fbpx
Wikipedia

TAAR1

Trace amine-associated receptor 1 (TAAR1) is a trace amine-associated receptor (TAAR) protein that in humans is encoded by the TAAR1 gene.[5] TAAR1 is an intracellular amine-activated Gs-coupled and Gq-coupled G protein-coupled receptor (GPCR) that is primarily expressed in several peripheral organs and cells (e.g., the stomach, small intestine, duodenum, and white blood cells), astrocytes, and in the intracellular milieu within the presynaptic plasma membrane (i.e., axon terminal) of monoamine neurons in the central nervous system (CNS).[6][7][8][9] TAAR1 was discovered in 2001 by two independent groups of investigators, Borowski et al. and Bunzow et al.[10][11] TAAR1 is one of six functional human trace amine-associated receptors, which are so named for their ability to bind endogenous amines that occur in tissues at trace concentrations.[12][13] TAAR1 plays a significant role in regulating neurotransmission in dopamine, norepinephrine, and serotonin neurons in the CNS;[7][12] it also affects immune system and neuroimmune system function through different mechanisms.[14][15][16][17]

TAAR1
Identifiers
AliasesTAAR1, TA1, TAR1, TRAR1, trace amine associated receptor 1, Trace amine receptor
External IDsOMIM: 609333 MGI: 2148258 HomoloGene: 24938 GeneCards: TAAR1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_138327

NM_053205

RefSeq (protein)

NP_612200

NP_444435

Location (UCSC)Chr 6: 132.64 – 132.66 MbChr 10: 23.8 – 23.8 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

TAAR1 is a high-affinity receptor for amphetamine, methamphetamine, dopamine, and trace amines which mediates some of their cellular effects in monoamine neurons within the central nervous system.[7][12]

The primary endogenous ligands of the human TAAR1 (hTAAR1) receptor, by rank order of potency, are:
tyramine > β-phenethylamine > dopamine = octopamine.[6]

Discovery edit

TAAR1 was discovered independently by Borowski et al. and Bunzow et al. in 2001. To find the genetic variants responsible for TAAR1 synthesis, they used mixtures of oligonucleotides with sequences related to G protein-coupled receptors (GPCRs) of serotonin and dopamine to discover novel DNA sequences in rat genomic DNA and cDNA, which they then amplified and cloned. The resulting sequence was not found in any database and coded for TAAR1.[10][11] Further characterization of the functional role of TAAR1 and other receptors from this family was performed by other researchers including Raul Gainetdinov and his colleagues.[18]

Structure edit

TAAR1 shares structural similarities with the class A rhodopsin GPCR subfamily.[11] It has 7 transmembrane domains with short N and C terminal extensions.[19] TAAR1 is 62–96% identical with TAARs2-15, which suggests that the TAAR subfamily has recently evolved; while at the same time, the low degree of similarity between TAAR1 orthologues suggests that they are rapidly evolving.[10] TAAR1 shares a predictive peptide motif with all other TAARs. This motif overlaps with transmembrane domain VII, and its identity is NSXXNPXX[Y,H]XXX[Y,F]XWF. TAAR1 and its homologues have ligand pocket vectors that utilize sets of 35 amino acids known to be involved directly in receptor-ligand interaction.[13]

Gene edit

All human TAAR genes are located on a single chromosome spanning 109 kb of human chromosome 6q23.1, 192 kb of mouse chromosome 10A4, and 216 kb of rat chromosome 1p12. Each TAAR is derived from a single exon, except for TAAR2, which is coded by two exons.[13] The human TAAR1 gene is thought to be an intronless gene.[20]

Tissue distribution edit

 
This diagram illustrates how TAAR1 activation induces incretin-like effects through the release of gastrointestinal hormones and influences food intake, blood glucose levels, and insulin release.[9] TAAR1 expression in the periphery is indicated with "x".[9]

To date, TAAR1 has been identified and cloned in five different mammal genomes: human, mouse, rat, monkey, and chimpanzee. In rats, mRNA for TAAR1 is found at low to moderate levels in peripheral tissues like the stomach, kidney, intestines[21] and lungs, and at low levels in the brain.[10] Rhesus monkey Taar1 and human TAAR1 share high sequence similarity, and TAAR1 mRNA is highly expressed in the same important monoaminergic regions of both species. These regions include the dorsal and ventral caudate nucleus, putamen, substantia nigra, nucleus accumbens, ventral tegmental area, locus coeruleus, amygdala, and raphe nucleus.[6][22] hTAAR1 has also been identified in human astrocytes.[6][14]

Outside of the human central nervous system, hTAAR1 also occurs as an intracellular receptor and is primarily expressed in the stomach, intestines,[21] duodenum,[21] pancreatic β-cells, and white blood cells.[9][21] In the duodenum, TAAR1 activation increases glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) release;[9] in the stomach, hTAAR1 activation has been observed to increase somatostatin (growth hormone-inhibiting hormone) secretion from delta cells.[9]

hTAAR1 is the only human trace amine-associated receptor subtype that is not expressed within the human olfactory epithelium.[23]

Location within neurons edit

TAAR1 is an intracellular receptor expressed within the presynaptic terminal of monoamine neurons in humans and other animals.[7][12][24] In model cell systems, hTAAR1 has extremely poor membrane expression.[24] A method to induce hTAAR1 membrane expression has been used to study its pharmacology via a bioluminescence resonance energy transfer cAMP assay.[24]

Because TAAR1 is an intracellular receptor in monoamine neurons, exogenous TAAR1 ligands must enter the presynaptic neuron through a membrane transport protein[note 1] or be able to diffuse across the presynaptic membrane in order to reach the receptor and produce reuptake inhibition and neurotransmitter efflux.[12] Consequently, the efficacy of a particular TAAR1 ligand in producing these effects in different monoamine neurons is a function of both its binding affinity at TAAR1 and its capacity to move across the presynaptic membrane at each type of neuron.[12] The variability between a TAAR1 ligand's substrate affinity at the various monoamine transporters accounts for much of the difference in its capacity to produce neurotransmitter release and reuptake inhibition in different types of monoamine neurons.[12] E.g., a TAAR1 ligand which can easily pass through the norepinephrine transporter, but not the serotonin transporter, will produce – all else equal – markedly greater TAAR1-induced effects in norepinephrine neurons as compared to serotonin neurons.

Receptor oligomers edit

TAAR1 forms GPCR oligomers with monoamine autoreceptors in neurons in vivo.[25][26] These and other reported TAAR1 hetero-oligomers include:

Ligands edit

Agonists edit

Trace amines edit

Trace amines are endogenous amines which act as agonists at TAAR1 and are present in extracellular concentrations of 0.1–10 nMTooltip nanomolar in the brain, constituting less than 1% of total biogenic amines in the mammalian nervous system.[28] Some of the human trace amines include tryptamine, phenethylamine (PEA), N-methylphenethylamine, p-tyramine, m-tyramine, N-methyltyramine, p-octopamine, m-octopamine, and synephrine. These share structural similarities with the three common monoamines: serotonin, dopamine, and norepinephrine. Each ligand has a different potency, measured as increased cyclic AMP (cAMP) concentration after the binding event.

The rank order of potency for the primary endogenous ligands at hTAAR1 is:
tyramine > β-phenethylamine > dopamine = octopamine.[6]

Thyronamines edit

Thyronamines are molecular derivatives of the thyroid hormone and are very important for endocrine system function. 3-Iodothyronamine (T1AM) is the most potent TAAR1 agonist yet discovered, although it lacks monoamine transporter affinity and therefore has little effect in monoamine neurons of the central nervous system. Activation of TAAR1 by T1AM results in the production of large amounts of cAMP. This effect is coupled with decreased body temperature and cardiac output.

Synthetic edit

Partial agonists edit

Inverse agonists edit

Neutral antagonists edit

As of early 2018, no neutral antagonists for hTAAR1 have been characterized.[6]

Function edit

Phenethylamine and amphetamine in a TAAR1-localized dopamine neuron
 
via AADC
 
Amphetamine enters the presynaptic neuron across the neuronal membrane or through DAT.[12] Once inside, it binds to TAAR1 or enters synaptic vesicles through VMAT2.[12][37] When amphetamine enters synaptic vesicles through VMAT2, it collapses the vesicular pH gradient, which in turn causes dopamine to be released into the cytosol (light tan-colored area) through VMAT2.[37][38] When amphetamine binds to TAAR1, it reduces the firing rate of the dopamine neuron via G protein-coupled inwardly rectifying potassium channels (GIRKs) and activates protein kinase A (PKA) and protein kinase C (PKC), which subsequently phosphorylate DAT.[12][39][40] PKA phosphorylation causes DAT to withdraw into the presynaptic neuron (internalize) and cease transport.[12] PKC-phosphorylated DAT may either operate in reverse or, like PKA-phosphorylated DAT, internalize and cease transport.[12] Amphetamine is also known to increase intracellular calcium, an effect which is associated with DAT phosphorylation through a CAMKIIα-dependent pathway, in turn producing dopamine efflux.[41][42]

Monoaminergic systems edit

Before the discovery of TAAR1, trace amines were believed to serve very limited functions. They were thought to induce noradrenaline release from sympathetic nerve endings and compete for catecholamine or serotonin binding sites on cognate receptors, transporters, and storage sites.[28] Today, they are believed to play a much more dynamic role by regulating monoaminergic systems in the brain.

One of the downstream effects of active TAAR1 is to increase cAMP in the presynaptic cell via Gαs G-protein activation of adenylyl cyclase.[10][11][13] This alone can have a multitude of cellular consequences. A main function of the cAMP may be to up-regulate the expression of trace amines in the cell cytoplasm.[29] These amines would then activate intracellular TAAR1. Monoamine autoreceptors (e.g., D2 short, presynaptic α2, and presynaptic 5-HT1A) have the opposite effect of TAAR1, and together these receptors provide a regulatory system for monoamines.[12] Notably, amphetamine and trace amines possess high binding affinities for TAAR1, but not for monoamine autoreceptors.[12][7] The effect of TAAR1 agonists on monoamine transporters in the brain appears to be site-specific.[12] Imaging studies indicate that monoamine reuptake inhibition by amphetamine and trace amines is dependent upon the presence of TAAR1 co-localization in the associated monoamine neurons.[12] As of 2010, co-localization of TAAR1 and the dopamine transporter (DAT) has been visualized in rhesus monkeys, but co-localization of TAAR1 with the norepinephrine transporter (NET) and the serotonin transporter (SERT) has only been evidenced by messenger RNA (mRNA) expression.[12]

In neurons with co-localized TAAR1, TAAR1 agonists increase the concentrations of the associated monoamines in the synaptic cleft, thereby increasing post-synaptic receptor binding.[12] Through direct activation of G protein-coupled inwardly-rectifying potassium channels (GIRKs), TAAR1 can reduce the firing rate of dopamine neurons, in turn preventing a hyper-dopaminergic state.[33][39][40] Amphetamine and trace amines can enter the presynaptic neuron either through DAT or by diffusing across the neuronal membrane directly.[12] As a consequence of DAT uptake, amphetamine and trace amines produce competitive reuptake inhibition at the transporter.[12] Upon entering the presynaptic neuron, these compounds activate TAAR1 which, through protein kinase A (PKA) and protein kinase C (PKC) signaling, causes DAT phosphorylation. Phosphorylation by either protein kinase can result in DAT internalization (non-competitive reuptake inhibition), but PKC-mediated phosphorylation alone induces reverse transporter function (dopamine efflux).[12][43]

