fbpx
Wikipedia

Genetically modified crops

Genetically modified crops (GM crops) are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments (e.g. resistance to a herbicide), or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.[1]

Farmers have widely adopted GM technology. Acreage increased from 1.7 million hectares in 1996 to 185.1 million hectares in 2016, some 12% of global cropland. As of 2016, major crop (soybean, maize, canola and cotton) traits consist of herbicide tolerance (95.9 million hectares) insect resistance (25.2 million hectares), or both (58.5 million hectares). In 2015, 53.6 million ha of Genetically modified maize were under cultivation (almost 1/3 of the maize crop). GM maize outperformed its predecessors: yield was 5.6 to 24.5% higher with less mycotoxins (−28.8%), fumonisin (−30.6%) and thricotecens (−36.5%). Non-target organisms were unaffected, except for lower populations some parasitoid wasps due to decreased populations of their pest host European corn borer; European corn borer is a target of Lepidoptera active Bt maize. Biogeochemical parameters such as lignin content did not vary, while biomass decomposition was higher.[2]

A 2014 meta-analysis concluded that GM technology adoption had reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%.[3] This reduction in pesticide use has been ecologically beneficial, but benefits may be reduced by overuse.[4] Yield gains and pesticide reductions are larger for insect-resistant crops than for herbicide-tolerant crops.[5] Yield and profit gains are higher in developing countries than in developed countries.[3] Pesticide poisonings were reduced by 2.4 to 9 million cases per year in India alone.[6] A 2011 review of the relationship between Bt cotton adoption and farmer suicides in India found that "Available data show no evidence of a 'resurgence' of farmer suicides" and that "Bt cotton technology has been very effective overall in India."[7] During the time period of Bt cotton introduction in India, farmer suicides instead declined by 25%.[6]

There is a scientific consensus[8][9][10][11] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[12][13][14][15][16] but that each GM food needs to be tested on a case-by-case basis before introduction.[17][18][19] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[20][21][22][23] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[24][25][26][27]

However, opponents have objected to GM crops on grounds including environmental impacts, food safety, whether GM crops are needed to address food needs, whether they are sufficiently accessible to farmers in developing countries[28] and concerns over subjecting crops to intellectual property law. Safety concerns led 38 countries, including 19 in Europe, to officially prohibit their cultivation.[2]

History edit

Humans have directly influenced the genetic makeup of plants to increase their value as a crop through domestication. The first evidence of plant domestication comes from emmer and einkorn wheat found in pre-Pottery Neolithic A villages in Southwest Asia dated about 10,500 to 10,100 BC.[29] The Fertile Crescent of Western Asia, Egypt, and India were sites of the earliest planned sowing and harvesting of plants that had previously been gathered in the wild. Independent development of agriculture occurred in northern and southern China, Africa's Sahel, New Guinea and several regions of the Americas.[30] The eight Neolithic founder crops (emmer wheat, einkorn wheat, barley, peas, lentils, bitter vetch, chick peas and flax) had all appeared by about 7,000 BC.[31] Traditional crop breeders have long introduced foreign germplasm into crops by creating novel crosses. A hybrid cereal grain was created in 1875, by crossing wheat and rye.[32] Since then traits including dwarfing genes and rust resistance have been introduced in that manner.[33] Plant tissue culture and deliberate mutations have enabled humans to alter the makeup of plant genomes.[34][35]

Modern advances in genetics have allowed humans to more directly alter plants genetics. In 1970 Hamilton Smith's lab discovered restriction enzymes that allowed DNA to be cut at specific places, enabling scientists to isolate genes from an organism's genome.[36] DNA ligases that join broken DNA together had been discovered earlier in 1967,[37] and by combining the two technologies, it was possible to "cut and paste" DNA sequences and create recombinant DNA. Plasmids, discovered in 1952,[38] became important tools for transferring information between cells and replicating DNA sequences. In 1907 a bacterium that caused plant tumors, Agrobacterium tumefaciens, was discovered and in the early 1970s the tumor inducing agent was found to be a DNA plasmid called the Ti plasmid.[39] By removing the genes in the plasmid that caused the tumor and adding in novel genes researchers were able to infect plants with A. tumefaciens and let the bacteria insert their chosen DNA sequence into the genomes of the plants.[40] As not all plant cells were susceptible to infection by A. tumefaciens other methods were developed, including electroporation, micro-injection[41] and particle bombardment with a gene gun (invented in 1987).[42][43] In the 1980s techniques were developed to introduce isolated chloroplasts back into a plant cell that had its cell wall removed. With the introduction of the gene gun in 1987 it became possible to integrate foreign genes into a chloroplast.[44] Genetic transformation has become very efficient in some model organisms. In 2008 genetically modified seeds were produced in Arabidopsis thaliana by dipping the flowers in an Agrobacterium solution.[45] In 2013 CRISPR was first used to target modification of plant genomes.[46]

The first genetically engineered crop plant was tobacco, reported in 1983.[47] It was developed creating a chimeric gene that joined an antibiotic resistant gene to the T1 plasmid from Agrobacterium. The tobacco was infected with Agrobacterium transformed with this plasmid resulting in the chimeric gene being inserted into the plant. Through tissue culture techniques a single tobacco cell was selected that contained the gene and a new plant grown from it.[48] The first field trials of genetically engineered plants occurred in France and the US in 1986, tobacco plants were engineered to be resistant to herbicides.[49] In 1987 Plant Genetic Systems, founded by Marc Van Montagu and Jeff Schell, was the first company to genetically engineer insect-resistant plants by incorporating genes that produced insecticidal proteins from Bacillus thuringiensis (Bt) into tobacco.[50] The People's Republic of China was the first country to commercialise transgenic plants, introducing a virus-resistant tobacco in 1992.[51] In 1994 Calgene attained approval to commercially release the Flavr Savr tomato, a tomato engineered to have a longer shelf life.[52] Also in 1994, the European Union approved tobacco engineered to be resistant to the herbicide bromoxynil, making it the first genetically engineered crop commercialised in Europe.[53] In 1995 Bt Potato was approved safe by the Environmental Protection Agency, after having been approved by the FDA, making it the first pesticide producing crop to be approved in the US.[54] In 1996 a total of 35 approvals had been granted to commercially grow 8 transgenic crops and one flower crop (carnation), with 8 different traits in 6 countries plus the EU.[49] By 2010, 29 countries had planted commercialised genetically modified crops and a further 31 countries had granted regulatory approval for transgenic crops to be imported.[55]

The first genetically modified animal to be commercialised was the GloFish, a Zebra fish with a fluorescent gene added that allows it to glow in the dark under ultraviolet light.[56] The first genetically modified animal to be approved for food use was AquAdvantage salmon in 2015.[57] The salmon were transformed with a growth hormone-regulating gene from a Pacific Chinook salmon and a promoter from an ocean pout enabling it to grow year-round instead of only during spring and summer.[58]

Methods edit

 
Plants (Solanum chacoense) being transformed using agrobacterium

Genetically engineered crops have genes added or removed using genetic engineering techniques,[59] originally including gene guns, electroporation, microinjection and agrobacterium. More recently, CRISPR and TALEN offered much more precise and convenient editing techniques.

Gene guns (also known as biolistics) "shoot" (direct high energy particles or radiations against[60]) target genes into plant cells. It is the most common method. DNA is bound to tiny particles of gold or tungsten which are subsequently shot into plant tissue or single plant cells under high pressure. The accelerated particles penetrate both the cell wall and membranes. The DNA separates from the metal and is integrated into plant DNA inside the nucleus. This method has been applied successfully for many cultivated crops, especially monocots like wheat or maize, for which transformation using Agrobacterium tumefaciens has been less successful.[61] The major disadvantage of this procedure is that serious damage can be done to the cellular tissue.

Agrobacterium tumefaciens-mediated transformation is another common technique. Agrobacteria are natural plant parasites.[62] Their natural ability to transfer genes provides another engineering method. To create a suitable environment for themselves, these Agrobacteria insert their genes into plant hosts, resulting in a proliferation of modified plant cells near the soil level (crown gall). The genetic information for tumor growth is encoded on a mobile, circular DNA fragment (plasmid). When Agrobacterium infects a plant, it transfers this T-DNA to a random site in the plant genome. When used in genetic engineering the bacterial T-DNA is removed from the bacterial plasmid and replaced with the desired foreign gene. The bacterium is a vector, enabling transportation of foreign genes into plants. This method works especially well for dicotyledonous plants like potatoes, tomatoes, and tobacco. Agrobacteria infection is less successful in crops like wheat and maize.

Electroporation is used when the plant tissue does not contain cell walls. In this technique, "DNA enters the plant cells through miniature pores which are temporarily caused by electric pulses."

Microinjection is used to directly inject foreign DNA into cells.[63]

Plant scientists, backed by results of modern comprehensive profiling of crop composition, point out that crops modified using GM techniques are less likely to have unintended changes than are conventionally bred crops.[64][65]

In research tobacco and Arabidopsis thaliana are the most frequently modified plants, due to well-developed transformation methods, easy propagation and well studied genomes.[66][67] They serve as model organisms for other plant species.

Introducing new genes into plants requires a promoter specific to the area where the gene is to be expressed. For instance, to express a gene only in rice grains and not in leaves, an endosperm-specific promoter is used. The codons of the gene must be optimized for the organism due to codon usage bias.

Types of modifications edit

 
Transgenic maize containing a gene from the bacteria Bacillus thuringiensis

Transgenic edit

Transgenic plants have genes inserted into them that are derived from another species. The inserted genes can come from species within the same kingdom (plant to plant), or between kingdoms (for example, bacteria to plant). In many cases the inserted DNA has to be modified slightly in order to be correctly and efficiently expressed in the host organism. Transgenic plants are used to express proteins, like the cry toxins from B. thuringiensis, herbicide-resistant genes, antibodies,[68] and antigens for vaccinations.[69] A study led by the European Food Safety Authority (EFSA) also found viral genes in transgenic plants.[70]

Transgenic carrots have been used to produce the drug Taliglucerase alfa which is used to treat Gaucher's disease.[71] In the laboratory, transgenic plants have been modified to increase photosynthesis (currently about 2% at most plants versus the theoretic potential of 9–10%).[72] This is possible by changing the rubisco enzyme (i.e. changing C3 plants into C4 plants[73]), by placing the rubisco in a carboxysome, by adding CO2 pumps in the cell wall,[74] or by changing the leaf form or size.[75][76][77][78] Plants have been engineered to exhibit bioluminescence that may become a sustainable alternative to electric lighting.[79]

Cisgenic edit

Cisgenic plants are made using genes found within the same species or a closely related one, where conventional plant breeding can occur. Some breeders and scientists argue that cisgenic modification is useful for plants that are difficult to crossbreed by conventional means (such as potatoes), and that plants in the cisgenic category should not require the same regulatory scrutiny as transgenics.[80]

Subgenic edit

Genetically modified plants can also be developed using gene knockdown or gene knockout to alter the genetic makeup of a plant without incorporating genes from other plants. In 2014, Chinese researcher Gao Caixia filed patents on the creation of a strain of wheat that is resistant to powdery mildew. The strain lacks genes that encode proteins that repress defenses against the mildew. The researchers deleted all three copies of the genes from wheat's hexaploid genome. Gao used the TALENs and CRISPR gene editing tools without adding or changing any other genes. No field trials were immediately planned.[81][82] The CRISPR technique has also been used by Penn State researcher Yinong Yang to modify white button mushrooms (Agaricus bisporus) to be non-browning,[83] and by DuPont Pioneer to make a new variety of corn.[84]

Multiple trait integration edit

With multiple trait integration, several new traits may be integrated into a new crop.[85]

Economics edit

GM food's economic value to farmers is one of its major benefits, including in developing nations.[86][87][88] A 2010 study found that Bt corn provided economic benefits of $6.9 billion over the previous 14 years in five Midwestern states. The majority ($4.3 billion) accrued to farmers producing non-Bt corn. This was attributed to European corn borer populations reduced by exposure to Bt corn, leaving fewer to attack conventional corn nearby.[89][90] Agriculture economists calculated that "world surplus [increased by] $240.3 million for 1996. Of this total, the largest share (59%) went to U.S. farmers. Seed company Monsanto received the next largest share (21%), followed by US consumers (9%), the rest of the world (6%), and the germplasm supplier, Delta & Pine Land Company of Mississippi (5%)."[91]

According to the International Service for the Acquisition of Agri-biotech Applications (ISAAA), in 2014 approximately 18 million farmers grew biotech crops in 28 countries; about 94% of the farmers were resource-poor in developing countries. 53% of the global biotech crop area of 181.5 million hectares was grown in 20 developing countries.[92] PG Economics comprehensive 2012 study concluded that GM crops increased farm incomes worldwide by $14 billion in 2010, with over half this total going to farmers in developing countries.[93]

Forgoing these benefits is costly.[94][95] Wesseler et al., 2017 estimate the cost of delay for several crops including GM banana in Uganda, GM cowpea in west Africa, and GM maize/corn in Kenya.[94] They estimate Nigeria alone loses $33–46m annually.[94] The potential and alleged harms of GM crops must then be compared to these costs of delay.[94][95]

Critics challenged the claimed benefits to farmers over the prevalence of biased observers and by the absence of randomized controlled trials.[citation needed] The main Bt crop grown by small farmers in developing countries is cotton. A 2006 review of Bt cotton findings by agricultural economists concluded, "the overall balance sheet, though promising, is mixed. Economic returns are highly variable over years, farm type, and geographical location".[96]

In 2013 the European Academies Science Advisory Council (EASAC) asked the EU to allow the development of agricultural GM technologies to enable more sustainable agriculture, by employing fewer land, water, and nutrient resources. EASAC also criticizes the EU's "time-consuming and expensive regulatory framework" and said that the EU had fallen behind in the adoption of GM technologies.[97]

Participants in agriculture business markets include seed companies, agrochemical companies, distributors, farmers, grain elevators and universities that develop new crops/traits and whose agricultural extensions advise farmers on best practices.[citation needed] According to a 2012 review based on data from the late 1990s and early 2000s, much of the GM crop grown each year is used for livestock feed and increased demand for meat leads to increased demand for GM feed crops.[98] Feed grain usage as a percentage of total crop production is 70% for corn and more than 90% of oil seed meals such as soybeans. About 65 million metric tons of GM corn grains and about 70 million metric tons of soybean meals derived from GM soybean become feed.[98]

In 2014 the global value of biotech seed was US$15.7 billion; US$11.3 billion (72%) was in industrial countries and US$4.4 billion (28%) was in the developing countries.[92] In 2009, Monsanto had $7.3 billion in sales of seeds and from licensing its technology; DuPont, through its Pioneer subsidiary, was the next biggest company in that market.[99] As of 2009, the overall Roundup line of products including the GM seeds represented about 50% of Monsanto's business.[100]

Some patents on GM traits have expired, allowing the legal development of generic strains that include these traits. For example, generic glyphosate-tolerant GM soybean is now available. Another impact is that traits developed by one vendor can be added to another vendor's proprietary strains, potentially increasing product choice and competition.[101] The patent on the first type of Roundup Ready crop that Monsanto produced (soybeans) expired in 2014[102] and the first harvest of off-patent soybeans occurs in the spring of 2015.[103] Monsanto has broadly licensed the patent to other seed companies that include the glyphosate resistance trait in their seed products.[104] About 150 companies have licensed the technology,[105] including Syngenta[106] and DuPont Pioneer.[107]

Yield edit

In 2014, the largest review yet concluded that GM crops' effects on farming were positive. The meta-analysis considered all published English-language examinations of the agronomic and economic impacts between 1995 and March 2014 for three major GM crops: soybean, maize, and cotton. The study found that herbicide-tolerant crops have lower production costs, while for insect-resistant crops the reduced pesticide use was offset by higher seed prices, leaving overall production costs about the same.[3][108]

Yields increased 9% for herbicide tolerance and 25% for insect resistant varieties. Farmers who adopted GM crops made 69% higher profits than those who did not. The review found that GM crops help farmers in developing countries, increasing yields by 14 percentage points.[108]

The researchers considered some studies that were not peer-reviewed and a few that did not report sample sizes. They attempted to correct for publication bias, by considering sources beyond academic journals. The large data set allowed the study to control for potentially confounding variables such as fertilizer use. Separately, they concluded that the funding source did not influence study results.[108]

Under special conditions meant to reveal only genetic yield factors, many GM crops are known to actually have lower yields. This is variously due to one or both of: Yield drag, wherein the trait itself lowers yield, either by competing for synthesis feedstock or by being inserted slightly inaccurately, into the middle of a yield-relevant gene; and/or yield lag, wherein it takes some time to breed the newest yield genetics into the GM lines. This does not reflect realistic field conditions however, especially leaving out pest pressure which is often the point of the GM trait.[109] See for example Roundup Ready § Productivity claims.

Gene editing may also increase yields non-specific to the use of any biocides/pesticides. In March 2022, field test results showed CRISPR-based gene knockout of KRN2 in maize and OsKRN2 in rice increased grain yields by ~10% and ~8% without any detected negative effects.[110][111]

Traits edit

 
Genetically modified King Edward potato (right) next to King Edward which has not been genetically modified (left). Research field belonging to the Swedish University of Agricultural Sciences in 2019.

GM crops grown today, or under development, have been modified with various traits. These traits include improved shelf life, disease resistance, stress resistance, herbicide resistance, pest resistance, production of useful goods such as biofuel or drugs, and ability to absorb toxins and for use in bioremediation of pollution.

Recently, research and development has been targeted to enhancement of crops that are locally important in developing countries, such as insect-resistant cowpea for Africa[112] and insect-resistant brinjal (eggplant).[113]

Extended shelf life edit

The first genetically modified crop approved for sale in the U.S. was the FlavrSavr tomato, which had a longer shelf life.[52] First sold in 1994, FlavrSavr tomato production ceased in 1997.[114] It is no longer on the market.

In November 2014, the USDA approved a GM potato that prevents bruising.[115][116]

In February 2015 Arctic Apples were approved by the USDA,[117] becoming the first genetically modified apple approved for US sale.[118] Gene silencing was used to reduce the expression of polyphenol oxidase (PPO), thus preventing enzymatic browning of the fruit after it has been sliced open. The trait was added to Granny Smith and Golden Delicious varieties.[117][119] The trait includes a bacterial antibiotic resistance gene that provides resistance to the antibiotic kanamycin. The genetic engineering involved cultivation in the presence of kanamycin, which allowed only resistant cultivars to survive. Humans consuming apples do not acquire kanamycin resistance, per arcticapple.com.[120] The FDA approved the apples in March 2015.[121]

Improved photosynthesis edit

Plants use non-photochemical quenching to protect them from excessive amounts of sunlight. Plants can switch on the quenching mechanism almost instantaneously, but it takes much longer for it to switch off again. During the time that it is switched off, the amount of energy that is wasted increases.[122] A genetic modification in three genes allows to correct this (in a trial with tobacco plants). As a result, yields were 14-20% higher, in terms of the weight of the dry leaves harvested. The plants had larger leaves, were taller and had more vigorous roots.[122][123]

Another improvement that can be made on the photosynthesis process (with C3 pathway plants) is on photorespiration. By inserting the C4 pathway into C3 plants, productivity may increase by as much as 50% for cereal crops, such as rice.[124][125][126][127][128]

Improved biosequestration capability edit

The Harnessing Plants Initiative focuses on creating GM plants that have increased root mass, root depth and suberin content.

