fbpx
Wikipedia

Curare

Curare (/kʊˈrɑːri/ or /kjʊˈrɑːri/; kuu-RAH-ree or kyuu-RAH-ree) is a common name for various alkaloid arrow poisons originating from plant extracts. Used as a paralyzing agent by indigenous peoples in Central and South America for hunting and for therapeutic purposes, curare only becomes active when it contaminates a wound. These poisons cause weakness of the skeletal muscles and, when administered in a sufficient dose, eventual death by asphyxiation due to paralysis of the diaphragm. Curare is prepared by boiling the bark of one of the dozens of plant sources, leaving a dark, heavy paste that can be applied to arrow or dart heads. In medicine, curare has been used as a treatment for tetanus and strychnine poisoning and as a paralyzing agent for surgical procedures.

Chondrodendron tomentosum, the main source of 'tube curare' and principal source of D-tubocurarine (DTC), the alkaloid constituting medicinal curare.
Strychnos toxifera, the Strychnos species which is the principal source of 'calabash curare' and its main active constituent, the alkaloid toxiferine.

History edit

The word 'curare' is derived from wurari, from the Carib language of the Macusi of Guyana.[1] It has its origins in the Carib phrase "mawa cure" meaning of the Mawa vine, scientifically known as Strychnos toxifera.[citation needed] Curare is also known among indigenous peoples as Ampi, Woorari, Woorara, Woorali, Wourali, Wouralia, Ourare, Ourari, Urare, Urari, and Uirary. The noun 'curare' is not to be confused with the Latin verb 'curare' ('to heal, cure, take care of').

Classification edit

In 1895 pharmacologist Rudolf Boehm sought to classify the various alkaloid poisons based on the containers used for their preparation. He believed curare could be categorized into three main types as seen below. However useful it appeared, it became rapidly outmoded. Richard Gill, a plant collector, found that the indigenous peoples began to use a variety of containers for their curare preparations, henceforth invalidating Boehm's basis of classification.[2]

  • Tube or bamboo curare: Mainly composed of the toxin D-tubocurarine, this poison is found packed into hollow bamboo tubes derived from Chondrodendron and other genera in the Menispermaceae. According to their LD50 values, tube curare is thought to be the most toxic.
  • Pot curare: Mainly composed of alkaloid components protocurarine (the active ingredient), protocurine (a weak toxicity), and protocuridine (non-toxic) from both Menispermaceae and Loganiaceae/Strychnaceae. This subtype is found originally packed in terra cotta pots.
  • Calabash or gourd curare: Mainly composed of C toxiferine I, this poison was originally packed into hollow gourds from Loganiaceae/Strychnaceae alone.


Manske also observed in his 1955 The Alkaloids:

The results of the early [pre-1900] work were very inaccurate because of the complexity and variation of the composition of the mixtures of alkaloids involved ... these were impure, non-crystalline alkaloids ... Almost all curare preparations were and are complex mixtures, and many of the physiological actions attributed to the early curarizing preparations were undoubtedly due to impurities, particularly to other alkaloids present. The curare preparations are now considered to be of two main types, those from Chondrodendron or other members of the Menispermaceae family and those from Strychnos, a genus of the Loganiaceae [ now Strychnaceae ] family. Some preparations may contain alkaloids from both ... and the majority have other secondary ingredients.[2]

Hunting uses edit

Curare was used as a paralyzing poison by many South American indigenous people. Since it was too expensive to be used in warfare, curare was mainly used for hunting.[3] The prey was shot by arrows or blowgun darts dipped in curare, leading to asphyxiation owing to the inability of the victim's respiratory muscles to contract. In particular, the poison was used by the Kalinago, indigenous people of the Lesser Antilles in the Caribbean, on the tips of their arrows.[4] In addition, the Yagua people, indigenous to Colombia and northeastern Peru, commonly used these toxins via blowpipes to target prey 30 to 40 paces distant.[5]

Due to its popularity among the indigenous people as means of paralyzing prey, certain tribes would create monopolies from curare production.[3] Thus, curare became a symbol of wealth among the indigenous populations.

In 1596, Sir Walter Raleigh mentioned the arrow poison in his book Discovery of the Large, Rich, and Beautiful Empire of Guiana (which relates to his travels in Trinidad and Guayana), though the poison he described was possibly not curare.[6] In 1780, Abbe Felix Fontana discovered that it acted on the voluntary muscles rather than the nerves and the heart.[7] In 1832, Alexander von Humboldt gave the first western account of how the toxin was prepared from plants by Orinoco River natives.[8]

 
Curare darts and quiver from the Amazon rainforest.

During 1811–1812, Sir Benjamin Collins Brody experimented with curare (woorara).[9][10] He was the first to show that curare does not kill the animal and the recovery is complete if the animal's respiration is maintained artificially. In 1825, Charles Waterton described a classical experiment in which he kept a curarized female donkey alive by artificial respiration with a bellows through a tracheostomy.[11] Waterton is also credited with bringing curare to Europe.[12] Robert Hermann Schomburgk, who was a trained botanist, identified the vine as one of the genus Strychnos and gave it the now accepted name Strychnos toxifera.[13]

Medical use edit

George Harley (1829–1896) showed in 1850 that curare (wourali) was effective for the treatment of tetanus and strychnine poisoning.[14][15] In 1857, Claude Bernard (1813–1878) published the results of his experiments in which he demonstrated that the mechanism of action of curare was a result of interference in the conduction of nerve impulses from the motor nerve to the skeletal muscle, and that this interference occurred at the neuromuscular junction.[16][17] From 1887, the Burroughs Wellcome catalogue listed under its 'Tabloids' brand name, 112 grain (5.4 mg) tablets of curare (price: 8 shillings) for use in preparing a solution for hypodermic injection. In 1914, Henry Hallett Dale (1875–1968) described the physiological actions of acetylcholine.[18] After 25 years, he showed that acetylcholine is responsible for neuromuscular transmission, which can be blocked by curare.[19]

 
19th century depiction of hunting with blowguns in the Amazon rainforest.

