fbpx
Wikipedia

Predation

Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill the host) and parasitoidism (which always does, eventually). It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as seed predators and destructive frugivores are predators.

Solitary predator: a polar bear feeds on a bearded seal it has killed.
Social predators: meat ants cooperate to feed on a cicada far larger than themselves.

Predators may actively search for or pursue prey or wait for it, often concealed. When prey is detected, the predator assesses whether to attack it. This may involve ambush or pursuit predation, sometimes after stalking the prey. If the attack is successful, the predator kills the prey, removes any inedible parts like the shell or spines, and eats it.

Predators are adapted and often highly specialized for hunting, with acute senses such as vision, hearing, or smell. Many predatory animals, both vertebrate and invertebrate, have sharp claws or jaws to grip, kill, and cut up their prey. Other adaptations include stealth and aggressive mimicry that improve hunting efficiency.

Predation has a powerful selective effect on prey, and the prey develop antipredator adaptations such as warning coloration, alarm calls and other signals, camouflage, mimicry of well-defended species, and defensive spines and chemicals. Sometimes predator and prey find themselves in an evolutionary arms race, a cycle of adaptations and counter-adaptations. Predation has been a major driver of evolution since at least the Cambrian period.

Definition edit

 
Spider wasps paralyse and eventually kill their hosts, but are considered parasitoids, not predators.

At the most basic level, predators kill and eat other organisms. However, the concept of predation is broad, defined differently in different contexts, and includes a wide variety of feeding methods; and some relationships that result in the prey's death are not generally called predation. A parasitoid, such as an ichneumon wasp, lays its eggs in or on its host; the eggs hatch into larvae, which eat the host, and it inevitably dies. Zoologists generally call this a form of parasitism, though conventionally parasites are thought not to kill their hosts. A predator can be defined to differ from a parasitoid in that it has many prey, captured over its lifetime, where a parasitoid's larva has just one, or at least has its food supply provisioned for it on just one occasion.[1][2]

 
Relation of predation to other feeding strategies

There are other difficult and borderline cases. Micropredators are small animals that, like predators, feed entirely on other organisms; they include fleas and mosquitoes that consume blood from living animals, and aphids that consume sap from living plants. However, since they typically do not kill their hosts, they are now often thought of as parasites.[3][4] Animals that graze on phytoplankton or mats of microbes are predators, as they consume and kill their food organisms; but herbivores that browse leaves are not, as their food plants usually survive the assault.[5] When animals eat seeds (seed predation or granivory) or eggs (egg predation), they are consuming entire living organisms, which by definition makes them predators.[6][7][8]

Scavengers, organisms that only eat organisms found already dead, are not predators, but many predators such as the jackal and the hyena scavenge when the opportunity arises.[9][10][5] Among invertebrates, social wasps (yellowjackets) are both hunters and scavengers of other insects.[11]

Taxonomic range edit

 
Carnivorous plant: sundew engulfing an insect
 
Seed predation: mouse eating seeds

While examples of predators among mammals and birds are well known,[12] predators can be found in a broad range of taxa including arthropods. They are common among insects, including mantids, dragonflies, lacewings and scorpionflies. In some species such as the alderfly, only the larvae are predatory (the adults do not eat). Spiders are predatory, as well as other terrestrial invertebrates such as scorpions; centipedes; some mites, snails and slugs; nematodes; and planarian worms.[13] In marine environments, most cnidarians (e.g., jellyfish, hydroids), ctenophora (comb jellies), echinoderms (e.g., sea stars, sea urchins, sand dollars, and sea cucumbers) and flatworms are predatory.[14] Among crustaceans, lobsters, crabs, shrimps and barnacles are predators,[15] and in turn crustaceans are preyed on by nearly all cephalopods (including octopuses, squid and cuttlefish).[16]

 
Paramecium, a predatory ciliate, feeding on bacteria

Seed predation is restricted to mammals, birds, and insects but is found in almost all terrestrial ecosystems.[8][6] Egg predation includes both specialist egg predators such as some colubrid snakes and generalists such as foxes and badgers that opportunistically take eggs when they find them.[17][18][19]

Some plants, like the pitcher plant, the Venus fly trap and the sundew, are carnivorous and consume insects.[12] Methods of predation by plants varies greatly but often involves a food trap, mechanical stimulation, and electrical impulses to eventually catch and consume its prey.[20] Some carnivorous fungi catch nematodes using either active traps in the form of constricting rings, or passive traps with adhesive structures.[21]

Many species of protozoa (eukaryotes) and bacteria (prokaryotes) prey on other microorganisms; the feeding mode is evidently ancient, and evolved many times in both groups.[22][12][23] Among freshwater and marine zooplankton, whether single-celled or multi-cellular, predatory grazing on phytoplankton and smaller zooplankton is common, and found in many species of nanoflagellates, dinoflagellates, ciliates, rotifers, a diverse range of meroplankton animal larvae, and two groups of crustaceans, namely copepods and cladocerans.[24]

Foraging edit

 
A basic foraging cycle for a predator, with some variations indicated[25]

To feed, a predator must search for, pursue and kill its prey. These actions form a foraging cycle.[26][27] The predator must decide where to look for prey based on its geographical distribution; and once it has located prey, it must assess whether to pursue it or to wait for a better choice. If it chooses pursuit, its physical capabilities determine the mode of pursuit (e.g., ambush or chase).[28][29] Having captured the prey, it may also need to expend energy handling it (e.g., killing it, removing any shell or spines, and ingesting it).[25][26]

Search edit

Predators have a choice of search modes ranging from sit-and-wait to active or widely foraging.[30][25][31][32] The sit-and-wait method is most suitable if the prey are dense and mobile, and the predator has low energy requirements.[30] Wide foraging expends more energy, and is used when prey is sedentary or sparsely distributed.[28][30] There is a continuum of search modes with intervals between periods of movement ranging from seconds to months. Sharks, sunfish, Insectivorous birds and shrews are almost always moving while web-building spiders, aquatic invertebrates, praying mantises and kestrels rarely move. In between, plovers and other shorebirds, freshwater fish including crappies, and the larvae of coccinellid beetles (ladybirds), alternate between actively searching and scanning the environment.[30]

 
The black-browed albatross regularly flies hundreds of kilometres across the nearly empty ocean to find patches of food.

Prey distributions are often clumped, and predators respond by looking for patches where prey is dense and then searching within patches.[25] Where food is found in patches, such as rare shoals of fish in a nearly empty ocean, the search stage requires the predator to travel for a substantial time, and to expend a significant amount of energy, to locate each food patch.[33] For example, the black-browed albatross regularly makes foraging flights to a range of around 700 kilometres (430 miles), up to a maximum foraging range of 3,000 kilometres (1,860 miles) for breeding birds gathering food for their young.[a][34] With static prey, some predators can learn suitable patch locations and return to them at intervals to feed.[33] The optimal foraging strategy for search has been modelled using the marginal value theorem.[35]

Search patterns often appear random. One such is the Lévy walk, that tends to involve clusters of short steps with occasional long steps. It is a good fit to the behaviour of a wide variety of organisms including bacteria, honeybees, sharks and human hunter-gatherers.[36][37]

Assessment edit

 
Seven-spot ladybirds select plants of good quality for their aphid prey.

Having found prey, a predator must decide whether to pursue it or keep searching. The decision depends on the costs and benefits involved. A bird foraging for insects spends a lot of time searching but capturing and eating them is quick and easy, so the efficient strategy for the bird is to eat every palatable insect it finds. By contrast, a predator such as a lion or falcon finds its prey easily but capturing it requires a lot of effort. In that case, the predator is more selective.[28]

One of the factors to consider is size. Prey that is too small may not be worth the trouble for the amount of energy it provides. Too large, and it may be too difficult to capture. For example, a mantid captures prey with its forelegs and they are optimized for grabbing prey of a certain size. Mantids are reluctant to attack prey that is far from that size. There is a positive correlation between the size of a predator and its prey.[28]

A predator may also assess a patch and decide whether to spend time searching for prey in it.[25] This may involve some knowledge of the preferences of the prey; for example, ladybirds can choose a patch of vegetation suitable for their aphid prey.[38]

Capture edit

To capture prey, predators have a spectrum of pursuit modes that range from overt chase (pursuit predation) to a sudden strike on nearby prey (ambush predation).[25][39][12] Another strategy in between ambush and pursuit is ballistic interception, where a predator observes and predicts a prey's motion and then launches its attack accordingly.[40]

Ambush edit

 
A trapdoor spider waiting in its burrow to ambush its prey

Ambush or sit-and-wait predators are carnivorous animals that capture prey by stealth or surprise. In animals, ambush predation is characterized by the predator's scanning the environment from a concealed position until a prey is spotted, and then rapidly executing a fixed surprise attack.[41][40] Vertebrate ambush predators include frogs, fish such as the angel shark, the northern pike and the eastern frogfish.[40][42][43][44] Among the many invertebrate ambush predators are trapdoor spiders and Australian Crab spiders on land and mantis shrimps in the sea.[41][45][46] Ambush predators often construct a burrow in which to hide, improving concealment at the cost of reducing their field of vision. Some ambush predators also use lures to attract prey within striking range.[40] The capturing movement has to be rapid to trap the prey, given that the attack is not modifiable once launched.[40]

Ballistic interception edit

 
The chameleon attacks prey by shooting out its tongue.

Ballistic interception is the strategy where a predator observes the movement of a prey, predicts its motion, works out an interception path, and then attacks the prey on that path. This differs from ambush predation in that the predator adjusts its attack according to how the prey is moving.[40] Ballistic interception involves a brief period for planning, giving the prey an opportunity to escape. Some frogs wait until snakes have begun their strike before jumping, reducing the time available to the snake to recalibrate its attack, and maximising the angular adjustment that the snake would need to make to intercept the frog in real time.[40] Ballistic predators include insects such as dragonflies, and vertebrates such as archerfish (attacking with a jet of water), chameleons (attacking with their tongues), and some colubrid snakes.[40]

Pursuit edit

 
Humpback whales are lunge feeders, filtering thousands of krill from seawater and swallowing them alive.
 
Dragonflies, like this common clubtail with captured prey, are invertebrate pursuit predators.

In pursuit predation, predators chase fleeing prey. If the prey flees in a straight line, capture depends only on the predator's being faster than the prey.[40] If the prey manoeuvres by turning as it flees, the predator must react in real time to calculate and follow a new intercept path, such as by parallel navigation, as it closes on the prey.[40] Many pursuit predators use camouflage to approach the prey as close as possible unobserved (stalking) before starting the pursuit.[40] Pursuit predators include terrestrial mammals such as humans, African wild dogs, spotted hyenas and wolves; marine predators such as dolphins, orcas and many predatory fishes, such as tuna;[47][48] predatory birds (raptors) such as falcons; and insects such as dragonflies.[49]

An extreme form of pursuit is endurance or persistence hunting, in which the predator tires out the prey by following it over a long distance, sometimes for hours at a time. The method is used by human hunter-gatherers and by canids such as African wild dogs and domestic hounds. The African wild dog is an extreme persistence predator, tiring out individual prey by following them for many miles at relatively low speed.[50]

A specialised form of pursuit predation is the lunge feeding of baleen whales. These very large marine predators feed on plankton, especially krill, diving and actively swimming into concentrations of plankton, and then taking a huge gulp of water and filtering it through their feathery baleen plates.[51][52]

Pursuit predators may be social, like the lion and wolf that hunt in groups, or solitary.[2]

Handling edit

 
Catfish has sharp dorsal and pectoral spines which it holds erect to discourage predators such as herons which swallow prey whole.
 
Osprey tears its fish prey apart, avoiding dangers such as sharp spines.

Once the predator has captured the prey, it has to handle it: very carefully if the prey is dangerous to eat, such as if it possesses sharp or poisonous spines, as in many prey fish. Some catfish such as the Ictaluridae have spines on the back (dorsal) and belly (pectoral) which lock in the erect position; as the catfish thrashes about when captured, these could pierce the predator's mouth, possibly fatally. Some fish-eating birds like the osprey avoid the danger of spines by tearing up their prey before eating it.[53]

Solitary versus social predation edit

In social predation, a group of predators cooperates to kill prey. This makes it possible to kill creatures larger than those they could overpower singly; for example, hyenas, and wolves collaborate to catch and kill herbivores as large as buffalo, and lions even hunt elephants.[54][55][56] It can also make prey more readily available through strategies like flushing of prey and herding it into a smaller area. For example, when mixed flocks of birds forage, the birds in front flush out insects that are caught by the birds behind. Spinner dolphins form a circle around a school of fish and move inwards, concentrating the fish by a factor of 200.[57] By hunting socially chimpanzees can catch colobus monkeys that would readily escape an individual hunter, while cooperating Harris hawks can trap rabbits.[54][58]

 
Wolves, social predators, cooperate to hunt and kill bison.

Predators of different species sometimes cooperate to catch prey. In coral reefs, when fish such as the grouper and coral trout spot prey that is inaccessible to them, they signal to giant moray eels, Napoleon wrasses or octopuses. These predators are able to access small crevices and flush out the prey.[59][60] Killer whales have been known to help whalers hunt baleen whales.[61]

Social hunting allows predators to tackle a wider range of prey, but at the risk of competition for the captured food. Solitary predators have more chance of eating what they catch, at the price of increased expenditure of energy to catch it, and increased risk that the prey will escape.[62][63] Ambush predators are often solitary to reduce the risk of becoming prey themselves.[64] Of 245 terrestrial members of the Carnivora (the group that includes the cats, dogs, and bears), 177 are solitary; and 35 of the 37 wild cats are solitary,[65] including the cougar and cheetah.[62][2] However, the solitary cougar does allow other cougars to share in a kill,[66] and the coyote can be either solitary or social.[67] Other solitary predators include the northern pike,[68] wolf spiders and all the thousands of species of solitary wasps among arthropods,[69][70] and many microorganisms and zooplankton.[22][71]

Specialization edit

Physical adaptations edit

Under the pressure of natural selection, predators have evolved a variety of physical adaptations for detecting, catching, killing, and digesting prey. These include speed, agility, stealth, sharp senses, claws, teeth, filters, and suitable digestive systems.[72]

For detecting prey, predators have well-developed vision, smell, or hearing.[12] Predators as diverse as owls and jumping spiders have forward-facing eyes, providing accurate binocular vision over a relatively narrow field of view, whereas prey animals often have less acute all-round vision. Animals such as foxes can smell their prey even when it is concealed under 2 feet (60 cm) of snow or earth. Many predators have acute hearing, and some such as echolocating bats hunt exclusively by active or passive use of sound.[73]

Predators including big cats, birds of prey, and ants share powerful jaws, sharp teeth, or claws which they use to seize and kill their prey. Some predators such as snakes and fish-eating birds like herons and cormorants swallow their prey whole; some snakes can unhinge their jaws to allow them to swallow large prey, while fish-eating birds have long spear-like beaks that they use to stab and grip fast-moving and slippery prey.[73] Fish and other predators have developed the ability to crush or open the armoured shells of molluscs.[74]

Many predators are powerfully built and can catch and kill animals larger than themselves; this applies as much to small predators such as ants and shrews as to big and visibly muscular carnivores like the cougar and lion.[73][2][75]

Diet and behaviour edit

 
Platydemus manokwari, a specialist flatworm predator of land snails, attacking a snail
 
Size-selective predation: a lioness attacking a Cape buffalo, over twice her weight. Lions can attack much larger prey, including elephants, but do so much less often.

Predators are often highly specialized in their diet and hunting behaviour; for example, the Eurasian lynx only hunts small ungulates.[76] Others such as leopards are more opportunistic generalists, preying on at least 100 species.[77][78] The specialists may be highly adapted to capturing their preferred prey, whereas generalists may be better able to switch to other prey when a preferred target is scarce. When prey have a clumped (uneven) distribution, the optimal strategy for the predator is predicted to be more specialized as the prey are more conspicuous and can be found more quickly;[79] this appears to be correct for predators of immobile prey, but is doubtful with mobile prey.[80]

In size-selective predation, predators select prey of a certain size.[81] Large prey may prove troublesome for a predator, while small prey might prove hard to find and in any case provide less of a reward. This has led to a correlation between the size of predators and their prey. Size may also act as a refuge for large prey. For example, adult elephants are relatively safe from predation by lions, but juveniles are vulnerable.[82]

Camouflage and mimicry edit

 
Striated frogfish uses camouflage and aggressive mimicry in the form of a fishing rod-like lure on its head to attract prey.

Members of the cat family such as the snow leopard (treeless highlands), tiger (grassy plains, reed swamps), ocelot (forest), fishing cat (waterside thickets), and lion (open plains) are camouflaged with coloration and disruptive patterns suiting their habitats.[83]

In aggressive mimicry, certain predators, including insects and fishes, make use of coloration and behaviour to attract prey. Female Photuris fireflies, for example, copy the light signals of other species, thereby attracting male fireflies, which they capture and eat.[84] Flower mantises are ambush predators; camouflaged as flowers, such as orchids, they attract prey and seize it when it is close enough.[85] Frogfishes are extremely well camouflaged, and actively lure their prey to approach using an esca, a bait on the end of a rod-like appendage on the head, which they wave gently to mimic a small animal, gulping the prey in an extremely rapid movement when it is within range.[86]

Venom edit

Many smaller predators such as the box jellyfish use venom to subdue their prey,[87] and venom can also aid in digestion (as is the case for rattlesnakes and some spiders).[88][89] The marbled sea snake that has adapted to egg predation has atrophied venom glands, and the gene for its three finger toxin contains a mutation (the deletion of two nucleotides) that inactives it. These changes are explained by the fact that its prey does not need to be subdued.[90]

Electric fields edit

 
An electric ray (Torpediniformes) showing location of electric organ and electrocytes stacked within it

Several groups of predatory fish have the ability to detect, track, and sometimes, as in the electric ray, to incapacitate their prey by sensing and generating electric fields.[91][92][93] The electric organ is derived from modified nerve or muscle tissue.[94]

Physiology edit

Physiological adaptations to predation include the ability of predatory bacteria to digest the complex peptidoglycan polymer from the cell walls of the bacteria that they prey upon.[23] Carnivorous vertebrates of all five major classes (fishes, amphibians, reptiles, birds, and mammals) have lower relative rates of sugar to amino acid transport than either herbivores or omnivores, presumably because they acquire plenty of amino acids from the animal proteins in their diet.[95]

Antipredator adaptations edit

 
Dead leaf mantis's camouflage makes it less visible to both predators and prey.
 
