fbpx
Wikipedia

Hormone

A hormone (from the Greek participle ὁρμῶν, "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior.[1] Hormones are required for the correct development of animals, plants and fungi. Due to the broad definition of a hormone (as a signaling molecule that exerts its effects far from its site of production), numerous kinds of molecules can be classified as hormones. Among the substances that can be considered hormones, are eicosanoids (e.g. prostaglandins and thromboxanes), steroids (e.g. oestrogen and brassinosteroid), amino acid derivatives (e.g. epinephrine and auxin), protein or peptides (e.g. insulin and CLE peptides), and gases (e.g. ethylene and nitric oxide).

Left: A hormone feedback loop in a female adult. (1) Follicle-Stimulating Hormone, (2) Luteinizing Hormone, (3) Progesterone, (4) Estradiol. Right: Auxin transport from leaves to roots in Arabidopsis thaliana

Hormones are used to communicate between organs and tissues. In vertebrates, hormones are responsible for regulating a variety of physiological processes and behavioral activities such as digestion, metabolism, respiration, sensory perception, sleep, excretion, lactation, stress induction, growth and development, movement, reproduction, and mood manipulation.[2][3][4] In plants, hormones modulate almost all aspects of development, from germination to senescence.[5]

Hormones affect distant cells by binding to specific receptor proteins in the target cell, resulting in a change in cell function. When a hormone binds to the receptor, it results in the activation of a signal transduction pathway that typically activates gene transcription, resulting in increased expression of target proteins. Hormones can also act in non-genomic pathways that synergize with genomic effects.[6] Water-soluble hormones (such as peptides and amines) generally act on the surface of target cells via second messengers. Lipid soluble hormones, (such as steroids) generally pass through the plasma membranes of target cells (both cytoplasmic and nuclear) to act within their nuclei. Brassinosteroids, a type of polyhydroxysteroids, are a sixth class of plant hormones and may be useful as an anticancer drug for endocrine-responsive tumors to cause apoptosis and limit plant growth. Despite being lipid soluble, they nevertheless attach to their receptor at the cell surface.[7]

In vertebrates, endocrine glands are specialized organs that secrete hormones into the endocrine signaling system. Hormone secretion occurs in response to specific biochemical signals and is often subject to negative feedback regulation. For instance, high blood sugar (serum glucose concentration) promotes insulin synthesis. Insulin then acts to reduce glucose levels and maintain homeostasis, leading to reduced insulin levels. Upon secretion, water-soluble hormones are readily transported through the circulatory system. Lipid-soluble hormones must bond to carrier plasma glycoproteins (e.g., thyroxine-binding globulin (TBG)) to form ligand-protein complexes. Some hormones, such as insulin and growth hormones, can be released into the bloodstream already fully active. Other hormones, called prohormones, must be activated in certain cells through a series of steps that are usually tightly controlled.[8] The endocrine system secretes hormones directly into the bloodstream, typically via fenestrated capillaries, whereas the exocrine system secretes its hormones indirectly using ducts. Hormones with paracrine function diffuse through the interstitial spaces to nearby target tissue.

Plants lack specialized organs for the secretion of hormones, although there is spatial distribution of hormone production. For example, the hormone auxin is produced mainly at the tips of young leaves and in the shoot apical meristem. The lack of specialised glands means that the main site of hormone production can change throughout the life of a plant, and the site of production is dependent on the plant's age and environment.[9]

Introduction and overview Edit

Hormonal signaling involves the following steps:[10]

  1. Biosynthesis of a particular hormone in a particular tissue.
  2. Storage and secretion of the hormone.
  3. Transport of the hormone to the target cell(s).
  4. Recognition of the hormone by an associated cell membrane or intracellular receptor protein.
  5. Relay and amplification of the received hormonal signal via a signal transduction process: This then leads to a cellular response. The reaction of the target cells may then be recognized by the original hormone-producing cells, leading to a downregulation in hormone production. This is an example of a homeostatic negative feedback loop.
  6. Breakdown of the hormone.

Hormone producing cells are found in the endocrine glands, such as the thyroid gland, ovaries, and testes.[11] Exocytosis and other methods of membrane transport are used to secrete hormones when the endocrine glands are signaled. The hierarchical model is an oversimplification of the hormonal signaling process. Cellular recipients of a particular hormonal signal may be one of several cell types that reside within a number of different tissues, as is the case for insulin, which triggers a diverse range of systemic physiological effects. Different tissue types may also respond differently to the same hormonal signal.[citation needed]

Discovery Edit

Arnold Adolph Berthold (1849) Edit

Arnold Adolph Berthold was a German physiologist and zoologist, who, in 1849, had a question about the function of the testes. He noticed in castrated roosters that they did not have the same sexual behaviors as roosters with their testes intact. He decided to run an experiment on male roosters to examine this phenomenon. He kept a group of roosters with their testes intact, and saw that they had normal sized wattles and combs (secondary sexual organs), a normal crow, and normal sexual and aggressive behaviors. He also had a group with their testes surgically removed, and noticed that their secondary sexual organs were decreased in size, had a weak crow, did not have sexual attraction towards females, and were not aggressive. He realized that this organ was essential for these behaviors, but he did not know how. To test this further, he removed one testis and placed it in the abdominal cavity. The roosters acted and had normal physical anatomy. He was able to see that location of the testes does not matter. He then wanted to see if it was a genetic factor that was involved in the testes that provided these functions. He transplanted a testis from another rooster to a rooster with one testis removed, and saw that they had normal behavior and physical anatomy as well. Berthold determined that the location or genetic factors of the testes do not matter in relation to sexual organs and behaviors, but that some chemical in the testes being secreted is causing this phenomenon. It was later identified that this factor was the hormone testosterone.[12][13]

Charles and Francis Darwin (1880) Edit

Although known primarily for his work on the Theory of Evolution, Charles Darwin was also keenly interested in plants. Through the 1870s, he and his son Francis studied the movement of plants towards light. They were able to show that light is perceived at the tip of a young stem (the coleoptile), whereas the bending occurs lower down the stem. They proposed that a 'transmissible substance' communicated the direction of light from the tip down to the stem. The idea of a 'transmissible substance' was initially dismissed by other plant biologists, but their work later led to the discovery of the first plant hormone.[14] In the 1920s Dutch scientist Frits Warmolt Went and Russian scientist Nikolai Cholodny (working independently of each other) conclusively showed that asymmetric accumulation of a growth hormone was responsible for this bending. In 1933 this hormone was finally isolated by Kögl, Haagen-Smit and Erxleben and given the name 'auxin'.[14][15][16]

Oliver and Schäfer (1894) Edit

British physician George Oliver and physiologist Edward Albert Schäfer, professor at University College London, collaborated on the physiological effects of adrenal extracts. They first published their findings in two reports in 1894, a full publication followed in 1895.[17][18] Though frequently falsely attributed to secretin, found in 1902 by Bayliss and Starling, Oliver and Schäfer's adrenal extract containing adrenaline, the substance causing the physiological changes, was the first hormone to be discovered. The term hormone would later be coined by Starling.[19]

Bayliss and Starling (1902) Edit

William Bayliss and Ernest Starling, a physiologist and biologist, respectively, wanted to see if the nervous system had an impact on the digestive system. They knew that the pancreas was involved in the secretion of digestive fluids after the passage of food from the stomach to the intestines, which they believed to be due to the nervous system. They cut the nerves to the pancreas in an animal model and discovered that it was not nerve impulses that controlled secretion from the pancreas. It was determined that a factor secreted from the intestines into the bloodstream was stimulating the pancreas to secrete digestive fluids. This was named secretin: a hormone.

