fbpx
Wikipedia

Neurotransmitter

A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell.[1]

Neurotransmitters are released from synaptic vesicles into the synaptic cleft where they are able to interact with neurotransmitter receptors on the target cell. The neurotransmitter's effect on the target cell is determined by the receptor it binds to. Many neurotransmitters are synthesized from simple and plentiful precursors such as amino acids, which are readily available and often require a small number of biosynthetic steps for conversion.

Neurotransmitters are essential to the function of complex neural systems. The exact number of unique neurotransmitters in humans is unknown, but more than 100 have been identified.[2] Common neurotransmitters include glutamate, GABA, acetylcholine, glycine and norepinephrine.

Mechanism and cycle edit

Synthesis edit

Neurotransmitters are generally synthesized in neurons and are made up of, or derived from, precursor molecules that are found abundantly in the cell. Classes of neurotransmitters include amino acids, monoamines, and peptides. Monoamines are synthesized by altering a single amino acid. For example, the precursor of serotonin is the amino acid tryptophan. Peptide transmitters, or neuropeptides, are protein transmitters that often are released together with other transmitters to have a modulatory effect.[3] Purine neurotransmitters, like ATP, are derived from nucleic acids. Other neurotransmitters are made up of metabolic products like nitric oxide and carbon monoxide.[citation needed]

Examples
Amino Acid glycine, glutamate
Monoamines serotonin, epinephrine, dopamine
Peptides substance P, opioids
Purines ATP, GTP
Other nitric oxide, carbon monoxide
 
Synaptic vesicles containing neurotransmitters

Storage edit

Neurotransmitters are generally stored in synaptic vesicles, clustered close to the cell membrane at the axon terminal of the presynaptic neuron. However, some neurotransmitters, like the metabolic gases carbon monoxide and nitric oxide, are synthesized and released immediately following an action potential without ever being stored in vesicles.[4]

Release edit

Generally, a neurotransmitter is released at the presynaptic terminal in response to an electrical signal called an action potential in the presynaptic neuron. However, low level 'baseline' release also occurs without electrical stimulation. Neurotransmitters are released into and diffuse across the synaptic cleft, where they bind to specific receptors on the membrane of the postsynaptic neuron.[5]

Receptor interaction edit

After being released into the synaptic cleft, neurotransmitters diffuse across the synapse where they are able to interact with receptors on the target cell. The effect of the neurotransmitter is dependent on the identity of the target cell's receptors present at the synapse. Depending on the receptor, binding of neurotransmitters may cause excitation, inhibition, or modulation of the postsynaptic neuron. See below for more information.[citation needed]

Elimination edit

 
Acetylcholine is cleaved in the synaptic cleft into acetic acid and choline

In order to avoid continuous activation of receptors on the post-synaptic or target cell, neurotransmitters must be removed from the synaptic cleft.[6] Neurotransmitters are removed through one of three mechanisms:

  1. Diffusion – neurotransmitters drift out of the synaptic cleft, where they are absorbed by glial cells. These glial cells, usually astrocytes, absorb the excess neurotransmitters.
    • Astrocytes, a type of glial cell in the brain, actively contribute to synaptic communication through astrocytic diffusion or gliotransmission. Neuronal activity triggers an increase in astrocytic calcium levels, prompting the release of gliotransmitters, such as glutamate, ATP, and D-serine.These gliotransmitters diffuse into the extracellular space, interacting with nearby neurons and influencing synaptic transmission. By regulating extracellular neurotransmitter levels, astrocytes help maintain proper synaptic function. This bidirectional communication between astrocytes and neurons add complexity to brain signaling, with implications for brain function and neurological disorders.[7][8]
  2. Enzyme degradation – proteins called enzymes break the neurotransmitters down.
  3. Reuptake – neurotransmitters are reabsorbed into the pre-synaptic neuron. Transporters, or membrane transport proteins, pump neurotransmitters from the synaptic cleft back into axon terminals (the presynaptic neuron) where they are stored for reuse.

For example, acetylcholine is eliminated by having its acetyl group cleaved by the enzyme acetylcholinesterase; the remaining choline is then taken in and recycled by the pre-synaptic neuron to synthesize more acetylcholine.[9] Other neurotransmitters are able to diffuse away from their targeted synaptic junctions and are eliminated from the body via the kidneys, or destroyed in the liver. Each neurotransmitter has very specific degradation pathways at regulatory points, which may be targeted by the body's regulatory system or medication. Cocaine blocks a dopamine transporter responsible for the reuptake of dopamine. Without the transporter, dopamine diffuses much more slowly from the synaptic cleft and continues to activate the dopamine receptors on the target cell.[10]

Discovery edit

Until the early 20th century, scientists assumed that the majority of synaptic communication in the brain was electrical. However, through histological examinations by Ramón y Cajal, a 20 to 40 nm gap between neurons, known today as the synaptic cleft, was discovered. The presence of such a gap suggested communication via chemical messengers traversing the synaptic cleft, and in 1921 German pharmacologist Otto Loewi confirmed that neurons can communicate by releasing chemicals. Through a series of experiments involving the vagus nerves of frogs, Loewi was able to manually slow the heart rate of frogs by controlling the amount of saline solution present around the vagus nerve. Upon completion of this experiment, Loewi asserted that sympathetic regulation of cardiac function can be mediated through changes in chemical concentrations. Furthermore, Otto Loewi is credited with discovering acetylcholine (ACh) – the first known neurotransmitter.[11]

Identification edit

To identify neurotransmitters, the following criteria are typically considered:

  1. Synthesis: The chemical must be produced within the neuron or be present in it as a precursor molecule.
  2. Release and Response: When the neuron is activated, the chemical must be released and elicit a response in target cells or neurons.
  3. Experimental Response: Application of the chemical directly to the target cells should produce the same response observed when the chemical is naturally released from neurons.
  4. Removal Mechanism: There must be a mechanism in place to remove the neurotransmitter from its site of action once its signaling role is complete.[12]

However, given advances in pharmacology, genetics, and chemical neuroanatomy, the term "neurotransmitter" can be applied to chemicals that:

  • Carry messages between neurons via influence on the postsynaptic membrane.
  • Have little or no effect on membrane voltage, but have a common carrying function such as changing the structure of the synapse.
  • Communicate by sending reverse-direction messages that affect the release or reuptake of transmitters.

The anatomical localization of neurotransmitters is typically determined using immunocytochemical techniques, which identify the location of either the transmitter substances themselves or of the enzymes that are involved in their synthesis. Immunocytochemical techniques have also revealed that many transmitters, particularly the neuropeptides, are co-localized, that is, a neuron may release more than one transmitter from its synaptic terminal.[13] Various techniques and experiments such as staining, stimulating, and collecting can be used to identify neurotransmitters throughout the central nervous system.[14]

Actions edit

Neurons communicate with each other through synapses, specialized contact points where neurotransmitters transmit signals. When an action potential reaches the presynaptic terminal, the action potential can trigger the release of neurotransmitters into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic membrane, influencing the receiving neuron in either an inhibitory or excitatory manner. If the overall excitatory influences outweigh the inhibitory influences, the receiving neuron may generate its own action potential, continuing the transmission of information to the next neuron in the network. This process allows for the flow of information and the formation of complex neural networks.[15]

Modulation edit

A neurotransmitter may have an excitatory, inhibitory or modulatory effect on the target cell. The effect is determined by the receptors the neurotransmitter interacts with at the post-synaptic membrane. Neurotransmitter influences trans-membrane ion flow either to increase (excitatory) or to decrease (inhibitory) the probability that the cell with which it comes in contact will produce an action potential. Synapses containing receptors with excitatory effects are called Type I synapses, while Type II synapses contain receptors with inhibitory effects.[16] Thus, despite the wide variety of synapses, they all convey messages of only these two types. The two types are different appearance and are primarily located on different parts of the neurons under its influence.[17] Receptors with modulatory effects are spread throughout all synaptic membranes and binding of neurotransmitters sets in motion signaling cascades that help the cell regulate its function.[18] Binding of neurotransmitters to receptors with modulatory effects can have many results. For example, it may result in an increase or decrease in sensitivity to future stimulus by recruiting more or less receptors to the synaptic membrane.

Type I (excitatory) synapses are typically located on the shafts or the spines of dendrites, whereas type II (inhibitory) synapses are typically located on a cell body. In addition, Type I synapses have round synaptic vesicles, whereas the vesicles of type II synapses are flattened. The material on the presynaptic and post-synaptic membranes is denser in a Type I synapse than it is in a type II, and the type I synaptic cleft is wider. Finally, the active zone on a Type I synapse is larger than that on a Type II synapse.

The different locations of type I and type II synapses divide a neuron into two zones: an excitatory dendritic tree and an inhibitory cell body. From an inhibitory perspective, excitation comes in over the dendrites and spreads to the axon hillock to trigger an action potential. If the message is to be stopped, it is best stopped by applying inhibition on the cell body, close to the axon hillock where the action potential originates. Another way to conceptualize excitatory–inhibitory interaction is to picture excitation overcoming inhibition. If the cell body is normally in an inhibited state, the only way to generate an action potential at the axon hillock is to reduce the cell body's inhibition. In this "open the gates" strategy, the excitatory message is like a racehorse ready to run down the track, but first, the inhibitory starting gate must be removed.[19]

Neurotransmitter actions edit

As explained above, the only direct action of a neurotransmitter is to activate a receptor. Therefore, the effects of a neurotransmitter system depend on the connections of the neurons that use the transmitter, and the chemical properties of the receptors.

Types edit

There are many different ways to classify neurotransmitters. Dividing them into amino acids, peptides, and monoamines is sufficient for some classification purposes.[27]

Major neurotransmitters:

In addition, over 100 neuroactive peptides have been found, and new ones are discovered regularly.[30][31] Many of these are co-released along with a small-molecule transmitter. Nevertheless, in some cases, a peptide is the primary transmitter at a synapse. Beta-Endorphin is a relatively well-known example of a peptide neurotransmitter because it engages in highly specific interactions with opioid receptors in the central nervous system.

Single ions (such as synaptically released zinc) are also considered neurotransmitters by some,[32] as well as some gaseous molecules such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S).[33] The gases are produced in the neural cytoplasm and are immediately diffused through the cell membrane into the extracellular fluid and into nearby cells to stimulate production of second messengers. Soluble gas neurotransmitters are difficult to study, as they act rapidly and are immediately broken down, existing for only a few seconds.

The most prevalent transmitter is glutamate, which is excitatory at well over 90% of the synapses in the human brain.[28] The next most prevalent is gamma-Aminobutyric Acid, or GABA, which is inhibitory at more than 90% of the synapses that do not use glutamate. Although other transmitters are used in fewer synapses, they may be very important functionally: the great majority of psychoactive drugs exert their effects by altering the actions of some neurotransmitter systems, often acting through transmitters other than glutamate or GABA. Addictive drugs such as cocaine and amphetamines exert their effects primarily on the dopamine system. The addictive opiate drugs exert their effects primarily as functional analogs of opioid peptides, which, in turn, regulate dopamine levels.

List of neurotransmitters, peptides, and gaseous signaling molecules edit

Neurotransmitters
Category Name Abbreviation Metabotropic Ionotropic
SmallTooltip Small molecule: Amino acids (Arg) Arginine Arg, R α2-Adrenergic receptors, imidazoline receptors NMDA receptors
Small: Amino acids Aspartate Asp, D NMDA receptors
Small: Amino acids Glutamate Glu, E Metabotropic glutamate receptors NMDA receptors, kainate receptors, AMPARs
Small: Amino acids Gamma-aminobutyric acid GABA GABAB receptors GABAA receptors, GABAA-ρ receptors
Small: Amino acids Glycine Gly, G NMDA receptors, glycine receptors
Small: Amino acids D-serine Ser, S NMDA receptors
Small: Acetylcholine Acetylcholine ACh Muscarinic acetylcholine receptors Nicotinic acetylcholine receptors
Small: Monoamine (Phe/Tyr) Dopamine DA Dopamine receptors, trace amine-associated receptor 1[34][35]
Small: Monoamine (Phe/Tyr) Norepinephrine (noradrenaline) NE, NAd Adrenergic receptors
Small: Monoamine (Phe/Tyr) Epinephrine (adrenaline) Epi, Ad Adrenergic receptors
Small: Monoamine (Trp) Serotonin (5-hydroxytryptamine) 5-HT Serotonin receptors (all except 5-HT3) 5-HT3
Small: Monoamine (His) Histamine H Histamine receptors
Small: Trace amine (Phe) Phenethylamine PEA Human trace amine-associated receptors: hTAAR1Tooltip human trace amine associated receptor 1, hTAAR2Tooltip human trace amine associated receptor 2
Small: Trace amine (Phe) N-methylphenethylamine NMPEA hTAAR1
Small: Trace amine (Phe/Tyr) Tyramine TYR hTAAR1, hTAAR2
Small: Trace amine (Phe/Tyr) octopamine Oct hTAAR1
Small: Trace amine (Phe/Tyr) Synephrine Syn hTAAR1
Small: Trace amine (Trp) Tryptamine hTAAR1, various serotonin receptors
Small: Trace amine (Trp) N-methyltryptamine NMT hTAAR1, various serotonin receptors
Lipid Anandamide AEA Cannabinoid receptors
Lipid 2-Arachidonoylglycerol 2-AG Cannabinoid receptors
Lipid 2-Arachidonyl glyceryl ether 2-AGE Cannabinoid receptors
Lipid N-Arachidonoyl dopamine NADA Cannabinoid receptors TRPV1
Lipid Virodhamine Cannabinoid receptors
Small: Purine Adenosine Ado Adenosine receptors
Small: Purine Adenosine triphosphate ATP P2Y receptors P2X receptors
Small: Purine Nicotinamide adenine dinucleotide β-NAD P2Y receptors P2X receptors
Neuropeptides
Category Name Abbreviation Metabotropic Ionotropic
Bombesin-like peptides Bombesin BBR1-2-3
Bombesin-like peptide Gastrin releasing peptide GRP
Bombesin-like peptide Neuromedin B NMB Neuromedin B receptor
Bradykinins Bradykinin B1, B2
Calcitonin/CGRP family Calcitonin Calcitonin receptor
Calcitonin/CGRP family Calcitonin gene-related peptide CGRP CALCRL
Corticotropin-releasing factors Corticotropin-releasing hormone CRH CRHR1
Corticotropin-releasing factors Urocortin CRHR1
Galanins Galanin GALR1, GALR2, GALR3
Galanins Galanin-like peptide GALR1, GALR2, GALR3
Gastrins Gastrin Cholecystokinin B receptor
Gastrins Cholecystokinin CCK Cholecystokinin receptors
Granins Chromogranin A ChgA
Melanocortins Adrenocorticotropic hormone ACTH ACTH receptor
Melanocortins Proopiomelanocortin POMC Melanocortin 4 receptor
Melanocortins Melanocyte-stimulating hormones MSH Melanocortin receptors
Neurohypophyseals Vasopressin AVP Vasopressin receptors
Neurohypophyseals Oxytocin OT Oxytocin receptor
Neurohypophyseals Neurophysin I
Neurohypophyseals Neurophysin II
Neurohypophyseals Copeptin
Neuromedins Neuromedin U NmU NmUR1, NmUR2
Neuropeptide B/W Neuropeptide B NPB NPBW1, NPBW2
Neuropeptide B/W Neuropeptide S NPS Neuropeptide S receptors
Neuropeptide Y Neuropeptide Y NY Neuropeptide Y receptors
Neuropeptide Y Pancreatic polypeptide PP
Neuropeptide Y Peptide YY PYY
Opioids Enkephalins δ-Opioid receptor
Opioids Dynorphins κ-Opioid receptor
Opioids Neoendorphins κ-Opioid receptor
Opioids Endorphins μ-Opioid receptors
Opioids Endomorphins μ-Opioid receptors
Opioids Morphine μ-Opioid receptors
Opioids Nociceptin/orphanin FQ N/OFQ Nociceptin receptors
Orexins Orexin A OX-A Orexin receptors
Orexins Orexin B OX-B Orexin receptors
Parathyroid hormone family Parathyroid hormone-related protein PTHrP
RFamides Kisspeptin KiSS GPR54
RFamides Neuropeptide FF NPFF NPFF1, NPFF2
RFamides Prolactin-releasing peptide PrRP PrRPR
RFamides Pyroglutamylated RFamide peptide QRFP GPR103
Secretins Secretin Secretin receptor
Secretins Motilin Motilin receptor
Secretins Glucagon Glucagon receptor
Secretins Glucagon-like peptide-1 GLP-1 Glucagon-like peptide 1 receptor
Secretins Glucagon-like peptide-2 GLP-2 Glucagon-like peptide 2 receptor
Secretins Vasoactive intestinal peptide VIP Vasoactive intestinal peptide receptors
Secretins Growth hormone–releasing hormone GHRH Growth hormone–releasing hormone receptor
Secretins Pituitary adenylate cyclase-activating peptide PACAP ADCYAP1R1
Somatostatins Somatostatin Somatostatin receptors
Tachykinins Neurokinin A
Tachykinins Neurokinin B
Tachykinins Substance P
Tachykinins Neuropeptide K
Other Agouti-related peptide AgRP Melanocortin receptor
Other N-Acetylaspartylglutamate NAAG Metabotropic glutamate receptor 3 (mGluR3)
Other Cocaine- and amphetamine-regulated transcript CART Unknown Gi/Go-coupled receptor[36]
Other Gonadotropin-releasing hormone GnRH GnRHR
Other Thyrotropin-releasing hormone TRH TRHR
Other Melanin-concentrating hormone MCH MCHR 1,2
Gasotransmitters
Category Name Abbreviation Metabotropic Ionotropic
Gaseous signaling molecule Nitric oxide NO Soluble guanylyl cyclase
Gaseous signaling molecule Carbon monoxide CO Heme bound to potassium channels
Gaseous signaling molecule Hydrogen sulfide H2S

