fbpx
Wikipedia

Dopamine receptor

Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS). Dopamine receptors activate different effectors through not only G-protein coupling, but also signaling through different protein (dopamine receptor-interacting proteins) interactions.[1] The neurotransmitter dopamine is the primary endogenous ligand for dopamine receptors.

Dopamine

Dopamine receptors are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling. Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders.[2] Thus, dopamine receptors are common neurologic drug targets; antipsychotics are often dopamine receptor antagonists while psychostimulants are typically indirect agonists of dopamine receptors.

Subtypes edit

The existence of multiple types of receptors for dopamine was first proposed in 1976.[3][4] There are at least five subtypes of dopamine receptors, D1, D2, D3, D4, and D5. The D1 and D5 receptors are members of the D1-like family of dopamine receptors, whereas the D2, D3 and D4 receptors are members of the D2-like family. There is also some evidence that suggests the existence of possible D6 and D7 dopamine receptors, but such receptors have not been conclusively identified.[5]

At a global level, D1 receptors have widespread expression throughout the brain. Furthermore, D1-2 receptor subtypes are found at 10–100 times the levels of the D3-5 subtypes.[6]

D1-like family edit

The D1-like family receptors are coupled to the G protein G. D1 is also coupled to Golf.

G subsequently activates adenylyl cyclase, increasing the intracellular concentration of the second messenger cyclic adenosine monophosphate (cAMP).[7]

D2-like family edit

The D2-like family receptors are coupled to the G protein G, which directly inhibits the formation of cAMP by inhibiting the enzyme adenylyl cyclase.[8]

Receptor heteromers edit

Dopamine receptors have been shown to heteromerize with a number of other G protein-coupled receptors.[15] Especially the D2 receptor is considered a major hub within the GPCR heteromer network.[16] Protomers consist of

Isoreceptors[17]

  • D1–D2
  • D1–D3
  • D2–D3
  • D2–D4
  • D2–D5

Non-isoreceptors

Signaling mechanism edit

Dopamine receptor D1 and Dopamine receptor D5 are Gs coupled receptors that stimulate adenylyl cyclase to produce cAMP, which in turn increases intracellular calcium and mediates a number of other functions. The D2 class of receptors produce the opposite effect, as they are Gαi and/or Gαo coupled receptors, which blocks the activity of adenylyl cyclase. cAMP mediated protein kinase A activity also results in the phosphorylation of DARPP-32, an inhibitor of protein phosphatase 1. Sustained D1 receptor activity is kept in check by Cyclin-dependent kinase 5. Dopamine receptor activation of Ca2+/calmodulin-dependent protein kinase II can be cAMP dependent or independent.[18]

The cAMP mediated pathway results in amplification of PKA phosphorylation activity, which is normally kept in equilibrium by PP1. The DARPP-32 mediated PP1 inhibition amplifies PKA phosphorylation of AMPA, NMDA, and inward rectifying potassium channels, increasing AMPA and NMDA currents while decreasing potassium conductance.[7]

cAMP independent edit

D1 receptor agonism and D2 receptor blockade also increases mRNA translation by phosphorylating ribosomal protein s6, resulting in activation of mTOR. The behavioral implications are unknown. Dopamine receptors may also regulate ion channels and BDNF independent of cAMP, possibly through direct interactions. There is evidence that D1 receptor agonism regulates phospholipase C independent of cAMP, however implications and mechanisms remain poorly understood. D2 receptor signaling may mediate protein kinase B, arrestin beta 2, and GSK-3 activity, and inhibition of these proteins results in stunting of the hyperlocomotion in amphetamine treated rats. Dopamine receptors can also transactivate Receptor tyrosine kinases.[18]

Beta Arrestin recruitment is mediated by G-protein kinases that phosphorylate and inactivate dopamine receptors after stimulation. While beta arrestin plays a role in receptor desensitization, it may also be critical in mediating downstream effects of dopamine receptors. Beta arrestin has been shown to form complexes with MAP kinase, leading to activation of extracellular signal-regulated kinases. Furthermore, this pathway has been demonstrated to be involved in the locomotor response mediated by dopamine receptor D1. Dopamine receptor D2 stimulation results in the formation of an Akt/Beta-arrestin/PP2A protein complex that inhibits Akt through PP2A phosphorylation, therefore disinhibiting GSK-3.[19]

Role in the central nervous system edit

Dopamine receptors control neural signaling that modulates many important behaviors, such as spatial working memory.[20] Dopamine also plays an important role in the reward system, incentive salience, cognition, prolactin release, emesis and motor function.[21]

Non-CNS dopamine receptors edit

Cardio-pulmonary system edit

In humans, the pulmonary artery expresses D1, D2, D4, and D5 and receptor subtypes, which may account for vasodilatory effects of dopamine in the blood.[22] Such receptor subtypes have also been discovered in the epicardium, myocardium, and endocardium of the heart.[23] In rats, D1-like receptors are present on the smooth muscle of the blood vessels in most major organs.[24]

D4 receptors have been identified in the atria of rat and human hearts.[25] Dopamine increases myocardial contractility and cardiac output, without changing heart rate, by signaling through dopamine receptors.[5]

Renal system edit

Dopamine receptors are present along the nephron in the kidney, with proximal tubule epithelial cells showing the highest density.[24] In rats, D1-like receptors are present on the juxtaglomerular apparatus and on renal tubules, while D2-like receptors are present on the glomeruli, zona glomerulosa cells of the adrenal cortex, renal tubules, and postganglionic sympathetic nerve terminals.[24] Dopamine signaling affects diuresis and natriuresis.[5]

The Pancreas edit

The role of the pancreas[26] is to secrete digestive enzymes via exocrine glands and hormones via endocrine glands. Pancreatic endocrine glands, composed of dense clusters of cells called the Islets of Langerhans, secrete insulin, glucagon, and other hormones essential for metabolism and glycemic control. Insulin secreting beta cells have been intensely researched due to their role in diabetes.[27]

Recent studies have found that beta cells, as well as other endocrine and exocrine pancreatic cells, express D2 receptors[28] and that beta cells co-secrete dopamine along with insulin.[29] Dopamine has been purported to be a negative regulator of insulin,[30][31] meaning that bound D2 receptors inhibit insulin secretion. The connection between dopamine and beta cells was discovered, in part, due to the metabolic side-effects of certain antipsychotic medications.[32][33] Traditional/typical antipsychotic medications function by altering the dopamine pathway in the brain, such as blocking D2 receptors.[34] Common side effects of these medications include rapid weight gain and glycemic dysregulation, among others.[35] The effects of these medications are not limited to the brain, so off-target effects in other organs such as the pancreas have been proposed as a possible mechanism.[36]

In disease edit

Dysfunction of dopaminergic neurotransmission in the CNS has been implicated in a variety of neuropsychiatric disorders, including social phobia,[37] Tourette's syndrome,[38] Parkinson's disease,[39] schizophrenia,[38] neuroleptic malignant syndrome,[40] attention-deficit hyperactivity disorder (ADHD),[41] and drug and alcohol dependence.[38][42]

Attention-deficit hyperactivity disorder edit

Dopamine receptors have been recognized as important components in the mechanism of ADHD for many years. Drugs used to treat ADHD, including methylphenidate and amphetamine, have significant effects on neuronal dopamine signaling. Studies of gene association have implicated several genes within dopamine signaling pathways; in particular, the D4.7 variant of D4 has been consistently shown to be more frequent in ADHD patients.[43] ADHD patients with the 4.7 allele also tend to have better cognitive performance and long-term outcomes compared to ADHD patients without the 4.7 allele, suggesting that the allele is associated with a more benign form of ADHD.[43]

The D4.7 allele has suppressed gene expression compared to other variants.[44]

Addictive drugs edit

Dopamine is the primary neurotransmitter involved in the reward and reinforcement (mesolimbic) pathway in the brain. Although it was a long-held belief that dopamine was the cause of pleasurable sensations such as euphoria, many studies and experiments on the subject have demonstrated that this is not the case; rather, dopamine in the mesolimbic pathway is responsible for behaviour reinforcement ("wanting") without producing any "liking" sensation on its own.[45][46][47][48] Mesolimbic dopamine and its related receptors are a primary mechanism through which drug-seeking behaviour develops (Incentive Salience), and many recreational drugs, such as cocaine and substituted amphetamines, inhibit the dopamine transporter (DAT), the protein responsible for removing dopamine from the neural synapse. When DAT activity is blocked, the synapse floods with dopamine and increases dopaminergic signaling. When this occurs, particularly in the nucleus accumbens,[49] increased D1[42] and decreased D2[49] receptor signaling mediates the "incentive salience" factor and can significantly increase positive associations with the drug in the brain.[48]

Pathological gambling edit

Pathological gambling is classified as a mental health disorder that has been linked to obsessive-compulsive spectrum disorder and behavioral addiction. Dopamine has been associated with reward and reinforcement in relation to behaviors and drug addiction.[50] The role between dopamine and pathological gambling may be a link between cerebrospinal fluid measures of dopamine and dopamine metabolites in pathological gambling.[51] Molecular genetic study shows that pathological gambling is associated with the TaqA1 allele of the Dopamine Receptor D2 (DRD2) dopamine receptor. Furthermore, TaqA1 allele is associated with other reward and reinforcement disorders, such as substance abuse and other psychiatric disorders. Reviews of these studies suggest that pathological gambling and dopamine are linked; however, the studies that succeed in controlling for race or ethnicity, and obtain DSM-IV diagnoses do not show a relationship between TaqA1 allelic frequencies and the diagnostic of pathological gambling.[50]

Schizophrenia edit

While there is evidence that the dopamine system is involved in schizophrenia, the theory that hyperactive dopaminergic signal transduction induces the disease is controversial. Psychostimulants, such as amphetamine and cocaine, indirectly increase dopamine signaling; large doses and prolonged use can induce symptoms that resemble schizophrenia. Additionally, many antipsychotic drugs target dopamine receptors, especially D2 receptors.