Types of signaling Edit

Hormonal effects are dependent on where they are released, as they can be released in different manners.[20] Not all hormones are released from a cell and into the blood until it binds to a receptor on a target. The major types of hormone signaling are:

Signaling Types - Hormones
SN Types Description
1 Endocrine Acts on the target cells after being released into the bloodstream.
2 Paracrine Acts on the nearby cells and does not have to enter general circulation.
3 Autocrine Affects the cell types that secreted it and causes a biological effect.
4 Intracrine Acts intracellularly on the cells that synthesized it.

Chemical classes Edit

As hormones are defined functionally, not structurally, they may have diverse chemical structures. Hormones occur in multicellular organisms (plants, animals, fungi, brown algae, and red algae). These compounds occur also in unicellular organisms, and may act as signaling molecules however there is no agreement that these molecules can be called hormones.[21][22]

Vertebrates Edit

Hormone types in Vertebrates
SN Types Description
1 Proteins/

Peptides

Peptide hormones are made of a chain of amino acids that can range from just 3 to hundreds. Examples include oxytocin and insulin.[12] Their sequences are encoded in DNA and can be modified by alternative splicing and/or post-translational modification.[20] They are packed in vesicles and are hydrophilic, meaning that they are soluble in water. Due to their hydrophilicity, they can only bind to receptors on the membrane, as travelling through the membrane is unlikely. However, some hormones can bind to intracellular receptors through an intracrine mechanism.
2 Amino Acid

Derivatives

Amino acid hormones are derived from amino acids, most commonly Tyrosine. They are stored in vesicles. Examples include Melatonin and Thyroxine.
3 Steroids Steroid hormones are derived from cholesterol. Examples include the sex hormones estradiol and testosterone as well as the stress hormone cortisol.[23] Steroids contain four fused rings. They are lipophilic and hence can cross membranes to bind to intracellular nuclear receptors.
4 Eicosanoids Eicosanoids hormones are derived from lipids such as arachidonic acid, lipoxins, thromboxanes and prostaglandins. Examples include prostaglandin and thromboxane. These hormones are produced by cyclooxygenases and lipoxygenases. They are hydrophobic and act on membrane receptors.
5 Gases Ethylene and Nitric Oxide
 
Different types of hormones are secreted in the human body, with different biological roles and functions.

Invertebrates Edit

Compared with vertebrates, insects and crustaceans possess a number of structurally unusual hormones such as the juvenile hormone, a sesquiterpenoid.[24]

Plants Edit

Examples include abscisic acid, auxin, cytokinin, ethylene, and gibberellin.[25]

Receptors Edit

 
The left diagram shows a steroid (lipid) hormone (1) entering a cell and (2) binding to a receptor protein in the nucleus, causing (3) mRNA synthesis which is the first step of protein synthesis. The right side shows protein hormones (1) binding with receptors which (2) begins a transduction pathway. The transduction pathway ends (3) with transcription factors being activated in the nucleus, and protein synthesis beginning. In both diagrams, a is the hormone, b is the cell membrane, c is the cytoplasm, and d is the nucleus.

Most hormones initiate a cellular response by initially binding to either cell surface receptors or intracellular receptors. A cell may have several different receptors that recognize the same hormone but activate different signal transduction pathways, or a cell may have several different receptors that recognize different hormones and activate the same biochemical pathway.[26]

Receptors for most peptide as well as many eicosanoid hormones are embedded in the cell membrane as cell surface receptors, and the majority of these belong to the G protein-coupled receptor (GPCR) class of seven alpha helix transmembrane proteins. The interaction of hormone and receptor typically triggers a cascade of secondary effects within the cytoplasm of the cell, described as signal transduction, often involving phosphorylation or dephosphorylation of various other cytoplasmic proteins, changes in ion channel permeability, or increased concentrations of intracellular molecules that may act as secondary messengers (e.g., cyclic AMP). Some protein hormones also interact with intracellular receptors located in the cytoplasm or nucleus by an intracrine mechanism.[27][28]

For steroid or thyroid hormones, their receptors are located inside the cell within the cytoplasm of the target cell. These receptors belong to the nuclear receptor family of ligand-activated transcription factors. To bind their receptors, these hormones must first cross the cell membrane. They can do so because they are lipid-soluble. The combined hormone-receptor complex then moves across the nuclear membrane into the nucleus of the cell, where it binds to specific DNA sequences, regulating the expression of certain genes, and thereby increasing the levels of the proteins encoded by these genes.[29] However, it has been shown that not all steroid receptors are located inside the cell. Some are associated with the plasma membrane.[30]

Effects in humans Edit

Hormones have the following effects on the body:[31]

A hormone may also regulate the production and release of other hormones. Hormone signals control the internal environment of the body through homeostasis.

Regulation Edit

The rate of hormone biosynthesis and secretion is often regulated by a homeostatic negative feedback control mechanism. Such a mechanism depends on factors that influence the metabolism and excretion of hormones. Thus, higher hormone concentration alone cannot trigger the negative feedback mechanism. Negative feedback must be triggered by overproduction of an "effect" of the hormone.[32][33]

 
Blood glucose levels are maintained at a constant level in the body by a negative feedback mechanism. When the blood glucose level is too high, the pancreas secretes insulin and when the level is too low, the pancreas then secretes glucagon. The flat line shown represents the homeostatic set point. The sinusoidal line represents the blood glucose level.

Hormone secretion can be stimulated and inhibited by:

  • Other hormones (stimulating- or releasing -hormones)
  • Plasma concentrations of ions or nutrients, as well as binding globulins
  • Neurons and mental activity
  • Environmental changes, e.g., of light or temperature

One special group of hormones is the tropic hormones that stimulate the hormone production of other endocrine glands. For example, thyroid-stimulating hormone (TSH) causes growth and increased activity of another endocrine gland, the thyroid, which increases output of thyroid hormones.[34]

To release active hormones quickly into the circulation, hormone biosynthetic cells may produce and store biologically inactive hormones in the form of pre- or prohormones. These can then be quickly converted into their active hormone form in response to a particular stimulus.[34]

Eicosanoids are considered to act as local hormones. They are considered to be "local" because they possess specific effects on target cells close to their site of formation. They also have a rapid degradation cycle, making sure they do not reach distant sites within the body.[35]

Hormones are also regulated by receptor agonists. Hormones are ligands, which are any kinds of molecules that produce a signal by binding to a receptor site on a protein. Hormone effects can be inhibited, thus regulated, by competing ligands that bind to the same target receptor as the hormone in question. When a competing ligand is bound to the receptor site, the hormone is unable to bind to that site and is unable to elicit a response from the target cell. These competing ligands are called antagonists of the hormone.[36]

Therapeutic use Edit

Many hormones and their structural and functional analogs are used as medication. The most commonly prescribed hormones are estrogens and progestogens (as methods of hormonal contraception and as HRT),[37] thyroxine (as levothyroxine, for hypothyroidism) and steroids (for autoimmune diseases and several respiratory disorders). Insulin is used by many diabetics. Local preparations for use in otolaryngology often contain pharmacologic equivalents of adrenaline, while steroid and vitamin D creams are used extensively in dermatological practice.[38]

A "pharmacologic dose" or "supraphysiological dose" of a hormone is a medical usage referring to an amount of a hormone far greater than naturally occurs in a healthy body. The effects of pharmacologic doses of hormones may be different from responses to naturally occurring amounts and may be therapeutically useful, though not without potentially adverse side effects. An example is the ability of pharmacologic doses of glucocorticoids to suppress inflammation.