Improved nutritional value edit

Edible oils edit

Some GM soybeans offer improved oil profiles for processing.[129] Camelina sativa has been modified to produce plants that accumulate high levels of oils similar to fish oils.[130][131]

Vitamin enrichment edit

Golden rice, developed by the International Rice Research Institute (IRRI), provides greater amounts of vitamin A targeted at reducing vitamin A deficiency.[132][133] As of January 2016, golden rice has not yet been grown commercially in any country.[134]

Toxin reduction edit

A genetically modified cassava under development offers lower cyanogen glucosides and enhanced protein and other nutrients (called BioCassava).[135]

In November 2014, the USDA approved a potato that prevents bruising and produces less acrylamide when fried.[115][116] They do not employ genes from non-potato species. The trait was added to the Russet Burbank, Ranger Russet and Atlantic varieties.[115]

Stress resistance edit

Plants have been engineered to tolerate non-biological stressors, such as drought,[115][116][136][137] frost,[138] and high soil salinity.[67] In 2011, Monsanto's DroughtGard maize became the first drought-resistant GM crop to receive US marketing approval.[139]

Drought resistance occurs by modifying the plant's genes responsible for the mechanism known as the crassulacean acid metabolism (CAM), which allows the plants to survive despite low water levels. This holds promise for water-heavy crops such as rice, wheat, soybeans and poplar to accelerate their adaptation to water-limited environments.[140][141] Several salinity tolerance mechanisms have been identified in salt-tolerant crops. For example, rice, canola and tomato crops have been genetically modified to increase their tolerance to salt stress.[142][143]

Herbicides edit

Glyphosate edit

The most prevalent GM trait is herbicide tolerance,[144] where glyphosate-tolerance is the most common.[145] Glyphosate (the active ingredient in Roundup and other herbicide products) kills plants by interfering with the shikimate pathway in plants, which is essential for the synthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. The shikimate pathway is not present in animals, which instead obtain aromatic amino acids from their diet. More specifically, glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).

This trait was developed because the herbicides used on grain and grass crops at the time were highly toxic and not effective against narrow-leaved weeds. Thus, developing crops that could withstand spraying with glyphosate would both reduce environmental and health risks, and give an agricultural edge to the farmer.[146]

Some micro-organisms have a version of EPSPS that is resistant to glyphosate inhibition. One of these was isolated from an Agrobacterium strain CP4 (CP4 EPSPS) that was resistant to glyphosate.[147][148] The CP4 EPSPS gene was engineered for plant expression by fusing the 5' end of the gene to a chloroplast transit peptide derived from the petunia EPSPS. This transit peptide was used because it had shown previously an ability to deliver bacterial EPSPS to the chloroplasts of other plants. This CP4 EPSPS gene was cloned and transfected into soybeans.

The plasmid used to move the gene into soybeans was PV-GMGTO4. It contained three bacterial genes, two CP4 EPSPS genes, and a gene encoding beta-glucuronidase (GUS) from Escherichia coli as a marker. The DNA was injected into the soybeans using the particle acceleration method. Soybean cultivar A54O3 was used for the transformation.

Bromoxynil edit

Tobacco plants have been engineered to be resistant to the herbicide bromoxynil.[149]

Glufosinate edit

Crops have been commercialized that are resistant to the herbicide glufosinate, as well.[150] Crops engineered for resistance to multiple herbicides to allow farmers to use a mixed group of two, three, or four different chemicals are under development to combat growing herbicide resistance.[151][152]

2,4-D edit

In October 2014 the US EPA registered Dow's Enlist Duo maize, which is genetically modified to be resistant to both glyphosate and 2,4-D, in six states.[153][154][155] Inserting a bacterial aryloxyalkanoate dioxygenase gene, aad1 makes the corn resistant to 2,4-D.[153][156] The USDA had approved maize and soybeans with the mutation in September 2014.[157]

Dicamba edit

Monsanto has requested approval for a stacked strain that is tolerant of both glyphosate and dicamba. The request includes plans for avoiding herbicide drift to other crops.[158] Significant damage to other non-resistant crops occurred from dicamba formulations intended to reduce volatilization drifting when sprayed on resistant soybeans in 2017.[159] The newer dicamba formulation labels specify to not spray when average wind speeds are above 10–15 miles per hour (16–24 km/h) to avoid particle drift, average wind speeds below 3 miles per hour (4.8 km/h) to avoid temperature inversions, and rain or high temperatures are in the next day forecast. However, these conditions typically only occur during June and July for a few hours at a time.[160][161]

Pest resistance edit

Insects edit

Tobacco, corn, rice and some other crops have been engineered to express genes encoding for insecticidal proteins from Bacillus thuringiensis (Bt).[162][163] The introduction of Bt crops during the period between 1996 and 2005 has been estimated to have reduced the total volume of insecticide active ingredient use in the United States by over 100 thousand tons. This represents a 19.4% reduction in insecticide use.[164]

In the late 1990s, a genetically modified potato that was resistant to the Colorado potato beetle was withdrawn because major buyers rejected it, fearing consumer opposition.[115]

Viruses edit

Papaya, potatoes, and squash have been engineered to resist viral pathogens such as cucumber mosaic virus which, despite its name, infects a wide variety of plants.[165] Virus resistant papaya were developed in response to a papaya ringspot virus (PRV) outbreak in Hawaii in the late 1990s. They incorporate PRV DNA.[166][167] By 2010, 80% of Hawaiian papaya plants were genetically modified.[168][169]

Potatoes were engineered for resistance to potato leaf roll virus and Potato virus Y in 1998. Poor sales led to their market withdrawal after three years.[170]

Yellow squash that were resistant to at first two, then three viruses were developed, beginning in the 1990s. The viruses are watermelon, cucumber and zucchini/courgette yellow mosaic. Squash was the second GM crop to be approved by US regulators. The trait was later added to zucchini.[171]

Many strains of corn have been developed in recent years to combat the spread of Maize dwarf mosaic virus, a costly virus that causes stunted growth which is carried in Johnson grass and spread by aphid insect vectors. These strands are commercially available although the resistance is not standard among GM corn variants.[172]

By-products edit

Drugs edit

In 2012, the FDA approved the first plant-produced pharmaceutical, a treatment for Gaucher's Disease.[173] Tobacco plants have been modified to produce therapeutic antibodies.[174]

Biofuel edit

Algae is under development for use in biofuels.[175] The focus of Microalgae for mass production for biofuels modifying the algae to produce more lipid has become a focus yet will take years to see results due to the cost of this process to extract lipids.[176] Researchers in Singapore were working on GM jatropha for biofuel production.[177] Syngenta has USDA approval to market a maize trademarked Enogen that has been genetically modified to convert its starch to sugar for ethanol.[178] Some trees have been genetically modified to either have less lignin, or to express lignin with chemically labile bonds. Lignin is the critical limiting factor when using wood to make bio-ethanol because lignin limits the accessibility of cellulose microfibrils to depolymerization by enzymes.[179] Besides with trees, the chemically labile lignin bonds are also very useful for cereal crops such as maize,[180][181]

Materials edit

Companies and labs are working on plants that can be used to make bioplastics.[182] Potatoes that produce industrially useful starches have been developed as well.[183] Oilseed can be modified to produce fatty acids for detergents, substitute fuels and petrochemicals.

Non-pesticide pest management products edit

Besides the modified oilcrop above, Camelina sativa has also been modified to produce Helicoverpa armigera pheromones and is in progress with a Spodoptera frugiperda version. The H. armigera pheromones have been tested and are effective.[184]

Bioremediation edit

Scientists at the University of York developed a weed (Arabidopsis thaliana) that contains genes from bacteria that could clean TNT and RDX-explosive soil contaminants in 2011.[185] 16 million hectares in the US (1.5% of the total surface) are estimated to be contaminated with TNT and RDX. However A. thaliana was not tough enough for use on military test grounds.[186] Modifications in 2016 included switchgrass and bentgrass.[187]

Genetically modified plants have been used for bioremediation of contaminated soils. Mercury, selenium and organic pollutants such as polychlorinated biphenyls (PCBs).[186][188]

Marine environments are especially vulnerable since pollution such as oil spills are not containable. In addition to anthropogenic pollution, millions of tons of petroleum annually enter the marine environment from natural seepages. Despite its toxicity, a considerable fraction of petroleum oil entering marine systems is eliminated by the hydrocarbon-degrading activities of microbial communities. Particularly successful is a recently discovered group of specialists, the so-called hydrocarbonoclastic bacteria (HCCB) that may offer useful genes.[189]

Asexual reproduction edit

Crops such as maize reproduce sexually each year. This randomizes which genes get propagated to the next generation, meaning that desirable traits can be lost. To maintain a high-quality crop, some farmers purchase seeds every year. Typically, the seed company maintains two inbred varieties and crosses them into a hybrid strain that is then sold. Related plants like sorghum and gamma grass are able to perform apomixis, a form of asexual reproduction that keeps the plant's DNA intact. This trait is apparently controlled by a single dominant gene, but traditional breeding has been unsuccessful in creating asexually-reproducing maize. Genetic engineering offers another route to this goal. Successful modification would allow farmers to replant harvested seeds that retain desirable traits, rather than relying on purchased seed.[190]

Other edit

Genetic modifications to some crops also exist, which make it easier to process the crop, i.e. by growing in a more compact form.[191] Also, some crops (such as tomatoes) have been genetic modified to contain no seed at all.[192]

Crops edit

Herbicide tolerance edit

Crop Use Countries approved in First approved[193] Notes
Alfalfa Animal feed[194] US 2005 Approval withdrawn in 2007[195] and then re-approved in 2011[196]
Canola Cooking oil

Margarine

Emulsifiers in packaged foods[194]

Australia 2003
Canada 1995
US 1995
Cotton Fiber
Cottonseed oil
Animal feed[194]
Argentina 2001
Australia 2002
Brazil 2008
Colombia 2004
Costa Rica 2008
Mexico 2000
Paraguay 2013
South Africa 2000
US 1994
Maize Animal feed

high-fructose corn syrup

corn starch[194]

Argentina 1998
Brazil 2007
Canada 1996
Colombia 2007
Cuba 2011
European Union 1998 Grown in Portugal, Spain, Czech Republic, Slovakia and Romania[197]
Honduras 2001
Paraguay 2012
Philippines 2002
South Africa 2002
US 1995
Uruguay 2003
Soybean Animal feed

Soybean oil[194]

Argentina 1996
Bolivia 2005
Brazil 1998
Canada 1995
Chile 2007
Costa Rica 2001
Mexico 1996
Paraguay 2004
South Africa 2001
US 1993
Uruguay 1996
Sugar Beet Food[198] Canada 2001
US 1998 Commercialised 2007,[199] production blocked 2010, resumed 2011.[198]

Insect resistance edit

Crop Use Countries approved in First approved[193] Notes
Cotton Fiber
Cottonseed oil
Animal feed[194]
Argentina 1998
Australia 2003
Brazil 2005
Burkina Faso 2009
China 1997
Colombia 2003
Costa Rica 2008
India 2002 Largest producer of Bt cotton[200]
Mexico 1996
Myanmar 2006[N 1]
Pakistan 2010[N 1]
Paraguay 2007
South Africa 1997
Sudan 2012
US 1995
Eggplant Food Bangladesh 2013 12 ha planted on 120 farms in 2014[201]
Maize Animal feed

high-fructose corn syrup

corn starch[194]

Argentina 1998
Brazil 2005
Colombia 2003
Mexico 1996 Centre of origin for maize[202]
Paraguay 2007
Philippines 2002
South Africa 1997
Uruguay 2003
US 1995
Poplar Tree China 1998 543 ha of bt poplar planted in 2014[203]

Other modified traits edit

Crop Use Trait Countries approved in First approved[193] Notes
Canola Cooking oil

Margarine

Emulsifiers in packaged foods[194]

High laurate canola Canada 1996
US 1994
Phytase production US 1998
Carnation Ornamental Delayed senescence Australia 1995
Norway 1998
Modified flower colour Australia 1995
Colombia 2000 In 2014 4 ha were grown in greenhouses for export[204]
European Union 1998 Two events expired 2008, another approved 2007
Japan 2004
Malaysia 2012 For ornamental purposes
Norway 1997
Maize Animal feed

high-fructose corn syrup

corn starch[194]

Increased lysine Canada 2006
US 2006
Drought tolerance Canada 2010
US 2011
Papaya Food[194] Virus resistance China 2006
US 1996 Mostly grown in Hawaii[194]
Petunia Ornamental Modified flower colour China 1997[205]
Potato Food[194] Virus resistance Canada 1999
US 1997
Industrial[206] Modified starch US 2014
Rose Ornamental Modified flower colour Australia 2009 Surrendered renewal
Colombia 2010[N 2] Greenhouse cultivation for export only.
Japan 2008
US 2011
Soybean Animal feed

Soybean oil[194]

Increased oleic acid production Argentina 2015
Canada 2000
US 1997
Stearidonic acid production Canada 2011
US 2011
Squash Food[194] Virus resistance US 1994
Sugar Cane Food Drought tolerance Indonesia 2013 Environmental certificate only
Tobacco Cigarettes Nicotine reduction US 2002

GM Camelina edit

Several modifications of Camelina sativa have been done, see §Edible oils and §Non-pesticide pest management products above.

Development edit

The number of USDA-approved field releases for testing grew from 4 in 1985 to 1,194 in 2002 and averaged around 800 per year thereafter. The number of sites per release and the number of gene constructs (ways that the gene of interest is packaged together with other elements) – have rapidly increased since 2005. Releases with agronomic properties (such as drought resistance) jumped from 1,043 in 2005 to 5,190 in 2013. As of September 2013, about 7,800 releases had been approved for corn, more than 2,200 for soybeans, more than 1,100 for cotton, and about 900 for potatoes. Releases were approved for herbicide tolerance (6,772 releases), insect resistance (4,809), product quality such as flavor or nutrition (4,896), agronomic properties like drought resistance (5,190), and virus/fungal resistance (2,616). The institutions with the most authorized field releases include Monsanto with 6,782, Pioneer/DuPont with 1,405, Syngenta with 565, and USDA's Agricultural Research Service with 370. As of September 2013 USDA had received proposals for releasing GM rice, squash, plum, rose, tobacco, flax, and chicory.[207]

Farming practices edit

Resistance edit

Bacillus thuringiensis edit

Constant exposure to a toxin creates evolutionary pressure for pests resistant to that toxin.[208] Over-reliance on glyphosate and a reduction in the diversity of weed management practices allowed the spread of glyphosate resistance in 14 weed species in the US,[207] and in soybeans.[5]

To reduce resistance to Bacillus thuringiensis (Bt) crops, the 1996 commercialization of transgenic cotton and maize came with a management strategy to prevent insects from becoming resistant. Insect resistance management plans are mandatory for Bt crops. The aim is to encourage a large population of pests so that any (recessive) resistance genes are diluted within the population. Resistance lowers evolutionary fitness in the absence of the stressor, Bt. In refuges, non-resistant strains outcompete resistant ones.[209]

With sufficiently high levels of transgene expression, nearly all of the heterozygotes (S/s), i.e., the largest segment of the pest population carrying a resistance allele, will be killed before maturation, thus preventing transmission of the resistance gene to their progeny.[210] Refuges (i. e., fields of nontransgenic plants) adjacent to transgenic fields increases the likelihood that homozygous resistant (s/s) individuals and any surviving heterozygotes will mate with susceptible (S/S) individuals from the refuge, instead of with other individuals carrying the resistance allele. As a result, the resistance gene frequency in the population remains lower.

Complicating factors can affect the success of the high-dose/refuge strategy. For example, if the temperature is not ideal, thermal stress can lower Bt toxin production and leave the plant more susceptible. More importantly, reduced late-season expression has been documented, possibly resulting from DNA methylation of the promoter.[211] The success of the high-dose/refuge strategy has successfully maintained the value of Bt crops. This success has depended on factors independent of management strategy, including low initial resistance allele frequencies, fitness costs associated with resistance, and the abundance of non-Bt host plants outside the refuges.[212]

Companies that produce Bt seed are introducing strains with multiple Bt proteins. Monsanto did this with Bt cotton in India, where the product was rapidly adopted.[213] Monsanto has also; in an attempt to simplify the process of implementing refuges in fields to comply with Insect Resistance Management(IRM) policies and prevent irresponsible planting practices; begun marketing seed bags with a set proportion of refuge (non-transgenic) seeds mixed in with the Bt seeds being sold. Coined "Refuge-In-a-Bag" (RIB), this practice is intended to increase farmer compliance with refuge requirements and reduce additional labor needed at planting from having separate Bt and refuge seed bags on hand.[214] This strategy is likely to reduce the likelihood of Bt-resistance occurring for corn rootworm, but may increase the risk of resistance for lepidopteran corn pests, such as European corn borer. Increased concerns for resistance with seed mixtures include partially resistant larvae on a Bt plant being able to move to a susceptible plant to survive or cross pollination of refuge pollen on to Bt plants that can lower the amount of Bt expressed in kernels for ear feeding insects.[215][216]

Herbicide resistance edit

Best management practices (BMPs) to control weeds may help delay resistance. BMPs include applying multiple herbicides with different modes of action, rotating crops, planting weed-free seed, scouting fields routinely, cleaning equipment to reduce the transmission of weeds to other fields, and maintaining field borders.[207] The most widely planted GM crops are designed to tolerate herbicides. By 2006 some weed populations had evolved to tolerate some of the same herbicides. Palmer amaranth is a weed that competes with cotton. A native of the southwestern US, it traveled east and was first found resistant to glyphosate in 2006, less than 10 years after GM cotton was introduced.[217][218]

Plant protection edit

Farmers generally use less insecticide when they plant Bt-resistant crops. Insecticide use on corn farms declined from 0.21 pound per planted acre in 1995 to 0.02 pound in 2010. This is consistent with the decline in European corn borer populations as a direct result of Bt corn and cotton. The establishment of minimum refuge requirements helped delay the evolution of Bt resistance. However, resistance appears to be developing to some Bt traits in some areas.[207] In Columbia, GM cotton has reduced insecticide usage by 25% and herbicide usage by 5%, and GM corn has reduced insecticide and herbicide usage by 66% and 13%, respectively.[219]

Tillage edit

By leaving at least 30% of crop residue on the soil surface from harvest through planting, conservation tillage reduces soil erosion from wind and water, increases water retention, and reduces soil degradation as well as water and chemical runoff. In addition, conservation tillage reduces the carbon footprint of agriculture.[220] A 2014 review covering 12 states from 1996 to 2006, found that a 1% increase in herbicde-tolerant (HT) soybean adoption leads to a 0.21% increase in conservation tillage and a 0.3% decrease in quality-adjusted herbicide use.[220]

Greenhouse gas emissions edit

Combined features of increased yield, decreased land use, reduced use of fertilizer and reduced farming machinery use create a feedback loop that reduces carbon emissions related to farming. These reductions have been estimated at 7.5% of total agricultural emissions in the EU or 33 millions tons of CO2[221] and an estimated 8.76 million tons of CO2 in Columbia.[222]

Drought tolerance edit

The use of drought tolerant crops can increase yield in water-scarce locations, making farming possible in new areas. The adoption of drought tolerant maize in Ghana was shown to increase yield by more than 150% and boost commercialization intensity, although it did not significantly affect farm income.[223]

Regulation edit

The regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the development and release of genetically modified crops. There are differences in the regulation of GM crops between countries, with some of the most marked differences occurring between the US and Europe. Regulation varies in a given country depending on the intended use of each product. For example, a crop not intended for food use is generally not reviewed by authorities responsible for food safety.[224][225]

Production edit

 
GM crops production in the World (ISAAA Brief 2019)
  More than 10 million hectares
  Between 50,000 and 10 million hectares
  Less than 50,000 hectares
  No biotech crops

In 2013, GM crops were planted in 27 countries; 19 were developing countries and 8 were developed countries. 2013 was the second year in which developing countries grew a majority (54%) of the total GM harvest. 18 million farmers grew GM crops; around 90% were small-holding farmers in developing countries.[1]

Country 2013– GM planted area (million hectares)[226] Biotech crops
US 70.1 Maize, Soybean, Cotton, Canola, Sugarbeet, Alfalfa, Papaya, Squash
Brazil 40.3 Soybean, Maize, Cotton
Argentina 24.4 Soybean, Maize, Cotton
India 11.0 Cotton
Canada 10.8 Canola, Maize, Soybean, Sugarbeet
Total 175.2 ----

The United States Department of Agriculture (USDA) reports every year on the total area of GM crop varieties planted in the United States.[227][228] According to National Agricultural Statistics Service, the states published in these tables represent 81–86 percent of all corn planted area, 88–90 percent of all soybean planted area, and 81–93 percent of all upland cotton planted area (depending on the year).