Syrphid hoverfly misdirects predators by mimicking a wasp, but has no sting.

To counter predation, prey have evolved defences for use at each stage of an attack.[96][12] They can try to avoid detection,[97] such as by using camouflage and mimicry.[98] They can detect predators[99] and warn others of their presence.[100][101] If detected, they can try to avoid being the target of an attack, for example, by signalling that they are toxic or unpalatable,[102][103][104] by signalling that a chase would be unprofitable,[105][106] or by forming groups.[107][108] If they become a target, they can try to fend off the attack with defences such as armour, quills, unpalatability, or mobbing;[109][110][111] and they can often escape an attack in progress by startling the predator,[112][113][114] playing dead, shedding body parts such as tails, or simply fleeing.[115][116]

Coevolution edit

 
Bats use echolocation to hunt moths at night.

Predators and prey are natural enemies, and many of their adaptations seem designed to counter each other. For example, bats have sophisticated echolocation systems to detect insects and other prey, and insects have developed a variety of defences including the ability to hear the echolocation calls.[117][118] Many pursuit predators that run on land, such as wolves, have evolved long limbs in response to the increased speed of their prey.[119] Their adaptations have been characterized as an evolutionary arms race, an example of the coevolution of two species.[120] In a gene centered view of evolution, the genes of predator and prey can be thought of as competing for the prey's body.[120] However, the "life-dinner" principle of Dawkins and Krebs predicts that this arms race is asymmetric: if a predator fails to catch its prey, it loses its dinner, while if it succeeds, the prey loses its life.[120]

 
Eastern coral snake, itself a predator, is venomous enough to kill predators that attack it, so when they avoid it, this behaviour must be inherited, not learnt.

The metaphor of an arms race implies ever-escalating advances in attack and defence. However, these adaptations come with a cost; for instance, longer legs have an increased risk of breaking,[121] while the specialized tongue of the chameleon, with its ability to act like a projectile, is useless for lapping water, so the chameleon must drink dew off vegetation.[122]

The "life-dinner" principle has been criticized on multiple grounds. The extent of the asymmetry in natural selection depends in part on the heritability of the adaptive traits.[122] Also, if a predator loses enough dinners, it too will lose its life.[121][122] On the other hand, the fitness cost of a given lost dinner is unpredictable, as the predator may quickly find better prey. In addition, most predators are generalists, which reduces the impact of a given prey adaption on a predator. Since specialization is caused by predator-prey coevolution, the rarity of specialists may imply that predator-prey arms races are rare.[122]

It is difficult to determine whether given adaptations are truly the result of coevolution, where a prey adaptation gives rise to a predator adaptation that is countered by further adaptation in the prey. An alternative explanation is escalation, where predators are adapting to competitors, their own predators or dangerous prey.[123] Apparent adaptations to predation may also have arisen for other reasons and then been co-opted for attack or defence. In some of the insects preyed on by bats, hearing evolved before bats appeared and was used to hear signals used for territorial defence and mating.[124] Their hearing evolved in response to bat predation, but the only clear example of reciprocal adaptation in bats is stealth echolocation.[125]

A more symmetric arms race may occur when the prey are dangerous, having spines, quills, toxins or venom that can harm the predator. The predator can respond with avoidance, which in turn drives the evolution of mimicry. Avoidance is not necessarily an evolutionary response as it is generally learned from bad experiences with prey. However, when the prey is capable of killing the predator (as can a coral snake with its venom), there is no opportunity for learning and avoidance must be inherited. Predators can also respond to dangerous prey with counter-adaptations. In western North America, the common garter snake has developed a resistance to the toxin in the skin of the rough-skinned newt.[122]

Role in ecosystems edit

Predators affect their ecosystems not only directly by eating their own prey, but by indirect means such as reducing predation by other species, or altering the foraging behaviour of a herbivore, as with the biodiversity effect of wolves on riverside vegetation or sea otters on kelp forests. This may explain population dynamics effects such as the cycles observed in lynx and snowshoe hares.[126][127][128]

Trophic level edit

One way of classifying predators is by trophic level. Carnivores that feed on herbivores are secondary consumers; their predators are tertiary consumers, and so forth.[129] At the top of this food chain are apex predators such as lions.[130] Many predators however eat from multiple levels of the food chain; a carnivore may eat both secondary and tertiary consumers.[131] This means that many predators must contend with intraguild predation, where other predators kill and eat them. For example, coyotes compete with and sometimes kill gray foxes and bobcats.[132]

Trophic transfer edit

Trophic transfer within an ecosystem refers to the transport of energy and nutrients as a result of predation. Energy passes from one trophic level to the next as predators consume organic matter from another organism's body. Within each transfer, while there are uses of energy, there are also losses of energy.

Marine trophic levels vary depending on locality and the size of the primary producers. There are generally up to six trophic levels in the open ocean, four over continental shelves, and around  three in upwelling zones.[133] For example, a marine habitat with five trophic levels could be represented as follows: Herbivores (feed primarily on phytoplankton); Carnivores (feed primarily on other zooplankton/animals); Detritivores (feed primarily on dead organic matter/detritus; Omnivores (feed on a mixed diet of phyto- and zooplankton and detritus); and Mixotrophs which combine autotrophy (using light energy to grow without intake of any additional organic compounds or nutrients) with heterotrophy (feeding on other plants and animals for energy and nutrients—herbivores, omnivores and carnivores, and detritivores).

Trophic transfer efficiency measures how effectively energy is transferred or passed up through higher trophic levels of the marine food web. As energy moves up the trophic levels, it decreases due to heat, waste, and the natural metabolic processes that occur as predators consume their prey. The result is that only about 10% of the energy at any trophic level is transferred to the next level. This is often referred to as "the 10% rule" which limits the number of trophic levels that an individual ecosystem is capable of supporting.[134]

Biodiversity maintained by apex predation edit

Predators may increase the biodiversity of communities by preventing a single species from becoming dominant. Such predators are known as keystone species and may have a profound influence on the balance of organisms in a particular ecosystem.[135] Introduction or removal of this predator, or changes in its population density, can have drastic cascading effects on the equilibrium of many other populations in the ecosystem. For example, grazers of a grassland may prevent a single dominant species from taking over.[136]

 
Riparian willow recovery at Blacktail Creek, Yellowstone National Park, after reintroduction of wolves, the local keystone species and apex predator.[137] Left, in 2002; right, in 2015

The elimination of wolves from Yellowstone National Park had profound impacts on the trophic pyramid. In that area, wolves are both keystone species and apex predators. Without predation, herbivores began to over-graze many woody browse species, affecting the area's plant populations. In addition, wolves often kept animals from grazing near streams, protecting the beavers' food sources. The removal of wolves had a direct effect on the beaver population, as their habitat became territory for grazing. Increased browsing on willows and conifers along Blacktail Creek due to a lack of predation caused channel incision because the reduced beaver population was no longer able to slow the water down and keep the soil in place. The predators were thus demonstrated to be of vital importance in the ecosystem.[137]

Population dynamics edit

 
Numbers of snowshoe hare (Lepus americanus) (yellow background) and Canada lynx (black line, foreground) furs sold to the Hudson's Bay Company from 1845 to 1935

In the absence of predators, the population of a species can grow exponentially until it approaches the carrying capacity of the environment.[138] Predators limit the growth of prey both by consuming them and by changing their behavior.[139] Increases or decreases in the prey population can also lead to increases or decreases in the number of predators, for example, through an increase in the number of young they bear.

Cyclical fluctuations have been seen in populations of predator and prey, often with offsets between the predator and prey cycles. A well-known example is that of the snowshoe hare and lynx. Over a broad span of boreal forests in Alaska and Canada, the hare populations fluctuate in near synchrony with a 10-year period, and the lynx populations fluctuate in response. This was first seen in historical records of animals caught by fur hunters for the Hudson's Bay Company over more than a century.[140][128][141][142]

 
Predator-prey population cycles in a Lotka–Volterra model

A simple model of a system with one species each of predator and prey, the Lotka–Volterra equations, predicts population cycles.[143] However, attempts to reproduce the predictions of this model in the laboratory have often failed; for example, when the protozoan Didinium nasutum is added to a culture containing its prey, Paramecium caudatum, the latter is often driven to extinction.[144]

The Lotka–Volterra equations rely on several simplifying assumptions, and they are structurally unstable, meaning that any change in the equations can stabilize or destabilize the dynamics.[145][146] For example, one assumption is that predators have a linear functional response to prey: the rate of kills increases in proportion to the rate of encounters. If this rate is limited by time spent handling each catch, then prey populations can reach densities above which predators cannot control them.[144] Another assumption is that all prey individuals are identical. In reality, predators tend to select young, weak, and ill individuals, leaving prey populations able to regrow.[147]

Many factors can stabilize predator and prey populations.[148] One example is the presence of multiple predators, particularly generalists that are attracted to a given prey species if it is abundant and look elsewhere if it is not.[149] As a result, population cycles tend to be found in northern temperate and subarctic ecosystems because the food webs are simpler.[150] The snowshoe hare-lynx system is subarctic, but even this involves other predators, including coyotes, goshawks and great horned owls, and the cycle is reinforced by variations in the food available to the hares.[151]

A range of mathematical models have been developed by relaxing the assumptions made in the Lotka–Volterra model; these variously allow animals to have geographic distributions, or to migrate; to have differences between individuals, such as sexes and an age structure, so that only some individuals reproduce; to live in a varying environment, such as with changing seasons;[152][153] and analysing the interactions of more than just two species at once. Such models predict widely differing and often chaotic predator-prey population dynamics.[152][154] The presence of refuge areas, where prey are safe from predators, may enable prey to maintain larger populations but may also destabilize the dynamics.[155][156][157][158]

Evolutionary history edit

Predation dates from before the rise of commonly recognized carnivores by hundreds of millions (perhaps billions) of years. Predation has evolved repeatedly in different groups of organisms.[5][159] The rise of eukaryotic cells at around 2.7 Gya, the rise of multicellular organisms at about 2 Gya, and the rise of mobile predators (around 600 Mya - 2 Gya, probably around 1 Gya) have all been attributed to early predatory behavior, and many very early remains show evidence of boreholes or other markings attributed to small predator species.[5] It likely triggered major evolutionary transitions including the arrival of cells, eukaryotes, sexual reproduction, multicellularity, increased size, mobility (including insect flight[160]) and armoured shells and exoskeletons.[5]

The earliest predators were microbial organisms, which engulfed or grazed on others. Because the fossil record is poor, these first predators could date back anywhere between 1 and over 2.7 Gya (billion years ago).[5] Predation visibly became important shortly before the Cambrian period—around 550 million years ago—as evidenced by the almost simultaneous development of calcification in animals and algae,[161] and predation-avoiding burrowing. However, predators had been grazing on micro-organisms since at least 1,000 million years ago,[5][162][163] with evidence of selective (rather than random) predation from a similar time.[164]

Auroralumina attenboroughii is an Ediacaran crown-group cnidarian (557–562 mya, some 20 million years before the Cambrian explosion) from Charnwood Forest, England. It is thought to be one of the earliest predatory animals, catching small prey with its nematocysts as modern cnidarians do.[165]

The fossil record demonstrates a long history of interactions between predators and their prey from the Cambrian period onwards, showing for example that some predators drilled through the shells of bivalve and gastropod molluscs, while others ate these organisms by breaking their shells.[166] Among the Cambrian predators were invertebrates like the anomalocaridids with appendages suitable for grabbing prey, large compound eyes and jaws made of a hard material like that in the exoskeleton of an insect.[167] Some of the first fish to have jaws were the armoured and mainly predatory placoderms of the Silurian to Devonian periods, one of which, the 6 m (20 ft) Dunkleosteus, is considered the world's first vertebrate "superpredator", preying upon other predators.[168][169]Insects developed the ability to fly in the Early Carboniferous or Late Devonian, enabling them among other things to escape from predators.[160] Among the largest predators that have ever lived were the theropod dinosaurs such as Tyrannosaurus from the Cretaceous period. They preyed upon herbivorous dinosaurs such as hadrosaurs, ceratopsians and ankylosaurs.[170]

In human society edit

 
San hunter, Botswana

Practical uses edit

Humans, as omnivores, are to some extent predatory,[171] using weapons and tools to fish,[172] hunt and trap animals.[173] They also use other predatory species such as dogs, cormorants,[174] and falcons to catch prey for food or for sport.[175] Two mid-sized predators, dogs and cats, are the animals most often kept as pets in western societies.[176][177] Human hunters, including the San of southern Africa, use persistence hunting, a form of pursuit predation where the pursuer may be slower than prey such as a kudu antelope over short distances, but follows it in the midday heat until it is exhausted, a pursuit that can take up to five hours.[178][179]

In biological pest control, predators (and parasitoids) from a pest's natural range are introduced to control populations, at the risk of causing unforeseen problems. Natural predators, provided they do no harm to non-pest species, are an environmentally friendly and sustainable way of reducing damage to crops and an alternative to the use of chemical agents such as pesticides.[180]

Symbolic uses edit

 
The Capitoline Wolf suckling Romulus and Remus, the mythical founders of Rome

In film, the idea of the predator as a dangerous if humanoid enemy is used in the 1987 science fiction horror action film Predator and its three sequels.[181][182] A terrifying predator, a gigantic man-eating great white shark, is central, too, to Steven Spielberg's 1974 thriller Jaws.[183]

Among poetry on the theme of predation, a predator's consciousness might be explored, such as in Ted Hughes's Pike.[184] The phrase "Nature, red in tooth and claw" from Alfred, Lord Tennyson's 1849 poem "In Memoriam A.H.H." has been interpreted as referring to the struggle between predators and prey.[185]

In mythology and folk fable, predators such as the fox and wolf have mixed reputations.[186] The fox was a symbol of fertility in ancient Greece, but a weather demon in northern Europe, and a creature of the devil in early Christianity; the fox is presented as sly, greedy, and cunning in fables from Aesop onwards.[186] The big bad wolf is known to children in tales such as Little Red Riding Hood, but is a demonic figure in the Icelandic Edda sagas, where the wolf Fenrir appears in the apocalyptic ending of the world.[186] In the Middle Ages, belief spread in werewolves, men transformed into wolves.[186] In ancient Rome, and in ancient Egypt, the wolf was worshipped, the she-wolf appearing in the founding myth of Rome, suckling Romulus and Remus.[186] More recently, in Rudyard Kipling's 1894 The Jungle Book, Mowgli is raised by the wolf pack.[186] Attitudes to large predators in North America, such as wolf, grizzly bear and cougar, have shifted from hostility or ambivalence, accompanied by active persecution, towards positive and protective in the second half of the 20th century.[187]

See also edit

Notes edit

  1. ^ A range of 3000 kilometres means a flight distance of at least 6000 kilometres out and back.

