fbpx
Wikipedia

Keystone species

A keystone species is a species which has a disproportionately large effect on its natural environment relative to its abundance, a concept introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf, are also apex predators.

The jaguar: a keystone, flagship, and umbrella species, and an apex predator
The beaver: a keystone species, and habitat creator, responsible for the creation of lakes, canals and wetlands irrigating large forests and creating ecosystems

The role that a keystone species plays in its ecosystem is analogous to the role of a keystone in an arch. While the keystone is under the least pressure of any of the stones in an arch, the arch still collapses without it. Similarly, an ecosystem may experience a dramatic shift if a keystone species is removed, even though that species was a small part of the ecosystem by measures of biomass or productivity. It became a popular concept in conservation biology, alongside flagship and umbrella species. Although the concept is valued as a descriptor for particularly strong inter-species interactions, and has allowed easier communication between ecologists and conservation policy-makers, it has been criticized for oversimplifying complex ecological systems.

History

 
Ochre seastars (Pisaster ochraceus), a keystone predator
 
California mussels (Mytilus californianus), the seastar's prey

The concept of the keystone species was introduced in 1969 by zoologist Robert T. Paine.[1][2] Paine developed the concept to explain his observations and experiments on the relationships between marine invertebrates of the intertidal zone (between the high and low tide lines), including starfish and mussels. He removed the starfish from an area, and documented the effects on the ecosystem.[3] In his 1966 paper, Food Web Complexity and Species Diversity, Paine had described such a system in Makah Bay in Washington.[4] In his 1969 paper, Paine proposed the keystone species concept, using Pisaster ochraceus, a species of starfish generally known as ochre starfish, and Mytilus californianus, a species of mussel, as a primary example.[1] The ochre starfish is a generalist predator and feeds on chitons, limpets, snails, barnacles, echinoids, and even decapod crustacea. The favourite food for these starfish is the mussel which is a dominant competitor for the space on the rocks. The ochre starfish keeps the population numbers of the mussels in check along with the other preys allowing the other seaweeds, sponges, and anemones to co-exist that ochre starfish do not consume. When Paine removed the ochre starfish the mussels quickly outgrew the other species crowding them out. The concept became popular in conservation, and was deployed in a range of contexts and mobilized to engender support for conservation, especially where human activities had damaged ecosystems, such as by removing keystone predators.[5][6]

Definitions

A keystone species was defined by Paine as a species that has a disproportionately large effect on its environment relative to its abundance.[7] It has been defined operationally by Davic in 2003 as "a strongly interacting species whose top-down effect on species diversity and competition is large relative to its biomass dominance within a functional group."[8]

A classic keystone species is a predator that prevents a particular herbivorous species from eliminating dominant plant species. If prey numbers are low, keystone predators can be even less abundant and still be effective. Yet without the predators, the herbivorous prey would explode in numbers, wipe out the dominant plants, and dramatically alter the character of the ecosystem. The exact scenario changes in each example, but the central idea remains that through a chain of interactions, a non-abundant species has an outsized impact on ecosystem functions. For example, the herbivorous weevil Euhrychiopsis lecontei is thought to have keystone effects on aquatic plant diversity by foraging on nuisance Eurasian watermilfoil in North American waters.[9] Similarly, the wasp species Agelaia vicina has been labeled a keystone species for its unparalleled nest size, colony size, and high rate of brood production. The diversity of its prey and the quantity necessary to sustain its high rate of growth have a direct impact on other species around it.[7]

The keystone concept is defined by its ecological effects, and these in turn make it important for conservation. In this it overlaps with several other species conservation concepts such as flagship species, indicator species, and umbrella species. For example, the jaguar is a charismatic big cat which meets all of these definitions:[10]

The jaguar is an umbrella species, flagship species, and wilderness quality indicator. It promotes the goals of carnivore recovery, protecting and restoring connectivity through Madrean woodland and riparian areas, and protecting and restoring riparian areas. ... A reserve system that protects jaguars is an umbrella for many other species. ... the jaguar [is] a keystone in subtropical and tropical America ...

— David Maehr et al, 2001[10]

Predators

Sea otters and kelp forests

 
Sea urchins like this purple sea urchin can damage kelp forests by chewing through kelp holdfasts
 
The sea otter is an important predator of sea urchins, making it a keystone species for the kelp forests.

