused on whether or not good men should flee the corrupted world or remain virtuous within it 18 31 nbsp Eastern Han tomb brick depicting the courtyard of a wealthy family s home Zhang enjoyed a short period of retirement at his home in Xi e Nanyang before being called back to the capital where he died in 139 Literature and poetry editFurther information Chinese literature and Society and culture of the Han dynasty nbsp An Eastern Han earthenware figurine of the Queen Mother of the West Zhang fantasized about her in his Rhapsody on Contemplating the Mystery 思玄賦 yet the pleasures of the flesh and immortality that she could offer were not tempting enough to sway his heart which was set elsewhere 32 While working for the central court Zhang Heng had access to a variety of written materials located in the Archives of the Eastern Pavilion 33 Zhang read many of the great works of history in his day and claimed he had found ten instances where the Records of the Grand Historian by Sima Qian 145 90 BC and the Book of Han by Ban Gu AD 32 92 differed from other ancient texts that were available to him 5 34 His account was preserved and recorded in the 5th century text of the Book of Later Han by Fan Ye 398 445 34 His rhapsodies and other literary works displayed a deep knowledge of classic texts Chinese philosophy and histories 5 He also compiled a commentary on the Taixuan 太玄 Great Mystery by the Daoist author Yang Xiong 53 BC AD 18 7 8 18 Xiao Tong 501 531 a crown prince of the Liang dynasty 502 557 immortalized several of Zhang s works in his literary anthology Selections of Refined Literature Wen xuan 文選 Zhang s fu rhapsodies include Western Metropolis Rhapsody Xi jing fu 西京賦 Eastern Metropolis Rhapsody Dōng jing fu 東京賦 Southern Capital Rhapsody Nan du fu 南都賦 Rhapsody on Contemplating the Mystery Si xuan fu 思玄賦 and Rhapsody on Returning to the Fields Gui tian fu 歸田賦 35 The latter fuses Daoist ideas with Confucianism and was a precursor to later Chinese metaphysical nature poetry according to Liu Wu chi 36 A set of four short lyric poems shi 詩 entitled Lyric Poems on Four Sorrows Si chou shi 四愁詩 is also included with Zhang s preface This set constitutes some of the earliest heptasyllabic shi Chinese poetry written 37 38 While still in Luoyang Zhang became inspired to write his Western Metropolis Rhapsody and Eastern Metropolis Rhapsody which were based on the Rhapsody on the Two Capitals by the historian Ban Gu 5 Zhang s work was similar to Ban s although the latter fully praised the contemporaneous Eastern Han regime while Zhang provided a warning that it could suffer the same fate as the Western Han if it too declined into a state of decadence and moral depravity 5 These two works satirized and criticized what he saw as the excessive luxury of the upper classes 11 Zhang s Southern Capital Rhapsody commemorated his home city of Nanyang home of the restorer of the Han dynasty Guangwu 5 In Zhang Heng s poem Four Sorrows he laments that he is unable to woo a beautiful woman due to the impediment of mountains snows and rivers 8 18 Scholars Rafe de Crespigny and David R Knechtges claim that Zhang wrote this as an innuendo hinting at his inability to keep in contact with the emperor hindered by unworthy rivals and petty men 8 18 This poem is one of the first in China to have seven words per line 37 His Four Sorrows reads nbsp nbsp A Western Han terracotta figurine of a serving lady and Han ceramic figures of women In his poetry Zhang Heng expressed his affinity for gracious and commendable women As well as being a painter Zhang also crafted figurine sculptures similar to this one 17 我所思兮在太山 欲往從之樑父艱 側身東望涕沾翰 美人贈我金錯刀 何以報之英瓊瑤 路遠莫致倚逍遙 何爲懷憂心煩勞 In Taishan stays my dear sweetheart But Liangfu keeps us long apart Looking east I find tears start She gives me a sword to my delight A jade I give her as requite I m at a loss as she is out of sight Why should I trouble myself all night In another poem of his called Stabilizing the Passions Ding qing fu 定情賦 preserved in a Tang dynasty 618 907 encyclopedia but referred to earlier by Tao Qian 365 427 in praise of Zhang s lyrical minimalism Zhang displays his admiration for an attractive and exemplary woman 39 This simpler type of fu poem influenced later works by the prominent official and scholar Cai Yong 132 192 37 Zhang wrote 夫何妖女之淑麗 光華豔而秀容 斷當時而呈美 冠朋匹而無雙 Ah the chaste beauty of this alluring woman She shines with flowery charms and blooming face She is unique among all her contemporaries She is without a peer among her comrades nbsp Eastern Han tomb models of watchtowers the one on the left has crossbowmen in the top balcony Zhang wrote that Western Han emperors were entertained by displays of archery from the balconies of towers along Chang an s Kunming Lake Zhang s long lyrical poems also revealed a great amount of information on urban layout and basic geography His rhapsody Sir Based On Nothing provides details on terrain palaces hunting parks markets and prominent buildings of Chang an the Western Han capital 11 35 Exemplifying his attention to detail his rhapsody on Nanyang described gardens filled with spring garlic summer bamboo shoots autumn leeks winter rape turnips perilla evodia and purple ginger 40 Along with Sima Xiangru 179 117 BC Zhang listed a variety of animals and hunting game inhabiting the park which were divided in the northern and southern portions of the park according to where the animals had originally come from northern or southern China 41 Somewhat similar to the description of Sima Xiangru Zhang described the Western Han emperors and their entourage enjoying boat outings water plays fishing and displays of archery targeting birds and other animals with stringed arrows from the tops of tall towers along Chang an s Kunming Lake 42 The focus of Zhang s writing on specific places and their terrain society people and their customs could also be seen as early attempts of ethnographic categorization 43 In his poem Xijing fu Zhang shows that he was aware of the new foreign religion of Buddhism introduced via the Silk Road as well as the legend of the birth of Buddha with the vision of the white elephant bringing about conception 44 In his Western Metropolis Rhapsody 西京賦 Zhang described