References edit

  1. ^ Gurr, Geoff M.; Wratten, Stephen D.; Snyder, William E. (2012). Biodiversity and Insect Pests: Key Issues for Sustainable Management. John Wiley & Sons. p. 105. ISBN 978-1-118-23185-2.
  2. ^ a b c d Lafferty, K. D.; Kuris, A. M. (2002). "Trophic strategies, animal diversity and body size". Trends Ecol. Evol. 17 (11): 507–513. doi:10.1016/s0169-5347(02)02615-0.
  3. ^ Poulin, Robert; Randhawa, Haseeb S. (February 2015). "Evolution of parasitism along convergent lines: from ecology to genomics". Parasitology. 142 (Suppl 1): S6–S15. doi:10.1017/S0031182013001674. PMC 4413784. PMID 24229807.
  4. ^ Poulin, Robert (2011). Rollinson, D.; Hay, S. I. (eds.). The Many Roads to Parasitism: A Tale of Convergence. Vol. 74. Academic Press. pp. 27–28. doi:10.1016/B978-0-12-385897-9.00001-X. ISBN 978-0-12-385897-9. PMID 21295676. {{cite book}}: |journal= ignored (help)
  5. ^ a b c d e f g Bengtson, S. (2002). "Origins and early evolution of predation". In Kowalewski, M.; Kelley, P. H. (eds.). The fossil record of predation. The Paleontological Society Papers 8 (PDF). The Paleontological Society. pp. 289–317.
  6. ^ a b Janzen, D. H. (1971). "Seed Predation by Animals". Annual Review of Ecology and Systematics. 2: 465–492. doi:10.1146/annurev.es.02.110171.002341.
  7. ^ Nilsson, Sven G.; Björkman, Christer; Forslund, Pär; Höglund, Jacob (1985). "Egg predation in forest bird communities on islands and mainland". Oecologia. 66 (4): 511–515. Bibcode:1985Oecol..66..511N. doi:10.1007/BF00379342. PMID 28310791. S2CID 2145031.
  8. ^ a b Hulme, P. E.; Benkman, C. W. (2002). C. M. Herrera and O. Pellmyr (ed.). Granivory. Blackwell. pp. 132–154. ISBN 978-0-632-05267-7. {{cite book}}: |work= ignored (help)
  9. ^ Kane, Adam; Healy, Kevin; Guillerme, Thomas; Ruxton, Graeme D.; Jackson, Andrew L. (2017). "A recipe for scavenging in vertebrates – the natural history of a behaviour". Ecography. 40 (2): 324–334. Bibcode:2017Ecogr..40..324K. doi:10.1111/ecog.02817. hdl:10468/3213. S2CID 56280901.
  10. ^ Kruuk, Hans (1972). The Spotted Hyena: A Study of Predation and Social Behaviour. University of California Press. pp. 107–108. ISBN 978-0226455082.
  11. ^ Schmidt, Justin O. (2009). "Wasps". Wasps - ScienceDirect (Second ed.). pp. 1049–1052. doi:10.1016/B978-0-12-374144-8.00275-7. ISBN 9780123741448. {{cite book}}: |journal= ignored (help)
  12. ^ a b c d e f Stevens, Alison N. P. (2010). "Predation, Herbivory, and Parasitism". Nature Education Knowledge. 3 (10): 36.
  13. ^ "Predators, parasites and parasitoids". Australian Museum. Retrieved 19 September 2018.
  14. ^ Watanabe, James M. (2007). "Invertebrates, overview". In Denny, Mark W.; Gaines, Steven Dean (eds.). Encyclopedia of tidepools and rocky shores. University of California Press. ISBN 9780520251182.
  15. ^ Phelan, Jay (2009). What Is life? : a guide to biology (Student ed.). W.H. Freeman & Co. p. 432. ISBN 9781429223188.
  16. ^ Villanueva, Roger; Perricone, Valentina; Fiorito, Graziano (17 August 2017). "Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits". Frontiers in Physiology. 8: 598. doi:10.3389/fphys.2017.00598. PMC 5563153. PMID 28861006.
  17. ^ Hanssen, Sveinn Are; Erikstad, Kjell Einar (2012). "The long-term consequences of egg predation". Behavioral Ecology. 24 (2): 564–569. doi:10.1093/beheco/ars198.
  18. ^ Pike, David A.; Clark, Rulon W.; Manica, Andrea; Tseng, Hui-Yun; Hsu, Jung-Ya; Huang, Wen-San (26 February 2016). "Surf and turf: predation by egg-eating snakes has led to the evolution of parental care in a terrestrial lizard". Scientific Reports. 6 (1): 22207. Bibcode:2016NatSR...622207P. doi:10.1038/srep22207. PMC 4768160. PMID 26915464.
  19. ^ Ainsworth, Gill; Calladine, John; Martay, Blaise; Park, Kirsty; Redpath, Steve; Wernham, Chris; Wilson, Mark; Young, Juliette (2017). Understanding Predation: A review bringing together natural science and local knowledge of recent wild bird population changes and their drivers in Scotland. Scotland's Moorland Forum. pp. 233–234. doi:10.13140/RG.2.1.1014.6960.
  20. ^ Hedrich, Rainer; Fukushima, Kenji (20 May 2021). "On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet". Annual Review of Plant Biology. 72 (1). annurev–arplant–080620-010429. doi:10.1146/annurev-arplant-080620-010429. ISSN 1543-5008. PMID 33434053. S2CID 231595236.
  21. ^ Pramer, D. (1964). "Nematode-trapping fungi". Science. 144 (3617): 382–388. Bibcode:1964Sci...144..382P. doi:10.1126/science.144.3617.382. JSTOR 1713426. PMID 14169325.
  22. ^ a b Velicer, Gregory J.; Mendes-Soares, Helena (2007). "Bacterial predators" (PDF). Cell. 19 (2): R55–R56. doi:10.1016/j.cub.2008.10.043. PMID 19174136. S2CID 5432036.
  23. ^ a b Jurkevitch, Edouard; Davidov, Yaacov (2006). "Phylogenetic Diversity and Evolution of Predatory Prokaryotes". Predatory Prokaryotes. Springer. pp. 11–56. doi:10.1007/7171_052. ISBN 978-3-540-38577-6.
  24. ^ Hansen, Per Juel; Bjørnsen, Peter Koefoed; Hansen, Benni Winding (1997). "Zooplankton grazing and growth: Scaling within the 2-2,-μm body size range". Limnology and Oceanography. 42 (4): 687–704. Bibcode:1997LimOc..42..687H. doi:10.4319/lo.1997.42.4.0687. summarizes findings from many authors.
  25. ^ a b c d e f Kramer, Donald L. (2001). (PDF). In Fox, C. W.; Roff, D. A.; Fairbairn, D. J. (eds.). Evolutionary Ecology: Concepts and Case Studies. Oxford University Press. pp. 232–238. ISBN 9780198030133. Archived from the original (PDF) on 12 July 2018. Retrieved 20 September 2018.
  26. ^ a b Griffiths, David (November 1980). "Foraging costs and relative prey size". The American Naturalist. 116 (5): 743–752. doi:10.1086/283666. JSTOR 2460632. S2CID 85094710.
  27. ^ Wetzel, Robert G.; Likens, Gene E. (2000). "Predator-Prey Interactions". Limnological Analyses. Springer. pp. 257–262. doi:10.1007/978-1-4757-3250-4_17. ISBN 978-1-4419-3186-3.
  28. ^ a b c d Pianka, Eric R. (2011). Evolutionary ecology (7th (eBook) ed.). Eric R. Pianka. pp. 78–83.
  29. ^ MacArthur, Robert H. (1984). "The economics of consumer choice". Geographical ecology : patterns in the distribution of species. Princeton University Press. pp. 59–76. ISBN 9780691023823.
  30. ^ a b c d Bell 2012, pp. 4–5
  31. ^ Eastman, Lucas B.; Thiel, Martin (2015). "Foraging behavior of crustacean predators and scavengers". In Thiel, Martin; Watling, Les (eds.). Lifestyles and feeding biology. Oxford University Press. pp. 535–556. ISBN 9780199797066.
  32. ^ Perry, Gad (January 1999). "The Evolution of Search Modes: Ecological versus Phylogenetic Perspectives". The American Naturalist. 153 (1): 98–109. doi:10.1086/303145. PMID 29578765. S2CID 4334462.
  33. ^ a b Bell 2012, pp. 69–188
  34. ^ Gremillet, D.; Wilson, R. P.; Wanless, S.; Chater, T. (2000). "Black-browed albatrosses, international fisheries and the Patagonian Shelf". Marine Ecology Progress Series. 195: 69–280. Bibcode:2000MEPS..195..269G. doi:10.3354/meps195269.
  35. ^ Charnov, Eric L. (1976). "Optimal foraging, the marginal value theorem" (PDF). Theoretical Population Biology. 9 (2): 129–136. doi:10.1016/0040-5809(76)90040-x. PMID 1273796.
  36. ^ Reynolds, Andy (September 2015). "Liberating Lévy walk research from the shackles of optimal foraging". Physics of Life Reviews. 14: 59–83. Bibcode:2015PhLRv..14...59R. doi:10.1016/j.plrev.2015.03.002. PMID 25835600.
  37. ^ Buchanan, Mark (5 June 2008). "Ecological modelling: The mathematical mirror to animal nature". Nature. 453 (7196): 714–716. doi:10.1038/453714a. PMID 18528368.
  38. ^ Williams, Amanda C.; Flaxman, Samuel M. (2012). "Can predators assess the quality of their prey's resource?". Animal Behaviour. 83 (4): 883–890. doi:10.1016/j.anbehav.2012.01.008. S2CID 53172079.
  39. ^ Scharf, Inon; Nulman, Einat; Ovadia, Ofer; Bouskila, Amos (September 2006). "Efficiency evaluation of two competing foraging modes under different conditions". The American Naturalist. 168 (3): 350–357. doi:10.1086/506921. PMID 16947110. S2CID 13809116.
  40. ^ a b c d e f g h i j k Moore, Talia Y.; Biewener, Andrew A. (2015). "Outrun or Outmaneuver: Predator–Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context" (PDF). Integrative and Comparative Biology. 55 (6): 1188–97. doi:10.1093/icb/icv074. PMID 26117833.
  41. ^ a b deVries, M. S.; Murphy, E. A. K.; Patek S. N. (2012). "Strike mechanics of an ambush predator: the spearing mantis shrimp". Journal of Experimental Biology. 215 (Pt 24): 4374–4384. doi:10.1242/jeb.075317. PMID 23175528.
  42. ^ . Hinterland Who's Who. Canadian Wildlife Service and Canadian Wildlife Federation. Archived from the original on 18 May 2007. Retrieved 22 May 2007.
  43. ^ "Pikes (Esocidae)" (PDF). Indiana Division of Fish and Wildlife. Retrieved 3 September 2018.
  44. ^ Bray, Dianne. . Fishes of Australia. Archived from the original on 14 September 2014. Retrieved 14 September 2014.
  45. ^ "Trapdoor spiders". BBC. Retrieved 12 December 2014.
  46. ^ "Trapdoor spider". Arizona-Sonora Desert Museum. 2014. Retrieved 12 December 2014.
  47. ^ Gazda, S. K.; Connor, R. C.; Edgar, R. K.; Cox, F. (2005). "A division of labour with role specialization in group-hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida". Proceedings of the Royal Society. 272 (1559): 135–140. doi:10.1098/rspb.2004.2937. PMC 1634948. PMID 15695203.
  48. ^ Tyus, Harold M. (2011). Ecology and Conservation of Fishes. CRC Press. p. 233. ISBN 978-1-4398-9759-1.
  49. ^ Combes, S. A.; Salcedo, M. K.; Pandit, M. M.; Iwasaki, J. M. (2013). "Capture Success and Efficiency of Dragonflies Pursuing Different Types of Prey". Integrative and Comparative Biology. 53 (5): 787–798. doi:10.1093/icb/ict072. PMID 23784698.
  50. ^ Hubel, Tatjana Y.; Myatt, Julia P.; Jordan, Neil R.; Dewhirst, Oliver P.; McNutt, J. Weldon; Wilson, Alan M. (29 March 2016). "Energy cost and return for hunting in African wild dogs". Nature Communications. 7: 11034. doi:10.1038/ncomms11034. PMC 4820543. PMID 27023457. Cursorial hunting strategies range from one extreme of transient acceleration, power and speed to the other extreme of persistence and endurance with prey being fatigued to facilitate capture.Dogs and humans are considered to rely on endurance rather than outright speed and manoeuvrability for success when hunting cursorially.
  51. ^ Goldbogen, J. A.; Calambokidis, J.; Shadwick, R. E.; Oleson, E. M.; McDonald, M. A.; Hildebrand, J. A. (2006). "Kinematics of foraging dives and lunge-feeding in fin whales". Journal of Experimental Biology. 209 (7): 1231–1244. doi:10.1242/jeb.02135. PMID 16547295. S2CID 17923052.
  52. ^ Sanders, Jon G.; Beichman, Annabel C.; Roman, Joe; Scott, Jarrod J.; Emerson, David; McCarthy, James J.; Girguis, Peter R. (2015). "Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores". Nature Communications. 6: 8285. Bibcode:2015NatCo...6.8285S. doi:10.1038/ncomms9285. PMC 4595633. PMID 26393325.
  53. ^ Forbes, L. Scott (1989). "Prey Defences and Predator Handling Behaviour: The Dangerous Prey Hypothesis". Oikos. 55 (2): 155–158. Bibcode:1989Oikos..55..155F. doi:10.2307/3565418. JSTOR 3565418.
  54. ^ a b Lang, Stephen D. J.; Farine, Damien R. (2017). "A multidimensional framework for studying social predation strategies". Nature Ecology & Evolution. 1 (9): 1230–1239. Bibcode:2017NatEE...1.1230L. doi:10.1038/s41559-017-0245-0. PMID 29046557. S2CID 4214982.
  55. ^ MacNulty, Daniel R.; Tallian, Aimee; Stahler, Daniel R.; Smith, Douglas W. (12 November 2014). Sueur, Cédric (ed.). "Influence of Group Size on the Success of Wolves Hunting Bison". PLOS ONE. 9 (11): e112884. Bibcode:2014PLoSO...9k2884M. doi:10.1371/journal.pone.0112884. PMC 4229308. PMID 25389760.
  56. ^ Power, R. J.; Compion, R. X. Shem (2009). "Lion predation on elephants in the Savuti, Chobe National Park, Botswana". African Zoology. 44 (1): 36–44. doi:10.3377/004.044.0104. S2CID 86371484.
  57. ^ Beauchamp 2012, pp. 7–12
  58. ^ Dawson, James W. (1988). The cooperative breeding system of the Harris' Hawk in Arizona (Masters thesis). The University of Arizona. Retrieved 17 November 2017.
  59. ^ Vail, Alexander L.; Manica, Andrea; Bshary, Redouan (23 April 2013). "Referential gestures in fish collaborative hunting". Nature Communications. 4 (1): 1765. Bibcode:2013NatCo...4.1765V. doi:10.1038/ncomms2781. PMID 23612306.
  60. ^ Yong, Ed (24 April 2013). . National Geographic. Archived from the original on 17 September 2018. Retrieved 17 September 2018.
  61. ^ Toft, Klaus (Producer) (2007). . Australian Broadcasting Corporation. Archived from the original on 12 August 2009. ISBN R-105732-9.
  62. ^ a b Bryce, Caleb M.; Wilmers, Christopher C.; Williams, Terrie M. (2017). "Energetics and evasion dynamics of large predators and prey: pumas vs. hounds". PeerJ. 5: e3701. doi:10.7717/peerj.3701. PMC 5563439. PMID 28828280.
  63. ^ Majer, Marija; Holm, Christina; Lubin, Yael; Bilde, Trine (2018). "Cooperative foraging expands dietary niche but does not offset intra-group competition for resources in social spiders". Scientific Reports. 8 (1): 11828. Bibcode:2018NatSR...811828M. doi:10.1038/s41598-018-30199-x. PMC 6081395. PMID 30087391.
  64. ^ . Sibley Nature Center. Archived from the original on 2 August 2021. Retrieved 17 September 2018.
  65. ^ Elbroch, L. Mark; Quigley, Howard (10 July 2016). "Social interactions in a solitary carnivore". Current Zoology. 63 (4): 357–362. doi:10.1093/cz/zow080. PMC 5804185. PMID 29491995.
  66. ^ Quenqua, Douglas (11 October 2017). "Solitary Pumas Turn Out to Be Mountain Lions Who Lunch". The New York Times. Retrieved 17 September 2018.
  67. ^ Flores, Dan (2016). Coyote America : a natural and supernatural history. Basic Books. ISBN 978-0465052998.
  68. ^ Stow, Adam; Nyqvist, Marina J.; Gozlan, Rodolphe E.; Cucherousset, Julien; Britton, J. Robert (2012). "Behavioural Syndrome in a Solitary Predator Is Independent of Body Size and Growth Rate". PLOS ONE. 7 (2): e31619. Bibcode:2012PLoSO...731619N. doi:10.1371/journal.pone.0031619. PMC 3282768. PMID 22363687.
  69. ^ "How do Spiders Hunt?". American Museum of Natural History. 25 August 2014. Retrieved 5 September 2018.
  70. ^ Weseloh, Ronald M.; Hare, J. Daniel (2009). "Predation/Predatory Insects". Encyclopedia of Insects (Second ed.). pp. 837–839. doi:10.1016/B978-0-12-374144-8.00219-8. ISBN 9780123741448.
  71. ^ "Zooplankton". MarineBio Conservation Society. 17 June 2018. Retrieved 5 September 2018.
  72. ^ Bar-Yam. "Predator-Prey Relationships". New England Complex Systems Institute. Retrieved 7 September 2018.
  73. ^ a b c (PDF). Royal Saskatchewan Museum. 2012. Archived from the original (PDF) on 3 April 2018. Retrieved 19 April 2018.
  74. ^ Vermeij, Geerat J. (1993). Evolution and Escalation: An Ecological History of Life. Princeton University Press. pp. 11 and passim. ISBN 978-0-691-00080-0.
  75. ^ Getz, W. M. (2011). "Biomass transformation webs provide a unified approach to consumer-resource modelling". Ecology Letters. 14 (2): 113–24. Bibcode:2011EcolL..14..113G. doi:10.1111/j.1461-0248.2010.01566.x. PMC 3032891. PMID 21199247.
  76. ^ Sidorovich, Vadim (2011). Analysis of vertebrate predator-prey community: Studies within the European Forest zone in terrains with transitional mixed forest in Belarus. Tesey. p. 426. ISBN 978-985-463-456-2.
  77. ^ Angelici, Francesco M. (2015). Problematic Wildlife: A Cross-Disciplinary Approach. Springer. p. 160. ISBN 978-3-319-22246-2.
  78. ^ Hayward, M. W.; Henschel, P.; O'Brien, J.; Hofmeyr, M.; Balme, G.; Kerley, G.I.H. (2006). (PDF). Journal of Zoology. 270 (2): 298–313. doi:10.1111/j.1469-7998.2006.00139.x. Archived from the original (PDF) on 29 February 2020. Retrieved 20 April 2018.
  79. ^ Pulliam, H. Ronald (1974). "On the Theory of Optimal Diets". The American Naturalist. 108 (959): 59–74. doi:10.1086/282885. S2CID 8420787.
  80. ^ Sih, Andrew; Christensen, Bent (2001). "Optimal diet theory: when does it work, and when and why does it fail?". Animal Behaviour. 61 (2): 379–390. doi:10.1006/anbe.2000.1592. S2CID 44045919.
  81. ^ Sprules, W. Gary (1972). "Effects of Size-Selective Predation and Food Competition on High Altitude Zooplankton Communities". Ecology. 53 (3): 375–386. Bibcode:1972Ecol...53..375S. doi:10.2307/1934223. JSTOR 1934223.
  82. ^ Owen-Smith, Norman; Mills, M. G. L. (2008). "Predator-prey size relationships in an African large-mammal food web" (PDF). Journal of Animal Ecology. 77 (1): 173–183. Bibcode:2008JAnEc..77..173O. doi:10.1111/j.1365-2656.2007.01314.x. hdl:2263/9023. PMID 18177336.
  83. ^ Cott 1940, pp. 12–13
  84. ^ Lloyd J. E. (1965). "Aggressive Mimicry in Photuris: Firefly Femmes Fatales". Science. 149 (3684): 653–654. Bibcode:1965Sci...149..653L. doi:10.1126/science.149.3684.653. PMID 17747574. S2CID 39386614.
  85. ^ Forbes, Peter (2009). Dazzled and Deceived: Mimicry and Camouflage. Yale University Press. p. 134. ISBN 978-0-300-17896-8.
  86. ^ Bester, Cathleen (5 May 2017). "Antennarius striatus". Florida Museum. University of Florida. Retrieved 31 January 2018.
  87. ^ Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. pp. 153–154. ISBN 978-81-315-0104-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  88. ^ Cetaruk, Edward W. (2005). "Rattlesnakes and Other Crotalids". In Brent, Jeffrey (ed.). Critical care toxicology: diagnosis and management of the critically poisoned patient. Elsevier Health Sciences. p. 1075. ISBN 978-0-8151-4387-1.