Global estimates are produced by the International Service for the Acquisition of Agri-biotech Applications (ISAAA) and can be found in their annual reports, "Global Status of Commercialized Transgenic Crops".[1][229]

Farmers have widely adopted GM technology (see figure). Between 1996 and 2013, the total surface area of land cultivated with GM crops increased by a factor of 100, from 17,000 square kilometers (4,200,000 acres) to 1,750,000 km2 (432 million acres).[1] 10% of the world's arable land was planted with GM crops in 2010.[55] As of 2011, 11 different transgenic crops were grown commercially on 395 million acres (160 million hectares) in 29 countries such as the US, Brazil, Argentina, India, Canada, China, Paraguay, Pakistan, South Africa, Uruguay, Bolivia, Australia, Philippines, Myanmar, Burkina Faso, Mexico and Spain.[55] One of the key reasons for this widespread adoption is the perceived economic benefit the technology brings to farmers. For example, the system of planting glyphosate-resistant seed and then applying glyphosate once plants emerged provided farmers with the opportunity to dramatically increase the yield from a given plot of land, since this allowed them to plant rows closer together. Without it, farmers had to plant rows far enough apart to control post-emergent weeds with mechanical tillage.[230] Likewise, using Bt seeds means that farmers do not have to purchase insecticides, and then invest time, fuel, and equipment in applying them. However critics have disputed whether yields are higher and whether chemical use is less, with GM crops. See Genetically modified food controversies article for information.

 
Land area used for genetically modified crops by country (1996–2009), in millions of hectares. In 2011, the land area used was 160 million hectares, or 1.6 million square kilometers.[55]

In the US, by 2014, 94% of the planted area of soybeans, 96% of cotton and 93% of corn were genetically modified varieties.[231][232][233] Genetically modified soybeans carried herbicide-tolerant traits only, but maize and cotton carried both herbicide tolerance and insect protection traits (the latter largely Bt protein).[234] These constitute "input-traits" that are aimed to financially benefit the producers, but may have indirect environmental benefits and cost benefits to consumers. The Grocery Manufacturers of America estimated in 2003 that 70–75% of all processed foods in the U.S. contained a GM ingredient.[235]

Europe grows relatively few genetically engineered crops[236] with the exception of Spain, where one fifth of maize is genetically engineered,[237] and smaller amounts in five other countries.[238] The EU had a 'de facto' ban on the approval of new GM crops, from 1999 until 2004.[239][240] GM crops are now regulated by the EU.[241] In 2015, genetically engineered crops are banned in 38 countries worldwide, 19 of them in Europe.[242][243] Developing countries grew 54 percent of genetically engineered crops in 2013.[1]

In recent years GM crops expanded rapidly in developing countries. In 2013 approximately 18 million farmers grew 54% of worldwide GM crops in developing countries.[1] 2013's largest increase was in Brazil (403,000 km2 versus 368,000 km2 in 2012). GM cotton began growing in India in 2002, reaching 110,000 km2 in 2013.[1]

According to the 2013 ISAAA brief: "a total of 36 countries (35 + EU-28) have granted regulatory approvals for biotech crops for food and/or feed use and for environmental release or planting since 1994 ... a total of 2,833 regulatory approvals involving 27 GM crops and 336 GM events (NB: an "event" is a specific genetic modification in a specific species) have been issued by authorities, of which 1,321 are for food use (direct use or processing), 918 for feed use (direct use or processing) and 599 for environmental release or planting. Japan has the largest number (198), followed by the U.S.A. (165, not including "stacked" events), Canada (146), Mexico (131), South Korea (103), Australia (93), New Zealand (83), European Union (71 including approvals that have expired or under renewal process), Philippines (68), Taiwan (65), Colombia (59), China (55) and South Africa (52). Maize has the largest number (130 events in 27 countries), followed by cotton (49 events in 22 countries), potato (31 events in 10 countries), canola (30 events in 12 countries) and soybean (27 events in 26 countries).[1]

Controversy edit

Direct genetic engineering has been controversial since its introduction. Most, but not all of the controversies are over GM foods rather than crops per se. GM foods are the subject of protests, vandalism, referendums, legislation, court action[244] and scientific disputes. The controversies involve consumers, biotechnology companies, governmental regulators, non-governmental organizations and scientists.

Opponents have objected to GM crops on multiple grounds including environmental impacts, food safety, whether GM crops are needed to address food needs, whether they are sufficiently accessible to farmers in developing countries,[28] concerns over subjecting crops to intellectual property law, and on religious grounds.[245] Secondary issues include labeling, the behavior of government regulators, the effects of pesticide use and pesticide tolerance.

A significant environmental concern about using genetically modified crops is possible cross-breeding with related crops, giving them advantages over naturally occurring varieties. One example is a glyphosate-resistant rice crop that crossbreeds with a weedy relative, giving the weed a competitive advantage. The transgenic hybrid had higher rates of photosynthesis, more shoots and flowers, and more seeds than the non-transgenic hybrids.[246] This demonstrates the possibility of ecosystem damage by GM crop usage.

The role of biopiracy in the development of GM crops is also potentially problematic, as developed countries have gotten economic gain by using the genetic resources of developing countries. In the twentieth century, the International Rice Research Institute catalogued the genomes of almost 80,000 varieties of rice from Asian farms, which has since been used to create new higher yielding varieties of rice. These new varieties create almost 655 million dollars of economic gain for Australia, USA, Canada, and New Zealand every year.[247]

There is a scientific consensus[8][9][10][11] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[12][13][14][15][16] but that each GM food needs to be tested on a case-by-case basis before introduction.[17][18][19] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[20][21][22][23] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[24][25][26][27]

No reports of ill effects from GM food have been documented in the human population.[248][249][250] GM crop labeling is required in many countries, although the United States Food and Drug Administration does not, nor does it distinguish between approved GM and non-GM foods.[251] The United States enacted a law that requires labeling regulations to be issued by July 2018. It allows indirect disclosure such as with a phone number, bar code, or web site.[252]

Advocacy groups such as Center for Food Safety, Union of Concerned Scientists, and Greenpeace claim that risks related to GM food have not been adequately examined and managed, that GM crops are not sufficiently tested and should be labelled, and that regulatory authorities and scientific bodies are too closely tied to industry.[citation needed] Some studies have claimed that genetically modified crops can cause harm;[253][254] a 2016 review that reanalyzed the data from six of these studies found that their statistical methodologies were flawed and did not demonstrate harm, and said that conclusions about GM crop safety should be drawn from "the totality of the evidence ... instead of far-fetched evidence from single studies".[255]

See also edit

Notes edit

  1. ^ a b No official public documentation available
  2. ^ No public documents

References edit

  1. ^ a b c d e f g h "ISAAA 2013 Annual Report". ISAAA Brief 46-2013. 2013. Retrieved 6 August 2014. Executive Summary, Global Status of Commercialized Biotech/GM Crops
  2. ^ a b Pellegrino E, Bedini S, Nuti M, Ercoli L (February 2018). "Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data". Scientific Reports. 8 (1): 3113. Bibcode:2018NatSR...8.3113P. doi:10.1038/s41598-018-21284-2. PMC 5814441. PMID 29449686.
  3. ^ a b c Klümper W, Qaim M (2014). "A meta-analysis of the impacts of genetically modified crops". PLOS ONE. 9 (11): e111629. Bibcode:2014PLoSO...9k1629K. doi:10.1371/journal.pone.0111629. PMC 4218791. PMID 25365303.  
  4. ^ Pollack A (13 April 2010). "Study Says Overuse Threatens Gains From Modified Crops". The New York Times.
  5. ^ a b Perry ED, Ciliberto F, Hennessy DA, Moschini G (August 2016). "Genetically engineered crops and pesticide use in U.S. maize and soybeans". Science Advances. 2 (8): e1600850. Bibcode:2016SciA....2E0850P. doi:10.1126/sciadv.1600850. PMC 5020710. PMID 27652335.
  6. ^ a b Smyth, Stuart J. (April 2020). "The human health benefits from GM crops". Plant Biotechnology Journal. 18 (4): 887–888. doi:10.1111/pbi.13261. PMC 7061863. PMID 31544299.
  7. ^ Gruère, G.; Sengupta, D. (2011). "Bt Cotton and Farmer Suicides in India: An Evidence-based Assessment". Journal of Development Studies. 47 (2): 316–337. doi:10.1080/00220388.2010.492863. PMID 21506303. S2CID 20145281.
  8. ^ a b Nicolia A, Manzo A, Veronesi F, Rosellini D (March 2014). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology. 34 (1): 77–88. doi:10.3109/07388551.2013.823595. PMID 24041244. S2CID 9836802. We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.

    The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.
  9. ^ a b "State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. Retrieved 30 August 2019. Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU).
  10. ^ a b Ronald P (May 2011). "Plant genetics, sustainable agriculture and global food security". Genetics. 188 (1): 11–20. doi:10.1534/genetics.111.128553. PMC 3120150. PMID 21546547. There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002). Both the U.S. National Research Council and the Joint Research Centre (the European Union's scientific and technical research laboratory and an integral part of the European Commission) have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004; European Commission Joint Research Centre 2008). These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment (European Commission Directorate-General for Research and Innovation 2010).
  11. ^ a b

    But see also:

    Domingo JL, Giné Bordonaba J (May 2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37 (4): 734–42. doi:10.1016/j.envint.2011.01.003. PMID 21296423. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.

    Krimsky S (2015). "An Illusory Consensus behind GMO Health Assessment". Science, Technology, & Human Values. 40 (6): 883–914. doi:10.1177/0162243915598381. S2CID 40855100. I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.

    And contrast:

    Panchin AY, Tuzhikov AI (March 2017). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. 37 (2): 213–217. doi:10.3109/07388551.2015.1130684. PMID 26767435. S2CID 11786594. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.

    The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.

    and

    Yang YT, Chen B (April 2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96 (6): 1851–5. Bibcode:2016JSFA...96.1851Y. doi:10.1002/jsfa.7523. PMID 26536836. It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011). Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food ... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.

    Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.
  12. ^ a b "Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods" (PDF). American Association for the Advancement of Science. 20 October 2012. Retrieved 30 August 2019. The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.

    Pinholste G (25 October 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"" (PDF). American Association for the Advancement of Science. Retrieved 30 August 2019.
  13. ^ a b European Commission. Directorate-General for Research (2010). A decade of EU-funded GMO research (2001–2010) (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union. doi:10.2777/97784. ISBN 978-92-79-16344-9. Retrieved 30 August 2019.
  14. ^ a b "AMA Report on Genetically Modified Crops and Foods (online summary)". American Medical Association. January 2001. Retrieved 30 August 2019. A report issued by the scientific council of the American Medical Association (AMA) says that no long-term health effects have been detected from the use of transgenic crops and genetically modified foods, and that these foods are substantially equivalent to their conventional counterparts." "Crops and foods produced using recombinant DNA techniques have been available for fewer than 10 years and no long-term effects have been detected to date. These foods are substantially equivalent to their conventional counterparts.

    (PDF). American Medical Association. 2012. Archived from the original (PDF) on 7 September 2012. Retrieved 30 August 2019. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature.
  15. ^ a b "Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. 30 June 2015. Retrieved 30 August 2019. Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.
  16. ^ a b National Academies Of Sciences; Division on Earth Life Studies Engineering; Board on Agriculture Natural Resources; Committee on Genetically Engineered Crops: Past Experience Future Prospects (2016). Genetically Engineered Crops: Experiences and Prospects. The National Academies of Sciences, Engineering, and Medicine (US). p. 149. doi:10.17226/23395. ISBN 978-0-309-43738-7. PMID 28230933. Retrieved 30 August 2019. Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts.
  17. ^ a b "Frequently asked questions on genetically modified foods". World Health Organization. Retrieved 30 August 2019. Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

    GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.
  18. ^ a b Haslberger AG (July 2003). "Codex guidelines for GM foods include the analysis of unintended effects". Nature Biotechnology. 21 (7): 739–41. doi:10.1038/nbt0703-739. PMID 12833088. S2CID 2533628. These principles dictate a case-by-case premarket assessment that includes an evaluation of both direct and unintended effects.
  19. ^ a b Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle:

    "Genetically modified foods and health: a second interim statement" (PDF). British Medical Association. March 2004. Retrieved 30 August 2019. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.

    When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.

    Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.