Brain neurotransmitter systems edit

Neurons expressing certain types of neurotransmitters sometimes form distinct systems, where activation of the system affects large volumes of the brain, called volume transmission. Major neurotransmitter systems include the noradrenaline (norepinephrine) system, the dopamine system, the serotonin system, and the cholinergic system, among others. Trace amines have a modulatory effect on neurotransmission in monoamine pathways (i.e., dopamine, norepinephrine, and serotonin pathways) throughout the brain via signaling through trace amine-associated receptor 1.[37][38] A brief comparison of these systems follows:

Neurotransmitter systems in the brain
System Pathway origin and projections Regulated cognitive processes and behaviors
Noradrenaline system
[39][40][41][42][43][44]
Noradrenergic pathways:
Dopamine system
[41][42][43][45][46][47]
Dopaminergic pathways:
  • Hypothalamospinal projection
Histamine system
[42][43][48]
Histaminergic pathways:
Serotonin system
[39][41][42][43][49][50][51]
Serotonergic pathways:

Caudal nuclei (CN):
Raphe magnus, raphe pallidus, and raphe obscurus

  • Caudal projections

Rostral nuclei (RN):
Nucleus linearis, dorsal raphe, medial raphe, and raphe pontis

  • Rostral projections
Acetylcholine system
[39][41][42][43][52]
Cholinergic pathways:

Forebrain cholinergic nuclei (FCN):
Nucleus basalis of Meynert, medial septal nucleus, and diagonal band

  • Forebrain nuclei projections

Striatal tonically active cholinergic neurons (TAN)

Brainstem cholinergic nuclei (BCN):
Pedunculopontine nucleus, laterodorsal tegmentum, medial habenula, and
parabigeminal nucleus

  • Brainstem nuclei projections
Adrenaline system
[53][54]
Adrenergic pathways:

Drug effects edit

Understanding the effects of drugs on neurotransmitters comprises a significant portion of research initiatives in the field of neuroscience. Most neuroscientists involved in this field of research believe that such efforts may further advance our understanding of the circuits responsible for various neurological diseases and disorders, as well as ways to effectively treat and someday possibly prevent or cure such illnesses.[55][medical citation needed]

Drugs can influence behavior by altering neurotransmitter activity. For instance, drugs can decrease the rate of synthesis of neurotransmitters by affecting the synthetic enzyme(s) for that neurotransmitter. When neurotransmitter syntheses are blocked, the amount of neurotransmitters available for release becomes substantially lower, resulting in a decrease in neurotransmitter activity. Some drugs block or stimulate the release of specific neurotransmitters. Alternatively, drugs can prevent neurotransmitter storage in synaptic vesicles by causing the synaptic vesicle membranes to leak. Drugs that prevent a neurotransmitter from binding to its receptor are called receptor antagonists. For example, drugs used to treat patients with schizophrenia such as haloperidol, chlorpromazine, and clozapine are antagonists at receptors in the brain for dopamine. Other drugs act by binding to a receptor and mimicking the normal neurotransmitter. Such drugs are called receptor agonists. An example of a receptor agonist is morphine, an opiate that mimics effects of the endogenous neurotransmitter β-endorphin to relieve pain. Other drugs interfere with the deactivation of a neurotransmitter after it has been released, thereby prolonging the action of a neurotransmitter. This can be accomplished by blocking re-uptake or inhibiting degradative enzymes. Lastly, drugs can also prevent an action potential from occurring, blocking neuronal activity throughout the central and peripheral nervous system. Drugs such as tetrodotoxin that block neural activity are typically lethal.

Drugs targeting the neurotransmitter of major systems affect the whole system, which can explain the complexity of action of some drugs. Cocaine, for example, blocks the re-uptake of dopamine back into the presynaptic neuron, leaving the neurotransmitter molecules in the synaptic gap for an extended period of time. Since the dopamine remains in the synapse longer, the neurotransmitter continues to bind to the receptors on the postsynaptic neuron, eliciting a pleasurable emotional response. Physical addiction to cocaine may result from prolonged exposure to excess dopamine in the synapses, which leads to the downregulation of some post-synaptic receptors. After the effects of the drug wear off, an individual can become depressed due to decreased probability of the neurotransmitter binding to a receptor. Fluoxetine is a selective serotonin re-uptake inhibitor (SSRI), which blocks re-uptake of serotonin by the presynaptic cell which increases the amount of serotonin present at the synapse and furthermore allows it to remain there longer, providing potential for the effect of naturally released serotonin.[56] AMPT prevents the conversion of tyrosine to L-DOPA, the precursor to dopamine; reserpine prevents dopamine storage within vesicles; and deprenyl inhibits monoamine oxidase (MAO)-B and thus increases dopamine levels.

Drug-Neurotransmitter Interactions[57]
Drug Interacts with: Receptor Interaction: Type Effects
Botulinum Toxin (Botox) Acetylcholine Antagonist Blocks Acetylcholine release in PNS

Prevents muscle contractions

Black Widow Spider Venom Acetylcholine Agonist Promotes acetylcholine release in PNS

Stimulates muscle contractions

Neostigmine Acetylcholine Interferes with acetylcholinerase activity

Increases effects of ACh at receptors

Used to treat myasthenia gravis

Nicotine Acetylcholine Nicotinic (skeletal muscle) Agonist Increases ACh activity

Increases attention

Reinforcing effects

d-tubocurarine Acetylcholine Nicotinic (skeletal muscle) Antagonist Decreases activity at receptor site
Curare Acetylcholine Nicotinic (skeletal muscle) Antagonist Decreases ACh activity

Prevents muscle contractions

Muscarine Acetylcholine Muscarinic (heart and smooth muscle) Agonist Increases ACh activity

Toxic

Atropine Acetylcholine Muscarinic (heart and smooth muscle) Antagonist Blocks pupil constriction

Blocks saliva production

Scopolamine (Hyoscine) Acetylcholine Muscarinic (heart and smooth muscle) Antagonist Treats motion sickness and postoperative nausea and vomiting
AMPT Dopamine/norepinephrine Inactivates tyrosine hydroxylase and inhibits dopamine production
Reserpine Dopamine Prevents storage of dopamine and other monoamines in synaptic vesicles

Causes sedation and depression

Apomorphine Dopamine D2 Receptor (presynaptic autoreceptors/postsynaptic receptors) Antagonist (low dose)/Direct agonist (high dose) Low dose: blocks autoreceptors

High dose: stimulates postsynaptic receptors

Amphetamine Dopamine/norepinephrine Indirect agonist Releases dopamine, noradrenaline, and serotonin

Blocks reuptake[37][38]

Methamphetamine Dopamine/norepinephrine Releases dopamine and noradrenaline

Blocks reuptake

Methylphenidate Dopamine Blocks reuptake

Enhances attention and impulse control in ADHD

Cocaine Dopamine Indirect Agonist Blocks reuptake into presynapse

Blocks voltage-dependent sodium channels

Can be used as a topical anesthetic (eye drops)

Deprenyl Dopamine Agonist Inhibits MAO-B

Prevents destruction of dopamine

Chlorpromazine Dopamine D2 Receptors Antagonist Blocks D2 receptors

Alleviates hallucinations

MPTP Dopamine Results in Parkinson like symptoms
PCPA Serotonin (5-HT) Antagonist Disrupts serotonin synthesis by blocking the activity of tryptophan hydroxylase
Ondansetron Serotonin (5-HT) 5-HT3 receptors Antagonist Reduces side effects of chemotherapy and radiation

Reduces nausea and vomiting

Buspirone Serotonin (5-HT) 5-HT1A receptors Partial Agonist Treats symptoms of anxiety and depression
Fluoxetine Serotonin (5-HT) supports 5-HT reuptake SSRI Inhibits reuptake of serotonin

Treats depression, some anxiety disorders, and OCD[56] Common examples: Prozac and Sarafem

Fenfluramine Serotonin (5-HT) Causes release of serotonin

Inhibits reuptake of serotonin

Used as an appetite suppressant

Lysergic acid diethylamide Serotonin (5-HT) Post-synaptic 5-HT2A receptors Direct Agonist Produces visual perception distortions

Stimulates 5-HT2A receptors in forebrain

Methylenedioxymethamphetamine (MDMA) Serotonin (5-HT)/ norepinphrine Stimulates release of serotonin and norepinephrine and inhibits the reuptake

Causes excitatory and hallucinogenic effects

Strychnine Glycine Antagonist Causes severe muscle spasms[58]
Diphenhydramine Histamine Crosses blood brain barrier to cause drowsiness
Tetrahydrocannabinol (THC) Endocannabinoids Cannabinoid (CB) receptors Agonist Produces analgesia and sedation

Increases appetite

Cognitive effects

Rimonabant Endocannabinoids Cannabinoid (CB) receptors Antagonist Suppresses appetite

Used in smoking cessation

MAFP Endocannabinoids Inhibits FAAH

Used in research to increase cannabinoid system activity

AM1172 Endocannabinoids Blocks cannabinoid reuptake

Used in research to increase cannabinoid system activity

Anandamide (endogenous) Cannabinoid (CB) receptors; 5-HT3 receptors Reduce nausea and vomiting
Caffeine Adenosine Adenosine receptors Antagonist Blocks adenosine receptors

Increases wakefulness

PCP Glutamate NMDA receptor Indirect Antagonist Blocks PCP binding site

Prevents calcium ions from entering neurons

Impairs learning

AP5 Glutamate NMDA receptor Antagonist Blocks glutamate binding site on NMDA receptor

Impairs synaptic plasticity and certain forms of learning

Ketamine Glutamate NMDA receptor Antagonist Used as anesthesia

Induces trance-like state, helps with pain relief and sedation

NMDA Glutamate NMDA receptor Agonist Used in research to study NMDA receptor

Ionotropic receptor

AMPA Glutamate AMPA receptor Agonist Used in research to study AMPA receptor

Ionotropic receptor

Allyglycine GABA Inhibits GABA synthesis

Causes seizures

Muscimol GABA GABA receptor Agonist Causes sedation
Bicuculine GABA GABA receptor Antagonist Causes Seizures
Benzodiazepines GABA GABAA receptor Indirect agonists Anxiolytic, sedation, memory impairment, muscle relaxation
Barbiturates GABA GABAA receptor Indirect agonists Sedation, memory impairment, muscle relaxation
Alcohol GABA GABA receptor Indirect agonist Sedation, memory impairment, muscle relaxation
Picrotoxin GABA GABAA receptor Indirect antagonist High doses cause seizures
Tiagabine GABA Antagonist GABA transporter antagonist

Increase availability of GABA

Reduces the likelihood of seizures

Moclobemide Norepinephrine Agonist Blocks MAO-A to treat depression
Idazoxan Norepinephrine alpha-2 adrenergic autoreceptors Agonist Blocks alpha-2 autoreceptors

Used to study norepinephrine system

Fusaric acid Norepinephrine Inhibits activity of dopamine beta-hydroxylase which blocks the production of norepinephrine

Used to study norepinephrine system without affecting dopamine system

Opiates (Opium, morphine, heroin, and oxycodone) Opioids Opioid receptor[59] Agonists Analgesia, sedation, and reinforcing effects
Naloxone Opioids Antagonist Reverses opiate intoxication or overdose symptoms (i.e. problems with breathing)

Agonists edit

An agonist is a chemical capable of binding to a receptor, such as a neurotransmitter receptor, and initiating the same reaction typically produced by the binding of the endogenous substance.[60] An agonist of a neurotransmitter will thus initiate the same receptor response as the transmitter. In neurons, an agonist drug may activate neurotransmitter receptors either directly or indirectly. Direct-binding agonists can be further characterized as full agonists, partial agonists, inverse agonists.[61][62]

Direct agonists act similar to a neurotransmitter by binding directly to its associated receptor site(s), which may be located on the presynaptic neuron or postsynaptic neuron, or both.[63] Typically, neurotransmitter receptors are located on the postsynaptic neuron, while neurotransmitter autoreceptors are located on the presynaptic neuron, as is the case for monoamine neurotransmitters;[37] in some cases, a neurotransmitter utilizes retrograde neurotransmission, a type of feedback signaling in neurons where the neurotransmitter is released postsynaptically and binds to target receptors located on the presynaptic neuron.[64][note 1] Nicotine, a compound found in tobacco, is a direct agonist of most nicotinic acetylcholine receptors, mainly located in cholinergic neurons.[59] Opiates, such as morphine, heroin, hydrocodone, oxycodone, codeine, and methadone, are μ-opioid receptor agonists; this action mediates their euphoriant and pain relieving properties.[59]

Indirect agonists increase the binding of neurotransmitters at their target receptors by stimulating the release or preventing the reuptake of neurotransmitters.[63] Some indirect agonists trigger neurotransmitter release and prevent neurotransmitter reuptake. Amphetamine, for example, is an indirect agonist of postsynaptic dopamine, norepinephrine, and serotonin receptors in each their respective neurons;[37][38] it produces both neurotransmitter release into the presynaptic neuron and subsequently the synaptic cleft and prevents their reuptake from the synaptic cleft by activating TAAR1, a presynaptic G protein-coupled receptor, and binding to a site on VMAT2, a type of monoamine transporter located on synaptic vesicles within monoamine neurons.[37][38]

Antagonists edit

An antagonist is a chemical that acts within the body to reduce the physiological activity of another chemical substance (as an opiate); especially one that opposes the action on the nervous system of a drug or a substance occurring naturally in the body by combining with and blocking its nervous receptor.[65]

There are two main types of antagonist: direct-acting Antagonist and indirect-acting Antagonists:

  1. Direct-acting antagonist- which takes up space present on receptors which are otherwise taken up by neurotransmitters themselves. This results in neurotransmitters being blocked from binding to the receptors. The most common is called Atropine.
  2. Indirect-acting antagonist- drugs that inhibit the release/production of neurotransmitters (e.g., Reserpine).

Drug antagonists edit

An antagonist drug is one that attaches (or binds) to a site called a receptor without activating that receptor to produce a biological response. It is therefore said to have no intrinsic activity. An antagonist may also be called a receptor "blocker" because they block the effect of an agonist at the site. The pharmacological effects of an antagonist, therefore, result in preventing the corresponding receptor site's agonists (e.g., drugs, hormones, neurotransmitters) from binding to and activating it. Antagonists may be "competitive" or "irreversible".

A competitive antagonist competes with an agonist for binding to the receptor. As the concentration of antagonist increases, the binding of the agonist is progressively inhibited, resulting in a decrease in the physiological response. High concentration of an antagonist can completely inhibit the response. This inhibition can be reversed, however, by an increase of the concentration of the agonist, since the agonist and antagonist compete for binding to the receptor. Competitive antagonists, therefore, can be characterized as shifting the dose–response relationship for the agonist to the right. In the presence of a competitive antagonist, it takes an increased concentration of the agonist to produce the same response observed in the absence of the antagonist.