  89. ^ Barceloux, Donald G. (2008). Medical Toxicology of Natural Substances: Foods, Fungi, Medicinal Herbs, Plants, and Venomous Animals. Wiley. p. 1028. ISBN 978-0-470-33557-4.
  90. ^ Li, Min; Fry, B.G.; Kini, R. Manjunatha (2005). "Eggs-Only Diet: Its Implications for the Toxin Profile Changes and Ecology of the Marbled Sea Snake (Aipysurus eydouxii)". Journal of Molecular Evolution. 60 (1): 81–89. Bibcode:2005JMolE..60...81L. doi:10.1007/s00239-004-0138-0. PMID 15696370. S2CID 17572816.
  91. ^ Castello, M. E.; A. Rodriguez-Cattaneo; P. A. Aguilera; L. Iribarne; A. C. Pereira; A. A. Caputi (2009). "Waveform generation in the weakly electric fish Gymnotus coropinae (Hoedeman): the electric organ and the electric organ discharge". Journal of Experimental Biology. 212 (9): 1351–1364. doi:10.1242/jeb.022566. PMID 19376956.
  92. ^ Feulner, P. G.; M. Plath; J. Engelmann; F. Kirschbaum; R. Tiedemann (2009). "Electrifying love: electric fish use species-specific discharge for mate recognition". Biology Letters. 5 (2): 225–228. doi:10.1098/rsbl.2008.0566. PMC 2665802. PMID 19033131.
  93. ^ Catania, Kenneth C. (2015). "Electric eels use high-voltage to track fast-moving prey". Nature Communications. 6 (1): 8638. Bibcode:2015NatCo...6.8638C. doi:10.1038/ncomms9638. PMC 4667699. PMID 26485580.
  94. ^ Kramer, Bernd (1996). "Electroreception and communication in fishes" (PDF). Progress in Zoology. 42.
  95. ^ Karasov, William H.; Diamond, Jared M. (1988). "Interplay between Physiology and Ecology in Digestion". BioScience. 38 (9): 602–611. doi:10.2307/1310825. JSTOR 1310825.
  96. ^ Ruxton, Sherratt & Speed 2004, pp. vii–xii
  97. ^ Caro 2005, pp. 67–114
  98. ^ Merilaita, Sami; Scott-Samuel, Nicholas E.; Cuthill, Innes C. (22 May 2017). "How camouflage works". Philosophical Transactions of the Royal Society B: Biological Sciences (Submitted manuscript). 372 (1724): 20160341. doi:10.1098/rstb.2016.0341. PMC 5444062. PMID 28533458.
  99. ^ Caro 2005, pp. 13–15
  100. ^ Bergstrom, C. T.; Lachmann, M. (2001). "Alarm calls as costly signals of antipredator vigilance: the watchful babbler game". Animal Behaviour. 61 (3): 535–543. CiteSeerX 10.1.1.28.773. doi:10.1006/anbe.2000.1636. S2CID 2295026.
  101. ^ Getty, T. (2002). "The discriminating babbler meets the optimal diet hawk". Animal Behaviour. 63 (2): 397–402. doi:10.1006/anbe.2001.1890. S2CID 53164940.
  102. ^ Cott 1940, pp. 241–307
  103. ^ Bowers, M. D.; Brown, Irene L.; Wheye, Darryl (1985). "Bird Predation as a Selective Agent in a Butterfly Population". Evolution. 39 (1): 93–103. doi:10.1111/j.1558-5646.1985.tb04082.x. PMID 28563638. S2CID 12031679.
  104. ^ Berenbaum, M. R. (3 January 1995). "The chemistry of defense: theory and practice". Proceedings of the National Academy of Sciences of the United States of America. 92 (1): 2–8. Bibcode:1995PNAS...92....2B. doi:10.1073/pnas.92.1.2. PMC 42807. PMID 7816816.
  105. ^ Ruxton, Sherratt & Speed 2004, pp. 70–81
  106. ^ Caro 2005, pp. 663–684
  107. ^ Beauchamp 2012, pp. 83–88
  108. ^ Krause, Jens; Ruxton, Graeme D. (10 October 2002). Living in groups. Oxford University Press. pp. 13–15. ISBN 9780198508182.
  109. ^ Ruxton, Sherratt & Speed 2004, pp. 54–55
  110. ^ Dominey, Wallace J. (1983). "Mobbing in Colonially Nesting Fishes, Especially the Bluegill, Lepomis macrochirus". Copeia. 1983 (4): 1086–1088. doi:10.2307/1445113. JSTOR 1445113.
  111. ^ Brodie, Edmund D. (3 November 2009). "Toxins and venoms" (PDF). Current Biology. 19 (20): R931–R935. doi:10.1016/j.cub.2009.08.011. PMID 19889364. S2CID 9744565.
  112. ^ Cott 1940, pp. 368–389
  113. ^ Merilaita, Sami; Vallin, Adrian; Kodandaramaiah, Ullasa; et al. (26 July 2011). "Number of eyespots and their intimidating effect on naïve predators in the peacock butterfly". Behavioral Ecology. 22 (6): 1326–1331. doi:10.1093/beheco/arr135.
  114. ^ Edmunds, Malcolm (2012). "Deimatic Behavior". Springer. Retrieved 31 December 2012.
  115. ^ Caro 2005, pp. v–xi, 4–5
  116. ^ Caro 2005, p. 413–414
  117. ^ Jacobs & Bastian 2017, p. 4
  118. ^ Barbosa, Pedro; Castellanos, Ignacio (2005). Ecology of predator-prey interactions. Oxford University Press. p. 78. ISBN 9780199874545.
  119. ^ Janis, C. M.; Wilhelm, P. B. (1993). "Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars". Journal of Mammalian Evolution. 1 (2): 103–125. doi:10.1007/bf01041590. S2CID 22739360.
  120. ^ a b c Dawkins, Richard; Krebs, J. R. (1979). "Arms races between and within species". Proceedings of the Royal Society B: Biological Sciences. 205 (1161): 489–511. Bibcode:1979RSPSB.205..489D. doi:10.1098/rspb.1979.0081. PMID 42057. S2CID 9695900.
  121. ^ a b Abrams, Peter A. (November 1986). "Adaptive responses of predators to prey and prey to predators: The failure of the arms-race analogy". Evolution. 40 (6): 1229–1247. doi:10.1111/j.1558-5646.1986.tb05747.x. PMID 28563514. S2CID 27317468.
  122. ^ a b c d e Brodie, Edmund D. (July 1999). "Predator-Prey Arms Races". BioScience. 49 (7): 557–568. doi:10.2307/1313476. JSTOR 1313476.
  123. ^ Vermeij, G J (November 1994). "The Evolutionary Interaction Among Species: Selection, Escalation, and Coevolution". Annual Review of Ecology and Systematics. 25 (1): 219–236. doi:10.1146/annurev.es.25.110194.001251.
  124. ^ Jacobs & Bastian 2017, p. 8
  125. ^ Jacobs & Bastian 2017, p. 107
  126. ^ Sheriff, Michael J.; Peacor, Scott D.; Hawlena, Dror; Thaker, Maria; Gaillard, Jean-Michel (2020). "Non-Consumptive Predator Effects on Prey Population Size: A Dearth of Evidence". Journal of Animal Ecology. 89 (6): 1302–1316. Bibcode:2020JAnEc..89.1302S. doi:10.1111/1365-2656.13213. PMID 32215909.
  127. ^ Preisser, Evan L.; Bolnick, Daniel I.; Benard, Michael F. (2005). "Scared to Death? The Effects of Intimidation and Consumption in Predator–Prey Interactions". Ecology. 86 (2): 501–509. Bibcode:2005Ecol...86..501P. doi:10.1890/04-0719. ISSN 0012-9658.
  128. ^ a b Peckarsky, Barbara L.; Abrams, Peter A.; Bolnick, Daniel I.; Dill, Lawrence M.; Grabowski, Jonathan H.; Luttbeg, Barney; Orrock, John L.; Peacor, Scott D.; Preisser, Evan L.; Schmitz, Oswald J.; Trussell, Geoffrey C. (September 2008). "Revisiting the classics: considering nonconsumptive effects in textbook examples of predator–prey interactions". Ecology. 89 (9): 2416–2425. Bibcode:2008Ecol...89.2416P. doi:10.1890/07-1131.1. PMID 18831163.
  129. ^ Lindeman, Raymond L. (1942). "The Trophic-Dynamic Aspect of Ecology". Ecology. 23 (4): 399–417. Bibcode:1942Ecol...23..399L. doi:10.2307/1930126. JSTOR 1930126.
  130. ^ Ordiz, Andrés; Bischof, Richard; Swenson, Jon E. (2013). "Saving large carnivores, but losing the apex predator?". Biological Conservation. 168: 128–133. Bibcode:2013BCons.168..128O. doi:10.1016/j.biocon.2013.09.024.
  131. ^ Pimm, S. L.; Lawton, J. H. (1978). "On feeding on more than one trophic level". Nature. 275 (5680): 542–544. Bibcode:1978Natur.275..542P. doi:10.1038/275542a0. S2CID 4161183.
  132. ^ Fedriani, J. M.; Fuller, T. K.; Sauvajot, R. M.; York, E. C. (2000). "Competition and intraguild predation among three sympatric carnivores" (PDF). Oecologia. 125 (2): 258–270. Bibcode:2000Oecol.125..258F. doi:10.1007/s004420000448. hdl:10261/54628. PMID 24595837. S2CID 24289407.
  133. ^ Lalli, C. M.; Parsons, T. R. (1997). Biological Oceanography: An Introduction (2nd ed.). The Open University. p. 116.
  134. ^ "Energy transfer in ecosystems". National Geographic. 18 February 2023. Retrieved 18 February 2023.
  135. ^ Bond, W. J. (2012). "11. Keystone species". In Schulze, Ernst-Detlef; Mooney, Harold A. (eds.). Biodiversity and Ecosystem Function. Springer. p. 237. ISBN 978-3642580017.
  136. ^ Botkin, D.; Keller, E. (2003). Environmental Science: Earth as a living planet. John Wiley & Sons. p. 2. ISBN 978-0-471-38914-9.
  137. ^ a b Ripple, William J.; Beschta, Robert L. (2004). "Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems?". BioScience. 54 (8): 755. doi:10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2.
  138. ^ Neal, Dick (2004). Introduction to population biology. Cambridge University Press. pp. 68–69. ISBN 9780521532235.
  139. ^ Nelson, Erik H.; Matthews, Christopher E.; Rosenheim, Jay A. (July 2004). "Predators Reduce Prey Population Growth by Inducing Changes in Prey Behavior". Ecology. 85 (7): 1853–1858. Bibcode:2004Ecol...85.1853N. doi:10.1890/03-3109. JSTOR 3450359.
  140. ^ Krebs, Charles J.; Boonstra, Rudy; Boutin, Stan; Sinclair, A.R.E. (2001). "What Drives the 10-year Cycle of Snowshoe Hares?". BioScience. 51 (1): 25. doi:10.1641/0006-3568(2001)051[0025:WDTYCO]2.0.CO;2. hdl:1807/359.
  141. ^ Krebs, Charley; Myers, Judy (12 July 2014). "The Snowshoe Hare 10-year Cycle – A Cautionary Tale". Ecological rants. University of British Columbia. Retrieved 2 October 2018.
  142. ^ "Predators and their prey". BBC Bitesize. BBC. Retrieved 7 October 2015.
  143. ^ Goel, Narendra S.; Maitra, S. C.; Montroll, E. W. (1971). On the Volterra and Other Non-Linear Models of Interacting Populations. Academic Press. ISBN 978-0122874505.
  144. ^ a b Levin, Simon A.; Carpenter, Stephen R.; Godfray, H. Charles J.; Kinzig, Ann P.; Loreau, Michel; Losos, Jonathan B.; Walker, Brian; Wilcove, David S. (2009). The Princeton guide to ecology. Princeton University Press. pp. 204–209. ISBN 9781400833023.
  145. ^ Murdoch, William W.; Briggs, Cheryl J.; Nisbet, Roger M. (2013). Consumer-resource dynamics. Princeton University Press. p. 39. ISBN 9781400847259.
  146. ^ Nowak, Martin; May, Robert M. (2000). Virus Dynamics : Mathematical Principles of Immunology and Virology. Oxford University Press. p. 8. ISBN 9780191588518.
  147. ^ Genovart, M.; Negre, N.; Tavecchia, G.; Bistuer, A.; Parpal, L.; Oro, D. (2010). "The young, the weak and the sick: evidence of natural selection by predation". PLOS ONE. 5 (3): e9774. Bibcode:2010PLoSO...5.9774G. doi:10.1371/journal.pone.0009774. PMC 2841644. PMID 20333305.
  148. ^ Rockwood 2009, p. 281
  149. ^ Rockwood 2009, p. 246
  150. ^ Rockwood 2009, pp. 271–272
  151. ^ Rockwood 2009, p. 272–273
  152. ^ a b Cushing, J. M. (2005). "Book Reviews | Mathematics in population biology, by Horst R. Thiene" (PDF). Bulletin of the American Mathematical Society. 42 (4): 501–505. doi:10.1090/S0273-0979-05-01055-4.
  153. ^ Thieme, Horst R. (2003). Mathematics in Population Biology. Princeton University Press. ISBN 978-0-691-09291-1.
  154. ^ Kozlov, Vladimir; Vakulenko, Sergey (3 July 2013). "On chaos in Lotka–Volterra systems: an analytical approach". Nonlinearity. 26 (8): 2299–2314. Bibcode:2013Nonli..26.2299K. doi:10.1088/0951-7715/26/8/2299. S2CID 121559550.
  155. ^ Sih, Andrew (1987). "Prey refuges and predator-prey stability". Theoretical Population Biology. 31: 1–12. doi:10.1016/0040-5809(87)90019-0.
  156. ^ McNair, James N (1986). "The effects of refuges on predator-prey interactions: A reconsideration". Theoretical Population Biology. 29 (1): 38–63. doi:10.1016/0040-5809(86)90004-3. PMID 3961711.
  157. ^ Berryman, Alan A.; Hawkins, Bradford A.; Hawkins, Bradford A. (2006). "The refuge as an integrating concept in ecology and evolution". Oikos. 115 (1): 192–196. Bibcode:2006Oikos.115..192B. doi:10.1111/j.0030-1299.2006.15188.x.
  158. ^ Cressman, Ross; Garay, József (2009). "A predator–prey refuge system: Evolutionary stability in ecological systems". Theoretical Population Biology. 76 (4): 248–57. doi:10.1016/j.tpb.2009.08.005. PMID 19751753.
  159. ^ Abrams, P. A. (2000). "The evolution of predator-prey interactions: theory and evidence". Annual Review of Ecology and Systematics. 31: 79–105. doi:10.1146/annurev.ecolsys.31.1.79.
  160. ^ a b Grimaldi, David; Engel, Michael S. (2005). Evolution of the Insects. Cambridge University Press. pp. 155–160. ISBN 978-0-521-82149-0.
  161. ^ Grant, S. W. F.; Knoll, A. H.; Germs, G. J. B. (1991). "Probable Calcified Metaphytes in the Latest Proterozoic Nama Group, Namibia: Origin, Diagenesis, and Implications". Journal of Paleontology. 65 (1): 1–18. Bibcode:1991JPal...65....1G. doi:10.1017/S002233600002014X. JSTOR 1305691. PMID 11538648. S2CID 26792772.
  162. ^ Awramik, S. M. (19 November 1971). "Precambrian columnar stromatolite diversity: Reflection of metazoan appearance". Science. 174 (4011): 825–827. Bibcode:1971Sci...174..825A. doi:10.1126/science.174.4011.825. PMID 17759393. S2CID 2302113.
  163. ^ Stanley, Steven M. (2008). "Predation defeats competition on the seafloor". Paleobiology. 34 (1): 1–21. Bibcode:2008Pbio...34....1S. doi:10.1666/07026.1. S2CID 83713101.
  164. ^ Loron, Corentin C.; Rainbird, Robert H.; Turner, Elizabeth C.; Wilder Greenman, J.; Javaux, Emmanuelle J. (2018). "Implications of selective predation on the macroevolution of eukaryotes: Evidence from Arctic Canada". Emerging Topics in Life Sciences. 2 (2): 247–255. doi:10.1042/ETLS20170153. PMID 32412621. S2CID 92505644.
  165. ^ a b Dunn, F. S.; Kenchington, C. G.; Parry, L. A.; Clark, J. W.; Kendall, R. S.; Wilby, P. R. (25 July 2022). "A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK". Nature Ecology & Evolution. 6 (8): 1095–1104. Bibcode:2022NatEE...6.1095D. doi:10.1038/s41559-022-01807-x. PMC 9349040. PMID 35879540.
  166. ^ Kelley, Patricia (2003). Predator—Prey Interactions in the Fossil Record. Springer. pp. 113–139, 141–176 and passim. ISBN 978-1-4615-0161-9. OCLC 840283264.
  167. ^ Daley, Allison C. (2013). "Anomalocaridids". Current Biology. 23 (19): R860–R861. doi:10.1016/j.cub.2013.07.008. PMID 24112975.
  168. ^ Anderson, P. S. L.; Westneat, M. (2009). "A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi)". Paleobiology. 35 (2): 251–269. Bibcode:2009Pbio...35..251A. doi:10.1666/08011.1. S2CID 86203770.
  169. ^ Carr, Robert K. (2010). "Paleoecology of Dunkleosteus terrelli (Placodermi: Arthrodira)". Kirtlandia. 57.
  170. ^ Switeck, Brian (13 April 2012). "When Tyrannosaurus Chomped Sauropods". Journal of Vertebrate Paleontology. 25 (2): 469–472. doi:10.1671/0272-4634(2005)025[0469:TRFTUC]2.0.CO;2. S2CID 131583311. Archived from the original on 24 August 2013. Retrieved 24 August 2013.
  171. ^ Darimont, C. T.; Fox, C. H.; Bryan, H. M.; Reimchen, T. E. (20 August 2015). "The unique ecology of human predators". Science. 349 (6250): 858–860. Bibcode:2015Sci...349..858D. doi:10.1126/science.aac4249. PMID 26293961. S2CID 4985359.
  172. ^ Gabriel, Otto; von Brandt, Andres (2005). Fish catching methods of the world. Blackwell. ISBN 978-0-85238-280-6.
  173. ^ Griffin, Emma (2008). Blood Sport: Hunting in Britain Since 1066. Yale University Press. ISBN 978-0300145458.
  174. ^ King, Richard J. (1 October 2013). The Devil's Cormorant: A Natural History. University of New Hampshire Press. p. 9. ISBN 978-1-61168-225-0.
  175. ^ Glasier, Phillip (1998). Falconry and Hawking. Batsford. ISBN 978-0713484076.
  176. ^ Aegerter, James; Fouracre, David; Smith, Graham C. (2017). Olsson, I Anna S (ed.). "A first estimate of the structure and density of the populations of pet cats and dogs across Great Britain". PLOS ONE. 12 (4): e0174709. Bibcode:2017PLoSO..1274709A. doi:10.1371/journal.pone.0174709. PMC 5389805. PMID 28403172.
  177. ^ The Humane Society of the United States. "U.S. Pet Ownership Statistics". Retrieved 27 April 2012.
  178. ^ Liebenberg, Louis (2008). "The relevance of persistence hunting to human evolution". Journal of Human Evolution. 55 (6): 1156–1159. doi:10.1016/j.jhevol.2008.07.004. PMID 18760825.
  179. ^ "Food For Thought" (PDF). The Life of Mammals. British Broadcasting Corporation. 31 October 2002.
  180. ^ Flint, Maria Louise; Dreistadt, Steve H. (1998). Clark, Jack K. (ed.). Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control. University of California Press. ISBN 978-0-520-21801-7.
  181. ^ Johnston, Keith M. (2013). Science Fiction Film: A Critical Introduction. Berg Publishers. p. 98. ISBN 9780857850560.
  182. ^ Newby, Richard (13 May 2018). "Is 'Predator' Finally Getting a Worthy Sequel?". Hollywood Reporter. Retrieved 7 September 2018.
  183. ^ Schatz, Thomas. "The New Hollywood". Movie Blockbusters. p. 25. In: Stringer, Julian (2003). Movie Blockbusters. Routledge. pp. 15–44. ISBN 978-0-415-25608-7.
  184. ^ Davison, Peter (1 December 2002). "Predators and Prey | Selected Poems, 1957–1994 by Ted Hughes". The New York Times. Retrieved 5 October 2018. Hughes's earliest books contained a bewildering profusion of poems between their covers: ... fish and fowl, beasts of the field and forest, vigorous embodiments of predators and prey. Hughes as a student had taken up anthropology, not literature, and he chose to meditate his way into trancelike states of preconsciousness before committing poems to paper. His poems, early or late, enter into the relations of living creatures; they move in close to animal consciousness: The Thought-Fox, Esther's Tomcat, Pike.
  185. ^ Gould, Stephen Jay (1995). The Tooth and Claw Centennial. Harmony Books. pp. 63–75. ISBN 978-0517703939. {{cite book}}: |work= ignored (help)
  186. ^ a b c d e f Wallner, Astrid (18 July 2005). . WaldWissen Information for Forest Management. Archived from the original on 5 October 2018. Retrieved 5 October 2018. translated from Wallner, A. (1998) Die Bedeutung der Raubtiere in der Mythologie: Ergebnisse einer Literaturstudie. – Inf.bl. Forsch.bereiches Landsch.ökol. 39: 4–5.
  187. ^ Kellert, Stephen R.; Black, Matthew; Rush, Colleen Reid; Bath, Alistair J. (1996). "Human Culture and Large Carnivore Conservation in North America". Conservation Biology. 10 (4): 977–990. Bibcode:1996ConBi..10..977K. doi:10.1046/j.1523-1739.1996.10040977.x.