Genetic hypertension edit

Dopamine receptor mutations can cause genetic hypertension in humans.[52] This can occur in animal models and humans with defective dopamine receptor activity, particularly D1.[24]

Parkinson's disease edit

Parkinson's disease is associated with the loss of cells responsible for dopamine synthesis and other neurodegenerative events.[50] Parkinson's disease patients are treated with medications which help to replenish dopamine availability, allowing relatively normal brain function and neurotransmission.[53] Research shows that Parkinson's disease is linked to the class of dopamine agonists instead of specific agents. Reviews touch upon the need to control and regulate dopamine doses for Parkinson's patients with a history of addiction, and those with variable tolerance or sensitivity to dopamine.[54]

Dopamine regulation edit

Dopamine receptors are typically stable, however sharp (and sometimes prolonged) increases or decreases in dopamine levels can downregulate (reduce the numbers of) or upregulate (increase the numbers of) dopamine receptors.[55]

Haloperidol, and some other antipsychotics, have been shown to increase the binding capacity of the D2 receptor when used over long periods of time (i.e. increasing the number of such receptors).[56] Haloperidol increased the number of binding sites by 98% above baseline in the worst cases, and yielded significant dyskinesia side effects.

Addictive stimuli have variable effects on dopamine receptors, depending on the particular stimulus.[57] According to one study,[58] cocaine, opioids like heroin, amphetamine, alcohol, and nicotine cause decreases in D2 receptor quantity. A similar association has been linked to food addiction, with a low availability of dopamine receptors present in people with greater food intake.[59][60] A recent news article[61] summarized a U.S. DOE Brookhaven National Laboratory study showing that increasing dopamine receptors with genetic therapy temporarily decreased cocaine consumption by up to 75%. The treatment was effective for 6 days. Cocaine upregulates D3 receptors in the nucleus accumbens, further reinforcing drug seeking behavior.[62] and Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain,[63] Caffeine, or other more selective adenosine A2A receptor antagonists, causes significantly less motor stimulation in dopamine D2 receptor.[64]

Certain stimulants will enhance cognition in the general population (e.g., direct or indirect mesocortical DRD1 agonists as a class), but only when used at low (therapeutic) concentrations.[65][66][67] Relatively high doses of dopaminergic stimulants will result in cognitive deficits.[66][67]

Summary of addiction-related plasticity
Form of neuroplasticity
or behavioral plasticity
Type of reinforcer Sources
Opiates Psychostimulants High fat or sugar food Sexual intercourse Physical exercise
(aerobic)
Environmental
enrichment
ΔFosB expression in
nucleus accumbens D1-type MSNsTooltip medium spiny neurons
[57]
Behavioral plasticity
Escalation of intake Yes Yes Yes [57]
Psychostimulant
cross-sensitization
Yes Not applicable Yes Yes Attenuated Attenuated [57]
Psychostimulant
self-administration
[57]
Psychostimulant
conditioned place preference
[57]
Reinstatement of drug-seeking behavior [57]
Neurochemical plasticity
CREBTooltip cAMP response element-binding protein phosphorylation
in the nucleus accumbens
[57]
Sensitized dopamine response
in the nucleus accumbens
No Yes No Yes [57]
Altered striatal dopamine signaling DRD2, ↑DRD3 DRD1, ↓DRD2, ↑DRD3 DRD1, ↓DRD2, ↑DRD3 DRD2 DRD2 [57]
Altered striatal opioid signaling No change or
μ-opioid receptors
μ-opioid receptors
κ-opioid receptors
μ-opioid receptors μ-opioid receptors No change No change [57]
Changes in striatal opioid peptides dynorphin
No change: enkephalin
dynorphin enkephalin dynorphin dynorphin [57]
Mesocorticolimbic synaptic plasticity
Number of dendrites in the nucleus accumbens [57]
Dendritic spine density in
the nucleus accumbens
[57]