The best known and historically most important toxin (because of its medical applications) is d-tubocurarine. It was isolated from the crude drug – from a museum sample of curare – in 1935 by Harold King of London, working in Sir Henry Dale's laboratory. King also established its chemical structure.[20][21] Pascual Scannone, a Venezuelan anesthesiologist[22] who trained and specialized in New York City, did extensive research on curare as a possible paralyzing agent for patients during surgical procedures. In 1942, he became the first person in Latin America to use curare during a medical procedure when he successfully performed a tracheal intubation in a patient to whom he administered curare for muscle paralysis at the El Algodonal Hospital in Caracas, Venezuela.[22]

After its introduction in 1942, curare/curare-derivatives became a widely used paralyzing agent during medical and surgical procedures.[citation needed] In medicine, curare has been superseded by a number of curare-like agents, such as pancuronium, which have a similar pharmacodynamic profile, but fewer side effects.[citation needed]

Chemical structure edit

The various components of curare are organic compounds classified as either isoquinoline or indole alkaloids. Tubocurarine is one of the major active components in the South American dart poison.[23] As an alkaloid, tubocurarine is a naturally occurring compound that consists of nitrogenous bases, although the chemical structure of alkaloids is highly variable.

 
Similar functional groups among the three compounds enables curare to bind to Acetylcholine receptors.

Tubocurarine and C toxiferine consist of a cyclic system with quaternary ammonium ions. On the other hand, while acetylcholine does not contain a cyclic system, it does contain a quaternary ammonium ion. Because of this shared moiety, curare alkaloids can bind readily to the active site of receptors for acetylcholine (ACh) at the neuromuscular junction, blocking nerve impulses from being sent to the skeletal muscles, effectively paralyzing the muscles of the body.

Pharmacological properties edit

 
A neuromuscular junction. Curare blocks ACh receptors (bottom left).

Curare is an example of a non-depolarizing muscle relaxant that blocks the nicotinic acetylcholine receptor (nAChR),[24] one of the two types of acetylcholine (ACh) receptors, at the neuromuscular junction. The main toxin of curare, d-tubocurarine, occupies the same position on the receptor as ACh with an equal or greater affinity, and elicits no response, making it a competitive antagonist. The antidote for curare poisoning is an acetylcholinesterase (AChE) inhibitor (anti-cholinesterase), such as physostigmine or neostigmine. By blocking ACh degradation, AChE inhibitors raise the amount of ACh in the neuromuscular junction; the accumulated ACh will then correct for the effect of the curare by activating the receptors not blocked by toxin at a higher rate.

The time of onset varies from within one minute (for tubocurarine in intravenous administration, penetrating a larger vein), to between 15 and 25 minutes (for intramuscular administration, where the substance is applied in muscle tissue).[24]

It is harmless if taken orally[25][26] because curare compounds are too large and highly charged to pass through the lining of the digestive tract to be absorbed into the blood. For this reason, people can safely eat curare-poisoned prey, and it has no effect on its flavor.[27]

Anesthesia edit

Isolated attempts to use curare during anesthesia date back to 1912 by Arthur Lawen of Leipzig,[28] but curare came to anesthesia via psychiatry (electroplexy). In 1939 Abram Elting Bennett used it to modify metrazol induced convulsive therapy.[29] Muscle relaxants are used in modern anesthesia for many reasons, such as providing optimal operating conditions and facilitating intubation of the trachea. Before muscle relaxants, anesthesiologists needed to use larger doses of the anesthetic agent, such as ether, chloroform or cyclopropane to achieve these aims. Such deep anesthesia risked killing patients who were elderly or had heart conditions.

The source of curare in the Amazon was first researched by Richard Evans Schultes in 1941. Since the 1930s, it was being used in hospitals as a muscle relaxant. He discovered that different types of curare called for as many as 15 ingredients, and in time helped to identify more than 70 species that produced the drug.

In the 1940s, it was used on a few occasions during surgery as it was mistakenly thought to be an analgesic or anesthetic. The patients reported feeling the full intensity of the pain though they were not able to do anything about it since they were essentially paralyzed.[30]

On January 23, 1942, Harold Griffith and Enid Johnson gave a synthetic preparation of curare (Intercostrin/Intocostrin) to a patient undergoing an appendectomy (to supplement conventional anesthesia). Safer curare derivatives, such as rocuronium and pancuronium, have superseded d-tubocurarine for anesthesia during surgery. When used with halothane d-tubocurarine can cause a profound fall in blood pressure in some patients as both the drugs are ganglion blockers.[31] However, it is safer to use d-tubocurarine with ether.

In 1954, an article was published by Beecher and Todd suggesting that the use of muscle relaxants (drugs similar to curare) increased death due to anesthesia nearly sixfold.[32] This was refuted in 1956.[33]

Modern anesthetists have at their disposal a variety of muscle relaxants for use in anesthesia. The ability to produce muscle relaxation irrespective of sedation has permitted anesthetists to adjust the two effects independently and on the fly to ensure that their patients are safely unconscious and sufficiently relaxed to permit surgery. The use of neuromuscular blocking drugs carries with it the risk of anesthesia awareness.

Plant sources edit

There are dozens of plants from which isoquinoline and indole alkaloids with curarizing effects can be isolated, and which were utilized by indigenous tribes of Central and South America for the production of arrow poisons. Among them are:

In family Menispermaceae:

Other families:

Some plants in the family Aristolochiaceae have also been reported as sources.

Alkaloids with curare-like activity are present in plants of the fabaceous genus Erythrina.[2]

Toxicity edit

The toxicity of curare alkaloids in humans has not been established. Administration must be parenterally, as gastro-intestinal absorption is ineffective.

LD50 (mg/kg)

human: 0.735 est. (form and method of administration not indicated)

mouse: pot: 0.8–25; tubo: 5-10; calabash: 2–15.

Preparation edit

In 1807, Alexander von Humboldt provided the first eye-witness account of curare preparation.[3] A mixture of young bark scrapings of the Strychnos plant, other cleaned plant parts, and occasionally snake venom is boiled in water for two days. This liquid is then strained and evaporated to create a dark, heavy, viscid paste that would be tested for its potency later.[3] This curare paste was described to be very bitter in taste.

In 1938, Richard Gill and his expedition collected samples of processed curare and described its method of traditional preparation; one of the plant species used at that time was Chondrodendron tomentosum.[35]

Adjuvants edit

Various irritating herbs, stinging insects, poisonous worms, and various parts of amphibians and reptiles are added to the preparation. Some of these accelerate the onset of action or increase the toxicity; others prevent the wound from healing or blood from coagulating.

Diagnosis and management of curare poisoning edit

Curare poisoning can be indicated by typical signs of neuromuscular-blocking drugs such as paralysis including respiration but not directly affecting the heart.

Curare poisoning can be managed by artificial respiration such as mouth-to-mouth resuscitation. In a study of 29 army volunteers that were paralyzed with curare, artificial respiration managed to keep an oxygen saturation of always above 85%,[36] a level at which there is no evidence of altered state of consciousness.[37] Yet, curare poisoning mimics the total locked-in syndrome in that there is paralysis of every voluntarily controlled muscle in the body (including the eyes), making it practically impossible for the victim to confirm consciousness while paralyzed.[38]

Spontaneous breathing is resumed after the end of the duration of action of curare, which is generally between 30 minutes[39] and 8 hours,[40] depending on the variant of the toxin and dosage. Cardiac muscle is not directly affected by curare, but if more than four to six minutes[41] has passed since respiratory cessation the cardiac muscle may stop functioning by oxygen-deprivation, making cardiopulmonary resuscitation including chest compressions necessary.