Immune system edit

Expression of TAAR1 on lymphocytes is associated with activation of lymphocyte immuno-characteristics.[16] In the immune system, TAAR1 transmits signals through active PKA and PKC phosphorylation cascades.[16] In a 2012 study, Panas et al. observed that methamphetamine had these effects, suggesting that, in addition to brain monoamine regulation, amphetamine-related compounds may have an effect on the immune system.[16] A recent paper showed that, along with TAAR1, TAAR2 is required for full activity of trace amines in PMN cells.[17]

Phytohaemagglutinin upregulates hTAAR1 mRNA in circulating leukocytes;[6] in these cells, TAAR1 activation mediates leukocyte chemotaxis toward TAAR1 agonists.[6] TAAR1 agonists (specifically, trace amines) have also been shown to induce interleukin 4 secretion in T-cells and immunoglobulin E (IgE) secretion in B cells.[6]

Astrocyte-localized TAAR1 regulates EAAT2 levels and function in these cells;[14] this has been implicated in methamphetamine-induced pathologies of the neuroimmune system.[14]

Clinical significance edit

Low phenethylamine (PEA) concentration in the brain is associated with major depressive disorder,[10][28][44] and high concentrations are associated with schizophrenia.[44][45] Low PEA levels and under-activation of TAAR1 also appears to be associated with ADHD.[44][45][46] It is hypothesized that insufficient PEA levels result in TAAR1 inactivation and overzealous monoamine uptake by transporters, possibly resulting in depression.[10][28] Some antidepressants function by inhibiting monoamine oxidase (MAO), which increases the concentration of trace amines, which is speculated to increase TAAR1 activation in presynaptic cells.[10][13] Decreased PEA metabolism has been linked to schizophrenia, a logical finding considering excess PEA would result in over-activation of TAAR1 and prevention of monoamine transporter function. Mutations in region q23.1 of human chromosome 6 – the same chromosome that codes for TAAR1 – have been linked to schizophrenia.[13]

Medical reviews from February 2015 and 2016 noted that TAAR1-selective ligands have significant therapeutic potential for treating psychostimulant addictions (e.g., cocaine, amphetamine, methamphetamine, etc.).[7][8] Despite wide distribution outside of the CNS and PNS, TAAR1 does not affect hematological functions and the regulation of thyroid hormones across different stages of ageing. Such data represent that future TAAR1-based therapies should exert little hematological effect and thus will likely have a good safety profile.[47]

Research edit

A large candidate gene association study published in September 2011 found significant differences in TAAR1 allele frequencies between a cohort of fibromyalgia patients and a chronic pain-free control group, suggesting this gene may play an important role in the pathophysiology of the condition; this possibly presents a target for therapeutic intervention.[48]

In preclinical research on rats, TAAR1 activation in pancreatic cells promotes insulin, peptide YY, and GLP-1 secretion;[49][non-primary source needed] therefore, TAAR1 is potentially a biological target for the treatment of obesity and diabetes.[49][non-primary source needed]

Lack of TAAR1 does not significantly affect sexual motivation and routine lipid and metabolic blood biochemical parameters, suggesting that future TAAR1-based therapies should have a favorable safety profile.[50]

Notes edit

  1. ^ In dopamine, norepinephrine, and serotonin neurons, the primary membrane transporters are DAT, NET, and SERT respectively.[12]
  2. ^ TAAR1–D2sh is a presynaptic heterodimer which involves the relocation of TAAR1 from the intracellular space to D2sh at the plasma membrane, increased D2sh agonist binding affinity, and signal transduction through the calcium–PKCNFAT pathway and G-protein independent PKBGSK3 pathway.[7][27]

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000146399 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000056379 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: TAAR1 trace amine associated receptor 1".
  6. ^ a b c d e f g h i j Maguire JJ, Davenport AP (20 February 2018). "Trace amine receptor: TA1 receptor". IUPHAR/BPS Guide to PHARMACOLOGY. International Union of Basic and Clinical Pharmacology. Retrieved 16 July 2018.
    Tissue Distribution
    CNS (region specific) & several peripheral tissues:
    Stomach > amygdala, kidney, lung, small intestine > cerebellum, dorsal root ganglion, hippocampus, hypothalamus, liver, medulla oblongata, pancreas, pituitary gland, pontine reticular formation, prostate, skeletal muscle, spleen. ...
    Leukocytes ...Pancreatic islet β cells ... Primary Tonsillar B Cells ... Circulating leukocytes of healthy subjects (upregulation occurs upon addition of phytohaemagglutinin).
    Species: Human ...
    In the brain (mouse, rhesus monkey) the TA1 receptor localises to neurones within the momaminergic pathways and there is emerging evidence for a modulatory role for TA1 on function of these systems. Co-expression of TA1 with the dopamine transporter (either within the same neurone or in adjacent neurones) implies direct/indirect modulation of CNS dopaminergic function. In cells expressing both human TA1 and a monoamine transporter (DAT, SERT or NET) signalling via TA1 is enhanced [26,48,50–51]. ...
    Functional Assays ...
    Mobilization of internal calcium in RD-HGA16 cells transfected with unmodified human TA1
    Response measured: Increase in cytopasmic calcium ...
    Measurement of cAMP levels in human cultured astrocytes.
    Response measured: cAMP accumulation ...
    Activation of leukocytes
    Species: Human
    Tissue: PMN, T and B cells
    Response measured: Chemotactic migration towards TA1 ligands (β-Phenylethylamine, tyramine and 3-iodothyronamine), trace amine induced IL-4 secretion (T-cells) and trace amine induced regulation of T cell marker RNA expression, trace amine induced IgE secretion in B cells.
  7. ^ a b c d e f g h Grandy DK, Miller GM, Li JX (February 2016). ""TAARgeting Addiction"-The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference". Drug Alcohol Depend. 159: 9–16. doi:10.1016/j.drugalcdep.2015.11.014. PMC 4724540. PMID 26644139. TAAR1 is a high-affinity receptor for METH/AMPH and DA ... This original observation of TAAR1 and DA D2R interaction has subsequently been confirmed and expanded upon with observations that both receptors can heterodimerize with each other under certain conditions ... Additional DA D2R/TAAR1 interactions with functional consequences are revealed by the results of experiments demonstrating that in addition to the cAMP/PKA pathway (Panas et al., 2012) stimulation of TAAR1-mediated signaling is linked to activation of the Ca++/PKC/NFAT pathway (Panas et al.,2012) and the DA D2R-coupled, G protein-independent AKT/GSK3 signaling pathway (Espinoza et al., 2015; Harmeier et al., 2015), such that concurrent TAAR1 and DA DR2R activation could result in diminished signaling in one pathway (e.g. cAMP/PKA) but retention of signaling through another (e.g., Ca++/PKC/NFA)
  8. ^ a b Jing L, Li JX (August 2015). "Trace amine-associated receptor 1: A promising target for the treatment of psychostimulant addiction". Eur. J. Pharmacol. 761: 345–352. doi:10.1016/j.ejphar.2015.06.019. PMC 4532615. PMID 26092759. TAAR1 is largely located in the intracellular compartments both in neurons (Miller, 2011), in glial cells (Cisneros and Ghorpade, 2014) and in peripheral tissues (Grandy, 2007) ... Existing data provided robust preclinical evidence supporting the development of TAAR1 agonists as potential treatment for psychostimulant abuse and addiction. ... Given that TAAR1 is primarily located in the intracellular compartments and existing TAAR1 agonists are proposed to get access to the receptors by translocation to the cell interior (Miller, 2011), future drug design and development efforts may need to take strategies of drug delivery into consideration (Rajendran et al., 2010).
  9. ^ a b c d e f g h i Berry MD, Gainetdinov RR, Hoener MC, Shahid M (December 2017). "Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges". Pharmacology & Therapeutics. 180: 161–180. doi:10.1016/j.pharmthera.2017.07.002. PMID 28723415.
  10. ^ a b c d e f g h Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (July 2001). "Trace amines: identification of a family of mammalian G protein-coupled receptors". Proceedings of the National Academy of Sciences of the United States of America. 98 (16): 8966–8971. Bibcode:2001PNAS...98.8966B. doi:10.1073/pnas.151105198. PMC 55357. PMID 11459929.
  11. ^ a b c d e f Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (December 2001). "Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor". Molecular Pharmacology. 60 (6): 1181–1188. doi:10.1124/mol.60.6.1181. PMID 11723224.
  12. ^ a b c d e f g h i j k l m n o p q r s t u v Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". Journal of Neurochemistry. 116 (2): 164–176. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468.
  13. ^ a b c d e f Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (March 2005). "Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors". Genomics. 85 (3): 372–385. doi:10.1016/j.ygeno.2004.11.010. PMID 15718104.
  14. ^ a b c d Cisneros IE, Ghorpade A (October 2014). "Methamphetamine and HIV-1-induced neurotoxicity: role of trace amine associated receptor 1 cAMP signaling in astrocytes". Neuropharmacology. 85: 499–507. doi:10.1016/j.neuropharm.2014.06.011. PMC 4315503. PMID 24950453. TAAR1 overexpression significantly decreased EAAT-2 levels and glutamate clearance ... METH treatment activated TAAR1 leading to intracellular cAMP in human astrocytes and modulated glutamate clearance abilities. Furthermore, molecular alterations in astrocyte TAAR1 levels correspond to changes in astrocyte EAAT-2 levels and function.
  15. ^ Rogers TJ (2012). "The molecular basis for neuroimmune receptor signaling". J Neuroimmune Pharmacol. 7 (4): 722–724. doi:10.1007/s11481-012-9398-4. PMC 4011130. PMID 22935971.
  16. ^ a b c d Panas MW, Xie Z, Panas HN, Hoener MC, Vallender EJ, Miller GM (December 2012). "Trace amine associated receptor 1 signaling in activated lymphocytes". Journal of Neuroimmune Pharmacology. 7 (4): 866–876. doi:10.1007/s11481-011-9321-4. PMC 3593117. PMID 22038157.
  17. ^ a b Babusyte A, Kotthoff M, Fiedler J, Krautwurst D (March 2013). "Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2". Journal of Leukocyte Biology. 93 (3): 387–394. doi:10.1189/jlb.0912433. PMID 23315425. S2CID 206996784.
  18. ^ Gainetdinov RR, Hoener MC, Berry MD (July 2018). "Trace Amines and Their Receptors". Pharmacological Reviews. 70 (3): 549–620. doi:10.1124/pr.117.015305. PMID 29941461.
  19. ^ Xie Z, Miller GM (November 2009). "Trace amine-associated receptor 1 as a monoaminergic modulator in brain". Biochemical Pharmacology. 78 (9): 1095–1104. doi:10.1016/j.bcp.2009.05.031. PMC 2748138. PMID 19482011.
  20. ^ "TAAR1". The Human Protein Atlas. Retrieved 24 August 2017.
  21. ^ a b c d Bugda Gwilt K, González DP, Olliffe N, Oller H, Hoffing R, Puzan M, El Aidy S, Miller GM (December 2019). "Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1)" (PDF). Cellular and Molecular Neurobiology. 40 (2): 191–201. doi:10.1007/s10571-019-00772-7. PMID 31836967. S2CID 209339614.
  22. ^ Xie Z, Westmoreland SV, Bahn ME, Chen GL, Yang H, Vallender EJ, Yao WD, Madras BK, Miller GM (April 2007). "Rhesus monkey trace amine-associated receptor 1 signaling: enhancement by monoamine transporters and attenuation by the D2 autoreceptor in vitro". The Journal of Pharmacology and Experimental Therapeutics. 321 (1): 116–127. doi:10.1124/jpet.106.116863. PMID 17234900. S2CID 578835.
  23. ^ Liberles SD, Buck LB (August 2006). "A second class of chemosensory receptors in the olfactory epithelium". Nature. 442 (7103): 645–650. Bibcode:2006Natur.442..645L. doi:10.1038/nature05066. PMID 16878137. S2CID 2864195.
  24. ^ a b c Barak LS, Salahpour A, Zhang X, Masri B, Sotnikova TD, Ramsey AJ, Violin JD, Lefkowitz RJ, Caron MG, Gainetdinov RR (September 2008). "Pharmacological characterization of membrane-expressed human trace amine-associated receptor 1 (TAAR1) by a bioluminescence resonance energy transfer cAMP biosensor". Molecular Pharmacology. 74 (3): 585–594. doi:10.1124/mol.108.048884. PMC 3766527. PMID 18524885.
  25. ^ a b c Lam VM, Espinoza S, Gerasimov AS, Gainetdinov RR, Salahpour A (June 2015). "In-vivo pharmacology of Trace-Amine Associated Receptor 1". Eur. J. Pharmacol. 763 (Pt B): 136–42. doi:10.1016/j.ejphar.2015.06.026. PMID 26093041.
    TAAR1 peripheral and immune localization/functions: It is important to note that in addition to the brain, TAAR1 is also expressed in the spinal cord (Gozal et al., 2014) and periphery (Revel et al., 2012c). It has been shown that TAAR1 is expressed and regulates immune function in rhesus monkey leukocytes (Babusyte et al., 2013; Nelson et al., 2007; Panas et al., 2012). In granulocytes, TAAR1 is necessary for chemotaxic migration of cells towards TAAR1 agonists. In addition, TAAR1 signaling in B and T cells can trigger immunoglobulin and cytokine release, respectively (Babusyte et al., 2013). TAAR1 is also expressed in the islets of Langerhans, stomach and intestines based on LacZ staining patterns carried out on TAAR1-KO LacZ mice (Revel et al., 2012c). Interestingly, the administration of selective TAAR1 partial agonist RO5263397 reverses the side effect of weight gain observed with the antipsychotic olanzapine, indicating that peripheral TAAR1 signalling can regulate metabolic homeostasis (Revel et al., 2012b). ...