An irreversible antagonist binds so strongly to the receptor as to render the receptor unavailable for binding to the agonist. Irreversible antagonists may even form covalent chemical bonds with the receptor. In either case, if the concentration of the irreversible antagonist is high enough, the number of unbound receptors remaining for agonist binding may be so low that even high concentrations of the agonist do not produce the maximum biological response.[66]

Precursors edit

While intake of neurotransmitter precursors does increase neurotransmitter synthesis, evidence is mixed as to whether neurotransmitter release and postsynaptic receptor firing is increased. Even with increased neurotransmitter release, it is unclear whether this will result in a long-term increase in neurotransmitter signal strength, since the nervous system can adapt to changes such as increased neurotransmitter synthesis and may therefore maintain constant firing.[70][unreliable medical source?] Some neurotransmitters may have a role in depression and there is some evidence to suggest that intake of precursors of these neurotransmitters may be useful in the treatment of mild and moderate depression.[70][unreliable medical source?][71]

Catecholamine and trace amine precursors edit

L-DOPA, a precursor of dopamine that crosses the blood–brain barrier, is used in the treatment of Parkinson's disease. For depressed patients where low activity of the neurotransmitter norepinephrine is implicated, there is only little evidence for benefit of neurotransmitter precursor administration. L-phenylalanine and L-tyrosine are both precursors for dopamine, norepinephrine, and epinephrine. These conversions require vitamin B6, vitamin C, and S-adenosylmethionine. A few studies suggest potential antidepressant effects of L-phenylalanine and L-tyrosine, but there is much room for further research in this area.[70][unreliable medical source?]

Serotonin precursors edit

Administration of L-tryptophan, a precursor for serotonin, is seen to double the production of serotonin in the brain. It is significantly more effective than a placebo in the treatment of mild and moderate depression.[70][unreliable medical source?] This conversion requires vitamin C.[25] 5-hydroxytryptophan (5-HTP), also a precursor for serotonin, is more effective than a placebo.[70][unreliable medical source?]

Diseases and disorders edit

Diseases and disorders may also affect specific neurotransmitter systems. The following are disorders involved in either an increase, decrease, or imbalance of certain neurotransmitters.

Dopamine:

For example, problems in producing dopamine (mainly in the substantia nigra) can result in Parkinson's disease, a disorder that affects a person's ability to move as they want to, resulting in stiffness, tremors or shaking, and other symptoms. Some studies suggest that having too little or too much dopamine or problems using dopamine in the thinking and feeling regions of the brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder (ADHD). Dopamine is also involved in addiction and drug use, as most recreational drugs cause an influx of dopamine in the brain (especially opioid and methamphetamines) that produces a pleasurable feeling, which is why users constantly crave drugs.

Serotonin:

Similarly, after some research suggested that drugs that block the recycling, or reuptake, of serotonin seemed to help some people diagnosed with depression, it was theorized that people with depression might have lower-than-normal serotonin levels. Though widely popularized, this theory was not borne out in subsequent research.[72] Therefore, selective serotonin reuptake inhibitors (SSRIs) are used to increase the amounts of serotonin in synapses.

Glutamate:

Furthermore, problems with producing or using glutamate have been suggestively and tentatively linked to many mental disorders, including autism, obsessive–compulsive disorder (OCD), schizophrenia, and depression.[73] Having too much glutamate has been linked to neurological diseases such as Parkinson's disease, multiple sclerosis, Alzheimer's disease, stroke, and ALS (amyotrophic lateral sclerosis).[74]

 
CAPON Binds Nitric Oxide Synthase, Regulating NMDA Receptor–Mediated Glutamate Neurotransmission

Neurotransmitter imbalance edit

Generally, there are no scientifically established "norms" for appropriate levels or "balances" of different neurotransmitters. It is in most cases pragmatically impossible to even measure levels of neurotransmitters in a brain or body at any distinct moments in time. Neurotransmitters regulate each other's release, and weak consistent imbalances in this mutual regulation were linked to temperament in healthy people.[75][76][77][78][79] Strong imbalances or disruptions to neurotransmitter systems have been associated with many diseases and mental disorders. These include Parkinson's, depression, insomnia, Attention Deficit Hyperactivity Disorder (ADHD), anxiety, memory loss, dramatic changes in weight and addictions. Chronic physical or emotional stress can be a contributor to neurotransmitter system changes. Genetics also plays a role in neurotransmitter activities. Apart from recreational use, medications that directly and indirectly interact with one or more transmitter or its receptor are commonly prescribed for psychiatric and psychological issues. Notably, drugs interacting with serotonin and norepinephrine are prescribed to patients with problems such as depression and anxiety—though the notion that there is much solid medical evidence to support such interventions has been widely criticized.[80] Studies shown that dopamine imbalance has an influence on multiple sclerosis and other neurological disorders.[81]

See also edit

Notes edit

  1. ^ In the central nervous system, anandamide other endocannabinoids utilize retrograde neurotransmission, since their release is postsynaptic, while their target receptor, cannabinoid receptor 1 (CB1), is presynaptic.[64] The cannabis plant contains Δ9-tetrahydrocannabinol, which is a direct agonist at CB1.[64]
  1. ^ GABA is a non-proteinogenic amino acid