See also edit

References edit

  1. ^ Rondou P, Haegeman G, Van Craenenbroeck K (June 2010). "The dopamine D4 receptor: biochemical and signalling properties". Cellular and Molecular Life Sciences. 67 (12): 1971–86. doi:10.1007/s00018-010-0293-y. PMID 20165900. S2CID 21432517.
  2. ^ Girault JA, Greengard P (2004). "The neurobiology of dopamine signaling". Arch. Neurol. 61 (5): 641–4. doi:10.1001/archneur.61.5.641. PMID 15148138.
  3. ^ Cools AR, Van Rossum JM (1976). "Excitation-mediating and inhibition-mediating dopamine-receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data". Psychopharmacologia. 45 (3): 243–254. doi:10.1007/bf00421135. PMID 175391. S2CID 40366909.
  4. ^ Ellenbroek BA, Homberg J, Verheij M, Spooren W, van den Bos R, Martens G (2014). "Alexander Rudolf Cools (1942-2013)". Psychopharmacology. 231 (11): 2219–2222. doi:10.1007/s00213-014-3583-5. PMID 24770629.
  5. ^ a b c Contreras F, Fouillioux C, Bolívar A, Simonovis N, Hernández-Hernández R, Armas-Hernandez MJ, et al. (2002). "Dopamine, hypertension and obesity". J Hum Hypertens. 16 (Suppl 1): S13–7. doi:10.1038/sj.jhh.1001334. PMID 11986886.
  6. ^ Hurley MJ, Jenner P (2006). "What has been learnt from study of dopamine receptors in Parkinson's disease?". Pharmacol. Ther. 111 (3): 715–28. doi:10.1016/j.pharmthera.2005.12.001. PMID 16458973.
  7. ^ a b Neve KA, Seamans JK, Trantham-Davidson H (August 2004). "Dopamine receptor signaling". Journal of Receptor and Signal Transduction Research. 24 (3): 165–205. doi:10.1081/RRS-200029981. PMID 15521361. S2CID 12407397.
  8. ^ Neves SR, Ram PT, Iyengar R (2002). "G protein pathways". Science. 296 (5573): 1636–9. Bibcode:2002Sci...296.1636N. doi:10.1126/science.1071550. PMID 12040175. S2CID 20136388.
  9. ^ a b "Introduction to Neuroscience".
  10. ^ Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G (1998). "D3 dopamine receptor mRNA is widely expressed in the human brain". Brain Res. 779 (1–2): 58–74. doi:10.1016/S0006-8993(97)01078-0. PMID 9473588. S2CID 46096849.
  11. ^ NCBI Database
  12. ^ Manor I, Tyano S, Eisenberg J, Bachner-Melman R, Kotler M, Ebstein RP (2002). "The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA)". Mol. Psychiatry. 7 (7): 790–4. doi:10.1038/sj.mp.4001078. PMID 12192625.
  13. ^ Langley K, Marshall L, van den Bree M, Thomas H, Owen M, O'Donovan M, et al. (2004). "Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD". Am J Psychiatry. 161 (1): 133–8. doi:10.1176/appi.ajp.161.1.133. PMID 14702261. S2CID 25892078.
  14. ^ Kustanovich V, Ishii J, Crawford L, Yang M, McGough JJ, McCracken JT, et al. (2004). "Transmission disequilibrium testing of dopamine-related candidate gene polymorphisms in ADHD: confirmation of association of ADHD with DRD4 and DRD5". Mol. Psychiatry. 9 (7): 711–7. doi:10.1038/sj.mp.4001466. PMID 14699430.
  15. ^ Beaulieu JM, Espinoza S, Gainetdinov RR (2015). "Dopamine receptors – IUPHAR Review 13". Br. J. Pharmacol. 172 (1): 1–23. doi:10.1111/bph.12906. PMC 4280963. PMID 25671228.
  16. ^ Borroto-Escuela DO, Brito I, Romero-Fernandez W, et al. (May 2014). "The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components". Int J Mol Sci. 15 (5): 8570–90. doi:10.3390/ijms15058570. PMC 4057749. PMID 24830558.
  17. ^ Agnati LF, Guidolin D, Cervetto C, Borroto-Escuela DO, Fuxe K (January 2016). "Role of iso-receptors in receptor-receptor interactions with a focus on dopamine iso-receptor complexes". Rev Neurosci. 27 (1): 1–25. doi:10.1515/revneuro-2015-0024. PMID 26418645.
  18. ^ a b Beaulieu JM, Espinoza S, Gainetdinov RR (January 2015). "Dopamine receptors – IUPHAR Review 13". British Journal of Pharmacology. 172 (1): 1–23. doi:10.1111/bph.12906. PMC 4280963. PMID 25671228.
  19. ^ Del'guidice T, Lemasson M, Beaulieu JM (2011). "Role of Beta-arrestin 2 downstream of dopamine receptors in the Basal Ganglia". Frontiers in Neuroanatomy. 5: 58. doi:10.3389/fnana.2011.00058. PMC 3167352. PMID 21922001.
  20. ^ Williams GV, Castner SA (2006). "Under the curve: critical issues for elucidating D1 receptor function in working memory". Neuroscience. 139 (1): 263–76. doi:10.1016/j.neuroscience.2005.09.028. PMID 16310964. S2CID 20906770.
  21. ^ Webster R (2001). Neurotransmitters, drugs and brain function (Repr. ed.). Chichester: Wiley. p. 137. ISBN 978-0-471-97819-0.
  22. ^ Ricci A, Mignini F, Tomassoni D, Amenta F (2006). "Dopamine receptor subtypes in the human pulmonary arterial tree". Autonomic and Autacoid Pharmacology. 26 (4): 361–9. doi:10.1111/j.1474-8673.2006.00376.x. PMID 16968475.
  23. ^ Cavallotti C, Massimo M, Paolo B, Maurizio S, Fiorenzo M (2010). "Dopamine receptor subtypes in the native human heart". Heart and Vessels. 25 (5): 432–7. doi:10.1007/s00380-009-1224-4. hdl:11573/230067. PMID 20676967. S2CID 36507640.
  24. ^ a b c d Hussain T, Lokhandwala MF (2003). "Renal dopamine receptors and hypertension". Exp. Biol. Med. (Maywood). 228 (2): 134–42. doi:10.1177/153537020322800202. PMID 12563019. S2CID 10896819.
  25. ^ Ricci A, Bronzetti E, Fedele F, Ferrante F, Zaccheo D, Amenta F (1998). "Pharmacological characterization and autoradiographic localization of a putative dopamine D4 receptor in the heart". J Auton Pharmacol. 18 (2): 115–21. doi:10.1046/j.1365-2680.1998.1820115.x. hdl:11573/464054. PMID 9730266.
  26. ^ Leung PS (2010), "Overview of the Pancreas", The Renin-Angiotensin System: Current Research Progress in The Pancreas, Advances in Experimental Medicine and Biology, vol. 690, Dordrecht: Springer Netherlands, pp. 3–12, doi:10.1007/978-90-481-9060-7_1, ISBN 978-90-481-9059-1, PMID 20700834, retrieved 12 April 2024
  27. ^ Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH, et al. (January 2019). "Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention". Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 13 (1): 364–372. doi:10.1016/j.dsx.2018.10.008. PMID 30641727.
  28. ^ Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, et al. (November 2005). "Dopamine D2-like Receptors Are Expressed in Pancreatic Beta Cells and Mediate Inhibition of Insulin Secretion". Journal of Biological Chemistry. 280 (44): 36824–36832. doi:10.1074/jbc.M505560200. PMID 16129680.
  29. ^ Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, et al. (November 2005). "Dopamine D2-like Receptors Are Expressed in Pancreatic Beta Cells and Mediate Inhibition of Insulin Secretion". Journal of Biological Chemistry. 280 (44): 36824–36832. doi:10.1074/jbc.M505560200. PMID 16129680.
  30. ^ Liu M, Ren L, Zhong X, Ding Y, Liu T, Liu Z, et al. (7 April 2020). "D2-Like Receptors Mediate Dopamine-Inhibited Insulin Secretion via Ion Channels in Rat Pancreatic β-Cells". Frontiers in Endocrinology. 11: 152. doi:10.3389/fendo.2020.00152. ISSN 1664-2392. PMC 7154177. PMID 32318020.
  31. ^ Aslanoglou D, Bertera S, Sánchez-Soto M, Benjamin Free R, Lee J, Zong W, et al. (16 February 2021). "Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors". Translational Psychiatry. 11 (1): 59. doi:10.1038/s41398-020-01171-z. ISSN 2158-3188. PMC 7884786. PMID 33589583.
  32. ^ Kaar SJ, Natesan S, McCutcheon R, Howes OD (August 2020). "Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology". Neuropharmacology. 172: 107704. doi:10.1016/j.neuropharm.2019.107704. PMID 31299229.
  33. ^ Muench J, Hamer AM (1 March 2010). "Adverse effects of antipsychotic medications". American Family Physician. 81 (5): 617–622. ISSN 1532-0650. PMID 20187598.
  34. ^ Nadal R (September 2001). "Pharmacology of the Atypical Antipsychotic Remoxipride, a Dopamine D 2 Receptor Antagonist". CNS Drug Reviews. 7 (3): 265–282. doi:10.1111/j.1527-3458.2001.tb00199.x. ISSN 1080-563X. PMC 6741677. PMID 11607043.
  35. ^ Kane JM, Correll CU (15 September 2010). "Past and Present Progress in the Pharmacologic Treatment of Schizophrenia". The Journal of Clinical Psychiatry. 71 (9): 1115–1124. doi:10.4088/JCP.10r06264yel. ISSN 0160-6689. PMC 3065240. PMID 20923620.
  36. ^ Hassanabad MF, Fatehi M (18 January 2019). "Current Views on Dopaminergic Drugs Affecting Glucose Homeostasis". Current Diabetes Reviews. 15 (2): 93–99. doi:10.2174/1573399814666180424123912. PMID 29692257.
  37. ^ Schneier FR, Liebowitz MR, Abi-Dargham A, Zea-Ponce Y, Lin SH, Laruelle M (2000). "Low dopamine D(2) receptor binding potential in social phobia". Am J Psychiatry. 157 (3): 457–459. doi:10.1176/appi.ajp.157.3.457. PMID 10698826.
  38. ^ a b c Kienast T, Heinz A (2006). "Dopamine and the diseased brain". CNS Neurol Disord Drug Targets. 5 (1): 109–31. doi:10.2174/187152706784111560. PMID 16613557.
  39. ^ Fuxe K, Manger P, Genedani S, Agnati L (2006). "The nigrostriatal DA pathway and Parkinson's disease". Parkinson's Disease and Related Disorders. Journal of Neural Transmission. Supplementa. Vol. 70. pp. 71–83. doi:10.1007/978-3-211-45295-0_13. ISBN 978-3-211-28927-3. PMID 17017512. {{cite book}}: |journal= ignored (help)