Hormone-behavior interactions Edit

At the neurological level, behavior can be inferred based on hormone concentration, which in turn are influenced by hormone-release patterns; the numbers and locations of hormone receptors; and the efficiency of hormone receptors for those involved in gene transcription. Hormone concentration does not incite behavior, as that would undermine other external stimuli; however, it influences the system by increasing the probability of a certain event to occur.[39]

Not only can hormones influence behavior, but also behavior and the environment can influence hormone concentration.[40] Thus, a feedback loop is formed, meaning behavior can affect hormone concentration, which in turn can affect behavior, which in turn can affect hormone concentration, and so on.[41] For example, hormone-behavior feedback loops are essential in providing constancy to episodic hormone secretion, as the behaviors affected by episodically secreted hormones directly prevent the continuous release of said hormones.[42]

Three broad stages of reasoning may be used to determine if a specific hormone-behavior interaction is present within a system:[citation needed]

  • The frequency of occurrence of a hormonally dependent behavior should correspond to that of its hormonal source.
  • A hormonally dependent behavior is not expected if the hormonal source (or its types of action) is non-existent.
  • The reintroduction of a missing behaviorally dependent hormonal source (or its types of action) is expected to bring back the absent behavior.

Comparison with neurotransmitters Edit

There are various clear distinctions between hormones and neurotransmitters:[43][44][36]

  • A hormone can perform functions over a larger spatial and temporal scale than can a neurotransmitter, which often acts in micrometer-scale distances.[45]
  • Hormonal signals can travel virtually anywhere in the circulatory system, whereas neural signals are restricted to pre-existing nerve tracts.[45]
  • Assuming the travel distance is equivalent, neural signals can be transmitted much more quickly (in the range of milliseconds) than can hormonal signals (in the range of seconds, minutes, or hours). Neural signals can be sent at speeds up to 100 meters per second.[46]
  • Neural signalling is an all-or-nothing (digital) action, whereas hormonal signalling is an action that can be continuously variable as it is dependent upon hormone concentration.

Neurohormones are a type of hormone that share a commonality with neurotransmitters.[47] They are produced by endocrine cells that receive input from neurons, or neuroendocrine cells.[47] Both classic hormones and neurohormones are secreted by endocrine tissue; however, neurohormones are the result of a combination between endocrine reflexes and neural reflexes, creating a neuroendocrine pathway.[36] While endocrine pathways produce chemical signals in the form of hormones, the neuroendocrine pathway involves the electrical signals of neurons.[36] In this pathway, the result of the electrical signal produced by a neuron is the release of a chemical, which is the neurohormone.[36] Finally, like a classic hormone, the neurohormone is released into the bloodstream to reach its target.[36]

Binding proteins Edit

Hormone transport and the involvement of binding proteins is an essential aspect when considering the function of hormones.[48]

 
This is a diagram that represents and describer what hormones are and their activity in the bloodstream. Hormones flow in and out of the bloodstream and are able to bind to Target cells to activate the role of the hormone. This is with the help of the bloodstream flow and the secreting cell. Hormones regulate: metabolism, growth & development, tissue function, sleep, reproduction, ect..This diagram also lists the important hormones in a human body.

The formation of a complex with a binding protein has several benefits: the effective half-life of the bound hormone is increased, and a reservoir of bound hormones is created, which evens the variations in concentration of unbound hormones (bound hormones will replace the unbound hormones when these are eliminated).[49] An example of the usage of hormone-binding proteins is in the thyroxine-binding protein which carries up to 80% of all thyroxine in the body, a crucial element in regulating the metabolic rate.[50]