    Monoamine transporters and SLC22A carrier subfamily transport TAAR1 ligand: Studies using the rhesus monkey TAAR1 have shown that this receptor interacts with the monoamine transporters DAT, SERT, and NET in HEK cells (Miller et al., 2005; Xie and Miller, 2007; Xie et al., 2007). It has been hypothesized that TAAR1 interaction with these transporters might provide a mechanism by which TAAR1 ligands can enter the cytoplasm and bind to TAAR1 in intracellular compartments. A recent study has shown that in rat neonatal motor neurons, trace-amine specific signalling requires the presence and function of the transmembrane solute carrier SLC22A but not that of monoamine transporters (DAT, SERT, and NET) (Gozal et al., 2014). Specifically, it was shown that addition of β-PEA, tyramine, or tryptamine induced locomotor like activity (LLA) firing patterns of these neurons in the presence of N-Methyl D-Aspartate. Temporally, it was found that the trace amine induction of LLA is delayed compared to serotonin and norepinephrine induced LLA, indicating the target site for the trace amines is not located on the plasma membrane and could perhaps be intracellular. Importantly, blocking of SLC22A with pentamidine abolished trace amine induced LLA, indicating that trace amine induced LLA does not act on receptors found on the plasma membrane but requires their transport to the cytosol by SLC22A for induction of LLA.
  26. ^ a b Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J, Hoefig CS, Müller A, Köhrle J, Grüters A, Krude H, Mittag J, Schöneberg T, Kleinau G, Biebermann H (June 2015). "3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling". J. Mol. Endocrinol. 54 (3): 205–216. doi:10.1530/JME-15-0003. PMID 25878061. Moreover, in ADRA2A/TAAR1 hetero-oligomers, the capacity of NorEpi to stimulate Gi/o signaling is reduced by co-stimulation with 3-T1AM. The present study therefore points to a complex spectrum of signaling modification mediated by 3-T1AM at different G protein-coupled receptors.
  27. ^ Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC (2015). "Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers". Eur Neuropsychopharmacol. 25 (11): 2049–2061. doi:10.1016/j.euroneuro.2015.08.011. PMID 26372541. S2CID 41667764. Interaction of TAAR1 with D2R altered the subcellular localization of TAAR1 and increased D2R agonist binding affinity.
  28. ^ a b c d Zucchi R, Chiellini G, Scanlan TS, Grandy DK (December 2006). "Trace amine-associated receptors and their ligands". British Journal of Pharmacology. 149 (8): 967–978. doi:10.1038/sj.bjp.0706948. PMC 2014643. PMID 17088868. Other biogenic amines are present in the central nervous system at very low concentrations in the order of 0.1–10 nm, representing <1% of total biogenic amines (Berry, 2004). For these compounds, the term 'trace amines' was introduced. Although somewhat loosely defined, the molecules generally considered to be trace amines include para-tyramine, meta-tyramine, tryptamine, β-phenylethylamine, para-octopamine and meta-octopamine (Berry, 2004) (Figure 2).
  29. ^ a b Xie Z, Miller GM (July 2009). "A receptor mechanism for methamphetamine action in dopamine transporter regulation in brain". The Journal of Pharmacology and Experimental Therapeutics. 330 (1): 316–325. doi:10.1124/jpet.109.153775. PMC 2700171. PMID 19364908.
  30. ^ Rickli A, Kopf S, Hoener MC, Liechti ME (July 2015). "Pharmacological profile of novel psychoactive benzofurans". British Journal of Pharmacology. 172 (13): 3412–3425. doi:10.1111/bph.13128. PMC 4500375. PMID 25765500.
  31. ^ a b Wainscott DB, Little SP, Yin T, Tu Y, Rocco VP, He JX, Nelson DL (January 2007). "Pharmacologic characterization of the cloned human trace amine-associated receptor1 (TAAR1) and evidence for species differences with the rat TAAR1". The Journal of Pharmacology and Experimental Therapeutics. 320 (1): 475–485. doi:10.1124/jpet.106.112532. PMID 17038507. S2CID 10829497. Several series of substituted phenylethylamines were investigated for activity at the human TAAR1 (Table 2). A surprising finding was the potency of phenylethylamines with substituents at the phenyl C2 position relative to their respective C4-substituted congeners. In each case, except for the hydroxyl substituent, the C2-substituted compound had 8- to 27-fold higher potency than the C4-substituted compound. The C3-substituted compound in each homologous series was typically 2- to 5-fold less potent than the 2-substituted compound, except for the hydroxyl substituent. The most potent of the 2-substituted phenylethylamines was 2-chloro-β-PEA, followed by 2-fluoro-β-PEA, 2-bromo-β-PEA, 2-methoxy-β-PEA, 2-methyl-β-PEA, and then 2-hydroxy-β-PEA.
    The effect of β-carbon substitution on the phenylethylamine side chain was also investigated (Table 3). A β-methyl substituent was well tolerated compared with β-PEA. In fact, S-(–)-β-methyl-β-PEA was as potent as β-PEA at human TAAR1. β-Hydroxyl substitution was, however, not tolerated compared with β-PEA. In both cases of β-substitution, enantiomeric selectivity was demonstrated.
    In contrast to a methyl substitution on the β-carbon, an α-methyl substitution reduced potency by ~10-fold for d-amphetamine and 16-fold for l-amphetamine relative to β-PEA (Table 4). N-Methyl substitution was fairly well tolerated; however, N,N-dimethyl substitution was not.
  32. ^ Galley G, Beurier A, Décoret G, Goergler A, Hutter R, Mohr S, Pähler A, Schmid P, Türck D, Unger R, Zbinden KG, Hoener MC, Norcross RD (2016). "Discovery and Characterization of 2-Aminooxazolines as Highly Potent, Selective, and Orally Active TAAR1 Agonists". ACS Med Chem Lett. 7 (2): 192–197. doi:10.1021/acsmedchemlett.5b00449. PMC 4753552. PMID 26985297.
  33. ^ a b Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (May 2011). "TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity". Proc. Natl. Acad. Sci. U.S.A. 108 (20): 8485–8490. Bibcode:2011PNAS..108.8485R. doi:10.1073/pnas.1103029108. PMC 3101002. PMID 21525407.
  34. ^ Revel FG, Moreau JL, Gainetdinov RR, Ferragud A, Velázquez-Sánchez C, Sotnikova TD, Morairty SR, Harmeier A, Groebke Zbinden K, Norcross RD, Bradaia A, Kilduff TS, Biemans B, Pouzet B, Caron MG, Canales JJ, Wallace TL, Wettstein JG, Hoener MC (June 2012). "Trace Amine-Associated Receptor 1 Partial Agonism Reveals Novel Paradigm for Neuropsychiatric Therapeutics". Biol Psychiatry. 72 (11): 934–942. doi:10.1016/j.biopsych.2012.05.014. PMID 22705041. S2CID 27334223.
  35. ^ Cichero E, Francesconi V, Casini B, Casale M, Kanov E, Gerasimov AS, et al. (November 2023). "Discovery of Guanfacine as a Novel TAAR1 Agonist: A Combination Strategy through Molecular Modeling Studies and Biological Assays". Pharmaceuticals. 16 (11): 1632. doi:10.3390/ph16111632. PMC 10674299. PMID 38004497.
  36. ^ Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC, Bettler B (November 2009). "The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system". Proceedings of the National Academy of Sciences of the United States of America. 106 (47): 20081–20086. Bibcode:2009PNAS..10620081B. doi:10.1073/pnas.0906522106. PMC 2785295. PMID 19892733.
  37. ^ a b Eiden LE, Weihe E (January 2011). "VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse". Ann. N. Y. Acad. Sci. 1216 (1): 86–98. Bibcode:2011NYASA1216...86E. doi:10.1111/j.1749-6632.2010.05906.x. PMC 4183197. PMID 21272013. VMAT2 is the CNS vesicular transporter for not only the biogenic amines DA, NE, EPI, 5-HT, and HIS, but likely also for the trace amines TYR, PEA, and thyronamine (THYR) ... [Trace aminergic] neurons in mammalian CNS would be identifiable as neurons expressing VMAT2 for storage, and the biosynthetic enzyme aromatic amino acid decarboxylase (AADC). ... AMPH release of DA from synapses requires both an action at VMAT2 to release DA to the cytoplasm and a concerted release of DA from the cytoplasm via "reverse transport" through DAT.
  38. ^ Sulzer D, Cragg SJ, Rice ME (August 2016). "Striatal dopamine neurotransmission: regulation of release and uptake". Basal Ganglia. 6 (3): 123–148. doi:10.1016/j.baga.2016.02.001. PMC 4850498. PMID 27141430. Despite the challenges in determining synaptic vesicle pH, the proton gradient across the vesicle membrane is of fundamental importance for its function. Exposure of isolated catecholamine vesicles to protonophores collapses the pH gradient and rapidly redistributes transmitter from inside to outside the vesicle. ... Amphetamine and its derivatives like methamphetamine are weak base compounds that are the only widely used class of drugs known to elicit transmitter release by a non-exocytic mechanism. As substrates for both DAT and VMAT, amphetamines can be taken up to the cytosol and then sequestered in vesicles, where they act to collapse the vesicular pH gradient.