  40. ^ Mihara K, Kondo T, Suzuki A, Yasui-Furukori N, Ono S, Sano A, et al. (2003). "Relationship between functional dopamine D2 and D3 receptors gene polymorphisms and neuroleptic malignant syndrome". Am. J. Med. Genet. B Neuropsychiatr. Genet. 117B (1): 57–60. doi:10.1002/ajmg.b.10025. PMID 12555236. S2CID 44866985.
  41. ^ Faraone SV, Khan SA (2006). "Candidate gene studies of attention-deficit/hyperactivity disorder". J Clin Psychiatry. 67 (Suppl 8): 13–20. PMID 16961425.
  42. ^ a b Hummel M, Unterwald EM (2002). "D1 dopamine receptor: a putative neurochemical and behavioral link to cocaine action". J. Cell. Physiol. 191 (1): 17–27. doi:10.1002/jcp.10078. PMID 11920678. S2CID 40444893.
  43. ^ a b Gornick MC, Addington A, Shaw P, Bobb AJ, Sharp W, Greenstein D, et al. (2007). "Association of the dopamine receptor D4 (DRD4) gene 7-repeat allele with children with attention-deficit/hyperactivity disorder (ADHD): an update". Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B (3): 379–82. doi:10.1002/ajmg.b.30460. PMID 17171657. S2CID 25065281.
  44. ^ Schoots O, Van Tol HH (2003). "The human dopamine D4 receptor repeat sequences modulate expression". Pharmacogenomics J. 3 (6): 343–8. doi:10.1038/sj.tpj.6500208. PMID 14581929.
  45. ^ Berridge KC, Robinson TE (1998). "What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?". Brain Research. Brain Research Reviews. 28 (3): 309–369. doi:10.1016/s0165-0173(98)00019-8. PMID 9858756. S2CID 11959878.
  46. ^ Liggins J, Pihl RO, Benkelfat C, Leyton M (2012). "The dopamine augmenter L-DOPA does not affect positive mood in healthy human volunteers". PLOS ONE. 7 (1): e28370. Bibcode:2012PLoSO...728370L. doi:10.1371/journal.pone.0028370. ISSN 1932-6203. PMC 3251561. PMID 22238577.
  47. ^ Olney JJ, Warlow SM, Naffziger EE, Berridge KC (2018). "Current perspectives on incentive salience and applications to clinical disorders". Current Opinion in Behavioral Sciences. 22: 59–69. doi:10.1016/j.cobeha.2018.01.007. ISSN 2352-1546. PMC 5831552. PMID 29503841.
  48. ^ a b "Drugs and the Brain". National Institute on Drug Abuse. 22 March 2022. Retrieved 21 August 2022.
  49. ^ a b Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, et al. (2004). "Dopamine and drug addiction: the nucleus accumbens shell connection". Neuropharmacology. 47 (Suppl 1): 227–41. doi:10.1016/j.neuropharm.2004.06.032. PMID 15464140. S2CID 25983940.
  50. ^ a b c Potenza MN (October 2008). "Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363 (1507): 3181–9. doi:10.1098/rstb.2008.0100. PMC 2607329. PMID 18640909.
  51. ^ Leibenluft E (October 1999). "Gender differences in major depressive disorder and bipolar disorder". CNS Spectrums. 4 (10): 25–33. doi:10.1017/S1092852900012335. PMID 18438310. S2CID 20594850.
  52. ^ Jose PA, Eisner GM, Felder RA (2003). "Regulation of blood pressure by dopamine receptors". Nephron Physiol. 95 (2): 19–27. doi:10.1159/000073676. PMID 14610323. S2CID 28595227.
  53. ^ Lang AE, Obeso JA (May 2004). "Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough". The Lancet. Neurology. 3 (5): 309–16. doi:10.1016/S1474-4422(04)00740-9. PMID 15099546. S2CID 6551470.
  54. ^ Nestler EJ (1 January 2004). "Molecular mechanisms of drug addiction". Neuropharmacology. 47 (Suppl 1): 24–32. doi:10.1016/j.neuropharm.2004.06.031. PMID 15464123. S2CID 11266116.
  55. ^ Scheler G (2004). "Regulation of neuromodulator receptor efficacy--implications for whole-neuron and synaptic plasticity". Prog. Neurobiol. 72 (6): 399–415. arXiv:q-bio/0401039. doi:10.1016/j.pneurobio.2004.03.008. PMID 15177784. S2CID 9353254.
  56. ^ Silvestri S, Seeman MV, Negrete JC, Houle S, Shammi CM, Remington GJ, et al. (2000). "Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study". Psychopharmacology. 152 (2): 174–80. doi:10.1007/s002130000532. PMID 11057521. S2CID 20804595.
  57. ^ a b c d e f g h i j k l m n Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–22. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. Cross-sensitization is also bidirectional, as a history of amphetamine administration facilitates sexual behavior and enhances the associated increase in NAc DA ... As described for food reward, sexual experience can also lead to activation of plasticity-related signaling cascades. The transcription factor delta FosB is increased in the NAc, PFC, dorsal striatum, and VTA following repeated sexual behavior (Wallace et al., 2008; Pitchers et al., 2010b). This natural increase in delta FosB or viral overexpression of delta FosB within the NAc modulates sexual performance, and NAc blockade of delta FosB attenuates this behavior (Hedges et al, 2009; Pitchers et al., 2010b). Further, viral overexpression of delta FosB enhances the conditioned place preference for an environment paired with sexual experience (Hedges et al., 2009). ... In some people, there is a transition from "normal" to compulsive engagement in natural rewards (such as food or sex), a condition that some have termed behavioral or non-drug addictions (Holden, 2001; Grant et al., 2006a). ... In humans, the role of dopamine signaling in incentive-sensitization processes has recently been highlighted by the observation of a dopamine dysregulation syndrome in some patients taking dopaminergic drugs. This syndrome is characterized by a medication-induced increase in (or compulsive) engagement in non-drug rewards such as gambling, shopping, or sex (Evans et al, 2006; Aiken, 2007; Lader, 2008)."Table 1"
  58. ^ Fehr C, Yakushev I, Hohmann N, Buchholz HG, Landvogt C, Deckers H, et al. (April 2008). "Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse". The American Journal of Psychiatry. 165 (4): 507–14. doi:10.1176/appi.ajp.2007.07020352. PMID 18316420.
  59. ^ Park P (9 August 2007). "Food Addiction: From Drugs to Donuts, Brain Activity May be the Key".
  60. ^ Johnson PM, Kenny PJ (May 2010). "Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats". Nature Neuroscience. 13 (5): 635–41. doi:10.1038/nn.2519. PMC 2947358. PMID 20348917.
  61. ^ "Gene Therapy For Addiction: Flooding Brain With 'Pleasure Chemical' Receptors Works On Cocaine, As On Alcohol". 18 April 2008.
  62. ^ Staley JK, Mash DC (October 1996). "Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities". The Journal of Neuroscience. 16 (19): 6100–6. doi:10.1523/JNEUROSCI.16-19-06100.1996. PMC 6579196. PMID 8815892.
  63. ^ Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS, Thanos PK, et al. (14 April 2015). "Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain". Translational Psychiatry. 5 (4): e549. doi:10.1038/tp.2015.46. ISSN 2158-3188. PMC 4462609. PMID 25871974.
  64. ^ Voiculescu M, Ghiță I, Segărceanu A, Fulga I, Coman O (2014). "Molecular and pharmacodynamic interactions between caffeine and dopaminergic system". Journal of Medicine and Life. 7 (Spec Iss 4): 30–38. ISSN 1844-122X. PMC 4813614. PMID 27057246.
  65. ^ Ilieva IP, Hook CJ, Farah MJ (January 2015). "Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis". J. Cogn. Neurosci. 27 (6): 1069–1089. doi:10.1162/jocn_a_00776. PMID 25591060. S2CID 15788121. The present meta-analysis was conducted to estimate the magnitude of the effects of methylphenidate and amphetamine on cognitive functions central to academic and occupational functioning, including inhibitory control, working memory, short-term episodic memory, and delayed episodic memory. In addition, we examined the evidence for publication bias. Forty-eight studies (total of 1,409 participants) were included in the analyses. We found evidence for small but significant stimulant enhancement effects on inhibitory control and short-term episodic memory. Small effects on working memory reached significance, based on one of our two analytical approaches. Effects on delayed episodic memory were medium in size. However, because the effects on long-term and working memory were qualified by evidence for publication bias, we conclude that the effect of amphetamine and methylphenidate on the examined facets of healthy cognition is probably modest overall. In some situations, a small advantage may be valuable, although it is also possible that healthy users resort to stimulants to enhance their energy and motivation more than their cognition. ... Earlier research has failed to distinguish whether stimulants' effects are small or whether they are nonexistent (Ilieva et al., 2013; Smith & Farah, 2011). The present findings supported generally small effects of amphetamine and methylphenidate on executive function and memory. Specifically, in a set of experiments limited to high-quality designs, we found significant enhancement of several cognitive abilities. ...