See also Edit

References Edit

  1. ^ Shuster M (2014-03-14). Biology for a Changing World, with Physiology (Second ed.). New York, NY: W. H. Freeman. ISBN 9781464151132. OCLC 884499940.
  2. ^ Neave N (2008). Hormones and behaviour: a psychological approach. Cambridge: Cambridge Univ. Press. ISBN 978-0521692014.
  3. ^ Gibson CL (2010). "Hormones and Behaviour: A Psychological Approach (review)". Perspectives in Biology and Medicine. Project Muse. 53 (1): 152–155. doi:10.1353/pbm.0.0141. ISSN 1529-8795. S2CID 72100830.
  4. ^ "Hormones". MedlinePlus. U.S. National Library of Medicine.
  5. ^ "Hormone - The hormones of plants". Encyclopedia Britannica. Retrieved 2021-01-05.
  6. ^ Ruhs S, Nolze A, Hübschmann R, Grossmann C (July 2017). "30 Years of the Mineralocorticoid Receptor: Nongenomic effects via the mineralocorticoid receptor". The Journal of Endocrinology. 234 (1): T107–T124. doi:10.1530/JOE-16-0659. PMID 28348113.
  7. ^ Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (March 2001). "BRI1 is a critical component of a plasma-membrane receptor for plant steroids". Nature. 410 (6826): 380–3. Bibcode:2001Natur.410..380W. doi:10.1038/35066597. PMID 11268216. S2CID 4412000.
  8. ^ Miller BF, Keane CB (1997). Miller-Keane Encyclopedia & dictionary of medicine, nursing & allied health (6th ed.). Philadelphia: Saunders. ISBN 0-7216-6278-1. OCLC 36465055.
  9. ^ "Plant Hormones/Nutrition". www2.estrellamountain.edu. Retrieved 2021-01-07.
  10. ^ Nussey S, Whitehead S (2001). Endocrinology: an integrated approach. Oxford: Bios Scientific Publ. ISBN 978-1-85996-252-7. PMID 20821847.
  11. ^ Wisse B (13 June 2021). "Endocrine glands". MedlinePlus. U.S. National Library of Medicine. Retrieved November 18, 2021.
  12. ^ a b Belfiore A, LeRoith PE (2018). Principles of Endocrinology and Hormone Action. Cham: Springer. ISBN 9783319446752. OCLC 1021173479.
  13. ^ Molina PE, ed. (2018). Endocrine Physiology. McGraw-Hill Education. ISBN 9781260019353. OCLC 1034587285.
  14. ^ a b Whippo CW, Hangarter RP (May 2006). "Phototropism: bending towards enlightenment". The Plant Cell. 18 (5): 1110–9. doi:10.1105/tpc.105.039669. PMC 1456868. PMID 16670442.
  15. ^ Wieland OP, De Ropp RS, Avener J (April 1954). "Identity of auxin in normal urine". Nature. 173 (4408): 776–7. Bibcode:1954Natur.173..776W. doi:10.1038/173776a0. PMID 13165644. S2CID 4225835.
  16. ^ Holland JJ, Roberts D, Liscum E (2009-05-01). "Understanding phototropism: from Darwin to today". Journal of Experimental Botany. 60 (7): 1969–78. doi:10.1093/jxb/erp113. PMID 19357428.
  17. ^ "Proceedings of the Physiological Society, March 10, 1894. No. I". The Journal of Physiology. 16 (3–4): i–viii. April 1894. doi:10.1113/jphysiol.1894.sp000503. PMC 1514529. PMID 16992168.
  18. ^ Oliver G, Schäfer EA (July 1895). "The Physiological Effects of Extracts of the Suprarenal Capsules". The Journal of Physiology. 18 (3): 230–276. doi:10.1113/jphysiol.1895.sp000564. PMC 1514629. PMID 16992252.
  19. ^ Bayliss WM, Starling EH (1968). "The Mechanism of Pancreatic Secretion". In Leicester HM (ed.). Source Book in Chemistry, 1900–1950. Harvard University Press. pp. 311–313. doi:10.4159/harvard.9780674366701.c111. ISBN 9780674366701.
  20. ^ a b Molina PE (2018). Endocrine physiology. McGraw-Hill Education. ISBN 9781260019353. OCLC 1034587285.
  21. ^ Lenard J (April 1992). "Mammalian hormones in microbial cells". Trends in Biochemical Sciences. 17 (4): 147–50. doi:10.1016/0968-0004(92)90323-2. PMID 1585458.
  22. ^ Janssens PM (1987). "Did vertebrate signal transduction mechanisms originate in eukaryotic microbes?". Trends in Biochemical Sciences. 12: 456–459. doi:10.1016/0968-0004(87)90223-4.
  23. ^ Marieb E (2014). Anatomy & physiology. Glenview, IL: Pearson Education, Inc. ISBN 978-0321861580.
  24. ^ Heyland A, Hodin J, Reitzel AM (January 2005). "Hormone signaling in evolution and development: a non-model system approach". BioEssays. 27 (1): 64–75. doi:10.1002/bies.20136. PMID 15612033.
  25. ^ Wang YH, Irving HR (April 2011). "Developing a model of plant hormone interactions". Plant Signaling & Behavior. 6 (4): 494–500. doi:10.4161/psb.6.4.14558. PMC 3142376. PMID 21406974.
  26. ^ "Signal relay pathways". Khan Academy. Retrieved 2019-11-13.
  27. ^ Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). "G Protein –Coupled Receptors and Their Effectors". Molecular Cell Biology (4th ed.).
  28. ^ Rosenbaum DM, Rasmussen SG, Kobilka BK (May 2009). "The structure and function of G-protein-coupled receptors". Nature. 459 (7245): 356–63. Bibcode:2009Natur.459..356R. doi:10.1038/nature08144. PMC 3967846. PMID 19458711.
  29. ^ Beato M, Chávez S, Truss M (April 1996). "Transcriptional regulation by steroid hormones". Steroids. 61 (4): 240–51. doi:10.1016/0039-128X(96)00030-X. PMID 8733009. S2CID 20654561.
  30. ^ Hammes SR (March 2003). "The further redefining of steroid-mediated signaling". Proceedings of the National Academy of Sciences of the United States of America. 100 (5): 2168–70. Bibcode:2003PNAS..100.2168H. doi:10.1073/pnas.0530224100. PMC 151311. PMID 12606724.
  31. ^ Lall S (2013). Clearopathy. India: Partridge Publishing India. p. 1. ISBN 9781482815887.
  32. ^ Campbell M, Jialal I (2019). "Physiology, Endocrine Hormones". StatPearls. StatPearls Publishing. PMID 30860733. Retrieved 13 November 2019.
  33. ^ Röder PV, Wu B, Liu Y, Han W (March 2016). "Pancreatic regulation of glucose homeostasis". Experimental & Molecular Medicine. 48 (3): e219. doi:10.1038/emm.2016.6. PMC 4892884. PMID 26964835.
  34. ^ a b Shah SB, Saxena R (2012). Allergy-hormone links. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd. ISBN 9789350250136. OCLC 761377585.
  35. ^ "Eicosanoids". www.rpi.edu. Retrieved 2017-02-08.
  36. ^ a b c d e f Silverthorn DU, Johnson BR, Ober WC, Ober CW (2016). Human physiology : an integrated approach (Seventh ed.). San Francisco: Pearson. ISBN 9780321981226. OCLC 890107246.
  37. ^ "Hormone Therapy". Cleveland Clinic.
  38. ^ Sfetcu N (2014-05-02). Health & Drugs: Disease, Prescription & Medication. Nicolae Sfetcu.
  39. ^ Nelson, R. J. (2021). Hormones & behavior. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/c6gvwu9m
  40. ^ Nelson RJ (2010), "Hormones and Behavior: Basic Concepts", Encyclopedia of Animal Behavior, Elsevier, pp. 97–105, doi:10.1016/b978-0-08-045337-8.00236-9, ISBN 978-0-08-045337-8, S2CID 7479319, retrieved 2021-11-18
  41. ^ Garland T, Zhao M, Saltzman W (August 2016). "Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior". Integrative and Comparative Biology. 56 (2): 207–24. doi:10.1093/icb/icw040. PMC 5964798. PMID 27252193.
  42. ^ Pfaff DW, Rubin RT, Schneider JE, Head GA (2018). Principles of hormone/behavior relations (2nd ed.). London, United Kingdom: Academic Press. ISBN 978-0-12-802667-0. OCLC 1022119040.
  43. ^ Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB, Campbell NA (2014). Campbell biology (Tenth ed.). Boston: Pearson. ISBN 9780321775658. OCLC 849822337.
  44. ^ Siegel A, Sapru H, Hreday N, Siegel H (2006). Essential neuroscience. Philadelphia: Lippincott Williams & Wilkins. ISBN 0781750776. OCLC 60650938.
  45. ^ a b Purves D, Williams SM (2001). Neuroscience (2nd ed.). Sunderland, Mass.: Sinauer Associates. ISBN 0-87893-742-0. OCLC 44627256.
  46. ^ Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). Molecular biology of the cell (4th ed.). New York: Garland Science. ISBN 0815332181. OCLC 48122761.
  47. ^ a b Purves WK, Kirkwood W (2001). Life, the science of biology (6th ed.). Sunderland, MA: Sinauer Associates. ISBN 0716738732. OCLC 45064683.
  48. ^ "Hormones". OpenStaxCollege. 2013-03-06.
  49. ^ Boron WF, Boulpaep EL. Medical physiology: a cellular and molecular approach. Updated 2. Philadelphia, Pa: Saunders Elsevier; 2012.
  50. ^ Oppenheimer JH (1968-05-23). "Role of Plasma Proteins in the Binding, Distribution and Metabolism of the Thyroid Hormones". New England Journal of Medicine. 278 (21): 1153–1162. doi:10.1056/NEJM196805232782107. ISSN 0028-4793. PMID 4172185.