Sources edit

External links edit

  •   Quotations related to Predation at Wikiquote
  •   Media related to Predation at Wikimedia Commons

predation, predator, prey, redirect, here, other, uses, predator, disambiguation, prey, disambiguation, biological, interaction, where, organism, predator, kills, eats, another, organism, prey, family, common, feeding, behaviours, that, includes, parasitism, m. Predator and Prey redirect here For other uses see Predator disambiguation and Prey disambiguation Predation is a biological interaction where one organism the predator kills and eats another organism its prey It is one of a family of common feeding behaviours that includes parasitism and micropredation which usually do not kill the host and parasitoidism which always does eventually It is distinct from scavenging on dead prey though many predators also scavenge it overlaps with herbivory as seed predators and destructive frugivores are predators Solitary predator a polar bear feeds on a bearded seal it has killed Social predators meat ants cooperate to feed on a cicada far larger than themselves Predators may actively search for or pursue prey or wait for it often concealed When prey is detected the predator assesses whether to attack it This may involve ambush or pursuit predation sometimes after stalking the prey If the attack is successful the predator kills the prey removes any inedible parts like the shell or spines and eats it Predators are adapted and often highly specialized for hunting with acute senses such as vision hearing or smell Many predatory animals both vertebrate and invertebrate have sharp claws or jaws to grip kill and cut up their prey Other adaptations include stealth and aggressive mimicry that improve hunting efficiency Predation has a powerful selective effect on prey and the prey develop antipredator adaptations such as warning coloration alarm calls and other signals camouflage mimicry of well defended species and defensive spines and chemicals Sometimes predator and prey find themselves in an evolutionary arms race a cycle of adaptations and counter adaptations Predation has been a major driver of evolution since at least the Cambrian period Contents 1 Definition 2 Taxonomic range 3 Foraging 3 1 Search 3 2 Assessment 3 3 Capture 3 3 1 Ambush 3 3 2 Ballistic interception 3 3 3 Pursuit 3 4 Handling 3 5 Solitary versus social predation 4 Specialization 4 1 Physical adaptations 4 2 Diet and behaviour 4 3 Camouflage and mimicry 4 4 Venom 4 5 Electric fields 4 6 Physiology 5 Antipredator adaptations 6 Coevolution 7 Role in ecosystems 7 1 Trophic level 7 2 Trophic transfer 7 3 Biodiversity maintained by apex predation 7 4 Population dynamics 8 Evolutionary history 9 In human society 9 1 Practical uses 9 2 Symbolic uses 10 See also 11 Notes 12 References 13 Sources 14 External linksDefinition edit nbsp Spider wasps paralyse and eventually kill their hosts but are considered parasitoids not predators At the most basic level predators kill and eat other organisms However the concept of predation is broad defined differently in different contexts and includes a wide variety of feeding methods and some relationships that result in the prey s death are not generally called predation A parasitoid such as an ichneumon wasp lays its eggs in or on its host the eggs hatch into larvae which eat the host and it inevitably dies Zoologists generally call this a form of parasitism though conventionally parasites are thought not to kill their hosts A predator can be defined to differ from a parasitoid in that it has many prey captured over its lifetime where a parasitoid s larva has just one or at least has its food supply provisioned for it on just one occasion 1 2 nbsp Relation of predation to other feeding strategiesThere are other difficult and borderline cases Micropredators are small animals that like predators feed entirely on other organisms they include fleas and mosquitoes that consume blood from living animals and aphids that consume sap from living plants However since they typically do not kill their hosts they are now often thought of as parasites 3 4 Animals that graze on phytoplankton or mats of microbes are predators as they consume and kill their food organisms but herbivores that browse leaves are not as their food plants usually survive the assault 5 When animals eat seeds seed predation or granivory or eggs egg predation they are consuming entire living organisms which by definition makes them predators 6 7 8 Scavengers organisms that only eat organisms found already dead are not predators but many predators such as the jackal and the hyena scavenge when the opportunity arises 9 10 5 Among invertebrates social wasps yellowjackets are both hunters and scavengers of other insects 11 Taxonomic range editFurther information Carnivorous plant Nematophagous fungus Seed predation and Egg predation nbsp Carnivorous plant sundew engulfing an insect nbsp Seed predation mouse eating seeds While examples of predators among mammals and birds are well known 12 predators can be found in a broad range of taxa including arthropods They are common among insects including mantids dragonflies lacewings and scorpionflies In some species such as the alderfly only the larvae are predatory the adults do not eat Spiders are predatory as well as other terrestrial invertebrates such as scorpions centipedes some mites snails and slugs nematodes and planarian worms 13 In marine environments most cnidarians e g jellyfish hydroids ctenophora comb jellies echinoderms e g sea stars sea urchins sand dollars and sea cucumbers and flatworms are predatory 14 Among crustaceans lobsters crabs shrimps and barnacles are predators 15 and in turn crustaceans are preyed on by nearly all cephalopods including octopuses squid and cuttlefish 16 nbsp Paramecium a predatory ciliate feeding on bacteriaSeed predation is restricted to mammals birds and insects but is found in almost all terrestrial ecosystems 8 6 Egg predation includes both specialist egg predators such as some colubrid snakes and generalists such as foxes and badgers that opportunistically take eggs when they find them 17 18 19 Some plants like the pitcher plant the Venus fly trap and the sundew are carnivorous and consume insects 12 Methods of predation by plants varies greatly but often involves a food trap mechanical stimulation and electrical impulses to eventually catch and consume its prey 20 Some carnivorous fungi catch nematodes using either active traps in the form of constricting rings or passive traps with adhesive structures 21 Many species of protozoa eukaryotes and bacteria prokaryotes prey on other microorganisms the feeding mode is evidently ancient and evolved many times in both groups 22 12 23 Among freshwater and marine zooplankton whether single celled or multi cellular predatory grazing on phytoplankton and smaller zooplankton is common and found in many species of nanoflagellates dinoflagellates ciliates rotifers a diverse range of meroplankton animal larvae and two groups of crustaceans namely copepods and cladocerans 24 Foraging editSee also Foraging nbsp A basic foraging cycle for a predator with some variations indicated 25 To feed a predator must search for pursue and kill its prey These actions form a foraging cycle 26 27 The predator must decide where to look for prey based on its geographical distribution and once it has located prey it must assess whether to pursue it or to wait for a better choice If it chooses pursuit its physical capabilities determine the mode of pursuit e g ambush or chase 28 29 Having captured the prey it may also need to expend energy handling it e g killing it removing any shell or spines and ingesting it 25 26 Search edit Predators have a choice of search modes ranging from sit and wait to active or widely foraging 30 25 31 32 The sit and wait method is most suitable if the prey are dense and mobile and the predator has low energy requirements 30 Wide foraging expends more energy and is used when prey is sedentary or sparsely distributed 28 30 There is a continuum of search modes with intervals between periods of movement ranging from seconds to months Sharks sunfish Insectivorous birds and shrews are almost always moving while web building spiders aquatic invertebrates praying mantises and kestrels rarely move In between plovers and other shorebirds freshwater fish including crappies and the larvae of coccinellid beetles ladybirds alternate between actively searching and scanning the environment 30 nbsp The black browed albatross regularly flies hundreds of kilometres across the nearly empty ocean to find patches of food Prey distributions are often clumped and predators respond by looking for patches where prey is dense and then searching within patches 25 Where food is found in patches such as rare shoals of fish in a nearly empty ocean the search stage requires the predator to travel for a substantial time and to expend a significant amount of energy to locate each food patch 33 For example the black browed albatross regularly makes foraging flights to a range of around 700 kilometres 430 miles up to a maximum foraging range of 3 000 kilometres 1 860 miles for breeding birds gathering food for their young a 34 With static prey some predators can learn suitable patch locations and return to them at intervals to feed 33 The optimal foraging strategy for search has been modelled using the marginal value theorem 35 Search patterns often appear random One such is the Levy walk that tends to involve clusters of short steps with occasional long steps It is a good fit to the behaviour of a wide variety of organisms including bacteria honeybees sharks and human hunter gatherers 36 37 Assessment edit nbsp Seven spot ladybirds select plants of good quality for their aphid prey Having found prey a predator must decide whether to pursue it or keep searching The decision depends on the costs and benefits involved A bird foraging for insects spends a lot of time searching but capturing and eating them is quick and easy so the efficient strategy for the bird is to eat every palatable insect it finds By contrast a predator such as a lion or falcon finds its prey easily but capturing it requires a lot of effort In that case the predator is more selective 28 One of the factors to consider is size Prey that is too small may not be worth the trouble for the amount of energy it provides Too large and it may be too difficult to capture For example a mantid captures prey with its forelegs and they are optimized for grabbing prey of a certain size Mantids are reluctant to attack prey that is far from that size There is a positive correlation between the size of a predator and its prey 28 A predator may also assess a patch and decide whether to spend time searching for prey in it 25 This may involve some knowledge of the preferences of the prey for example ladybirds can choose a patch of vegetation suitable for their aphid prey 38 Capture edit To capture prey predators have a spectrum of pursuit modes that range from overt chase pursuit predation to a sudden strike on nearby prey ambush predation 25 39 12 Another strategy in between ambush and pursuit is ballistic interception where a predator observes and predicts a prey s motion and then launches its attack accordingly 40 Ambush edit Main article Ambush predation nbsp Western green lizard ambushes its grasshopper prey nbsp A trapdoor spider waiting in its burrow to ambush its prey Ambush or sit and wait predators are carnivorous animals that capture prey by stealth or surprise In animals ambush predation is characterized by the predator s scanning the environment from a concealed position until a prey is spotted and then rapidly executing a fixed surprise attack 41 40 Vertebrate ambush predators include frogs fish such as the angel shark the northern pike and the eastern frogfish 40 42 43 44 Among the many invertebrate ambush predators are trapdoor spiders and Australian Crab spiders on land and mantis shrimps in the sea 41 45 46 Ambush predators often construct a burrow in which to hide improving concealment at the cost of reducing their field of vision Some ambush predators also use lures to attract prey within striking range 40 The capturing movement has to be rapid to trap the prey given that the attack is not modifiable once launched 40 Ballistic interception edit nbsp The chameleon attacks prey by shooting out its tongue Ballistic interception is the strategy where a predator observes the movement of a prey predicts its motion works out an interception path and then attacks the prey on that path This differs from ambush predation in that the predator adjusts its attack according to how the prey is moving 40 Ballistic interception involves a brief period for planning giving the prey an opportunity to escape Some frogs wait until snakes have begun their strike before jumping reducing the time available to the snake to recalibrate its attack and maximising the angular adjustment that the snake would need to make to intercept the frog in real time 40 Ballistic predators include insects such as dragonflies and vertebrates such as archerfish attacking with a jet of water chameleons attacking with their tongues and some colubrid snakes 40 Pursuit edit Main article Pursuit predation nbsp Humpback whales are lunge feeders filtering thousands of krill from seawater and swallowing them alive nbsp Dragonflies like this common clubtail with captured prey are invertebrate pursuit predators In pursuit predation predators chase fleeing prey If the prey flees in a straight line capture depends only on the predator s being faster than the prey 40 If the prey manoeuvres by turning as it flees the predator must react in real time to calculate and follow a new intercept path such as by parallel navigation as it closes on the prey 40 Many pursuit predators use camouflage to approach the prey as close as possible unobserved stalking before starting the pursuit 40 Pursuit predators include terrestrial mammals such as humans African wild dogs spotted hyenas and wolves marine predators such as dolphins orcas and many predatory fishes such as tuna 47 48 predatory birds raptors such as falcons and insects such as dragonflies 49 An extreme form of pursuit is endurance or persistence hunting in which the predator tires out the prey by following it over a long distance sometimes for hours at a time The method is used by human hunter gatherers and by canids such as African wild dogs and domestic hounds The African wild dog is an extreme persistence predator tiring out individual prey by following them for many miles at relatively low speed 50 A specialised form of pursuit predation is the lunge feeding of baleen whales These very large marine predators feed on plankton especially krill diving and actively swimming into concentrations of plankton and then taking a huge gulp of water and filtering it through their feathery baleen plates 51 52 Pursuit predators may be social like the lion and wolf that hunt in groups or solitary 2 Handling edit nbsp Catfish has sharp dorsal and pectoral spines which it holds erect to discourage predators such as herons which swallow prey whole nbsp Osprey tears its fish prey apart avoiding dangers such as sharp spines Once the predator has captured the prey it has to handle it very carefully if the prey is dangerous to eat such as if it possesses sharp or poisonous spines as in many prey fish Some catfish such as the Ictaluridae have spines on the back dorsal and belly pectoral which lock in the erect position as the catfish thrashes about when captured these could pierce the predator s mouth possibly fatally Some fish eating birds like the osprey avoid the danger of spines by tearing up their prey before eating it 53 Solitary versus social predation edit See also Cooperative hunting In social predation a group of predators cooperates to kill prey This makes it possible to kill creatures larger than those they could overpower singly for example hyenas and wolves collaborate to catch and kill herbivores as large as buffalo and lions even hunt elephants 54 55 56 It can also make prey more readily available through strategies like flushing of prey and herding it into a smaller area For example when mixed flocks of birds forage the birds in front flush out insects that are caught by the birds behind Spinner dolphins form a circle around a school of fish and move inwards concentrating the fish by a factor of 200 57 By hunting socially chimpanzees can catch colobus monkeys that would readily escape an individual hunter while cooperating Harris hawks can trap rabbits 54 58 nbsp Wolves social predators cooperate to hunt and kill bison Predators of different species sometimes cooperate to catch prey In coral reefs when fish such as the grouper and coral trout spot prey that is inaccessible to them they signal to giant moray eels Napoleon wrasses or octopuses These predators are able to access small crevices and flush out the prey 59 60 Killer whales have been known to help whalers hunt baleen whales 61 Social hunting allows predators to tackle a wider range of prey but at the risk of competition for the captured food Solitary predators have more chance of eating what they catch at the price of increased expenditure of energy to catch it and increased risk that the prey will escape 62 63 Ambush predators are often solitary to reduce the risk of becoming prey themselves 64 Of 245 terrestrial members of the Carnivora the group that includes the cats dogs and bears 177 are solitary and 35 of the 37 wild cats are solitary 65 including the cougar and cheetah 62 2 However the solitary cougar does allow other cougars to share in a kill 66 and the coyote can be either solitary or social 67 Other solitary predators include the northern pike 68 wolf spiders and all the thousands of species of solitary wasps among arthropods 69 70 and many microorganisms and zooplankton 22 71 Specialization editPhysical adaptations edit Under the pressure of natural selection predators have evolved a variety of physical adaptations for detecting catching killing and digesting prey These include speed agility stealth sharp senses claws teeth filters and suitable digestive systems 72 For detecting prey predators have well developed vision smell or hearing 12 Predators as diverse as owls and jumping spiders have forward facing eyes providing accurate binocular vision over a relatively narrow field of view whereas prey animals often have less acute all round vision Animals such as foxes can smell their prey even when it is concealed under 2 feet 60 cm of snow or earth Many predators have acute hearing and some such as echolocating bats hunt exclusively by active or passive use of sound 73 Predators including big cats birds of