Chemical antidote edit

Since tubocurarine and the other components of curare bind reversibly to the ACh receptors, treatment for curare poisoning involves adding an acetylcholinesterase (AChE) inhibitor, which will stop the destruction of acetylcholine so that it can compete with curare.[42] This can be done by administration of acetylcholinesterase (AChE) inhibitors such as pyridostigmine,[43] neostigmine, physostigmine, and edrophonium. Acetylcholinesterase is an enzyme used to break down the acetylcholine (ACh) neurotransmitter left over in motor neuron synapses. The aforementioned inhibitors, termed "anticurare" drugs, reversibly bind to the enzyme's active site, prohibiting its ability to bind to its original target, ACh. By blocking ACh degradation, AChE inhibitors can effectively raise the amount of ACh present in the neuromuscular junction. The accumulated ACh will then correct for the effect of the curare by activating the receptors not blocked by toxin at a higher rate, restoring activity to the motor neurons and bodily movement.

Gallery edit

See also edit

References edit

  1. ^ "curare (n.)". Online Etymology Dictionary. Douglas Harper.
  2. ^ a b c Manske, R. H. F., ed. (1955). The Alkaloids: Chemistry and Physiology – Volume 5, Pharmacology. New York, New York: Academic Press Inc. p. 269. ISBN 9781483221922. LCCN 50-5522. Retrieved 12 May 2014.
  3. ^ a b c d Gibson, Arthur C. . Plants and Civilization. UCLA Mildred E. Mathias Botanical Garden, University of California, Los Angeles. Archived from the original on 28 July 2012.
  4. ^ La Oficina del Indice Histórico de Puerto Rico [The Office of the Historical Index of Puerto Rico] (1949). Tesauro de datos historicos: Indice compendioso de la literatura histórica de Puerto Rico, incluyendo algunos datos inéditos, periodísticos y cartográficos, Tomo II [Thesaurus of historical data: Comprehensive index of Puerto Rico's historical literature, including some unpublished, journalistic and cartographic data, Volume II] (in Spanish). San Juan, Puerto Rico: El Gobierno de Puerto Rico. p. 306. Retrieved 4 January 2020.
  5. ^ Lee, MR (2005). "Curare: The South American Arrow Poison" (PDF). The Journal of the Royal College of Physicians of Edinburgh. 35 (1): 83–92. PMID 15825249.
  6. ^ Carman, J. A. (October 1968). "History of curare". Anaesthesia. Association of Anaesthetists. 23 (4): 706–707. doi:10.1111/j.1365-2044.1968.tb00142.x. PMID 4877723. S2CID 10236106.
  7. ^ The Gale Encyclopedia of Science (Third ed.). Gale Group.
  8. ^ Humboldt, Alexander von; Bonpland, Aimé (1907). Personal Narrative of Travels to the Equinoctial Regions of America, During the Year 1799–1804 – Volume 2. Translated by Ross, Thomasina. London: George Bell & Sons.
  9. ^ Brodie, Benjamin Collins (1811). "X. Experiments and Observations on the different Modes in which Death is produced by certain vegetable Poisons. By B. C. Brodie, Esq. F. R. S. Communicated by the Society for promoting the Knowledge of Animal Chemistry". Philosophical Transactions. The Royal Society. 101: 178–208. doi:10.1098/rstl.1811.0011. S2CID 186210185.
  10. ^ Brodie, Benjamin Collins (1812). "XI. Further Experiments and Observations on the Action of Poisons on the Animal System. By B. C. Brodie, Esq. F. R. S. Communicated to the Society for the Improvement of Animal Chemistry, and by them to the Royal Society". Philosophical Transactions. The Royal Society. 102: 205–227. doi:10.1098/rstl.1812.0013.
  11. ^ . Ye Olde Log. n.d. Archived from the original on 9 May 2008. Retrieved 23 August 2017.
  12. ^ Waterton, Charles (1891). "Chapter II". Wanderings in South America. London, Paris & Melbourne: Cassell & Company, Limited., reprinted in "Classical File". Survey of Anesthesiology. 22 (1): 98 ff. February 1978.
  13. ^ Birmingham, A T (1999). "Waterton and Wouralia". British Journal of Pharmacology. The British Pharmacological Society. 126 (8): 1685–1689. doi:10.1038/sj.bjp.0702409. PMC 1565951. PMID 10372809.
  14. ^ Paton, A. (December 1979). "George Harley (1829-1896)". Practitioner. 223 (1338): 849–51. PMID 396529.
  15. ^ "George Harley". Whonamedit? – A dictionary of medical eponyms. Retrieved 14 April 2020.
  16. ^ Gray, TC (1947). "The Use of D-Tubocurarine Chloride in Anæsthesia". Ann R Coll Surg Engl. The Royal College of Surgeons of England. 1 (4): 191–203. PMC 1940167. PMID 19309828.
  17. ^ Bernard, Claude (1857). "Vingt-cinquième Leçon [Twenty-fifth Lesson]". Leçons sur les effets des substances toxiques et médicamenteuses [Lessons on the effects of toxic and medicinal substances] (in French). Paris: J.B. Baillière. pp. 369–80.
  18. ^ Dale, H. H. (1 November 1914). "THE ACTION OF CERTAIN ESTERS AND ETHERS OF CHOLINE, AND THEIR RELATION TO MUSCARINE". Journal of Pharmacology and Experimental Therapeutics. The American Society for Pharmacology and Experimental Therapeutics. 6: 147–190.
  19. ^ Dale, Henry (12 May 1934). "Chemical Transmission of the Effects of Nerve Impulses". British Medical Journal. 1 (3827): 835–841. doi:10.1136/bmj.1.3827.835. PMC 2445804. PMID 20778253.
  20. ^ King, H. (1935). "Curare alkaloids: Part 1, Tubocurarine". Journal of the Chemical Society. The Royal Society of Chemistry. 57: 1381–1389. doi:10.1039/jr9350001381.
  21. ^ King, Harold (1935). "Curare". Nature. The Physical Society. 135 (3412): 469–470. Bibcode:1935Natur.135..469K. doi:10.1038/135469b0.
  22. ^ a b Eger, Edmond I II; Saidman, Lawrence J.; Westhorpe, Rod N., eds. (2014). The Wondrous Story of Anaesthesia. Springer. p. 438. ISBN 978-1-4614-8440-0.
  23. ^ Editors of Encyclopaedia Britannica (7 March 2016). "Curare, chemical compound". Encyclopædia Britannica. Retrieved 17 April 2020.
  24. ^ a b "Curare". Drugs.com. 8 November 2001.
  25. ^ . Ye Olde Log. n.d. Archived from the original on 9 May 2008. Retrieved 23 August 2017.
  26. ^ Schaffner, Brynn (2000). "Curare". Blue Planet Biomes. Retrieved 14 April 2020.
  27. ^ Milner, Daniel (Summer 2009). . Faculty of Medicine, Department of Innovation in Medical Education. University of Ottawa. Archived from the original on 30 July 2011.
  28. ^ Lawen, A. (1912). "Über die Verbindung der Lokalanästhesie mit der Narkose, über hohe Extraduralanaesthesie und epidurale injektionen anasthesierender Losungen bei tabischen Makenkrisen" [Over the connection of local anesthesia with anesthesia, through high extradural anesthesia and epidural injections of anesthetic solutions in tabetic macaques]. Beiträge zur klinischen Chirurgie (in German). 80: 168–189.
  29. ^ Bennett, A. E. (1940). "Preventing traumatic complications in convulsive shock therapy by curare". Journal of the American Medical Association. American Medical Association. 114 (4): 322–324. doi:10.1001/jama.1940.02810040032009.
  30. ^ Dennett, Daniel C. (1978). Brainstorms: Philosophical Essays on Mind and Psychology. Cambridge, Massachusetts: The MIT Press. p. 209.
  31. ^ Mashraqui, S. (October 1994). "Hypotension induced with d-tubocurarine and halothane for surgery of patent ductus arteriosus". Indian Journal of Anaesthesia. 42 (5): 346–50.
  32. ^ Beecher, H. K.; Todd, D. P. (1954). "A Study of the Deaths Associated with Anesthesia and Surgery: Based on a Study of 599,548 Anesthesias in Ten Institutions 1948–1952, Inclusive". Annals of Surgery. 140 (2): 2–35. doi:10.1097/00000658-195407000-00001. PMC 1609600. PMID 13159140., reprinted in "Classical File". Survey of Anesthesiology. 15 (5): 496 ff. October 1971. doi:10.1097/00132586-197110000-00013.
  33. ^ Albertson, HA; Trout, HH; Morfin, E (June 1956). "The Safety of Curare in Anesthesia". Annals of Surgery. 143 (6): 833–837. doi:10.1097/00000658-195606000-00012. PMC 1465152. PMID 13327828.
  34. ^ Lewis, Walter H.; Elvin-Lewis, Memory P.F. (1977). Medical Botany: Plants Affecting Man's Health. Wiley-Interscience. ISBN 0-471-53320-3.
  35. ^ Kemp, Christopher (17 January 2018). "The Amazonian arrow poison that made modern anaesthesia: Adventurer Richard Gill sought relief from symptoms of multiple sclerosis in an Ecuadorian tribal weapon – with wider results that live on in medicine today". New Scientist (3161).
  36. ^ Idress, A.H.; Gabrielli, A. (2007). "Techniques of ventilation during CPR". In Paradis, Norman A.; Halperin, Henry R.; Kern, Karl B.; Wenzel, Volker; Chamberlain, Douglas A. (eds.). Cardiac Arrest: The Science and Practice of Resuscitation Medicine (2nd ed.). Cambridge, UK: Cambridge University Press. p. 520. ISBN 978-0-521-84700-1.
  37. ^ McEvoy, Mike (October 12, 2010), (PDF), Albany, New York: Albany Medical College, archived from the original (PDF) on August 21, 2011
  38. ^ Damasio, Antonio R. (1999). The Feeling of What Happens: Body and Emotion in the Making of Consciousness. San Diego: Harcourt Brace. p. 357. ISBN 978-0-15-601075-7.
  39. ^ For therapeutic dose of tubocurarine by shorter limit as given in: Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. p. 151. ISBN 978-0-443-07145-4. OCLC 51622037.
  40. ^ For 20-fold paralytic dose of toxiferine ("calabash curare"), according to: The Alkaloids: v. 1: A Review of Chemical Literature (Specialist Periodical Reports). Cambridge, England: Royal Society of Chemistry. 1971. p. 330. ISBN 978-0-85186-257-6.
  41. ^ "Cardiopulmonary Resuscitation (CPR)", Gale Encyclopedia of Medicine, The Gale Group, Inc., 2008 – via The Free Dictionary by Farlex
  42. ^ Saladin, Kenneth S. (2015). Anatomy and Physiology The Unity of Form and Function (7th ed.). New York: McGraw Hill Education. ISBN 978-1259385513.
  43. ^ Morgan, Thomas III; Kalman, Bernadette (2007). Neuroimmunology in Clinical Practice. Wiley-Blackwell. p. 153. ISBN 978-1-4051-5840-4.