External links Edit

  • HMRbase: A database of hormones and their receptors
  • Hormones at the U.S. National Library of Medicine Medical Subject Headings (MeSH)

hormone, other, uses, disambiguation, hormone, from, greek, participle, ὁρμῶν, setting, motion, class, signaling, molecules, multicellular, organisms, that, sent, distant, organs, complex, biological, processes, regulate, physiology, behavior, required, correc. For other uses see Hormone disambiguation A hormone from the Greek participle ὁrmῶn setting in motion is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior 1 Hormones are required for the correct development of animals plants and fungi Due to the broad definition of a hormone as a signaling molecule that exerts its effects far from its site of production numerous kinds of molecules can be classified as hormones Among the substances that can be considered hormones are eicosanoids e g prostaglandins and thromboxanes steroids e g oestrogen and brassinosteroid amino acid derivatives e g epinephrine and auxin protein or peptides e g insulin and CLE peptides and gases e g ethylene and nitric oxide Left A hormone feedback loop in a female adult 1 Follicle Stimulating Hormone 2 Luteinizing Hormone 3 Progesterone 4 Estradiol Right Auxin transport from leaves to roots in Arabidopsis thalianaHormones are used to communicate between organs and tissues In vertebrates hormones are responsible for regulating a variety of physiological processes and behavioral activities such as digestion metabolism respiration sensory perception sleep excretion lactation stress induction growth and development movement reproduction and mood manipulation 2 3 4 In plants hormones modulate almost all aspects of development from germination to senescence 5 Hormones affect distant cells by binding to specific receptor proteins in the target cell resulting in a change in cell function When a hormone binds to the receptor it results in the activation of a signal transduction pathway that typically activates gene transcription resulting in increased expression of target proteins Hormones can also act in non genomic pathways that synergize with genomic effects 6 Water soluble hormones such as peptides and amines generally act on the surface of target cells via second messengers Lipid soluble hormones such as steroids generally pass through the plasma membranes of target cells both cytoplasmic and nuclear to act within their nuclei Brassinosteroids a type of polyhydroxysteroids are a sixth class of plant hormones and may be useful as an anticancer drug for endocrine responsive tumors to cause apoptosis and limit plant growth Despite being lipid soluble they nevertheless attach to their receptor at the cell surface 7 In vertebrates endocrine glands are specialized organs that secrete hormones into the endocrine signaling system Hormone secretion occurs in response to specific biochemical signals and is often subject to negative feedback regulation For instance high blood sugar serum glucose concentration promotes insulin synthesis Insulin then acts to reduce glucose levels and maintain homeostasis leading to reduced insulin levels Upon secretion water soluble hormones are readily transported through the circulatory system Lipid soluble hormones must bond to carrier plasma glycoproteins e g thyroxine binding globulin TBG to form ligand protein complexes Some hormones such as insulin and growth hormones can be released into the bloodstream already fully active Other hormones called prohormones must be activated in certain cells through a series of steps that are usually tightly controlled 8 The endocrine system secretes hormones directly into the bloodstream typically via fenestrated capillaries whereas the exocrine system secretes its hormones indirectly using ducts Hormones with paracrine function diffuse through the interstitial spaces to nearby target tissue Plants lack specialized organs for the secretion of hormones although there is spatial distribution of hormone production For example the hormone auxin is produced mainly at the tips of young leaves and in the shoot apical meristem The lack of specialised glands means that the main site of hormone production can change throughout the life of a plant and the site of production is dependent on the plant s age and environment 9 Contents 1 Introduction and overview 2 Discovery 2 1 Arnold Adolph Berthold 1849 2 2 Charles and Francis Darwin 1880 2 3 Oliver and Schafer 1894 2 4 Bayliss and Starling 1902 3 Types of signaling 4 Chemical classes 4 1 Vertebrates 4 2 Invertebrates 4 3 Plants 5 Receptors 6 Effects in humans 7 Regulation 8 Therapeutic use 9 Hormone behavior interactions 10 Comparison with neurotransmitters 11 Binding proteins 12 See also 13 References 14 External linksIntroduction and overview EditFurther information Signal transduction Hormonal signaling involves the following steps 10 Biosynthesis of a particular hormone in a particular tissue Storage and secretion of the hormone Transport of the hormone to the target cell s Recognition of the hormone by an associated cell membrane or intracellular receptor protein Relay and amplification of the received hormonal signal via a signal transduction process This then leads to a cellular response The reaction of the target cells may then be recognized by the original hormone producing cells leading to a downregulation in hormone production This is an example of a homeostatic negative feedback loop Breakdown of the hormone Hormone producing cells are found in the endocrine glands such as the thyroid gland ovaries and testes 11 Exocytosis and other methods of membrane transport are used to secrete hormones when the endocrine glands are signaled The hierarchical model is an oversimplification of the hormonal signaling process Cellular recipients of a particular hormonal signal may be one of several cell types that reside within a number of different tissues as is the case for insulin which triggers a diverse range of systemic physiological effects Different tissue types may also respond differently to the same hormonal signal citation needed Discovery EditArnold Adolph Berthold 1849 Edit Arnold Adolph Berthold was a German physiologist and zoologist who in 1849 had a question about the function of the testes He noticed in castrated roosters that they did not have the same sexual behaviors as roosters with their testes intact He decided to run an experiment on male roosters to examine this phenomenon He kept a group of roosters with their testes intact and saw that they had normal sized wattles and combs secondary sexual organs a normal crow and normal sexual and aggressive behaviors He also had a group with their testes surgically removed and noticed that their secondary sexual organs were decreased in size had a weak crow did not have sexual attraction towards females and were not aggressive He realized that this organ was essential for these behaviors but he did not know how To test this further he removed one testis and placed it in the abdominal cavity The roosters acted and had normal physical anatomy He was able to see that location of the testes does not matter He then wanted to see if it was a genetic factor that was involved in the testes that provided these functions He transplanted a testis from another rooster to a rooster with one testis removed and saw that they had normal behavior and physical anatomy as well Berthold determined that the location or genetic factors of the testes do not matter in relation to sexual organs and behaviors but that some chemical in the testes being secreted is causing this phenomenon It was later identified that this factor was the hormone testosterone 12 13 Charles and Francis Darwin 1880 Edit Although known primarily for his work on the Theory of Evolution Charles Darwin was also keenly