  39. ^ a b Ledonne A, Berretta N, Davoli A, Rizzo GR, Bernardi G, Mercuri NB (2011). "Electrophysiological effects of trace amines on mesencephalic dopaminergic neurons". Frontiers in Systems Neuroscience. 5: 56. doi:10.3389/fnsys.2011.00056. PMC 3131148. PMID 21772817. inhibition of firing due to increased release of dopamine; (b) reduction of D2 and GABAB receptor-mediated inhibitory responses (excitatory effects due to disinhibition); and (c) a direct TA1 receptor-mediated activation of GIRK channels which produce cell membrane hyperpolarization.
  40. ^ a b mct (28 January 2012). "TAAR1". GenAtlas. University of Paris. Retrieved 29 May 2014.
    " • tonically activates inwardly rectifying K(+) channels, which reduces the basal firing frequency of dopamine (DA) neurons of the ventral tegmental area (VTA)"
  41. ^ Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG (July 2014). "Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons". Neuron. 83 (2): 404–416. doi:10.1016/j.neuron.2014.05.043. PMC 4159050. PMID 25033183. AMPH also increases intracellular calcium (Gnegy et al., 2004) that is associated with calmodulin/CamKII activation (Wei et al., 2007) and modulation and trafficking of the DAT (Fog et al., 2006; Sakrikar et al., 2012). ... For example, AMPH increases extracellular glutamate in various brain regions including the striatum, VTA and NAc (Del Arco et al., 1999; Kim et al., 1981; Mora and Porras, 1993; Xue et al., 1996), but it has not been established whether this change can be explained by increased synaptic release or by reduced clearance of glutamate. ... DHK-sensitive, EAAT2 uptake was not altered by AMPH (Figure 1A). The remaining glutamate transport in these midbrain cultures is likely mediated by EAAT3 and this component was significantly decreased by AMPH
  42. ^ Vaughan RA, Foster JD (September 2013). "Mechanisms of dopamine transporter regulation in normal and disease states". Trends Pharmacol. Sci. 34 (9): 489–496. doi:10.1016/j.tips.2013.07.005. PMC 3831354. PMID 23968642. AMPH and METH also stimulate DA efflux, which is thought to be a crucial element in their addictive properties [80], although the mechanisms do not appear to be identical for each drug [81]. These processes are PKCβ– and CaMK–dependent [72, 82], and PKCβ knock-out mice display decreased AMPH-induced efflux that correlates with reduced AMPH-induced locomotion [72].
  43. ^ Maguire JJ, Parker WA, Foord SM, Bonner TI, Neubig RR, Davenport AP (March 2009). "International Union of Pharmacology. LXXII. Recommendations for trace amine receptor nomenclature". Pharmacological Reviews. 61 (1): 1–8. doi:10.1124/pr.109.001107. PMC 2830119. PMID 19325074.
  44. ^ a b c Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375. The dysregulation of TA levels has been linked to several diseases, which highlights the corresponding members of the TAAR family as potential targets for drug development. In this article, we focus on the relevance of TAs and their receptors to nervous system-related disorders, namely schizophrenia and depression; however, TAs have also been linked to other diseases such as migraine, attention deficit hyperactivity disorder, substance abuse and eating disorders [7,8,36]. Clinical studies report increased β-PEA plasma levels in patients suffering from acute schizophrenia [37] and elevated urinary excretion of β-PEA in paranoid schizophrenics [38], which supports a role of TAs in schizophrenia. As a result of these studies, β-PEA has been referred to as the body's 'endogenous amphetamine' [39]
  45. ^ a b Sotnikova TD, Caron MG, Gainetdinov RR (August 2009). "Trace amine-associated receptors as emerging therapeutic targets". Mol. Pharmacol. 76 (2): 229–235. doi:10.1124/mol.109.055970. PMC 2713119. PMID 19389919. Although the functional role of trace amines in mammals remains largely enigmatic, it has been noted that trace amine levels can be altered in various human disorders, including schizophrenia, Parkinson's disease, attention deficit hyperactivity disorder (ADHD), Tourette syndrome, and phenylketonuria (Boulton, 1980; Sandler et al., 1980). It was generally held that trace amines affect the monoamine system indirectly via interaction with plasma membrane transporters [such as plasma membrane dopamine transporter (DAT)] and vesicular storage (Premont et al., 2001; Branchek and Blackburn, 2003; Berry, 2004; Sotnikova et al., 2004). ...
    Furthermore, DAT-deficient mice provide a model to investigate the inhibitory actions of amphetamines on hyperactivity, the feature of amphetamines believed to be important for their therapeutic action in ADHD (Gainetdinov et al., 1999; Gainetdinov and Caron, 2003). It should be noted also that the best-established agonist of TAAR1, β-PEA, shared the ability of amphetamine to induce inhibition of dopamine-dependent hyperactivity of DAT-KO mice (Gainetdinov et al., 1999; Sotnikova et al., 2004).
    Furthermore, if TAAR1 could be proven as a mediator of some of amphetamine's actions in vivo, the development of novel TAAR1-selective agonists and antagonists could provide a new approach for the treatment of amphetamine-related conditions such as addiction and/or disorders in which amphetamine is used therapeutically. In particular, because amphetamine has remained the most effective pharmacological treatment in ADHD for many years, a potential role of TAAR1 in the mechanism of the "paradoxical" effectiveness of amphetamine in this disorder should be explored.
  46. ^ Berry MD (January 2007). "The potential of trace amines and their receptors for treating neurological and psychiatric diseases". Rev Recent Clin Trials. 2 (1): 3–19. CiteSeerX 10.1.1.329.563. doi:10.2174/157488707779318107. PMID 18473983. changes in trace amines, in particular PE, have been identified as a possible factor for the onset of attention deficit/hyperactivity disorder (ADHD) [5, 27, 43, 78]. PE has been shown to induce hyperactivity and aggression, two of the cardinal clinical features of ADHD, in experimental animals [100]. Hyperactivity is also a symptom of phenylketonuria, which as discussed above is associated with a markedly elevated PE turnover [44]. Further, amphetamines, which have clinical utility in ADHD, are good ligands at trace amine receptors [2]. Of possible relevance in this aspect is modafanil, which has shown beneficial effects in ADHD patients [101] and has been reported to enhance the activity of PE at TAAR1 [102]. Conversely, methylphenidate, which is also clinically useful in ADHD, showed poor efficacy at the TAAR1 receptor [2]. In this respect it is worth noting that the enhancement of functioning at TAAR1 seen with modafanil was not a result of a direct interaction with TAAR1 [102].
    More direct evidence has been obtained recently for a role of trace amines in ADHD. Urinary PE levels have been reported to be decreased in ADHD patients in comparison to both controls and patients with autism [103-105]. Evidence for a decrease in PE levels in the brain of ADHD patients has also recently been reported [4]. In addition, decreases in the urine and plasma levels of the PE metabolite phenylacetic acid and the precursors phenylalanine and tyrosine have been reported along with decreases in plasma tyramine [103]. Following treatment with methylphenidate, patients who responded positively showed a normalization of urinary PE, whilst non-responders showed no change from baseline values [105].
  47. ^ Zhukov IS, Kubarskaya LG, Tissen IY, Kozlova AA, Dagayev SG, Kashuro VA, et al. (March 2020). "Minimal Age-Related Alterations in Behavioral and Hematological Parameters in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice". Cellular and Molecular Neurobiology. 40 (2): 273–282. doi:10.1007/s10571-019-00721-4. PMID 31399838. S2CID 199511689.
  48. ^ Smith SB, Maixner DW, Fillingim RB, Slade G, Gracely RH, Ambrose K, Zaykin DV, Hyde C, John S, Tan K, Maixner W, Diatchenko L (February 2012). "Large candidate gene association study reveals genetic risk factors and therapeutic targets for fibromyalgia". Arthritis and Rheumatism. 64 (2): 584–593. doi:10.1002/art.33338. PMC 3237946. PMID 21905019.
  49. ^ a b Raab S, Wang H, Uhles S, Cole N, Alvarez-Sanchez R, Künnecke B, Ullmer C, Matile H, Bedoucha M, Norcross RD, Ottaway-Parker N, Perez-Tilve D, Conde Knape K, Tschöp MH, Hoener MC, Sewing S (2016). "Incretin-like effects of small molecule trace amine-associated receptor 1 agonists". Mol Metab. 5 (1): 47–56. doi:10.1016/j.molmet.2015.09.015. PMC 4703809. PMID 26844206.
  50. ^ Zhukov IS, Ptukha MA, Zolotoverkhaja EA, Sinitca EL, Tissen IY, Karpova IV, Volnova AB, Gainetdinov RR (May 2022). "Evaluation of Approach to a Conspecific and Blood Biochemical Parameters in TAAR1 Knockout Mice". Brain Sciences. 12 (5): 614. doi:10.3390/brainsci12050614. PMC 9139149. PMID 35625001.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