    The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.
  20. ^ a b Funk C, Rainie L (29 January 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. Retrieved 30 August 2019. The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points.
  21. ^ a b Marris C (July 2001). "Public views on GMOs: deconstructing the myths. Stakeholders in the GMO debate often describe public opinion as irrational. But do they really understand the public?". EMBO Reports. 2 (7): 545–8. doi:10.1093/embo-reports/kve142. PMC 1083956. PMID 11463731.
  22. ^ a b Final Report of the PABE research project (December 2001). . Commission of European Communities. Archived from the original on 25 May 2017. Retrieved 30 August 2019.
  23. ^ a b Scott SE, Inbar Y, Rozin P (May 2016). "Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States" (PDF). Perspectives on Psychological Science. 11 (3): 315–24. doi:10.1177/1745691615621275. PMID 27217243. S2CID 261060.
  24. ^ a b "Restrictions on Genetically Modified Organisms". Library of Congress. 9 June 2015. Retrieved 30 August 2019.
  25. ^ a b Bashshur R (February 2013). . American Bar Association. Archived from the original on 21 June 2018. Retrieved 30 August 2019.
  26. ^ a b Sifferlin A (3 October 2015). "Over Half of E.U. Countries Are Opting Out of GMOs". Time. Retrieved 30 August 2019.
  27. ^ a b Lynch D, Vogel D (5 April 2001). . Council on Foreign Relations. Archived from the original on 29 September 2016. Retrieved 30 August 2019.
  28. ^ a b Azadi H, Samiee A, Mahmoudi H, Jouzi Z, Khachak PR, De Maeyer P, Witlox F (2016). "Genetically modified crops and small-scale farmers: main opportunities and challenges". Critical Reviews in Biotechnology. 36 (3): 434–46. doi:10.3109/07388551.2014.990413. hdl:1854/LU-7022459. PMID 25566797. S2CID 46117952.
  29. ^ Zohary D, Hopf M, Weiss E (1 March 2012). Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. OUP Oxford. p. 1. ISBN 978-0-19-954906-1.
  30. ^ "The history of maize cultivation in southern Mexico dates back 9,000 years". The New York Times. 25 May 2010.
  31. ^ Colledge S, Conolly J (2007). The Origins and Spread of Domestic Plants in Southwest Asia and Europe. Left Coast Press. p. 40. ISBN 978-1598749885.
  32. ^ Chen ZJ (February 2010). "Molecular mechanisms of polyploidy and hybrid vigor". Trends in Plant Science. 15 (2): 57–71. doi:10.1016/j.tplants.2009.12.003. PMC 2821985. PMID 20080432.
  33. ^ Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (May 1999). "Plant genetic resources: what can they contribute toward increased crop productivity?". Proceedings of the National Academy of Sciences of the United States of America. 96 (11): 5937–43. Bibcode:1999PNAS...96.5937H. doi:10.1073/pnas.96.11.5937. PMC 34209. PMID 10339521.
  34. ^ Predieri S (2001). "Mutation induction and tissue culture in improving fruits". Plant Cell, Tissue and Organ Culture. 64 (2/3): 185–210. doi:10.1023/A:1010623203554. S2CID 37850239.
  35. ^ Duncan R (1996). "Tissue Culture-Induced Variation and Crop Improvement". Advances in Agronomy Volume 58. Vol. 58. pp. 201–40. doi:10.1016/S0065-2113(08)60256-4. ISBN 9780120007585.
  36. ^ Roberts RJ (April 2005). "How restriction enzymes became the workhorses of molecular biology". Proceedings of the National Academy of Sciences of the United States of America. 102 (17): 5905–8. Bibcode:2005PNAS..102.5905R. doi:10.1073/pnas.0500923102. PMC 1087929. PMID 15840723.
  37. ^ Weiss B, Richardson CC (April 1967). "Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage". Proceedings of the National Academy of Sciences of the United States of America. 57 (4): 1021–8. Bibcode:1967PNAS...57.1021W. doi:10.1073/pnas.57.4.1021. PMC 224649. PMID 5340583.
  38. ^ Lederberg J (October 1952). "Cell genetics and hereditary symbiosis" (PDF). Physiological Reviews. 32 (4): 403–30. doi:10.1152/physrev.1952.32.4.403. PMID 13003535.
  39. ^ Nester E (2008). . Archived from the original on 19 October 2012. Retrieved 5 October 2012.
  40. ^ Zambryski P, Joos H, Genetello C, Leemans J, Montagu MV, Schell J (1983). "Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity". The EMBO Journal. 2 (12): 2143–50. doi:10.1002/j.1460-2075.1983.tb01715.x. PMC 555426. PMID 16453482.
  41. ^ Peters P. . Archived from the original on 16 March 2010. Retrieved 28 January 2010.
  42. ^ Voiland M, McCandless L (February 1999). . Archived from the original on 1 May 2008.
  43. ^ Segelken R (14 May 1987). "Biologists Invent Gun for Shooting Cells with DNA Issue" (PDF). Cornell Chronicle. 18 (33): 3.
  44. ^ . lifesciencesfoundation.org. Archived from the original on 30 March 2013.
  45. ^ Clough SJ, Bent AF (December 1998). "Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana". The Plant Journal. 16 (6): 735–43. doi:10.1046/j.1365-313x.1998.00343.x. PMID 10069079. S2CID 410286.
  46. ^ Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (November 2013). "Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice". Nucleic Acids Research. 41 (20): e188. doi:10.1093/nar/gkt780. PMC 3814374. PMID 23999092.
  47. ^ Lemaux PG (2008). "Genetically Engineered Plants and Foods: A Scientist's Analysis of the Issues (Part I)". Annual Review of Plant Biology. 59: 771–812. doi:10.1146/annurev.arplant.58.032806.103840. PMID 18284373.
  48. ^ Bevan MW, Flavell RB, Chilton MD (1983). "A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. 1983". Biotechnology. 24 (5922): 367–70. Bibcode:1983Natur.304..184B. doi:10.1038/304184a0. PMID 1422041. S2CID 28713537.
  49. ^ a b James C (1996). "Global Review of the Field Testing and Commercialization of Transgenic Plants: 1986 to 1995" (PDF). The International Service for the Acquisition of Agri-biotech Applications. Retrieved 17 July 2010.
  50. ^ Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, et al. (1987). "Transgenic plants protected from insect attack". Nature. 328 (6125): 33–37. Bibcode:1987Natur.328...33V. doi:10.1038/328033a0. S2CID 4310501.
  51. ^ James C (1997). "Global Status of Transgenic Crops in 1997" (PDF). ISAAA Briefs No. 5: 31.
  52. ^ a b Bruening G, Lyons JM (2000). "The case of the FLAVR SAVR tomato". California Agriculture. 54 (4): 6–7. doi:10.3733/ca.v054n04p6.
  53. ^ MacKenzie D (18 June 1994). "Transgenic tobacco is European first". New Scientist.
  54. ^ "Genetically Altered Potato Ok'd For Crops". Lawrence Journal. 6 May 1995.
  55. ^ a b c d James C (2011). "ISAAA Brief 43, Global Status of Commercialized Biotech/GM Crops: 2011". ISAAA Briefs. Ithaca, New York: International Service for the Acquisition of Agri-biotech Applications (ISAAA). Retrieved 2 June 2012.
  56. ^ Vàzquez-Salat N, Salter B, Smets G, Houdebine LM (1 November 2012). "The current state of GMO governance: are we ready for GM animals?". Biotechnology Advances. Special issue on ACB 2011. 30 (6): 1336–43. doi:10.1016/j.biotechadv.2012.02.006. PMID 22361646.
  57. ^ "Aquabounty Cleared to Sell Salmon in USA for Commercial Purposes". FDA. 25 April 2019.
  58. ^ Bodnar A (October 2010). (PDF). ISB News Report. Archived from the original (PDF) on 8 March 2021. Retrieved 7 November 2019.
  59. ^ Boyle R (24 January 2011). "How To Genetically Modify a Seed, Step By Step". Popular Science.
  60. ^ "Bombarded - Define Bombarded at Dictionary.com". Dictionary.com.
  61. ^ Shrawat AK, Lörz H (November 2006). "Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers". Plant Biotechnology Journal. 4 (6): 575–603. doi:10.1111/j.1467-7652.2006.00209.x. PMID 17309731.
  62. ^ Halford NG (2012). Genetically modified crops. World Scientific (Firm) (2nd ed.). London: Imperial College Press. ISBN 978-1848168381. OCLC 785724094.
  63. ^ Maghari BM, Ardekani AM (July 2011). "Genetically modified foods and social concerns". Avicenna Journal of Medical Biotechnology. 3 (3): 109–17. PMC 3558185. PMID 23408723.
  64. ^ "Information Systems for Biotechnology News Report".
  65. ^ Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, et al. (October 2005). "Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 102 (40): 14458–62. Bibcode:2005PNAS..10214458C. doi:10.1073/pnas.0503955102. PMC 1242293. PMID 16186495.[permanent dead link]
  66. ^ Koornneef M, Meinke D (March 2010). "The development of Arabidopsis as a model plant". The Plant Journal. 61 (6): 909–21. doi:10.1111/j.1365-313X.2009.04086.x. PMID 20409266.
  67. ^ a b Banjara M, Zhu L, Shen G, Payton P, Zhang H (1 January 2012). "Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance". Plant Biotechnology Reports. 6: 59–67. doi:10.1007/s11816-011-0200-5. S2CID 12025029.
  68. ^ McKie R (9 September 2001). "GM corn set to stop man spreading his seed". the Guardian.
  69. ^ Walmsley AM, Arntzen CJ (April 2000). "Plants for delivery of edible vaccines". Current Opinion in Biotechnology. 11 (2): 126–9. doi:10.1016/S0958-1669(00)00070-7. PMID 10753769.
  70. ^ Podevin N, du Jardin P (2012). "Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants". GM Crops & Food. 3 (4): 296–300. doi:10.4161/gmcr.21406. PMID 22892689.
  71. ^ Maxmen A (2 May 2012). . Nature, Biology & Biotechnology, Industry. Archived from the original on 18 October 2012. Retrieved 1 September 2012.
  72. ^ NWT magazine, April 2011
  73. ^ Hibberd J. . Department of Plant Sciences. University of Cambridge. Archived from the original on 17 May 2013. Retrieved 1 September 2012.
  74. ^ Price GD, Badger MR, Woodger FJ, Long BM (2008). "Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants". Journal of Experimental Botany. 59 (7): 1441–61. doi:10.1093/jxb/erm112. PMID 17578868.
  75. ^ Gonzalez N, De Bodt S, Sulpice R, Jikumaru Y, Chae E, Dhondt S, et al. (July 2010). "Increased leaf size: different means to an end". Plant Physiology. 153 (3): 1261–79. doi:10.1104/pp.110.156018. PMC 2899902. PMID 20460583.
  76. ^ Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (September 2009). "Auxin patterns Solanum lycopersicum leaf morphogenesis". Development. 136 (17): 2997–3006. doi:10.1242/dev.033811. PMID 19666826.
  77. ^ "Projects changing respectively plant growth and plant flowers" (PDF).[permanent dead link]
  78. ^ "Project changing number of stomata in plants conducted by Ikuko Hara-Nishimura" (PDF).[permanent dead link]
  79. ^ "One Per Cent: Grow your own living lights". New Scientist. 4 May 2013.
  80. ^ MacKenzie D (2 August 2008). "How the humble potato could feed the world". New Scientist. pp. 30–33.
  81. ^ Talbot D (19 July 2014). "Beijing Researchers Use Gene Editing to Create Disease-Resistant Wheat | MIT Technology Review". Technologyreview.com. Retrieved 23 July 2014.
  82. ^ Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (September 2014). "Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew". Nature Biotechnology. 32 (9): 947–51. doi:10.1038/nbt.2969. PMID 25038773. S2CID 205280231.
  83. ^ Waltz E (April 2016). "Gene-edited CRISPR mushroom escapes US regulation". Nature. 532 (7599): 293. Bibcode:2016Natur.532..293W. doi:10.1038/nature.2016.19754. PMID 27111611.
  84. ^ Brodwin E (18 April 2016). "The next generation of GMO food is here, and it's technically not a GMO". Business Insider.
  85. ^ Sun X, Mumm RH (2015). "Optimized breeding strategies for multiple trait integration: III. Parameters for success in version testing". Molecular Breeding. 35 (10): 201. doi:10.1007/s11032-015-0397-z. PMC 4605974. PMID 26491398.
  86. ^ "Economic Impact of Transgenic Crops in Developing Countries". Agbioworld.org. Retrieved 8 February 2011.
  87. ^ Areal FJ, Riesgo L, Rodríguez-Cerezo E (2012). "Economic and agronomic impact of commercialized GM crops: A meta-analysis". The Journal of Agricultural Science. 151: 7–33. doi:10.1017/S0021859612000111. S2CID 85891950.
  88. ^ Finger R, El Benni N, Kaphengst T, Evans C, Herbert S, Lehmann B, Morse S, Stupak N (2011). "A Meta Analysis on Farm-Level Costs and Benefits of GM Crops" (PDF). Sustainability. 3 (12): 743–62. doi:10.3390/su3050743.
  89. ^ Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, et al. (October 2010). "Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers". Science. 330 (6001): 222–5. Bibcode:2010Sci...330..222H. doi:10.1126/science.1190242. PMID 20929774. S2CID 238816.
  90. ^ Karnowski S (8 October 2010). "High-Tech Corn Fights Pests at Home and Nearby". Sci-Tech Today. Retrieved 9 October 2010.[permanent dead link]
  91. ^ Falck-Zepeda JB, Traxler G, Nelson RG (2000). "Surplus Distribution from the Introduction of a Biotechnology Innovation". American Journal of Agricultural Economics. 82 (2): 360–69. doi:10.1111/0002-9092.00031. JSTOR 1244657. S2CID 153595694.
  92. ^ a b James C (2014). "Global Status of Commercialized Biotech/GM Crops: 2014". ISAAA Brief (49).
  93. ^ Brookes G, Barfoot P. GM crops: global socio-economic and environmental impacts 1996-2010 (PDF). PG Economics Ltd.
  94. ^ a b c d Van Eenennaam, Alison L.; De Figueiredo Silva, Felipe; Trott, Josephine F.; Zilberman, David (16 February 2021). "Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay". Annual Review of Animal Biosciences. Annual Reviews. 9 (1): 453–478. doi:10.1146/annurev-animal-061220-023052. ISSN 2165-8102. PMID 33186503. S2CID 226948372.
  95. ^ a b Zilberman, David; Kaplan, Scott; Wesseler, Justus (17 February 2022). "The Loss from Underutilizing GM Technologies". AgBioForum. Illinois Missouri Biotechnology Alliance. S2CID 56129052.
  96. ^ Smale M, Zambrano P, Cartel M (2006). (PDF). AgBioForum. 9 (3): 195–212. Archived from the original (PDF) on 4 March 2016. Retrieved 8 February 2016.
  97. ^ European Academies Science Advisory Council (EASAC) (27 June 2013). "Planting the future: opportunities and challenges for using crop genetic improvement technologies for sustainable agriculture". EASAC Policy Report: 21.
  98. ^ a b Tilling T, Neeta L, Vikuolie M, Rajib D (2010). "Genetically modified (GM) crops lifeline for livestock-a review". Agricultural Reviews. 31 (4): 279–85.
  99. ^ Langreth R, Herper M (31 December 2009). "The Planet Versus Monsanto". Forbes.
  100. ^ Cavallaro M (26 June 2009). "The Seeds Of A Monsanto Short Play". Forbes.
  101. ^ Regalado A (30 July 2015). "Monsanto Roundup Ready Soybean Patent Expiration Ushers in Generic GMOs | MIT Technology Review". MIT Technology Review. Retrieved 22 October 2015.
  102. ^ . BusinessWeek. 21 January 2010. Archived from the original on 27 January 2010.
  103. ^ "Roundup Ready Soybean Patent Expiration". Monsanto.
  104. ^ "Monsanto ~ Licensing". Monsanto.com. 3 November 2008.
  105. ^ "Monsanto GMO Ignites Big Seed War". NPR.
  106. ^ "Syngenta US | Corn and Soybean Seed – Garst, Golden Harvest, NK, Agrisure". Syngenta.com.
  107. ^ . Pioneer.com. Archived from the original on 17 October 2012. Retrieved 1 March 2015.
  108. ^ a b c "Genetically modified crops - Field research". Economist. 8 November 2014. Retrieved 3 October 2016.
  109. ^ Gurian-Sherman, Douglas (April 2009). Failure To Yield - Evaluating the Performance of Genetically Engineered Crops (PDF). Union of Concerned Scientists. S2CID 6332194.
  110. ^ "Rice and maize yields boosted up to 10 per cent by CRISPR gene editing". New Scientist. Retrieved 19 April 2022.
  111. ^ Chen, Wenkang; Chen, Lu; Zhang, Xuan; Yang, Ning; Guo, Jianghua; Wang, Min; Ji, Shenghui; Zhao, Xiangyu; Yin, Pengfei; Cai, Lichun; Xu, Jing; Zhang, Lili; Han, Yingjia; Xiao, Yingni; Xu, Gen; Wang, Yuebin; Wang, Shuhui; Wu, Sheng; Yang, Fang; Jackson, David; Cheng, Jinkui; Chen, Saihua; Sun, Chuanqing; Qin, Feng; Tian, Feng; Fernie, Alisdair R.; Li, Jiansheng; Yan, Jianbing; Yang, Xiaohong (25 March 2022). "Convergent selection of a WD40 protein that enhances grain yield in maize and rice". Science. 375 (6587): eabg7985. doi:10.1126/science.abg7985. PMID 35324310. S2CID 247677363.
  112. ^ "SeedQuest - Central information website for the global seed industry". www.seedquest.com.
  113. ^ "Bt Brinjal in India - Pocket K - ISAAA.org". www.isaaa.org.
  114. ^ Weasel LH (December 2008). Food Fray. New York: Amacom Publishing. ISBN 978-0-8144-3640-0.
  115. ^ a b c d e Pollack A (7 November 2014). "U.S.D.A. Approves Modified Potato. Next Up: French Fry Fans". The New York Times.
  116. ^ a b c "J.R. Simplot Co.; Availability of Petition for Determination of Nonregulated Status of Potato Genetically Engineered for Low Acrylamide Potential and Reduced Black Spot Bruise". Federal Register. 3 May 2013.
  117. ^ a b Pollack A (13 February 2015). "Gene-Altered Apples Get U.S. Approval". The New York Times.
  118. ^ Tennille T (13 February 2015). "First Genetically Modified Apple Approved for Sale in U.S." Wall Street Journal. Retrieved 3 October 2016.
  119. ^ . Okanagan Specialty Fruits. Archived from the original on 25 September 2013. Retrieved 3 August 2012.
  120. ^ "Arctic apples FAQ". Arctic Apples. 2014. Retrieved 3 October 2016.
  121. ^ "FDA concludes Arctic Apples and Innate Potatoes are safe for consumption". United States Food and Drug Administration. 20 March 2015.
  122. ^ a b Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (November 2016). "Improving photosynthesis and crop productivity by accelerating recovery from photoprotection". Science. 354 (6314): 857–861. Bibcode:2016Sci...354..857K. doi:10.1126/science.aai8878. PMID 27856901.
  123. ^ Devlin H (17 November 2016). "Plants modified to boost photosynthesis produce greater yields, study shows". The Guardian. Retrieved 27 July 2019.
  124. ^ Thompson S (24 January 2017). "How GM crops can help us to feed a fast-growing world". The Conversation.
  125. ^ . Archived from the original on 9 September 2018. Retrieved 10 August 2018.
  126. ^ Best S (24 October 2017). "'Supercharged' GMO rice could increase yields 50 percent with improved photosynthesis".
  127. ^ Karki S, Rizal G, Quick WP (October 2013). "Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway". Rice. 6 (1): 28. doi:10.1186/1939-8433-6-28. PMC 4883725. PMID 24280149.
  128. ^ Evans JR (August 2013). "Improving photosynthesis". Plant Physiology. 162 (4): 1780–93. doi:10.1104/pp.113.219006. PMC 3729760. PMID 23812345.
  129. ^ Pollack A (15 November 2013). "In a Bean, a Boon to Biotech". The New York Times.
  130. ^ "Crop plants – "green factories" for fish oils". Rothamsted Research. 14 November 2013.
  131. ^ Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (January 2014). "Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop". The Plant Journal. 77 (2): 198–208. doi:10.1111/tpj.12378. PMC 4253037. PMID 24308505.
  132. ^ . International Rice Research Institute. Archived from the original on 2 November 2012. Retrieved 20 August 2012.
  133. ^ Nayar A (2011). "Grants aim to fight malnutrition". Nature. doi:10.1038/news.2011.233.
  134. ^ Philpott T (3 February 2016). "WTF Happened to Golden Rice?". Mother Jones. Retrieved 24 March 2016.
  135. ^ Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, et al. (2011). "The BioCassava plus program: biofortification of cassava for sub-Saharan Africa". Annual Review of Plant Biology. 62: 251–72. doi:10.1146/annurev-arplant-042110-103751. PMID 21526968.
  136. ^ Paarlburg RD (January 2011). (PDF). International Life Sciences Institute (Report). Archived from the original (PDF) on 22 December 2014.
  137. ^ . GMO Compass. 16 July 2008. Archived from the original on 16 March 2012. Retrieved 25 April 2011.
  138. ^ Staff (14 May 2011). . GMO Compass. Archived from the original on 26 October 2012. Retrieved 29 September 2011.
  139. ^ Eisenstein M (September 2013). "Plant breeding: Discovery in a dry spell". Nature. 501 (7468): S7–9. Bibcode:2013Natur.501S...7E. doi:10.1038/501S7a. PMID 24067764. S2CID 4464117.