References edit

  1. ^ Smelser, Neil J.; Baltes, Paul B. (2001). International encyclopedia of the social & behavioral sciences (1st ed.). Amsterdam New York: Elsevier. ISBN 978-0-08-043076-8.
  2. ^ Cuevas J (1 January 2019). "Neurotransmitters and Their Life Cycle". Reference Module in Biomedical Sciences. Elsevier. doi:10.1016/b978-0-12-801238-3.11318-2. ISBN 978-0-12-801238-3.
  3. ^ Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, Williams SM (2001). "Peptide Neurotransmitters". Neuroscience (2nd ed.). Sinauer Associates.
  4. ^ Sanders KM, Ward SM (January 2019). "Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract". British Journal of Pharmacology. 176 (2): 212–227. doi:10.1111/bph.14459. PMC 6295421. PMID 30063800.
  5. ^ Elias LJ, Saucier DM (2005). Neuropsychology: Clinical and Experimental Foundations. Boston: Pearson.
  6. ^ Chergui K, Suaud-Chagny MF, Gonon F (October 1994). "Nonlinear relationship between impulse flow, dopamine release and dopamine elimination in the rat brain in vivo". Neuroscience. 62 (3): 641–645. doi:10.1016/0306-4522(94)90465-0. PMID 7870295. S2CID 20465561.
  7. ^ Mustafa, Asif K.; Kim, Paul M.; Snyder, Solomon H. (August 2004). "D-Serine as a putative glial neurotransmitter". Neuron Glia Biology. 1 (3): 275–281. doi:10.1017/S1740925X05000141. ISSN 1741-0533. PMC 1403160. PMID 16543946.
  8. ^ Wolosker, Herman; Dumin, Elena; Balan, Livia; Foltyn, Veronika N. (July 2008). "d-Amino acids in the brain: d-serine in neurotransmission and neurodegeneration: d-Serine in neurotransmission and neurodegeneration". FEBS Journal. 275 (14): 3514–3526. doi:10.1111/j.1742-4658.2008.06515.x. PMID 18564180. S2CID 25735605.
  9. ^ Thapa S, Lv M, Xu H (30 November 2017). "Acetylcholinesterase: A Primary Target for Drugs and Insecticides". Mini Reviews in Medicinal Chemistry. 17 (17): 1665–1676. doi:10.2174/1389557517666170120153930. PMID 28117022.
  10. ^ Vasica G, Tennant CC (September 2002). "Cocaine use and cardiovascular complications". The Medical Journal of Australia. 177 (5): 260–262. doi:10.5694/j.1326-5377.2002.tb04761.x. PMID 12197823. S2CID 18572638.
  11. ^ Saladin, Kenneth S. Anatomy and Physiology: The Unity of Form and Function. McGraw Hill. 2009 ISBN 0-07-727620-5
  12. ^ Teleanu, Raluca Ioana; Niculescu, Adelina-Gabriela; Roza, Eugenia; Vladâcenco, Oana; Grumezescu, Alexandru Mihai; Teleanu, Daniel Mihai (25 May 2022). "Neurotransmitters—Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System". International Journal of Molecular Sciences. 23 (11): 5954. doi:10.3390/ijms23115954. ISSN 1422-0067. PMC 9180936. PMID 35682631.
  13. ^ Breedlove SM, Watson NV (2013). Biological psychology : an introduction to behavioral, cognitive, and clinical neuroscience (Seventh ed.). Sunderland, MA: Sinauer Associates. ISBN 978-0878939275.
  14. ^ a b Whishaw B, Kolb IQ (2014). An introduction to brain and behavior (4th ed.). New York, NY: Worth Publishers. pp. 150–151. ISBN 978-1429242288.
  15. ^ Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (2001), "Excitatory and Inhibitory Postsynaptic Potentials", Neuroscience. 2nd edition, Sinauer Associates, retrieved 14 July 2023
  16. ^ Peters A, Palay SL (December 1996). "The morphology of synapses". Journal of Neurocytology. 25 (12): 687–700. doi:10.1007/BF02284835. PMID 9023718. S2CID 29365393.
  17. ^ Shier D, Butler J, Lewis R (5 January 2015). Hole's human anatomy & physiology (Fourteenth ed.). New York, NY. ISBN 978-0-07-802429-0. OCLC 881146319.{{cite book}}: CS1 maint: location missing publisher (link)
  18. ^ Di Chiara G, Morelli M, Consolo S (June 1994). "Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions". Trends in Neurosciences. 17 (6): 228–233. doi:10.1016/0166-2236(94)90005-1. PMID 7521083. S2CID 32085555.
  19. ^ Whishaw B, Kolb IQ (2014). An introduction to brain and behavior (4th ed.). New York, NY: Worth Publishers. ISBN 978-1429242288.
  20. ^ Gross L (November 2006). ""Supporting" players take the lead in protecting the overstimulated brain". PLOS Biology. 4 (11): e371. doi:10.1371/journal.pbio.0040371. PMC 1609133. PMID 20076484.
  21. ^ Yang JL, Sykora P, Wilson DM, Mattson MP, Bohr VA (August 2011). "The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency". Mechanisms of Ageing and Development. 132 (8–9): 405–11. doi:10.1016/j.mad.2011.06.005. PMC 3367503. PMID 21729715.
  22. ^ Orexin receptor antagonists a new class of sleeping pill, National Sleep Foundation.
  23. ^ "Acetylcholine Receptors". Ebi.ac.uk. Retrieved 25 August 2014.
  24. ^ Schacter, Gilbert and Weger. Psychology.United States of America.2009.Print.
  25. ^ a b University of Bristol. "Introduction to Serotonin". Retrieved 15 October 2009.
  26. ^ a b Sheffler, Zachary M.; Reddy, Vamsi; Pillarisetty, Leela Sharath (2023), "Physiology, Neurotransmitters", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 30969716, retrieved 16 July 2023
  27. ^ Prasad BV (2020). Examining Biological Foundations of Human Behavior. United States of America: IGI Global. p. 81. ISBN 978-1799-8286-17.
  28. ^ a b Sapolsky R (2005). "Biology and Human Behavior: The Neurological Origins of Individuality, 2nd". The Teaching Company. see pages 13 & 14 of Guide Book
  29. ^ Snyder SH, Innis RB (1979). "Peptide neurotransmitters". Annual Review of Biochemistry. 48: 755–82. doi:10.1146/annurev.bi.48.070179.003543. PMID 38738.
  30. ^ Corbière A, Vaudry H, Chan P, Walet-Balieu ML, Lecroq T, Lefebvre A, et al. (18 September 2019). "Strategies for the Identification of Bioactive Neuropeptides in Vertebrates". Frontiers in Neuroscience. 13: 948. doi:10.3389/fnins.2019.00948. PMC 6759750. PMID 31619945.
  31. ^ Fricker LD, Devi LA (May 2018). "Orphan neuropeptides and receptors: Novel therapeutic targets". Pharmacology & Therapeutics. 185: 26–33. doi:10.1016/j.pharmthera.2017.11.006. PMC 5899030. PMID 29174650.
  32. ^ Kodirov SA, Takizawa S, Joseph J, Kandel ER, Shumyatsky GP, Bolshakov VY (October 2006). "Synaptically released zinc gates long-term potentiation in fear conditioning pathways". Proceedings of the National Academy of Sciences of the United States of America. 103 (41): 15218–23. Bibcode:2006PNAS..10315218K. doi:10.1073/pnas.0607131103. PMC 1622803. PMID 17005717.
  33. ^ . MaRS. Archived from the original on 14 October 2014.
  34. ^ "Dopamine: Biological activity". IUPHAR/BPS guide to pharmacology. International Union of Basic and Clinical Pharmacology. Retrieved 29 January 2016.
  35. ^ Grandy DK, Miller GM, Li JX (February 2016). ""TAARgeting Addiction"--The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference". Drug and Alcohol Dependence. 159: 9–16. doi:10.1016/j.drugalcdep.2015.11.014. PMC 4724540. PMID 26644139. TAAR1 is a high-affinity receptor for METH/AMPH and DA
  36. ^ Lin Y, Hall RA, Kuhar MJ (October 2011). "CART peptide stimulation of G protein-mediated signaling in differentiated PC12 cells: identification of PACAP 6-38 as a CART receptor antagonist". Neuropeptides. 45 (5): 351–8. doi:10.1016/j.npep.2011.07.006. PMC 3170513. PMID 21855138.
  37. ^ a b c d e Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". Journal of Neurochemistry. 116 (2): 164–76. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468.
  38. ^ a b c d Eiden LE, Weihe E (January 2011). "VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse". Annals of the New York Academy of Sciences. 1216 (1): 86–98. Bibcode:2011NYASA1216...86E. doi:10.1111/j.1749-6632.2010.05906.x. PMC 4183197. PMID 21272013. VMAT2 is the CNS vesicular transporter for not only the biogenic amines DA, NE, EPI, 5-HT, and HIS, but likely also for the trace amines TYR, PEA, and thyronamine (THYR) ... [Trace aminergic] neurons in mammalian CNS would be identifiable as neurons expressing VMAT2 for storage, and the biosynthetic enzyme aromatic amino acid decarboxylase (AADC).
  39. ^ a b c Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 155. ISBN 9780071481274. Different subregions of the VTA receive glutamatergic inputs from the prefrontal cortex, orexinergic inputs from the lateral hypothalamus, cholinergic and also glutamatergic and GABAergic inputs from the laterodorsal tegmental nucleus and pedunculopontine nucleus, noradrenergic inputs from the locus ceruleus, serotonergic inputs from the raphe nuclei, and GABAergic inputs from the nucleus accumbens and ventral pallidum.
  40. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 145, 156–157. ISBN 9780071481274. Descending NE fibers modulate afferent pain signals. ... The locus ceruleus (LC), which is located on the floor of the fourth ventricle in the rostral pons, contains more than 50% of all noradrenergic neurons in the brain; it innervates both the forebrain (eg, it provides virtually all the NE to the cerebral cortex) and regions of the brainstem and spinal cord. ... The other noradrenergic neurons in the brain occur in loose collections of cells in the brainstem, including the lateral tegmental regions. These neurons project largely within the brainstem and spinal cord. NE, along with 5HT, ACh, histamine, and orexin, is a critical regulator of the sleep-wake cycle and of levels of arousal. ... LC firing may also increase anxiety ...Stimulation of β-adrenergic receptors in the amygdala results in enhanced memory for stimuli encoded under strong negative emotion ... Epinephrine occurs in only a small number of central neurons, all located in the medulla. Epinephrine is involved in visceral functions, such as control of respiration.
  41. ^ a b c d Rang HP (2003). Pharmacology. Edinburgh: Churchill Livingstone. pp. 474 for noradrenaline system, page 476 for dopamine system, page 480 for serotonin system and page 483 for cholinergic system. ISBN 978-0-443-07145-4.
  42. ^ a b c d e Iwańczuk W, Guźniczak P (2015). "Neurophysiological foundations of sleep, arousal, awareness and consciousness phenomena. Part 1". Anaesthesiology Intensive Therapy. 47 (2): 162–7. doi:10.5603/AIT.2015.0015. PMID 25940332. The ascending reticular activating system (ARAS) is responsible for a sustained wakefulness state. ... The thalamic projection is dominated by cholinergic neurons originating from the pedunculopontine tegmental nucleus of pons and midbrain (PPT) and laterodorsal tegmental nucleus of pons and midbrain (LDT) nuclei [17, 18]. The hypothalamic projection involves noradrenergic neurons of the locus coeruleus (LC) and serotoninergic neurons of the dorsal and median raphe nuclei (DR), which pass through the lateral hypothalamus and reach axons of the histaminergic tubero-mamillary nucleus (TMN), together forming a pathway extending into the forebrain, cortex and hippocampus. Cortical arousal also takes advantage of dopaminergic neurons of the substantia nigra (SN), ventral tegmenti area (VTA) and the periaqueductal grey area (PAG). Fewer cholinergic neurons of the pons and midbrain send projections to the forebrain along the ventral pathway, bypassing the thalamus [19, 20].
  43. ^ a b c d e Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 12: Sleep and Arousal". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. p. 295. ISBN 9780071481274. The ARAS is a complex structure consisting of several different circuits including the four monoaminergic pathways ... The norepinephrine pathway originates from the locus ceruleus (LC) and related brainstem nuclei; the serotonergic neurons originate from the raphe nuclei within the brainstem as well; the dopaminergic neurons originate in ventral tegmental area (VTA); and the histaminergic pathway originates from neurons in the tuberomammillary nucleus (TMN) of the posterior hypothalamus. As discussed in Chapter 6, these neurons project widely throughout the brain from restricted collections of cell bodies. Norepinephrine, serotonin, dopamine, and histamine have complex modulatory functions and, in general, promote wakefulness. The PT in the brain stem is also an important component of the ARAS. Activity of PT cholinergic neurons (REM-on cells) promotes REM sleep. During waking, REM-on cells are inhibited by a subset of ARAS norepinephrine and serotonin neurons called REM-off cells.
  44. ^ Rinaman L (February 2011). "Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 300 (2): R222-35. doi:10.1152/ajpregu.00556.2010. PMC 3043801. PMID 20962208.
  45. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 147–148, 154–157. ISBN 9780071481274. Neurons from the SNc densely innervate the dorsal striatum where they play a critical role in the learning and execution of motor programs. Neurons from the VTA innervate the ventral striatum (nucleus accumbens), olfactory bulb, amygdala, hippocampus, orbital and medial prefrontal cortex, and cingulate cortex. VTA DA neurons play a critical role in motivation, reward-related behavior, attention, and multiple forms of memory. ... Thus, acting in diverse terminal fields, dopamine confers motivational salience ("wanting") on the reward itself or associated cues (nucleus accumbens shell region), updates the value placed on different goals in light of this new experience (orbital prefrontal cortex), helps consolidate multiple forms of memory (amygdala and hippocampus), and encodes new motor programs that will facilitate obtaining this reward in the future (nucleus accumbens core region and dorsal striatum). ... DA has multiple actions in the prefrontal cortex. It promotes the "cognitive control" of behavior: the selection and successful monitoring of behavior to facilitate attainment of chosen goals. Aspects of cognitive control in which DA plays a role include working memory, the ability to hold information "on line" in order to guide actions, suppression of prepotent behaviors that compete with goal-directed actions, and control of attention and thus the ability to overcome distractions. ... Noradrenergic projections from the LC thus interact with dopaminergic projections from the VTA to regulate cognitive control. ...
  46. ^ Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Peña CJ, et al. (March 2016). "In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward". Proceedings of the National Academy of Sciences of the United States of America. 113 (10): 2726–31. Bibcode:2016PNAS..113.2726C. doi:10.1073/pnas.1521238113. PMC 4791010. PMID 26831103. Previous work has demonstrated that optogenetically stimulating D1 MSNs promotes reward, whereas stimulating D2 MSNs produces aversion.
  47. ^ Ikemoto S (November 2010). "Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory". Neuroscience and Biobehavioral Reviews. 35 (2): 129–50. doi:10.1016/j.neubiorev.2010.02.001. PMC 2894302. PMID 20149820. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures–the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. ... In the 1970s it was recognized that the olfactory tubercle contains a striatal component, which is filled with GABAergic medium spiny neurons receiving glutamatergic inputs form cortical regions and dopaminergic inputs from the VTA and projecting to the ventral pallidum just like the nucleus accumbens
    Figure 3: The ventral striatum and self-administration of amphetamine
  48. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 175–176. ISBN 9780071481274. Within the brain, histamine is synthesized exclusively by neurons with their cell bodies in the tuberomammillary nucleus (TMN) that lies within the posterior hypothalamus. There are approximately 64000 histaminergic neurons per side in humans. These cells project throughout the brain and spinal cord. Areas that receive especially dense projections include the cerebral cortex, hippocampus, neostriatum, nucleus accumbens, amygdala, and hypothalamus.  ... While the best characterized function of the histamine system in the brain is regulation of sleep and arousal, histamine is also involved in learning and memory ...It also appears that histamine is involved in the regulation of feeding and energy balance.
  49. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 158–160. ISBN 9780071481274. [The] dorsal raphe preferentially innervates the cerebral cortex, thalamus, striatal regions (caudate-putamen and nucleus accumbens), and dopaminergic nuclei of the midbrain (eg, the substantia nigra and ventral tegmental area), while the median raphe innervates the hippocampus, septum, and other structures of the limbic forebrain. ... it is clear that 5HT influences sleep, arousal, attention, processing of sensory information in the cerebral cortex, and important aspects of emotion (likely including aggression) and mood regulation. ...The rostral nuclei, which include the nucleus linearis, dorsal raphe, medial raphe, and raphe pontis, innervate most of the brain, including the cerebellum. The caudal nuclei, which comprise the raphe magnus, raphe pallidus, and raphe obscuris, have more limited projections that terminate in the cerebellum, brainstem, and spinal cord.
  50. ^ Nestler EJ. "Brain Reward Pathways". Icahn School of Medicine at Mount Sinai. Nestler Lab. Retrieved 16 August 2014. The dorsal raphe is the primary site of serotonergic neurons in the brain, which, like noradrenergic neurons, pervasively modulate brain function to regulate the state of activation and mood of the organism.
  51. ^ Marston OJ, Garfield AS, Heisler LK (June 2011). "Role of central serotonin and melanocortin systems in the control of energy balance". European Journal of Pharmacology. 660 (1): 70–9. doi:10.1016/j.ejphar.2010.12.024. PMID 21216242.
  52. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 167–175. ISBN 9780071481274. The basal forebrain cholinergic nuclei are comprised the medial septal nucleus (Ch1), the vertical nucleus of the diagonal band (Ch2), the horizontal limb of the diagonal band (Ch3), and the nucleus basalis of Meynert (Ch4). Brainstem cholinergic nuclei include the pedunculopontine nucleus (Ch5), the laterodorsal tegmental nucleus (Ch6), the medial habenula (Ch7), and the parabigeminal nucleus (Ch8).
  53. ^ Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PG, Abbott SB (August 2013). "C1 neurons: the body's EMTs". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 305 (3): R187-204. doi:10.1152/ajpregu.00054.2013. PMC 3743001. PMID 23697799.
  54. ^ Stornetta RL, Guyenet PG (March 2018). "C1 neurons: a nodal point for stress?". Experimental Physiology. 103 (3): 332–336. doi:10.1113/EP086435. PMC 5832554. PMID 29080216.
  55. ^ "Neuron Conversations: How Brain Cells Communicate". Brainfacts.org. Retrieved 2 December 2014.
  56. ^ a b Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, et al. (November 2008). "Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum". Cell. 135 (5): 825–37. doi:10.1016/j.cell.2008.09.059. PMC 2614332. PMID 19041748.
  57. ^ Carlson, N. R., & Birkett, M. A. (2017). Physiology of Behavior (12th ed.). Pearson, pgs. 100–115. ISBN 978-0134080918
  58. ^ "CDC Strychnine | Facts about Strychnine | Public Health Emergency Preparedness& Response". emergency.cdc.gov. Retrieved 7 May 2018.
  59. ^ a b c "Neurotransmitters and Drugs Chart". Ocw.mit.edu. Retrieved 25 August 2014.
  60. ^ "Agonist – Definition and More from the Free Merriam-Webster Dictionary". Merriam-webster.com. Retrieved 25 August 2014.
  61. ^ Atack J., Lavreysen H. (2010) Agonist. In: Stolerman I.P. (eds) Encyclopedia of Psychopharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68706-1_1565
  62. ^ Roth BL (February 2016). "DREADDs for Neuroscientists". Neuron. 89 (4): 683–94. doi:10.1016/j.neuron.2016.01.040. PMC 4759656. PMID 26889809.
  63. ^ a b Ries RK, Fiellin DA, Miller SC (2009). Principles of addiction medicine (4th ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins. pp. 709–710. ISBN 9780781774772. Retrieved 16 August 2015.
  64. ^ a b c Flores A, Maldonado R, Berrendero F (December 2013). "Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far". Frontiers in Neuroscience. 7: 256. doi:10.3389/fnins.2013.00256. PMC 3868890. PMID 24391536.
     • Figure 1: Schematic of brain CB1 expression and orexinergic neurons expressing OX1 or OX2
     • Figure 2: Synaptic signaling mechanisms in cannabinoid and orexin systems
  65. ^ "Antagonist". Medical definition of Antagonist. Retrieved 5 November 2014.
  66. ^ Goeders NE (2001). "Antagonist". Encyclopedia of Drugs, Alcohol, and Addictive Behavior. Retrieved 2 December 2014.
  67. ^ Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacology & Therapeutics. 125 (3): 363–375. doi:10.1016/j.pharmthera.2009.11.005. PMID 19948186.
  68. ^ Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends in Pharmacological Sciences. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375.
  69. ^ Wang X, Li J, Dong G, Yue J (February 2014). "The endogenous substrates of brain CYP2D". European Journal of Pharmacology. 724: 211–218. doi:10.1016/j.ejphar.2013.12.025. PMID 24374199.
  70. ^ a b c d e Meyers S (February 2000). (PDF). Alternative Medicine Review. 5 (1): 64–71. PMID 10696120. Archived from the original (PDF) on 5 August 2004.
  71. ^ van Praag HM (March 1981). "Management of depression with serotonin precursors". Biological Psychiatry. 16 (3): 291–310. PMID 6164407.
  72. ^ Healy D (April 2015). "Serotonin and depression". BMJ. 350: h1771. doi:10.1136/bmj.h1771. PMID 25900074. S2CID 38726584.
  73. ^ . U.S. National Institutes of Health. Archived from the original on 29 October 2014. Retrieved 29 October 2014.
  74. ^ Bittigau P, Ikonomidou C (November 1997). "Glutamate in neurologic diseases". Journal of Child Neurology. 12 (8): 471–85. doi:10.1177/088307389701200802. PMID 9430311. S2CID 1258390.
  75. ^ Netter, P. (1991) Biochemical variables in the study of temperament. In Strelau, J. & Angleitner, A. (Eds.), Explorations in temperament: International perspectives on theory and measurement 147–161. New York: Plenum Press.
  76. ^ Trofimova I, Robbins TW (May 2016). "Temperament and arousal systems: A new synthesis of differential psychology and functional neurochemistry". Neuroscience and Biobehavioral Reviews. 64: 382–402. doi:10.1016/j.neubiorev.2016.03.008. hdl:11375/26202. PMID 26969100. S2CID 13937324.
  77. ^ Cloninger CR, Svrakic DM, Przybeck TR. A psychobiological model of temperament and character" Arch Gen Psychiatry 1993; 50:975-990.
  78. ^ Trofimova IN (2016). "The interlocking between functional aspects of activities and a neurochemical model of adult temperament.". In Arnold MC (ed.). Temperaments: Individual Differences, Social and Environmental Influences and Impact on Quality of Life. New York: Nova Science Publishers, Inc. pp. 77–147.
  79. ^ Depue RA, Morrone-Strupinsky JV (June 2005). "A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation". The Behavioral and Brain Sciences. 28 (3): 313–50, discussion 350–95. doi:10.1017/s0140525x05000063. PMID 16209725.
  80. ^ Leo, J., & Lacasse, J. (10 October 2007). The Media and the Chemical Imbalance Theory of Depression. Retrieved 1 December 2014, from http://psychrights.org/articles/TheMediaandChemicalImbalanceTheoryofDepression.pdf
  81. ^ Dobryakova E, Genova HM, DeLuca J, Wylie GR (12 March 2015). "The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders". Frontiers in Neurology. 6: 52. doi:10.3389/fneur.2015.00052. PMC 4357260. PMID 25814977.

External links edit

  • Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (2001). "Chapter 6. Neurotransmitters". What Defines a Neurotransmitter? (2nd ed.). Sunderland (MA): Sinauer Associates. ISBN 0-87893-742-0. {{cite book}}: |journal= ignored (help)
  • Holz, Ronald W.; Fisher, Stephen K. (1999). "Chapter 10. Synaptic Transmission and Cellular Signaling: An Overview". In Siegel, George J; Agranoff, Bernard W; Albers, R Wayne; Fisher, Stephen K; Uhler, Michael D (eds.). Synaptic Transmission (6th ed.). Philadelphia: Lippincott-Raven. ISBN 0-397-51820-X. {{cite book}}: |journal= ignored (help)
  • Neurotransmitters and Neuroactive Peptides at Neuroscience for Kids website