Further reading edit

  • Foldes, F. F. (1993), "Anästhesie vor und nach Curare" [Anesthesia before and after curare], Anaesthesiol Reanim (in German), vol. 18, no. 5, pp. 128–131, PMID 8280340, retrieved June 20, 2005
  • "Harold Griffith, Fonds P090". Archival Collections Catalogue. Osler Library of the History of Medicine, McGill University Library, McGill University. – contains papers and records pertaining to Griffith's introduction of curare into anesthesiology
  • James, Mel, , Canada Heirloom Series, Volume 6, archived from the original on November 27, 2004, retrieved June 20, 2005
  • Raghavendra, Thandla (July 2002). "Neuromuscular blocking drugs: discovery and development". Journal of the Royal Society of Medicine. 95 (7): 363–367. doi:10.1177/014107680209500713. PMC 1279945. PMID 12091515.
  • Smith, Roger P., , Dartmouth College, Trustees of Dartmouth College, archived from the original on December 29, 2007, retrieved March 13, 2007
  • Strecker, G.J.; Jackson, M.B. (October 1989). "Curare binding and the curare-induced subconductance state of the acetylcholine receptor channel". Biophysical Journal. 56 (4): 795–806. Bibcode:1989BpJ....56..795S. doi:10.1016/S0006-3495(89)82726-2. PMC 1280535. PMID 2479422.
  • Waterton, Charles. Bullen, A. H. (ed.). . Archived from the original on 2008-06-05 – via Project Gutenberg.