court entertainments such as juedi 角抵 a form of theatrical wrestling accompanied by music in which participants butted heads with bull horn masks 45 nbsp Eastern Han tomb painting of two men engrossed in conversation Zhang s shelun or hypothetical discourse involved a written dialogue between imaginary or real persons to demonstrate how one could lead an exemplary life With his Responding to Criticism Ying jian 應間 a work modeled on Yang Xiong s Justification Against Ridicule 46 Zhang was an early writer and proponent of the Chinese literary genre shelun or hypothetical discourse Authors of this genre created a written dialogue between themselves and an imaginary person or a real person of their entourage or association the latter poses questions to the author on how to lead a successful life 47 He also used it as a means to criticize himself for failing to obtain high office but coming to the conclusion that the true gentleman displays virtue instead of greed for power 18 In this work Dominik Declercq asserts that the person urging Zhang to advance his career in a time of government corruption most likely represented the eunuchs or Empress Liang s 116 150 powerful relatives in the Liang clan 22 Declercq states that these two groups would have been anxious to know whether this famous scholar could be lured over to their side but Zhang flatly rejected such an alignment by declaring in this politically charged piece of literature that his gentlemanly quest for virtue trumped any desire of his for power 48 Zhang wrote about the various love affairs of emperors dissatisfied with the imperial harem going out into the city incognito to seek out prostitutes and sing song girls This was seen as a general criticism of the Eastern Han emperors and their imperial favorites guised in the criticism of earlier Western Han emperors 49 Besides criticizing the Western Han emperors for lavish decadence Zhang also pointed out that their behavior and ceremonies did not properly conform with the Chinese cyclical beliefs in yin and yang 50 In a poem criticizing the previous Western Han dynasty Zhang wrote 得之者強 據之者久 流長則難竭 柢深則難朽 故奢泰肆情 馨烈彌茂 Those who won this territory were strong Those who depended on it endured When a stream is long its water is not easily exhausted When roots are deep they do not rot easily Therefore as extravagance and ostentation were given free rein The odor became pungent and increasingly fulsome nbsp nbsp A late Eastern Han 25 220 AD Chinese tomb mural showing lively scenes of a banquet yanyǐn 宴飲 dance and music wǔyue 舞樂 acrobatics bǎixi 百戲 and wrestling xiangbu 相扑 from the Dahuting Tomb on the southern bank of the Suihe River in Zhengzhou Henan province China just west of Xi County Achievements in science and technology editFurther information Science and technology of the Han dynasty Mathematics edit See also Chronology of computation of p Chinese mathematics and History of geometry Chinese geometry For centuries the Chinese approximated pi as 3 Liu Xin d CE 23 made the first known Chinese attempt at a more accurate calculation of 3 154 but there is no record detailing the method he used to obtain this figure 51 52 In his work around 130 53 Zhang Heng compared the celestial circle to the diameter of the earth proportioning the former as 736 and the latter as 232 thus calculating pi as 3 1724 54 In Zhang s day the ratio 4 3 was given for the area of a square to the area of its inscribed circle and the volume of a cube and volume of the inscribed sphere should also be 42 32 54 In formula with D as diameter and V as volume D3 V 16 9 or V 9 16 displaystyle tfrac 9 16 nbsp D3 Zhang realized that the value for diameter in this formula was inaccurate noting the discrepancy as the value taken for the ratio 52 54 Zhang then attempted to remedy this by amending the formula with an additional 1 16 displaystyle tfrac 1 16 nbsp D3 hence V 9 16 displaystyle tfrac 9 16 nbsp D3 1 16 displaystyle tfrac 1 16 nbsp D3 5 8 displaystyle tfrac 5 8 nbsp D3 54 With the ratio of the volume of the cube to the inscribed sphere at 8 5 the implied ratio of the area of the square to the circle is 8 5 54 55 From this formula Zhang calculated pi as the square root of 10 or approximately 3 162 17 18 54 55 56 In the 3rd century Liu Hui made the calculation more accurate with his p algorithm which allowed him to obtain the value 3 14159 57 Later Zu Chongzhi 429 500 approximated pi as 355 113 displaystyle tfrac 355 113 nbsp or 3 141592 the most accurate calculation for pi the ancient Chinese would achieve 58 Astronomy edit See also Chinese astronomy nbsp Printed star map of Su Song 1020 1101 showing the south polar projection nbsp A Western Han dynasty Chinese silk banner from a 2nd century BC tomb at Mawangdui this funerary banner shows a sliver Moon in the top left and the Sun in the top right both with their cosmological representations of the toad and raven respectively In his publication of AD 120 called The Spiritual Constitution of the Universe 靈憲 Ling Xian lit Sublime Model 18 59 Zhang Heng theorized that the universe was like an egg as round as a crossbow pellet with the stars on the shell and the Earth as the central yolk 4 60 This universe theory is congruent with the geocentric model as opposed to the heliocentric model Although the ancient Warring States 403 221 BC Chinese astronomers Shi Shen and Gan De had compiled China s first star catalogue in the 4th century BC Zhang nonetheless catalogued 2 500 stars which he placed in a brightly shining category the Chinese estimated the total to be 14 000 and he recognized 124 constellations 18 60 In comparison this star catalogue featured many more stars than the 850 documented by the Greek astronomer Hipparchus c 190 c 120 BC in his catalogue and more than Ptolemy AD 83 161 who catalogued over 1 000 61 Zhang supported the radiating influence theory to explain solar and lunar eclipses a theory which was opposed by Wang Chong AD 27 97 62 In the Ling Xian Zhang wrote 夫日譬猶火 月譬猶水 火則外光 水則含景 故月光生於日之所照 魄生於日之所蔽 當日則光盈 就日則光盡也 The Sun is like fire and the Moon like water The fire gives out light and the water reflects it Thus the Moon s brightness is produced from the radiance of the Sun and the Moon s darkness is due