    The results of this meta-analysis cannot address the important issues of individual differences in stimulant effects or the role of motivational enhancement in helping perform academic or occupational tasks. However, they do confirm the reality of cognitive enhancing effects for normal healthy adults in general, while also indicating that these effects are modest in size.
  66. ^ a b Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 318. ISBN 978-0-07-148127-4. Mild dopaminergic stimulation of the prefrontal cortex enhances working memory. ...
    Therapeutic (relatively low) doses of psychostimulants, such as methylphenidate and amphetamine, improve performance on working memory tasks both in normal subjects and those with ADHD. Positron emission tomography (PET) demonstrates that methylphenidate decreases regional cerebral blood flow in the doroslateral prefrontal cortex and posterior parietal cortex while improving performance of a spatial working memory task. This suggests that cortical networks that normally process spatial working memory become more efficient in response to the drug. ... [It] is now believed that dopamine and norepinephrine, but not serotonin, produce the beneficial effects of stimulants on working memory. At abused (relatively high) doses, stimulants can interfere with working memory and cognitive control ... stimulants act not only on working memory function, but also on general levels of arousal and, within the nucleus accumbens, improve the saliency of tasks. Thus, stimulants improve performance on effortful but tedious tasks ... through indirect stimulation of dopamine and norepinephrine receptors.
  67. ^ a b Wood S, Sage JR, Shuman T, Anagnostaras SG (January 2014). "Psychostimulants and cognition: a continuum of behavioral and cognitive activation". Pharmacol. Rev. 66 (1): 193–221. doi:10.1124/pr.112.007054. PMC 3880463. PMID 24344115.