External links edit

  •   Media related to TAAR1 at Wikimedia Commons

taar1, trace, amine, associated, receptor, trace, amine, associated, receptor, taar, protein, that, humans, encoded, gene, intracellular, amine, activated, coupled, coupled, protein, coupled, receptor, gpcr, that, primarily, expressed, several, peripheral, org. Trace amine associated receptor 1 TAAR1 is a trace amine associated receptor TAAR protein that in humans is encoded by the TAAR1 gene 5 TAAR1 is an intracellular amine activated Gs coupled and Gq coupled G protein coupled receptor GPCR that is primarily expressed in several peripheral organs and cells e g the stomach small intestine duodenum and white blood cells astrocytes and in the intracellular milieu within the presynaptic plasma membrane i e axon terminal of monoamine neurons in the central nervous system CNS 6 7 8 9 TAAR1 was discovered in 2001 by two independent groups of investigators Borowski et al and Bunzow et al 10 11 TAAR1 is one of six functional human trace amine associated receptors which are so named for their ability to bind endogenous amines that occur in tissues at trace concentrations 12 13 TAAR1 plays a significant role in regulating neurotransmission in dopamine norepinephrine and serotonin neurons in the CNS 7 12 it also affects immune system and neuroimmune system function through different mechanisms 14 15 16 17 TAAR1IdentifiersAliasesTAAR1 TA1 TAR1 TRAR1 trace amine associated receptor 1 Trace amine receptorExternal IDsOMIM 609333 MGI 2148258 HomoloGene 24938 GeneCards TAAR1Gene location Human Chr Chromosome 6 human 1 Band6q23 2Start132 643 312 bp 1 End132 659 182 bp 1 Gene location Mouse Chr Chromosome 10 mouse 2 Band10 10 A4Start23 796 254 bp 2 End23 797 367 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inislet of Langerhansright uterine tubeduodenumendometriumbloodmuscle tissuesmooth muscle tissuestomachurinary bladderbody of stomachTop expressed inislet of Langerhansmucosa of small intestineMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionG protein coupled amine receptor activity signal transducer activity G protein coupled receptor activity trace amine receptor activityCellular componentplasma membrane membrane integral component of membraneBiological processsignal transduction G protein coupled receptor signaling pathwaySources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez134864111174EnsemblENSG00000146399ENSMUSG00000056379UniProtQ96RJ0Q923Y8RefSeq mRNA NM 138327NM 053205RefSeq protein NP 612200NP 444435Location UCSC Chr 6 132 64 132 66 MbChr 10 23 8 23 8 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse TAAR1 is a high affinity receptor for amphetamine methamphetamine dopamine and trace amines which mediates some of their cellular effects in monoamine neurons within the central nervous system 7 12 The primary endogenous ligands of the human TAAR1 hTAAR1 receptor by rank order of potency are tyramine gt b phenethylamine gt dopamine octopamine 6 Contents 1 Discovery 2 Structure 3 Gene 4 Tissue distribution 4 1 Location within neurons 4 2 Receptor oligomers 5 Ligands 5 1 Agonists 5 1 1 Trace amines 5 1 2 Thyronamines 5 1 3 Synthetic 5 2 Partial agonists 5 3 Inverse agonists 5 4 Neutral antagonists 6 Function 6 1 Monoaminergic systems 6 2 Immune system 7 Clinical significance 7 1 Research 8 Notes 9 References 10 External linksDiscovery editTAAR1 was discovered independently by Borowski et al and Bunzow et al in 2001 To find the genetic variants responsible for TAAR1 synthesis they used mixtures of oligonucleotides with sequences related to G protein coupled receptors GPCRs of serotonin and dopamine to discover novel DNA sequences in rat genomic DNA and cDNA which they then amplified and cloned The resulting sequence was not found in any database and coded for TAAR1 10 11 Further characterization of the functional role of TAAR1 and other receptors from this family was performed by other researchers including Raul Gainetdinov and his colleagues 18 Structure editTAAR1 shares structural similarities with the class A rhodopsin GPCR subfamily 11 It has 7 transmembrane domains with short N and C terminal extensions 19 TAAR1 is 62 96 identical with TAARs2 15 which suggests that the TAAR subfamily has recently evolved while at the same time the low degree of similarity between TAAR1 orthologues suggests that they are rapidly evolving 10 TAAR1 shares a predictive peptide motif with all other TAARs This motif overlaps with transmembrane domain VII and its identity is NSXXNPXX Y H XXX Y F XWF TAAR1 and its homologues have ligand pocket vectors that utilize sets of 35 amino acids known to be involved directly in receptor ligand interaction 13 Gene editAll human TAAR genes are located on a single chromosome spanning 109 kb of human chromosome 6q23 1 192 kb of mouse chromosome 10A4 and 216 kb of rat chromosome 1p12 Each TAAR is derived from a single exon except for TAAR2 which is coded by two exons 13 The human TAAR1 gene is thought to be an intronless gene 20 Tissue distribution edit nbsp This diagram illustrates how TAAR1 activation induces incretin like effects through the release of gastrointestinal hormones and influences food intake blood glucose levels and insulin release 9 TAAR1 expression in the periphery is indicated with x 9 To date TAAR1 has been identified and cloned in five different mammal genomes human mouse rat monkey and chimpanzee In rats mRNA for TAAR1 is found at low to moderate levels in peripheral tissues like the stomach kidney intestines 21 and lungs and at low levels in the brain 10 Rhesus monkey Taar1 and human TAAR1 share high sequence similarity and TAAR1 mRNA is highly expressed in the same important monoaminergic regions of both species These regions include the dorsal and ventral caudate nucleus putamen substantia nigra nucleus accumbens ventral tegmental area locus coeruleus amygdala and raphe nucleus 6 22 hTAAR1 has also been identified in human astrocytes 6 14 Outside of the human central nervous system hTAAR1 also occurs as an intracellular receptor and is primarily expressed in the stomach intestines 21 duodenum 21 pancreatic b cells and white blood cells 9 21 In the duodenum TAAR1 activation increases glucagon like peptide 1 GLP 1 and peptide YY PYY release 9 in the stomach hTAAR1 activation has been observed to increase somatostatin growth hormone inhibiting hormone secretion from delta cells 9 hTAAR1 is the only human trace amine associated receptor subtype that is not expressed within the human olfactory epithelium 23 Location within neurons edit TAAR1 is an intracellular receptor expressed within the presynaptic terminal of monoamine neurons in humans and other animals 7 12 24 In model cell systems hTAAR1 has extremely poor membrane expression 24 A method to induce hTAAR1 membrane expression has been used to study its pharmacology via a bioluminescence resonance energy transfer cAMP assay 24 Because TAAR1 is an intracellular receptor in monoamine neurons exogenous TAAR1 ligands must enter the presynaptic neuron through a membrane transport protein note 1 or be able to diffuse across the presynaptic membrane in order to reach the receptor and produce reuptake inhibition and neurotransmitter efflux 12 Consequently the efficacy of a particular TAAR1 ligand in producing these effects in different monoamine neurons is a function of both its binding affinity at TAAR1 and its capacity to move across the presynaptic membrane at each type of neuron 12 The variability between a TAAR1 ligand s substrate affinity at the various monoamine transporters accounts for much of the difference in its capacity to produce neurotransmitter release and reuptake inhibition in different types of monoamine neurons 12 E g a TAAR1 ligand which can easily pass through the norepinephrine transporter but not the serotonin transporter will produce all else equal markedly greater TAAR1 induced effects in norepinephrine neurons as compared to serotonin neurons Receptor oligomers edit TAAR1 forms GPCR oligomers with monoamine autoreceptors in neurons in vivo 25 26 These and other reported TAAR1 hetero oligomers include TAAR1 D2sh note 2 25 TAAR1 a2A 26 TAAR1 TAAR2 9 Ligands editTrace amine associated receptor 1Transduction mechanismsGs Gq GIRKs b arrestin 2Primary endogenous agoniststyramine b phenylethylamine octopamine dopamineAgonistsEndogenous trace aminesExogenous RO5166017 amphetamine methamphetamine othersNeutral antagonistsNone characterizedInverse agonistsEPPTBPositive allosteric modulatorsN ANegative allosteric modulatorsN AExternal resourcesIUPHAR BPS364DrugBankQ96RJ0HMDBHMDBP10805 Agonists edit Trace amines edit For a more comprehensive list see Trace amine List of trace amines Trace amines are endogenous amines which act as agonists at TAAR1 and are present in extracellular concentrations of 0 1 10 nMTooltip nanomolar in the brain constituting less than 1 of total biogenic amines in the mammalian nervous system 28 Some of the human trace amines include tryptamine phenethylamine PEA N methylphenethylamine p tyramine m tyramine N methyltyramine p octopamine m octopamine and synephrine These share structural similarities with the three common monoamines serotonin dopamine and norepinephrine Each ligand has a different potency measured as increased cyclic AMP cAMP concentration after the binding event The rank order of potency for the primary endogenous ligands at hTAAR1 is tyramine gt b phenethylamine gt dopamine octopamine 6 Thyronamines edit Thyronamines are molecular derivatives of the thyroid hormone and are very important for endocrine system function 3 Iodothyronamine T1AM is the most potent TAAR1 agonist yet discovered although it lacks monoamine transporter affinity and therefore has little effect in monoamine neurons of the central nervous system Activation of TAAR1 by T1AM results in the production of large amounts of cAMP This effect is coupled with decreased body temperature and cardiac output Synthetic edit Amphetamine and its substituted derivatives methamphetamine and MDMA are all potent hTAAR1 agonists 7 9 Upon association with TAAR1 they elicit increases in cAMP production similar to those of PEA and p tyramine 9 These compounds are structurally similar to PEA and p tyramine 11 29 Benzofurans 5 APB 5 APDB 6 APB 6 APDB 4 APB 7 APB 5 EAPB and 5 MAPDB as well as the benzodifuran 2C B FLY are hTAAR1 agonists that have an MDMA like pharmacodynamic profile 30 The methylphenethylamines are agonists of hTAAR1 these include a methylphenethylamine amphetamine b methylphenethylamine N methylphenethylamine a trace amine 2 methylphenethylamine 3 methylphenethylamine and 4 methylphenethylamine 31 In rats lysergic acid diethylamide LSD is an agonist of rTAAR1 11 but in humans it lacks any affinity for hTAAR1 31 Certain 2 aminooxazoline compounds RO5166017 RO5256390 RO5203648 and RO5263397 are orally bioavailable highly potent and selective agonists of TAAR1 in laboratory animals 32 RO5166017 or S 4 ethylphenylamino methyl 4 5 dihydrooxazol 2 ylamine is a selective TAAR1 agonist without significant activity at other targets 33 RO5203648 and RO5263397 are highly selective TAAR1 partial agonists 25 RO5203648 demonstrated clear antidepressant and anti psychotic activity additionally it attenuated drug self administration and exhibited wakefulness promoting and cognition enhancing properties in murine and simian models 34 Ulotaront investigational antipsychotic Guanfacine ADHD medication 35 Partial agonists edit Ralmitaront investigational antipsychotic Inverse agonists edit EPPTB or N 3 ethoxyphenyl 4 pyrrolidin 1 yl 3 trifluoromethylbenzamide is a selective