curare, this, article, about, plant, toxins, comics, character, curaré, batman, beyond, confused, with, curara, help, expand, this, article, with, text, translated, from, corresponding, article, french, march, 2014, click, show, important, translation, instruc. This article is about the plant toxins For the DC Comics character see Curare Batman Beyond Not to be confused with Curara You can help expand this article with text translated from the corresponding article in French March 2014 Click show for important translation instructions View a machine translated version of the French article Machine translation like DeepL or Google Translate is a useful starting point for translations but translators must revise errors as necessary and confirm that the translation is accurate rather than simply copy pasting machine translated text into the English Wikipedia Consider adding a topic to this template there are already 5 871 articles in the main category and specifying topic will aid in categorization Do not translate text that appears unreliable or low quality If possible verify the text with references provided in the foreign language article You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation A model attribution edit summary is Content in this edit is translated from the existing French Wikipedia article at fr Curare see its history for attribution You should also add the template Translated fr Curare to the talk page For more guidance see Wikipedia Translation The article s lead section may need to be rewritten Please help improve the lead and read the lead layout guide May 2019 Learn how and when to remove this template message Curare k ʊ ˈ r ɑːr i or k j ʊ ˈ r ɑːr i kuu RAH ree or kyuu RAH ree is a common name for various alkaloid arrow poisons originating from plant extracts Used as a paralyzing agent by indigenous peoples in Central and South America for hunting and for therapeutic purposes curare only becomes active when it contaminates a wound These poisons cause weakness of the skeletal muscles and when administered in a sufficient dose eventual death by asphyxiation due to paralysis of the diaphragm Curare is prepared by boiling the bark of one of the dozens of plant sources leaving a dark heavy paste that can be applied to arrow or dart heads In medicine curare has been used as a treatment for tetanus and strychnine poisoning and as a paralyzing agent for surgical procedures Chondrodendron tomentosum the main source of tube curare and principal source of D tubocurarine DTC the alkaloid constituting medicinal curare Strychnos toxifera the Strychnos species which is the principal source of calabash curare and its main active constituent the alkaloid toxiferine Contents 1 History 1 1 Classification 1 2 Hunting uses 1 3 Medical use 2 Chemical structure 3 Pharmacological properties 3 1 Anesthesia 4 Plant sources 5 Toxicity 6 Preparation 6 1 Adjuvants 7 Diagnosis and management of curare poisoning 7 1 Chemical antidote 8 Gallery 9 See also 10 References 11 Further readingHistory editThis section is missing information about use of curare by Central American people Please expand the section to include this information Further details may exist on the talk page March 2014 The word curare is derived from wurari from the Carib language of the Macusi of Guyana 1 It has its origins in the Carib phrase mawa cure meaning of the Mawa vine scientifically known as Strychnos toxifera citation needed Curare is also known among indigenous peoples as Ampi Woorari Woorara Woorali Wourali Wouralia Ourare Ourari Urare Urari and Uirary The noun curare is not to be confused with the Latin verb curare to heal cure take care of Classification edit In 1895 pharmacologist Rudolf Boehm sought to classify the various alkaloid poisons based on the containers used for their preparation He believed curare could be categorized into three main types as seen below However useful it appeared it became rapidly outmoded Richard Gill a plant collector found that the indigenous peoples began to use a variety of containers for their curare preparations henceforth invalidating Boehm s basis of classification 2 Tube or bamboo curare Mainly composed of the toxin D tubocurarine this poison is found packed into hollow bamboo tubes derived from Chondrodendron and other genera in the Menispermaceae According to their LD50 values tube curare is thought to be the most toxic Pot curare Mainly composed of alkaloid components protocurarine the active ingredient protocurine a weak toxicity and protocuridine non toxic from both Menispermaceae and Loganiaceae Strychnaceae This subtype is found originally packed in terra cotta pots Calabash or gourd curare Mainly composed of C toxiferine I this poison was originally packed into hollow gourds from Loganiaceae Strychnaceae alone Manske also observed in his 1955 The Alkaloids The results of the early pre 1900 work were very inaccurate because of the complexity and variation of the composition of the mixtures of alkaloids involved these were impure non crystalline alkaloids Almost all curare preparations were and are complex mixtures and many of the physiological actions attributed to the early curarizing preparations were undoubtedly due to impurities particularly to other alkaloids present The curare preparations are now considered to be of two main types those from Chondrodendron or other members of the Menispermaceae family and those from Strychnos a genus of the Loganiaceae now Strychnaceae family Some preparations may contain alkaloids from both and the majority have other secondary ingredients 2 Hunting uses edit Curare was used as a paralyzing poison by many South American indigenous people Since it was too expensive to be used in warfare curare was mainly used for hunting 3 The prey was shot by arrows or blowgun darts dipped in curare leading to asphyxiation owing to the inability of the victim s respiratory muscles to contract In particular the poison was used by the Kalinago indigenous people of the Lesser Antilles in the Caribbean on the tips of their arrows 4 In addition the Yagua people indigenous to Colombia and northeastern Peru commonly used these toxins via blowpipes to target prey 30 to 40 paces distant 5 Due to its popularity among the indigenous people as means of paralyzing prey certain tribes would create monopolies from curare production 3 Thus curare became a symbol of wealth among the indigenous populations In 1596 Sir Walter Raleigh mentioned the arrow poison in his book Discovery of the Large Rich and Beautiful Empire of Guiana which relates to his travels in Trinidad and Guayana though the poison he described was possibly not curare 6 In 1780 Abbe Felix Fontana discovered that it acted on the voluntary muscles rather than the nerves and the heart 7 In 1832 Alexander von Humboldt gave the first western account of how the toxin was prepared from plants by Orinoco River natives 8 nbsp Curare darts and quiver from the Amazon rainforest During 1811 1812 Sir Benjamin Collins Brody experimented with curare woorara 9 10 He was the first to show that curare does not kill the animal and the recovery is complete if the animal s respiration is maintained artificially In 1825 Charles Waterton described a classical