interested in plants Through the 1870s he and his son Francis studied the movement of plants towards light They were able to show that light is perceived at the tip of a young stem the coleoptile whereas the bending occurs lower down the stem They proposed that a transmissible substance communicated the direction of light from the tip down to the stem The idea of a transmissible substance was initially dismissed by other plant biologists but their work later led to the discovery of the first plant hormone 14 In the 1920s Dutch scientist Frits Warmolt Went and Russian scientist Nikolai Cholodny working independently of each other conclusively showed that asymmetric accumulation of a growth hormone was responsible for this bending In 1933 this hormone was finally isolated by Kogl Haagen Smit and Erxleben and given the name auxin 14 15 16 Oliver and Schafer 1894 Edit British physician George Oliver and physiologist Edward Albert Schafer professor at University College London collaborated on the physiological effects of adrenal extracts They first published their findings in two reports in 1894 a full publication followed in 1895 17 18 Though frequently falsely attributed to secretin found in 1902 by Bayliss and Starling Oliver and Schafer s adrenal extract containing adrenaline the substance causing the physiological changes was the first hormone to be discovered The term hormone would later be coined by Starling 19 Bayliss and Starling 1902 Edit William Bayliss and Ernest Starling a physiologist and biologist respectively wanted to see if the nervous system had an impact on the digestive system They knew that the pancreas was involved in the secretion of digestive fluids after the passage of food from the stomach to the intestines which they believed to be due to the nervous system They cut the nerves to the pancreas in an animal model and discovered that it was not nerve impulses that controlled secretion from the pancreas It was determined that a factor secreted from the intestines into the bloodstream was stimulating the pancreas to secrete digestive fluids This was named secretin a hormone Types of signaling EditHormonal effects are dependent on where they are released as they can be released in different manners 20 Not all hormones are released from a cell and into the blood until it binds to a receptor on a target The major types of hormone signaling are Signaling Types Hormones SN Types Description1 Endocrine Acts on the target cells after being released into the bloodstream 2 Paracrine Acts on the nearby cells and does not have to enter general circulation 3 Autocrine Affects the cell types that secreted it and causes a biological effect 4 Intracrine Acts intracellularly on the cells that synthesized it Chemical classes EditAs hormones are defined functionally not structurally they may have diverse chemical structures Hormones occur in multicellular organisms plants animals fungi brown algae and red algae These compounds occur also in unicellular organisms and may act as signaling molecules however there is no agreement that these molecules can be called hormones 21 22 Vertebrates Edit Further information List of human hormones Hormone types in Vertebrates SN Types Description1 Proteins Peptides Peptide hormones are made of a chain of amino acids that can range from just 3 to hundreds Examples include oxytocin and insulin 12 Their sequences are encoded in DNA and can be modified by alternative splicing and or post translational modification 20 They are packed in vesicles and are hydrophilic meaning that they are soluble in water Due to their hydrophilicity they can only bind to receptors on the membrane as travelling through the membrane is unlikely However some hormones can bind to intracellular receptors through an intracrine mechanism 2 Amino Acid Derivatives Amino acid hormones are derived from amino acids most commonly Tyrosine They are stored in vesicles Examples include Melatonin and Thyroxine 3 Steroids Steroid hormones are derived from cholesterol Examples include the sex hormones estradiol and testosterone as well as the stress hormone cortisol 23 Steroids contain four fused rings They are lipophilic and hence can cross membranes to bind to intracellular nuclear receptors 4 Eicosanoids Eicosanoids hormones are derived from lipids such as arachidonic acid lipoxins thromboxanes and prostaglandins Examples include prostaglandin and thromboxane These hormones are produced by cyclooxygenases and lipoxygenases They are hydrophobic and act on membrane receptors 5 Gases Ethylene and Nitric Oxide nbsp Different types of hormones are secreted in the human body with different biological roles and functions Invertebrates Edit Compared with vertebrates insects and crustaceans possess a number of structurally unusual hormones such as the juvenile hormone a sesquiterpenoid 24 Plants Edit Further information Plant hormone Examples include abscisic acid auxin cytokinin ethylene and gibberellin 25 Receptors Edit nbsp The left diagram shows a steroid lipid hormone 1 entering a cell and 2 binding to a receptor protein in the nucleus causing 3 mRNA synthesis which is the first step of protein synthesis The right side shows protein hormones 1 binding with receptors which 2 begins a transduction pathway The transduction pathway ends 3 with transcription factors being activated in the nucleus and protein synthesis beginning In both diagrams a is the hormone b is the cell membrane c is the cytoplasm and d is the nucleus Most hormones initiate a cellular response by initially binding to either cell surface receptors or intracellular receptors A cell may have several different receptors that recognize the same hormone but activate different signal transduction pathways or a cell may have several different receptors that recognize different hormones and activate the same biochemical pathway 26 Receptors for most peptide as well as many eicosanoid hormones are embedded in the cell membrane as cell surface receptors and the majority of these belong to the G protein coupled receptor GPCR class of seven alpha helix transmembrane proteins The interaction of hormone and receptor typically triggers a cascade of secondary effects within the cytoplasm of the cell described as signal transduction often involving phosphorylation or dephosphorylation of various other cytoplasmic proteins changes in ion channel permeability or increased concentrations of intracellular molecules that may act as secondary messengers e g cyclic AMP Some protein hormones also interact with intracellular receptors located in the cytoplasm or nucleus by an intracrine mechanism 27 28 For steroid or thyroid hormones their receptors are located inside the cell within the cytoplasm of the target cell These receptors belong to the nuclear receptor family of ligand activated transcription factors To bind their receptors these hormones must first cross the cell membrane They can do so because they are lipid soluble The combined hormone receptor complex then moves across the nuclear membrane into the nucleus of the cell where it binds to specific DNA sequences regulating the expression of certain genes and thereby increasing the levels of the proteins encoded by these genes 29 However it has been shown that not all steroid receptors are located inside the cell Some are associated with the plasma membrane 30 Effects in humans EditHormones have the following effects on the body 31 stimulation or inhibition of growth wake sleep cycle and other circadian rhythms mood swings induction or suppression of apoptosis programmed cell death activation or inhibition of the immune system regulation of metabolism preparation of the body for mating fighting fleeing and other activity preparation of the body for a new phase of life such as puberty parenting and menopause control of the