Sea otters protect kelp forests from damage by sea urchins. When the sea otters of the North American west coast were hunted commercially for their fur, their numbers fell to such low levels – fewer than 1000 in the north Pacific ocean – that they were unable to control the sea urchin population. The urchins in turn grazed the holdfasts of kelp so heavily that the kelp forests largely disappeared, along with all the species that depended on them. Reintroducing the sea otters has enabled the kelp ecosystem to be restored. For example, in Southeast Alaska some 400 sea otters were released, and they have bred to form a population approaching 25,000.[11][12][13][14]

The wolf, Yellowstone's apex predator

 
Riparian willow recovery at Blacktail Creek, Yellowstone National Park, after reintroduction of wolves.[vague]

Keystone predators may increase the biodiversity of communities by preventing a single species from becoming dominant. They can have a profound influence on the balance of organisms in a particular ecosystem. Introduction or removal of a keystone predator, or changes in its population density, can have drastic cascading effects on the equilibrium of many other populations in the ecosystem. For example, grazers of a grassland may prevent a single dominant species from taking over.[15]

The elimination of the gray wolf from the Greater Yellowstone Ecosystem had profound impacts on the trophic pyramid.[16] Without predation, herbivores began to over-graze many woody browse species, affecting the area's plant populations. In addition, wolves often kept animals from grazing in riparian areas, which protected beavers from having their food sources encroached upon. The removal of wolves had a direct effect on beaver populations, as their habitat became grazing territory. Increased browsing on willows and conifers along Blacktail Creek due to a lack of predation caused channel incision because the beavers helped slow the water down, allowing soil to stay in place. Furthermore, predation keeps hydrological features such as creeks and streams in normal working order. When wolves were reintroduced, the beaver population and the whole riparian ecosystem recovered dramatically within a few years.[17]

Sea stars and other non-apex predators

As described by Paine in 1966, some sea stars (e.g., Pisaster ochraceus) may prey on sea urchins, mussels, and other shellfish that have no other natural predators.[18] If the sea star is removed from the ecosystem, the mussel population explodes uncontrollably, driving out most other species.[19] The recent onset of sea star wasting disease around the United States has indirectly caused mussel populations to dominate in many intertidal habitats.

These creatures need not be apex predators. Sea stars are prey for sharks, rays, and sea anemones. Sea otters are prey for orca.[20]

The jaguar, whose numbers in Central and South America have been classified as near threatened, acts as a keystone predator by its widely varied diet, helping to balance the mammalian jungle ecosystem with its consumption of 87 different species of prey.[21] The lion is another keystone species.[22]

 
Acorn banksia, Banksia prionotes, is the sole source of nectar for important pollinators, honeyeaters.

Mutualists

Keystone mutualists are organisms that participate in mutually beneficial interaction, the loss of which would have a profound impact upon the ecosystem as a whole. For example, in the Avon Wheatbelt region of Western Australia, there is a period of each year when Banksia prionotes (acorn banksia) is the sole source of nectar for honeyeaters, which play an important role in pollination of numerous plant species. Therefore, the loss of this one species of tree would probably cause the honeyeater population to collapse, with profound implications for the entire ecosystem. Another example is frugivores, such as the cassowary, which spreads the seeds of many different trees. Some seeds will not grow unless they have been through a cassowary.[23][24]

Engineers

 
Prairie dog town. Drawing by Josiah Gregg, 1844

A term used alongside keystone is ecosystem engineer.[5] In North America, the prairie dog is an ecosystem engineer. Prairie dog burrows provide the nesting areas for mountain plovers and burrowing owls. Prairie dog tunnel systems also help channel rainwater into the water table to prevent runoff and erosion, and can also serve to change the composition of the soil in a region by increasing aeration and reversing soil compaction that can be a result of cattle grazing. Prairie dogs also trim the vegetation around their colonies, perhaps to remove any cover for predators.[25] Grazing species such as plains bison, which is another keystone species, the pronghorn, and the mule deer have shown a proclivity for grazing on the same land used by prairie dogs.[26]

 
Beaver dam, an animal construction which has a transformative effect on the environment

The beaver is a well known ecosystem engineer and keystone species. It transforms its territory from a stream to a pond or swamp. Beavers affect the environment first altering the edges of riparian areas by cutting down older trees to use for their dams. This allows younger trees to take their place. Beaver dams alter the riparian area they are established in. Depending on topography, soils, and many factors, these dams change the riparian edges of streams and rivers into wetlands, meadows, or riverine forests. These dams have been shown to be beneficial to a myriad of species including amphibians, salmon, and song birds.[27]