to the light of the Sun being obstructed The side which faces the Sun is fully lit and the side which is away from it is dark 衆星被燿 因水轉光 當日之衝 光常不合者 蔽於地也 是謂闇虛 在星星微 月過則食 The planets as well as the Moon have the nature of water and reflect light The light pouring forth from the Sun does not always reach the Moon owing to the obstruction of the Earth itself this is called anxu a lunar eclipse When a similar effect happens with a planet we call it an occultation when the Moon passes across the Sun s path then there is a solar eclipse Zhang Heng AD 120 Sublime Model Joseph Needham trans 63 Zhang Heng viewed these astronomical phenomena in supernatural terms as well The signs of comets eclipses and movements of heavenly bodies could all be interpreted by him as heavenly guides on how to conduct affairs of state 18 Contemporary writers also wrote about eclipses and the sphericity of heavenly bodies The music theorist and mathematician Jing Fang 78 37 BC wrote about the spherical shape of the Sun and Moon while discussing eclipses The Moon and the planets are Yin they have shape but no light This they receive only when the Sun illuminates them The former masters regarded the Sun as round like a crossbow bullet and they thought the Moon had the nature of a mirror Some of them recognized the Moon as a ball too Those parts of the Moon which the Sun illuminates look bright those parts which it does not remain dark 64 The theory posited by Zhang and Jing was supported by later pre modern scientists such as Shen Kuo 1031 1095 who expanded on the reasoning of why the Sun and Moon were spherical 65 The theory of the celestial sphere surrounding a flat square Earth was later criticized by the Jin dynasty scholar official Yu Xi fl 307 345 He suggested that the Earth could be round like the heavens a spherical Earth theory fully accepted by mathematician Li Ye 1192 1279 but not by mainstream Chinese science until European influence in the 17th century 66 Extra tank for inflow clepsydra edit nbsp Han dynasty paintings on tile being conscious of time the Chinese believed in guardian spirits for the divisions of day and night such as these two guardians here representing 11 pm to 1 am left and 5 am to 7 am right The outflow clepsydra was a timekeeping device used in China as long ago as the Shang dynasty c 1600 c 1050 BC and certainly by the Zhou dynasty 1122 256 BC 67 The inflow clepsydra with an indicator rod on a float had been known in China since the beginning of the Han dynasty in 202 BC and had replaced the outflow type 67 The Han Chinese noted the problem with the falling pressure head in the reservoir which slowed the timekeeping of the device as the inflow vessel was filled 67 Zhang Heng was the first to address this problem indicated in his writings from 117 by adding an extra compensating tank between the reservoir and the inflow vessel 2 18 Zhang also mounted two statuettes of a Chinese immortal and a heavenly guard on the top of the inflow clepsydra the two of which would guide the indicator rod with their left hand and point out the graduations with their right 68 Joseph Needham states that this was perhaps the ancestor of all clock jacks that would later sound the hours found in mechanical clocks by the 8th century but he notes that these figures did not actually move like clock jack figurines or sound the hours 68 Many additional compensation tanks were added to later clepsydras in the tradition of Zhang Heng In 610 the Sui dynasty 581 618 engineers Geng Xun and Yuwen Kai crafted an unequal armed steelyard balance able to make seasonal adjustments in the pressure head of the compensating tank so that it could control the rate of water flow for different lengths of day and night during the year 69 Zhang mentioned a jade dragon s neck which in later times meant a siphon 70 He wrote of the floats and indicator rods of the inflow clepsydra as follows 以銅為器 再疊差置 實以清水 下各開孔 以玉虯吐漏水入兩壺 右為夜 左為晝 Bronze vessels are made and placed one above the other at different levels they are filled with pure water Each has at the bottom a small opening in the form of a jade dragon s neck The water dripping from above enters two inflow receivers alternately the left one being for the night and the right one for the day 蓋上又鑄金銅仙人 居左壺 為胥徒 居右壺 皆以左手抱箭 右手指刻 以別天時早晚 On the covers of each inflow receiver there are small cast statuettes in gilt bronze the left night one is an immortal and the right day one is a policeman These figures guide the indicator rod lit arrow with their left hands and indicate the graduations on it with their right hands thus giving the time 70 Water powered armillary sphere edit nbsp The original diagram of Su Song s 1020 1101 clock tower featuring an armillary sphere powered by a waterwheel escapement mechanism and chain drive Zhang Heng is the first person known to have applied hydraulic motive power i e by employing a waterwheel and clepsydra to rotate an armillary sphere an astronomical instrument representing the celestial sphere 71 72 73 The Greek astronomer Eratosthenes 276 194 BC invented the first armillary sphere in 255 BC The Chinese armillary sphere was fully developed by 52 BC with the astronomer Geng Shouchang s 耿壽昌 addition of a permanently fixed equatorial ring 74 In AD 84 the astronomers Fu An and Jia Kui added the ecliptic ring and finally Zhang Heng added the horizon and meridian rings 18 74 This invention is described and attributed to Zhang in quotations by Hsu Chen and Li Shan referencing his book Lou Shui Chuan Hun Thien I Chieh Apparatus for Rotating an Armillary Sphere by Clepsydra Water It was likely not an actual book by Zhang but a chapter from his Hun I or Hun I Thu Chu written in 117 AD 75 His water powered armillary influenced the design of later Chinese water clocks and led to the discovery of the escapement mechanism by the 8th century 76 The historian Joseph Needham 1900 1995 states What were the factors leading to the first escapement clock in China The chief tradition leading to Yi Xing AD 725 was of course the succession of pre clocks which had started with Zhang Heng about 125 Reason has been given for believing that these applied power to the slow turning movement of computational armillary spheres and