reproductive cycle hunger cravingsA hormone may also regulate the production and release of other hormones Hormone signals control the internal environment of the body through homeostasis Regulation EditThe rate of hormone biosynthesis and secretion is often regulated by a homeostatic negative feedback control mechanism Such a mechanism depends on factors that influence the metabolism and excretion of hormones Thus higher hormone concentration alone cannot trigger the negative feedback mechanism Negative feedback must be triggered by overproduction of an effect of the hormone 32 33 nbsp Blood glucose levels are maintained at a constant level in the body by a negative feedback mechanism When the blood glucose level is too high the pancreas secretes insulin and when the level is too low the pancreas then secretes glucagon The flat line shown represents the homeostatic set point The sinusoidal line represents the blood glucose level Hormone secretion can be stimulated and inhibited by Other hormones stimulating or releasing hormones Plasma concentrations of ions or nutrients as well as binding globulins Neurons and mental activity Environmental changes e g of light or temperatureOne special group of hormones is the tropic hormones that stimulate the hormone production of other endocrine glands For example thyroid stimulating hormone TSH causes growth and increased activity of another endocrine gland the thyroid which increases output of thyroid hormones 34 To release active hormones quickly into the circulation hormone biosynthetic cells may produce and store biologically inactive hormones in the form of pre or prohormones These can then be quickly converted into their active hormone form in response to a particular stimulus 34 Eicosanoids are considered to act as local hormones They are considered to be local because they possess specific effects on target cells close to their site of formation They also have a rapid degradation cycle making sure they do not reach distant sites within the body 35 Hormones are also regulated by receptor agonists Hormones are ligands which are any kinds of molecules that produce a signal by binding to a receptor site on a protein Hormone effects can be inhibited thus regulated by competing ligands that bind to the same target receptor as the hormone in question When a competing ligand is bound to the receptor site the hormone is unable to bind to that site and is unable to elicit a response from the target cell These competing ligands are called antagonists of the hormone 36 Therapeutic use EditMain article Hormone therapy Many hormones and their structural and functional analogs are used as medication The most commonly prescribed hormones are estrogens and progestogens as methods of hormonal contraception and as HRT 37 thyroxine as levothyroxine for hypothyroidism and steroids for autoimmune diseases and several respiratory disorders Insulin is used by many diabetics Local preparations for use in otolaryngology often contain pharmacologic equivalents of adrenaline while steroid and vitamin D creams are used extensively in dermatological practice 38 A pharmacologic dose or supraphysiological dose of a hormone is a medical usage referring to an amount of a hormone far greater than naturally occurs in a healthy body The effects of pharmacologic doses of hormones may be different from responses to naturally occurring amounts and may be therapeutically useful though not without potentially adverse side effects An example is the ability of pharmacologic doses of glucocorticoids to suppress inflammation Hormone behavior interactions EditAt the neurological level behavior can be inferred based on hormone concentration which in turn are influenced by hormone release patterns the numbers and locations of hormone receptors and the efficiency of hormone receptors for those involved in gene transcription Hormone concentration does not incite behavior as that would undermine other external stimuli however it influences the system by increasing the probability of a certain event to occur 39 Not only can hormones influence behavior but also behavior and the environment can influence hormone concentration 40 Thus a feedback loop is formed meaning behavior can affect hormone concentration which in turn can affect behavior which in turn can affect hormone concentration and so on 41 For example hormone behavior feedback loops are essential in providing constancy to episodic hormone secretion as the behaviors affected by episodically secreted hormones directly prevent the continuous release of said hormones 42 Three broad stages of reasoning may be used to determine if a specific hormone behavior interaction is present within a system citation needed The frequency of occurrence of a hormonally dependent behavior should correspond to that of its hormonal source A hormonally dependent behavior is not expected if the hormonal source or its types of action is non existent The reintroduction of a missing behaviorally dependent hormonal source or its types of action is expected to bring back the absent behavior Comparison with neurotransmitters EditThere are various clear distinctions between hormones and neurotransmitters 43 44 36 A hormone can perform functions over a larger spatial and temporal scale than can a neurotransmitter which often acts in micrometer scale distances 45 Hormonal signals can travel virtually anywhere in the circulatory system whereas neural signals are restricted to pre existing nerve tracts 45 Assuming the travel distance is equivalent neural signals can be transmitted much more quickly in the range of milliseconds than can hormonal signals in the range of seconds minutes or hours Neural signals can be sent at speeds up to 100 meters per second 46 Neural signalling is an all or nothing digital action whereas hormonal signalling is an action that can be continuously variable as it is dependent upon hormone concentration Neurohormones are a type of hormone that share a commonality with neurotransmitters 47 They are produced by endocrine cells that receive input from neurons or neuroendocrine cells 47 Both classic hormones and neurohormones are secreted by endocrine tissue however neurohormones are the result of a combination between endocrine reflexes and neural reflexes creating a neuroendocrine pathway 36 While endocrine pathways produce chemical signals in the form of hormones the neuroendocrine pathway involves the electrical signals of neurons 36 In this pathway the result of the electrical signal produced by a neuron is the release of a chemical which is the neurohormone 36 Finally like a classic hormone the neurohormone is released into the bloodstream to reach its target 36 Binding proteins EditHormone transport and the involvement of binding proteins is an essential aspect when considering the function of hormones 48 nbsp This is a diagram that represents and describer what hormones are and their activity in the bloodstream Hormones flow in and out of the bloodstream and are able to bind to Target cells to activate the role of the hormone This is with the help of the bloodstream flow and the secreting cell Hormones regulate metabolism growth amp development tissue function sleep reproduction ect This diagram also lists the important hormones in a human body The formation of a complex with a binding protein has several benefits the effective half life of the bound hormone is increased and a reservoir of bound hormones is created which evens the variations in concentration of unbound hormones bound hormones will replace the unbound hormones when these are eliminated 49 An example of the usage of hormone binding proteins is in the thyroxine binding protein which carries up to 80 of all thyroxine in the body a crucial element in regulating the metabolic rate 50 See also EditAutocrine