  140. ^ Gabbatiss J (4 December 2017). "Scientists aim to develop drought-resistant crops using genetic engineering". Independent.
  141. ^ Liang C (2016). "Genetically modified crops with drought tolerance: achievements, challenges, and perspectives.". Drought Stress Tolerance in Plants. Vol. 2. Cham.: Springer. pp. 531–547.
  142. ^ "Biotechnology with Salinity for Coping in Problem Soils". International Service for the Acquisition of Agri-biotech Applications (ISAAA).
  143. ^ Sawahel W (22 July 2009). "Genetic change could make crops thrive on salty soils". SciDev.Net.
  144. ^ ISAAA. "ISAAA Brief 55-2019: Executive Summary". www.isaaa.org. Retrieved 29 September 2023.
  145. ^ Green, Jerry M (20 January 2014). "Current state of herbicides in herbicide‐resistant crops". Pest Management Science. 70 (9): 1351–1357. doi:10.1002/ps.3727. ISSN 1526-498X. PMID 24446395.
  146. ^ Carpenter J, Gianessi L (1999). . AgBioForum. 2 (2): 65–72. Archived from the original on 19 November 2012. Retrieved 7 December 2013.
  147. ^ Heck GR, Armstrong CL, Astwood JD, Behr CF, Bookout JT, Brown SM, et al. (1 January 2005). . Crop Sci. 45 (1): 329–39. doi:10.2135/cropsci2005.0329. Archived from the original (Free full text) on 22 August 2009.
  148. ^ Funke T, Han H, Healy-Fried ML, Fischer M, Schönbrunn E (August 2006). "Molecular basis for the herbicide resistance of Roundup Ready crops". Proceedings of the National Academy of Sciences of the United States of America. 103 (35): 13010–5. Bibcode:2006PNAS..10313010F. doi:10.1073/pnas.0603638103. PMC 1559744. PMID 16916934.
  149. ^ MacKenzie D (18 June 1994). "Transgenic tobacco is European first". New Scientist.
  150. ^ Gianessi LP, Silvers CS, Sankula S, Carpenter JE (June 2002). (PDF). Washington, DC: National Center for Food and Agricultural Policy. Archived from the original (PDF) on 3 March 2016.
  151. ^ Kasey J (8 September 2011). "Attack of the Superweed". Bloomberg Businessweek.[dead link]
  152. ^ Ganchiff M (24 August 2013). "New Herbicide Resistant Crops Being Considered By USDA". Midwest Wine Press.
  153. ^ a b "Gene list: aad1". ISAAA GM Approval Database. Retrieved 27 February 2015.
  154. ^ "EPA Announces Final Decision to Register Enlist Duo, Herbicide Containing 2, 4-D and Glyphosate/Risk assessment ensures protection of human health, including infants, children". EPA Press Release. 15 October 2014.
  155. ^ . 18 September 2014. Archived from the original on 16 December 2021. Retrieved 27 February 2015.
  156. ^ Peterson MA, Shan G, Walsh TA, Wright TR (May 2011). "Utility of Aryloxyalkanoate Dioxygenase Transgenes for Development of New Herbicide Resistant Crop Technologies" (PDF). Information Systems for Biotechnology.
  157. ^ Schultz C (25 September 2014). "The USDA Approved a New GM Crop to Deal With Problems Created by the Old GM Crops". The Smithsonian.com.
  158. ^ Johnson WG, Hallett SG, Legleiter TR, Whitford F, Weller SC, Bordelon BP, et al. (November 2012). "2,4-D- and Dicamba-tolerant Crops – Some Facts to Consider" (PDF). Purdue University Extension. Retrieved 3 October 2016.
  159. ^ Bomgardner MM. "Widespread crop damage from dicamba herbicide fuels controversy - August 21, 2017 Issue - Vol. 95 Issue 33 - Chemical & Engineering News". cen.acs.org.
  160. ^ "Iowa Soybeans: Dicamba – How Many Hours Were Available to Spray in 2017?". AgFax. 19 September 2017. Retrieved 1 October 2017.
  161. ^ "Pest & Crop Newsletter". extension.entm.purdue.edu. Purdue Cooperative Extension Service. Retrieved 1 October 2017.
  162. ^ "Genetically Altered Potato Ok'd For Crops]". Lawrence Journal-World. 6 May 1995.
  163. ^ Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, et al. (1987). "Transgenic plants protected from insect attack". Nature. 328 (6125): 33–37. Bibcode:1987Natur.328...33V. doi:10.1038/328033a0. S2CID 4310501.
  164. ^ Naranjo S (22 April 2008). "The Present and Future Role of Insect-Resistant Genetically Modified Cotton in IPM" (PDF). USDA.gov. United States department of agriculture. Retrieved 3 December 2015.
  165. ^ National Academy of Sciences (2001). Transgenic Plants and World Agriculture. Washington: National Academy Press.
  166. ^ Kipp E (February 2000). . Botany Global Issues Map. Archived from the original on 13 December 2004.
  167. ^ . Hawaii Papaya Industry Association. 2006. Archived from the original on 7 January 2015. Retrieved 27 December 2014.
  168. ^ Ronald P, McWilliams J (14 May 2010). "Genetically Engineered Distortions". The New York Times.
  169. ^ Wenslaff TF, Osgood RB (October 2000). (PDF). Hawaii Agriculture Research Center. Archived from the original (PDF) on 31 March 2012.
  170. ^ "Genetically Engineered Foods - Plant Virus Resistance" (PDF). Cornell Cooperative Extension. Cornell University. 2002. Retrieved 3 October 2016.
  171. ^ "How Many Foods Are Genetically Engineered?". University of California. 16 February 2012. Retrieved 3 October 2016.
  172. ^ Wang GY (2009). "Genetic Engineering for Maize Improvement in China". Electronic Journal of Biotechnology. Retrieved 1 December 2015.
  173. ^ Weinreb G, Yeshayahou K (2 May 2012). . Globes. Archived from the original on 29 May 2013.
  174. ^ Jha A (14 August 2012). "Julian Ma: I'm growing antibodies in tobacco plants to help prevent HIV". The Guardian. Retrieved 12 March 2012.
  175. ^ Carrington D (19 January 2012). "GM microbe breakthrough paves way for large-scale seaweed farming for biofuels". The Guardian. Retrieved 12 March 2012.
  176. ^ Prabin Kumar Sharma; Manalisha Saharia; Richa Srivstava; Sanjeev Kumar; Lingaraj Sahoo (21 November 2018). "Tailoring Microalgae for Efficient Biofuel Production". Frontiers in Marine Science. 5. doi:10.3389/fmars.2018.00382.
  177. ^ "Singapore Biodiesel Company Develops GM Jatropha- Crop Biotech Update". www.isaaa.org.
  178. ^ Lochhead C (30 April 2012). "Genetically modified crops' results raise concern". The San Francisco Chronicle.
  179. ^ . VIB (Flemish Institute for Biotechnology) Gent. 2013. Archived from the original on 28 May 2013. Retrieved 27 April 2013.
  180. ^ Smith RA, Cass CL, Mazaheri M, Sekhon RS, Heckwolf M, Kaeppler H, de Leon N, Mansfield SD, Kaeppler SM, Sedbrook JC, Karlen SD, Ralph J (2017). "Suppression of CINNAMOYL-CoA REDUCTASE increases the level of monolignol ferulates incorporated into maize lignins". Biotechnology for Biofuels. 10: 109. doi:10.1186/s13068-017-0793-1. PMC 5414125. PMID 28469705.
  181. ^ Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (April 2014). "Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone". Science. 344 (6179): 90–3. Bibcode:2014Sci...344...90W. doi:10.1126/science.1250161. hdl:10261/95743. PMID 24700858. S2CID 25429319.
    • Hal Hodson (3 April 2014). "Redesigned crops could produce far more fuel". New Scientist.
  182. ^ van Beilen JB, Poirier Y (May 2008). "Production of renewable polymers from crop plants". The Plant Journal. 54 (4): 684–701. doi:10.1111/j.1365-313x.2008.03431.x. PMID 18476872.
  183. ^ . PotatoPro Newsletter. 10 March 2010. Archived from the original on 12 October 2013. Retrieved 31 August 2012.
  184. ^ Conrow J (14 January 2021). "GM plant grows insect sex pheromones as alternative to crop pesticides". Alliance for Science. Retrieved 17 July 2021.
  185. ^ Strange A (20 September 2011). "Scientists engineer plants to eat toxic pollution". The Irish Times. Retrieved 20 September 2011.
  186. ^ a b Chard A (2011). . The British Science Association. Archived from the original on 24 July 2012. Retrieved 20 September 2011.
  187. ^ Langston J (22 November 2016). "New grasses neutralize toxic pollution from bombs, explosives, and munitions". ScienceDaily. Retrieved 30 November 2016.
  188. ^ Meagher RB (April 2000). "Phytoremediation of toxic elemental and organic pollutants". Current Opinion in Plant Biology. 3 (2): 153–62. doi:10.1016/S1369-5266(99)00054-0. PMID 10712958.
  189. ^ Martins VA (2008). "Genomic Insights into Oil Biodegradation in Marine Systems". Microbial Biodegradation: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-17-2.[permanent dead link]
  190. ^ Daniel C (1 March 2003). "Corn That Clones Itself". Technology Review.
  191. ^ Kwon CT, Heo J, Lemmon ZH, Capua Y, Hutton SF, Van Eck J, Park SJ, Lippman ZB (February 2020). "Rapid customization of Solanaceae fruit crops for urban agriculture". Nature Biotechnology. 38 (2): 182–188. doi:10.1038/s41587-019-0361-2. PMID 31873217. S2CID 209464229.
  192. ^ Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (March 2017). "Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9". Scientific Reports. 7 (1): 507. Bibcode:2017NatSR...7..507U. doi:10.1038/s41598-017-00501-4. PMC 5428692. PMID 28360425.
    • Alice Klein (11 April 2017). "Gene editing opens doors to seedless fruit with no need for bees". New Scientist.
  193. ^ a b c "GM Crops List | GM Approval Database- ISAAA.org". www.isaaa.org. Retrieved 30 January 2016.
  194. ^ a b c d e f g h i j k l m n "All the GMOs Approved In the U.S." Time. Retrieved 11 February 2016.
  195. ^ www.gmo-compass.org. . www.gmo-compass.org. Archived from the original on 2 July 2016. Retrieved 11 February 2016.
  196. ^ "UPDATE 3-U.S. farmers get approval to plant GMO alfalfa". Reuters. 27 January 2011. Retrieved 11 February 2016.
  197. ^ "Infographics: Global Status of Commercialized Biotech/GM Crops: 2014 - ISAAA Brief 49-2014 | ISAAA.org". www.isaaa.org. Retrieved 11 February 2016.
  198. ^ a b Kilman S. "Modified Beet Gets New Life". Wall Street Journal. Retrieved 15 February 2016.
  199. ^ Pollack A (27 November 2007). "Round 2 for Biotech Beets". The New York Times. ISSN 0362-4331. Retrieved 15 February 2016.
  200. ^ "Facts and trends - India" (PDF). International Service for the Acquisition of Agri-biotech Applications.
  201. ^ "Executive Summary: Global Status of Commercialized Biotech/GM Crops: 2014 - ISAAA Brief 49-2014 | ISAAA.org". www.isaaa.org. Retrieved 16 February 2016.
  202. ^ "Facts and trends-Mexico" (PDF). International Service for the Acquisition of Agri-biotech Applications.
  203. ^ "Facts and trends- China" (PDF). International Service for the Acquisition of Agri-biotech Applications.
  204. ^ "Facts and trends - Colombia" (PDF). International Service for the Acquisition of Agri-biotech Applications.
  205. ^ Carter C, Moschini GC, Sheldon I, eds. (2011). Genetically Modified Food and Global Welfare (Frontiers of Economics and Globalization). United Kingdom: Emerald Group Publishing Limited. p. 89. ISBN 978-0857247575.
  206. ^ "GM potato to be grown in Europe". The Guardian. Associated Press. 3 March 2010. ISSN 0261-3077. Retrieved 15 February 2016.
  207. ^ a b c d Fernandez-Cornejo J, Wechsler S, Livingston M, Mitchell L (February 2014). (PDF). Economic Research Service USDA. United States Department of Agriculture. p. 2. Archived from the original (PDF) on 27 November 2014. Retrieved 3 October 2016.
  208. ^ Charles, Dan (29 October 2020). "As Biotech crops lose their power, scientist push for new restrictions". NPR.
  209. ^ Tabashnik BE, Carrière Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, et al. (August 2003). (PDF). Journal of Economic Entomology. 96 (4): 1031–8. doi:10.1603/0022-0493-96.4.1031. PMID 14503572. S2CID 31944651. Archived from the original (PDF) on 14 March 2013.
  210. ^ Roush RT (1997). "Bt-transgenic crops: just another pretty insecticide or a chance for a new start in the resistance management?". Pestic. Sci. 51 (3): 328–34. doi:10.1002/(SICI)1096-9063(199711)51:3<328::AID-PS650>3.0.CO;2-B.
  211. ^ Dong HZ, Li WJ (2007). "Variability of Endotoxin Expression in Bt Transgenic Cotton". Journal of Agronomy and Crop Science. 193 (1): 21–29. Bibcode:2007JAgCS.193...21D. doi:10.1111/j.1439-037X.2006.00240.x.
  212. ^ Tabashnik BE, Carrière Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, et al. (August 2003). "Insect resistance to transgenic Bt crops: lessons from the laboratory and field". Journal of Economic Entomology. 96 (4): 1031–8. doi:10.1603/0022-0493-96.4.1031. PMID 14503572. S2CID 31944651.
  213. ^ APPDMZ\ccvivr. "Monsanto - Pink Bollworm Resistance to GM Cotton in India".
  214. ^ . www.monsanto.com. Archived from the original on 10 September 2010. Retrieved 3 December 2015.
  215. ^ Siegfried BD, Hellmich RL (2012). "Understanding successful resistance management: the European corn borer and Bt corn in the United States". GM Crops & Food. 3 (3): 184–93. doi:10.4161/gmcr.20715. PMID 22688691.
  216. ^ Devos Y, Meihls LN, Kiss J, Hibbard BE (April 2013). "Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations". Transgenic Research. 22 (2): 269–99. doi:10.1007/s11248-012-9657-4. PMID 23011587. S2CID 10821353.
  217. ^ Culpepper AS, Grey TL, Vencill WK, Kichler JM, Webster TM, Brown SM, et al. (2006). "Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia". Weed Science. 54 (4): 620–26. doi:10.1614/ws-06-001r.1. S2CID 56236569.
  218. ^ Gallant A. "Pigweed in the Cotton: A superweed invades Georgia". Modern Farmer.
  219. ^ Brookes, Graham (2 July 2020). "Genetically modified (GM) crop use in Colombia: farm level economic and environmental contributions". GM Crops & Food. 11 (3): 140–153. doi:10.1080/21645698.2020.1715156. ISSN 2164-5698. PMC 7518743. PMID 32008444.
  220. ^ a b Fernandez-Cornejo J, Hallahan C, Nehring RF, Wechsler S, Grube A (2014). . AgBioForum. 15 (3). Archived from the original on 6 June 2016. Retrieved 3 October 2016.
  221. ^ Kovak, Emma; Blaustein-Rejto, Dan; Qaim, Matin (8 February 2022). "Genetically modified crops support climate change mitigation". Trends in Plant Science. 27 (7): 627–629. doi:10.1016/j.tplants.2022.01.004. ISSN 1360-1385. PMID 35148945.
  222. ^ Brookes, Graham (2 July 2020). "Genetically modified (GM) crop use in Colombia: farm level economic and environmental contributions". GM Crops & Food. 11 (3): 140–153. doi:10.1080/21645698.2020.1715156. ISSN 2164-5698. PMC 7518743. PMID 32008444.
  223. ^ Martey, Edward; Etwire, Prince M.; Kuwornu, John K. M. (1 May 2020). "Economic impacts of smallholder farmers' adoption of drought-tolerant maize varieties". Land Use Policy. 94: 104524. doi:10.1016/j.landusepol.2020.104524. ISSN 0264-8377. S2CID 213380155.
  224. ^ Wesseler J, Kalaitzandonakes N (2011). "Present and Future EU GMO policy.". In Oskam A, Meesters G, Silvis H (eds.). EU Policy for Agriculture, Food and Rural Areas (Second ed.). Wageningen: Wageningen Academic Publishers. pp. 23–323.
  225. ^ Beckmann V, Soregaroli C, Wesseler J (2011). "Coexistence of genetically modified (GM) and non-modified (non GM) crops: Are the two main property rights regimes equivalent with respect to the coexistence value?". In Carter C, Moschini GC, Sheldon I (eds.). Genetically modified food and global welfare. Frontiers of Economics and Globalization Series. Vol. 10. Bingley, UK: Emerald Group Publishing. pp. 201–224.
  226. ^ "Executive Summary". ISAAA 2012 Annual Report.
  227. ^ Fernandez-Cornejo J (1 July 2009). Data Sets. Economic Research Service, United States Department of Agriculture. OCLC 53942168. Archived from the original on 5 September 2009. Retrieved 24 September 2009.
  228. ^ "Adoption of Genetically Engineered Crops in the U.S." USDA, Economic Research Service. 14 July 2014. Retrieved 6 August 2014.
  229. ^ James C (2007). . G lobal Status of Commercialized Biotech/GM Crops: 2007. ISAAA Briefs. Vol. 37. The International Service for the Acquisition of Agri-biotech Applications (ISAAA). ISBN 978-1-892456-42-7. OCLC 262649526. Archived from the original on 6 June 2008. Retrieved 24 September 2009.
  230. ^ "Roundup Ready soybean trait patent nears expiration in 2014". Hpj.com. Retrieved 6 June 2016.
  231. ^ "USDA ERS - Adoption of Genetically Engineered Crops in the U.S." www.ers.usda.gov.
  232. ^ "Acreage NASS" (PDF). National Agricultural Statistics Board annual report. 30 June 2010. Retrieved 23 July 2010.
  233. ^ . GMO Compass. Archived from the original on 19 July 2012. Retrieved 25 July 2010.
  234. ^ Fernandez-Cornejo J (5 July 2012). "Adoption of Genetically Engineered Crops in the U.S. – Recent Trends". USDA Economic Research Service. Retrieved 29 September 2012.
  235. ^ Bren L (November–December 2003). "Genetic engineering: the future of foods?". FDA Consumer. U.S. Food and Drug Administration. 37 (6): 28–34. PMID 14986586.
  236. ^ Lemaux PG (19 February 2008). "Genetically Engineered Plants and Foods: A Scientist's Analysis of the Issues (Part I)". Annual Review of Plant Biology. 59: 771–812. doi:10.1146/annurev.arplant.58.032806.103840. PMID 18284373.
  237. ^ . GMO Compass. 31 March 2010. Archived from the original on 25 October 2012. Retrieved 10 August 2010.
  238. ^ . GMO Compass. 29 March 2010. Archived from the original on 13 July 2012. Retrieved 10 August 2010.
  239. ^ . Euractiv.com. 12 May 2006. Archived from the original on 20 October 2017. Retrieved 5 January 2010.
  240. ^ . International Centre for Trade and Sustainable Development. Archived from the original on 4 March 2012. Retrieved 5 January 2010.
  241. ^ "Genetically Modified Organisms". Food Safety. European Commission. 17 October 2016.
  242. ^ "GM Crops Now Banned in 38 Countries Worldwide - Sustainable Pulse Research - Sustainable Pulse". 22 October 2015.
  243. ^ "GM Crop Bans Confirmed in 19 EU Countries - Sustainable Pulse". 4 October 2015.
  244. ^ Paull J (June 2015). "The threat of genetically modified organisms (GMOs) to organic agriculture: A case study update" (PDF). Agriculture & Food. 3: 56–63.
  245. ^ HRH Charles, Prince of Wales (8 June 1998). The Seeds of Disaster (Speech). Prince of Wales. Retrieved 13 October 2021.
  246. ^ Qiu J (16 August 2013). "Genetically modified crops pass benefits to weeds". Nature. doi:10.1038/nature.2013.13517. ISSN 1476-4687. S2CID 87415065.
  247. ^ Satheeshkumar, P. K.; Narayanan, Anoop (2017), Abdulhameed, Sabu; Pradeep, N.S.; Sugathan, Shiburaj (eds.), "Biopiracy", Bioresources and Bioprocess in Biotechnology: Volume 1: Status and Strategies for Exploration, Singapore: Springer, pp. 185–204, doi:10.1007/978-981-10-3573-9_9, ISBN 978-981-10-3573-9, retrieved 20 October 2023
  248. ^ (PDF). American Medical Association. 2012. Archived from the original (PDF) on 7 September 2012.
  249. ^ United States Institute of Medicine and National Research Council (2004). Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects. National Academies Press. ISBN 9780309092098. See pp11ff on need for better standards and tools to evaluate GM food.
  250. ^ Key S, Ma JK, Drake PM (June 2008). "Genetically modified plants and human health". Journal of the Royal Society of Medicine. 101 (6): 290–8. doi:10.1258/jrsm.2008.070372. PMC 2408621. PMID 18515776.
  251. ^ Pollack A (21 May 2012). "An Entrepreneur Bankrolls a Genetically Engineered Salmon". The New York Times.
  252. ^ "National bioengineered food disclosure standard". 29 July 2016.
  253. ^ Domingo JL, Giné Bordonaba J (May 2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37 (4): 734–42. doi:10.1016/j.envint.2011.01.003. PMID 21296423.
  254. ^ Krimsky S (2015). (PDF). Science, Technology, & Human Values. 40 (6): 883–914. doi:10.1177/0162243915598381. S2CID 40855100. Archived from the original (PDF) on 7 February 2016. Retrieved 9 February 2016.
  255. ^ Panchin AY, Tuzhikov AI (March 2017). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. 37 (2): 213–217. doi:10.3109/07388551.2015.1130684. PMID 26767435. S2CID 11786594.