hTAAR1 inverse agonist 6 36 Neutral antagonists edit As of early 2018 update no neutral antagonists for hTAAR1 have been characterized 6 Function editPhenethylamine and amphetamine in a TAAR1 localized dopamine neuronvte nbsp via AADC nbsp Amphetamine enters the presynaptic neuron across the neuronal membrane or through DAT 12 Once inside it binds to TAAR1 or enters synaptic vesicles through VMAT2 12 37 When amphetamine enters synaptic vesicles through VMAT2 it collapses the vesicular pH gradient which in turn causes dopamine to be released into the cytosol light tan colored area through VMAT2 37 38 When amphetamine binds to TAAR1 it reduces the firing rate of the dopamine neuron via G protein coupled inwardly rectifying potassium channels GIRKs and activates protein kinase A PKA and protein kinase C PKC which subsequently phosphorylate DAT 12 39 40 PKA phosphorylation causes DAT to withdraw into the presynaptic neuron internalize and cease transport 12 PKC phosphorylated DAT may either operate in reverse or like PKA phosphorylated DAT internalize and cease transport 12 Amphetamine is also known to increase intracellular calcium an effect which is associated with DAT phosphorylation through a CAMKIIa dependent pathway in turn producing dopamine efflux 41 42 Monoaminergic systems edit Before the discovery of TAAR1 trace amines were believed to serve very limited functions They were thought to induce noradrenaline release from sympathetic nerve endings and compete for catecholamine or serotonin binding sites on cognate receptors transporters and storage sites 28 Today they are believed to play a much more dynamic role by regulating monoaminergic systems in the brain One of the downstream effects of active TAAR1 is to increase cAMP in the presynaptic cell via Gas G protein activation of adenylyl cyclase 10 11 13 This alone can have a multitude of cellular consequences A main function of the cAMP may be to up regulate the expression of trace amines in the cell cytoplasm 29 These amines would then activate intracellular TAAR1 Monoamine autoreceptors e g D2 short presynaptic a2 and presynaptic 5 HT1A have the opposite effect of TAAR1 and together these receptors provide a regulatory system for monoamines 12 Notably amphetamine and trace amines possess high binding affinities for TAAR1 but not for monoamine autoreceptors 12 7 The effect of TAAR1 agonists on monoamine transporters in the brain appears to be site specific 12 Imaging studies indicate that monoamine reuptake inhibition by amphetamine and trace amines is dependent upon the presence of TAAR1 co localization in the associated monoamine neurons 12 As of 2010 co localization of TAAR1 and the dopamine transporter DAT has been visualized in rhesus monkeys but co localization of TAAR1 with the norepinephrine transporter NET and the serotonin transporter SERT has only been evidenced by messenger RNA mRNA expression 12 In neurons with co localized TAAR1 TAAR1 agonists increase the concentrations of the associated monoamines in the synaptic cleft thereby increasing post synaptic receptor binding 12 Through direct activation of G protein coupled inwardly rectifying potassium channels GIRKs TAAR1 can reduce the firing rate of dopamine neurons in turn preventing a hyper dopaminergic state 33 39 40 Amphetamine and trace amines can enter the presynaptic neuron either through DAT or by diffusing across the neuronal membrane directly 12 As a consequence of DAT uptake amphetamine and trace amines produce competitive reuptake inhibition at the transporter 12 Upon entering the presynaptic neuron these compounds activate TAAR1 which through protein kinase A PKA and protein kinase C PKC signaling causes DAT phosphorylation Phosphorylation by either protein kinase can result in DAT internalization non competitive reuptake inhibition but PKC mediated phosphorylation alone induces reverse transporter function dopamine efflux 12 43 Immune system edit See also Neuroimmune system Expression of TAAR1 on lymphocytes is associated with activation of lymphocyte immuno characteristics 16 In the immune system TAAR1 transmits signals through active PKA and PKC phosphorylation cascades 16 In a 2012 study Panas et al observed that methamphetamine had these effects suggesting that in addition to brain monoamine regulation amphetamine related compounds may have an effect on the immune system 16 A recent paper showed that along with TAAR1 TAAR2 is required for full activity of trace amines in PMN cells 17 Phytohaemagglutinin upregulates hTAAR1 mRNA in circulating leukocytes 6 in these cells TAAR1 activation mediates leukocyte chemotaxis toward TAAR1 agonists 6 TAAR1 agonists specifically trace amines have also been shown to induce interleukin 4 secretion in T cells and immunoglobulin E IgE secretion in B cells 6 Astrocyte localized TAAR1 regulates EAAT2 levels and function in these cells 14 this has been implicated in methamphetamine induced pathologies of the neuroimmune system 14 Clinical significance editLow phenethylamine PEA concentration in the brain is associated with major depressive disorder 10 28 44 and high concentrations are associated with schizophrenia 44 45 Low PEA levels and under activation of TAAR1 also appears to be associated with ADHD 44 45 46 It is hypothesized that insufficient PEA levels result in TAAR1 inactivation and overzealous monoamine uptake by transporters possibly resulting in depression 10 28 Some antidepressants function by inhibiting monoamine oxidase MAO which increases the concentration of trace amines which is speculated to increase TAAR1 activation in presynaptic cells 10 13 Decreased PEA metabolism has been linked to schizophrenia a logical finding considering excess PEA would result in over activation of TAAR1 and prevention of monoamine transporter function Mutations in region q23 1 of human chromosome 6 the same chromosome that codes for TAAR1 have been linked to schizophrenia 13 Medical reviews from February 2015 and 2016 noted that TAAR1 selective ligands have significant therapeutic potential for treating psychostimulant addictions e g cocaine amphetamine methamphetamine etc 7 8 Despite wide distribution outside of the CNS and PNS TAAR1 does not affect hematological functions and the regulation of thyroid hormones across different stages of ageing Such data represent that future TAAR1 based therapies should exert little hematological effect and thus will likely have a good safety profile 47 Research edit A large candidate gene association study published in September 2011 found significant differences in TAAR1 allele frequencies between a cohort of fibromyalgia patients and a chronic pain free control group suggesting this gene may play an important role in the pathophysiology of the condition this possibly presents a target for therapeutic intervention 48 In preclinical research on rats TAAR1 activation in pancreatic cells promotes insulin peptide YY and GLP 1 secretion 49 non primary source needed therefore TAAR1 is potentially a biological target for the treatment of obesity and diabetes 49 non primary source needed Lack of TAAR1 does not significantly affect sexual motivation and routine lipid and metabolic blood biochemical parameters suggesting that future TAAR1 based therapies should have a favorable safety profile 50 Notes edit In dopamine norepinephrine and serotonin neurons the primary membrane transporters are DAT NET and SERT respectively 12 TAAR1 D2sh is a presynaptic heterodimer which involves the relocation of TAAR1 from the intracellular space to D2sh at the plasma membrane increased D2sh agonist binding affinity and signal transduction through the calcium PKC NFAT pathway and G protein independent PKB GSK3 pathway 7 27 References edit a b c GRCh38 Ensembl release 89 ENSG00000146399 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000056379 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Entrez Gene TAAR1 trace amine associated receptor 1 a b c d e f g h i j Maguire JJ Davenport AP 20 February 2018 Trace amine receptor TA1 receptor IUPHAR BPS Guide to PHARMACOLOGY International Union of Basic and Clinical Pharmacology Retrieved 16 July 2018 Tissue DistributionCNS region specific amp several peripheral tissues Stomach gt amygdala kidney lung small intestine gt cerebellum dorsal root ganglion hippocampus hypothalamus liver medulla oblongata pancreas pituitary gland pontine reticular formation prostate skeletal muscle spleen Leukocytes Pancreatic islet b cells Primary Tonsillar B Cells Circulating leukocytes of healthy subjects upregulation occurs upon addition of phytohaemagglutinin Species Human In the brain mouse rhesus monkey the TA1 receptor localises to neurones within the momaminergic pathways and there is emerging evidence for a modulatory role for TA1 on function of these systems Co expression of TA1 with the dopamine transporter either within the same neurone or in adjacent neurones implies direct indirect modulation of CNS dopaminergic function In cells expressing both human TA1 and a monoamine transporter DAT SERT or NET signalling via TA1 is enhanced 26 48 50 51 Functional Assays Mobilization of internal calcium in RD HGA16 cells transfected with unmodified human TA1Response measured Increase in cytopasmic calcium Measurement of cAMP levels in human cultured astrocytes Response measured cAMP accumulation Activation of leukocytesSpecies HumanTissue PMN T and B cellsResponse measured Chemotactic migration towards TA1 ligands b Phenylethylamine tyramine and 3 iodothyronamine trace amine induced IL 4 secretion T cells and trace amine induced regulation of T cell marker RNA expression trace amine induced IgE secretion in B cells a b c d e f g h Grandy DK Miller GM Li JX February 2016 TAARgeting Addiction The Alamo Bears Witness to Another Revolution An Overview of the Plenary Symposium of the 2015 Behavior Biology and Chemistry Conference Drug Alcohol Depend 159 9 16 doi 10 1016 j drugalcdep 2015 11 014 PMC 4724540 PMID 26644139 TAAR1 is a high affinity receptor for METH AMPH and DA This original observation of TAAR1 and DA D2R interaction has subsequently been confirmed and expanded upon with observations that both receptors can heterodimerize with each other under certain conditions Additional DA D2R TAAR1 interactions with functional consequences are revealed by the results of experiments demonstrating that in addition to the cAMP PKA pathway Panas et al 2012 stimulation of TAAR1 mediated signaling is linked to activation of the Ca PKC NFAT pathway Panas et al 2012 and the DA D2R coupled G protein independent AKT GSK3 signaling pathway Espinoza et al 2015 Harmeier et al 2015 such that concurrent TAAR1 and DA DR2R activation could result in diminished signaling in one pathway e g cAMP PKA but retention of signaling through another e g Ca PKC NFA a b Jing L Li JX August 2015 Trace amine associated receptor 1 A promising target for the treatment of psychostimulant addiction Eur J Pharmacol 761 345 352 doi 10 1016 j ejphar 2015 06 019 PMC 4532615 PMID 26092759 TAAR1 is largely located in the intracellular compartments both in neurons Miller 2011 in glial cells Cisneros and Ghorpade 2014 and in peripheral tissues Grandy 2007 Existing data provided robust preclinical evidence supporting the development of TAAR1 agonists as potential treatment for psychostimulant abuse and addiction Given that TAAR1 is primarily located in the intracellular compartments and existing TAAR1 agonists are proposed to get access to the receptors by translocation to the cell interior Miller 2011 future drug design and development efforts may need to take strategies of drug delivery