signaling Adipokine Cytokine Hepatokine Endocrine disease Endocrine system Endocrinology Environmental hormones Growth factor Intracrine List of investigational sex hormonal agents Metabolomics Myokine Neohormone Neuroendocrinology Paracrine signaling Plant hormones a k a plant growth regulators Semiochemical Sex hormonal agent Sexual motivation and hormones Xenohormone List of human hormonesReferences Edit Shuster M 2014 03 14 Biology for a Changing World with Physiology Second ed New York NY W H Freeman ISBN 9781464151132 OCLC 884499940 Neave N 2008 Hormones and behaviour a psychological approach Cambridge Cambridge Univ Press ISBN 978 0521692014 Gibson CL 2010 Hormones and Behaviour A Psychological Approach review Perspectives in Biology and Medicine Project Muse 53 1 152 155 doi 10 1353 pbm 0 0141 ISSN 1529 8795 S2CID 72100830 Hormones MedlinePlus U S National Library of Medicine Hormone The hormones of plants Encyclopedia Britannica Retrieved 2021 01 05 Ruhs S Nolze A Hubschmann R Grossmann C July 2017 30 Years of the Mineralocorticoid Receptor Nongenomic effects via the mineralocorticoid receptor The Journal of Endocrinology 234 1 T107 T124 doi 10 1530 JOE 16 0659 PMID 28348113 Wang ZY Seto H Fujioka S Yoshida S Chory J March 2001 BRI1 is a critical component of a plasma membrane receptor for plant steroids Nature 410 6826 380 3 Bibcode 2001Natur 410 380W doi 10 1038 35066597 PMID 11268216 S2CID 4412000 Miller BF Keane CB 1997 Miller Keane Encyclopedia amp dictionary of medicine nursing amp allied health 6th ed Philadelphia Saunders ISBN 0 7216 6278 1 OCLC 36465055 Plant Hormones Nutrition www2 estrellamountain edu Retrieved 2021 01 07 Nussey S Whitehead S 2001 Endocrinology an integrated approach Oxford Bios Scientific Publ ISBN 978 1 85996 252 7 PMID 20821847 Wisse B 13 June 2021 Endocrine glands MedlinePlus U S National Library of Medicine Retrieved November 18 2021 a b Belfiore A LeRoith PE 2018 Principles of Endocrinology and Hormone Action Cham Springer ISBN 9783319446752 OCLC 1021173479 Molina PE ed 2018 Endocrine Physiology McGraw Hill Education ISBN 9781260019353 OCLC 1034587285 a b Whippo CW Hangarter RP May 2006 Phototropism bending towards enlightenment The Plant Cell 18 5 1110 9 doi 10 1105 tpc 105 039669 PMC 1456868 PMID 16670442 Wieland OP De Ropp RS Avener J April 1954 Identity of auxin in normal urine Nature 173 4408 776 7 Bibcode 1954Natur 173 776W doi 10 1038 173776a0 PMID 13165644 S2CID 4225835 Holland JJ Roberts D Liscum E 2009 05 01 Understanding phototropism from Darwin to today Journal of Experimental Botany 60 7 1969 78 doi 10 1093 jxb erp113 PMID 19357428 Proceedings of the Physiological Society March 10 1894 No I The Journal of Physiology 16 3 4 i viii April 1894 doi 10 1113 jphysiol 1894 sp000503 PMC 1514529 PMID 16992168 Oliver G Schafer EA July 1895 The Physiological Effects of Extracts of the Suprarenal Capsules The Journal of Physiology 18 3 230 276 doi 10 1113 jphysiol 1895 sp000564 PMC 1514629 PMID 16992252 Bayliss WM Starling EH 1968 The Mechanism of Pancreatic Secretion In Leicester HM ed Source Book in Chemistry 1900 1950 Harvard University Press pp 311 313 doi 10 4159 harvard 9780674366701 c111 ISBN 9780674366701 a b Molina PE 2018 Endocrine physiology McGraw Hill Education ISBN 9781260019353 OCLC 1034587285 Lenard J April 1992 Mammalian hormones in microbial cells Trends in Biochemical Sciences 17 4 147 50 doi 10 1016 0968 0004 92 90323 2 PMID 1585458 Janssens PM 1987 Did vertebrate signal transduction mechanisms originate in eukaryotic microbes Trends in Biochemical Sciences 12 456 459 doi 10 1016 0968 0004 87 90223 4 Marieb E 2014 Anatomy amp physiology Glenview IL Pearson Education Inc ISBN 978 0321861580 Heyland A Hodin J Reitzel AM January 2005 Hormone signaling in evolution and development a non model system approach BioEssays 27 1 64 75 doi 10 1002 bies 20136 PMID 15612033 Wang YH Irving HR April 2011 Developing a model of plant hormone interactions Plant Signaling amp Behavior 6 4 494 500 doi 10 4161 psb 6 4 14558 PMC 3142376 PMID 21406974 Signal relay pathways Khan Academy Retrieved 2019 11 13 Lodish H Berk A Zipursky SL Matsudaira P Baltimore D Darnell J 2000 G Protein Coupled Receptors and Their Effectors Molecular Cell Biology 4th ed Rosenbaum DM Rasmussen SG Kobilka BK May 2009 The structure and function of G protein coupled receptors Nature 459 7245 356 63 Bibcode 2009Natur 459 356R doi 10 1038 nature08144 PMC 3967846 PMID 19458711 Beato M Chavez S Truss M April 1996 Transcriptional regulation by steroid hormones Steroids 61 4 240 51 doi 10 1016 0039 128X 96 00030 X PMID 8733009 S2CID 20654561 Hammes SR March 2003 The further redefining of steroid mediated signaling Proceedings of the National Academy of Sciences of the United States of America 100 5 2168 70 Bibcode 2003PNAS 100 2168H doi 10 1073 pnas 0530224100 PMC 151311 PMID 12606724 Lall S 2013 Clearopathy India Partridge Publishing India p 1 ISBN 9781482815887 Campbell M Jialal I 2019 Physiology Endocrine Hormones StatPearls StatPearls Publishing PMID 30860733 Retrieved 13 November 2019 Roder PV Wu B Liu Y Han W March 2016 Pancreatic regulation of glucose homeostasis Experimental amp Molecular Medicine 48 3 e219 doi 10 1038 emm 2016 6 PMC 4892884 PMID 26964835 a b Shah SB Saxena R 2012 Allergy hormone links New Delhi Jaypee Brothers Medical Publishers P Ltd ISBN 9789350250136 OCLC 761377585 Eicosanoids www rpi edu Retrieved 2017 02 08 a b c d e f Silverthorn DU Johnson BR Ober WC Ober CW 2016 Human physiology an integrated approach Seventh ed San Francisco Pearson ISBN 9780321981226 OCLC 890107246 Hormone Therapy Cleveland Clinic Sfetcu N 2014 05 02 Health amp Drugs Disease Prescription amp Medication Nicolae Sfetcu Nelson R J 2021 Hormones amp behavior In R Biswas Diener amp E Diener Eds Noba textbook series Psychology Champaign IL DEF publishers Retrieved from http noba to c6gvwu9m Nelson RJ 2010 Hormones and Behavior Basic Concepts Encyclopedia of Animal Behavior Elsevier pp 97 105 doi 10 1016 b978 0 08 045337 8 00236 9 ISBN 978 0 08 045337 8 S2CID 7479319 retrieved 2021 11 18 Garland T Zhao M Saltzman W August 2016 Hormones and the Evolution of Complex Traits Insights from Artificial Selection on Behavior Integrative and Comparative Biology 56 2 207 24 doi 10 1093 icb icw040 PMC 5964798 PMID 27252193 Pfaff DW Rubin RT Schneider JE Head GA 2018 Principles of hormone behavior relations 2nd ed London United Kingdom Academic Press ISBN 978 0 12 802667 0 OCLC 1022119040 Reece JB Urry LA Cain ML Wasserman SA Minorsky PV Jackson RB Campbell NA 2014 Campbell biology Tenth ed Boston Pearson ISBN 9780321775658 OCLC 849822337 Siegel A Sapru H Hreday N Siegel H 2006 Essential neuroscience Philadelphia Lippincott Williams amp Wilkins ISBN 0781750776 OCLC 60650938 a b Purves D Williams SM 2001 Neuroscience 2nd ed Sunderland Mass Sinauer Associates ISBN 0 87893 742 0 OCLC 44627256 Alberts B Johnson A Lewis J Raff M Roberts K Walter P 2002 Molecular biology of the cell 4th ed New York Garland Science ISBN 0815332181 OCLC 48122761 a b Purves WK Kirkwood W 2001 Life the science of biology 6th ed Sunderland MA Sinauer Associates ISBN 0716738732 OCLC 45064683 Hormones OpenStaxCollege 2013 03 06 Boron WF Boulpaep EL Medical physiology a cellular and molecular approach Updated 2 Philadelphia Pa Saunders Elsevier 2012 Oppenheimer JH 1968 05 23 Role of Plasma Proteins in the Binding Distribution and Metabolism of the Thyroid Hormones New England Journal of Medicine 278 21 1153 1162 doi 10 1056 NEJM196805232782107 ISSN 0028 4793 PMID 4172185 External links EditHMRbase A database of hormones and their receptors Hormones at the U S National Library of Medicine Medical Subject Headings MeSH Retrieved from https en wikipedia org w index php title Hormone amp oldid 1179103580, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.