External links edit

  • "EU Register of authorised GM crops".
  • "Biotechnology Consultations on Food from GE Plant Varieties".
  • "Current & Previously Registered Section 3 PIP Registrations".

genetically, modified, crops, crops, redirects, here, journal, formerly, printed, under, that, name, crops, food, crops, plants, used, agriculture, which, been, modified, using, genetic, engineering, methods, plant, genomes, engineered, physical, methods, agro. GM Crops redirects here For the journal formerly printed under that name see GM Crops amp Food Genetically modified crops GM crops are plants used in agriculture the DNA of which has been modified using genetic engineering methods Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T DNA binary vectors In most cases the aim is to introduce a new trait to the plant which does not occur naturally in the species Examples in food crops include resistance to certain pests diseases environmental conditions reduction of spoilage resistance to chemical treatments e g resistance to a herbicide or improving the nutrient profile of the crop Examples in non food crops include production of pharmaceutical agents biofuels and other industrially useful goods as well as for bioremediation 1 Farmers have widely adopted GM technology Acreage increased from 1 7 million hectares in 1996 to 185 1 million hectares in 2016 some 12 of global cropland As of 2016 major crop soybean maize canola and cotton traits consist of herbicide tolerance 95 9 million hectares insect resistance 25 2 million hectares or both 58 5 million hectares In 2015 53 6 million ha of Genetically modified maize were under cultivation almost 1 3 of the maize crop GM maize outperformed its predecessors yield was 5 6 to 24 5 higher with less mycotoxins 28 8 fumonisin 30 6 and thricotecens 36 5 Non target organisms were unaffected except for lower populations some parasitoid wasps due to decreased populations of their pest host European corn borer European corn borer is a target of Lepidoptera active Bt maize Biogeochemical parameters such as lignin content did not vary while biomass decomposition was higher 2 A 2014 meta analysis concluded that GM technology adoption had reduced chemical pesticide use by 37 increased crop yields by 22 and increased farmer profits by 68 3 This reduction in pesticide use has been ecologically beneficial but benefits may be reduced by overuse 4 Yield gains and pesticide reductions are larger for insect resistant crops than for herbicide tolerant crops 5 Yield and profit gains are higher in developing countries than in developed countries 3 Pesticide poisonings were reduced by 2 4 to 9 million cases per year in India alone 6 A 2011 review of the relationship between Bt cotton adoption and farmer suicides in India found that Available data show no evidence of a resurgence of farmer suicides and that Bt cotton technology has been very effective overall in India 7 During the time period of Bt cotton introduction in India farmer suicides instead declined by 25 6 There is a scientific consensus 8 9 10 11 that currently available food derived from GM crops poses no greater risk to human health than conventional food 12 13 14 15 16 but that each GM food needs to be tested on a case by case basis before introduction 17 18 19 Nonetheless members of the public are much less likely than scientists to perceive GM foods as safe 20 21 22 23 The legal and regulatory status of GM foods varies by country with some nations banning or restricting them and others permitting them with widely differing degrees of regulation 24 25 26 27 However opponents have objected to GM crops on grounds including environmental impacts food safety whether GM crops are needed to address food needs whether they are sufficiently accessible to farmers in developing countries 28 and concerns over subjecting crops to intellectual property law Safety concerns led 38 countries including 19 in Europe to officially prohibit their cultivation 2 Contents 1 History 2 Methods 3 Types of modifications 3 1 Transgenic 3 2 Cisgenic 3 3 Subgenic 3 4 Multiple trait integration 4 Economics 5 Yield 6 Traits 6 1 Extended shelf life 6 2 Improved photosynthesis 6 3 Improved biosequestration capability 6 4 Improved nutritional value 6 4 1 Edible oils 6 4 2 Vitamin enrichment 6 4 3 Toxin reduction 6 5 Stress resistance 6 6 Herbicides 6 6 1 Glyphosate 6 6 2 Bromoxynil 6 6 3 Glufosinate 6 6 4 2 4 D 6 6 5 Dicamba 6 7 Pest resistance 6 7 1 Insects 6 7 2 Viruses 6 8 By products 6 8 1 Drugs 6 8 2 Biofuel 6 8 3 Materials 6 8 4 Non pesticide pest management products 6 9 Bioremediation 6 10 Asexual reproduction 6 11 Other 7 Crops 7 1 Herbicide tolerance 7 2 Insect resistance 7 3 Other modified traits 7 4 GM Camelina 7 5 Development 8 Farming practices 8 1 Resistance 8 1 1 Bacillus thuringiensis 8 1 2 Herbicide resistance 8 2 Plant protection 8 3 Tillage 8 4 Greenhouse gas emissions 8 5 Drought tolerance 9 Regulation 10 Production 11 Controversy 12 See also 13 Notes 14 References 15 External linksHistory editMain article History of genetic engineering Humans have directly influenced the genetic makeup of plants to increase their value as a crop through domestication The first evidence of plant domestication comes from emmer and einkorn wheat found in pre Pottery Neolithic A villages in Southwest Asia dated about 10 500 to 10 100 BC 29 The Fertile Crescent of Western Asia Egypt and India were sites of the earliest planned sowing and harvesting of plants that had previously been gathered in the wild Independent development of agriculture occurred in northern and southern China Africa s Sahel New Guinea and several regions of the Americas 30 The eight Neolithic founder crops emmer wheat einkorn wheat barley peas lentils bitter vetch chick peas and flax had all appeared by about 7 000 BC 31 Traditional crop breeders have long introduced foreign germplasm into crops by creating novel crosses A hybrid cereal grain was created in 1875 by crossing wheat and rye 32 Since then traits including dwarfing genes and rust resistance have been introduced in that manner 33 Plant tissue culture and deliberate mutations have enabled humans to alter the makeup of plant genomes 34 35 Modern advances in genetics have allowed humans to more directly alter plants genetics In 1970 Hamilton Smith s lab discovered restriction enzymes that allowed DNA to be cut at specific places enabling scientists to isolate genes from an organism s genome 36 DNA ligases that join broken DNA together had been discovered earlier in 1967 37 and by combining the two technologies it was possible to cut and paste DNA sequences and create recombinant DNA Plasmids discovered in 1952 38 became important tools for transferring information between cells and replicating DNA sequences In 1907 a bacterium that caused plant tumors Agrobacterium tumefaciens was discovered and in the early 1970s the tumor inducing agent was found to be a DNA plasmid called the Ti plasmid 39 By removing the genes in the plasmid that caused the tumor and adding in novel genes researchers were able to infect plants with A tumefaciens and let the bacteria insert their chosen DNA sequence into the genomes of the plants 40 As not all plant cells were susceptible to infection by A tumefaciens other methods were developed including electroporation micro injection 41 and particle bombardment with a gene gun invented in 1987 42 43 In the 1980s techniques were developed to introduce isolated chloroplasts back into a plant cell that had its cell wall removed With the introduction of the gene gun in 1987 it became possible to integrate foreign genes into a chloroplast 44 Genetic transformation has become very efficient in some model organisms In 2008 genetically modified seeds were produced in Arabidopsis thaliana by dipping the flowers in an Agrobacterium solution 45 In 2013 CRISPR was first used to target modification of plant genomes 46 The first genetically engineered crop plant was tobacco reported in 1983 47 It was developed creating a chimeric gene that joined an antibiotic resistant gene to the T1 plasmid from Agrobacterium The tobacco was infected with Agrobacterium transformed with this plasmid resulting in the chimeric gene being inserted into the plant Through tissue culture techniques a single tobacco cell was selected that contained the gene and a new plant grown from it 48 The first field trials of genetically engineered plants occurred in France and the US in 1986 tobacco plants were engineered to be resistant to herbicides 49 In 1987 Plant Genetic Systems founded by Marc Van Montagu and Jeff Schell was the first company to genetically engineer insect resistant plants by incorporating genes that produced insecticidal proteins from Bacillus thuringiensis Bt into tobacco 50 The People s Republic of China was the first country to commercialise transgenic plants introducing a virus resistant tobacco in 1992 51 In 1994 Calgene attained approval to commercially release the Flavr Savr tomato a tomato engineered to have a longer shelf life 52 Also in 1994 the European Union approved tobacco engineered to be resistant to the herbicide bromoxynil making it the first genetically engineered crop commercialised in Europe 53 In 1995 Bt Potato was approved safe by the Environmental Protection Agency after having been approved by the FDA making it the first pesticide producing crop to be approved in the US 54 In 1996 a total of 35 approvals had been granted to commercially grow 8 transgenic crops and one flower crop carnation with 8 different traits in 6 countries plus the EU 49 By 2010 29 countries had planted commercialised genetically modified crops and a further 31 countries had granted regulatory approval for transgenic crops to be imported 55 The first genetically modified animal to be commercialised was the GloFish a Zebra fish with a fluorescent gene added that allows it to glow in the dark under ultraviolet light 56 The first genetically modified animal to be approved for food use was AquAdvantage salmon in 2015 57 The salmon were transformed with a growth hormone regulating gene from a Pacific Chinook salmon and a promoter from an ocean pout enabling it to grow year round instead of only during spring and summer 58 Methods editMain article Genetic engineering techniques nbsp Plants Solanum chacoense being transformed using agrobacteriumGenetically engineered crops have genes added or removed using genetic engineering techniques 59 originally including gene guns electroporation microinjection and agrobacterium More recently CRISPR and TALEN offered much more precise and convenient editing techniques Gene guns also known as biolistics shoot direct high energy particles or radiations against 60 target genes into plant cells It is the most common method DNA is bound to tiny particles of gold or tungsten which are subsequently shot into plant tissue or single plant cells under high pressure The accelerated particles penetrate both the cell wall and membranes The DNA separates from the metal and is integrated into plant DNA inside the nucleus This method has been applied successfully for many cultivated crops especially monocots like wheat or maize for which transformation using Agrobacterium tumefaciens has been less successful 61 The major disadvantage of this procedure is that serious damage can be done to the cellular tissue Agrobacterium tumefaciens mediated transformation is another common technique Agrobacteria are natural plant parasites 62 Their natural ability to transfer genes provides another engineering method To create a suitable environment for themselves these Agrobacteria insert their genes into plant hosts resulting in a proliferation of modified plant cells near the soil level crown gall The genetic information for tumor growth is encoded on a mobile circular DNA fragment plasmid When Agrobacterium infects a plant it transfers this T DNA to a random site in the plant genome When used in genetic engineering the bacterial T DNA is removed from the bacterial plasmid and replaced with the desired foreign gene The bacterium is a vector enabling transportation of foreign genes into plants This method works especially well for dicotyledonous plants like potatoes tomatoes and tobacco Agrobacteria infection is less successful in crops like wheat and maize Electroporation is used when the plant tissue does not contain cell walls In this technique DNA enters the plant cells through miniature pores which are temporarily caused by electric pulses Microinjection is used to directly inject foreign DNA into cells 63 Plant scientists backed by results of modern comprehensive profiling of crop composition point out that crops modified using GM techniques are less likely to have unintended changes than are conventionally bred crops 64 65 In research tobacco and Arabidopsis thaliana are the most frequently modified plants due to well developed transformation methods easy propagation and well studied genomes 66 67 They serve as model organisms for other plant species Introducing new genes into plants requires a promoter specific to the area where the gene is to be expressed For instance to express a gene only in rice grains and not in leaves an endosperm specific promoter is used The codons of the gene must be optimized for the organism due to codon usage bias Types of modifications edit nbsp Transgenic maize containing a gene from the bacteria Bacillus thuringiensisTransgenic edit Transgenic plants have genes inserted into them that are derived from another species The inserted genes can come from species within the same kingdom plant to plant or between kingdoms for example bacteria to plant In many cases the inserted DNA has to be modified slightly in order to be correctly and efficiently expressed in the host organism Transgenic plants are used to express proteins like the cry toxins from B thuringiensis herbicide resistant genes antibodies 68 and antigens for vaccinations 69 A study led by the European Food Safety Authority EFSA also found viral genes in transgenic plants 70 Transgenic carrots have been used to produce the drug Taliglucerase alfa which is used to treat Gaucher s disease 71 In the laboratory transgenic plants have been modified to increase photosynthesis currently about 2 at most plants versus the theoretic potential of 9 10 72 This is possible by changing the rubisco enzyme i e changing C3 plants into C4 plants 73 by placing the rubisco in a carboxysome by adding CO2 pumps in the cell wall 74 or by changing the leaf form or size 75 76 77 78 Plants have been engineered to exhibit bioluminescence that may become a sustainable alternative to electric lighting 79 Cisgenic edit Cisgenic plants are made using genes found within the same species or a closely related one where conventional plant breeding can occur Some breeders and scientists argue that cisgenic modification is useful for plants that are difficult to crossbreed by conventional means such as potatoes and that plants in the cisgenic category should not require the same regulatory scrutiny as transgenics 80 Subgenic edit Genetically modified plants can also be developed using gene knockdown or gene knockout to alter the genetic makeup of a plant without incorporating genes from other plants In 2014 Chinese researcher Gao Caixia filed patents on the creation of a strain of wheat that is resistant to powdery mildew The strain lacks genes that encode proteins that repress defenses against the mildew The researchers deleted all three copies of the genes from wheat s hexaploid genome Gao used the TALENs and CRISPR gene editing tools without adding or changing any other genes No field trials were immediately planned 81 82 The CRISPR technique has also been used by Penn State researcher Yinong Yang to modify white button mushrooms Agaricus bisporus to be non browning 83 and by DuPont Pioneer to make a new variety of corn 84 Multiple trait integration edit With multiple trait integration several new traits may be integrated into a new crop 85 Economics editThe neutrality of this section is disputed Relevant discussion may be found on the talk page Please do not remove this message until conditions to do so are met December 2015 Learn how and when to remove this template message GM food s economic value to farmers is one of its major benefits including in developing nations 86 87 88 A 2010 study found that Bt corn provided economic benefits of 6 9 billion over the previous 14 years in five Midwestern states The majority 4 3 billion accrued to farmers producing non Bt corn This was attributed to European corn borer populations reduced by exposure to Bt corn leaving fewer to attack conventional corn nearby 89 90 Agriculture economists calculated that world surplus increased by 240 3 million for 1996 Of this total the largest share 59 went to U S farmers Seed company Monsanto received the next largest share 21 followed by US consumers 9 the rest of the world 6 and the germplasm supplier Delta amp Pine Land Company of Mississippi 5 91 According to the International Service for the Acquisition of Agri biotech Applications ISAAA in 2014 approximately 18 million farmers grew biotech crops in 28 countries about 94 of the farmers were resource poor in developing countries 53 of the global biotech crop area of 181 5 million hectares was grown in 20 developing countries 92 PG Economics comprehensive 2012 study concluded that GM crops increased farm incomes worldwide by 14 billion in 2010 with over half this total going to farmers in developing countries 93 Forgoing these benefits is costly 94 95 Wesseler et al 2017 estimate the cost of delay for several crops including GM banana in Uganda GM cowpea in west Africa and GM maize corn in Kenya 94 They estimate Nigeria alone loses 33 46m annually 94 The potential and alleged harms of GM crops must then be compared to these costs of delay 94 95 Critics challenged the claimed benefits to farmers over the prevalence of biased observers and by the absence of randomized controlled trials citation needed The main Bt crop grown by small farmers in developing countries is cotton A 2006 review of Bt cotton findings by agricultural economists concluded the overall balance sheet though promising is mixed Economic returns are highly variable over years farm type and geographical location 96 In 2013 the European Academies Science Advisory Council EASAC asked the EU to allow the development of agricultural GM technologies to enable more sustainable agriculture by employing fewer land water and nutrient resources EASAC also criticizes the EU s time consuming and expensive regulatory framework and said that the EU had fallen behind in the adoption of GM technologies 97 Participants in agriculture business markets include seed companies agrochemical companies distributors farmers grain elevators and universities that develop new crops traits and whose agricultural extensions advise farmers on best practices citation needed According to a 2012 review based on data from the late 1990s and early 2000s much of the GM crop grown each year is used for livestock feed and increased demand for meat leads to increased demand for GM feed crops 98 Feed grain usage as a percentage of total crop production is 70 for corn and more than 90 of oil seed meals such as soybeans About 65 million metric tons of GM corn grains and about 70 million metric tons of soybean meals derived from GM soybean become feed 98 In 2014 the global value of biotech seed was US 15 7 billion US 11 3 billion 72 was in industrial countries and US 4 4 billion 28 was in the developing countries 92 In 2009 Monsanto had 7 3 billion in sales of seeds and from licensing its technology DuPont through its Pioneer subsidiary was the next biggest company in that market 99 As of 2009 the overall Roundup line of products including the GM seeds represented about 50 of Monsanto s business 100 Some patents on GM traits have expired allowing the legal development of generic strains that include these traits For example generic glyphosate tolerant GM soybean is now available Another impact is that traits developed by one vendor can be added to another vendor s proprietary strains potentially increasing product choice and competition 101 The patent on the first type of Roundup Ready crop that Monsanto produced soybeans expired in 2014 102 and the first harvest of off patent soybeans occurs in the spring of 2015 103 Monsanto has broadly licensed the patent to other seed companies that include the glyphosate resistance trait in their seed products 104 About 150 companies have licensed the technology 105 including Syngenta 106 and DuPont Pioneer 107 Yield editIn 2014 the largest review yet concluded that GM crops effects on farming were positive The meta analysis considered all published English language examinations of the agronomic and economic impacts between 1995 and March 2014 for three major GM crops soybean maize and cotton The study found that herbicide tolerant crops have lower production costs while for insect resistant crops the reduced pesticide use was offset by higher seed prices leaving overall production costs about the same 3 108 Yields increased 9 for herbicide tolerance and 25 for insect resistant varieties Farmers who adopted GM crops made 69 higher profits than those who did not The review found that GM crops help farmers in developing countries increasing yields by 14 percentage points 108 The researchers considered some studies that were not peer reviewed and a few that did not report sample sizes They attempted to correct for publication bias by considering sources beyond academic journals The large data set allowed the study to control for potentially confounding variables such as fertilizer use Separately they concluded that the funding source did not influence study results 108 Under special conditions meant to reveal only genetic yield factors many GM crops are known to actually have lower yields This is variously due to one or both of Yield drag wherein the trait itself lowers yield either by competing for synthesis feedstock or by being inserted slightly inaccurately into the middle of a yield relevant gene and or yield lag wherein it takes some time to breed the newest yield genetics into the GM lines This does not reflect realistic field conditions however especially leaving out pest pressure which is often the point of the GM trait 109 See for example Roundup Ready Productivity claims Gene editing may also increase yields non specific to the use of any biocides pesticides In March 2022 field test results showed CRISPR based gene knockout of KRN2 in maize and OsKRN2 in rice increased grain yields by 10 and 8 without any detected negative effects 110 111 Traits edit nbsp Genetically modified King Edward potato right next to King Edward which has not been genetically modified left Research field belonging to the Swedish University of Agricultural Sciences in 2019 GM crops grown today or under development have been modified with various traits These traits include improved shelf life disease resistance stress resistance herbicide resistance pest resistance production of useful goods such as biofuel or drugs and ability to absorb toxins and for use in bioremediation of pollution Recently research and development has been targeted to enhancement of crops that are locally important in developing countries such as insect resistant cowpea for Africa 112 and insect resistant brinjal eggplant 113 Extended shelf life edit The first genetically modified crop approved for sale in the U S was the FlavrSavr tomato which had a longer shelf life 52 First sold in 1994 FlavrSavr tomato production ceased in 1997 114 It is no longer on the market In November 2014 the USDA approved a GM potato that prevents bruising 115 116 In February 2015 Arctic Apples were approved by the USDA 117 becoming the first genetically modified apple approved for US sale 118 Gene silencing was used to reduce the expression of polyphenol oxidase PPO thus preventing enzymatic browning of the fruit after it has been sliced open The trait was added to Granny Smith and Golden Delicious varieties 117 119 The trait includes a bacterial antibiotic resistance gene that provides resistance to the antibiotic kanamycin The genetic engineering involved cultivation in the presence of kanamycin which allowed only resistant cultivars to survive Humans consuming apples do not acquire kanamycin resistance per arcticapple com 120 The FDA approved the apples in March 2015 121 Improved photosynthesis edit Plants use non photochemical quenching to protect them from excessive amounts of sunlight Plants can switch on the quenching mechanism almost instantaneously