into consideration Rajendran et al 2010 a b c d e f g h i Berry MD Gainetdinov RR Hoener MC Shahid M December 2017 Pharmacology of human trace amine associated receptors Therapeutic opportunities and challenges Pharmacology amp Therapeutics 180 161 180 doi 10 1016 j pharmthera 2017 07 002 PMID 28723415 a b c d e f g h Borowsky B Adham N Jones KA Raddatz R Artymyshyn R Ogozalek KL Durkin MM Lakhlani PP Bonini JA Pathirana S Boyle N Pu X Kouranova E Lichtblau H Ochoa FY Branchek TA Gerald C July 2001 Trace amines identification of a family of mammalian G protein coupled receptors Proceedings of the National Academy of Sciences of the United States of America 98 16 8966 8971 Bibcode 2001PNAS 98 8966B doi 10 1073 pnas 151105198 PMC 55357 PMID 11459929 a b c d e f Bunzow JR Sonders MS Arttamangkul S Harrison LM Zhang G Quigley DI Darland T Suchland KL Pasumamula S Kennedy JL Olson SB Magenis RE Amara SG Grandy DK December 2001 Amphetamine 3 4 methylenedioxymethamphetamine lysergic acid diethylamide and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor Molecular Pharmacology 60 6 1181 1188 doi 10 1124 mol 60 6 1181 PMID 11723224 a b c d e f g h i j k l m n o p q r s t u v Miller GM January 2011 The emerging role of trace amine associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity Journal of Neurochemistry 116 2 164 176 doi 10 1111 j 1471 4159 2010 07109 x PMC 3005101 PMID 21073468 a b c d e f Lindemann L Ebeling M Kratochwil NA Bunzow JR Grandy DK Hoener MC March 2005 Trace amine associated receptors form structurally and functionally distinct subfamilies of novel G protein coupled receptors Genomics 85 3 372 385 doi 10 1016 j ygeno 2004 11 010 PMID 15718104 a b c d Cisneros IE Ghorpade A October 2014 Methamphetamine and HIV 1 induced neurotoxicity role of trace amine associated receptor 1 cAMP signaling in astrocytes Neuropharmacology 85 499 507 doi 10 1016 j neuropharm 2014 06 011 PMC 4315503 PMID 24950453 TAAR1 overexpression significantly decreased EAAT 2 levels and glutamate clearance METH treatment activated TAAR1 leading to intracellular cAMP in human astrocytes and modulated glutamate clearance abilities Furthermore molecular alterations in astrocyte TAAR1 levels correspond to changes in astrocyte EAAT 2 levels and function Rogers TJ 2012 The molecular basis for neuroimmune receptor signaling J Neuroimmune Pharmacol 7 4 722 724 doi 10 1007 s11481 012 9398 4 PMC 4011130 PMID 22935971 a b c d Panas MW Xie Z Panas HN Hoener MC Vallender EJ Miller GM December 2012 Trace amine associated receptor 1 signaling in activated lymphocytes Journal of Neuroimmune Pharmacology 7 4 866 876 doi 10 1007 s11481 011 9321 4 PMC 3593117 PMID 22038157 a b Babusyte A Kotthoff M Fiedler J Krautwurst D March 2013 Biogenic amines activate blood leukocytes via trace amine associated receptors TAAR1 and TAAR2 Journal of Leukocyte Biology 93 3 387 394 doi 10 1189 jlb 0912433 PMID 23315425 S2CID 206996784 Gainetdinov RR Hoener MC Berry MD July 2018 Trace Amines and Their Receptors Pharmacological Reviews 70 3 549 620 doi 10 1124 pr 117 015305 PMID 29941461 Xie Z Miller GM November 2009 Trace amine associated receptor 1 as a monoaminergic modulator in brain Biochemical Pharmacology 78 9 1095 1104 doi 10 1016 j bcp 2009 05 031 PMC 2748138 PMID 19482011 TAAR1 The Human Protein Atlas Retrieved 24 August 2017 a b c d Bugda Gwilt K Gonzalez DP Olliffe N Oller H Hoffing R Puzan M El Aidy S Miller GM December 2019 Actions of Trace Amines in the Brain Gut Microbiome Axis via Trace Amine Associated Receptor 1 TAAR1 PDF Cellular and Molecular Neurobiology 40 2 191 201 doi 10 1007 s10571 019 00772 7 PMID 31836967 S2CID 209339614 Xie Z Westmoreland SV Bahn ME Chen GL Yang H Vallender EJ Yao WD Madras BK Miller GM April 2007 Rhesus monkey trace amine associated receptor 1 signaling enhancement by monoamine transporters and attenuation by the D2 autoreceptor in vitro The Journal of Pharmacology and Experimental Therapeutics 321 1 116 127 doi 10 1124 jpet 106 116863 PMID 17234900 S2CID 578835 Liberles SD Buck LB August 2006 A second class of chemosensory receptors in the olfactory epithelium Nature 442 7103 645 650 Bibcode 2006Natur 442 645L doi 10 1038 nature05066 PMID 16878137 S2CID 2864195 a b c Barak LS Salahpour A Zhang X Masri B Sotnikova TD Ramsey AJ Violin JD Lefkowitz RJ Caron MG Gainetdinov RR September 2008 Pharmacological characterization of membrane expressed human trace amine associated receptor 1 TAAR1 by a bioluminescence resonance energy transfer cAMP biosensor Molecular Pharmacology 74 3 585 594 doi 10 1124 mol 108 048884 PMC 3766527 PMID 18524885 a b c Lam VM Espinoza S Gerasimov AS Gainetdinov RR Salahpour A June 2015 In vivo pharmacology of Trace Amine Associated Receptor 1 Eur J Pharmacol 763 Pt B 136 42 doi 10 1016 j ejphar 2015 06 026 PMID 26093041 TAAR1 peripheral and immune localization functions It is important to note that in addition to the brain TAAR1 is also expressed in the spinal cord Gozal et al 2014 and periphery Revel et al 2012c It has been shown that TAAR1 is expressed and regulates immune function in rhesus monkey leukocytes Babusyte et al 2013 Nelson et al 2007 Panas et al 2012 In granulocytes TAAR1 is necessary for chemotaxic migration of cells towards TAAR1 agonists In addition TAAR1 signaling in B and T cells can trigger immunoglobulin and cytokine release respectively Babusyte et al 2013 TAAR1 is also expressed in the islets of Langerhans stomach and intestines based on LacZ staining patterns carried out on TAAR1 KO LacZ mice Revel et al 2012c Interestingly the administration of selective TAAR1 partial agonist RO5263397 reverses the side effect of weight gain observed with the antipsychotic olanzapine indicating that peripheral TAAR1 signalling can regulate metabolic homeostasis Revel et al 2012b Monoamine transporters and SLC22A carrier subfamily transport TAAR1 ligand Studies using the rhesus monkey TAAR1 have shown that this receptor interacts with the monoamine transporters DAT SERT and NET in HEK cells Miller et al 2005 Xie and Miller 2007 Xie et al 2007 It has been hypothesized that TAAR1 interaction with these transporters might provide a mechanism by which TAAR1 ligands can enter the cytoplasm and bind to TAAR1 in intracellular compartments A recent study has shown that in rat neonatal motor neurons trace amine specific signalling requires the presence and function of the transmembrane solute carrier SLC22A but not that of monoamine transporters DAT SERT and NET Gozal et al 2014 Specifically it was shown that addition of b PEA tyramine or tryptamine induced locomotor like activity LLA firing patterns of these neurons in the presence of N Methyl D Aspartate Temporally it was found that the trace amine induction of LLA is delayed compared to serotonin and norepinephrine induced LLA indicating the target site for the trace amines is not located on the plasma membrane and could perhaps be intracellular Importantly blocking of SLC22A with pentamidine abolished trace amine induced LLA indicating that trace amine induced LLA does not act on receptors found on the plasma membrane but requires their transport to the cytosol by SLC22A for induction of LLA a b Dinter J Muhlhaus J Jacobi SF Wienchol CL Coster M Meister J Hoefig CS Muller A Kohrle J Gruters A Krude H Mittag J Schoneberg T Kleinau G Biebermann H June 2015 3 iodothyronamine differentially modulates a 2A adrenergic receptor mediated signaling J Mol Endocrinol 54 3 205 216 doi 10 1530 JME 15 0003 PMID 25878061 Moreover in ADRA2A TAAR1 hetero oligomers the capacity of NorEpi to stimulate Gi o signaling is reduced by co stimulation with 3 T1AM The present study therefore points to a complex spectrum of signaling modification mediated by 3 T1AM at different G protein coupled receptors Harmeier A Obermueller S Meyer CA Revel FG Buchy D Chaboz S Dernick G Wettstein JG Iglesias A Rolink A Bettler B Hoener MC 2015 Trace amine associated receptor 1 activation silences GSK3b signaling of TAAR1 and D2R heteromers Eur Neuropsychopharmacol 25 11 2049 2061 doi 10 1016 j euroneuro 2015 08 011 PMID 26372541 S2CID 41667764 Interaction of TAAR1 with D2R altered the subcellular localization of TAAR1 and increased D2R agonist binding affinity a b c d Zucchi R Chiellini G Scanlan TS Grandy DK December 2006 Trace amine associated receptors and their ligands British Journal of Pharmacology 149 8 967 978 doi 10 1038 sj bjp 0706948 PMC 2014643 PMID 17088868 Other biogenic amines are present in the central nervous system at very low concentrations in the order of 0 1 10 nm representing lt 1 of total biogenic amines Berry 2004 For these compounds the term trace amines was introduced Although somewhat loosely defined the molecules generally considered to be trace amines include para tyramine meta tyramine tryptamine b phenylethylamine para octopamine and meta octopamine Berry 2004 Figure 2 a b Xie Z Miller GM July 2009 A receptor mechanism for methamphetamine action in dopamine transporter regulation in brain The Journal of Pharmacology and Experimental Therapeutics 330 1 316 325 doi 10 1124 jpet 109 153775 PMC 2700171 PMID 19364908 Rickli A Kopf S Hoener MC Liechti ME July 2015 Pharmacological profile of novel psychoactive benzofurans British Journal of Pharmacology 172 13 3412 3425 doi 10 1111 bph 13128 PMC 4500375 PMID 25765500 a b Wainscott DB Little SP Yin T Tu Y Rocco VP He JX Nelson DL January 2007 Pharmacologic characterization of the cloned human trace amine associated receptor1 TAAR1 and evidence for species differences with the rat TAAR1 The Journal of Pharmacology and Experimental Therapeutics 320 1 475 485 doi 10 1124 jpet 106 112532 PMID 17038507 S2CID 10829497 Several series of substituted phenylethylamines were investigated for activity at the human TAAR1 Table 2 A surprising finding was the potency of phenylethylamines with substituents at the phenyl C2 position relative to their respective C4 substituted congeners In each case except for the hydroxyl substituent the C2 substituted compound had 8 to 27 fold higher potency than the C4 substituted compound The C3 substituted compound in each homologous series was typically 2 to 5 fold less potent than the 2 substituted compound except for the hydroxyl substituent The most potent of the 2 substituted phenylethylamines was 2 chloro b PEA followed by 2 fluoro b PEA 2 bromo b PEA 2 methoxy b PEA 2 methyl b PEA and then 2 hydroxy b PEA The effect of b carbon substitution on the phenylethylamine side chain was also investigated Table 3 A b methyl substituent was well tolerated compared with b PEA In fact S b methyl b PEA was as potent as b PEA at human TAAR1 b Hydroxyl substitution was however not tolerated compared with b PEA In both cases of b substitution enantiomeric selectivity was demonstrated In contrast to a methyl substitution on the b carbon an a methyl substitution reduced potency by 10 fold for d amphetamine and 16 fold for l amphetamine relative to b PEA Table 4 N Methyl substitution was fairly well tolerated however N N dimethyl substitution was not Galley G Beurier A Decoret G Goergler A Hutter R Mohr S Pahler A Schmid P Turck D Unger R Zbinden KG Hoener MC Norcross RD 2016 Discovery and Characterization of 2 Aminooxazolines as Highly Potent Selective and Orally Active TAAR1 Agonists ACS Med Chem Lett 7 2 192 197 doi 10 1021 acsmedchemlett 5b00449 PMC 4753552 PMID 26985297 a b Revel FG Moreau JL Gainetdinov RR Bradaia A Sotnikova TD Mory R Durkin S Zbinden KG Norcross R Meyer CA Metzler V Chaboz S Ozmen L Trube G Pouzet B Bettler B Caron MG Wettstein JG Hoener MC May 2011 TAAR1 activation modulates monoaminergic neurotransmission