neurotransmitter, introduction, concepts, terminology, used, this, article, chemical, synapse, neurotransmitter, signaling, molecule, secreted, neuron, affect, another, cell, across, synapse, cell, receiving, signal, target, cell, another, neuron, could, also,. For an introduction to concepts and terminology used in this article see Chemical synapse A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse The cell receiving the signal or target cell may be another neuron but could also be a gland or muscle cell 1 Postsynaptic density Voltage gated Ca channel Synaptic vesicle Neurotransmitter transporter Receptor Neurotransmitter Axon terminal Synaptic cleft DendriteStructure of a typical chemical synapse Neurotransmitters are released from synaptic vesicles into the synaptic cleft where they are able to interact with neurotransmitter receptors on the target cell The neurotransmitter s effect on the target cell is determined by the receptor it binds to Many neurotransmitters are synthesized from simple and plentiful precursors such as amino acids which are readily available and often require a small number of biosynthetic steps for conversion Neurotransmitters are essential to the function of complex neural systems The exact number of unique neurotransmitters in humans is unknown but more than 100 have been identified 2 Common neurotransmitters include glutamate GABA acetylcholine glycine and norepinephrine Contents 1 Mechanism and cycle 1 1 Synthesis 1 2 Storage 1 3 Release 1 4 Receptor interaction 1 5 Elimination 2 Discovery 3 Identification 4 Actions 4 1 Modulation 4 2 Neurotransmitter actions 5 Types 5 1 List of neurotransmitters peptides and gaseous signaling molecules 6 Brain neurotransmitter systems 7 Drug effects 7 1 Agonists 7 2 Antagonists 7 2 1 Drug antagonists 7 3 Precursors 7 3 1 Catecholamine and trace amine precursors 7 3 2 Serotonin precursors 8 Diseases and disorders 9 Neurotransmitter imbalance 10 See also 11 Notes 12 References 13 External linksMechanism and cycle editSee also Neurotransmission Synthesis edit Neurotransmitters are generally synthesized in neurons and are made up of or derived from precursor molecules that are found abundantly in the cell Classes of neurotransmitters include amino acids monoamines and peptides Monoamines are synthesized by altering a single amino acid For example the precursor of serotonin is the amino acid tryptophan Peptide transmitters or neuropeptides are protein transmitters that often are released together with other transmitters to have a modulatory effect 3 Purine neurotransmitters like ATP are derived from nucleic acids Other neurotransmitters are made up of metabolic products like nitric oxide and carbon monoxide citation needed ExamplesAmino Acid glycine glutamateMonoamines serotonin epinephrine dopaminePeptides substance P opioidsPurines ATP GTPOther nitric oxide carbon monoxide nbsp Synaptic vesicles containing neurotransmittersStorage edit Neurotransmitters are generally stored in synaptic vesicles clustered close to the cell membrane at the axon terminal of the presynaptic neuron However some neurotransmitters like the metabolic gases carbon monoxide and nitric oxide are synthesized and released immediately following an action potential without ever being stored in vesicles 4 Release edit Generally a neurotransmitter is released at the presynaptic terminal in response to an electrical signal called an action potential in the presynaptic neuron However low level baseline release also occurs without electrical stimulation Neurotransmitters are released into and diffuse across the synaptic cleft where they bind to specific receptors on the membrane of the postsynaptic neuron 5 Receptor interaction edit After being released into the synaptic cleft neurotransmitters diffuse across the synapse where they are able to interact with receptors on the target cell The effect of the neurotransmitter is dependent on the identity of the target cell s receptors present at the synapse Depending on the receptor binding of neurotransmitters may cause excitation inhibition or modulation of the postsynaptic neuron See below for more information citation needed Elimination edit nbsp Acetylcholine is cleaved in the synaptic cleft into acetic acid and cholineIn order to avoid continuous activation of receptors on the post synaptic or target cell neurotransmitters must be removed from the synaptic cleft 6 Neurotransmitters are removed through one of three mechanisms Diffusion neurotransmitters drift out of the synaptic cleft where they are absorbed by glial cells These glial cells usually astrocytes absorb the excess neurotransmitters Astrocytes a type of glial cell in the brain actively contribute to synaptic communication through astrocytic diffusion or gliotransmission Neuronal activity triggers an increase in astrocytic calcium levels prompting the release of gliotransmitters such as glutamate ATP and D serine These gliotransmitters diffuse into the extracellular space interacting with nearby neurons and influencing synaptic transmission By regulating extracellular neurotransmitter levels astrocytes help maintain proper synaptic function This bidirectional communication between astrocytes and neurons add complexity to brain signaling with implications for brain function and neurological disorders 7 8 Enzyme degradation proteins called enzymes break the neurotransmitters down Reuptake neurotransmitters are reabsorbed into the pre synaptic neuron Transporters or membrane transport proteins pump neurotransmitters from the synaptic cleft back into axon terminals the presynaptic neuron where they are stored for reuse For example acetylcholine is eliminated by having its acetyl group cleaved by the enzyme acetylcholinesterase the remaining choline is then taken in and recycled by the pre synaptic neuron to synthesize more acetylcholine 9 Other neurotransmitters are able to diffuse away from their targeted synaptic junctions and are eliminated from the body via the kidneys or destroyed in the liver Each neurotransmitter has very specific degradation pathways at regulatory points which may be targeted by the body s regulatory system or medication Cocaine blocks a dopamine transporter responsible for the reuptake of dopamine Without the transporter dopamine diffuses much more slowly from the synaptic cleft and continues to activate the dopamine receptors on the target cell 10 Discovery editSee also History of catecholamine research Until the early 20th century scientists assumed that the majority of synaptic communication in the brain was electrical However through histological examinations by Ramon y Cajal a 20 to 40 nm gap between neurons known today as the synaptic cleft was discovered The presence of such a gap suggested communication via chemical messengers traversing the synaptic cleft and in 1921 German pharmacologist Otto Loewi confirmed that neurons can communicate by releasing chemicals Through a series of experiments involving the vagus nerves of frogs Loewi was able to manually slow the heart rate of frogs by controlling the amount of saline solution present around the vagus nerve Upon completion of this experiment Loewi asserted that sympathetic regulation of cardiac function can be mediated through changes in chemical concentrations Furthermore Otto Loewi is credited with discovering acetylcholine ACh the first known neurotransmitter 11 Identification editTo identify neurotransmitters the following criteria are typically considered Synthesis The chemical must be produced within the neuron or be present in it as a precursor molecule Release and Response When the neuron is activated the chemical must be released and elicit a response in target cells or neurons Experimental Response Application of the chemical directly to the target cells should produce the same response observed when the chemical is naturally released from neurons Removal Mechanism There must be a mechanism in place to remove the neurotransmitter from its site of action once its signaling role is complete 12 However given advances in pharmacology genetics and chemical neuroanatomy the term neurotransmitter can be applied to chemicals that Carry messages between neurons via influence on the postsynaptic membrane Have little or no effect on membrane voltage but have a common carrying function such as changing the structure of the synapse Communicate by sending reverse direction messages that affect the release or reuptake of transmitters The anatomical localization of neurotransmitters is typically determined using immunocytochemical techniques which identify the location of either the transmitter substances themselves or of the enzymes that are involved in their synthesis Immunocytochemical techniques have also revealed that many transmitters particularly the neuropeptides are co localized that is a neuron may release more than one transmitter from its synaptic terminal 13 Various techniques and experiments such as staining stimulating and collecting can be used to identify neurotransmitters throughout the central nervous system 14 Actions editNeurons communicate with each other through synapses specialized contact points where neurotransmitters transmit signals When an action potential reaches the presynaptic terminal the action potential can trigger the release of neurotransmitters into the synaptic cleft These neurotransmitters then bind to receptors on the postsynaptic membrane influencing the receiving neuron in either an inhibitory or excitatory manner If the overall excitatory influences outweigh the inhibitory influences the receiving neuron may generate its own action potential continuing the transmission of information to the next neuron in the network This process allows for the flow of information and the formation of complex neural networks 15 Modulation edit A neurotransmitter may have an excitatory inhibitory or modulatory effect on the target cell The effect is determined by the receptors the neurotransmitter interacts with at the post synaptic membrane Neurotransmitter influences trans membrane ion flow either to increase excitatory or to decrease inhibitory the probability that the cell with which it comes in contact will produce an action potential Synapses containing receptors with excitatory effects are called Type I synapses while Type II synapses contain receptors with inhibitory effects 16 Thus despite the wide variety of synapses they all convey messages of only these two types The two types are different appearance and are primarily located on different parts of the neurons under its influence 17 Receptors with modulatory effects are spread throughout all synaptic membranes and binding of neurotransmitters sets in motion signaling cascades that help the cell regulate its function 18 Binding of neurotransmitters to receptors with modulatory effects can have many results For example it may result in an increase or decrease in sensitivity to future stimulus by recruiting more or less receptors to the synaptic membrane Type I excitatory synapses are typically located on the shafts or the spines of dendrites whereas type II inhibitory synapses are typically located on a cell body In addition Type I synapses have round synaptic vesicles whereas the vesicles of type II synapses are flattened The material on the presynaptic and post synaptic membranes is denser in a Type I synapse than it is in a type II and the type I synaptic cleft is wider Finally the active zone on a Type I synapse is larger than that on a Type II synapse The different locations of type I and type II synapses divide a neuron into two zones an excitatory dendritic tree and an inhibitory cell body From an inhibitory perspective excitation comes in over the dendrites and spreads to the axon hillock to trigger an action potential If the message is to be stopped it is best stopped by applying inhibition on the cell body close to the axon hillock where the action potential originates Another way to conceptualize excitatory inhibitory interaction is to picture excitation overcoming inhibition If the cell body is normally in an inhibited state the only way to generate an action potential at the axon hillock is to reduce the cell body s inhibition In this open the gates strategy the excitatory message is like a racehorse ready to run down the track but first the inhibitory starting gate must be removed 19 Neurotransmitter actions edit As explained above the only direct action of a neurotransmitter is to activate a receptor Therefore the effects of a neurotransmitter system depend on the connections of the neurons that use the transmitter and the chemical properties of the receptors Glutamate is used at the great majority of fast excitatory synapses in the brain and spinal cord It is also used at most synapses that are modifiable i e capable of increasing or decreasing in strength Modifiable synapses are thought to be the main memory storage elements in the brain Excessive glutamate release can overstimulate the brain and lead to excitotoxicity causing cell death resulting in seizures or strokes 20 Excitotoxicity has been implicated in certain chronic diseases including ischemic stroke epilepsy amyotrophic lateral sclerosis Alzheimer s disease Huntington disease and Parkinson s disease 21 GABA is used at the great majority of fast inhibitory synapses in virtually every part of the brain Many sedative tranquilizing drugs act by enhancing the effects of GABA 22 Correspondingly glycine is the inhibitory transmitter in the spinal cord Acetylcholine was the first neurotransmitter discovered in the peripheral and central nervous systems It activates skeletal muscles in the somatic nervous system and may either excite or inhibit internal organs in the autonomic system 14 It is distinguished as the transmitter at the neuromuscular junction connecting motor nerves to muscles The paralytic arrow poison curare acts by blocking transmission at these synapses Acetylcholine also operates in many regions of the brain but using different types of receptors including nicotinic and muscarinic receptors 23 Dopamine has a number of important functions in the brain this includes regulation of motor behavior pleasures related to motivation and also emotional arousal It plays a critical role in the reward system Parkinson s disease has been linked to low levels of dopamine and schizophrenia has been linked to high levels of dopamine 24 Serotonin is a monoamine neurotransmitter Most is produced by and found in the intestine approximately 90 and the remainder in central nervous system neurons It functions to regulate appetite sleep memory and learning temperature mood behaviour muscle contraction and function of the cardiovascular system and endocrine system It is speculated to have a role in depression as some depressed patients are seen to have lower concentrations of metabolites of serotonin in their cerebrospinal fluid and brain tissue 25 Norepinephrine is a member of the catecholamine classification of neurotransmitters It is synthesized from the amino acid tyrosine In the peripheral nervous system one of the primary roles of norepinephrine is to stimulate the release of the stress hormone epinephrine i e adrenaline from the adrenal glands 26 Epinephrine a neurotransmitter and hormone is synthesized from tyrosine It is released from the adrenal glands and plays a role in the fight or flight response Epinephrine has vasoconstrictive effects which promote increased heart rate blood pressure energy mobilization Vasoconstriction influences metabolism by promoting the breakdown of glucose released into the bloodstream Epinephrine also has bronchodilation effects which is the relaxing of airways 26 Types editThere are many different ways to classify neurotransmitters Dividing them into amino acids peptides and monoamines is sufficient for some classification purposes 27 Major neurotransmitters Amino acids glutamate 28 aspartate D serine gamma Aminobutyric acid GABA nb 1 glycine Gasotransmitters nitric oxide NO carbon monoxide CO hydrogen sulfide H2S Monoamines Catecholamines dopamine DA norepinephrine noradrenaline NE epinephrine adrenaline Indolamines serotonin 5 HT SER melatonin histamine Trace amines phenethylamine N methylphenethylamine tyramine 3 iodothyronamine octopamine tryptamine etc Peptides oxytocin somatostatin substance P cocaine and amphetamine regulated transcript opioid peptides 29 Purines adenosine triphosphate ATP adenosine Others acetylcholine ACh anandamide etc In addition over 100 neuroactive peptides have been found and new ones are discovered regularly 30 31 Many of these are co released along with a small molecule transmitter Nevertheless in some cases a peptide is the primary transmitter at a synapse Beta Endorphin is a relatively well known example of a peptide neurotransmitter because it engages in highly specific interactions with opioid receptors in the central nervous system Single ions such as synaptically released zinc are also considered neurotransmitters by some 32 as well as some gaseous molecules such as nitric oxide NO carbon monoxide CO and hydrogen sulfide H2S 33 The gases are produced in the neural cytoplasm and are immediately diffused through the cell membrane into the extracellular fluid and into nearby cells to stimulate production of second messengers Soluble gas neurotransmitters are difficult to study as they act rapidly and are immediately broken down existing for only a few seconds The most prevalent transmitter is glutamate which is excitatory at well over 90 of the synapses in the human brain 28 The next most prevalent is gamma Aminobutyric Acid or GABA which is inhibitory at more than 90 of the synapses that do not use glutamate Although other transmitters are used in fewer synapses they may be very important functionally the great majority of psychoactive drugs exert their effects by altering the actions of some neurotransmitter systems often acting through transmitters other than glutamate or GABA Addictive drugs such as cocaine and amphetamines exert their effects primarily on the dopamine system The addictive opiate drugs exert their