but it takes much longer for it to switch off again During the time that it is switched off the amount of energy that is wasted increases 122 A genetic modification in three genes allows to correct this in a trial with tobacco plants As a result yields were 14 20 higher in terms of the weight of the dry leaves harvested The plants had larger leaves were taller and had more vigorous roots 122 123 Another improvement that can be made on the photosynthesis process with C3 pathway plants is on photorespiration By inserting the C4 pathway into C3 plants productivity may increase by as much as 50 for cereal crops such as rice 124 125 126 127 128 Improved biosequestration capability edit The Harnessing Plants Initiative focuses on creating GM plants that have increased root mass root depth and suberin content Improved nutritional value edit Edible oils edit Some GM soybeans offer improved oil profiles for processing 129 Camelina sativa has been modified to produce plants that accumulate high levels of oils similar to fish oils 130 131 Vitamin enrichment edit Golden rice developed by the International Rice Research Institute IRRI provides greater amounts of vitamin A targeted at reducing vitamin A deficiency 132 133 As of January 2016 golden rice has not yet been grown commercially in any country 134 Toxin reduction edit A genetically modified cassava under development offers lower cyanogen glucosides and enhanced protein and other nutrients called BioCassava 135 In November 2014 the USDA approved a potato that prevents bruising and produces less acrylamide when fried 115 116 They do not employ genes from non potato species The trait was added to the Russet Burbank Ranger Russet and Atlantic varieties 115 Stress resistance edit Plants have been engineered to tolerate non biological stressors such as drought 115 116 136 137 frost 138 and high soil salinity 67 In 2011 Monsanto s DroughtGard maize became the first drought resistant GM crop to receive US marketing approval 139 Drought resistance occurs by modifying the plant s genes responsible for the mechanism known as the crassulacean acid metabolism CAM which allows the plants to survive despite low water levels This holds promise for water heavy crops such as rice wheat soybeans and poplar to accelerate their adaptation to water limited environments 140 141 Several salinity tolerance mechanisms have been identified in salt tolerant crops For example rice canola and tomato crops have been genetically modified to increase their tolerance to salt stress 142 143 Herbicides edit Glyphosate edit The most prevalent GM trait is herbicide tolerance 144 where glyphosate tolerance is the most common 145 Glyphosate the active ingredient in Roundup and other herbicide products kills plants by interfering with the shikimate pathway in plants which is essential for the synthesis of the aromatic amino acids phenylalanine tyrosine and tryptophan The shikimate pathway is not present in animals which instead obtain aromatic amino acids from their diet More specifically glyphosate inhibits the enzyme 5 enolpyruvylshikimate 3 phosphate synthase EPSPS This trait was developed because the herbicides used on grain and grass crops at the time were highly toxic and not effective against narrow leaved weeds Thus developing crops that could withstand spraying with glyphosate would both reduce environmental and health risks and give an agricultural edge to the farmer 146 Some micro organisms have a version of EPSPS that is resistant to glyphosate inhibition One of these was isolated from an Agrobacterium strain CP4 CP4 EPSPS that was resistant to glyphosate 147 148 The CP4 EPSPS gene was engineered for plant expression by fusing the 5 end of the gene to a chloroplast transit peptide derived from the petunia EPSPS This transit peptide was used because it had shown previously an ability to deliver bacterial EPSPS to the chloroplasts of other plants This CP4 EPSPS gene was cloned and transfected into soybeans The plasmid used to move the gene into soybeans was PV GMGTO4 It contained three bacterial genes two CP4 EPSPS genes and a gene encoding beta glucuronidase GUS from Escherichia coli as a marker The DNA was injected into the soybeans using the particle acceleration method Soybean cultivar A54O3 was used for the transformation Bromoxynil edit Tobacco plants have been engineered to be resistant to the herbicide bromoxynil 149 Glufosinate edit Crops have been commercialized that are resistant to the herbicide glufosinate as well 150 Crops engineered for resistance to multiple herbicides to allow farmers to use a mixed group of two three or four different chemicals are under development to combat growing herbicide resistance 151 152 2 4 D edit In October 2014 the US EPA registered Dow s Enlist Duo maize which is genetically modified to be resistant to both glyphosate and 2 4 D in six states 153 154 155 Inserting a bacterial aryloxyalkanoate dioxygenase gene aad1 makes the corn resistant to 2 4 D 153 156 The USDA had approved maize and soybeans with the mutation in September 2014 157 Dicamba edit Monsanto has requested approval for a stacked strain that is tolerant of both glyphosate and dicamba The request includes plans for avoiding herbicide drift to other crops 158 Significant damage to other non resistant crops occurred from dicamba formulations intended to reduce volatilization drifting when sprayed on resistant soybeans in 2017 159 The newer dicamba formulation labels specify to not spray when average wind speeds are above 10 15 miles per hour 16 24 km h to avoid particle drift average wind speeds below 3 miles per hour 4 8 km h to avoid temperature inversions and rain or high temperatures are in the next day forecast However these conditions typically only occur during June and July for a few hours at a time 160 161 Pest resistance edit Insects edit Tobacco corn rice and some other crops have been engineered to express genes encoding for insecticidal proteins from Bacillus thuringiensis Bt 162 163 The introduction of Bt crops during the period between 1996 and 2005 has been estimated to have reduced the total volume of insecticide active ingredient use in the United States by over 100 thousand tons This represents a 19 4 reduction in insecticide use 164 In the late 1990s a genetically modified potato that was resistant to the Colorado potato beetle was withdrawn because major buyers rejected it fearing consumer opposition 115 Viruses edit Papaya potatoes and squash have been engineered to resist viral pathogens such as cucumber mosaic virus which despite its name infects a wide variety of plants 165 Virus resistant papaya were developed in response to a papaya ringspot virus PRV outbreak in Hawaii in the late 1990s They incorporate PRV DNA 166 167 By 2010 80 of Hawaiian papaya plants were genetically modified 168 169 Potatoes were engineered for resistance to potato leaf roll virus and Potato virus Y in 1998 Poor sales led to their market withdrawal after three years 170 Yellow squash that were resistant to at first two then three viruses were developed beginning in the 1990s The viruses are watermelon cucumber and zucchini courgette yellow mosaic Squash was the second GM crop to be approved by US regulators The trait was later added to zucchini 171 Many strains of corn have been developed in recent years to combat the spread of Maize dwarf mosaic virus a costly virus that causes stunted growth which is carried in Johnson grass and spread by aphid insect vectors These strands are commercially available although the resistance is not standard among GM corn variants 172 By products edit Drugs edit In 2012 the FDA approved the first plant produced pharmaceutical a treatment for Gaucher s Disease 173 Tobacco plants have been modified to produce therapeutic antibodies 174 Biofuel edit Algae is under development for use in biofuels 175 The focus of Microalgae for mass production for biofuels modifying the algae to produce more lipid has become a focus yet will take years to see results due to the cost of this process to extract lipids 176 Researchers in Singapore were working on GM jatropha for biofuel production 177 Syngenta has USDA approval to market a maize trademarked Enogen that has been genetically modified to convert its starch to sugar for ethanol 178 Some trees have been genetically modified to either have less lignin or to express lignin with chemically labile bonds Lignin is the critical limiting factor when using wood to make bio ethanol because lignin limits the accessibility of cellulose microfibrils to depolymerization by enzymes 179 Besides with trees the chemically labile lignin bonds are also very useful for cereal crops such as maize 180 181 Materials edit Companies and labs are working on plants that can be used to make bioplastics 182 Potatoes that produce industrially useful starches have been developed as well 183 Oilseed can be modified to produce fatty acids for detergents substitute fuels and petrochemicals Non pesticide pest management products edit Besides the modified oilcrop above Camelina sativa has also been modified to produce Helicoverpa armigera pheromones and is in progress with a Spodoptera frugiperda version The H armigera pheromones have been tested and are effective 184 Bioremediation edit Scientists at the University of York developed a weed Arabidopsis thaliana that contains genes from bacteria that could clean TNT and RDX explosive soil contaminants in 2011 185 16 million hectares in the US 1 5 of the total surface are estimated to be contaminated with TNT and RDX However A thaliana was not tough enough for use on military test grounds 186 Modifications in 2016 included switchgrass and bentgrass 187 Genetically modified plants have been used for bioremediation of contaminated soils Mercury selenium and organic pollutants such as polychlorinated biphenyls PCBs 186 188 Marine environments are especially vulnerable since pollution such as oil spills are not containable In addition to anthropogenic pollution millions of tons of petroleum annually enter the marine environment from natural seepages Despite its toxicity a considerable fraction of petroleum oil entering marine systems is eliminated by the hydrocarbon degrading activities of microbial communities Particularly successful is a recently discovered group of specialists the so called hydrocarbonoclastic bacteria HCCB that may offer useful genes 189 Asexual reproduction edit Crops such as maize reproduce sexually each year This randomizes which genes get propagated to the next generation meaning that desirable traits can be lost To maintain a high quality crop some farmers purchase seeds every year Typically the seed company maintains two inbred varieties and crosses them into a hybrid strain that is then sold Related plants like sorghum and gamma grass are able to perform apomixis a form of asexual reproduction that keeps the plant s DNA intact This trait is apparently controlled by a single dominant gene but traditional breeding has been unsuccessful in creating asexually reproducing maize Genetic engineering offers another route to this goal Successful modification would allow farmers to replant harvested seeds that retain desirable traits rather than relying on purchased seed 190 Other edit Genetic modifications to some crops also exist which make it easier to process the crop i e by growing in a more compact form 191 Also some crops such as tomatoes have been genetic modified to contain no seed at all 192 Crops editSee also List of genetically modified crops Herbicide tolerance edit Crop Use Countries approved in First approved 193 NotesAlfalfa Animal feed 194 US 2005 Approval withdrawn in 2007 195 and then re approved in 2011 196 Canola Cooking oil MargarineEmulsifiers in packaged foods 194 Australia 2003Canada 1995US 1995Cotton FiberCottonseed oilAnimal feed 194 Argentina 2001Australia 2002Brazil 2008Colombia 2004Costa Rica 2008Mexico 2000Paraguay 2013South Africa 2000US 1994Maize Animal feed high fructose corn syrupcorn starch 194 Argentina 1998Brazil 2007Canada 1996Colombia 2007Cuba 2011European Union 1998 Grown in Portugal Spain Czech Republic Slovakia and Romania 197 Honduras 2001Paraguay 2012Philippines 2002South Africa 2002US 1995Uruguay 2003Soybean Animal feed Soybean oil 194 Argentina 1996Bolivia 2005Brazil 1998Canada 1995Chile 2007Costa Rica 2001Mexico 1996Paraguay 2004South Africa 2001US 1993Uruguay 1996Sugar Beet Food 198 Canada 2001US 1998 Commercialised 2007 199 production blocked 2010 resumed 2011 198 Insect resistance edit Crop Use Countries approved in First approved 193 NotesCotton FiberCottonseed oilAnimal feed 194 Argentina 1998Australia 2003Brazil 2005Burkina Faso 2009China 1997Colombia 2003Costa Rica 2008India 2002 Largest producer of Bt cotton 200 Mexico 1996Myanmar 2006 N 1 Pakistan 2010 N 1 Paraguay 2007South Africa 1997Sudan 2012US 1995Eggplant Food Bangladesh 2013 12 ha planted on 120 farms in 2014 201 Maize Animal feed high fructose corn syrupcorn starch 194 Argentina 1998Brazil 2005Colombia 2003Mexico 1996 Centre of origin for maize 202 Paraguay 2007Philippines 2002South Africa 1997Uruguay 2003US 1995Poplar Tree China 1998 543 ha of bt poplar planted in 2014 203 Other modified traits edit Crop Use Trait Countries approved in First approved 193 NotesCanola Cooking oil MargarineEmulsifiers in packaged foods 194 High laurate canola Canada 1996US 1994Phytase production US 1998Carnation Ornamental Delayed senescence Australia 1995Norway 1998Modified flower colour Australia 1995Colombia 2000 In 2014 4 ha were grown in greenhouses for export 204 European Union 1998 Two events expired 2008 another approved 2007Japan 2004Malaysia 2012 For ornamental purposesNorway 1997Maize Animal feed high fructose corn syrupcorn starch 194 Increased lysine Canada 2006US 2006Drought tolerance Canada 2010US 2011Papaya Food 194 Virus resistance China 2006US 1996 Mostly grown in Hawaii 194 Petunia Ornamental Modified flower colour China 1997 205 Potato Food 194 Virus resistance Canada 1999US 1997Industrial 206 Modified starch US 2014Rose Ornamental Modified flower colour Australia 2009 Surrendered renewalColombia 2010 N 2 Greenhouse cultivation for export only Japan 2008US 2011Soybean Animal feed Soybean oil 194 Increased oleic acid production Argentina 2015Canada 2000US 1997Stearidonic acid production Canada 2011US 2011Squash Food 194 Virus resistance US 1994Sugar Cane Food Drought tolerance Indonesia 2013 Environmental certificate onlyTobacco Cigarettes Nicotine reduction US 2002GM Camelina edit Several modifications of Camelina sativa have been done see Edible oils and Non pesticide pest management products above Development edit The number of USDA approved field releases for testing grew from 4 in 1985 to 1 194 in 2002 and averaged around 800 per year thereafter The number of sites per release and the number of gene constructs ways that the gene of interest is packaged together with other elements have rapidly increased since 2005 Releases with agronomic properties such as drought resistance jumped from 1 043 in 2005 to 5 190 in 2013 As of September 2013 about 7 800 releases had been approved for corn more than 2 200 for soybeans more than 1 100 for cotton and about 900 for potatoes Releases were approved for herbicide tolerance 6 772 releases insect resistance 4 809 product quality such as flavor or nutrition 4 896 agronomic properties like drought resistance 5 190 and virus fungal resistance 2 616 The institutions with the most authorized field releases include Monsanto with 6 782 Pioneer DuPont with 1 405 Syngenta with 565 and USDA s Agricultural Research Service with 370 As of September 2013 USDA had received proposals for releasing GM rice squash plum rose tobacco flax and chicory 207 Farming practices editResistance edit Bacillus thuringiensis edit Constant exposure to a toxin creates evolutionary pressure for pests resistant to that toxin 208 Over reliance on glyphosate and a reduction in the diversity of weed management practices allowed the spread of glyphosate resistance in 14 weed species in the US 207 and in soybeans 5 To reduce resistance to Bacillus thuringiensis Bt crops the 1996 commercialization of transgenic cotton and maize came with a management strategy to prevent insects from becoming resistant Insect resistance management plans are mandatory for Bt crops The aim is to encourage a large population of pests so that any recessive resistance genes are diluted within the population Resistance lowers evolutionary fitness in the absence of the stressor Bt In refuges non resistant strains outcompete resistant ones 209 With sufficiently high levels of transgene expression nearly all of the heterozygotes S s i e the largest segment of the pest population carrying a resistance allele will be killed before maturation thus preventing transmission of the resistance gene to their progeny 210 Refuges i e fields of nontransgenic plants adjacent to transgenic fields increases the likelihood that homozygous resistant s s individuals and any surviving heterozygotes will mate with susceptible S S individuals from the refuge instead of with other individuals carrying the resistance allele As a result the resistance gene frequency in the population remains lower Complicating factors can affect the success of the high dose refuge strategy For example if the temperature is not ideal thermal stress can lower Bt toxin production and leave the plant more susceptible More importantly reduced late season expression has been documented possibly resulting from DNA methylation of the promoter 211 The success of the high dose refuge strategy has successfully maintained the value of Bt crops This success has depended on factors independent of management strategy including low initial resistance allele frequencies fitness costs associated with resistance and the abundance of non Bt host plants outside the refuges 212 Companies that produce Bt seed are introducing strains with multiple Bt proteins Monsanto did this with Bt cotton in India where the product was rapidly adopted 213 Monsanto has also in an attempt to simplify the process of implementing refuges in fields to comply with Insect Resistance Management IRM policies and prevent irresponsible planting practices begun marketing seed bags with a set proportion of refuge non transgenic seeds mixed in with the Bt seeds being sold Coined Refuge In a Bag RIB this practice is intended to increase farmer compliance with refuge requirements and reduce additional labor needed at planting from having separate Bt and refuge seed bags on hand 214 This strategy is likely to reduce the likelihood of Bt resistance occurring for corn rootworm but may increase the risk of resistance for lepidopteran corn pests such as European corn borer Increased concerns for resistance with seed mixtures include partially resistant larvae on a Bt plant being able to move to a susceptible plant to survive or cross pollination of refuge pollen on to Bt plants that can lower the amount of Bt expressed in kernels for ear feeding insects 215 216 Herbicide resistance edit Best management practices BMPs to control weeds may help delay resistance BMPs include applying multiple herbicides with different modes of action rotating crops planting weed free seed scouting fields routinely cleaning equipment to reduce the transmission of weeds to other fields and maintaining field borders 207 The most widely planted GM crops are designed to tolerate herbicides By 2006 some weed populations had evolved to tolerate some of the same herbicides Palmer amaranth is a weed that competes with cotton A native of the southwestern US it traveled east and was first found resistant to glyphosate in 2006 less than 10 years after GM cotton was introduced 217 218 Plant protection edit Farmers generally use less insecticide when they plant Bt resistant crops Insecticide use on corn farms declined from 0 21 pound per planted acre in 1995 to 0 02 pound in 2010 This is consistent with the decline in European corn borer populations as a direct result of Bt corn and cotton The establishment of minimum refuge requirements helped delay the evolution of Bt resistance However resistance appears to be developing to some Bt traits in some areas 207 In Columbia GM cotton has reduced insecticide usage by 25 and herbicide usage by 5 and GM corn has reduced insecticide and herbicide usage by 66 and 13 respectively 219 Tillage edit By leaving at least 30 of crop residue on the soil surface from harvest through planting conservation tillage reduces soil erosion from wind and water increases water retention and reduces soil degradation as well as water and chemical runoff In addition conservation tillage reduces the carbon footprint of agriculture 220 A 2014 review covering 12 states from 1996 to 2006 found that a 1 increase in herbicde tolerant HT soybean adoption leads to a 0 21 increase in conservation tillage and a 0 3 decrease in quality adjusted herbicide use 220 Greenhouse gas emissions edit Combined features of increased yield decreased land use reduced use of fertilizer and reduced farming machinery use create a feedback loop that reduces carbon emissions related to farming These reductions have been estimated at 7 5 of total agricultural emissions in the EU or 33 millions tons of CO2 221 and an estimated 8 76 million tons of CO2 in Columbia 222 Drought tolerance edit The use of drought tolerant crops can increase yield in water scarce locations making farming possible in new areas The adoption of drought tolerant maize in Ghana was shown to increase yield by more than 150 and boost commercialization intensity although it did not significantly affect farm income 223 Regulation editMain articles Regulation of genetic engineering and Regulation of the release of genetic modified organisms The regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the development and release of genetically modified crops There are differences in the regulation of GM crops between countries with some of the most marked differences occurring between the US and Europe Regulation varies in a given country depending on the intended use of each product For example a crop not intended for food use is generally not reviewed by authorities responsible for food safety 224 225 Production edit nbsp GM crops production in the World ISAAA Brief 2019 More than 10 million hectares Between 50 000 and 10 million hectares Less than 50 000 hectares No biotech cropsIn 2013 GM crops were planted in 27 countries 19 were developing countries and 8 were developed countries 2013 was the second year in which developing countries grew a majority 54 of the total GM harvest 18 million farmers grew GM crops around 90 were small holding farmers in developing countries 1 Country 2013 GM planted area million hectares 226 Biotech cropsUS 70 1 Maize Soybean Cotton Canola Sugarbeet Alfalfa Papaya SquashBrazil 40 3 Soybean Maize CottonArgentina 24 4 Soybean Maize CottonIndia 11 0 CottonCanada 10 8 Canola Maize Soybean SugarbeetTotal 175 2 The United States Department of Agriculture USDA reports every year on the total area of GM crop varieties planted in the United States 227 228 According to National Agricultural Statistics Service the states published in these tables represent 81 86 percent of all corn planted area 88 90 percent of all soybean planted area and 81 93 percent of all upland cotton planted area depending on the year Global estimates are produced by the International Service for the Acquisition of Agri biotech Applications ISAAA and can be found in their annual reports Global Status of Commercialized Transgenic Crops 1 229 Farmers have widely adopted GM technology see figure Between 1996 and 2013 the total surface area of land cultivated with GM crops increased by a factor of 100 from 17 000 square kilometers 4 200 000 acres to 1 750 000 km2 432 million acres 1 10 of the world s arable land was planted with GM crops in 2010 55 As of 2011 11 different transgenic crops were grown commercially on 395 million acres 160 million hectares in 29 countries such as the US Brazil Argentina India Canada China Paraguay Pakistan South Africa Uruguay Bolivia Australia Philippines Myanmar Burkina Faso Mexico and Spain 55 One of the key reasons for this widespread adoption is the perceived economic benefit the technology brings to farmers For example the system of planting glyphosate resistant seed and then applying glyphosate once plants emerged provided farmers with the opportunity to dramatically increase the yield from a given plot of land since this allowed them to plant rows closer together Without it farmers had to plant rows far enough apart to control post emergent weeds with mechanical