External links edit

  • . IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. Archived from the original on 1 February 2017. Retrieved 20 July 2006.
  • Zimmerberg, B., "Dopamine receptors: A representative family of metabotropic receptors, Multimedia Neuroscience Education Project (2002)
  • Scholarpedia article on Dopamine anatomy

dopamine, receptor, class, protein, coupled, receptors, that, prominent, vertebrate, central, nervous, system, activate, different, effectors, through, only, protein, coupling, also, signaling, through, different, protein, dopamine, receptor, interacting, prot. Dopamine receptors are a class of G protein coupled receptors that are prominent in the vertebrate central nervous system CNS Dopamine receptors activate different effectors through not only G protein coupling but also signaling through different protein dopamine receptor interacting proteins interactions 1 The neurotransmitter dopamine is the primary endogenous ligand for dopamine receptors Dopamine Dopamine receptors are implicated in many neurological processes including motivational and incentive salience cognition memory learning and fine motor control as well as modulation of neuroendocrine signaling Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders 2 Thus dopamine receptors are common neurologic drug targets antipsychotics are often dopamine receptor antagonists while psychostimulants are typically indirect agonists of dopamine receptors Contents 1 Subtypes 1 1 D1 like family 1 2 D2 like family 1 3 Receptor heteromers 2 Signaling mechanism 2 1 cAMP independent 3 Role in the central nervous system 4 Non CNS dopamine receptors 4 1 Cardio pulmonary system 4 2 Renal system 4 3 The Pancreas 5 In disease 5 1 Attention deficit hyperactivity disorder 5 2 Addictive drugs 5 3 Pathological gambling 5 4 Schizophrenia 5 5 Genetic hypertension 5 6 Parkinson s disease 6 Dopamine regulation 7 See also 8 References 9 External linksSubtypes editThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed Find sources Dopamine receptor news newspapers books scholar JSTOR March 2009 Learn how and when to remove this message The existence of multiple types of receptors for dopamine was first proposed in 1976 3 4 There are at least five subtypes of dopamine receptors D1 D2 D3 D4 and D5 The D1 and D5 receptors are members of the D1 like family of dopamine receptors whereas the D2 D3 and D4 receptors are members of the D2 like family There is also some evidence that suggests the existence of possible D6 and D7 dopamine receptors but such receptors have not been conclusively identified 5 At a global level D1 receptors have widespread expression throughout the brain Furthermore D1 2 receptor subtypes are found at 10 100 times the levels of the D3 5 subtypes 6 D1 like family edit The D1 like family receptors are coupled to the G protein Gsa D1 is also coupled to Golf Gsa subsequently activates adenylyl cyclase increasing the intracellular concentration of the second messenger cyclic adenosine monophosphate cAMP 7 D1 is encoded by the Dopamine receptor D1 gene DRD1 D5 is encoded by the Dopamine receptor D5 gene DRD5 D2 like family edit The D2 like family receptors are coupled to the G protein Gia which directly inhibits the formation of cAMP by inhibiting the enzyme adenylyl cyclase 8 D2 is encoded by the Dopamine receptor D2 gene DRD2 of which there are two forms D2Sh short and D2Lh long The D2Sh form is pre synaptically situated having modulatory functions viz autoreceptors which regulate neurotransmission via feedback mechanisms It affects synthesis storage and release of dopamine into the synaptic cleft 9 The D2Lh form may function as a classical post synaptic receptor i e transmit information in either an excitatory or an inhibitory fashion unless blocked by a receptor antagonist or a synthetic partial agonist 9 D3 is encoded by the Dopamine receptor D3 gene DRD3 Maximum expression of dopamine D3 receptors is noted in the islands of Calleja and nucleus accumbens 10 D4 is encoded by the Dopamine receptor D4 gene DRD4 The D4 receptor gene displays polymorphisms that differ in a variable number tandem repeat present within the coding sequence of exon 3 11 Some of these alleles are associated with greater incidence of certain disorders For example the D4 7 alleles have an established association with attention deficit hyperactivity disorder 12 13 14 Receptor heteromers edit Dopamine receptors have been shown to heteromerize with a number of other G protein coupled receptors 15 Especially the D2 receptor is considered a major hub within the GPCR heteromer network 16 Protomers consist ofIsoreceptors 17 D1 D2 D1 D3 D2 D3 D2 D4 D2 D5 Non isoreceptors D1 adenosine A1 D2 adenosine A2A D2 ghrelin receptor D2sh TAAR1 an autoreceptor heteromer D4 adrenoceptor a1B D4 adrenoceptor b1Signaling mechanism editDopamine receptor D1 and Dopamine receptor D5 are Gs coupled receptors that stimulate adenylyl cyclase to produce cAMP which in turn increases intracellular calcium and mediates a number of other functions The D2 class of receptors produce the opposite effect as they are Gai and or Gao coupled receptors which blocks the activity of adenylyl cyclase cAMP mediated protein kinase A activity also results in the phosphorylation of DARPP 32 an inhibitor of protein phosphatase 1 Sustained D1 receptor activity is kept in check by Cyclin dependent kinase 5 Dopamine receptor activation of Ca2 calmodulin dependent protein kinase II can be cAMP dependent or independent 18 The cAMP mediated pathway results in amplification of PKA phosphorylation activity which is normally kept in equilibrium by PP1 The DARPP 32 mediated PP1 inhibition amplifies PKA phosphorylation of AMPA NMDA and inward rectifying potassium channels increasing AMPA and NMDA currents while decreasing potassium conductance 7 cAMP independent edit D1 receptor agonism and D2 receptor blockade also increases mRNA translation by phosphorylating ribosomal protein s6 resulting in activation of mTOR The behavioral implications are unknown Dopamine receptors may also regulate ion channels and BDNF independent of cAMP possibly through direct interactions There is evidence that D1 receptor agonism regulates phospholipase C independent of cAMP however implications and mechanisms remain poorly understood D2 receptor signaling may mediate protein kinase B arrestin beta 2 and GSK 3 activity and inhibition of these proteins results in stunting of the hyperlocomotion in amphetamine treated rats Dopamine receptors can also transactivate Receptor tyrosine kinases 18 Beta Arrestin recruitment is mediated by G protein kinases that phosphorylate and inactivate dopamine receptors after stimulation While beta arrestin plays a role in receptor desensitization it may also be critical in mediating downstream effects of dopamine receptors Beta arrestin has been shown to form complexes with MAP kinase leading to activation of extracellular signal regulated kinases Furthermore this pathway has been demonstrated to be involved in the locomotor response mediated by dopamine receptor D1 Dopamine receptor D2 stimulation results in the formation of an Akt Beta arrestin PP2A protein complex that inhibits Akt through PP2A phosphorylation therefore disinhibiting GSK 3 19 Role in the central nervous system editFurther information Neurotransmitter Brain neurotransmitter systems Further information Dopaminergic pathways Dopamine receptors control neural signaling that modulates many important behaviors such as spatial working memory 20 Dopamine also plays an important role in the reward system incentive salience cognition prolactin release emesis and motor function 21 Non CNS dopamine receptors editCardio pulmonary system edit In humans the pulmonary artery expresses D1 D2 D4 and D5 and receptor subtypes which may account for vasodilatory effects of dopamine in the blood 22 Such receptor subtypes have also been discovered in the epicardium myocardium and endocardium of the heart 23 In rats D1 like receptors are present on the smooth muscle of the blood vessels in most major organs 24 D4 receptors have been identified in the atria of rat and human hearts 25 Dopamine increases myocardial contractility and cardiac output without changing heart rate by signaling through dopamine receptors 5 Renal system edit Dopamine receptors are present along the nephron in the kidney with proximal tubule epithelial cells showing the highest density 24 In rats D1 like receptors are present on the juxtaglomerular apparatus and on renal tubules while D2 like receptors are present on the glomeruli zona glomerulosa cells of the adrenal cortex renal tubules and postganglionic sympathetic nerve terminals 24 Dopamine signaling affects diuresis and natriuresis 5 The Pancreas edit The role of the pancreas 26 is to secrete digestive enzymes via exocrine glands and hormones via endocrine glands Pancreatic endocrine glands composed of dense clusters of cells called the Islets of Langerhans secrete insulin glucagon and other hormones essential for metabolism and glycemic control Insulin secreting beta cells have been intensely researched due to their role in diabetes 27 Recent studies have found that beta cells as well as other endocrine and exocrine pancreatic cells express D2 receptors 28 and that beta cells co secrete dopamine along with insulin 29 Dopamine has been purported to be a negative regulator of insulin 30 31 meaning that bound D2 receptors inhibit insulin secretion The connection between dopamine and beta cells was discovered in part due to the metabolic side effects of certain antipsychotic medications 32 33 Traditional typical antipsychotic medications function by altering the dopamine pathway in the brain such as blocking D2 receptors 34 Common side effects of these medications include rapid weight gain and glycemic dysregulation among others 35 The effects of these medications are not limited to the brain so off target effects in other organs such as the pancreas have been proposed as a possible mechanism 36 In disease editDysfunction of dopaminergic neurotransmission in the CNS has been implicated in a variety of neuropsychiatric disorders including social phobia 37 Tourette s syndrome 38 Parkinson s disease 39 schizophrenia 38 neuroleptic malignant syndrome 40 attention deficit hyperactivity disorder ADHD 41 and drug and alcohol dependence 38 42 Attention deficit hyperactivity disorder edit Main article Attention deficit hyperactivity disorder Dopamine receptors have been recognized as important components in the mechanism of ADHD for many years Drugs used to treat ADHD including methylphenidate and amphetamine have significant effects on neuronal dopamine signaling Studies of gene association have implicated several genes within dopamine signaling pathways in particular the D4 7 variant of D4 has been consistently shown to be more frequent in ADHD patients 43 ADHD patients with the 4 7 allele also tend to have better cognitive performance and long term outcomes compared to ADHD patients without the 4 7 allele suggesting that the allele is associated with a more benign form of ADHD 43 The D4 7 allele has suppressed gene expression compared to other variants 44 Addictive drugs edit Main article Addiction Dopamine is the primary neurotransmitter involved in the reward and reinforcement mesolimbic pathway in the brain Although it was a long held belief that dopamine was the cause of pleasurable sensations such as euphoria many studies and experiments on the subject have demonstrated that this is not the case rather dopamine in the mesolimbic pathway is responsible for behaviour reinforcement wanting without producing any liking sensation on its own 45 46 47 48 Mesolimbic dopamine and its related receptors are a primary mechanism through which drug seeking behaviour develops Incentive Salience and many recreational drugs such as cocaine and substituted amphetamines inhibit the dopamine transporter DAT the protein responsible for removing dopamine from the neural synapse When DAT activity is blocked the synapse floods with dopamine and increases dopaminergic signaling When this occurs particularly in the nucleus accumbens 49 increased D1 42 and decreased D2 49 receptor signaling mediates the incentive salience factor and can significantly increase positive associations with the drug in the brain 48 Pathological gambling edit Main