effects primarily as functional analogs of opioid peptides which in turn regulate dopamine levels List of neurotransmitters peptides and gaseous signaling molecules edit This list is incomplete you can help by adding missing items January 2017 Neurotransmitters Category Name Abbreviation Metabotropic IonotropicSmallTooltip Small molecule Amino acids Arg Arginine Arg R a2 Adrenergic receptors imidazoline receptors NMDA receptorsSmall Amino acids Aspartate Asp D NMDA receptorsSmall Amino acids Glutamate Glu E Metabotropic glutamate receptors NMDA receptors kainate receptors AMPARsSmall Amino acids Gamma aminobutyric acid GABA GABAB receptors GABAA receptors GABAA r receptorsSmall Amino acids Glycine Gly G NMDA receptors glycine receptorsSmall Amino acids D serine Ser S NMDA receptorsSmall Acetylcholine Acetylcholine ACh Muscarinic acetylcholine receptors Nicotinic acetylcholine receptorsSmall Monoamine Phe Tyr Dopamine DA Dopamine receptors trace amine associated receptor 1 34 35 Small Monoamine Phe Tyr Norepinephrine noradrenaline NE NAd Adrenergic receptors Small Monoamine Phe Tyr Epinephrine adrenaline Epi Ad Adrenergic receptors Small Monoamine Trp Serotonin 5 hydroxytryptamine 5 HT Serotonin receptors all except 5 HT3 5 HT3Small Monoamine His Histamine H Histamine receptors Small Trace amine Phe Phenethylamine PEA Human trace amine associated receptors hTAAR1Tooltip human trace amine associated receptor 1 hTAAR2Tooltip human trace amine associated receptor 2 Small Trace amine Phe N methylphenethylamine NMPEA hTAAR1 Small Trace amine Phe Tyr Tyramine TYR hTAAR1 hTAAR2 Small Trace amine Phe Tyr octopamine Oct hTAAR1 Small Trace amine Phe Tyr Synephrine Syn hTAAR1 Small Trace amine Trp Tryptamine hTAAR1 various serotonin receptors Small Trace amine Trp N methyltryptamine NMT hTAAR1 various serotonin receptors Lipid Anandamide AEA Cannabinoid receptors Lipid 2 Arachidonoylglycerol 2 AG Cannabinoid receptors Lipid 2 Arachidonyl glyceryl ether 2 AGE Cannabinoid receptors Lipid N Arachidonoyl dopamine NADA Cannabinoid receptors TRPV1Lipid Virodhamine Cannabinoid receptors Small Purine Adenosine Ado Adenosine receptors Small Purine Adenosine triphosphate ATP P2Y receptors P2X receptorsSmall Purine Nicotinamide adenine dinucleotide b NAD P2Y receptors P2X receptorsNeuropeptides Category Name Abbreviation Metabotropic IonotropicBombesin like peptides Bombesin BBR1 2 3 Bombesin like peptide Gastrin releasing peptide GRP Bombesin like peptide Neuromedin B NMB Neuromedin B receptor Bradykinins Bradykinin B1 B2 Calcitonin CGRP family Calcitonin Calcitonin receptor Calcitonin CGRP family Calcitonin gene related peptide CGRP CALCRL Corticotropin releasing factors Corticotropin releasing hormone CRH CRHR1 Corticotropin releasing factors Urocortin CRHR1 Galanins Galanin GALR1 GALR2 GALR3 Galanins Galanin like peptide GALR1 GALR2 GALR3 Gastrins Gastrin Cholecystokinin B receptor Gastrins Cholecystokinin CCK Cholecystokinin receptors Granins Chromogranin A ChgA Melanocortins Adrenocorticotropic hormone ACTH ACTH receptor Melanocortins Proopiomelanocortin POMC Melanocortin 4 receptor Melanocortins Melanocyte stimulating hormones MSH Melanocortin receptors Neurohypophyseals Vasopressin AVP Vasopressin receptors Neurohypophyseals Oxytocin OT Oxytocin receptor Neurohypophyseals Neurophysin I Neurohypophyseals Neurophysin II Neurohypophyseals Copeptin Neuromedins Neuromedin U NmU NmUR1 NmUR2 Neuropeptide B W Neuropeptide B NPB NPBW1 NPBW2 Neuropeptide B W Neuropeptide S NPS Neuropeptide S receptors Neuropeptide Y Neuropeptide Y NY Neuropeptide Y receptors Neuropeptide Y Pancreatic polypeptide PP Neuropeptide Y Peptide YY PYY Opioids Enkephalins d Opioid receptor Opioids Dynorphins k Opioid receptor Opioids Neoendorphins k Opioid receptor Opioids Endorphins m Opioid receptors Opioids Endomorphins m Opioid receptors Opioids Morphine m Opioid receptors Opioids Nociceptin orphanin FQ N OFQ Nociceptin receptors Orexins Orexin A OX A Orexin receptors Orexins Orexin B OX B Orexin receptors Parathyroid hormone family Parathyroid hormone related protein PTHrP RFamides Kisspeptin KiSS GPR54 RFamides Neuropeptide FF NPFF NPFF1 NPFF2 RFamides Prolactin releasing peptide PrRP PrRPR RFamides Pyroglutamylated RFamide peptide QRFP GPR103 Secretins Secretin Secretin receptor Secretins Motilin Motilin receptor Secretins Glucagon Glucagon receptor Secretins Glucagon like peptide 1 GLP 1 Glucagon like peptide 1 receptor Secretins Glucagon like peptide 2 GLP 2 Glucagon like peptide 2 receptor Secretins Vasoactive intestinal peptide VIP Vasoactive intestinal peptide receptors Secretins Growth hormone releasing hormone GHRH Growth hormone releasing hormone receptor Secretins Pituitary adenylate cyclase activating peptide PACAP ADCYAP1R1 Somatostatins Somatostatin Somatostatin receptors Tachykinins Neurokinin A Tachykinins Neurokinin B Tachykinins Substance P Tachykinins Neuropeptide K Other Agouti related peptide AgRP Melanocortin receptor Other N Acetylaspartylglutamate NAAG Metabotropic glutamate receptor 3 mGluR3 Other Cocaine and amphetamine regulated transcript CART Unknown Gi Go coupled receptor 36 Other Gonadotropin releasing hormone GnRH GnRHR Other Thyrotropin releasing hormone TRH TRHR Other Melanin concentrating hormone MCH MCHR 1 2 Gasotransmitters Category Name Abbreviation Metabotropic IonotropicGaseous signaling molecule Nitric oxide NO Soluble guanylyl cyclase Gaseous signaling molecule Carbon monoxide CO Heme bound to potassium channelsGaseous signaling molecule Hydrogen sulfide H2S Brain neurotransmitter systems editNeurons expressing certain types of neurotransmitters sometimes form distinct systems where activation of the system affects large volumes of the brain called volume transmission Major neurotransmitter systems include the noradrenaline norepinephrine system the dopamine system the serotonin system and the cholinergic system among others Trace amines have a modulatory effect on neurotransmission in monoamine pathways i e dopamine norepinephrine and serotonin pathways throughout the brain via signaling through trace amine associated receptor 1 37 38 A brief comparison of these systems follows Neurotransmitter systems in the brain System Pathway origin and projections Regulated cognitive processes and behaviorsNoradrenaline system 39 40 41 42 43 44 Noradrenergic pathways Locus coeruleus LC projectionsLC Amygdala and Hippocampus LC Brain stem and Spinal cord LC Cerebellum LC Cerebral cortex LC Hypothalamus LC Tectum LC Thalamus LC Ventral tegmental areaLateral tegmental field LTF projectionsLTF Brain stem and Spinal cord LTF Olfactory bulb anxiety arousal wakefulness circadian rhythm cognitive control and working memory co regulated by dopamine feeding and energy homeostasis medullary control of respiration negative emotional memory nociception perception of pain reward minor role Dopamine system 41 42 43 45 46 47 Dopaminergic pathways Ventral tegmental area VTA projectionsVTA Amygdala VTA Cingulate cortex VTA Hippocampus VTA Ventral striatum Mesolimbic pathway VTA Olfactory bulb VTA Prefrontal cortex Mesocortical pathway Nigrostriatal pathwaySubstantia nigra pars compacta Dorsal striatumTuberoinfundibular pathwayArcuate nucleus Median eminenceHypothalamospinal projectionHypothalamus Spinal cordIncertohypothalamic pathwayZona incerta Hypothalamus arousal wakefulness aversion cognitive control and working memory co regulated by norepinephrine emotion and mood motivation motivational salience motor function and control positive reinforcement reward primary mediator sexual arousal orgasm and refractory period via neuroendocrine regulation Histamine system 42 43 48 Histaminergic pathways Tuberomammillary nucleus TMN projectionsTMN Cerebral cortex TMN Hippocampus TMN Neostriatum TMN Nucleus accumbens TMN Amygdala TMN Hypothalamus arousal wakefulness feeding and energy homeostasis learning memorySerotonin system 39 41 42 43 49 50 51 Serotonergic pathways Caudal nuclei CN Raphe magnus raphe pallidus and raphe obscurus Caudal projectionsCN Cerebral cortex CN Thalamus CN Caudate putamen and nucleus accumbens CN Substantia nigra and ventral tegmental area CN Cerebellum CN Spinal cordRostral nuclei RN Nucleus linearis dorsal raphe medial raphe and raphe pontis Rostral projectionsRN Amygdala RN Cingulate cortex RN Hippocampus RN Hypothalamus RN Neocortex RN Septum RN Thalamus RN Ventral tegmental area arousal wakefulness body temperature regulation emotion and mood potentially including aggression feeding and energy homeostasis reward minor role sensory perceptionAcetylcholine system 39 41 42 43 52 Cholinergic pathways Forebrain cholinergic nuclei FCN Nucleus basalis of Meynert medial septal nucleus and diagonal band Forebrain nuclei projectionsFCN Hippocampus FCN Cerebral cortex FCN Limbic cortex and sensory cortexStriatal tonically active cholinergic neurons TAN TAN Medium spiny neuronBrainstem cholinergic nuclei BCN Pedunculopontine nucleus laterodorsal tegmentum medial habenula andparabigeminal nucleus Brainstem nuclei projectionsBCN Ventral tegmental area BCN Thalamus arousal wakefulness emotion and mood learning motor function motivation motivational salience short term memory reward minor role Adrenaline system 53 54 Adrenergic pathways Rostral ventrolateral medulla RVLM projectionsRVLM Spinal cord RVLM Brain stem RVLM Hypothalamus medullary control of respiration sympathetic nervous system feeding and energy homeostasis arousal stressFurther information Neural pathway Neuromodulation and List of regions in the human brainDrug effects editUnderstanding the effects of drugs on neurotransmitters comprises a significant portion of research initiatives in the field of neuroscience Most neuroscientists involved in this field of research believe that such efforts may further advance our understanding of the circuits responsible for various neurological diseases and disorders as well as ways to effectively treat and someday possibly prevent or cure such illnesses 55 medical citation needed Drugs can influence behavior by altering neurotransmitter activity For instance drugs can decrease the rate of synthesis of neurotransmitters by affecting the synthetic enzyme s for that neurotransmitter When neurotransmitter syntheses are blocked the amount of neurotransmitters available for release becomes substantially lower resulting in a decrease in neurotransmitter activity Some drugs block or stimulate the release of specific neurotransmitters Alternatively drugs can prevent neurotransmitter storage in synaptic vesicles by causing the synaptic vesicle membranes to leak Drugs that prevent a neurotransmitter from binding to its receptor are called receptor antagonists For example drugs used to treat patients with schizophrenia such as haloperidol chlorpromazine and clozapine are antagonists at receptors in the brain for dopamine Other drugs act by binding to a receptor and mimicking the normal neurotransmitter Such drugs are called receptor agonists An example of a receptor agonist is morphine an opiate that mimics effects of the endogenous neurotransmitter b endorphin to relieve pain Other drugs interfere with the deactivation of a neurotransmitter after it has been released thereby prolonging the action of a neurotransmitter This can be accomplished by blocking re uptake or inhibiting degradative enzymes Lastly drugs can also prevent an action potential from occurring blocking neuronal activity throughout the central and peripheral nervous system Drugs such as tetrodotoxin that block neural activity are typically lethal Drugs targeting the neurotransmitter of major systems affect the whole system which can explain the complexity of action of some drugs Cocaine for example blocks the re uptake of dopamine back into the presynaptic neuron leaving the neurotransmitter molecules in the synaptic gap for an extended period of time Since the dopamine remains in the synapse longer the neurotransmitter continues to bind to the receptors on the postsynaptic neuron eliciting a pleasurable emotional response Physical addiction to cocaine may result from prolonged exposure to excess dopamine in the synapses which leads to the downregulation of some post synaptic receptors After the effects of the drug wear off an individual can become depressed due to decreased probability of the neurotransmitter binding to a receptor Fluoxetine is a selective serotonin re uptake inhibitor SSRI which blocks re uptake of serotonin by the presynaptic cell which increases the amount of serotonin present at the synapse and furthermore allows it to remain there longer providing potential for the effect of naturally released serotonin 56 AMPT prevents the conversion of tyrosine to L DOPA the precursor to dopamine reserpine prevents dopamine storage within vesicles and deprenyl inhibits monoamine oxidase MAO B and thus increases dopamine levels Drug Neurotransmitter Interactions 57 Drug Interacts with Receptor Interaction Type EffectsBotulinum Toxin Botox Acetylcholine Antagonist Blocks Acetylcholine release in PNS Prevents muscle contractionsBlack Widow Spider Venom Acetylcholine Agonist Promotes acetylcholine release in PNS Stimulates muscle contractionsNeostigmine Acetylcholine Interferes with acetylcholinerase activity Increases effects of ACh at receptorsUsed to treat myasthenia gravisNicotine Acetylcholine Nicotinic skeletal muscle Agonist Increases ACh activity Increases attentionReinforcing effectsd tubocurarine Acetylcholine Nicotinic skeletal muscle Antagonist Decreases activity at receptor siteCurare Acetylcholine Nicotinic skeletal muscle Antagonist Decreases ACh activity Prevents muscle contractionsMuscarine Acetylcholine Muscarinic heart and smooth muscle Agonist Increases ACh activity ToxicAtropine Acetylcholine Muscarinic heart and smooth muscle Antagonist Blocks pupil constriction Blocks saliva productionScopolamine Hyoscine Acetylcholine Muscarinic heart and smooth muscle Antagonist Treats motion sickness and postoperative nausea and vomitingAMPT Dopamine norepinephrine Inactivates tyrosine hydroxylase and inhibits dopamine productionReserpine Dopamine Prevents storage of dopamine and other monoamines in synaptic vesicles Causes sedation and depressionApomorphine Dopamine D2 Receptor presynaptic autoreceptors postsynaptic receptors Antagonist low dose Direct agonist high dose Low dose blocks autoreceptors High dose stimulates postsynaptic receptorsAmphetamine Dopamine norepinephrine Indirect agonist Releases dopamine noradrenaline and serotonin Blocks reuptake 37 38 Methamphetamine Dopamine norepinephrine Releases dopamine and noradrenaline Blocks reuptakeMethylphenidate Dopamine Blocks reuptake Enhances attention and impulse control in ADHDCocaine Dopamine Indirect Agonist Blocks reuptake into presynapse Blocks voltage dependent sodium channelsCan be used as a topical anesthetic eye drops Deprenyl Dopamine Agonist Inhibits MAO B Prevents destruction of dopamineChlorpromazine Dopamine D2 Receptors Antagonist Blocks D2 receptors Alleviates hallucinationsMPTP Dopamine Results in Parkinson like symptomsPCPA Serotonin 5 HT Antagonist Disrupts serotonin synthesis by blocking the activity of tryptophan hydroxylaseOndansetron Serotonin 5 HT 5 HT3 receptors Antagonist Reduces side effects of chemotherapy and radiation Reduces nausea and vomitingBuspirone Serotonin 5 HT 5 HT1A receptors Partial Agonist Treats symptoms of anxiety and depressionFluoxetine Serotonin 5 HT supports 5 HT reuptake SSRI Inhibits reuptake of serotonin Treats depression some anxiety disorders and OCD 56 Common examples Prozac and SarafemFenfluramine Serotonin 5 HT Causes release of serotonin Inhibits reuptake of serotoninUsed as an appetite suppressantLysergic acid diethylamide Serotonin 5 HT Post synaptic 5 HT2A receptors Direct Agonist Produces visual perception distortions Stimulates 5 HT2A receptors in forebrainMethylenedioxymethamphetamine MDMA Serotonin 5 HT norepinphrine Stimulates release of serotonin and norepinephrine and inhibits the reuptake Causes excitatory and hallucinogenic effectsStrychnine Glycine Antagonist Causes severe muscle spasms 58 Diphenhydramine Histamine Crosses blood brain barrier to cause drowsinessTetrahydrocannabinol THC Endocannabinoids Cannabinoid CB receptors Agonist Produces analgesia and sedation Increases appetiteCognitive effectsRimonabant Endocannabinoids Cannabinoid CB receptors Antagonist Suppresses appetite Used in smoking cessationMAFP Endocannabinoids Inhibits FAAH Used in research to increase cannabinoid system activityAM1172 Endocannabinoids Blocks cannabinoid reuptake Used in research to increase cannabinoid system activityAnandamide endogenous Cannabinoid CB receptors 5 HT3 receptors Reduce nausea and vomitingCaffeine Adenosine Adenosine receptors Antagonist Blocks adenosine receptors Increases wakefulnessPCP Glutamate NMDA receptor Indirect Antagonist Blocks PCP binding site Prevents calcium ions from entering neuronsImpairs learningAP5 Glutamate NMDA receptor Antagonist Blocks glutamate binding site on NMDA receptor Impairs synaptic plasticity and certain forms of learningKetamine Glutamate NMDA receptor Antagonist Used as anesthesia Induces trance like state helps with pain relief and sedationNMDA Glutamate NMDA receptor Agonist Used in research to study NMDA receptor Ionotropic receptorAMPA Glutamate AMPA receptor Agonist Used in research to study AMPA receptor Ionotropic receptorAllyglycine GABA Inhibits GABA synthesis Causes seizuresMuscimol GABA GABA receptor Agonist Causes sedationBicuculine GABA GABA receptor Antagonist Causes SeizuresBenzodiazepines GABA GABAA receptor Indirect agonists Anxiolytic sedation memory impairment muscle relaxationBarbiturates GABA GABAA receptor Indirect agonists Sedation memory impairment muscle relaxationAlcohol GABA GABA receptor Indirect agonist Sedation memory impairment muscle relaxationPicrotoxin GABA GABAA receptor Indirect antagonist High doses cause seizuresTiagabine GABA Antagonist GABA transporter antagonist Increase availability of GABAReduces the likelihood of seizuresMoclobemide Norepinephrine Agonist Blocks MAO A to treat depressionIdazoxan