celestial globes by means of a water wheel using clepsydra drip which intermittently exerted the force of a lug to act on the teeth of a wheel on a polar axis shaft Zhang Heng in his turn had composed this arrangement by uniting the armillary rings of his predecessors into the equatorial armillary sphere and combining it with the principles of the water mills and hydraulic trip hammers which had become so widespread in Chinese culture in the previous century 76 Zhang did not initiate the Chinese tradition of hydraulic engineering which began during the mid Zhou dynasty c 6th century BC through the work of engineers such as Sunshu Ao and Ximen Bao 77 Zhang s contemporary Du Shi d AD 38 was the first to apply the motive power of waterwheels to operate the bellows of a blast furnace to make pig iron and the cupola furnace to make cast iron 78 79 Zhang provided a valuable description of his water powered armillary sphere in the treatise of 125 stating The equatorial ring goes around the belly of the armillary sphere 91 and 5 19 degrees away from the pole The circle of the ecliptic also goes round the belly of the instrument at an angle of 24 degrees with the equator Thus at the summer solstice the ecliptic is 67 degrees and a fraction away from the pole while at the winter solstice it is 115 degrees and a fraction away Hence the points where the ecliptic and the equator intersect should give the north polar distances of the spring and autumn equinoxes But now it has been recorded that the spring equinox is 90 and 1 4 degrees away from the pole and the autumn equinox is 92 and 1 4 degrees away The former figure is adopted only because it agrees with the results obtained by the method of measuring solstitial sun shadows as embodied in the Xia dynasty calendar 80 Zhang Heng s water powered armillary sphere had profound effects on Chinese astronomy and mechanical engineering in later generations His model and its complex use of gears greatly influenced the water powered instruments of later astronomers such as Yi Xing 683 727 Zhang Sixun fl 10th century Su Song 1020 1101 Guo Shoujing 1231 1316 and many others Water powered armillary spheres in the tradition of Zhang Heng s were used in the eras of the Three Kingdoms 220 280 and Jin dynasty 266 420 yet the design for it was temporarily out of use between 317 and 418 due to invasions of northern Xiongnu nomads 81 Zhang Heng s old instruments were recovered in 418 when Emperor Wu of Liu Song r 420 422 captured the ancient capital of Chang an Although still intact the graduation marks and the representations of the stars Moon Sun and planets were quite worn down by time and rust 81 In 436 the emperor ordered Qian Luozhi the Secretary of the Bureau of Astronomy and Calendar to recreate Zhang s device which he managed to do successfully 81 Qian s water powered celestial globe was still in use at the time of the Liang dynasty 502 557 and successive models of water powered armillary spheres were designed in subsequent dynasties 81 Zhang s seismoscope edit nbsp A replica of Zhang Heng s seismoscope the Houfeng didong yi featured in the Chabot Space amp Science Center in Oakland California From the earliest times the Chinese were concerned with the destructive force of earthquakes It was recorded in Sima Qian s Records of the Grand Historian of 91 BC that in 780 BC an earthquake had been powerful enough to divert the courses of three rivers 82 It was not known at the time that earthquakes were caused by the shifting of tectonic plates in the Earth s crust instead the people of the ancient Zhou dynasty explained them as disturbances with cosmic yin and yang along with the heavens displeasure with acts committed or the common peoples grievances ignored by the current ruling dynasty 82 These theories were ultimately derived from the ancient text of the Yijing Book of Changes in its fifty first hexagram 83 There were other early theories about earthquakes developed by those such as the ancient Greeks Anaxagoras c 500 428 BC believed that they were caused by excess water near the surface crust of the earth bursting into the Earth s hollows Democritus c 460 370 BC believed that the saturation of the Earth with water caused them Anaximenes c 585 c 525 BC believed they were the result of massive pieces of the Earth falling into the cavernous hollows due to drying and Aristotle 384 322 BC believed they were caused by instability of vapor pneuma caused by the drying of the moist Earth by the Sun s rays 83 During the Han dynasty many learned scholars including Zhang Heng believed in the oracles of the winds 84 These oracles of the occult observed the direction force and timing of the winds to speculate about the operation of the cosmos and to predict events on Earth 85 These ideas influenced Zhang Heng s views on the cause of earthquakes In 132 Zhang Heng presented to the Han court what many historians consider to be his most impressive invention the first seismoscope A seismoscope records the motions of Earth s shaking but unlike a seismometer it does not retain a time record of those motions 86 It was named earthquake weathervane houfeng didongyi 候風地動儀 87 and it was able to roughly determine the direction out of eight directions where the earthquake came from 18 72 According to the Book of Later Han compiled by Fan Ye in the 5th century his bronze urn shaped device with a swinging pendulum inside was able to detect the direction of an earthquake hundreds of miles kilometers away 88 89 This was essential for the Han government in sending quick aid and relief to regions devastated by this type of natural disaster 3 90 91 The Book of Later Han records that on one occasion Zhang s device was triggered though no observer had felt any seismic disturbance several days later a messenger arrived from the west and reported that an earthquake had occurred in Longxi modern Gansu Province the same direction that Zhang s device had indicated and thus the court was forced to admit the efficacy of the device 92 To indicate the direction of a distant earthquake Zhang s device dropped a bronze ball from one of eight tubed projections shaped as dragon heads the ball fell into the mouth of a corresponding metal object shaped as