experiment in which he kept a curarized female donkey alive by artificial respiration with a bellows through a tracheostomy 11 Waterton is also credited with bringing curare to Europe 12 Robert Hermann Schomburgk who was a trained botanist identified the vine as one of the genus Strychnos and gave it the now accepted name Strychnos toxifera 13 Medical use edit George Harley 1829 1896 showed in 1850 that curare wourali was effective for the treatment of tetanus and strychnine poisoning 14 15 In 1857 Claude Bernard 1813 1878 published the results of his experiments in which he demonstrated that the mechanism of action of curare was a result of interference in the conduction of nerve impulses from the motor nerve to the skeletal muscle and that this interference occurred at the neuromuscular junction 16 17 From 1887 the Burroughs Wellcome catalogue listed under its Tabloids brand name 1 12 grain 5 4 mg tablets of curare price 8 shillings for use in preparing a solution for hypodermic injection In 1914 Henry Hallett Dale 1875 1968 described the physiological actions of acetylcholine 18 After 25 years he showed that acetylcholine is responsible for neuromuscular transmission which can be blocked by curare 19 nbsp 19th century depiction of hunting with blowguns in the Amazon rainforest The best known and historically most important toxin because of its medical applications is d tubocurarine It was isolated from the crude drug from a museum sample of curare in 1935 by Harold King of London working in Sir Henry Dale s laboratory King also established its chemical structure 20 21 Pascual Scannone a Venezuelan anesthesiologist 22 who trained and specialized in New York City did extensive research on curare as a possible paralyzing agent for patients during surgical procedures In 1942 he became the first person in Latin America to use curare during a medical procedure when he successfully performed a tracheal intubation in a patient to whom he administered curare for muscle paralysis at the El Algodonal Hospital in Caracas Venezuela 22 After its introduction in 1942 curare curare derivatives became a widely used paralyzing agent during medical and surgical procedures citation needed In medicine curare has been superseded by a number of curare like agents such as pancuronium which have a similar pharmacodynamic profile but fewer side effects citation needed Chemical structure editThis section needs expansion You can help by adding to it March 2014 The various components of curare are organic compounds classified as either isoquinoline or indole alkaloids Tubocurarine is one of the major active components in the South American dart poison 23 As an alkaloid tubocurarine is a naturally occurring compound that consists of nitrogenous bases although the chemical structure of alkaloids is highly variable nbsp Similar functional groups among the three compounds enables curare to bind to Acetylcholine receptors Tubocurarine and C toxiferine consist of a cyclic system with quaternary ammonium ions On the other hand while acetylcholine does not contain a cyclic system it does contain a quaternary ammonium ion Because of this shared moiety curare alkaloids can bind readily to the active site of receptors for acetylcholine ACh at the neuromuscular junction blocking nerve impulses from being sent to the skeletal muscles effectively paralyzing the muscles of the body Pharmacological properties edit nbsp A neuromuscular junction Curare blocks ACh receptors bottom left Curare is an example of a non depolarizing muscle relaxant that blocks the nicotinic acetylcholine receptor nAChR 24 one of the two types of acetylcholine ACh receptors at the neuromuscular junction The main toxin of curare d tubocurarine occupies the same position on the receptor as ACh with an equal or greater affinity and elicits no response making it a competitive antagonist The antidote for curare poisoning is an acetylcholinesterase AChE inhibitor anti cholinesterase such as physostigmine or neostigmine By blocking ACh degradation AChE inhibitors raise the amount of ACh in the neuromuscular junction the accumulated ACh will then correct for the effect of the curare by activating the receptors not blocked by toxin at a higher rate The time of onset varies from within one minute for tubocurarine in intravenous administration penetrating a larger vein to between 15 and 25 minutes for intramuscular administration where the substance is applied in muscle tissue 24 It is harmless if taken orally 25 26 because curare compounds are too large and highly charged to pass through the lining of the digestive tract to be absorbed into the blood For this reason people can safely eat curare poisoned prey and it has no effect on its flavor 27 Anesthesia edit Isolated attempts to use curare during anesthesia date back to 1912 by Arthur Lawen of Leipzig 28 but curare came to anesthesia via psychiatry electroplexy In 1939 Abram Elting Bennett used it to modify metrazol induced convulsive therapy 29 Muscle relaxants are used in modern anesthesia for many reasons such as providing optimal operating conditions and facilitating intubation of the trachea Before muscle relaxants anesthesiologists needed to use larger doses of the anesthetic agent such as ether chloroform or cyclopropane to achieve these aims Such deep anesthesia risked killing patients who were elderly or had heart conditions The source of curare in the Amazon was first researched by Richard Evans Schultes in 1941 Since the 1930s it was being used in hospitals as a muscle relaxant He discovered that different types of curare called for as many as 15 ingredients and in time helped to identify more than 70 species that produced the drug In the 1940s it was used on a few occasions during surgery as it was mistakenly thought to be an analgesic or anesthetic The patients reported feeling the full intensity of the pain though they were not able to do anything about it since they were essentially paralyzed 30 On January 23 1942 Harold Griffith and Enid Johnson gave a synthetic preparation of curare Intercostrin Intocostrin to a patient undergoing an appendectomy to supplement conventional anesthesia Safer curare derivatives such as rocuronium and pancuronium have superseded d tubocurarine for anesthesia during surgery When used with halothane d tubocurarine can cause a profound fall in blood pressure in some patients as both the drugs are ganglion blockers 31 However it is safer to use d tubocurarine with ether In 1954 an article was published by Beecher and Todd suggesting that the use of muscle relaxants drugs similar to curare increased death due to anesthesia nearly sixfold 32 This was refuted in 1956 33 Modern anesthetists have at their disposal a variety of muscle relaxants for use in anesthesia The ability to produce muscle relaxation irrespective of sedation has permitted anesthetists to adjust the two effects independently and on the fly to ensure that their patients are safely unconscious and sufficiently relaxed to permit surgery The use of neuromuscular blocking drugs carries with it the risk of anesthesia awareness Plant sources editThere are dozens of plants from which isoquinoline and indole alkaloids with curarizing effects can be isolated and