prey and ants share powerful jaws sharp teeth or claws which they use to seize and kill their prey Some predators such as snakes and fish eating birds like herons and cormorants swallow their prey whole some snakes can unhinge their jaws to allow them to swallow large prey while fish eating birds have long spear like beaks that they use to stab and grip fast moving and slippery prey 73 Fish and other predators have developed the ability to crush or open the armoured shells of molluscs 74 Many predators are powerfully built and can catch and kill animals larger than themselves this applies as much to small predators such as ants and shrews as to big and visibly muscular carnivores like the cougar and lion 73 2 75 nbsp Skull of brown bear has large pointed canines for killing prey and self sharpening carnassial teeth at rear for cutting flesh with a scissor like action nbsp Large compound eyes sensitive antennae and powerful jaws mandibles of jack jumper ant nbsp Crab spider an ambush predator with forward facing eyes catching another predator a field digger wasp nbsp Red tailed hawk uses sharp hooked claws and beak to kill and tear up its prey nbsp Specialist a great blue heron with a speared fish nbsp Indian python unhinges its jaw to swallow large prey like this chitalDiet and behaviour edit Further information Generalist and specialist species nbsp Platydemus manokwari a specialist flatworm predator of land snails attacking a snail nbsp Size selective predation a lioness attacking a Cape buffalo over twice her weight Lions can attack much larger prey including elephants but do so much less often Predators are often highly specialized in their diet and hunting behaviour for example the Eurasian lynx only hunts small ungulates 76 Others such as leopards are more opportunistic generalists preying on at least 100 species 77 78 The specialists may be highly adapted to capturing their preferred prey whereas generalists may be better able to switch to other prey when a preferred target is scarce When prey have a clumped uneven distribution the optimal strategy for the predator is predicted to be more specialized as the prey are more conspicuous and can be found more quickly 79 this appears to be correct for predators of immobile prey but is doubtful with mobile prey 80 In size selective predation predators select prey of a certain size 81 Large prey may prove troublesome for a predator while small prey might prove hard to find and in any case provide less of a reward This has led to a correlation between the size of predators and their prey Size may also act as a refuge for large prey For example adult elephants are relatively safe from predation by lions but juveniles are vulnerable 82 Camouflage and mimicry edit Further information Camouflage and Aggressive mimicry nbsp A camouflaged predator snow leopard in Ladakh nbsp Striated frogfish uses camouflage and aggressive mimicry in the form of a fishing rod like lure on its head to attract prey Members of the cat family such as the snow leopard treeless highlands tiger grassy plains reed swamps ocelot forest fishing cat waterside thickets and lion open plains are camouflaged with coloration and disruptive patterns suiting their habitats 83 In aggressive mimicry certain predators including insects and fishes make use of coloration and behaviour to attract prey Female Photuris fireflies for example copy the light signals of other species thereby attracting male fireflies which they capture and eat 84 Flower mantises are ambush predators camouflaged as flowers such as orchids they attract prey and seize it when it is close enough 85 Frogfishes are extremely well camouflaged and actively lure their prey to approach using an esca a bait on the end of a rod like appendage on the head which they wave gently to mimic a small animal gulping the prey in an extremely rapid movement when it is within range 86 Venom edit Further information Venom and Evolution of snake venom Many smaller predators such as the box jellyfish use venom to subdue their prey 87 and venom can also aid in digestion as is the case for rattlesnakes and some spiders 88 89 The marbled sea snake that has adapted to egg predation has atrophied venom glands and the gene for its three finger toxin contains a mutation the deletion of two nucleotides that inactives it These changes are explained by the fact that its prey does not need to be subdued 90 Electric fields edit nbsp An electric ray Torpediniformes showing location of electric organ and electrocytes stacked within itFurther information Electroreception and electrogenesis and Electric organ fish Several groups of predatory fish have the ability to detect track and sometimes as in the electric ray to incapacitate their prey by sensing and generating electric fields 91 92 93 The electric organ is derived from modified nerve or muscle tissue 94 Physiology edit Physiological adaptations to predation include the ability of predatory bacteria to digest the complex peptidoglycan polymer from the cell walls of the bacteria that they prey upon 23 Carnivorous vertebrates of all five major classes fishes amphibians reptiles birds and mammals have lower relative rates of sugar to amino acid transport than either herbivores or omnivores presumably because they acquire plenty of amino acids from the animal proteins in their diet 95 Antipredator adaptations editMain article Antipredator adaptation nbsp Dead leaf mantis s camouflage makes it less visible to both predators and prey nbsp Syrphid hoverfly misdirects predators by mimicking a wasp but has no sting To counter predation prey have evolved defences for use at each stage of an attack 96 12 They can try to avoid detection 97 such as by using camouflage and mimicry 98 They can detect predators 99 and warn others of their presence 100 101 If detected they can try to avoid being the target of an attack for example by signalling that they are toxic or unpalatable 102 103 104 by signalling that a chase would be unprofitable 105 106 or by forming groups 107 108 If they become a target they can try to fend off the attack with defences such as armour quills unpalatability or mobbing 109 110 111 and they can often escape an attack in progress by startling the predator 112 113 114 playing dead shedding body parts such as tails or simply fleeing 115 116 Coevolution editFurther information Coevolution nbsp Bats use echolocation to hunt moths at night Predators and prey are natural enemies and many of their adaptations seem designed to counter each other For example bats have sophisticated echolocation systems to detect insects and other prey and insects have developed a variety of defences including the ability to hear the echolocation calls 117 118 Many pursuit predators that run on land such as wolves have evolved long limbs in response to the increased speed of their prey 119 Their adaptations have been characterized as an evolutionary arms race an example of the coevolution of two species 120 In a gene centered view of evolution the genes of predator and prey can be thought of as competing for the prey s body 120 However the life dinner principle of Dawkins and Krebs predicts that this arms race is asymmetric if a predator fails to catch its prey it loses its dinner while if it succeeds the prey loses its life 120 nbsp Eastern coral snake itself a predator is venomous enough to kill predators that attack it so when they avoid it this behaviour must be inherited not learnt The metaphor of an arms race implies ever escalating advances in attack and defence However these adaptations come with a cost for instance longer legs have an increased risk of breaking 121 while the specialized tongue of the chameleon with its ability to act like a projectile is useless for lapping water so the chameleon must drink dew off vegetation 122 The life dinner principle has been criticized on multiple grounds The extent of the asymmetry in natural selection depends in part on the heritability of the adaptive traits 122 Also if a predator loses enough dinners it too will lose its life 121 122 On the other hand the fitness cost of a given lost dinner is unpredictable as the predator may quickly find better prey In addition most predators are generalists which reduces the impact of a given prey adaption on a predator Since specialization is caused by predator prey coevolution the rarity of specialists may imply that predator prey arms races are rare 122 It is difficult to determine whether given adaptations are truly the result of coevolution where a prey adaptation gives rise to a predator adaptation that is countered by further adaptation in the prey An alternative explanation is escalation where predators are adapting to competitors their own predators or dangerous prey 123 Apparent adaptations to predation may also have arisen for other reasons and then been co opted for attack or defence In some of the insects preyed on by bats hearing evolved before bats appeared and was used to hear signals used for territorial defence and mating 124 Their hearing evolved in response to bat predation but the only clear example of reciprocal adaptation in bats is stealth echolocation 125 A more symmetric arms race may occur when the prey are dangerous having spines quills toxins or venom that can harm the predator The predator can respond with avoidance which in turn drives the evolution of mimicry Avoidance is not necessarily an evolutionary response as it is generally learned from bad experiences with prey However when the prey is capable of killing the predator as can a coral snake with its venom there is no opportunity for learning and avoidance must be inherited Predators can also respond to dangerous prey with counter adaptations In western North America the common garter snake has developed a resistance to the toxin in the skin of the rough skinned newt 122 Role in ecosystems editPredators affect their ecosystems not only directly by eating their own prey but by indirect means such as reducing predation by other species or altering the foraging behaviour of a herbivore as with the biodiversity effect of wolves on riverside vegetation or sea otters on kelp forests This may explain population dynamics effects such as the cycles observed in lynx and snowshoe hares 126 127 128 Trophic level edit Further information Trophic level and Apex predator One way of classifying predators is by trophic level Carnivores that feed on herbivores are secondary consumers their predators are tertiary consumers and so forth 129 At the top of this food chain are apex predators such as lions 130 Many predators however eat from multiple levels of the food chain a carnivore may eat both secondary and tertiary consumers 131 This means that many predators must contend with intraguild predation where other predators kill and eat them For example coyotes compete with and sometimes kill gray foxes and bobcats 132 Trophic transfer edit Further information Energy flow ecology Trophic transfer within an ecosystem refers to the transport of energy and nutrients as a result of predation Energy passes from one trophic level to the next as predators consume organic matter from another organism s body Within each transfer while there are uses of energy there are also losses of energy Marine trophic levels vary depending on locality and the size of the primary producers There are generally up to six trophic levels in the open ocean four over continental shelves and around three in upwelling zones 133 For example a marine habitat with five trophic levels could be represented as follows Herbivores feed primarily on phytoplankton Carnivores feed primarily on other zooplankton animals Detritivores feed primarily on dead organic matter detritus Omnivores feed on a mixed diet of phyto and zooplankton and detritus and Mixotrophs which combine autotrophy using light energy to grow without intake of any additional organic compounds or nutrients with heterotrophy feeding on other plants and animals for energy and nutrients herbivores omnivores and carnivores and detritivores Trophic transfer efficiency measures how effectively energy is transferred or passed up through higher trophic levels of the marine food web As energy moves up the trophic levels it decreases due to heat waste and the natural metabolic processes that occur as predators consume their prey The result is that only about 10 of the energy at any trophic level is transferred to the next level This is often referred to as the 10 rule which limits the number of trophic levels that an individual ecosystem is capable of supporting 134 Biodiversity maintained by apex predation edit Further information Keystone species Predators may increase the biodiversity of communities by preventing a single species from becoming dominant Such predators are known as keystone species and may have a profound influence on the balance of organisms in a particular ecosystem 135 Introduction or removal of this predator or changes in its population density can have drastic cascading effects on the equilibrium of many other populations in the ecosystem For example grazers of a grassland may prevent a single dominant species from taking over 136 nbsp Riparian willow recovery at Blacktail Creek Yellowstone National Park after reintroduction of wolves the local keystone species and apex predator 137 Left in 2002 right in 2015The elimination of wolves from Yellowstone National Park had profound impacts on the trophic pyramid In that area wolves are both keystone species and apex predators Without predation herbivores began to over graze many woody browse species affecting the area s plant populations In addition wolves often kept animals from grazing near streams protecting the beavers food sources The removal of wolves had a direct effect on the beaver population as their habitat became territory for grazing Increased browsing on willows and conifers along Blacktail Creek due to a lack of predation caused channel incision because the reduced beaver population was no longer able to slow the water down and keep the soil in place The predators were thus demonstrated to be of vital importance in the ecosystem 137 Population dynamics edit Further information Population dynamics and Lotka Volterra equations nbsp Numbers of snowshoe hare Lepus americanus yellow background and Canada lynx black line foreground furs sold to the Hudson s Bay Company from 1845 to 1935In the absence of predators the population of a species can grow exponentially until it approaches the carrying capacity of the environment 138 Predators limit the growth of prey both by consuming them and by changing their behavior 139 Increases or decreases in the prey population can also lead to increases or decreases in the number of predators for example through an increase in the number of young they bear Cyclical fluctuations have been seen in populations of predator and prey often with offsets between the predator and prey cycles A well known example is that of the snowshoe hare and lynx Over a broad span of boreal forests in Alaska and Canada the hare populations fluctuate in near synchrony with a 10 year period and the lynx populations fluctuate in response This was first seen in historical records of animals caught by fur hunters for the Hudson s Bay Company over more than a century 140 128 141 142 nbsp Predator prey population cycles in a Lotka Volterra modelA simple model of a system with one species each of predator and prey the Lotka Volterra equations predicts population cycles 143 However attempts to reproduce the predictions of this model in the laboratory have often failed for example when the protozoan Didinium nasutum is added to a culture containing its prey Paramecium caudatum the latter is often driven to extinction 144 The Lotka Volterra equations rely on several simplifying assumptions and they are structurally unstable meaning that any change in the equations can stabilize or destabilize the dynamics 145 146 For example one assumption is that predators have a linear functional response to prey the rate of kills increases in proportion to the rate of encounters If this rate is limited by time spent handling each catch then prey populations can reach densities above which predators cannot control them 144 Another assumption is that all prey individuals are identical In reality predators tend to select young weak and ill individuals leaving prey populations able to regrow 147 Many factors can stabilize predator and prey populations 148 One example is the presence of multiple predators particularly generalists that are attracted to a given prey species if it is abundant and look elsewhere if it is not 149 As a result population cycles tend to be found in northern temperate and subarctic ecosystems because the food webs are simpler 150 The snowshoe hare lynx system is subarctic but even this involves other predators including coyotes goshawks and great horned owls and the cycle is reinforced by variations in the food available to the hares 151 A range of mathematical models have been developed by relaxing the assumptions made in the Lotka Volterra model these variously allow animals to have geographic distributions or to migrate to have differences between individuals such as sexes and an age structure so that only some individuals reproduce to live in a varying environment such as with changing seasons 152 153 and analysing the interactions of more than just two species at once Such models predict widely differing and often chaotic predator prey population dynamics 152 154 The presence of refuge areas where prey are safe from predators may enable prey to maintain larger populations but may also destabilize the dynamics 155 156 157 158 Evolutionary history editFurther information History of life Predation dates from before the rise of commonly recognized carnivores by hundreds of millions perhaps billions of years Predation has evolved repeatedly in different groups of organisms 5 159 The rise of eukaryotic cells at around 2 7 Gya the rise of multicellular organisms at about 2 Gya and the rise of mobile predators around 600 Mya 2 Gya probably around 1 Gya have all been attributed to early predatory behavior and many very early remains show evidence of boreholes or other markings attributed to small predator species 5 It likely triggered major evolutionary transitions including the arrival of cells eukaryotes sexual reproduction multicellularity increased size mobility including insect flight 160 and armoured shells and exoskeletons 5 The earliest predators were microbial organisms which engulfed or grazed on others Because the fossil record is poor these first predators could date back anywhere between 1 and over 2 7 Gya billion years ago 5 Predation visibly became important shortly before the