a toad each representing a direction like the points on a compass rose 93 His device had eight mobile arms for all eight directions connected with cranks having catch mechanisms at the periphery 94 When tripped a crank and right angle lever would raise a dragon head and release a ball which had been supported by the lower jaw of the dragon head 94 His device also included a vertical pin passing through a slot in the crank a catch device a pivot on a projection a sling suspending the pendulum an attachment for the sling and a horizontal bar supporting the pendulum 94 Wang Zhenduo 王振鐸 argued that the technology of the Eastern Han era was sophisticated enough to produce such a device as evidenced by contemporary levers and cranks used in other devices such as crossbow triggers 95 nbsp Japanese seismologist Akitsune Imamura who reconstructed Zhang Heng s seismoscope in 1939 while working at Tokyo University Later Chinese of subsequent periods were able to reinvent Zhang s seismoscope They included the 6th century mathematician and surveyor Xindu Fang of the Northern Qi dynasty 550 577 and the astronomer and mathematician Lin Xiaogong of the Sui dynasty 581 618 96 Like Zhang Xindu Fang and Lin Xiaogong were given imperial patronage for their services in craftsmanship of devices for the court 97 By the time of the Yuan dynasty 1271 1368 it was acknowledged that all devices previously made were preserved except for that of the seismoscope 98 This was discussed by the scholar Zhou Mi around 1290 who remarked that the books of Xindu Fang and Lin Xiaogong detailing their seismological devices were no longer to be found 98 Horwitz Kreitner and Needham speculate if Tang dynasty 618 907 era seismographs found their way to contemporary Japan according to Needham instruments of apparently traditional type there in which a pendulum carries pins projecting in many directions and able to pierce a surrounding paper cylinder have been described 99 Hong sen Yan states that modern replicas of Zhang s device have failed to reach the level of accuracy and sensitivity described in Chinese historical records 100 Wang Zhenduo presented two different models of the seismoscope based on the ancient descriptions of Zhang s device 101 In his 1936 reconstruction the central pillar du zhu of the device was a suspended pendulum acting as a movement sensor while the central pillar of his second model in 1963 was an inverted pendulum 101 According to Needham while working in the Seismological Observatory of Tokyo University in 1939 Akitsune Imamura and Hagiwara made a reconstruction of Zhang s device 95 102 While it was John Milne and Wang Zhenduo who argued early on that Zhang s central pillar was a suspended pendulum Imamura was the first to propose an inverted model 103 He argued that transverse shock would have rendered Wang s immobilization mechanism ineffective as it would not have prevented further motion that could knock other balls out of their position 95 On June 13 2005 modern Chinese seismologists announced that they had successfully created a replica of the instrument 104 Anthony J Barbieri Low a professor of early Chinese history at the University of California Santa Barbara names Zhang Heng as one of several high ranking Eastern Han officials who engaged in crafts that were traditionally reserved for artisans gong 工 such as mechanical engineering 105 Barbieri Low speculates that Zhang only designed his seismoscope but did not actually craft the device himself He asserts that this would most likely have been the job of artisans commissioned by Zhang 106 He writes Zhang Heng was an official of moderately high rank and could not be seen sweating in the foundries with the gong artisans and the government slaves Most likely he worked collaboratively with the professional casters and mold makers in the imperial workshops 106 Cartography edit nbsp An early Western Han 202 BC AD 9 silk map found in tomb 3 of Mawangdui depicting the Kingdom of Changsha and Kingdom of Nanyue in southern China note the south direction is oriented at the top north at the bottom The Wei 220 265 and Jin dynasty 266 420 cartographer and official Pei Xiu 224 271 was the first in China to describe in full the geometric grid reference for maps that allowed for precise measurements using a graduated scale as well as topographical elevation 107 108 However map making in China had existed since at least the 4th century BC with the Qin state maps found in Gansu in 1986 109 Pinpointed accuracy of the winding courses of rivers and familiarity with scaled distance had been known since the Qin and Han dynasty respectively as evidenced by their existing maps while the use of a rectangular grid had been known in China since the Han as well 110 111 Historian Howard Nelson states that although the accounts of Zhang Heng s work in cartography are somewhat vague and sketchy there is ample written evidence that Pei Xiu derived the use of the rectangular grid reference from the maps of Zhang Heng 112 Rafe de Crespigny asserts that it was Zhang who established the rectangular grid system in Chinese cartography 18 Needham points out that the title of his book Flying Bird Calendar may have been a mistake and that the book is more accurately entitled Bird s Eye Map 113 Historian Florian C Reiter notes that Zhang s narrative Guitian fu contains a phrase about applauding the maps and documents of Confucius of the Zhou dynasty which Reiter suggests places maps tu on a same level of importance with documents shu 114 It is documented that a physical geography map was first presented by Zhang Heng in 116 AD called a Ti Hsing Thu 115 Odometer and south pointing chariot edit Zhang Heng is often credited with inventing the first odometer 17 60 an achievement also attributed to Archimedes c 287 212 BC and Heron of Alexandria fl AD 10 70 Similar devices were used by the Roman and Han Chinese empires at about the same period By the 3rd century the Chinese had termed the device the jili guche 記里鼓車 li recording drum carriage the modern measurement of li 500 m 1640 ft 116 nbsp Odometer cart from a stone rubbing of an Eastern Han dynasty tomb c 125 Ancient Chinese texts describe the mechanical carriage s functions after