In the African savanna, the larger herbivores, especially the elephants, shape their environment. The elephants destroy trees, making room for the grass species and creating habitat for various small animal species.[28][29] Without these animals, much of the savanna would turn into woodland.[30] In the Amazon river basin, peccaries produce and maintain wallows that are utilized by a wide variety of species.[31][32] Australian studies have found that parrotfish on the Great Barrier Reef are the only reef fish that consistently scrape and clean the coral on the reef. Without these animals, the Great Barrier Reef would be under severe strain.[33]

In the Serengeti, the presence of sufficient gnus in these grasslands promote tree growth, which in turn reduces wildfire likelihood. The documentary The Serengeti Rules documents this in detail.[34]

Limitations

Although the concept of the keystone species has a value in describing particularly strong inter-species interactions, and for allowing easier communication between ecologists and conservation policy-makers, it has been criticized by L. S. Mills and colleagues for oversimplifying complex ecological systems. The term has been applied widely in different ecosystems and to predators, prey, and plants (primary producers), inevitably with differing ecological meanings. For instance, removing a predator may allow other animals to increase to the point where they wipe out other species; removing a prey species may cause predator populations to crash, or may allow predators to drive other prey species to extinction; and removing a plant species may result in the loss of animals that depend on it, like pollinators and seed dispersers. Beavers too have been called keystone, not for eating other species but for modifying the environment in ways that affected other species. The term has thus been given quite different meanings in different cases. In Mills's view, Paine's work showed that a few species could sometimes have extremely strong interactions within a particular ecosystem, but that does not automatically imply that other ecosystems have a similar structure.[3]