which were utilized by indigenous tribes of Central and South America for the production of arrow poisons Among them are In family Menispermaceae Genus Chondrodendron notably C tomentosum Genus Curarea species C toxicofera and C tecunarum Genus Sciadotenia toxifera Genus Telitoxicum Genus Abuta Genus Caryomene Genus Anomospermum Genus Orthomene Genus Cissampelos section L Cocculeae of genusOther families several species of the genus Strychnos of family Loganiaceae including S toxifera S guianensis S castelnaei S usambarensis a plant in the subfamily Aroideae of family Araceae called taja at least three members of the genus Artanthe of family Piperaceae Paullinia cururu in the family Sapindaceae 34 Some plants in the family Aristolochiaceae have also been reported as sources Alkaloids with curare like activity are present in plants of the fabaceous genus Erythrina 2 Toxicity editThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed February 2016 Learn how and when to remove this template message The toxicity of curare alkaloids in humans has not been established Administration must be parenterally as gastro intestinal absorption is ineffective LD50 mg kg human 0 735 est form and method of administration not indicated mouse pot 0 8 25 tubo 5 10 calabash 2 15 Preparation editThis section needs expansion You can help by adding to it March 2014 In 1807 Alexander von Humboldt provided the first eye witness account of curare preparation 3 A mixture of young bark scrapings of the Strychnos plant other cleaned plant parts and occasionally snake venom is boiled in water for two days This liquid is then strained and evaporated to create a dark heavy viscid paste that would be tested for its potency later 3 This curare paste was described to be very bitter in taste In 1938 Richard Gill and his expedition collected samples of processed curare and described its method of traditional preparation one of the plant species used at that time was Chondrodendron tomentosum 35 Adjuvants edit Various irritating herbs stinging insects poisonous worms and various parts of amphibians and reptiles are added to the preparation Some of these accelerate the onset of action or increase the toxicity others prevent the wound from healing or blood from coagulating Diagnosis and management of curare poisoning editCurare poisoning can be indicated by typical signs of neuromuscular blocking drugs such as paralysis including respiration but not directly affecting the heart Curare poisoning can be managed by artificial respiration such as mouth to mouth resuscitation In a study of 29 army volunteers that were paralyzed with curare artificial respiration managed to keep an oxygen saturation of always above 85 36 a level at which there is no evidence of altered state of consciousness 37 Yet curare poisoning mimics the total locked in syndrome in that there is paralysis of every voluntarily controlled muscle in the body including the eyes making it practically impossible for the victim to confirm consciousness while paralyzed 38 Spontaneous breathing is resumed after the end of the duration of action of curare which is generally between 30 minutes 39 and 8 hours 40 depending on the variant of the toxin and dosage Cardiac muscle is not directly affected by curare but if more than four to six minutes 41 has passed since respiratory cessation the cardiac muscle may stop functioning by oxygen deprivation making cardiopulmonary resuscitation including chest compressions necessary Chemical antidote edit Since tubocurarine and the other components of curare bind reversibly to the ACh receptors treatment for curare poisoning involves adding an acetylcholinesterase AChE inhibitor which will stop the destruction of acetylcholine so that it can compete with curare 42 This can be done by administration of acetylcholinesterase AChE inhibitors such as pyridostigmine 43 neostigmine physostigmine and edrophonium Acetylcholinesterase is an enzyme used to break down the acetylcholine ACh neurotransmitter left over in motor neuron synapses The aforementioned inhibitors termed anticurare drugs reversibly bind to the enzyme s active site prohibiting its ability to bind to its original target ACh By blocking ACh degradation AChE inhibitors can effectively raise the amount of ACh present in the neuromuscular junction The accumulated ACh will then correct for the effect of the curare by activating the receptors not blocked by toxin at a higher rate restoring activity to the motor neurons and bodily movement Gallery edit nbsp Abuta selloana Certain species in the menispermaceous genus Abuta particularly the Colombian species A imene have sometimes been used in the preparation of curare nbsp Anomospermum schomburgkii Certain species in the genus Anomospermum have been used in the preparation of some forms of curare nbsp Cissampelos pareira Certain species in the genus Cissampelos have been employed in the preparation of curare See also editArrow poison what curare was originally used for Poison dart frog another source of arrow poison Strychnine a related alkaloid poison that occurs in some of the same plants as curareReferences edit curare n Online Etymology Dictionary Douglas Harper a b c Manske R H F ed 1955 The Alkaloids Chemistry and Physiology Volume 5 Pharmacology New York New York Academic Press Inc p 269 ISBN 9781483221922 LCCN 50 5522 Retrieved 12 May 2014 a b c d Gibson Arthur C Curare a South American Arrow Poison Plants and Civilization UCLA Mildred E Mathias Botanical Garden University of California Los Angeles Archived from the original on 28 July 2012 La Oficina del Indice Historico de Puerto Rico The Office of the Historical Index of Puerto Rico 1949 Tesauro de datos historicos Indice compendioso de la literatura historica de Puerto Rico incluyendo algunos datos ineditos periodisticos y cartograficos Tomo II Thesaurus of historical data Comprehensive index of Puerto Rico s historical literature including some unpublished journalistic and cartographic data Volume II in Spanish San Juan Puerto Rico El Gobierno de Puerto Rico p 306 Retrieved 4 January 2020 Lee MR 2005 Curare The South American Arrow Poison PDF The Journal of the Royal College of Physicians of Edinburgh 35 1 83 92 PMID 15825249 Carman J A October 1968 History of curare Anaesthesia Association of Anaesthetists 23 4 706 707 doi 10 1111 j 1365 2044 1968 tb00142 x PMID 4877723 S2CID 10236106 The Gale Encyclopedia of Science Third ed Gale Group Humboldt Alexander von Bonpland Aime 1907 Personal Narrative of Travels to the Equinoctial Regions of America During the Year 1799 1804 Volume 2 Translated by Ross Thomasina London George Bell amp Sons Brodie Benjamin Collins 1811 X Experiments and Observations on the different Modes in which Death is produced by certain vegetable Poisons By B C Brodie Esq F R S Communicated by the Society for promoting the Knowledge of Animal Chemistry Philosophical Transactions The Royal Society 101 178 208 doi 10 1098 rstl 1811 0011 S2CID 186210185 Brodie Benjamin Collins 1812 XI Further Experiments and Observations on the Action of Poisons on the Animal System By B C Brodie Esq F R S Communicated to the Society for the Improvement of Animal Chemistry and by them to the Royal Society Philosophical