one li was traversed a mechanically driven wooden figure struck a drum and after ten li had been covered another wooden figure struck a gong or a bell with its mechanically operated arm 116 However there is evidence to suggest that the invention of the odometer was a gradual process in Han dynasty China that centered on the huang men court people i e eunuchs palace officials attendants and familiars actors acrobats etc who followed the musical procession of the royal drum chariot 117 There is speculation that at some time during the 1st century BC the beating of drums and gongs was mechanically driven by the rotation of the road wheels 117 This might have actually been the design of Luoxia Hong c 110 BC yet by at least 125 the mechanical odometer carriage was already known as it was depicted in a mural of the Xiao Tang Shan Tomb 117 The south pointing chariot was another mechanical device credited to Zhang Heng 17 It was a non magnetic compass vehicle in the form of a two wheeled chariot Differential gears driven by the chariot s wheels allowed a wooden figurine in the shape of a Chinese state minister to constantly point to the south hence its name The Song Shu c AD 500 records that Zhang Heng re invented it from a model used in the Zhou dynasty era but the violent collapse of the Han dynasty unfortunately did not allow it to be preserved Whether Zhang Heng invented it or not Ma Jun 200 265 succeeded in creating the chariot in the following century 118 Legacy editScience and technology edit nbsp A Florentine marble carving of Ptolemy 86 161 who created an Earth centered universe theory that the scholars Jin Guantao Fan Hongye and Liu Qingfeng compare with Zhang Heng s theory published in 125 119 Zhang Heng s mechanical inventions influenced later Chinese inventors such as Yi Xing Zhang Sixun Su Song and Guo Shoujing Su Song directly named Zhang s water powered armillary sphere as the inspiration for his 11th century clock tower 120 The cosmic model of nine points of Heaven corresponding with nine regions of earth conceived in the work of the scholar official Chen Hongmou 1696 1771 followed in the tradition of Zhang s book Spiritual Constitution of the Universe 121 The seismologist John Milne who created the modern seismograph in 1876 alongside Thomas Gray and James A Ewing at the Imperial College of Engineering in Tokyo commented in 1886 on Zhang Heng s contributions to seismology 122 123 The historian Joseph Needham emphasized his contributions to pre modern Chinese technology stating that Zhang was noted even in his day for being able to make three wheels rotate as if they were one 124 More than one scholar has described Zhang as a polymath 7 29 38 91 However some scholars also point out that Zhang s writing lacks concrete scientific theories 119 Comparing Zhang with his contemporary Ptolemy 83 161 of Roman Egypt Jin Guantao Fan Hongye and Liu Qingfeng state Based on the theories of his predecessors Zhang Heng systematically developed the celestial sphere theory An armillary constructed on the basis of his hypotheses bears a remarkable similarity to Ptolemy s earth centered theory However Zhang Heng did not definitely propose a theoretical model like Ptolemy s earth centered one It is astonishing that the celestial model Zhang Heng constructed was almost a physical model of Ptolemy s earth centered theory Only a single step separates the celestial globe from the earth centered theory but Chinese astronomers never took that step dd Here we can see how important the exemplary function of the primitive scientific structure is In order to use the Euclidean system of geometry as a model for the development of astronomical theory Ptolemy first had to select hypotheses which could serve as axioms He naturally regarded circular motion as fundamental and then used the circular motion of deferents and epicycles in his earth centered theory Although Zhang Heng understood that the sun moon and planets move in circles he lacked a model for a logically structured theory and so could not establish a corresponding astronomical theory Chinese astronomy was most interested in extracting the algebraic features of planetary motion that is the length of the cyclic periods to establish astronomical theories Thus astronomy was reduced to arithmetic operations extracting common multiples and divisors from the observed cyclic motions of the heavenly bodies 119 dd Poetic literature edit Zhang s poetry was widely read during his life and after his death In addition to the compilation of Xiao Tong mentioned above the Eastern Wu official Xue Zong d 237 wrote commentary on Zhang s poems Dongjing fu and Xijing fu 125 The influential poet Tao Qian wrote that he admired the poetry of Zhang Heng for its curbing extravagant diction and aiming at simplicity in regards to perceived tranquility and rectitude correlating with the simple but effective language of the poet 126 Tao wrote that both Zhang Heng and Cai Yong avoided inflated language aiming chiefly at simplicity and adding that their compositions begin by giving free expression to their fancies but end on a note of quiet serving admirably to restrain undisciplined and passionate nature 127 Posthumous honors edit Zhang was given great honors in life and in death The philosopher and poet Fu Xuan 217 278 of the Wei and Jin dynasties once lamented in an essay over the fact that Zhang Heng was never placed in the Ministry of Works Writing highly of Zhang and the 3rd century mechanical engineer Ma Jun Fu Xuan wrote Neither of them was ever an official of the Ministry of Works and their ingenuity did not benefit the world When authorities employ personnel with no regard to special talent and having heard of genius neglect even to test it is this not hateful and disastrous 128 In honor of Zhang s achievements in science and technology his friend Cui Ziyu Cui Yuan wrote a memorial inscription on his burial stele which has been preserved in the Guwen yuan 8 Cui stated Zhang Heng s mathematical computations exhausted the riddles of the heavens and the earth His inventions were comparable even to those of the Author of Change The excellence of his talent and the splendour of his art were one with those of the gods 