See also

References

  1. ^ a b Paine, R. T. (1969). "A Note on Trophic Complexity and Community Stability". The American Naturalist. 103 (929): 91–93. doi:10.1086/282586. JSTOR 2459472. S2CID 83780992.
  2. ^ . University of Washington. Archived from the original on 2011-01-10. Retrieved 2011-02-03.
  3. ^ a b Mills, L. S.; Soule, M. E.; Doak, D. F. (1993). "The Keystone-Species Concept in Ecology and Conservation". BioScience. 43 (4): 219–224. doi:10.2307/1312122. JSTOR 1312122.
  4. ^ Paine, R. T. (1966). "Food Web Complexity and Species Diversity". The American Naturalist. 100 (910): 65–75. doi:10.1086/282400. JSTOR 2459379. S2CID 85265656.
  5. ^ a b Barua, Maan (2011). "Mobilizing metaphors: the popular use of keystone, flagship and umbrella species concepts". Biodiversity and Conservation. 20 (7): 1427–1440. doi:10.1007/s10531-011-0035-y. S2CID 11030284.
  6. ^ HHMI, BioInteractive (29 May 2017). "Some Animals Are More Equal than Others: Keystone Species and Trophic Cascades – HHMI (2016)". Retrieved 6 June 2017.
  7. ^ a b Paine, R. T. (1995). "A Conversation on Refining the Concept of Keystone Species". Conservation Biology. 9 (4): 962–964. doi:10.1046/j.1523-1739.1995.09040962.x.
  8. ^ Davic, R. D. (2003). "Linking Keystone Species and Functional Groups: A New Operational Definition of the Keystone Species Concept". Conservation Ecology. Retrieved 2011-02-03.
  9. ^ Creed, R. P. Jr. (2000). "Is there a new keystone species in North American lakes and rivers?". OIKOS. 91 (2): 405. doi:10.1034/j.1600-0706.2000.910222.x.
  10. ^ a b Maehr, David; Noss, Reed F.; Larkin, Jeffery L. (2001). Large Mammal Restoration: Ecological And Sociological Challenges In The 21St Century. Island Press. p. 73. ISBN 978-1-55963-817-3.
  11. ^ Szpak, Paul; Orchard, Trevor J.; Salomon, Anne K.; Gröcke, Darren R. (2013). "Regional ecological variability and impact of the maritime fur trade on nearshore ecosystems in southern Haida Gwaii (British Columbia, Canada): evidence from stable isotope analysis of rockfish (Sebastes spp.) bone collagen". Archaeological and Anthropological Sciences. 5 (2): 159–182. doi:10.1007/s12520-013-0122-y. S2CID 84866250.
  12. ^ Estes, James E.; Smith, Norman S.; Palmisano, John F. (1978). "Sea otter predation and community organization in the Western Aleutian Islands, Alaska". Ecology. 59 (4): 822–833. doi:10.2307/1938786. JSTOR 1938786.
  13. ^ Cohn, J. P. (1998). "Understanding Sea Otters". BioScience. 48 (3): 151–155. doi:10.2307/1313259. JSTOR 1313259.
  14. ^ Brown, Tina M. (14 March 2013). . Juneau Empire. Archived from the original on 23 April 2018. Retrieved 23 April 2018.
  15. ^ Botkin, D.; Keller, E. (2003). Environmental Science: Earth as a living planet. John Wiley & Sons. p. 2. ISBN 978-0-471-38914-9.
  16. ^ Wilmers, Christopher C.; Crabtree, Robert L.; Smith, Douglas W.; Murphy, Kerry M.; Getz, Wayne M. (November 2003). "Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park". Journal of Animal Ecology. 72 (6): 909–916. doi:10.1046/j.1365-2656.2003.00766.x. ISSN 0021-8790.
  17. ^ Ripple, William J.; Beschta, Robert L. (2004). "Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems?". BioScience. Oxford University Press. 54 (8): 755. doi:10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2.
  18. ^ Cottee-Jones, Henry Eden W; Whittaker, Robert J. (2012-09-28). "perspective: The keystone species concept: a critical appraisal". Frontiers of Biogeography. 4 (3). doi:10.21425/F54312533. ISSN 1948-6596.
  19. ^ Paine, R. T. (1966). "Food web complexity and species diversity". American Naturalist. 100 (910): 65–75. doi:10.1086/282400. JSTOR 2459379. S2CID 85265656.
  20. ^ Estes, J. A.; Tinker, M. T.; Williams, T. M.; Doak, D. F. (1998-10-16). "Killer whale predation on sea otters linking oceanic and nearshore ecosystems". Science. 282 (5388): 473–476. Bibcode:1998Sci...282..473E. doi:10.1126/science.282.5388.473. PMID 9774274. S2CID 8925215.
  21. ^ Nowell, K.; Jackson, P., eds. (1996). Panthera onca. Wild Cats, Status Survey and Conservation Action Plan. IUCN/SSC Cat Specialist Group. pp. 118–122. ISBN 978-2-8317-0045-8.
  22. ^ Hale, Sarah L.; Koprowski, John L. (February 2018). "Ecosystem-level effects of keystone species reintroduction: a literature review". Restoration Ecology. 26 (3): 439–445. doi:10.1111/rec.12684. S2CID 53686934.
  23. ^ Lambeck, Robert J. (1999). Landscape Planning for Biodiversity Conservation in Agricultural Regions: A Case Study from the Wheatbelt of Western Australia. Biodiversity Technical Paper No. 2. CSIRO Division of Wildlife and Ecology. ISBN 978-0-642-21423-2.
  24. ^ Walker, Brian (1995). "Conserving Biological Diversity through Ecosystem Resilience". Conservation Biology. 9 (4): 747–752. doi:10.1046/j.1523-1739.1995.09040747.x.
  25. ^ . Wildlife Species Guide. Nebraska Game and Park Commission. Archived from the original on 19 August 2009. Retrieved 10 November 2013.
  26. ^ Rosmarino, Nicole (2007). . Prairie Dog Coalition. Archived from the original on 10 November 2013. Retrieved 10 November 2013.
  27. ^ Wright, J. P.; Jones, C. G.; Flecker, A. S. (2002). "An ecosystem engineer, the beaver, increases species richness at the landscape scale". Oecologia. 132 (1): 96–101. Bibcode:2002Oecol.132...96W. doi:10.1007/s00442-002-0929-1. PMID 28547281. S2CID 5940275.
  28. ^ Pringle, Robert M. (2008). "Elephants as agents of habitat creation for small vertebrates at the patch scale". Ecology. 89 (1): 26–33. doi:10.1890/07-0776.1. ISSN 0012-9658. PMID 18376543.
  29. ^ Coverdale, Tyler C.; Kartzinel, Tyler R.; Grabowski, Kathryn L.; Shriver, Robert K.; Hassan, Abdikadir A.; Goheen, Jacob R.; Palmer, Todd M.; Pringle, Robert M. (2016). "Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores". Ecology. 97 (11): 3219–3230. doi:10.1002/ecy.1557. ISSN 0012-9658. PMID 27870025.
  30. ^ Leakey, Richard; Lewin, Roger (1999) [1995]. "11 The modern elephant story". The sixth extinction: biodiversity and its survival. Phoenix. pp. 216–217. ISBN 1-85799-473-6.
  31. ^ "How the overlooked peccary engineers the Amazon, an interview with Harald Beck". 20 September 2010.
  32. ^ "Where Peccaries Wallow, Other Animals Follow". National Geographic Society. 27 September 2014.
  33. ^ Gruber, Karl (26 September 2014). "Single keystone species may be the key to reef health". Australian Geographic.
  34. ^ How Wildebeest Saved the Serengeti