Transactions The Royal Society 102 205 227 doi 10 1098 rstl 1812 0013 CURARE Chondrodendron tomentosum Menispermaceae From Arrow Poison to Surgical Muscle Relaxant Ye Olde Log n d Archived from the original on 9 May 2008 Retrieved 23 August 2017 Waterton Charles 1891 Chapter II Wanderings in South America London Paris amp Melbourne Cassell amp Company Limited reprinted in Classical File Survey of Anesthesiology 22 1 98 ff February 1978 Birmingham A T 1999 Waterton and Wouralia British Journal of Pharmacology The British Pharmacological Society 126 8 1685 1689 doi 10 1038 sj bjp 0702409 PMC 1565951 PMID 10372809 Paton A December 1979 George Harley 1829 1896 Practitioner 223 1338 849 51 PMID 396529 George Harley Whonamedit A dictionary of medical eponyms Retrieved 14 April 2020 Gray TC 1947 The Use of D Tubocurarine Chloride in Anaesthesia Ann R Coll Surg Engl The Royal College of Surgeons of England 1 4 191 203 PMC 1940167 PMID 19309828 Bernard Claude 1857 Vingt cinquieme Lecon Twenty fifth Lesson Lecons sur les effets des substances toxiques et medicamenteuses Lessons on the effects of toxic and medicinal substances in French Paris J B Bailliere pp 369 80 Dale H H 1 November 1914 THE ACTION OF CERTAIN ESTERS AND ETHERS OF CHOLINE AND THEIR RELATION TO MUSCARINE Journal of Pharmacology and Experimental Therapeutics The American Society for Pharmacology and Experimental Therapeutics 6 147 190 Dale Henry 12 May 1934 Chemical Transmission of the Effects of Nerve Impulses British Medical Journal 1 3827 835 841 doi 10 1136 bmj 1 3827 835 PMC 2445804 PMID 20778253 King H 1935 Curare alkaloids Part 1 Tubocurarine Journal of the Chemical Society The Royal Society of Chemistry 57 1381 1389 doi 10 1039 jr9350001381 King Harold 1935 Curare Nature The Physical Society 135 3412 469 470 Bibcode 1935Natur 135 469K doi 10 1038 135469b0 a b Eger Edmond I II Saidman Lawrence J Westhorpe Rod N eds 2014 The Wondrous Story of Anaesthesia Springer p 438 ISBN 978 1 4614 8440 0 Editors of Encyclopaedia Britannica 7 March 2016 Curare chemical compound Encyclopaedia Britannica Retrieved 17 April 2020 a b Curare Drugs com 8 November 2001 Curare Chondrodendron tomentosum Menispermaceae From Arrow Poison to Surgical Muscle Relaxant Ye Olde Log n d Archived from the original on 9 May 2008 Retrieved 23 August 2017 Schaffner Brynn 2000 Curare Blue Planet Biomes Retrieved 14 April 2020 Milner Daniel Summer 2009 From the Rainforests of South America to The Operating Room A History of Curare Faculty of Medicine Department of Innovation in Medical Education University of Ottawa Archived from the original on 30 July 2011 Lawen A 1912 Uber die Verbindung der Lokalanasthesie mit der Narkose uber hohe Extraduralanaesthesie und epidurale injektionen anasthesierender Losungen bei tabischen Makenkrisen Over the connection of local anesthesia with anesthesia through high extradural anesthesia and epidural injections of anesthetic solutions in tabetic macaques Beitrage zur klinischen Chirurgie in German 80 168 189 Bennett A E 1940 Preventing traumatic complications in convulsive shock therapy by curare Journal of the American Medical Association American Medical Association 114 4 322 324 doi 10 1001 jama 1940 02810040032009 Dennett Daniel C 1978 Brainstorms Philosophical Essays on Mind and Psychology Cambridge Massachusetts The MIT Press p 209 Mashraqui S October 1994 Hypotension induced with d tubocurarine and halothane for surgery of patent ductus arteriosus Indian Journal of Anaesthesia 42 5 346 50 Beecher H K Todd D P 1954 A Study of the Deaths Associated with Anesthesia and Surgery Based on a Study of 599 548 Anesthesias in Ten Institutions 1948 1952 Inclusive Annals of Surgery 140 2 2 35 doi 10 1097 00000658 195407000 00001 PMC 1609600 PMID 13159140 reprinted in Classical File Survey of Anesthesiology 15 5 496 ff October 1971 doi 10 1097 00132586 197110000 00013 Albertson HA Trout HH Morfin E June 1956 The Safety of Curare in Anesthesia Annals of Surgery 143 6 833 837 doi 10 1097 00000658 195606000 00012 PMC 1465152 PMID 13327828 Lewis Walter H Elvin Lewis Memory P F 1977 Medical Botany Plants Affecting Man s Health Wiley Interscience ISBN 0 471 53320 3 Kemp Christopher 17 January 2018 The Amazonian arrow poison that made modern anaesthesia Adventurer Richard Gill sought relief from symptoms of multiple sclerosis in an Ecuadorian tribal weapon with wider results that live on in medicine today New Scientist 3161 Idress A H Gabrielli A 2007 Techniques of ventilation during CPR In Paradis Norman A Halperin Henry R Kern Karl B Wenzel Volker Chamberlain Douglas A eds Cardiac Arrest The Science and Practice of Resuscitation Medicine 2nd ed Cambridge UK Cambridge University Press p 520 ISBN 978 0 521 84700 1 McEvoy Mike October 12 2010 Oxymoron Our Love Hate Relationship with Oxygen PDF Albany New York Albany Medical College archived from the original PDF on August 21 2011 Damasio Antonio R 1999 The Feeling of What Happens Body and Emotion in the Making of Consciousness San Diego Harcourt Brace p 357 ISBN 978 0 15 601075 7 For therapeutic dose of tubocurarine by shorter limit as given in Rang H P 2003 Pharmacology Edinburgh Churchill Livingstone p 151 ISBN 978 0 443 07145 4 OCLC 51622037 For 20 fold paralytic dose of toxiferine calabash curare according to The Alkaloids v 1 A Review of Chemical Literature Specialist Periodical Reports Cambridge England Royal Society of Chemistry 1971 p 330 ISBN 978 0 85186 257 6 Cardiopulmonary Resuscitation CPR Gale Encyclopedia of Medicine The Gale Group Inc 2008 via The Free Dictionary by Farlex Saladin Kenneth S 2015 Anatomy and Physiology The Unity of Form and Function 7th ed New York McGraw Hill Education ISBN 978 1259385513 Morgan Thomas III Kalman Bernadette 2007 Neuroimmunology in Clinical Practice Wiley Blackwell p 153 ISBN 978 1 4051 5840 4 Further reading editFoldes F F 1993 Anasthesie vor und nach Curare Anesthesia before and after curare Anaesthesiol Reanim in German vol 18 no 5 pp 128 131 PMID 8280340 retrieved June 20 2005 Harold Griffith Fonds P090 Archival Collections Catalogue Osler Library of the History of Medicine McGill University Library McGill University contains papers and records pertaining to Griffith s introduction of curare into anesthesiology James Mel Harold Griffith Canada Heirloom Series Volume 6 archived from the original on November 27 2004 retrieved June 20 2005 Raghavendra Thandla July 2002 Neuromuscular blocking drugs discovery and development Journal of the Royal Society of Medicine 95 7 363 367 doi 10 1177 014107680209500713 PMC 1279945 PMID 12091515 Smith Roger P Cholernergic Transmission Dartmouth College Trustees of Dartmouth College archived from the original on December 29 2007 retrieved March 13 2007 Strecker G J Jackson M B October 1989 Curare binding and the curare induced subconductance state of the acetylcholine receptor channel Biophysical Journal 56 4 795 806 Bibcode 1989BpJ 56 795S doi 10 1016 S0006 3495 89 82726 2 PMC 1280535 PMID 2479422 Waterton Charles Bullen A H ed Wanderings In South America Archived from the original on 2008 06 05 via Project Gutenberg Retrieved from https en wikipedia org w index php title Curare amp oldid 1178772228, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.