129 The minor official Xiahou Zhan 243 291 of the Wei dynasty made an inscription for his own commemorative stele to be placed at Zhang Heng s tomb It read Ever since gentlemen have composed literary texts none has been as skillful as the Master Zhang Heng in choosing his words well if only the dead could rise oh I could then turn to him for a teacher 130 Several things have been named after Zhang in modern times including the lunar crater Chang Heng 131 the asteroid 1802 Zhang Heng 132 and the mineral zhanghengite In 2018 China launched a research satellite called China Seismo Electromagnetic Satellite CSES which is also named Zhangheng 1 ZH 1 133 See also editHan poetry Fu poetry Return to the Field Yu XiReferences editCitation edit a b Needham 1986 Volume 4 Part 2 30 a b Needham 1986 Volume 4 Part 2 479 footnote e a b Wright 2001 66 a b Huang 1997 64 a b c d e f g h i j k l m n o p Crespigny 2007 1049 Xiao and Knechtges 1996 397 a b c d e Yan 2007 127 a b c d e f g h i j k l Xiao amp Knechtges 1996 398 a b Asiapac 2004 120 Loewe 1968 105 a b c d e Neinhauser et al 1986 211 a b Fraser 2014 371 Crespigny 2007 1229 a b Crespigny 2007 1222 Bielenstein 1980 9 amp 19 Crespigny 2007 1049 amp 1223 a b c d e f Yan 2007 128 a b c d e f g h i j k l m n o p q r s t u Crespigny 2007 1050 Loewe 1968 38 39 amp 42 a b Crespigny 2007 1049 1050 Mansvelt Beck 1990 26 a b Declercq 1998 65 Loewe 1968 42 Wang 1949 137 Wang 1949 142 amp 145 a b c Minford amp Lau 2002 307 Balchin 2003 26 27 Needham 1986 Volume 3 627 a b Krebs 2003 31 Crespigny 2007 1225 Neinhauser et al 1986 211 212 Loewe 2005 37 Harper 1987 262 a b Lu 1995 57 a b Lewis 2006 184 Liu 1990 54 a b c Neinhauser et al 1986 212 a b Mair 2001 251 Hightower 1954 170 171 Knechtges 1997 232 Schafer 1968 329 330 Bulling 1962 312 amp 314 Lewis 2006 238 Wu 1986 271 272 Loewe 1990 142 144 Fraser 2014 370 Declercq 1998 1 4 Declercq 1998 65 66 Lewis 2006 184 185 Bulling 1962 314 315 Needham 1986 Volume 3 99 100 a b Arndt and Haenel 2001 176 Needham 1986 Volume 3 100 a b c d e f Berggren Borwein amp Borwein 2004 27 a b Arndt and Haenel 2001 177 Wilson 2001 16 Needham 1986 Volume 3 100 101 Berggren Borwein amp Borwein 2004 20 amp 24 26 Fraser 2014 374 a b c Balchin 2003 27 Jones 1991 1 Needham 1986 Volume 3 411 413 Needham 1986 Volume 3 414 Needham 1986 Volume 3 227 Needham 1986 Volume 3 415 416 Needham 1986 Volume 3 pp 220 498 499 a b c Needham 1986 Volume 4 Part 2 479 a b Needham 1986 Volume 4 Part 2 164 Needham 1986 Volume 4 Part 2 480 a b Needham 1986 Volume 3 320 Needham 1986 Volume 4 Part 2 30 a b Morton amp Lewis 2005 70 Loewe 1968 107 a b Needham 1986 Volume 3 343 Needham 1965 Volume 4 Part 1 486 a b Needham 1986 Volume 4 Part 2 532 Needham 1986 Volume 4 Part 3 271 Needham 1986 Volume 4 Part 2 370 Wagner 2001 75 76 Needham 1986 Volume 3 355 356 a b c d Needham 1986 Volume 4 Part 2 483 a b Needham 1986 Volume 3 624 a b Needham 1986 Volume 3 625 Loewe 1988 509 513 515 Loewe 1988 509 Stein and Wysession 2002 400 Fraser 2014 375 Neehdam 1986 Volume 4 Part 2 484 Loewe 1968 106 Needham 1986 Volume 4 Part 2 484 Needham 1986 Volume 3 632 a b Dillon 1998 378 Fraser 2014 376 Needham 1986 Volume 3 627 628 a b c Needham 1986 Volume 3 629 a b c Needham 1986 Volume 3 630 Needham 1986 Volume 3 632 633 Needham 1986 Volume 3 633 a b Needham 1986 Volume 3 633 634 Needham 1986 Volume 3 635 Yan 2007 131 a b Yan 2007 131 132 Yan 2007 132 Needham 1986 Volume 3 628 amp 630 People s Daily Online June 13 2005 China resurrects world s earliest seismograph Retrieved on 2005 06 13 Barbieri Low 2007 201 203 a b Barbieri Low 2007 204 Needham 1986 Volume 3 538 540 Hsu 1993 97 Hsu 1993 90 Needham 1986 Volume 3 106 107 Hsu 1993 90 amp 97 Nelson 1974 359 Needham 1986 Volume 3 538 the title may have referred to a Bird s Eye Map that Chang Heng occupied himself with map making is sure a physical geograph map was presented by him Reiter 1990 320 Needham 1986 Volume 3 538 a b Needham 1986 Volume 4 Part 2 281 a b c Needham 1986 Volume 4 Part 2 283 Needham 1986 Volume 4 Part 2 40 a b c Jin Fan and Liu 1996 170 Needham 1986 Volume 4 Part 2 466 Rowe 2001 88 Needham 1986 Volume 3 626 Yan 2007 124 Needham 1986 Volume 4 Part 2 85 86 Cutter 1984 11 footnote 61 15 footnote 80 26 footnote 141 Yim tze 1989 63 Hightower 1954 169 170 Needham 1986 Volume 4 Part 2 42 Needham 1986 Volume 3 359 Declercq 1998 247 Lunar Names Proposed 290 Schmadel 2003 144 Long March 2D launches Zhangheng 1 Earthquake investigator NASASpaceFlight com www nasaspaceflight com 2 February 2018 Retrieved 2018 02 05 Bibliography edit Arndt Jorg Haenel Christoph 2001 Pi Unleashed Berlin Heidelberg Springer Verlag doi 10 1007 978 3 642 56735 3 ISBN 978 3 540 66572 4 S2CID 46515097 Asiapac Editorial 2004 Origins of Chinese Science and Technology Translated by Yang Liping and Y N Han Singapore Asiapac Books Pte Ltd ISBN 981 229 376 0 Balchin Jon 2003 Science 100 Scientists Who Changed the World New York Enchanted Lion Books ISBN 1 59270 017 9 Barbieri Low Anthony J 2007 Artisans in Early Imperial China Seattle amp London University of Washington Press ISBN 0 295 98713 8 Berggren Lennart Borwein Jonathan Borwein Peter 2004 Pi A Source Book doi 10 1007 978 1 4757 4217 6 ISBN 978 1 4419 1915 1 Bielenstein Hans 1980 The Bureaucracy of Han Times doi 10 1017 CBO9780511759727 ISBN 9780521225106 Bulling A 1962 A Landscape Representation of the Western Han Period Artibus Asiae 25 4 293 317 doi 10 2307 3249129 JSTOR 3249129 De Crespigny Rafe 2007 A Biographical Dictionary of Later Han to the Three Kingdoms 23 220 AD doi 10 1163 ej 9789004156050 i 1311 ISBN 9789047411840 Cutter Robert Joe 1984 Cao Zhi s 192 232 Symposium Poems Chinese Literature Essays Articles Reviews 6 1 2 1 32 doi 10 2307 823444 JSTOR 823444 Declercq Dominik 1998 Writings Against the State Political Rhetorics in Third and Fourth Century China Leiden Koninklijke Brill NV Dillon Michael 1998 China A Historical and Cultural Dictionary Surrey Routledge Curzon Press ISBN 0 7007 0439 6 Fraser Ian W 2014 Zhang Heng 张衡 in Kerry Brown ed The Berkshire Dictionary of Chinese Biography pp 369 376 Great Barrington MA Berkshire Publishing ISBN 1 933782 66 8 Harper Donald 1987 Wang Yen shou s Nightmare Poem Harvard Journal of Asiatic