Cambrian period around 550 million years ago as evidenced by the almost simultaneous development of calcification in animals and algae 161 and predation avoiding burrowing However predators had been grazing on micro organisms since at least 1 000 million years ago 5 162 163 with evidence of selective rather than random predation from a similar time 164 Auroralumina attenboroughii is an Ediacaran crown group cnidarian 557 562 mya some 20 million years before the Cambrian explosion from Charnwood Forest England It is thought to be one of the earliest predatory animals catching small prey with its nematocysts as modern cnidarians do 165 The fossil record demonstrates a long history of interactions between predators and their prey from the Cambrian period onwards showing for example that some predators drilled through the shells of bivalve and gastropod molluscs while others ate these organisms by breaking their shells 166 Among the Cambrian predators were invertebrates like the anomalocaridids with appendages suitable for grabbing prey large compound eyes and jaws made of a hard material like that in the exoskeleton of an insect 167 Some of the first fish to have jaws were the armoured and mainly predatory placoderms of the Silurian to Devonian periods one of which the 6 m 20 ft Dunkleosteus is considered the world s first vertebrate superpredator preying upon other predators 168 169 Insects developed the ability to fly in the Early Carboniferous or Late Devonian enabling them among other things to escape from predators 160 Among the largest predators that have ever lived were the theropod dinosaurs such as Tyrannosaurus from the Cretaceous period They preyed upon herbivorous dinosaurs such as hadrosaurs ceratopsians and ankylosaurs 170 nbsp Auroralumina attenboroughii an Ediacaran predator c 560 mya It was a stem group cnidarian catching prey with its nematocysts 165 nbsp The Cambrian substrate revolution saw life on the sea floor change from minimal burrowing left to a diverse burrowing fauna right probably to avoid new Cambrian predators nbsp The anomalocaridid Peytoia a Cambrian invertebrate probably an apex predator nbsp Dunkleosteus a Devonian placoderm perhaps the world s first vertebrate superpredator reconstruction nbsp Meganeura monyi a predatory Carboniferous insect related to dragonflies could fly to escape terrestrial predators Its large size with a wingspan of 65 cm 30 in may reflect the lack of vertebrate aerial predators at that time nbsp Tyrannosaurus a large theropod dinosaur of the Cretaceous reconstructionIn human society edit nbsp San hunter BotswanaFurther information Human uses of animals Practical uses edit Humans as omnivores are to some extent predatory 171 using weapons and tools to fish 172 hunt and trap animals 173 They also use other predatory species such as dogs cormorants 174 and falcons to catch prey for food or for sport 175 Two mid sized predators dogs and cats are the animals most often kept as pets in western societies 176 177 Human hunters including the San of southern Africa use persistence hunting a form of pursuit predation where the pursuer may be slower than prey such as a kudu antelope over short distances but follows it in the midday heat until it is exhausted a pursuit that can take up to five hours 178 179 In biological pest control predators and parasitoids from a pest s natural range are introduced to control populations at the risk of causing unforeseen problems Natural predators provided they do no harm to non pest species are an environmentally friendly and sustainable way of reducing damage to crops and an alternative to the use of chemical agents such as pesticides 180 Symbolic uses edit nbsp The Capitoline Wolf suckling Romulus and Remus the mythical founders of RomeIn film the idea of the predator as a dangerous if humanoid enemy is used in the 1987 science fiction horror action film Predator and its three sequels 181 182 A terrifying predator a gigantic man eating great white shark is central too to Steven Spielberg s 1974 thriller Jaws 183 Among poetry on the theme of predation a predator s consciousness might be explored such as in Ted Hughes s Pike 184 The phrase Nature red in tooth and claw from Alfred Lord Tennyson s 1849 poem In Memoriam A H H has been interpreted as referring to the struggle between predators and prey 185 In mythology and folk fable predators such as the fox and wolf have mixed reputations 186 The fox was a symbol of fertility in ancient Greece but a weather demon in northern Europe and a creature of the devil in early Christianity the fox is presented as sly greedy and cunning in fables from Aesop onwards 186 The big bad wolf is known to children in tales such as Little Red Riding Hood but is a demonic figure in the Icelandic Edda sagas where the wolf Fenrir appears in the apocalyptic ending of the world 186 In the Middle Ages belief spread in werewolves men transformed into wolves 186 In ancient Rome and in ancient Egypt the wolf was worshipped the she wolf appearing in the founding myth of Rome suckling Romulus and Remus 186 More recently in Rudyard Kipling s 1894 The Jungle Book Mowgli is raised by the wolf pack 186 Attitudes to large predators in North America such as wolf grizzly bear and cougar have shifted from hostility or ambivalence accompanied by active persecution towards positive and protective in the second half of the 20th century 187 See also editEcology of fear Predation problem Predator prey reversal Wa Tor CannibalismNotes edit A range of 3000 kilometres means a flight distance of at least 6000 kilometres out and back References edit Gurr Geoff M Wratten Stephen D Snyder William E 2012 Biodiversity and Insect Pests Key Issues for Sustainable Management John Wiley amp Sons p 105 ISBN 978 1 118 23185 2 a b c d Lafferty K D Kuris A M 2002 Trophic strategies animal diversity and body size Trends Ecol Evol 17 11 507 513 doi 10 1016 s0169 5347 02 02615 0 Poulin Robert Randhawa Haseeb S February 2015 Evolution of parasitism along convergent lines from ecology to genomics Parasitology 142 Suppl 1 S6 S15 doi 10 1017 S0031182013001674 PMC 4413784 PMID 24229807 Poulin Robert 2011 Rollinson D Hay S I eds The Many Roads to Parasitism A Tale of Convergence Vol 74 Academic Press pp 27 28 doi 10 1016 B978 0 12 385897 9 00001 X ISBN 978 0 12 385897 9 PMID 21295676 a href Template Cite book html title Template Cite book cite book a journal ignored help a b c d e f g Bengtson S 2002 Origins and early evolution of predation In Kowalewski M Kelley P H eds The fossil record of predation The Paleontological Society Papers 8 PDF The Paleontological Society pp 289 317 a b Janzen D H 1971 Seed Predation by Animals Annual Review of Ecology and Systematics 2 465 492 doi 10 1146 annurev es 02 110171 002341 Nilsson Sven G Bjorkman Christer Forslund Par Hoglund Jacob 1985 Egg predation in forest bird communities on islands and mainland Oecologia 66 4 511 515 Bibcode 1985Oecol 66 511N doi 10 1007 BF00379342 PMID 28310791 S2CID 2145031 a b Hulme P E Benkman C W 2002 C M Herrera and O Pellmyr ed Granivory Blackwell pp 132 154 ISBN 978 0 632 05267 7 a href Template Cite book html title Template Cite book cite book a work ignored help Kane Adam Healy Kevin Guillerme Thomas Ruxton Graeme D Jackson Andrew L 2017 A recipe for scavenging in vertebrates the natural history of a behaviour Ecography 40 2 324 334 Bibcode 2017Ecogr 40 324K doi 10 1111 ecog 02817 hdl 10468 3213 S2CID 56280901 Kruuk Hans 1972 The Spotted Hyena A Study of Predation and Social Behaviour University of California Press pp 107 108 ISBN 978 0226455082 Schmidt Justin O 2009 Wasps Wasps ScienceDirect Second ed pp 1049 1052 doi 10 1016 B978 0 12 374144 8 00275 7 ISBN 9780123741448 a href Template Cite book html title Template Cite book cite book a journal ignored help a b c d e f Stevens Alison N P 2010 Predation Herbivory and Parasitism Nature Education Knowledge 3 10 36 Predators parasites and parasitoids Australian Museum Retrieved 19 September 2018 Watanabe James M 2007 Invertebrates overview In Denny Mark W Gaines Steven Dean eds Encyclopedia of tidepools and rocky shores University of California Press ISBN 9780520251182 Phelan Jay 2009 What Is life a guide to biology Student ed W H Freeman amp Co p 432 ISBN 9781429223188 Villanueva Roger Perricone Valentina Fiorito Graziano 17 August 2017 Cephalopods as Predators A Short Journey among Behavioral Flexibilities Adaptions and Feeding Habits Frontiers in Physiology 8 598 doi 10 3389 fphys 2017 00598 PMC 5563153 PMID 28861006 Hanssen Sveinn Are Erikstad Kjell Einar 2012 The long term consequences of egg predation Behavioral Ecology 24 2 564 569 doi 10 1093 beheco ars198 Pike David A Clark Rulon W Manica Andrea Tseng Hui Yun Hsu Jung Ya Huang Wen San 26 February 2016 Surf and turf predation by egg eating snakes has led to the evolution of parental care in a terrestrial lizard Scientific Reports 6 1 22207 Bibcode 2016NatSR 622207P doi 10 1038 srep22207 PMC 4768160 PMID 26915464 Ainsworth Gill Calladine John Martay Blaise Park Kirsty Redpath Steve Wernham Chris Wilson Mark Young Juliette 2017 Understanding Predation A review bringing together natural science and local knowledge of recent wild bird population changes and their drivers in Scotland Scotland s Moorland Forum pp 233 234 doi 10 13140 RG 2 1 1014 6960 Hedrich Rainer Fukushima Kenji 20 May 2021 On the Origin of Carnivory Molecular Physiology and Evolution of Plants on an Animal Diet Annual Review of Plant Biology 72 1 annurev arplant 080620 010429 doi 10 1146 annurev arplant 080620 010429 ISSN 1543 5008 PMID 33434053 S2CID 231595236 Pramer D 1964 Nematode trapping fungi Science 144 3617 382 388 Bibcode 1964Sci 144 382P doi 10 1126 science 144 3617 382 JSTOR 1713426 PMID 14169325 a b Velicer Gregory J Mendes Soares Helena 2007 Bacterial predators PDF Cell 19 2 R55 R56 doi 10 1016 j cub 2008 10 043 PMID 19174136 S2CID 5432036 a b Jurkevitch Edouard Davidov Yaacov 2006 Phylogenetic Diversity and Evolution of Predatory Prokaryotes Predatory Prokaryotes Springer pp 11 56 doi 10 1007 7171 052 ISBN 978 3 540 38577 6 Hansen Per Juel Bjornsen Peter Koefoed Hansen Benni Winding 1997 Zooplankton grazing and growth Scaling within the 2 2 mm body size range Limnology and Oceanography 42 4 687 704 Bibcode 1997LimOc 42 687H doi 10 4319 lo 1997 42 4 0687 summarizes findings from many authors a b c d e f Kramer Donald L 2001 Foraging behavior PDF In Fox C W Roff D A Fairbairn D J eds Evolutionary Ecology Concepts and Case Studies Oxford University Press pp 232 238 ISBN 9780198030133 Archived from the original PDF on 12 July 2018 Retrieved 20 September 2018 a b Griffiths David November 1980 Foraging costs and relative prey size The American Naturalist 116 5 743 752 doi 10 1086 283666 JSTOR 2460632 S2CID 85094710 Wetzel Robert G Likens Gene E 2000 Predator Prey Interactions Limnological Analyses Springer pp 257 262 doi 10 1007 978 1 4757 3250 4 17 ISBN 978 1 4419 3186 3 a b c d Pianka Eric R 2011 Evolutionary ecology 7th eBook ed Eric R Pianka pp 78 83 MacArthur Robert H 1984 The economics of consumer choice Geographical ecology patterns in the distribution of species Princeton University Press pp 59 76 ISBN 9780691023823 a b c d Bell 2012 pp 4 5 Eastman Lucas B Thiel Martin 2015 Foraging behavior of crustacean predators and scavengers In Thiel Martin Watling Les eds Lifestyles and feeding biology Oxford University Press pp 535 556 ISBN 9780199797066 Perry Gad January 1999 The Evolution of Search Modes Ecological versus Phylogenetic Perspectives The American Naturalist 153 1 98 109 doi 10 1086 303145 PMID 29578765 S2CID 4334462 a b Bell 2012 pp 69 188 Gremillet D Wilson R P Wanless S Chater T 2000 Black browed albatrosses international fisheries and the Patagonian Shelf Marine Ecology Progress Series 195 69 280 Bibcode 2000MEPS 195 269G doi 10 3354 meps195269 Charnov Eric L 1976 Optimal foraging the marginal value theorem PDF Theoretical Population Biology 9 2 129 136 doi 10 1016 0040 5809 76 90040 x PMID 1273796 Reynolds Andy September 2015 Liberating Levy walk research from the shackles of optimal foraging Physics of Life Reviews 14 59 83 Bibcode 2015PhLRv 14 59R doi 10 1016 j plrev 2015 03 002 PMID 25835600 Buchanan Mark 5 June 2008 Ecological modelling The mathematical mirror to animal nature Nature 453 7196 714 716 doi 10 1038 453714a PMID 18528368 Williams Amanda C Flaxman Samuel M 2012 Can predators assess the quality of their prey s resource Animal Behaviour 83 4 883 890 doi 10 1016 j anbehav 2012 01 008 S2CID 53172079 Scharf Inon Nulman Einat Ovadia Ofer Bouskila Amos September 2006 Efficiency evaluation of two competing foraging modes under different conditions The American Naturalist 168 3 350 357 doi 10 1086 506921 PMID 16947110 S2CID 13809116 a b c d e f g h i j k Moore Talia Y Biewener Andrew A 2015 Outrun or Outmaneuver Predator Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context PDF Integrative and Comparative Biology 55 6 1188 97 doi 10 1093 icb icv074 PMID 26117833 a b deVries M S Murphy E A K Patek S N 2012 Strike mechanics of an ambush predator the spearing mantis shrimp Journal of Experimental Biology 215 Pt 24 4374 4384 doi 10 1242 jeb 075317 PMID 23175528 Cougar Hinterland Who s Who Canadian Wildlife Service and Canadian Wildlife Federation Archived from the original on 18 May 2007 Retrieved 22 May 2007 Pikes Esocidae PDF Indiana Division of Fish and Wildlife Retrieved 3 September 2018 Bray Dianne Eastern Frogfish Batrachomoeus dubius Fishes of Australia Archived from the original on 14 September 2014 Retrieved 14 September 2014 Trapdoor spiders BBC Retrieved 12 December 2014 Trapdoor spider Arizona Sonora Desert Museum 2014 Retrieved 12 December 2014 Gazda S K Connor R C Edgar R K Cox F 2005 A division of labour with role specialization in group hunting bottlenose dolphins Tursiops truncatus off Cedar Key Florida Proceedings of the Royal Society 272 1559 135 140 doi 10 1098 rspb 2004 2937 PMC 1634948 PMID 15695203 Tyus Harold M 2011 Ecology and Conservation of Fishes CRC Press p 233 ISBN 978 1 4398 9759 1 Combes S A Salcedo M K Pandit M M Iwasaki J M 2013 Capture Success and Efficiency of Dragonflies Pursuing Different Types of Prey Integrative and Comparative Biology 53 5 787 798 doi 10 1093 icb ict072 PMID 23784698 Hubel Tatjana Y Myatt Julia P Jordan Neil R Dewhirst Oliver P McNutt J Weldon Wilson Alan M 29 March 2016 Energy cost and return for hunting in African wild dogs Nature Communications 7 11034 doi 10 1038 ncomms11034 PMC 4820543 PMID 27023457 Cursorial hunting strategies range from one extreme of transient acceleration power and speed to the other extreme of persistence and endurance with prey being fatigued to facilitate capture Dogs and humans are considered to rely on endurance rather than outright speed and manoeuvrability for success when hunting cursorially Goldbogen J A Calambokidis J Shadwick R E Oleson E M McDonald M A Hildebrand J A 2006 Kinematics of foraging dives and lunge feeding in fin whales Journal of Experimental Biology 209 7 1231 1244 doi 10 1242 jeb 02135 PMID 16547295 S2CID 17923052 Sanders Jon G Beichman Annabel C Roman Joe Scott Jarrod J Emerson David McCarthy James J Girguis Peter R 2015 Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores Nature Communications 6 8285 Bibcode 2015NatCo 6 8285S doi 10 1038 ncomms9285 PMC 4595633 PMID 26393325 Forbes L Scott 1989 Prey Defences and Predator Handling Behaviour The Dangerous Prey Hypothesis Oikos 55 2 155 158 Bibcode 1989Oikos 55 155F doi 10 2307 3565418 JSTOR 3565418 a b Lang Stephen D J Farine Damien R 2017 A multidimensional framework for studying social predation strategies Nature Ecology amp Evolution 1 9 1230 1239 Bibcode 2017NatEE 1 1230L doi 10 1038 s41559 017 0245 0 PMID 29046557 S2CID 4214982 MacNulty Daniel R Tallian Aimee Stahler Daniel R Smith Douglas W 12 November 2014 Sueur Cedric ed Influence of Group Size on the Success of Wolves Hunting Bison PLOS ONE 9 11 e112884 Bibcode 2014PLoSO 9k2884M doi 10 1371 journal pone 0112884 PMC 4229308 PMID 25389760 Power R J Compion R X Shem 2009 Lion predation on elephants in the Savuti Chobe National Park Botswana African Zoology 44 1 36 44 doi 10 3377 004 044 0104 S2CID 86371484 Beauchamp 2012 pp 7 12 Dawson James W 1988 The cooperative breeding system of the Harris Hawk in Arizona Masters thesis The University of Arizona Retrieved 17 November 2017 Vail Alexander L Manica Andrea Bshary Redouan 23 April 2013 Referential gestures in fish collaborative hunting Nature Communications 4 1 1765 Bibcode 2013NatCo 4 1765V doi 10 1038 ncomms2781 PMID 23612306 Yong Ed 24 April 2013 Groupers Use Gestures to Recruit Morays For Hunting Team Ups National Geographic Archived from the original on 17 September 2018 Retrieved 17 September 2018 Toft Klaus Producer 2007 Killers in Eden DVD documentary Australian Broadcasting Corporation Archived from the original on 12 August 2009 ISBN R 105732 9 a b Bryce Caleb M Wilmers Christopher C Williams Terrie M 2017 Energetics and evasion dynamics of large predators and prey pumas vs hounds PeerJ 5 e3701 doi 10 7717 peerj 3701 PMC 5563439 PMID 28828280 Majer Marija Holm Christina Lubin Yael Bilde Trine 2018 Cooperative foraging expands dietary niche but does not offset intra group competition for resources in social spiders Scientific Reports 8 1 11828 Bibcode 2018NatSR 811828M doi 10 1038 s41598 018 30199 x PMC 6081395 PMID 30087391 Ambush Predators Sibley Nature Center Archived from the original on 2 August 2021 Retrieved 17 September 2018 Elbroch L Mark Quigley Howard 10 July 2016 Social interactions in a solitary carnivore Current Zoology 63 4 357 362 doi 10 1093 cz zow080 PMC 5804185 PMID 29491995 Quenqua Douglas 11 October 2017 Solitary Pumas Turn Out to Be Mountain Lions Who Lunch The New York Times Retrieved 17 September 2018 Flores Dan 2016 Coyote America a natural and supernatural history Basic Books ISBN 978 0465052998 Stow Adam Nyqvist Marina J Gozlan Rodolphe E Cucherousset Julien Britton J Robert 2012 Behavioural Syndrome in a Solitary Predator Is Independent of Body Size and Growth Rate PLOS ONE 7 2 e31619 Bibcode 2012PLoSO 731619N doi 10 1371 journal pone 0031619 PMC 3282768 PMID 22363687 How do Spiders Hunt American Museum of Natural History 25 August 2014 Retrieved 5 September 2018 Weseloh Ronald M Hare J Daniel 2009 Predation Predatory Insects Encyclopedia of Insects Second ed pp 837 839 doi 10 1016 B978 0 12 374144 8 00219 8 ISBN 9780123741448 Zooplankton MarineBio Conservation Society 17 June 2018 Retrieved 5 September 2018 Bar Yam Predator Prey Relationships New England Complex Systems Institute Retrieved 7 September 2018 a b c Predator amp Prey Adaptations PDF Royal Saskatchewan Museum 2012 Archived from the original PDF on 3 April 2018 Retrieved 19 April 2018 Vermeij Geerat J 1993 