Norepinephrine alpha 2 adrenergic autoreceptors Agonist Blocks alpha 2 autoreceptors Used to study norepinephrine systemFusaric acid Norepinephrine Inhibits activity of dopamine beta hydroxylase which blocks the production of norepinephrine Used to study norepinephrine system without affecting dopamine systemOpiates Opium morphine heroin and oxycodone Opioids Opioid receptor 59 Agonists Analgesia sedation and reinforcing effectsNaloxone Opioids Antagonist Reverses opiate intoxication or overdose symptoms i e problems with breathing Agonists edit Main article Agonist This section needs expansion with coverage of full agonists and their distinction from partial agonist and inverse agonist You can help by adding to it August 2015 An agonist is a chemical capable of binding to a receptor such as a neurotransmitter receptor and initiating the same reaction typically produced by the binding of the endogenous substance 60 An agonist of a neurotransmitter will thus initiate the same receptor response as the transmitter In neurons an agonist drug may activate neurotransmitter receptors either directly or indirectly Direct binding agonists can be further characterized as full agonists partial agonists inverse agonists 61 62 Direct agonists act similar to a neurotransmitter by binding directly to its associated receptor site s which may be located on the presynaptic neuron or postsynaptic neuron or both 63 Typically neurotransmitter receptors are located on the postsynaptic neuron while neurotransmitter autoreceptors are located on the presynaptic neuron as is the case for monoamine neurotransmitters 37 in some cases a neurotransmitter utilizes retrograde neurotransmission a type of feedback signaling in neurons where the neurotransmitter is released postsynaptically and binds to target receptors located on the presynaptic neuron 64 note 1 Nicotine a compound found in tobacco is a direct agonist of most nicotinic acetylcholine receptors mainly located in cholinergic neurons 59 Opiates such as morphine heroin hydrocodone oxycodone codeine and methadone are m opioid receptor agonists this action mediates their euphoriant and pain relieving properties 59 Indirect agonists increase the binding of neurotransmitters at their target receptors by stimulating the release or preventing the reuptake of neurotransmitters 63 Some indirect agonists trigger neurotransmitter release and prevent neurotransmitter reuptake Amphetamine for example is an indirect agonist of postsynaptic dopamine norepinephrine and serotonin receptors in each their respective neurons 37 38 it produces both neurotransmitter release into the presynaptic neuron and subsequently the synaptic cleft and prevents their reuptake from the synaptic cleft by activating TAAR1 a presynaptic G protein coupled receptor and binding to a site on VMAT2 a type of monoamine transporter located on synaptic vesicles within monoamine neurons 37 38 Antagonists edit Main article Receptor antagonist An antagonist is a chemical that acts within the body to reduce the physiological activity of another chemical substance as an opiate especially one that opposes the action on the nervous system of a drug or a substance occurring naturally in the body by combining with and blocking its nervous receptor 65 There are two main types of antagonist direct acting Antagonist and indirect acting Antagonists Direct acting antagonist which takes up space present on receptors which are otherwise taken up by neurotransmitters themselves This results in neurotransmitters being blocked from binding to the receptors The most common is called Atropine Indirect acting antagonist drugs that inhibit the release production of neurotransmitters e g Reserpine Drug antagonists edit An antagonist drug is one that attaches or binds to a site called a receptor without activating that receptor to produce a biological response It is therefore said to have no intrinsic activity An antagonist may also be called a receptor blocker because they block the effect of an agonist at the site The pharmacological effects of an antagonist therefore result in preventing the corresponding receptor site s agonists e g drugs hormones neurotransmitters from binding to and activating it Antagonists may be competitive or irreversible A competitive antagonist competes with an agonist for binding to the receptor As the concentration of antagonist increases the binding of the agonist is progressively inhibited resulting in a decrease in the physiological response High concentration of an antagonist can completely inhibit the response This inhibition can be reversed however by an increase of the concentration of the agonist since the agonist and antagonist compete for binding to the receptor Competitive antagonists therefore can be characterized as shifting the dose response relationship for the agonist to the right In the presence of a competitive antagonist it takes an increased concentration of the agonist to produce the same response observed in the absence of the antagonist An irreversible antagonist binds so strongly to the receptor as to render the receptor unavailable for binding to the agonist Irreversible antagonists may even form covalent chemical bonds with the receptor In either case if the concentration of the irreversible antagonist is high enough the number of unbound receptors remaining for agonist binding may be so low that even high concentrations of the agonist do not produce the maximum biological response 66 Precursors edit Biosynthetic pathways for catecholamines and trace amines in the human brain 67 68 69 nbsp L Phenylalanine L Tyrosine L DOPA Epinephrine Phenethylamine p Tyramine Dopamine Norepinephrine N Methylphenethylamine N Methyltyramine p Octopamine Synephrine 3 Methoxytyramine AADC AADC AADC primarypathway PNMT PNMT PNMT PNMT AAAH AAAH brainCYP2D6 minorpathway COMT DBH DBH nbsp In humans catecholamines and phenethylaminergic trace amines are derived from the amino acid L phenylalanine While intake of neurotransmitter precursors does increase neurotransmitter synthesis evidence is mixed as to whether neurotransmitter release and postsynaptic receptor firing is increased Even with increased neurotransmitter release it is unclear whether this will result in a long term increase in neurotransmitter signal strength since the nervous system can adapt to changes such as increased neurotransmitter synthesis and may therefore maintain constant firing 70 unreliable medical source Some neurotransmitters may have a role in depression and there is some evidence to suggest that intake of precursors of these neurotransmitters may be useful in the treatment of mild and moderate depression 70 unreliable medical source 71 Catecholamine and trace amine precursors edit L DOPA a precursor of dopamine that crosses the blood brain barrier is used in the treatment of Parkinson s disease For depressed patients where low activity of the neurotransmitter norepinephrine is implicated there is only little evidence for benefit of neurotransmitter precursor administration L phenylalanine and L tyrosine are both precursors for dopamine norepinephrine and epinephrine These conversions require vitamin B6 vitamin C and S adenosylmethionine A few studies suggest potential antidepressant effects of L phenylalanine and L tyrosine but there is much room for further research in this area 70 unreliable medical source Serotonin precursors edit Administration of L tryptophan a precursor for serotonin is seen to double the production of serotonin in the brain It is significantly more effective than a placebo in the treatment of mild and moderate depression 70 unreliable medical source This conversion requires vitamin C 25 5 hydroxytryptophan 5 HTP also a precursor for serotonin is more effective than a placebo 70 unreliable medical source Diseases and disorders editDiseases and disorders may also affect specific neurotransmitter systems The following are disorders involved in either an increase decrease or imbalance of certain neurotransmitters Dopamine For example problems in producing dopamine mainly in the substantia nigra can result in Parkinson s disease a disorder that affects a person s ability to move as they want to resulting in stiffness tremors or shaking and other symptoms Some studies suggest that having too little or too much dopamine or problems using dopamine in the thinking and feeling regions of the brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder ADHD Dopamine is also involved in addiction and drug use as most recreational drugs cause an influx of dopamine in the brain especially opioid and methamphetamines that produces a pleasurable feeling which is why users constantly crave drugs Serotonin Similarly after some research suggested that drugs that block the recycling or reuptake of serotonin seemed to help some people diagnosed with depression it was theorized that people with depression might have lower than normal serotonin levels Though widely popularized this theory was not borne out in subsequent research 72 Therefore selective serotonin reuptake inhibitors SSRIs are used to increase the amounts of serotonin in synapses Glutamate Furthermore problems with producing or using glutamate have been suggestively and tentatively linked to many mental disorders including autism obsessive compulsive disorder OCD schizophrenia and depression 73 Having too much glutamate has been linked to neurological diseases such as Parkinson s disease multiple sclerosis Alzheimer s disease stroke and ALS amyotrophic lateral sclerosis 74 nbsp CAPON Binds Nitric Oxide Synthase Regulating NMDA Receptor Mediated Glutamate NeurotransmissionNeurotransmitter imbalance editGenerally there are no scientifically established norms for appropriate levels or balances of different neurotransmitters It is in most cases pragmatically impossible to even measure levels of neurotransmitters in a brain or body at any distinct moments in time Neurotransmitters regulate each other s release and weak consistent imbalances in this mutual regulation were linked to temperament in healthy people 75 76 77 78 79 Strong imbalances or disruptions to neurotransmitter systems have been associated with many diseases and mental disorders These include Parkinson s depression insomnia Attention Deficit Hyperactivity Disorder ADHD anxiety memory loss dramatic changes in weight and addictions Chronic physical or emotional stress can be a contributor to neurotransmitter system changes Genetics also plays a role in neurotransmitter activities Apart from recreational use medications that directly and indirectly interact with one or more transmitter or its receptor are commonly prescribed for psychiatric and psychological issues Notably drugs interacting with serotonin and norepinephrine are prescribed to patients with problems such as depression and anxiety though the notion that there is much solid medical evidence to support such interventions has been widely criticized 80 Studies shown that dopamine imbalance has an influence on multiple sclerosis and other neurological disorders 81 See also edit nbsp Medicine portalBK channel Cellular level Kiss and run fusion Natural neuroactive substance Neuroendocrine Neuroendocrinology Neuropsychopharmacology Neurotransmission Neurotransmitter analog Neurotransmitter release Neural pathway Neuromodulation False neurotransmitterNotes edit In the central nervous system anandamide other endocannabinoids utilize retrograde neurotransmission since their release is postsynaptic while their target receptor cannabinoid receptor 1 CB1 is presynaptic 64 The cannabis plant contains D9 tetrahydrocannabinol which is a direct agonist at CB1 64 GABA is a non proteinogenic amino acidReferences edit Smelser Neil J Baltes Paul B 2001 International encyclopedia of the social amp behavioral sciences 1st ed Amsterdam New York Elsevier ISBN 978 0 08 043076 8 Cuevas J 1 January 2019 Neurotransmitters and Their Life Cycle Reference Module in Biomedical Sciences Elsevier doi 10 1016 b978 0 12 801238 3 11318 2 ISBN 978 0 12 801238 3 Purves D Augustine GJ Fitzpatrick D Katz LC LaMantia AS McNamara JO Williams SM 2001 Peptide Neurotransmitters Neuroscience 2nd ed Sinauer Associates Sanders KM Ward SM January 2019 Nitric oxide and its role as a non adrenergic non cholinergic inhibitory neurotransmitter in the gastrointestinal tract British Journal of Pharmacology 176 2 212 227 doi 10 1111 bph 14459 PMC 6295421 PMID 30063800 Elias LJ Saucier DM 2005 Neuropsychology Clinical and Experimental Foundations Boston Pearson Chergui K Suaud Chagny MF Gonon F October 1994 Nonlinear relationship between impulse flow dopamine release and dopamine elimination in the rat brain in vivo Neuroscience 62 3 641 645 doi 10 1016 0306 4522 94 90465 0 PMID 7870295 S2CID 20465561 Mustafa Asif K Kim Paul M Snyder Solomon H August 2004 D Serine as a putative glial neurotransmitter Neuron Glia Biology 1 3 275 281 doi 10 1017 S1740925X05000141 ISSN 1741 0533 PMC 1403160 PMID 16543946 Wolosker Herman Dumin Elena Balan Livia Foltyn Veronika N July 2008 d Amino acids in the brain d serine in neurotransmission and neurodegeneration d Serine in neurotransmission and neurodegeneration FEBS Journal 275 14 3514 3526 doi 10 1111 j 1742 4658 2008 06515 x PMID 18564180 S2CID 25735605 Thapa S Lv M Xu H 30 November 2017 Acetylcholinesterase A Primary Target for Drugs and Insecticides Mini Reviews in Medicinal Chemistry 17 17 1665 1676 doi 10 2174 1389557517666170120153930 PMID 28117022 Vasica G Tennant CC September 2002 Cocaine use and cardiovascular complications The Medical Journal of Australia 177 5 260 262 doi 10 5694 j 1326 5377 2002 tb04761 x PMID 12197823 S2CID 18572638 Saladin Kenneth S Anatomy and Physiology The Unity of Form and Function McGraw Hill 2009 ISBN 0 07 727620 5 Teleanu Raluca Ioana Niculescu Adelina Gabriela Roza Eugenia Vladacenco Oana Grumezescu Alexandru Mihai Teleanu Daniel Mihai 25 May 2022 Neurotransmitters Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System International Journal of Molecular Sciences 23 11 5954 doi 10 3390 ijms23115954 ISSN 1422 0067 PMC 9180936 PMID 35682631 Breedlove SM Watson NV 2013 Biological psychology an introduction to behavioral cognitive and clinical neuroscience Seventh ed Sunderland MA Sinauer Associates ISBN 978 0878939275 a b Whishaw B Kolb IQ 2014 An introduction to brain and behavior 4th ed New York NY Worth Publishers pp 150 151 ISBN 978 1429242288 Purves Dale Augustine George J Fitzpatrick David Katz Lawrence C LaMantia Anthony Samuel McNamara James O Williams S Mark 2001 Excitatory and Inhibitory Postsynaptic Potentials Neuroscience 2nd edition Sinauer Associates retrieved 14 July 2023 Peters A Palay SL December 1996 The morphology of synapses Journal of Neurocytology 25 12 687 700 doi 10 1007 BF02284835 PMID 9023718 S2CID 29365393 Shier D Butler J Lewis R 5 January 2015 Hole s human anatomy amp physiology Fourteenth ed New York NY ISBN 978 0 07 802429 0 OCLC 881146319 a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link Di Chiara G Morelli M Consolo S June 1994 Modulatory functions of neurotransmitters in the striatum ACh dopamine NMDA interactions Trends in Neurosciences 17 6 228 233 doi 10 1016 0166 2236 94 90005 1 PMID 7521083 S2CID 32085555 Whishaw B Kolb IQ 2014 An introduction to brain and behavior 4th ed New York NY Worth Publishers ISBN 978 1429242288 Gross L November 2006 Supporting players take the lead in protecting the overstimulated brain PLOS Biology 4 11 e371 doi 10 1371 journal pbio 0040371 PMC 1609133 PMID 20076484 Yang JL Sykora P Wilson DM Mattson MP Bohr VA August 2011 The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency Mechanisms of Ageing and Development 132 8 9 405 11 doi 10 1016 j mad 2011 06 005 PMC 3367503 PMID 21729715 Orexin receptor antagonists a new class of sleeping pill National Sleep Foundation Acetylcholine Receptors Ebi ac uk Retrieved 25 August 2014 Schacter Gilbert and Weger Psychology United States of America 2009 Print a b University of Bristol Introduction to Serotonin Retrieved 15 October 2009 a b Sheffler Zachary M Reddy Vamsi Pillarisetty Leela Sharath 2023 Physiology Neurotransmitters StatPearls Treasure Island FL StatPearls Publishing PMID 30969716 retrieved 16 July 2023 Prasad BV 2020 Examining Biological Foundations of Human Behavior United States of America IGI Global p 81 ISBN 978 1799 8286 17 a b Sapolsky R 2005 Biology and Human Behavior The Neurological Origins of Individuality 2nd The Teaching Company see pages 13 amp 14 of Guide Book Snyder SH Innis RB 1979 Peptide neurotransmitters Annual Review of Biochemistry 48 755 82 doi 10 1146 annurev bi 48 070179 003543 PMID 38738 Corbiere A Vaudry H Chan P Walet Balieu ML Lecroq T Lefebvre A et al 18 September 2019 Strategies for the Identification of Bioactive Neuropeptides in Vertebrates Frontiers in Neuroscience 13 948 doi 10 3389 fnins 2019 00948 PMC 6759750 PMID 31619945 Fricker LD Devi LA May 2018 Orphan neuropeptides and receptors Novel therapeutic targets Pharmacology amp Therapeutics 185 26 33 doi 10 1016 j pharmthera 2017 11 006 PMC 5899030 PMID 29174650 Kodirov SA Takizawa S Joseph J Kandel ER Shumyatsky GP Bolshakov VY October 2006 Synaptically released zinc gates long term potentiation in fear conditioning pathways Proceedings of the National Academy of Sciences of the United States of America 103 41 15218 23 Bibcode 2006PNAS 10315218K doi 10 1073 pnas 0607131103 PMC 1622803 PMID 17005717 International Symposium on Nitric Oxide Dr John Andrews MaRS MaRS Archived from the original on 14 October 2014 Dopamine Biological activity IUPHAR BPS guide to pharmacology International Union of Basic and Clinical Pharmacology Retrieved 29 January 2016 Grandy DK Miller GM Li JX February 2016 TAARgeting Addiction The Alamo Bears Witness to Another Revolution An Overview of the Plenary Symposium of the 2015 Behavior Biology and Chemistry Conference Drug and Alcohol Dependence 159 9 16 doi 10 1016 j drugalcdep 2015 11 014 PMC 4724540 PMID 26644139 TAAR1 is a high affinity receptor for METH AMPH and DA Lin Y Hall RA Kuhar MJ October 2011 CART peptide stimulation of G protein