Studies 47 1 239 283 doi 10 2307 2719162 JSTOR 2719162 Hightower James Robert 1954 The Fu of T ao Ch ien Harvard Journal of Asiatic Studies 17 1 2 169 230 doi 10 2307 2718131 JSTOR 2718131 Hsu Mei Ling 1993 The Qin maps A clue to later Chinese cartographic development Imago Mundi 45 90 100 doi 10 1080 03085699308592766 Huang Ray 1997 China A Macro History New York An East Gate Book M E SHARPE Inc Guantao Jin Hongye Fan Qingfeng Liu 1996 Historical Changes in the Structure of Science and Technology Part Two A Commentary Chinese Studies in the History and Philosophy of Science and Technology Boston Studies in the Philosophy of Science Vol 179 pp 165 183 doi 10 1007 978 94 015 8717 4 14 ISBN 978 90 481 4546 1 Jones Kenneth Glyn 1991 Messier s Nebulae and Star Clusters Cambridge Cambridge University Press ISBN 0 521 37079 5 Krebs Robert E 2003 The Basics of Earth Science Westport Greenwood Press of Greenwood Publishing Group Inc ISBN 0 313 31930 8 Knechtges David R 1997 Gradually Entering the Realm of Delight Food and Drink in Early Medieval China Journal of the American Oriental Society 117 2 229 239 doi 10 2307 605487 JSTOR 605487 Knechtges David R 2014 Zhang Heng 張衡 In Knechtges David R Chang Taiping eds Ancient and Early Medieval Chinese Literature A Reference Guide Part Four Leiden Brill pp 2141 55 ISBN 978 90 04 27217 0 Lewis Mark Edward 2006 The Construction of Space in Early China New York State University of New York Press ISBN 0 7914 6607 8 Liu Wu chi 1990 An Introduction to Chinese Literature Westport Greenwood Press of Greenwood Publishing Group ISBN 0 313 26703 0 Loewe Michael 1988 The oracles of the clouds and the Winds Bulletin of the School of Oriental and African Studies 51 3 500 520 doi 10 1017 S0041977X00116490 S2CID 130430336 Loewe Michael 1968 Everyday Life in Early Imperial China during the Han Period 202 BC AD 220 London B T Batsford Ltd New York G P Putnam s Sons Loewe Michael 1990 The Juedi Games a re enactment of the battle between Chiyou and Xianyuan in Thought and Law in Qin and Han China Studies dedicated to Anthony Huslewe on the occasion of his eightieth birthday 140 157 edited by W L Idema and E Zurcher Leiden E J Brill ISBN 90 04 09269 2 Loewe Michael 2005 Faith Myth and Reason in Han China Indianapolis Hacket Publishing Company Inc ISBN 0 87220 756 0 Lu Zongli 1995 Problems concerning the Authenticity of Shih chi 123 Reconsidered Chinese Literature Essays Articles Reviews 17 51 68 doi 10 2307 495553 JSTOR 495553 Lunar Names Proposed Science News 90 16 290 1966 doi 10 2307 3950717 JSTOR 3950717 Mair Victor H 2001 The Columbia History of Chinese Literature New York Columbia University Press ISBN 0 231 10984 9 Mansvelt Beck B J 1990 The Treatises of Later Han Their Author Sources Contents and Place in Chinese Historiography Leiden E J Brill ISBN 90 04 08895 4 Minford John and Joseph S M Lau 2002 Classical Chinese literature an anthology of translations New York Columbia University Press ISBN 0 231 09676 3 Morton W Scott and Charlton M Lewis 2005 China Its History and Culture New York McGraw Hill Inc Needham Joseph 1986 Science and Civilization in China Volume 3 Mathematics and the Sciences of the Heavens and the Earth Cambridge Cambridge University Press reprinted Taipei Caves Books Ltd Needham Joseph 1965 Science and Civilization in China Volume 4 Physics and Physical Technology Part 1 Physics Cambridge Cambridge University Press Needham Joseph 1986 Science and Civilization in China Volume 4 Physics and Physical Technology Part 2 Mechanical Engineering Cambridge Cambridge University Press reprinted Taipei Caves Books Ltd Needham Joseph 1986 Science and Civilization in China Volume 4 Physics and Physical Technology Part 3 Civil Engineering and Nautics Cambridge Cambridge University Press reprinted Taipei Caves Books Ltd Neinhauser William H Charles Hartman Y W Ma and Stephen H West 1986 The Indiana Companion to Traditional Chinese Literature Volume 1 Bloomington Indiana University Press ISBN 0 253 32983 3 Nelson Howard 1974 Chinese Maps An Exhibition at the British Library The China Quarterly 58 357 362 doi 10 1017 S0305741000011346 S2CID 154338508 Reiter Florian C 1990 Some Remarks on the Chinese Word t u Chart Plan Design Oriens 32 308 327 doi 10 2307 1580636 JSTOR 1580636 Rowe William T 2001 Saving the World Chen Hongmou and Elite Consciousness in Eighteenth Century China Stanford Stanford University Press ISBN 0 8047 4818 7 Schafer Edward H 1968 Hunting Parks and Animal Enclosures in Ancient China Journal of the Economic and Social History of the Orient 11 3 318 343 doi 10 2307 3596278 JSTOR 3596278 Schmadel Lutz D 2003 Dictionary of Minor Planet Names doi 10 1007 978 3 540 29925 7 ISBN 978 3 540 00238 3 Stein S and M E Wysession 2002 An Introduction to Seismology Earthquakes and Earth Structure London Wiley Blackwell ASIN B010WFPEOO Wagner Donald B 2001 The State and the Iron Industry in Han China Copenhagen Nordic Institute of Asian Studies Publishing ISBN 87 87062 83 6 Yu Ch Uan Wang 1949 An Outline of the Central Government of the Former Han Dynasty Harvard Journal of Asiatic Studies 12 1 2 134 187 doi 10 2307 2718206 JSTOR 2718206 Wilson Robin J 2001 Stamping Through Mathematics New York Springer Verlag New York Inc Wright David Curtis 2001 The History of China Westport Greenwood Press Hung Wu 1986 Buddhist Elements in Early Chinese Art 2nd and 3rd Centuries A D Artibus Asiae 47 3 4 263 352 doi 10 2307 3249974 JSTOR 3249974 Xiao Tong and David Knechtges 1996 Wen Xuan Or Selections of Refined Literature Princeton Princeton University Press ISBN 0 691 02126 0 Yan Hong sen 2007 Reconstruction Designs of Lost Ancient Chinese Machinery History of Mechanism and Machine Science Vol 3 doi 10 1007 978 1 4020 6460 9 ISBN 978 1 4020 6459 3 Kwong Yim tze 1989 Naturalness and Authenticity The Poetry of Tao Qian Chinese Literature Essays Articles Reviews 11 35 77 doi 10 2307 495526 JSTOR 495526 Further reading editLien Y Edmund 2011 Zhang Heng Eastern Han Polymath His Life and Works PhD thesis University of Washington Portals nbsp Biography nbsp China nbsp Science Retrieved from https en wikipedia org w index php title Zhang Heng amp oldid 1219413695, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.