article Problem gambling Pathological gambling is classified as a mental health disorder that has been linked to obsessive compulsive spectrum disorder and behavioral addiction Dopamine has been associated with reward and reinforcement in relation to behaviors and drug addiction 50 The role between dopamine and pathological gambling may be a link between cerebrospinal fluid measures of dopamine and dopamine metabolites in pathological gambling 51 Molecular genetic study shows that pathological gambling is associated with the TaqA1 allele of the Dopamine Receptor D2 DRD2 dopamine receptor Furthermore TaqA1 allele is associated with other reward and reinforcement disorders such as substance abuse and other psychiatric disorders Reviews of these studies suggest that pathological gambling and dopamine are linked however the studies that succeed in controlling for race or ethnicity and obtain DSM IV diagnoses do not show a relationship between TaqA1 allelic frequencies and the diagnostic of pathological gambling 50 Schizophrenia edit Main article Dopamine hypothesis of schizophrenia While there is evidence that the dopamine system is involved in schizophrenia the theory that hyperactive dopaminergic signal transduction induces the disease is controversial Psychostimulants such as amphetamine and cocaine indirectly increase dopamine signaling large doses and prolonged use can induce symptoms that resemble schizophrenia Additionally many antipsychotic drugs target dopamine receptors especially D2 receptors Genetic hypertension edit Dopamine receptor mutations can cause genetic hypertension in humans 52 This can occur in animal models and humans with defective dopamine receptor activity particularly D1 24 Parkinson s disease edit Parkinson s disease is associated with the loss of cells responsible for dopamine synthesis and other neurodegenerative events 50 Parkinson s disease patients are treated with medications which help to replenish dopamine availability allowing relatively normal brain function and neurotransmission 53 Research shows that Parkinson s disease is linked to the class of dopamine agonists instead of specific agents Reviews touch upon the need to control and regulate dopamine doses for Parkinson s patients with a history of addiction and those with variable tolerance or sensitivity to dopamine 54 Dopamine regulation editSee also Yerkes Dodson law Dopamine receptors are typically stable however sharp and sometimes prolonged increases or decreases in dopamine levels can downregulate reduce the numbers of or upregulate increase the numbers of dopamine receptors 55 Haloperidol and some other antipsychotics have been shown to increase the binding capacity of the D2 receptor when used over long periods of time i e increasing the number of such receptors 56 Haloperidol increased the number of binding sites by 98 above baseline in the worst cases and yielded significant dyskinesia side effects Addictive stimuli have variable effects on dopamine receptors depending on the particular stimulus 57 According to one study 58 cocaine opioids like heroin amphetamine alcohol and nicotine cause decreases in D2 receptor quantity A similar association has been linked to food addiction with a low availability of dopamine receptors present in people with greater food intake 59 60 A recent news article 61 summarized a U S DOE Brookhaven National Laboratory study showing that increasing dopamine receptors with genetic therapy temporarily decreased cocaine consumption by up to 75 The treatment was effective for 6 days Cocaine upregulates D3 receptors in the nucleus accumbens further reinforcing drug seeking behavior 62 and Caffeine increases striatal dopamine D2 D3 receptor availability in the human brain 63 Caffeine or other more selective adenosine A2A receptor antagonists causes significantly less motor stimulation in dopamine D2 receptor 64 Certain stimulants will enhance cognition in the general population e g direct or indirect mesocortical DRD1 agonists as a class but only when used at low therapeutic concentrations 65 66 67 Relatively high doses of dopaminergic stimulants will result in cognitive deficits 66 67 Summary of addiction related plasticity Form of neuroplasticity or behavioral plasticity Type of reinforcer Sources Opiates Psychostimulants High fat or sugar food Sexual intercourse Physical exercise aerobic Environmentalenrichment DFosB expression innucleus accumbens D1 type MSNsTooltip medium spiny neurons 57 Behavioral plasticity Escalation of intake Yes Yes Yes 57 Psychostimulantcross sensitization Yes Not applicable Yes Yes Attenuated Attenuated 57 Psychostimulantself administration 57 Psychostimulantconditioned place preference 57 Reinstatement of drug seeking behavior 57 Neurochemical plasticity CREBTooltip cAMP response element binding protein phosphorylationin the nucleus accumbens 57 Sensitized dopamine responsein the nucleus accumbens No Yes No Yes 57 Altered striatal dopamine signaling DRD2 DRD3 DRD1 DRD2 DRD3 DRD1 DRD2 DRD3 DRD2 DRD2 57 Altered striatal opioid signaling No change or m opioid receptors m opioid receptors k opioid receptors m opioid receptors m opioid receptors No change No change 57 Changes in striatal opioid peptides dynorphinNo change enkephalin dynorphin enkephalin dynorphin dynorphin 57 Mesocorticolimbic synaptic plasticity Number of dendrites in the nucleus accumbens 57 Dendritic spine density inthe nucleus accumbens 57 See also editD2 short presynaptic Category Dopamine agonists Category Dopamine antagonistsReferences edit Rondou P Haegeman G Van Craenenbroeck K June 2010 The dopamine D4 receptor biochemical and signalling properties Cellular and Molecular Life Sciences 67 12 1971 86 doi 10 1007 s00018 010 0293 y PMID 20165900 S2CID 21432517 Girault JA Greengard P 2004 The neurobiology of dopamine signaling Arch Neurol 61 5 641 4 doi 10 1001 archneur 61 5 641 PMID 15148138 Cools AR Van Rossum JM 1976 Excitation mediating and inhibition mediating dopamine receptors a new concept towards a better understanding of electrophysiological biochemical pharmacological functional and clinical data Psychopharmacologia 45 3 243 254 doi 10 1007 bf00421135 PMID 175391 S2CID 40366909 Ellenbroek BA Homberg J Verheij M Spooren W van den Bos R Martens G 2014 Alexander Rudolf Cools 1942 2013 Psychopharmacology 231 11 2219 2222 doi 10 1007 s00213 014 3583 5 PMID 24770629 a b c Contreras F Fouillioux C Bolivar A Simonovis N Hernandez Hernandez R Armas Hernandez MJ et al 2002 Dopamine hypertension and obesity J Hum Hypertens 16 Suppl 1 S13 7 doi 10 1038 sj jhh 1001334 PMID 11986886 Hurley MJ Jenner P 2006 What has been learnt from study of dopamine receptors in Parkinson s disease Pharmacol Ther 111 3 715 28 doi 10 1016 j pharmthera 2005 12 001 PMID 16458973 a b Neve KA Seamans JK Trantham Davidson H August 2004 Dopamine receptor signaling Journal of Receptor and Signal Transduction Research 24 3 165 205 doi 10 1081 RRS 200029981 PMID 15521361 S2CID 12407397 Neves SR Ram PT Iyengar R 2002 G protein pathways Science 296 5573 1636 9 Bibcode 2002Sci 296 1636N doi 10 1126 science 1071550 PMID 12040175 S2CID 20136388 a b Introduction to Neuroscience Suzuki M Hurd YL Sokoloff P Schwartz JC Sedvall G 1998 D3 dopamine receptor mRNA is widely expressed in the human brain Brain Res 779 1 2 58 74 doi 10 1016 S0006 8993 97 01078 0 PMID 9473588 S2CID 46096849 NCBI Database Manor I Tyano S Eisenberg J Bachner Melman R Kotler M Ebstein RP 2002 The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family based design and impair performance on a continuous performance test TOVA Mol Psychiatry 7 7 790 4 doi 10 1038 sj mp 4001078 PMID 12192625 Langley K Marshall L van den Bree M Thomas H Owen M O Donovan M et al 2004 Association of the dopamine D4 receptor gene 7 repeat allele with neuropsychological test performance of children with ADHD Am J Psychiatry 161 1 133 8 doi 10 1176 appi ajp 161 1 133 PMID 14702261 S2CID 25892078 Kustanovich V Ishii J Crawford L Yang M McGough JJ McCracken JT et al 2004 Transmission disequilibrium testing of dopamine related candidate gene polymorphisms in ADHD confirmation of association of ADHD with DRD4 and DRD5 Mol Psychiatry 9 7 711 7 doi 10 1038 sj mp 4001466 PMID 14699430 Beaulieu JM Espinoza S Gainetdinov RR 2015 Dopamine receptors IUPHAR Review 13 Br J Pharmacol 172 1 1 23 doi 10 1111 bph 12906 PMC 4280963 PMID 25671228 Borroto Escuela DO Brito I Romero Fernandez W et al May 2014 The G protein coupled receptor heterodimer network GPCR HetNet and its hub components Int J Mol Sci 15 5 8570 90 doi 10 3390 ijms15058570 PMC 4057749 PMID 24830558 Agnati LF Guidolin D Cervetto C Borroto Escuela DO Fuxe K January 2016 Role of iso receptors in receptor receptor interactions with a focus on dopamine iso receptor complexes Rev Neurosci 27 1 1 25 doi 10 1515 revneuro 2015 0024 PMID 26418645 a b Beaulieu JM Espinoza S Gainetdinov RR January 2015 Dopamine receptors IUPHAR Review 13 British Journal of Pharmacology 172 1 1 23 doi 10 1111 bph 12906 PMC 4280963 PMID 25671228 Del guidice T Lemasson M Beaulieu JM 2011 Role of Beta arrestin 2 downstream of dopamine receptors in the Basal Ganglia Frontiers in Neuroanatomy 5 58 doi 10 3389 fnana 2011 00058 PMC 3167352 PMID 21922001 Williams GV Castner SA 2006 Under the curve critical issues for elucidating D1 receptor function in working memory Neuroscience 139 1 263 76 doi 10 1016 j neuroscience 2005 09 028 PMID 16310964 S2CID 20906770 Webster R 2001 Neurotransmitters drugs and brain function Repr ed Chichester Wiley p 137 ISBN 978 0 471 97819 0 Ricci A Mignini F Tomassoni D Amenta F 2006 Dopamine receptor subtypes in the human pulmonary arterial tree Autonomic and Autacoid Pharmacology 26 4 361 9 doi 10 1111 j 1474 8673 2006 00376 x PMID 16968475 Cavallotti C Massimo M Paolo B Maurizio S Fiorenzo M 2010 Dopamine receptor subtypes in the native human heart Heart and Vessels 25 5 432 7 doi 10 1007 s00380 009 1224 4 hdl 11573 230067 PMID 20676967 S2CID 36507640 a b c d Hussain T Lokhandwala MF 2003 Renal dopamine receptors and hypertension Exp Biol Med Maywood 228 2 134 42 doi 10 1177 153537020322800202 PMID 12563019 S2CID 10896819 Ricci A Bronzetti E Fedele F Ferrante F Zaccheo D Amenta F 1998 Pharmacological characterization and autoradiographic localization of a putative dopamine D4 receptor in the heart J Auton Pharmacol 18 2 115 21 doi 10 1046 j 1365 2680 1998 1820115 x hdl 11573 464054 PMID 9730266 Leung PS 2010 Overview of the Pancreas The Renin Angiotensin System Current Research Progress in The Pancreas Advances in Experimental Medicine and Biology vol 690 Dordrecht Springer Netherlands pp 3 12 doi 10 1007 978 90 481 9060 7 1 ISBN 978 90 481 9059 1 PMID 20700834 retrieved 12 April 2024 Tan SY Mei Wong JL Sim YJ Wong SS Mohamed Elhassan SA Tan SH et al January 2019 Type 1 and 2 diabetes mellitus A review on current treatment approach and gene therapy as potential intervention Diabetes amp Metabolic Syndrome Clinical Research amp Reviews 13 1 364 372 doi 10 1016 j dsx 2018 10 008 PMID 30641727 Rubi B Ljubicic S Pournourmohammadi S Carobbio S Armanet M Bartley C et al November 2005 Dopamine D2 like Receptors Are Expressed in Pancreatic Beta Cells and Mediate Inhibition of Insulin Secretion Journal of Biological Chemistry 280 44 36824 36832 doi 10 1074 jbc M505560200 PMID 16129680 Rubi B Ljubicic S Pournourmohammadi S Carobbio S Armanet M Bartley C et al November 2005 Dopamine D2 like Receptors Are Expressed in Pancreatic Beta Cells and Mediate Inhibition of Insulin Secretion Journal of Biological Chemistry 280 44 36824 36832 doi 10 1074 jbc M505560200 PMID 16129680 Liu M Ren L Zhong X Ding Y Liu T Liu Z et al 7 April 2020 D2 Like Receptors Mediate Dopamine Inhibited Insulin Secretion via Ion Channels in Rat Pancreatic b Cells Frontiers in Endocrinology 11 152 doi 10 3389 fendo 2020 00152 ISSN 1664 2392 PMC 7154177 PMID 32318020 Aslanoglou D Bertera S Sanchez Soto M Benjamin Free R Lee J Zong W et al 16 February 2021 Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors Translational Psychiatry 11 1 59 doi 10 1038 s41398 020 01171 z ISSN 2158 3188 PMC 7884786 PMID 33589583 Kaar SJ Natesan S McCutcheon R Howes OD August 2020 Antipsychotics Mechanisms underlying clinical response and side effects and novel treatment approaches based on pathophysiology Neuropharmacology 172 107704 doi 10 1016 j neuropharm 2019 107704 PMID 