Further reading

  • Caro, Tim (2010). Conservation by proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Washington, DC: Island Press. ISBN 9781597261920.

keystone, species, confused, with, foundation, species, keystone, species, species, which, disproportionately, large, effect, natural, environment, relative, abundance, concept, introduced, 1969, zoologist, robert, paine, play, critical, role, maintaining, str. Not to be confused with foundation species A keystone species is a species which has a disproportionately large effect on its natural environment relative to its abundance a concept introduced in 1969 by the zoologist Robert T Paine Keystone species play a critical role in maintaining the structure of an ecological community affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community Without keystone species the ecosystem would be dramatically different or cease to exist altogether Some keystone species such as the wolf are also apex predators The jaguar a keystone flagship and umbrella species and an apex predator The beaver a keystone species and habitat creator responsible for the creation of lakes canals and wetlands irrigating large forests and creating ecosystems The role that a keystone species plays in its ecosystem is analogous to the role of a keystone in an arch While the keystone is under the least pressure of any of the stones in an arch the arch still collapses without it Similarly an ecosystem may experience a dramatic shift if a keystone species is removed even though that species was a small part of the ecosystem by measures of biomass or productivity It became a popular concept in conservation biology alongside flagship and umbrella species Although the concept is valued as a descriptor for particularly strong inter species interactions and has allowed easier communication between ecologists and conservation policy makers it has been criticized for oversimplifying complex ecological systems Contents 1 History 2 Definitions 3 Predators 3 1 Sea otters and kelp forests 3 2 The wolf Yellowstone s apex predator 3 3 Sea stars and other non apex predators 4 Mutualists 5 Engineers 6 Limitations 7 See also 8 References 9 Further readingHistory Edit Ochre seastars Pisaster ochraceus a keystone predator California mussels Mytilus californianus the seastar s prey The concept of the keystone species was introduced in 1969 by zoologist Robert T Paine 1 2 Paine developed the concept to explain his observations and experiments on the relationships between marine invertebrates of the intertidal zone between the high and low tide lines including starfish and mussels He removed the starfish from an area and documented the effects on the ecosystem 3 In his 1966 paper Food Web Complexity and Species Diversity Paine had described such a system in Makah Bay in Washington 4 In his 1969 paper Paine proposed the keystone species concept using Pisaster ochraceus a species of starfish generally known as ochre starfish and Mytilus californianus a species of mussel as a primary example 1 The ochre starfish is a generalist predator and feeds on chitons limpets snails barnacles echinoids and even decapod crustacea The favourite food for these starfish is the mussel which is a dominant competitor for the space on the rocks The ochre starfish keeps the population numbers of the mussels in check along with the other preys allowing the other seaweeds sponges and anemones to co exist that ochre starfish do not consume When Paine removed the ochre starfish the mussels quickly outgrew the other species crowding them out The concept became popular in conservation and was deployed in a range of contexts and mobilized to engender support for conservation especially where human activities had damaged ecosystems such as by removing keystone predators 5 6 Definitions EditA keystone species was defined by Paine as a species that has a disproportionately large effect on its environment relative to its abundance 7 It has been defined operationally by Davic in 2003 as a strongly interacting species whose top down effect on species diversity and competition is large relative to its biomass dominance within a functional group 8 A classic keystone species is a predator that prevents a particular herbivorous species from eliminating dominant plant species If prey numbers are low keystone predators can be even less abundant and still be effective Yet without the predators the herbivorous prey would explode in numbers wipe out the dominant plants and dramatically alter the character of the ecosystem The exact scenario changes in each example but the central idea remains that through a chain of interactions a non abundant species has an outsized impact on ecosystem functions For example the herbivorous weevil Euhrychiopsis lecontei is thought to have keystone effects on aquatic plant diversity by foraging on nuisance Eurasian watermilfoil in North American waters 9 Similarly the wasp species Agelaia vicina has been labeled a keystone species for its unparalleled nest