Evolution and Escalation An Ecological History of Life Princeton University Press pp 11 and passim ISBN 978 0 691 00080 0 Getz W M 2011 Biomass transformation webs provide a unified approach to consumer resource modelling Ecology Letters 14 2 113 24 Bibcode 2011EcolL 14 113G doi 10 1111 j 1461 0248 2010 01566 x PMC 3032891 PMID 21199247 Sidorovich Vadim 2011 Analysis of vertebrate predator prey community Studies within the European Forest zone in terrains with transitional mixed forest in Belarus Tesey p 426 ISBN 978 985 463 456 2 Angelici Francesco M 2015 Problematic Wildlife A Cross Disciplinary Approach Springer p 160 ISBN 978 3 319 22246 2 Hayward M W Henschel P O Brien J Hofmeyr M Balme G Kerley G I H 2006 Prey preferences of the leopard Panthera pardus PDF Journal of Zoology 270 2 298 313 doi 10 1111 j 1469 7998 2006 00139 x Archived from the original PDF on 29 February 2020 Retrieved 20 April 2018 Pulliam H Ronald 1974 On the Theory of Optimal Diets The American Naturalist 108 959 59 74 doi 10 1086 282885 S2CID 8420787 Sih Andrew Christensen Bent 2001 Optimal diet theory when does it work and when and why does it fail Animal Behaviour 61 2 379 390 doi 10 1006 anbe 2000 1592 S2CID 44045919 Sprules W Gary 1972 Effects of Size Selective Predation and Food Competition on High Altitude Zooplankton Communities Ecology 53 3 375 386 Bibcode 1972Ecol 53 375S doi 10 2307 1934223 JSTOR 1934223 Owen Smith Norman Mills M G L 2008 Predator prey size relationships in an African large mammal food web PDF Journal of Animal Ecology 77 1 173 183 Bibcode 2008JAnEc 77 173O doi 10 1111 j 1365 2656 2007 01314 x hdl 2263 9023 PMID 18177336 Cott 1940 pp 12 13 Lloyd J E 1965 Aggressive Mimicry in Photuris Firefly Femmes Fatales Science 149 3684 653 654 Bibcode 1965Sci 149 653L doi 10 1126 science 149 3684 653 PMID 17747574 S2CID 39386614 Forbes Peter 2009 Dazzled and Deceived Mimicry and Camouflage Yale University Press p 134 ISBN 978 0 300 17896 8 Bester Cathleen 5 May 2017 Antennarius striatus Florida Museum University of Florida Retrieved 31 January 2018 Ruppert Edward E Fox Richard S Barnes Robert D 2004 Invertebrate Zoology 7th edition Cengage Learning pp 153 154 ISBN 978 81 315 0104 7 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Cetaruk Edward W 2005 Rattlesnakes and Other Crotalids In Brent Jeffrey ed Critical care toxicology diagnosis and management of the critically poisoned patient Elsevier Health Sciences p 1075 ISBN 978 0 8151 4387 1 Barceloux Donald G 2008 Medical Toxicology of Natural Substances Foods Fungi Medicinal Herbs Plants and Venomous Animals Wiley p 1028 ISBN 978 0 470 33557 4 Li Min Fry B G Kini R Manjunatha 2005 Eggs Only Diet Its Implications for the Toxin Profile Changes and Ecology of the Marbled Sea Snake Aipysurus eydouxii Journal of Molecular Evolution 60 1 81 89 Bibcode 2005JMolE 60 81L doi 10 1007 s00239 004 0138 0 PMID 15696370 S2CID 17572816 Castello M E A Rodriguez Cattaneo P A Aguilera L Iribarne A C Pereira A A Caputi 2009 Waveform generation in the weakly electric fish Gymnotus coropinae Hoedeman the electric organ and the electric organ discharge Journal of Experimental Biology 212 9 1351 1364 doi 10 1242 jeb 022566 PMID 19376956 Feulner P G M Plath J Engelmann F Kirschbaum R Tiedemann 2009 Electrifying love electric fish use species specific discharge for mate recognition Biology Letters 5 2 225 228 doi 10 1098 rsbl 2008 0566 PMC 2665802 PMID 19033131 Catania Kenneth C 2015 Electric eels use high voltage to track fast moving prey Nature Communications 6 1 8638 Bibcode 2015NatCo 6 8638C doi 10 1038 ncomms9638 PMC 4667699 PMID 26485580 Kramer Bernd 1996 Electroreception and communication in fishes PDF Progress in Zoology 42 Karasov William H Diamond Jared M 1988 Interplay between Physiology and Ecology in Digestion BioScience 38 9 602 611 doi 10 2307 1310825 JSTOR 1310825 Ruxton Sherratt amp Speed 2004 pp vii xii Caro 2005 pp 67 114 Merilaita Sami Scott Samuel Nicholas E Cuthill Innes C 22 May 2017 How camouflage works Philosophical Transactions of the Royal Society B Biological Sciences Submitted manuscript 372 1724 20160341 doi 10 1098 rstb 2016 0341 PMC 5444062 PMID 28533458 Caro 2005 pp 13 15 Bergstrom C T Lachmann M 2001 Alarm calls as costly signals of antipredator vigilance the watchful babbler game Animal Behaviour 61 3 535 543 CiteSeerX 10 1 1 28 773 doi 10 1006 anbe 2000 1636 S2CID 2295026 Getty T 2002 The discriminating babbler meets the optimal diet hawk Animal Behaviour 63 2 397 402 doi 10 1006 anbe 2001 1890 S2CID 53164940 Cott 1940 pp 241 307 Bowers M D Brown Irene L Wheye Darryl 1985 Bird Predation as a Selective Agent in a Butterfly Population Evolution 39 1 93 103 doi 10 1111 j 1558 5646 1985 tb04082 x PMID 28563638 S2CID 12031679 Berenbaum M R 3 January 1995 The chemistry of defense theory and practice Proceedings of the National Academy of Sciences of the United States of America 92 1 2 8 Bibcode 1995PNAS 92 2B doi 10 1073 pnas 92 1 2 PMC 42807 PMID 7816816 Ruxton Sherratt amp Speed 2004 pp 70 81 Caro 2005 pp 663 684 Beauchamp 2012 pp 83 88 Krause Jens Ruxton Graeme D 10 October 2002 Living in groups Oxford University Press pp 13 15 ISBN 9780198508182 Ruxton Sherratt amp Speed 2004 pp 54 55 Dominey Wallace J 1983 Mobbing in Colonially Nesting Fishes Especially the Bluegill Lepomis macrochirus Copeia 1983 4 1086 1088 doi 10 2307 1445113 JSTOR 1445113 Brodie Edmund D 3 November 2009 Toxins and venoms PDF Current Biology 19 20 R931 R935 doi 10 1016 j cub 2009 08 011 PMID 19889364 S2CID 9744565 Cott 1940 pp 368 389 Merilaita Sami Vallin Adrian Kodandaramaiah Ullasa et al 26 July 2011 Number of eyespots and their intimidating effect on naive predators in the peacock butterfly Behavioral Ecology 22 6 1326 1331 doi 10 1093 beheco arr135 Edmunds Malcolm 2012 Deimatic Behavior Springer Retrieved 31 December 2012 Caro 2005 pp v xi 4 5 Caro 2005 p 413 414 Jacobs amp Bastian 2017 p 4 Barbosa Pedro Castellanos Ignacio 2005 Ecology of predator prey interactions Oxford University Press p 78 ISBN 9780199874545 Janis C M Wilhelm P B 1993 Were there mammalian pursuit predators in the Tertiary Dances with wolf avatars Journal of Mammalian Evolution 1 2 103 125 doi 10 1007 bf01041590 S2CID 22739360 a b c Dawkins Richard Krebs J R 1979 Arms races between and within species Proceedings of the Royal Society B Biological Sciences 205 1161 489 511 Bibcode 1979RSPSB 205 489D doi 10 1098 rspb 1979 0081 PMID 42057 S2CID 9695900 a b Abrams Peter A November 1986 Adaptive responses of predators to prey and prey to predators The failure of the arms race analogy Evolution 40 6 1229 1247 doi 10 1111 j 1558 5646 1986 tb05747 x PMID 28563514 S2CID 27317468 a b c d e Brodie Edmund D July 1999 Predator Prey Arms Races BioScience 49 7 557 568 doi 10 2307 1313476 JSTOR 1313476 Vermeij G J November 1994 The Evolutionary Interaction Among Species Selection Escalation and Coevolution Annual Review of Ecology and Systematics 25 1 219 236 doi 10 1146 annurev es 25 110194 001251 Jacobs amp Bastian 2017 p 8 Jacobs amp Bastian 2017 p 107 Sheriff Michael J Peacor Scott D Hawlena Dror Thaker Maria Gaillard Jean Michel 2020 Non Consumptive Predator Effects on Prey Population Size A Dearth of Evidence Journal of Animal Ecology 89 6 1302 1316 Bibcode 2020JAnEc 89 1302S doi 10 1111 1365 2656 13213 PMID 32215909 Preisser Evan L Bolnick Daniel I Benard Michael F 2005 Scared to Death The Effects of Intimidation and Consumption in Predator Prey Interactions Ecology 86 2 501 509 Bibcode 2005Ecol 86 501P doi 10 1890 04 0719 ISSN 0012 9658 a b Peckarsky Barbara L Abrams Peter A Bolnick Daniel I Dill Lawrence M Grabowski Jonathan H Luttbeg Barney Orrock John L Peacor Scott D Preisser Evan L Schmitz Oswald J Trussell Geoffrey C September 2008 Revisiting the classics considering nonconsumptive effects in textbook examples of predator prey interactions Ecology 89 9 2416 2425 Bibcode 2008Ecol 89 2416P doi 10 1890 07 1131 1 PMID 18831163 Lindeman Raymond L 1942 The Trophic Dynamic Aspect of Ecology Ecology 23 4 399 417 Bibcode 1942Ecol 23 399L doi 10 2307 1930126 JSTOR 1930126 Ordiz Andres Bischof Richard Swenson Jon E 2013 Saving large carnivores but losing the apex predator Biological Conservation 168 128 133 Bibcode 2013BCons 168 128O doi 10 1016 j biocon 2013 09 024 Pimm S L Lawton J H 1978 On feeding on more than one trophic level Nature 275 5680 542 544 Bibcode 1978Natur 275 542P doi 10 1038 275542a0 S2CID 4161183 Fedriani J M Fuller T K Sauvajot R M York E C 2000 Competition and intraguild predation among three sympatric carnivores PDF Oecologia 125 2 258 270 Bibcode 2000Oecol 125 258F doi 10 1007 s004420000448 hdl 10261 54628 PMID 24595837 S2CID 24289407 Lalli C M Parsons T R 1997 Biological Oceanography An Introduction 2nd ed The Open University p 116 Energy transfer in ecosystems National Geographic 18 February 2023 Retrieved 18 February 2023 Bond W J 2012 11 Keystone species In Schulze Ernst Detlef Mooney Harold A eds Biodiversity and Ecosystem Function Springer p 237 ISBN 978 3642580017 Botkin D Keller E 2003 Environmental Science Earth as a living planet John Wiley amp Sons p 2 ISBN 978 0 471 38914 9 a b Ripple William J Beschta Robert L 2004 Wolves and the Ecology of Fear Can Predation Risk Structure Ecosystems BioScience 54 8 755 doi 10 1641 0006 3568 2004 054 0755 WATEOF 2 0 CO 2 Neal Dick 2004 Introduction to population biology Cambridge University Press pp 68 69 ISBN 9780521532235 Nelson Erik H Matthews Christopher E Rosenheim Jay A July 2004 Predators Reduce Prey Population Growth by Inducing Changes in Prey Behavior Ecology 85 7 1853 1858 Bibcode 2004Ecol 85 1853N doi 10 1890 03 3109 JSTOR 3450359 Krebs Charles J Boonstra Rudy Boutin Stan Sinclair A R E 2001 What Drives the 10 year Cycle of Snowshoe Hares BioScience 51 1 25 doi 10 1641 0006 3568 2001 051 0025 WDTYCO 2 0 CO 2 hdl 1807 359 Krebs Charley Myers Judy 12 July 2014 The Snowshoe Hare 10 year Cycle A Cautionary Tale Ecological rants University of British Columbia Retrieved 2 October 2018 Predators and their prey BBC Bitesize BBC Retrieved 7 October 2015 Goel Narendra S Maitra S C Montroll E W 1971 On the Volterra and Other Non Linear Models of Interacting Populations Academic Press ISBN 978 0122874505 a b Levin Simon A Carpenter Stephen R Godfray H Charles J Kinzig Ann P Loreau Michel Losos Jonathan B Walker Brian Wilcove David S 2009 The Princeton guide to ecology Princeton University Press pp 204 209 ISBN 9781400833023 Murdoch William W Briggs Cheryl J Nisbet Roger M 2013 Consumer resource dynamics Princeton University Press p 39 ISBN 9781400847259 Nowak Martin May Robert M 2000 Virus Dynamics Mathematical Principles of Immunology and Virology Oxford University Press p 8 ISBN 9780191588518 Genovart M Negre N Tavecchia G Bistuer A Parpal L Oro D 2010 The young the weak and the sick evidence of natural selection by predation PLOS ONE 5 3 e9774 Bibcode 2010PLoSO 5 9774G doi 10 1371 journal pone 0009774 PMC 2841644 PMID 20333305 Rockwood 2009 p 281 Rockwood 2009 p 246 Rockwood 2009 pp 271 272 Rockwood 2009 p 272 273 a b Cushing J M 2005 Book Reviews Mathematics in population biology by Horst R Thiene PDF Bulletin of the American Mathematical Society 42 4 501 505 doi 10 1090 S0273 0979 05 01055 4 Thieme Horst R 2003 Mathematics in Population Biology Princeton University Press ISBN 978 0 691 09291 1 Kozlov Vladimir Vakulenko Sergey 3 July 2013 On chaos in Lotka Volterra systems an analytical approach Nonlinearity 26 8 2299 2314 Bibcode 2013Nonli 26 2299K doi 10 1088 0951 7715 26 8 2299 S2CID 121559550 Sih Andrew 1987 Prey refuges and predator prey stability Theoretical Population Biology 31 1 12 doi 10 1016 0040 5809 87 90019 0 McNair James N 1986 The effects of refuges on predator prey interactions A reconsideration Theoretical Population Biology 29 1 38 63 doi 10 1016 0040 5809 86 90004 3 PMID 3961711 Berryman Alan A Hawkins Bradford A Hawkins Bradford A 2006 The refuge as an integrating concept in ecology and evolution Oikos 115 1 192 196 Bibcode 2006Oikos 115 192B doi 10 1111 j 0030 1299 2006 15188 x Cressman Ross Garay Jozsef 2009 A predator prey refuge system Evolutionary stability in ecological systems Theoretical Population Biology 76 4 248 57 doi 10 1016 j tpb 2009 08 005 PMID 19751753 Abrams P A 2000 The evolution of predator prey interactions theory and evidence Annual Review of Ecology and Systematics 31 79 105 doi 10 1146 annurev ecolsys 31 1 79 a b Grimaldi David Engel Michael S 2005 Evolution of the Insects Cambridge University Press pp 155 160 ISBN 978 0 521 82149 0 Grant S W F Knoll A H Germs G J B 1991 Probable Calcified Metaphytes in the Latest Proterozoic Nama Group Namibia Origin Diagenesis and Implications Journal of Paleontology 65 1 1 18 Bibcode 1991JPal 65 1G doi 10 1017 S002233600002014X JSTOR 1305691 PMID 11538648 S2CID 26792772 Awramik S M 19 November 1971 Precambrian columnar stromatolite diversity Reflection of metazoan appearance Science 174 4011 825 827 Bibcode 1971Sci 174 825A doi 10 1126 science 174 4011 825 PMID 17759393 S2CID 2302113 Stanley Steven M 2008 Predation defeats competition on the seafloor Paleobiology 34 1 1 21 Bibcode 2008Pbio 34 1S doi 10 1666 07026 1 S2CID 83713101 Loron Corentin C Rainbird Robert H Turner Elizabeth C Wilder Greenman J Javaux Emmanuelle J 2018 Implications of selective predation on the macroevolution of eukaryotes Evidence from Arctic Canada Emerging Topics in Life Sciences 2 2 247 255 doi 10 1042 ETLS20170153 PMID 32412621 S2CID 92505644 a b Dunn F S Kenchington C G Parry L A Clark J W Kendall R S Wilby P R 25 July 2022 A crown group cnidarian from the Ediacaran of Charnwood Forest UK Nature Ecology amp Evolution 6 8 1095 1104 Bibcode 2022NatEE 6 1095D doi 10 1038 s41559 022 01807 x PMC 9349040 PMID 35879540 Kelley Patricia 2003 Predator Prey Interactions in the Fossil Record Springer pp 113 139 141 176 and passim ISBN 978 1 4615 0161 9 OCLC 840283264 Daley Allison C 2013 Anomalocaridids Current Biology 23 19 R860 R861 doi 10 1016 j cub 2013 07 008 PMID 24112975 Anderson P S L Westneat M 2009 A biomechanical model of feeding kinematics for Dunkleosteus terrelli Arthrodira Placodermi Paleobiology 35 2 251 269 Bibcode 2009Pbio 35 251A doi 10 1666 08011 1 S2CID 86203770 Carr Robert K 2010 Paleoecology of Dunkleosteus terrelli Placodermi Arthrodira Kirtlandia 57 Switeck Brian 13 April 2012 When Tyrannosaurus Chomped Sauropods Journal of Vertebrate Paleontology 25 2 469 472 doi 10 1671 0272 4634 2005 025 0469 TRFTUC 2 0 CO 2 S2CID 131583311 Archived from the original on 24 August 2013 Retrieved 24 August 2013 Darimont C T Fox C H Bryan H M Reimchen T E 20 August 2015 The unique ecology of human predators Science 349 6250 858 860 Bibcode 2015Sci 349 858D doi 10 1126 science aac4249 PMID 26293961 S2CID 4985359 Gabriel Otto von Brandt Andres 2005 Fish catching methods of the world Blackwell ISBN 978 0 85238 280 6 Griffin Emma 2008 Blood Sport Hunting in Britain Since 1066 Yale University Press ISBN 978 0300145458 King Richard J 1 October 2013 The Devil s Cormorant A Natural History University of New Hampshire Press p 9 ISBN 978 1 61168 225 0 Glasier Phillip 1998 Falconry and Hawking Batsford ISBN 978 0713484076 Aegerter James Fouracre David Smith Graham C 2017 Olsson I Anna S ed A first estimate of the structure and density of the populations of pet cats and dogs across Great Britain PLOS ONE 12 4 e0174709 Bibcode 2017PLoSO 1274709A doi 10 1371 journal pone 0174709 PMC 5389805 PMID 28403172 The Humane Society of the United States U S Pet Ownership Statistics Retrieved 27 April 2012 Liebenberg Louis 2008 The relevance of persistence hunting to human evolution Journal of Human Evolution 55 6 1156 1159 doi 10 1016 j jhevol 2008 07 004 PMID 18760825 Food For Thought PDF The Life of Mammals British Broadcasting Corporation 31 October 2002 Flint Maria Louise Dreistadt Steve H 1998 Clark Jack K ed Natural Enemies Handbook The Illustrated Guide to Biological Pest Control University of California Press ISBN 978 0 520 21801 7 Johnston Keith M 2013 Science Fiction Film A Critical Introduction Berg Publishers p 98 ISBN 9780857850560 Newby Richard 13 May 2018 Is Predator Finally Getting a Worthy Sequel Hollywood Reporter Retrieved 7 September 2018 Schatz Thomas The New Hollywood Movie Blockbusters p 25 In Stringer Julian 2003 Movie Blockbusters Routledge pp 15 44 ISBN 978 0 415 25608 7 Davison Peter 1 December 2002 Predators and Prey Selected Poems 1957 1994 by Ted Hughes The New York Times Retrieved 5 October 2018 Hughes s earliest books contained a bewildering profusion of poems between their covers fish and fowl beasts of the field and forest vigorous embodiments of predators and prey Hughes as a student had taken up anthropology not literature and he chose to meditate his way into trancelike states of preconsciousness before committing poems to paper His poems early or late enter into the relations of living creatures they move in close to animal consciousness The Thought Fox Esther s Tomcat Pike Gould Stephen Jay 1995 The Tooth and Claw Centennial Harmony Books pp 63 75 ISBN 978 0517703939 a href Template Cite book html title Template Cite book cite book a work ignored help a b c d e f Wallner Astrid 18 July 2005 The role of predators in Mythology WaldWissen Information for Forest Management Archived from the original on 5 October 2018 Retrieved 5 October 2018 translated from Wallner A 1998 Die Bedeutung der Raubtiere in der Mythologie Ergebnisse einer Literaturstudie Inf bl Forsch bereiches Landsch okol 39 4 5 Kellert Stephen R Black Matthew Rush Colleen Reid Bath Alistair J 1996 Human Culture and Large Carnivore Conservation in North America Conservation Biology 10 4 977 990 Bibcode 1996ConBi 10 977K doi 10 1046 j 1523 1739 1996 10040977 x Sources editBeauchamp Guy 2012 Social predation how group living benefits predators and prey Elsevier ISBN 9780124076549 Bell W J 2012 Searching Behaviour the behavioural ecology of finding resources Springer Netherlands ISBN 9789401130981 Caro Tim 2005 Antipredator Defenses in Birds and Mammals University of Chicago Press ISBN 978 0 226 09436 6 Cott Hugh B 1940 Adaptive Coloration in Animals Methuen OCLC 974070031 Jacobs David Steve Bastian Anna 2017 Predator prey interactions co evolution between bats and their prey Springer ISBN 9783319324920 Rockwood Larry L 2009 Introduction to population ecology John Wiley amp Sons p 281 ISBN 9781444309102 Ruxton Graeme D Sherratt Tom N Speed Michael P 2004 Avoiding attack the evolutionary ecology of crypsis warning signals and mimicry Oxford University Press ISBN 9780198528593 External links edit nbsp Quotations related to Predation at Wikiquote nbsp Media related to Predation at Wikimedia Commons Retrieved from https en wikipedia org w index php title Predation amp oldid 1193534574, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.