mediated signaling in differentiated PC12 cells identification of PACAP 6 38 as a CART receptor antagonist Neuropeptides 45 5 351 8 doi 10 1016 j npep 2011 07 006 PMC 3170513 PMID 21855138 a b c d e Miller GM January 2011 The emerging role of trace amine associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity Journal of Neurochemistry 116 2 164 76 doi 10 1111 j 1471 4159 2010 07109 x PMC 3005101 PMID 21073468 a b c d Eiden LE Weihe E January 2011 VMAT2 a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse Annals of the New York Academy of Sciences 1216 1 86 98 Bibcode 2011NYASA1216 86E doi 10 1111 j 1749 6632 2010 05906 x PMC 4183197 PMID 21272013 VMAT2 is the CNS vesicular transporter for not only the biogenic amines DA NE EPI 5 HT and HIS but likely also for the trace amines TYR PEA and thyronamine THYR Trace aminergic neurons in mammalian CNS would be identifiable as neurons expressing VMAT2 for storage and the biosynthetic enzyme aromatic amino acid decarboxylase AADC a b c Malenka RC Nestler EJ Hyman SE 2009 Chapter 6 Widely Projecting Systems Monoamines Acetylcholine and Orexin In Sydor A Brown RY eds Molecular Neuropharmacology A Foundation for Clinical Neuroscience 2nd ed New York McGraw Hill Medical p 155 ISBN 9780071481274 Different subregions of the VTA receive glutamatergic inputs from the prefrontal cortex orexinergic inputs from the lateral hypothalamus cholinergic and also glutamatergic and GABAergic inputs from the laterodorsal tegmental nucleus and pedunculopontine nucleus noradrenergic inputs from the locus ceruleus serotonergic inputs from the raphe nuclei and GABAergic inputs from the nucleus accumbens and ventral pallidum Malenka RC Nestler EJ Hyman SE 2009 Chapter 6 Widely Projecting Systems Monoamines Acetylcholine and Orexin In Sydor A Brown RY eds Molecular Neuropharmacology A Foundation for Clinical Neuroscience 2nd ed New York McGraw Hill Medical pp 145 156 157 ISBN 9780071481274 Descending NE fibers modulate afferent pain signals The locus ceruleus LC which is located on the floor of the fourth ventricle in the rostral pons contains more than 50 of all noradrenergic neurons in the brain it innervates both the forebrain eg it provides virtually all the NE to the cerebral cortex and regions of the brainstem and spinal cord The other noradrenergic neurons in the brain occur in loose collections of cells in the brainstem including the lateral tegmental regions These neurons project largely within the brainstem and spinal cord NE along with 5HT ACh histamine and orexin is a critical regulator of the sleep wake cycle and of levels of arousal LC firing may also increase anxiety Stimulation of b adrenergic receptors in the amygdala results in enhanced memory for stimuli encoded under strong negative emotion Epinephrine occurs in only a small number of central neurons all located in the medulla Epinephrine is involved in visceral functions such as control of respiration a b c d Rang HP 2003 Pharmacology Edinburgh Churchill Livingstone pp 474 for noradrenaline system page 476 for dopamine system page 480 for serotonin system and page 483 for cholinergic system ISBN 978 0 443 07145 4 a b c d e Iwanczuk W Guzniczak P 2015 Neurophysiological foundations of sleep arousal awareness and consciousness phenomena Part 1 Anaesthesiology Intensive Therapy 47 2 162 7 doi 10 5603 AIT 2015 0015 PMID 25940332 The ascending reticular activating system ARAS is responsible for a sustained wakefulness state The thalamic projection is dominated by cholinergic neurons originating from the pedunculopontine tegmental nucleus of pons and midbrain PPT and laterodorsal tegmental nucleus of pons and midbrain LDT nuclei 17 18 The hypothalamic projection involves noradrenergic neurons of the locus coeruleus LC and serotoninergic neurons of the dorsal and median raphe nuclei DR which pass through the lateral hypothalamus and reach axons of the histaminergic tubero mamillary nucleus TMN together forming a pathway extending into the forebrain cortex and hippocampus Cortical arousal also takes advantage of dopaminergic neurons of the substantia nigra SN ventral tegmenti area VTA and the periaqueductal grey area PAG Fewer cholinergic neurons of the pons and midbrain send projections to the forebrain along the ventral pathway bypassing the thalamus 19 20 a b c d e Malenka RC Nestler EJ Hyman SE 2009 Chapter 12 Sleep and Arousal In Sydor A Brown RY eds Molecular Neuropharmacology A Foundation for Clinical Neuroscience 2nd ed New York USA McGraw Hill Medical p 295 ISBN 9780071481274 The ARAS is a complex structure consisting of several different circuits including the four monoaminergic pathways The norepinephrine pathway originates from the locus ceruleus LC and related brainstem nuclei the serotonergic neurons originate from the raphe nuclei within the brainstem as well the dopaminergic neurons originate in ventral tegmental area VTA and the histaminergic pathway originates from neurons in the tuberomammillary nucleus TMN of the posterior hypothalamus As discussed in Chapter 6 these neurons project widely throughout the brain from restricted collections of cell bodies Norepinephrine serotonin dopamine and histamine have complex modulatory functions and in general promote wakefulness The PT in the brain stem is also an important component of the ARAS Activity of PT cholinergic neurons REM on cells promotes REM sleep During waking REM on cells are inhibited by a subset of ARAS norepinephrine and serotonin neurons called REM off cells Rinaman L February 2011 Hindbrain noradrenergic A2 neurons diverse roles in autonomic endocrine cognitive and behavioral functions American Journal of Physiology Regulatory Integrative and Comparative Physiology 300 2 R222 35 doi 10 1152 ajpregu 00556 2010 PMC 3043801 PMID 20962208 Malenka RC Nestler EJ Hyman SE 2009 Chapter 6 Widely Projecting Systems Monoamines Acetylcholine and Orexin In Sydor A Brown RY eds Molecular Neuropharmacology A Foundation for Clinical Neuroscience 2nd ed New York McGraw Hill Medical pp 147 148 154 157 ISBN 9780071481274 Neurons from the SNc densely innervate the dorsal striatum where they play a critical role in the learning and execution of motor programs Neurons from the VTA innervate the ventral striatum nucleus accumbens olfactory bulb amygdala hippocampus orbital and medial prefrontal cortex and cingulate cortex VTA DA neurons play a critical role in motivation reward related behavior attention and multiple forms of memory Thus acting in diverse terminal fields dopamine confers motivational salience wanting on the reward itself or associated cues nucleus accumbens shell region updates the value placed on different goals in light of this new experience orbital prefrontal cortex helps consolidate multiple forms of memory amygdala and hippocampus and encodes new motor programs that will facilitate obtaining this reward in the future nucleus accumbens core region and dorsal striatum DA has multiple actions in the prefrontal cortex It promotes the cognitive control of behavior the selection and successful monitoring of behavior to facilitate attainment of chosen goals Aspects of cognitive control in which DA plays a role include working memory the ability to hold information on line in order to guide actions suppression of prepotent behaviors that compete with goal directed actions and control of attention and thus the ability to overcome distractions Noradrenergic projections from the LC thus interact with dopaminergic projections from the VTA to regulate cognitive control Calipari ES Bagot RC Purushothaman I Davidson TJ Yorgason JT Pena CJ et al March 2016 In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward Proceedings of the National Academy of Sciences of the United States of America 113 10 2726 31 Bibcode 2016PNAS 113 2726C doi 10 1073 pnas 1521238113 PMC 4791010 PMID 26831103 Previous work has demonstrated that optogenetically stimulating D1 MSNs promotes reward whereas stimulating D2 MSNs produces aversion Ikemoto S November 2010 Brain reward circuitry beyond the mesolimbic dopamine system a neurobiological theory Neuroscience and Biobehavioral Reviews 35 2 129 50 doi 10 1016 j neubiorev 2010 02 001 PMC 2894302 PMID 20149820 Recent studies on intracranial self administration of neurochemicals drugs found that rats learn to self administer various drugs into the mesolimbic dopamine structures the posterior ventral tegmental area medial shell nucleus accumbens and medial olfactory tubercle In the 1970s it was recognized that the olfactory tubercle contains a striatal component which is filled with GABAergic medium spiny neurons receiving glutamatergic inputs form cortical regions and dopaminergic inputs from the VTA and projecting to the ventral pallidum just like the nucleus accumbens Figure 3 The ventral striatum and self administration of amphetamine Malenka RC Nestler EJ Hyman SE 2009 Chapter 6 Widely Projecting Systems Monoamines Acetylcholine and Orexin In Sydor A Brown RY eds Molecular Neuropharmacology A Foundation for Clinical Neuroscience 2nd ed New York McGraw Hill Medical pp 175 176 ISBN 9780071481274 Within the brain histamine is synthesized exclusively by neurons with their cell bodies in the tuberomammillary nucleus TMN that lies within the posterior hypothalamus There are approximately 64000 histaminergic neurons per side in humans These cells project throughout the brain and spinal cord Areas that receive especially dense projections include the cerebral cortex hippocampus neostriatum nucleus accumbens amygdala and hypothalamus While the best characterized function of the histamine system in the brain is regulation of sleep and arousal histamine is also involved in learning and memory It also appears that histamine is involved in the regulation of feeding and energy balance Malenka RC Nestler EJ Hyman SE 2009 Chapter 6 Widely Projecting Systems Monoamines Acetylcholine and Orexin In Sydor A Brown RY eds Molecular Neuropharmacology A Foundation for Clinical Neuroscience 2nd ed New York McGraw Hill Medical pp 158 160 ISBN 9780071481274 The dorsal raphe preferentially innervates the cerebral cortex thalamus striatal regions caudate putamen and nucleus accumbens and dopaminergic nuclei of the midbrain eg the substantia nigra and ventral tegmental area while the median raphe innervates the hippocampus septum and other structures of the limbic forebrain it is clear that 5HT influences sleep arousal attention processing of sensory information in the cerebral cortex and important aspects of emotion likely including aggression and mood regulation The rostral nuclei which include the nucleus linearis dorsal raphe medial raphe and raphe pontis innervate most of the brain including the cerebellum The caudal nuclei which comprise the raphe magnus raphe pallidus and raphe obscuris have more limited projections that terminate in the cerebellum brainstem and spinal cord Nestler EJ Brain Reward Pathways Icahn School of Medicine at Mount Sinai Nestler Lab Retrieved 16 August 2014 The dorsal raphe is the primary site of serotonergic neurons in the brain which like noradrenergic neurons pervasively modulate brain function to regulate the state of activation and mood of the organism Marston OJ Garfield AS Heisler LK June 2011 Role of central serotonin and melanocortin systems in the control of energy balance European Journal of Pharmacology 660 1 70 9 doi 10 1016 j ejphar 2010 12 024 PMID 21216242 Malenka RC Nestler EJ Hyman SE 2009 Chapter 6 Widely Projecting Systems Monoamines Acetylcholine and Orexin In Sydor A Brown RY eds Molecular Neuropharmacology A Foundation for Clinical Neuroscience 2nd ed New York McGraw Hill Medical pp 167 175 ISBN 9780071481274 The basal forebrain cholinergic nuclei are comprised the medial septal nucleus Ch1 the vertical nucleus of the diagonal band Ch2 the horizontal limb of the diagonal band Ch3 and the nucleus basalis of Meynert Ch4 Brainstem cholinergic nuclei include the pedunculopontine nucleus Ch5 the laterodorsal tegmental nucleus Ch6 the medial habenula Ch7 and the parabigeminal nucleus Ch8 Guyenet PG Stornetta RL Bochorishvili G Depuy SD Burke PG Abbott SB August 2013 C1 neurons the body s EMTs American Journal of Physiology Regulatory Integrative and Comparative Physiology 305 3 R187 204 doi 10 1152 ajpregu 00054 2013 PMC 3743001 PMID 23697799 Stornetta RL Guyenet PG March 2018 C1 neurons a nodal point for stress Experimental Physiology 103 3 332 336 doi 10 1113 EP086435 PMC 5832554 PMID 29080216 Neuron Conversations How Brain Cells Communicate Brainfacts org Retrieved 2 December 2014 a b Yadav VK Ryu JH Suda N Tanaka KF Gingrich JA Schutz G et al November 2008 Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum Cell 135 5 825 37 doi 10 1016 j cell 2008 09 059 PMC 2614332 PMID 19041748 Carlson N R amp Birkett M A 2017 Physiology of Behavior 12th ed Pearson pgs 100 115 ISBN 978 0134080918 CDC Strychnine Facts about Strychnine Public Health Emergency Preparedness amp Response emergency cdc gov Retrieved 7 May 2018 a b c Neurotransmitters and Drugs Chart Ocw mit edu Retrieved 25 August 2014 Agonist Definition and More from the Free Merriam Webster Dictionary Merriam webster com Retrieved 25 August 2014 Atack J Lavreysen H 2010 Agonist In Stolerman I P eds Encyclopedia of Psychopharmacology Springer Berlin Heidelberg https doi org 10 1007 978 3 540 68706 1 1565 Roth BL February 2016 DREADDs for Neuroscientists Neuron 89 4 683 94 doi 10 1016 j neuron 2016 01 040 PMC 4759656 PMID 26889809 a b Ries RK Fiellin DA Miller SC 2009 Principles of addiction medicine 4th ed Philadelphia Wolters Kluwer Lippincott Williams amp Wilkins pp 709 710 ISBN 9780781774772 Retrieved 16 August 2015 a b c Flores A Maldonado R Berrendero F December 2013 Cannabinoid hypocretin cross talk in the central nervous system what we know so far Frontiers in Neuroscience 7 256 doi 10 3389 fnins 2013 00256 PMC 3868890 PMID 24391536 Figure 1 Schematic of brain CB1 expression and orexinergic neurons expressing OX1 or OX2 Figure 2 Synaptic signaling mechanisms in cannabinoid and orexin systems Antagonist Medical definition of Antagonist Retrieved 5 November 2014 Goeders NE 2001 Antagonist Encyclopedia of Drugs Alcohol and Addictive Behavior Retrieved 2 December 2014 Broadley KJ March 2010 The vascular effects of trace amines and amphetamines Pharmacology amp Therapeutics 125 3 363 375 doi 10 1016 j pharmthera 2009 11 005 PMID 19948186 Lindemann L Hoener MC May 2005 A renaissance in trace amines inspired by a novel GPCR family Trends in Pharmacological Sciences 26 5 274 281 doi 10 1016 j tips 2005 03 007 PMID 15860375 Wang X Li J Dong G Yue J February 2014 The endogenous substrates of brain CYP2D European Journal of Pharmacology 724 211 218 doi 10 1016 j ejphar 2013 12 025 PMID 24374199 a b c d e Meyers S February 2000 Use of neurotransmitter precursors for treatment of depression PDF Alternative Medicine Review 5 1 64 71 PMID 10696120 Archived from the original PDF on 5 August 2004 van Praag HM March 1981 Management of depression with serotonin precursors Biological Psychiatry 16 3 291 310 PMID 6164407 Healy D April 2015 Serotonin and depression BMJ 350 h1771 doi 10 1136 bmj h1771 PMID 25900074 S2CID 38726584 NIMH Brain Basics U S National Institutes of Health Archived from the original on 29 October 2014 Retrieved 29 October 2014 Bittigau P Ikonomidou C November 1997 Glutamate in neurologic diseases Journal of Child Neurology 12 8 471 85 doi 10 1177 088307389701200802 PMID 9430311 S2CID 1258390 Netter P 1991 Biochemical variables in the study of temperament In Strelau J amp Angleitner A Eds Explorations in temperament International perspectives on theory and measurement 147 161 New York Plenum Press Trofimova I Robbins TW May 2016 Temperament and arousal systems A new synthesis of differential psychology and functional neurochemistry Neuroscience and Biobehavioral Reviews 64 382 402 doi 10 1016 j neubiorev 2016 03 008 hdl 11375 26202 PMID 26969100 S2CID 13937324 Cloninger CR Svrakic DM Przybeck TR A psychobiological model of temperament and character Arch Gen Psychiatry 1993 50 975 990 Trofimova IN 2016 The interlocking between functional aspects of activities and a neurochemical model of adult temperament In Arnold MC ed Temperaments Individual Differences Social and Environmental Influences and Impact on Quality of Life New York Nova Science Publishers Inc pp 77 147 Depue RA Morrone Strupinsky JV June 2005 A neurobehavioral model of affiliative bonding implications for conceptualizing a human trait of affiliation The Behavioral and Brain Sciences 28 3 313 50 discussion 350 95 doi 10 1017 s0140525x05000063 PMID 16209725 Leo J amp Lacasse J 10 October 2007 The Media and the Chemical Imbalance Theory of Depression Retrieved 1 December 2014 from http psychrights org articles TheMediaandChemicalImbalanceTheoryofDepression pdf Dobryakova E Genova HM DeLuca J Wylie GR 12 March 2015 The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders Frontiers in Neurology 6 52 doi 10 3389 fneur 2015 00052 PMC 4357260 PMID 25814977 External links edit nbsp Wikimedia Commons has media related to Neurotransmitter nbsp Wikibooks has a book on the topic of Neuroscience Cellular Neurobiology Neurotransmitters Purves Dale Augustine George J Fitzpatrick David Katz Lawrence C LaMantia Anthony Samuel McNamara James O Williams S Mark 2001 Chapter 6 Neurotransmitters What Defines a Neurotransmitter 2nd ed Sunderland MA Sinauer Associates ISBN 0 87893 742 0 a href Template Cite book html title Template Cite book cite book a journal ignored help Holz Ronald W Fisher Stephen K 1999 Chapter 10 Synaptic Transmission and Cellular Signaling An Overview In Siegel George J Agranoff Bernard W Albers R Wayne Fisher Stephen K Uhler Michael D eds Synaptic Transmission 6th ed Philadelphia Lippincott Raven ISBN 0 397 51820 X a href Template Cite book html title Template Cite book cite book a journal ignored help Neurotransmitters and Neuroactive Peptides at Neuroscience for Kids website Retrieved from https en wikipedia org w index php title Neurotransmitter amp oldid 1173628094, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.