size colony size and high rate of brood production The diversity of its prey and the quantity necessary to sustain its high rate of growth have a direct impact on other species around it 7 The keystone concept is defined by its ecological effects and these in turn make it important for conservation In this it overlaps with several other species conservation concepts such as flagship species indicator species and umbrella species For example the jaguar is a charismatic big cat which meets all of these definitions 10 The jaguar is an umbrella species flagship species and wilderness quality indicator It promotes the goals of carnivore recovery protecting and restoring connectivity through Madrean woodland and riparian areas and protecting and restoring riparian areas A reserve system that protects jaguars is an umbrella for many other species the jaguar is a keystone in subtropical and tropical America David Maehr et al 2001 10 Predators EditSea otters and kelp forests Edit Sea urchins like this purple sea urchin can damage kelp forests by chewing through kelp holdfasts The sea otter is an important predator of sea urchins making it a keystone species for the kelp forests Sea otters protect kelp forests from damage by sea urchins When the sea otters of the North American west coast were hunted commercially for their fur their numbers fell to such low levels fewer than 1000 in the north Pacific ocean that they were unable to control the sea urchin population The urchins in turn grazed the holdfasts of kelp so heavily that the kelp forests largely disappeared along with all the species that depended on them Reintroducing the sea otters has enabled the kelp ecosystem to be restored For example in Southeast Alaska some 400 sea otters were released and they have bred to form a population approaching 25 000 11 12 13 14 The wolf Yellowstone s apex predator Edit Riparian willow recovery at Blacktail Creek Yellowstone National Park after reintroduction of wolves vague Further information Apex predator Keystone predators may increase the biodiversity of communities by preventing a single species from becoming dominant They can have a profound influence on the balance of organisms in a particular ecosystem Introduction or removal of a keystone predator or changes in its population density can have drastic cascading effects on the equilibrium of many other populations in the ecosystem For example grazers of a grassland may prevent a single dominant species from taking over 15 The elimination of the gray wolf from the Greater Yellowstone Ecosystem had profound impacts on the trophic pyramid 16 Without predation herbivores began to over graze many woody browse species affecting the area s plant populations In addition wolves often kept animals from grazing in riparian areas which protected beavers from having their food sources encroached upon The removal of wolves had a direct effect on beaver populations as their habitat became grazing territory Increased browsing on willows and conifers along Blacktail Creek due to a lack of predation caused channel incision because the beavers helped slow the water down allowing soil to stay in place Furthermore predation keeps hydrological features such as creeks and streams in normal working order When wolves were reintroduced the beaver population and the whole riparian ecosystem recovered dramatically within a few years 17 Sea stars and other non apex predators Edit As described by Paine in 1966 some sea stars e g Pisaster ochraceus may prey on sea urchins mussels and other shellfish that have no other natural predators 18 If the sea star is removed from the ecosystem the mussel population explodes uncontrollably driving out most other species 19 The recent onset of sea star wasting disease around the United States has indirectly caused mussel populations to dominate in many intertidal habitats These creatures need not be apex predators Sea stars are prey for sharks rays and sea anemones Sea otters are prey for orca 20 The jaguar whose numbers in Central and South America have been classified as near threatened acts as a keystone predator by its widely varied diet helping to balance the mammalian jungle ecosystem with its consumption of 87 different species of prey 21 The lion is another keystone species 22 Acorn banksia Banksia prionotes is the sole source of nectar for important pollinators honeyeaters Mutualists EditKeystone mutualists are organisms that participate in mutually beneficial interaction the loss of which would have a profound impact upon the ecosystem as a whole For example in the Avon Wheatbelt region of Western Australia there is a period of each year when Banksia prionotes acorn banksia is the sole source of nectar for honeyeaters which play an important role in pollination of numerous plant species Therefore the loss of this one species of tree would probably cause the honeyeater population to collapse with profound implications for the entire ecosystem Another example is frugivores such as the cassowary which