31299229 Muench J Hamer AM 1 March 2010 Adverse effects of antipsychotic medications American Family Physician 81 5 617 622 ISSN 1532 0650 PMID 20187598 Nadal R September 2001 Pharmacology of the Atypical Antipsychotic Remoxipride a Dopamine D 2 Receptor Antagonist CNS Drug Reviews 7 3 265 282 doi 10 1111 j 1527 3458 2001 tb00199 x ISSN 1080 563X PMC 6741677 PMID 11607043 Kane JM Correll CU 15 September 2010 Past and Present Progress in the Pharmacologic Treatment of Schizophrenia The Journal of Clinical Psychiatry 71 9 1115 1124 doi 10 4088 JCP 10r06264yel ISSN 0160 6689 PMC 3065240 PMID 20923620 Hassanabad MF Fatehi M 18 January 2019 Current Views on Dopaminergic Drugs Affecting Glucose Homeostasis Current Diabetes Reviews 15 2 93 99 doi 10 2174 1573399814666180424123912 PMID 29692257 Schneier FR Liebowitz MR Abi Dargham A Zea Ponce Y Lin SH Laruelle M 2000 Low dopamine D 2 receptor binding potential in social phobia Am J Psychiatry 157 3 457 459 doi 10 1176 appi ajp 157 3 457 PMID 10698826 a b c Kienast T Heinz A 2006 Dopamine and the diseased brain CNS Neurol Disord Drug Targets 5 1 109 31 doi 10 2174 187152706784111560 PMID 16613557 Fuxe K Manger P Genedani S Agnati L 2006 The nigrostriatal DA pathway and Parkinson s disease Parkinson s Disease and Related Disorders Journal of Neural Transmission Supplementa Vol 70 pp 71 83 doi 10 1007 978 3 211 45295 0 13 ISBN 978 3 211 28927 3 PMID 17017512 a href Template Cite book html title Template Cite book cite book a journal ignored help Mihara K Kondo T Suzuki A Yasui Furukori N Ono S Sano A et al 2003 Relationship between functional dopamine D2 and D3 receptors gene polymorphisms and neuroleptic malignant syndrome Am J Med Genet B Neuropsychiatr Genet 117B 1 57 60 doi 10 1002 ajmg b 10025 PMID 12555236 S2CID 44866985 Faraone SV Khan SA 2006 Candidate gene studies of attention deficit hyperactivity disorder J Clin Psychiatry 67 Suppl 8 13 20 PMID 16961425 a b Hummel M Unterwald EM 2002 D1 dopamine receptor a putative neurochemical and behavioral link to cocaine action J Cell Physiol 191 1 17 27 doi 10 1002 jcp 10078 PMID 11920678 S2CID 40444893 a b Gornick MC Addington A Shaw P Bobb AJ Sharp W Greenstein D et al 2007 Association of the dopamine receptor D4 DRD4 gene 7 repeat allele with children with attention deficit hyperactivity disorder ADHD an update Am J Med Genet B Neuropsychiatr Genet 144B 3 379 82 doi 10 1002 ajmg b 30460 PMID 17171657 S2CID 25065281 Schoots O Van Tol HH 2003 The human dopamine D4 receptor repeat sequences modulate expression Pharmacogenomics J 3 6 343 8 doi 10 1038 sj tpj 6500208 PMID 14581929 Berridge KC Robinson TE 1998 What is the role of dopamine in reward hedonic impact reward learning or incentive salience Brain Research Brain Research Reviews 28 3 309 369 doi 10 1016 s0165 0173 98 00019 8 PMID 9858756 S2CID 11959878 Liggins J Pihl RO Benkelfat C Leyton M 2012 The dopamine augmenter L DOPA does not affect positive mood in healthy human volunteers PLOS ONE 7 1 e28370 Bibcode 2012PLoSO 728370L doi 10 1371 journal pone 0028370 ISSN 1932 6203 PMC 3251561 PMID 22238577 Olney JJ Warlow SM Naffziger EE Berridge KC 2018 Current perspectives on incentive salience and applications to clinical disorders Current Opinion in Behavioral Sciences 22 59 69 doi 10 1016 j cobeha 2018 01 007 ISSN 2352 1546 PMC 5831552 PMID 29503841 a b Drugs and the Brain National Institute on Drug Abuse 22 March 2022 Retrieved 21 August 2022 a b Di Chiara G Bassareo V Fenu S De Luca MA Spina L Cadoni C et al 2004 Dopamine and drug addiction the nucleus accumbens shell connection Neuropharmacology 47 Suppl 1 227 41 doi 10 1016 j neuropharm 2004 06 032 PMID 15464140 S2CID 25983940 a b c Potenza MN October 2008 Review The neurobiology of pathological gambling and drug addiction an overview and new findings Philosophical Transactions of the Royal Society of London Series B Biological Sciences 363 1507 3181 9 doi 10 1098 rstb 2008 0100 PMC 2607329 PMID 18640909 Leibenluft E October 1999 Gender differences in major depressive disorder and bipolar disorder CNS Spectrums 4 10 25 33 doi 10 1017 S1092852900012335 PMID 18438310 S2CID 20594850 Jose PA Eisner GM Felder RA 2003 Regulation of blood pressure by dopamine receptors Nephron Physiol 95 2 19 27 doi 10 1159 000073676 PMID 14610323 S2CID 28595227 Lang AE Obeso JA May 2004 Challenges in Parkinson s disease restoration of the nigrostriatal dopamine system is not enough The Lancet Neurology 3 5 309 16 doi 10 1016 S1474 4422 04 00740 9 PMID 15099546 S2CID 6551470 Nestler EJ 1 January 2004 Molecular mechanisms of drug addiction Neuropharmacology 47 Suppl 1 24 32 doi 10 1016 j neuropharm 2004 06 031 PMID 15464123 S2CID 11266116 Scheler G 2004 Regulation of neuromodulator receptor efficacy implications for whole neuron and synaptic plasticity Prog Neurobiol 72 6 399 415 arXiv q bio 0401039 doi 10 1016 j pneurobio 2004 03 008 PMID 15177784 S2CID 9353254 Silvestri S Seeman MV Negrete JC Houle S Shammi CM Remington GJ et al 2000 Increased dopamine D2 receptor binding after long term treatment with antipsychotics in humans a clinical PET study Psychopharmacology 152 2 174 80 doi 10 1007 s002130000532 PMID 11057521 S2CID 20804595 a b c d e f g h i j k l m n Olsen CM December 2011 Natural rewards neuroplasticity and non drug addictions Neuropharmacology 61 7 1109 22 doi 10 1016 j neuropharm 2011 03 010 PMC 3139704 PMID 21459101 Cross sensitization is also bidirectional as a history of amphetamine administration facilitates sexual behavior and enhances the associated increase in NAc DA As described for food reward sexual experience can also lead to activation of plasticity related signaling cascades The transcription factor delta FosB is increased in the NAc PFC dorsal striatum and VTA following repeated sexual behavior Wallace et al 2008 Pitchers et al 2010b This natural increase in delta FosB or viral overexpression of delta FosB within the NAc modulates sexual performance and NAc blockade of delta FosB attenuates this behavior Hedges et al 2009 Pitchers et al 2010b Further viral overexpression of delta FosB enhances the conditioned place preference for an environment paired with sexual experience Hedges et al 2009 In some people there is a transition from normal to compulsive engagement in natural rewards such as food or sex a condition that some have termed behavioral or non drug addictions Holden 2001 Grant et al 2006a In humans the role of dopamine signaling in incentive sensitization processes has recently been highlighted by the observation of a dopamine dysregulation syndrome in some patients taking dopaminergic drugs This syndrome is characterized by a medication induced increase in or compulsive engagement in non drug rewards such as gambling shopping or sex Evans et al 2006 Aiken 2007 Lader 2008 Table 1 Fehr C Yakushev I Hohmann N Buchholz HG Landvogt C Deckers H et al April 2008 Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse The American Journal of Psychiatry 165 4 507 14 doi 10 1176 appi ajp 2007 07020352 PMID 18316420 Park P 9 August 2007 Food Addiction From Drugs to Donuts Brain Activity May be the Key Johnson PM Kenny PJ May 2010 Dopamine D2 receptors in addiction like reward dysfunction and compulsive eating in obese rats Nature Neuroscience 13 5 635 41 doi 10 1038 nn 2519 PMC 2947358 PMID 20348917 Gene Therapy For Addiction Flooding Brain With Pleasure Chemical Receptors Works On Cocaine As On Alcohol 18 April 2008 Staley JK Mash DC October 1996 Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities The Journal of Neuroscience 16 19 6100 6 doi 10 1523 JNEUROSCI 16 19 06100 1996 PMC 6579196 PMID 8815892 Volkow ND Wang GJ Logan J Alexoff D Fowler JS Thanos PK et al 14 April 2015 Caffeine increases striatal dopamine D2 D3 receptor availability in the human brain Translational Psychiatry 5 4 e549 doi 10 1038 tp 2015 46 ISSN 2158 3188 PMC 4462609 PMID 25871974 Voiculescu M Ghiță I Segărceanu A Fulga I Coman O 2014 Molecular and pharmacodynamic interactions between caffeine and dopaminergic system Journal of Medicine and Life 7 Spec Iss 4 30 38 ISSN 1844 122X PMC 4813614 PMID 27057246 Ilieva IP Hook CJ Farah MJ January 2015 Prescription Stimulants Effects on Healthy Inhibitory Control Working Memory and Episodic Memory A Meta analysis J Cogn Neurosci 27 6 1069 1089 doi 10 1162 jocn a 00776 PMID 25591060 S2CID 15788121 The present meta analysis was conducted to estimate the magnitude of the effects of methylphenidate and amphetamine on cognitive functions central to academic and occupational functioning including inhibitory control working memory short term episodic memory and delayed episodic memory In addition we examined the evidence for publication bias Forty eight studies total of 1 409 participants were included in the analyses We found evidence for small but significant stimulant enhancement effects on inhibitory control and short term episodic memory Small effects on working memory reached significance based on one of our two analytical approaches Effects on delayed episodic memory were medium in size However because the effects on long term and working memory were qualified by evidence for publication bias we conclude that the effect of amphetamine and methylphenidate on the examined facets of healthy cognition is probably modest overall In some situations a small advantage may be valuable although it is also possible that healthy users resort to stimulants to enhance their energy and motivation more than their cognition Earlier research has failed to distinguish whether stimulants effects are small or whether they are nonexistent Ilieva et al 2013 Smith amp Farah 2011 The present findings supported generally small effects of amphetamine and methylphenidate on executive function and memory Specifically in a set of experiments limited to high quality designs we found significant enhancement of several cognitive abilities The results of this meta analysis cannot address the important issues of individual differences in stimulant effects or the role of motivational enhancement in helping perform academic or occupational tasks However they do confirm the reality of cognitive enhancing effects for normal healthy adults in general while also indicating that these effects are modest in size a b Malenka RC Nestler EJ Hyman SE 2009 Chapter 13 Higher Cognitive Function and Behavioral Control In Sydor A Brown RY eds Molecular Neuropharmacology A Foundation for Clinical Neuroscience 2nd ed New York McGraw Hill Medical p 318 ISBN 978 0 07 148127 4 Mild dopaminergic stimulation of the prefrontal cortex enhances working memory Therapeutic relatively low doses of psychostimulants such as methylphenidate and amphetamine improve performance on working memory tasks both in normal subjects and those with ADHD Positron emission tomography PET demonstrates that methylphenidate decreases regional cerebral blood flow in the doroslateral prefrontal cortex and posterior parietal cortex while improving performance of a spatial working memory task This suggests that cortical networks that normally process spatial working memory become more efficient in response to the drug It is now believed that dopamine and norepinephrine but not serotonin produce the beneficial effects of stimulants on working memory At abused relatively high doses stimulants can interfere with working memory and cognitive control stimulants act not only on working memory function but also on general levels of arousal and within the nucleus accumbens improve the saliency of tasks Thus stimulants improve performance on effortful but tedious tasks through indirect stimulation of dopamine and norepinephrine receptors a b Wood S Sage JR Shuman T Anagnostaras SG January 2014 Psychostimulants and cognition a continuum of behavioral and cognitive activation Pharmacol Rev 66 1 193 221 doi 10 1124 pr 112 007054 PMC 3880463 PMID 24344115 External links edit Dopamine Receptors IUPHAR Database of Receptors and Ion Channels International Union of Basic and Clinical Pharmacology Archived from the original on 1 February 2017 Retrieved 20 July 2006 Zimmerberg B Dopamine receptors A representative family of metabotropic receptors Multimedia Neuroscience Education Project 2002 Scholarpedia article on Dopamine anatomy Retrieved from https en wikipedia org w index php title Dopamine receptor amp oldid 1220107621, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.