preventing hyperdopaminergic and hypoglutamatergic activity Proc Natl Acad Sci U S A 108 20 8485 8490 Bibcode 2011PNAS 108 8485R doi 10 1073 pnas 1103029108 PMC 3101002 PMID 21525407 Revel FG Moreau JL Gainetdinov RR Ferragud A Velazquez Sanchez C Sotnikova TD Morairty SR Harmeier A Groebke Zbinden K Norcross RD Bradaia A Kilduff TS Biemans B Pouzet B Caron MG Canales JJ Wallace TL Wettstein JG Hoener MC June 2012 Trace Amine Associated Receptor 1 Partial Agonism Reveals Novel Paradigm for Neuropsychiatric Therapeutics Biol Psychiatry 72 11 934 942 doi 10 1016 j biopsych 2012 05 014 PMID 22705041 S2CID 27334223 Cichero E Francesconi V Casini B Casale M Kanov E Gerasimov AS et al November 2023 Discovery of Guanfacine as a Novel TAAR1 Agonist A Combination Strategy through Molecular Modeling Studies and Biological Assays Pharmaceuticals 16 11 1632 doi 10 3390 ph16111632 PMC 10674299 PMID 38004497 Bradaia A Trube G Stalder H Norcross RD Ozmen L Wettstein JG Pinard A Buchy D Gassmann M Hoener MC Bettler B November 2009 The selective antagonist EPPTB reveals TAAR1 mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system Proceedings of the National Academy of Sciences of the United States of America 106 47 20081 20086 Bibcode 2009PNAS 10620081B doi 10 1073 pnas 0906522106 PMC 2785295 PMID 19892733 a b Eiden LE Weihe E January 2011 VMAT2 a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse Ann N Y Acad Sci 1216 1 86 98 Bibcode 2011NYASA1216 86E doi 10 1111 j 1749 6632 2010 05906 x PMC 4183197 PMID 21272013 VMAT2 is the CNS vesicular transporter for not only the biogenic amines DA NE EPI 5 HT and HIS but likely also for the trace amines TYR PEA and thyronamine THYR Trace aminergic neurons in mammalian CNS would be identifiable as neurons expressing VMAT2 for storage and the biosynthetic enzyme aromatic amino acid decarboxylase AADC AMPH release of DA from synapses requires both an action at VMAT2 to release DA to the cytoplasm and a concerted release of DA from the cytoplasm via reverse transport through DAT Sulzer D Cragg SJ Rice ME August 2016 Striatal dopamine neurotransmission regulation of release and uptake Basal Ganglia 6 3 123 148 doi 10 1016 j baga 2016 02 001 PMC 4850498 PMID 27141430 Despite the challenges in determining synaptic vesicle pH the proton gradient across the vesicle membrane is of fundamental importance for its function Exposure of isolated catecholamine vesicles to protonophores collapses the pH gradient and rapidly redistributes transmitter from inside to outside the vesicle Amphetamine and its derivatives like methamphetamine are weak base compounds that are the only widely used class of drugs known to elicit transmitter release by a non exocytic mechanism As substrates for both DAT and VMAT amphetamines can be taken up to the cytosol and then sequestered in vesicles where they act to collapse the vesicular pH gradient a b Ledonne A Berretta N Davoli A Rizzo GR Bernardi G Mercuri NB 2011 Electrophysiological effects of trace amines on mesencephalic dopaminergic neurons Frontiers in Systems Neuroscience 5 56 doi 10 3389 fnsys 2011 00056 PMC 3131148 PMID 21772817 inhibition of firing due to increased release of dopamine b reduction of D2 and GABAB receptor mediated inhibitory responses excitatory effects due to disinhibition and c a direct TA1 receptor mediated activation of GIRK channels which produce cell membrane hyperpolarization a b mct 28 January 2012 TAAR1 GenAtlas University of Paris Retrieved 29 May 2014 tonically activates inwardly rectifying K channels which reduces the basal firing frequency of dopamine DA neurons of the ventral tegmental area VTA Underhill SM Wheeler DS Li M Watts SD Ingram SL Amara SG July 2014 Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons Neuron 83 2 404 416 doi 10 1016 j neuron 2014 05 043 PMC 4159050 PMID 25033183 AMPH also increases intracellular calcium Gnegy et al 2004 that is associated with calmodulin CamKII activation Wei et al 2007 and modulation and trafficking of the DAT Fog et al 2006 Sakrikar et al 2012 For example AMPH increases extracellular glutamate in various brain regions including the striatum VTA and NAc Del Arco et al 1999 Kim et al 1981 Mora and Porras 1993 Xue et al 1996 but it has not been established whether this change can be explained by increased synaptic release or by reduced clearance of glutamate DHK sensitive EAAT2 uptake was not altered by AMPH Figure 1A The remaining glutamate transport in these midbrain cultures is likely mediated by EAAT3 and this component was significantly decreased by AMPH Vaughan RA Foster JD September 2013 Mechanisms of dopamine transporter regulation in normal and disease states Trends Pharmacol Sci 34 9 489 496 doi 10 1016 j tips 2013 07 005 PMC 3831354 PMID 23968642 AMPH and METH also stimulate DA efflux which is thought to be a crucial element in their addictive properties 80 although the mechanisms do not appear to be identical for each drug 81 These processes are PKCb and CaMK dependent 72 82 and PKCb knock out mice display decreased AMPH induced efflux that correlates with reduced AMPH induced locomotion 72 Maguire JJ Parker WA Foord SM Bonner TI Neubig RR Davenport AP March 2009 International Union of Pharmacology LXXII Recommendations for trace amine receptor nomenclature Pharmacological Reviews 61 1 1 8 doi 10 1124 pr 109 001107 PMC 2830119 PMID 19325074 a b c Lindemann L Hoener MC May 2005 A renaissance in trace amines inspired by a novel GPCR family Trends Pharmacol Sci 26 5 274 281 doi 10 1016 j tips 2005 03 007 PMID 15860375 The dysregulation of TA levels has been linked to several diseases which highlights the corresponding members of the TAAR family as potential targets for drug development In this article we focus on the relevance of TAs and their receptors to nervous system related disorders namely schizophrenia and depression however TAs have also been linked to other diseases such as migraine attention deficit hyperactivity disorder substance abuse and eating disorders 7 8 36 Clinical studies report increased b PEA plasma levels in patients suffering from acute schizophrenia 37 and elevated urinary excretion of b PEA in paranoid schizophrenics 38 which supports a role of TAs in schizophrenia As a result of these studies b PEA has been referred to as the body s endogenous amphetamine 39 a b Sotnikova TD Caron MG Gainetdinov RR August 2009 Trace amine associated receptors as emerging therapeutic targets Mol Pharmacol 76 2 229 235 doi 10 1124 mol 109 055970 PMC 2713119 PMID 19389919 Although the functional role of trace amines in mammals remains largely enigmatic it has been noted that trace amine levels can be altered in various human disorders including schizophrenia Parkinson s disease attention deficit hyperactivity disorder ADHD Tourette syndrome and phenylketonuria Boulton 1980 Sandler et al 1980 It was generally held that trace amines affect the monoamine system indirectly via interaction with plasma membrane transporters such as plasma membrane dopamine transporter DAT and vesicular storage Premont et al 2001 Branchek and Blackburn 2003 Berry 2004 Sotnikova et al 2004 Furthermore DAT deficient mice provide a model to investigate the inhibitory actions of amphetamines on hyperactivity the feature of amphetamines believed to be important for their therapeutic action in ADHD Gainetdinov et al 1999 Gainetdinov and Caron 2003 It should be noted also that the best established agonist of TAAR1 b PEA shared the ability of amphetamine to induce inhibition of dopamine dependent hyperactivity of DAT KO mice Gainetdinov et al 1999 Sotnikova et al 2004 Furthermore if TAAR1 could be proven as a mediator of some of amphetamine s actions in vivo the development of novel TAAR1 selective agonists and antagonists could provide a new approach for the treatment of amphetamine related conditions such as addiction and or disorders in which amphetamine is used therapeutically In particular because amphetamine has remained the most effective pharmacological treatment in ADHD for many years a potential role of TAAR1 in the mechanism of the paradoxical effectiveness of amphetamine in this disorder should be explored Berry MD January 2007 The potential of trace amines and their receptors for treating neurological and psychiatric diseases Rev Recent Clin Trials 2 1 3 19 CiteSeerX 10 1 1 329 563 doi 10 2174 157488707779318107 PMID 18473983 changes in trace amines in particular PE have been identified as a possible factor for the onset of attention deficit hyperactivity disorder ADHD 5 27 43 78 PE has been shown to induce hyperactivity and aggression two of the cardinal clinical features of ADHD in experimental animals 100 Hyperactivity is also a symptom of phenylketonuria which as discussed above is associated with a markedly elevated PE turnover 44 Further amphetamines which have clinical utility in ADHD are good ligands at trace amine receptors 2 Of possible relevance in this aspect is modafanil which has shown beneficial effects in ADHD patients 101 and has been reported to enhance the activity of PE at TAAR1 102 Conversely methylphenidate which is also clinically useful in ADHD showed poor efficacy at the TAAR1 receptor 2 In this respect it is worth noting that the enhancement of functioning at TAAR1 seen with modafanil was not a result of a direct interaction with TAAR1 102 More direct evidence has been obtained recently for a role of trace amines in ADHD Urinary PE levels have been reported to be decreased in ADHD patients in comparison to both controls and patients with autism 103 105 Evidence for a decrease in PE levels in the brain of ADHD patients has also recently been reported 4 In addition decreases in the urine and plasma levels of the PE metabolite phenylacetic acid and the precursors phenylalanine and tyrosine have been reported along with decreases in plasma tyramine 103 Following treatment with methylphenidate patients who responded positively showed a normalization of urinary PE whilst non responders showed no change from baseline values 105 Zhukov IS Kubarskaya LG Tissen IY Kozlova AA Dagayev SG Kashuro VA et al March 2020 Minimal Age Related Alterations in Behavioral and Hematological Parameters in Trace Amine Associated Receptor 1 TAAR1 Knockout Mice Cellular and Molecular Neurobiology 40 2 273 282 doi 10 1007 s10571 019 00721 4 PMID 31399838 S2CID 199511689 Smith SB Maixner DW Fillingim RB Slade G Gracely RH Ambrose K Zaykin DV Hyde C John S Tan K Maixner W Diatchenko L February 2012 Large candidate gene association study reveals genetic risk factors and therapeutic targets for fibromyalgia Arthritis and Rheumatism 64 2 584 593 doi 10 1002 art 33338 PMC 3237946 PMID 21905019 a b Raab S Wang H Uhles S Cole N Alvarez Sanchez R Kunnecke B Ullmer C Matile H Bedoucha M Norcross RD Ottaway Parker N Perez Tilve D Conde Knape K Tschop MH Hoener MC Sewing S 2016 Incretin like effects of small molecule trace amine associated receptor 1 agonists Mol Metab 5 1 47 56 doi 10 1016 j molmet 2015 09 015 PMC 4703809 PMID 26844206 Zhukov IS Ptukha MA Zolotoverkhaja EA Sinitca EL Tissen IY Karpova IV Volnova AB Gainetdinov RR May 2022 Evaluation of Approach to a Conspecific and Blood Biochemical Parameters in TAAR1 Knockout Mice Brain Sciences 12 5 614 doi 10 3390 brainsci12050614 PMC 9139149 PMID 35625001 This article incorporates text from the United States National Library of Medicine which is in the public domain External links edit nbsp Media related to TAAR1 at Wikimedia Commons Retrieved from https en wikipedia org w index php title TAAR1 amp oldid 1196134636, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.