spreads the seeds of many different trees Some seeds will not grow unless they have been through a cassowary 23 24 Engineers Edit Prairie dog town Drawing by Josiah Gregg 1844 Further information Ecosystem engineer and Niche construction A term used alongside keystone is ecosystem engineer 5 In North America the prairie dog is an ecosystem engineer Prairie dog burrows provide the nesting areas for mountain plovers and burrowing owls Prairie dog tunnel systems also help channel rainwater into the water table to prevent runoff and erosion and can also serve to change the composition of the soil in a region by increasing aeration and reversing soil compaction that can be a result of cattle grazing Prairie dogs also trim the vegetation around their colonies perhaps to remove any cover for predators 25 Grazing species such as plains bison which is another keystone species the pronghorn and the mule deer have shown a proclivity for grazing on the same land used by prairie dogs 26 Beaver dam an animal construction which has a transformative effect on the environment The beaver is a well known ecosystem engineer and keystone species It transforms its territory from a stream to a pond or swamp Beavers affect the environment first altering the edges of riparian areas by cutting down older trees to use for their dams This allows younger trees to take their place Beaver dams alter the riparian area they are established in Depending on topography soils and many factors these dams change the riparian edges of streams and rivers into wetlands meadows or riverine forests These dams have been shown to be beneficial to a myriad of species including amphibians salmon and song birds 27 In the African savanna the larger herbivores especially the elephants shape their environment The elephants destroy trees making room for the grass species and creating habitat for various small animal species 28 29 Without these animals much of the savanna would turn into woodland 30 In the Amazon river basin peccaries produce and maintain wallows that are utilized by a wide variety of species 31 32 Australian studies have found that parrotfish on the Great Barrier Reef are the only reef fish that consistently scrape and clean the coral on the reef Without these animals the Great Barrier Reef would be under severe strain 33 In the Serengeti the presence of sufficient gnus in these grasslands promote tree growth which in turn reduces wildfire likelihood The documentary The Serengeti Rules documents this in detail 34 Limitations EditAlthough the concept of the keystone species has a value in describing particularly strong inter species interactions and for allowing easier communication between ecologists and conservation policy makers it has been criticized by L S Mills and colleagues for oversimplifying complex ecological systems The term has been applied widely in different ecosystems and to predators prey and plants primary producers inevitably with differing ecological meanings For instance removing a predator may allow other animals to increase to the point where they wipe out other species removing a prey species may cause predator populations to crash or may allow predators to drive other prey species to extinction and removing a plant species may result in the loss of animals that depend on it like pollinators and seed dispersers Beavers too have been called keystone not for eating other species but for modifying the environment in ways that affected other species The term has thus been given quite different meanings in different cases In Mills s view Paine s work showed that a few species could sometimes have extremely strong interactions within a particular ecosystem but that does not automatically imply that other ecosystems have a similar structure 3 See also EditCultural keystone species Ecosystem service Foundation species Indigenous Introduced species Sentinel speciesReferences Edit a b Paine R T 1969 A Note on Trophic Complexity and Community Stability The American Naturalist 103 929 91 93 doi 10 1086 282586 JSTOR 2459472 S2CID 83780992 Keystone Species Hypothesis University of Washington Archived from the original on 2011 01 10 Retrieved 2011 02 03 a b Mills L S Soule M E Doak D F 1993 The Keystone Species Concept in Ecology and Conservation BioScience 43 4 219 224 doi 10 2307 1312122 JSTOR 1312122 Paine R T 1966 Food Web Complexity and Species Diversity The American Naturalist 100 910 65 75 doi 10 1086 282400 JSTOR 2459379 S2CID 85265656 a b Barua Maan 2011 Mobilizing metaphors the popular use of keystone flagship and umbrella species concepts Biodiversity and Conservation 20 7 1427 1440 doi 10 1007 s10531 011 0035 y S2CID 11030284 HHMI BioInteractive 29 May 2017 Some Animals Are More Equal than Others Keystone Species and Trophic Cascades HHMI 2016 Retrieved 6 June 2017 a b Paine R T 1995 A Conversation on Refining the Concept of Keystone Species Conservation Biology 9 4 962 964 doi 10 1046 j 1523 1739 1995 09040962 x Davic R D 2003 Linking Keystone Species and Functional Groups A New Operational Definition of the Keystone Species Concept Conservation Ecology Retrieved 2011 02 03 Creed R P Jr 2000 Is there a new keystone species in North American lakes and rivers OIKOS 91 2 405 doi 10 1034 j 1600 0706 2000 910222 x a b Maehr David Noss Reed F Larkin Jeffery L 2001 Large Mammal Restoration Ecological And Sociological Challenges In The 21St Century Island Press p 73 ISBN 978 1 55963 817 3 Szpak Paul Orchard Trevor J Salomon Anne K Grocke Darren R 2013 Regional ecological variability and impact of the maritime fur trade on nearshore ecosystems in southern Haida Gwaii British Columbia Canada evidence from stable isotope analysis of rockfish Sebastes spp bone collagen Archaeological and Anthropological Sciences 5 2 159 182 doi 10 1007 s12520 013 0122 y S2CID 84866250 Estes James E Smith Norman S Palmisano John F 1978 Sea otter predation and community organization in the Western Aleutian Islands Alaska Ecology 59 4 822 833 doi 10 2307 1938786 JSTOR 1938786 Cohn J P 1998 Understanding Sea Otters BioScience 48 3 151 155 doi 10 2307 1313259 JSTOR 1313259 Brown Tina M 14 March 2013 My Turn Southeast Alaska s sea otters The restoration of an ecosystem Juneau Empire Archived from the original on 23 April 2018 Retrieved 23 April 2018 Botkin D Keller E 2003 Environmental Science Earth as a living planet John Wiley amp Sons p 2 ISBN 978 0 471 38914 9 Wilmers Christopher C Crabtree Robert L Smith Douglas W Murphy Kerry M Getz Wayne M November 2003 Trophic facilitation by introduced top predators grey wolf subsidies to scavengers in Yellowstone National Park Journal of Animal Ecology 72 6 909 916 doi 10 1046 j 1365 2656 2003 00766 x ISSN 0021 8790 Ripple William J Beschta Robert L 2004 Wolves and the Ecology of Fear Can Predation Risk Structure Ecosystems BioScience Oxford University Press 54 8 755 doi 10 1641 0006 3568 2004 054 0755 WATEOF 2 0 CO 2 Cottee Jones Henry Eden W Whittaker Robert J 2012 09 28 perspective The keystone species concept a critical appraisal Frontiers of Biogeography 4 3 doi 10 21425 F54312533 ISSN 1948 6596 Paine R T 1966 Food web complexity and species diversity American Naturalist 100 910 65 75 doi 10 1086 282400 JSTOR 2459379 S2CID 85265656 Estes J A Tinker M T Williams T M Doak D F 1998 10 16 Killer whale predation on sea otters linking oceanic and nearshore ecosystems Science 282 5388 473 476 Bibcode 1998Sci 282 473E doi 10 1126 science 282 5388 473 PMID 9774274 S2CID 8925215 Nowell K Jackson P eds 1996 Panthera onca Wild Cats Status Survey and Conservation Action Plan IUCN SSC Cat Specialist Group pp 118 122 ISBN 978 2 8317 0045 8 Hale Sarah L Koprowski John L February 2018 Ecosystem level effects of keystone species reintroduction a literature review Restoration Ecology 26 3 439 445 doi 10 1111 rec 12684 S2CID 53686934 Lambeck Robert J 1999 Landscape Planning for Biodiversity Conservation in Agricultural Regions A Case Study from the Wheatbelt of Western Australia Biodiversity Technical Paper No 2 CSIRO Division of Wildlife and Ecology ISBN 978 0 642 21423 2 Walker Brian 1995 Conserving Biological Diversity through Ecosystem Resilience Conservation Biology 9 4 747 752 doi 10 1046 j 1523 1739 1995 09040747 x Prairie Dogs Wildlife Species Guide Nebraska Game and Park Commission Archived from the original on 19 August 2009 Retrieved 10 November 2013 Rosmarino Nicole 2007 Associated Species Prairie Dogs are a Keystone Species of the Great Plains Prairie Dog Coalition Archived from the original on 10 November 2013 Retrieved 10 November 2013 Wright J P Jones C G Flecker A S 2002 An ecosystem engineer the beaver increases species richness at the landscape scale Oecologia 132 1 96 101 Bibcode 2002Oecol 132 96W doi 10 1007 s00442 002 0929 1 PMID 28547281 S2CID 5940275 Pringle Robert M 2008 Elephants as agents of habitat creation for small vertebrates at the patch scale Ecology 89 1 26 33 doi 10 1890 07 0776 1 ISSN 0012 9658 PMID 18376543 Coverdale Tyler C Kartzinel Tyler R Grabowski Kathryn L Shriver Robert K Hassan Abdikadir A Goheen Jacob R Palmer Todd M Pringle Robert M 2016 Elephants in the understory opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores Ecology 97 11 3219 3230 doi 10 1002 ecy 1557 ISSN 0012 9658 PMID 27870025 Leakey Richard Lewin Roger 1999 1995 11 The modern elephant story The sixth extinction biodiversity and its survival Phoenix pp 216 217 ISBN 1 85799 473 6 How the overlooked peccary engineers the Amazon an interview with Harald Beck 20 September 2010 Where Peccaries Wallow Other Animals Follow National Geographic Society 27 September 2014 Gruber Karl 26 September 2014 Single keystone species may be the key to reef health Australian Geographic How Wildebeest Saved the SerengetiFurther reading EditCaro Tim 2010 Conservation by proxy indicator umbrella keystone flagship and other surrogate species Washington DC Island Press ISBN 9781597261920 Retrieved from https en wikipedia org w index php title Keystone species amp oldid 1136100803, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.