tillage 230 Likewise using Bt seeds means that farmers do not have to purchase insecticides and then invest time fuel and equipment in applying them However critics have disputed whether yields are higher and whether chemical use is less with GM crops See Genetically modified food controversies article for information nbsp Land area used for genetically modified crops by country 1996 2009 in millions of hectares In 2011 the land area used was 160 million hectares or 1 6 million square kilometers 55 In the US by 2014 94 of the planted area of soybeans 96 of cotton and 93 of corn were genetically modified varieties 231 232 233 Genetically modified soybeans carried herbicide tolerant traits only but maize and cotton carried both herbicide tolerance and insect protection traits the latter largely Bt protein 234 These constitute input traits that are aimed to financially benefit the producers but may have indirect environmental benefits and cost benefits to consumers The Grocery Manufacturers of America estimated in 2003 that 70 75 of all processed foods in the U S contained a GM ingredient 235 Europe grows relatively few genetically engineered crops 236 with the exception of Spain where one fifth of maize is genetically engineered 237 and smaller amounts in five other countries 238 The EU had a de facto ban on the approval of new GM crops from 1999 until 2004 239 240 GM crops are now regulated by the EU 241 In 2015 genetically engineered crops are banned in 38 countries worldwide 19 of them in Europe 242 243 Developing countries grew 54 percent of genetically engineered crops in 2013 1 In recent years GM crops expanded rapidly in developing countries In 2013 approximately 18 million farmers grew 54 of worldwide GM crops in developing countries 1 2013 s largest increase was in Brazil 403 000 km2 versus 368 000 km2 in 2012 GM cotton began growing in India in 2002 reaching 110 000 km2 in 2013 1 According to the 2013 ISAAA brief a total of 36 countries 35 EU 28 have granted regulatory approvals for biotech crops for food and or feed use and for environmental release or planting since 1994 a total of 2 833 regulatory approvals involving 27 GM crops and 336 GM events NB an event is a specific genetic modification in a specific species have been issued by authorities of which 1 321 are for food use direct use or processing 918 for feed use direct use or processing and 599 for environmental release or planting Japan has the largest number 198 followed by the U S A 165 not including stacked events Canada 146 Mexico 131 South Korea 103 Australia 93 New Zealand 83 European Union 71 including approvals that have expired or under renewal process Philippines 68 Taiwan 65 Colombia 59 China 55 and South Africa 52 Maize has the largest number 130 events in 27 countries followed by cotton 49 events in 22 countries potato 31 events in 10 countries canola 30 events in 12 countries and soybean 27 events in 26 countries 1 Controversy editMain article Genetically modified food controversies Direct genetic engineering has been controversial since its introduction Most but not all of the controversies are over GM foods rather than crops per se GM foods are the subject of protests vandalism referendums legislation court action 244 and scientific disputes The controversies involve consumers biotechnology companies governmental regulators non governmental organizations and scientists Opponents have objected to GM crops on multiple grounds including environmental impacts food safety whether GM crops are needed to address food needs whether they are sufficiently accessible to farmers in developing countries 28 concerns over subjecting crops to intellectual property law and on religious grounds 245 Secondary issues include labeling the behavior of government regulators the effects of pesticide use and pesticide tolerance A significant environmental concern about using genetically modified crops is possible cross breeding with related crops giving them advantages over naturally occurring varieties One example is a glyphosate resistant rice crop that crossbreeds with a weedy relative giving the weed a competitive advantage The transgenic hybrid had higher rates of photosynthesis more shoots and flowers and more seeds than the non transgenic hybrids 246 This demonstrates the possibility of ecosystem damage by GM crop usage The role of biopiracy in the development of GM crops is also potentially problematic as developed countries have gotten economic gain by using the genetic resources of developing countries In the twentieth century the International Rice Research Institute catalogued the genomes of almost 80 000 varieties of rice from Asian farms which has since been used to create new higher yielding varieties of rice These new varieties create almost 655 million dollars of economic gain for Australia USA Canada and New Zealand every year 247 There is a scientific consensus 8 9 10 11 that currently available food derived from GM crops poses no greater risk to human health than conventional food 12 13 14 15 16 but that each GM food needs to be tested on a case by case basis before introduction 17 18 19 Nonetheless members of the public are much less likely than scientists to perceive GM foods as safe 20 21 22 23 The legal and regulatory status of GM foods varies by country with some nations banning or restricting them and others permitting them with widely differing degrees of regulation 24 25 26 27 No reports of ill effects from GM food have been documented in the human population 248 249 250 GM crop labeling is required in many countries although the United States Food and Drug Administration does not nor does it distinguish between approved GM and non GM foods 251 The United States enacted a law that requires labeling regulations to be issued by July 2018 It allows indirect disclosure such as with a phone number bar code or web site 252 Advocacy groups such as Center for Food Safety Union of Concerned Scientists and Greenpeace claim that risks related to GM food have not been adequately examined and managed that GM crops are not sufficiently tested and should be labelled and that regulatory authorities and scientific bodies are too closely tied to industry citation needed Some studies have claimed that genetically modified crops can cause harm 253 254 a 2016 review that reanalyzed the data from six of these studies found that their statistical methodologies were flawed and did not demonstrate harm and said that conclusions about GM crop safety should be drawn from the totality of the evidence instead of far fetched evidence from single studies 255 See also editFood securityNotes edit nbsp Food portal a b No official public documentation available No public documentsReferences edit a b c d e f g h ISAAA 2013 Annual Report ISAAA Brief 46 2013 2013 Retrieved 6 August 2014 Executive Summary Global Status of Commercialized Biotech GM Crops a b Pellegrino E Bedini S Nuti M Ercoli L February 2018 Impact of genetically engineered maize on agronomic environmental and toxicological traits a meta analysis of 21 years of field data Scientific Reports 8 1 3113 Bibcode 2018NatSR 8 3113P doi 10 1038 s41598 018 21284 2 PMC 5814441 PMID 29449686 a b c Klumper W Qaim M 2014 A meta analysis of the impacts of genetically modified crops PLOS ONE 9 11 e111629 Bibcode 2014PLoSO 9k1629K doi 10 1371 journal pone 0111629 PMC 4218791 PMID 25365303 nbsp Pollack A 13 April 2010 Study Says Overuse Threatens Gains From Modified Crops The New York Times a b Perry ED Ciliberto F Hennessy DA Moschini G August 2016 Genetically engineered crops and pesticide use in U S maize and soybeans Science Advances 2 8 e1600850 Bibcode 2016SciA 2E0850P doi 10 1126 sciadv 1600850 PMC 5020710 PMID 27652335 a b Smyth Stuart J April 2020 The human health benefits from GM crops Plant Biotechnology Journal 18 4 887 888 doi 10 1111 pbi 13261 PMC 7061863 PMID 31544299 Gruere G Sengupta D 2011 Bt Cotton and Farmer Suicides in India An Evidence based Assessment Journal of Development Studies 47 2 316 337 doi 10 1080 00220388 2010 492863 PMID 21506303 S2CID 20145281 a b Nicolia A Manzo A Veronesi F Rosellini D March 2014 An overview of the last 10 years of genetically engineered crop safety research PDF Critical Reviews in Biotechnology 34 1 77 88 doi 10 3109 07388551 2013 823595 PMID 24041244 S2CID 9836802 We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops The literature about Biodiversity and the GE food feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs the choice of the statistical methods or the public accessibility of data Such debate even if positive and part of the natural process of review by the scientific community has frequently been distorted by the media and often used politically and inappropriately in anti GE crops campaigns a b State of Food and Agriculture 2003 2004 Agricultural Biotechnology Meeting the Needs of the Poor Health and environmental impacts of transgenic crops Food and Agriculture Organization of the United Nations Retrieved 30 August 2019 Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate These conclusions represent the consensus of the scientific evidence surveyed by the ICSU 2003 and they are consistent with the views of the World Health Organization WHO 2002 These foods have been assessed for increased risks to human health by several national regulatory authorities inter alia Argentina Brazil Canada China the United Kingdom and the United States using their national food safety procedures ICSU To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world GM Science Review Panel Many millions of people have consumed foods derived from GM plants mainly maize soybean and oilseed rape without any observed adverse effects ICSU a b Ronald P May 2011 Plant genetics sustainable agriculture and global food security Genetics 188 1 11 20 doi 10 1534 genetics 111 128553 PMC 3120150 PMID 21546547 There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat After 14 years of cultivation and a cumulative total of 2 billion acres planted no adverse health or environmental effects have resulted from commercialization of genetically engineered crops Board on Agriculture and Natural Resources Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants National Research Council and Division on Earth and Life Studies 2002 Both the U S National Research Council and the Joint Research Centre the European Union s scientific and technical research laboratory and an integral part of the European Commission have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004 European Commission Joint Research Centre 2008 These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment European Commission Directorate General for Research and Innovation 2010 a b But see also Domingo JL Gine Bordonaba J May 2011 A literature review on the safety assessment of genetically modified plants PDF Environment International 37 4 734 42 doi 10 1016 j envint 2011 01 003 PMID 21296423 In spite of this the number of studies specifically focused on safety assessment of GM plants is still limited However it is important to remark that for the first time a certain equilibrium in the number of research groups suggesting on the basis of their studies that a number of varieties of GM products mainly maize and soybeans are as safe and nutritious as the respective conventional non GM plant and those raising still serious concerns was observed Moreover it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding have been performed by biotechnology companies or associates which are also responsible of commercializing these GM plants Anyhow this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies Krimsky S 2015 An Illusory Consensus behind GMO Health Assessment Science Technology amp Human Values 40 6 883 914 doi 10 1177 0162243915598381 S2CID 40855100 I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs My investigation into the scientific literature tells another story And contrast Panchin AY Tuzhikov AI March 2017 Published GMO studies find no evidence of harm when corrected for multiple comparisons Critical Reviews in Biotechnology 37 2 213 217 doi 10 3109 07388551 2015 1130684 PMID 26767435 S2CID 11786594 Here we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions such as GMO embargo share common flaws in the statistical evaluation of the data Having accounted for these flaws we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm The presented articles suggesting possible harm of GMOs received high public attention However despite their claims they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality andYang YT Chen B April 2016 Governing GMOs in the USA science law and public health Journal of the Science of Food and Agriculture 96 6 1851 5 Bibcode 2016JSFA 96 1851Y doi 10 1002 jsfa 7523 PMID 26536836 It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA citing Domingo and Bordonaba 2011 Overall a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer reviewed literature to date Despite various concerns today the American Association for the Advancement of Science the World Health Organization and many independent international science organizations agree that GMOs are just as safe as other foods Compared with conventional breeding techniques genetic engineering is far more precise and in most cases less likely to create an unexpected outcome a b Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods PDF American Association for the Advancement of Science 20 October 2012 Retrieved 30 August 2019 The EU for example has invested more than 300 million in research on the biosafety of GMOs Its recent report states The main conclusion to be drawn from the efforts of more than 130 research projects covering a period of more than 25 years of research and involving more than 500 independent research groups is that biotechnology and in particular GMOs are not per se more risky than e g conventional plant breeding technologies The World Health Organization the American Medical Association the U S National Academy of Sciences the British Royal Society and every other respected organization that has examined the evidence has come to the same conclusion consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques Pinholste G 25 October 2012 AAAS Board of Directors Legally Mandating GM Food Labels Could Mislead and Falsely Alarm Consumers PDF American Association for the Advancement of Science Retrieved 30 August 2019 a b European Commission Directorate General for Research 2010 A decade of EU funded GMO research 2001 2010 PDF Directorate General for Research and Innovation Biotechnologies Agriculture Food European Commission European Union doi 10 2777 97784 ISBN 978 92 79 16344 9 Retrieved 30 August 2019 a b AMA Report on Genetically Modified Crops and Foods online summary American Medical Association January 2001 Retrieved 30 August 2019 A report issued by the scientific council of the American Medical Association AMA says that no long term health effects have been detected from the use of transgenic crops and genetically modified foods and that these foods are substantially equivalent to their conventional counterparts Crops and foods produced using recombinant DNA techniques have been available for fewer than 10 years and no long term effects have been detected to date These foods are substantially equivalent to their conventional counterparts Report 2 of the Council On Science and Public Health A 12 Labeling of Bioengineered Foods PDF American Medical Association 2012 Archived from the original PDF on 7 September 2012 Retrieved 30 August 2019 Bioengineered foods have been consumed for close to 20 years and during that time no overt consequences on human health have been reported and or substantiated in the peer reviewed literature a b Restrictions on Genetically Modified Organisms United States Public and Scholarly Opinion Library of Congress 30 June 2015 Retrieved 30 August 2019 Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products These include the National Research Council the American Association for the Advancement of Science and the American Medical Association Groups in the US opposed to GMOs include some environmental organizations organic farming organizations and consumer organizations A substantial number of legal academics have criticized the US s approach to regulating GMOs a b National Academies Of Sciences Division on Earth Life Studies Engineering Board on Agriculture Natural Resources Committee on Genetically Engineered Crops Past Experience Future Prospects 2016 Genetically Engineered Crops Experiences and Prospects The National Academies of Sciences Engineering and Medicine US p 149 doi 10 17226 23395 ISBN 978 0 309 43738 7 PMID 28230933 Retrieved 30 August 2019 Overall finding on purported adverse effects on human health of foods derived from GE crops On the basis of detailed examination of comparisons of currently commercialized GE with non GE foods in compositional analysis acute and chronic animal toxicity tests long term data on health of livestock fed GE foods and human epidemiological data the committee found no differences that implicate a higher risk to human health from GE foods than from their non GE counterparts a b Frequently asked questions on genetically modified foods World Health Organization Retrieved 30 August 2019 Different GM organisms include different genes inserted in different ways This means that individual GM foods and their safety should be assessed on a case by case basis and that it is not possible to make general statements on the safety of all GM foods GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health In addition no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved Continuous application of safety assessments based on the Codex Alimentarius principles and where appropriate adequate post market monitoring should form the basis for ensuring the safety of GM foods a b Haslberger AG July 2003 Codex guidelines for GM foods include the analysis of unintended effects Nature Biotechnology 21 7 739 41 doi 10 1038 nbt0703 739 PMID 12833088 S2CID 2533628 These principles dictate a case by case premarket assessment that includes an evaluation of both direct and unintended effects a b Some medical organizations including the British Medical Association advocate further caution based upon the precautionary principle Genetically modified foods and health a second interim statement PDF British Medical Association March 2004 Retrieved 30 August 2019 In our view the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods However safety concerns cannot as yet be dismissed completely on the basis of information currently available When seeking to optimise the balance between benefits and risks it is prudent to err on the side of caution and above all learn from accumulating knowledge and experience Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment As with all novel foods safety assessments in relation to GM foods must be made on a case by case basis Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued These conclusions were based on the precautionary principle and lack of evidence of any benefit The Jury expressed concern over the impact of GM crops on farming the environment food safety and other potential health effects The Royal Society review 2002 concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible and while calling for caution in the introduction of potential allergens into food crops stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations The BMA shares the view that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit a b Funk C Rainie L 29 January 2015 Public and Scientists Views on Science and Society Pew Research Center Retrieved 30 August 2019 The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified GM foods Nearly nine in ten 88 scientists say it is generally safe to eat GM foods compared with 37 of the general public a difference of 51 percentage points a b Marris C July 2001 Public views on GMOs deconstructing the myths Stakeholders in the GMO debate often describe public opinion as irrational But do they really understand the public EMBO Reports 2 7 545 8 doi 10 1093 embo reports kve142 PMC 1083956 PMID 11463731 a b Final Report of the PABE research project December 2001 Public Perceptions of Agricultural Biotechnologies in Europe Commission of European Communities Archived from the original on 25 May 2017 Retrieved 30 August 2019 a b Scott SE Inbar Y Rozin P May 2016 Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States PDF Perspectives on Psychological Science 11 3 315 24 doi 10 1177 1745691615621275 PMID 27217243 S2CID 261060 a b Restrictions on Genetically Modified Organisms Library of Congress 9 June 2015 Retrieved 30 August 2019 a b Bashshur R February 2013 FDA and Regulation of GMOs American Bar Association Archived from the original on 21 June 2018 Retrieved 30 August 2019 a b Sifferlin A 3 October 2015 Over Half of E U Countries Are Opting Out of GMOs Time Retrieved 30 August 2019 a b Lynch D Vogel D 5 April 2001 The Regulation of GMOs in Europe and the United States A Case Study of Contemporary European Regulatory Politics Council on Foreign Relations Archived from the original on 29 September 2016 Retrieved 30 August 2019 a b Azadi H Samiee A Mahmoudi H Jouzi Z Khachak PR De Maeyer P Witlox F 2016 Genetically modified crops and small scale farmers main opportunities and challenges Critical Reviews in Biotechnology 36 3 434 46 doi 10 3109 07388551 2014 990413 hdl 1854 LU 7022459 PMID 25566797 S2CID 46117952 Zohary D Hopf M Weiss E 1 March 2012 Domestication of Plants in the Old World The Origin and Spread of Domesticated Plants in Southwest Asia Europe and the Mediterranean Basin OUP Oxford p 1 ISBN 978 0 19 954906 1 The history of maize cultivation in southern Mexico dates back 9 000 years The New York Times 25 May 2010 Colledge S Conolly J 2007 The Origins and Spread of Domestic Plants in Southwest Asia and Europe Left Coast Press p 40 ISBN 978 1598749885 Chen ZJ February 2010 Molecular mechanisms of polyploidy and hybrid vigor Trends in Plant Science 15 2 57 71 doi 10 1016 j tplants 2009 12 003 PMC 2821985 PMID 20080432 Hoisington D Khairallah M Reeves T Ribaut JM Skovmand B Taba S Warburton M May 1999 Plant genetic resources what can they contribute toward increased crop productivity Proceedings of the National Academy of Sciences of the United States of America 96 11 5937 43 Bibcode 1999PNAS 96 5937H doi 10 1073 pnas 96 11 5937 PMC 34209 PMID 10339521 Predieri S 2001 Mutation induction and tissue culture in improving fruits Plant Cell Tissue and Organ Culture 64 2 3 185 210 doi 10 1023 A 1010623203554 S2CID 37850239 Duncan R 1996 Tissue Culture Induced Variation and Crop Improvement Advances in Agronomy Volume 58 Vol 58 pp 201 40 doi 10 1016 S0065 2113 08 60256 4 ISBN 9780120007585 Roberts RJ April 2005 How restriction enzymes became the workhorses of molecular biology Proceedings of the National Academy of Sciences of the United States of America 102 17 5905 8 Bibcode 2005PNAS 102 5905R doi 10 1073 pnas 0500923102 PMC 1087929 PMID 15840723 Weiss B Richardson CC April 1967 Enzymatic breakage and joining of deoxyribonucleic acid I Repair of single strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage Proceedings of the National Academy of Sciences of the United States of America 57 4 1021 8 Bibcode 1967PNAS 57 1021W doi 10 1073 pnas 57 4 1021 PMC 224649 PMID 5340583 Lederberg J October 1952 Cell genetics and hereditary symbiosis PDF Physiological Reviews 32 4 403 30 doi 10 1152 physrev 1952 32 4 403 PMID 13003535 Nester E 2008 Agrobacterium The Natural Genetic Engineer 100 Years Later Archived from the original on 19 October 2012 Retrieved 5 October 2012 Zambryski P Joos H Genetello C Leemans J Montagu MV Schell J 1983 Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity The EMBO Journal 2 12 2143 50 doi 10 1002 j 1460 2075 1983 tb01715 x PMC 555426 PMID 16453482 Peters P Transforming Plants Basic Genetic Engineering Techniques Archived from the original on 16 March 2010 Retrieved 28 January 2010 Voiland M McCandless L February 1999 Development Of The Gene Gun At Cornell Archived from the original on 1 May 2008 Segelken R 14 May 1987 Biologists Invent Gun for Shooting Cells with DNA Issue PDF Cornell Chronicle 18 33 3 Timelines 1987 Next The gene gun lifesciencesfoundation org Archived from the original on 30 March 2013 Clough SJ Bent AF December 1998 Floral dip a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana The Plant Journal 16 6 735 43 doi 10 1046 j 1365 313x 1998 00343 x PMID 10069079 S2CID 410286 Jiang W Zhou H Bi H Fromm M Yang B Weeks DP November 2013 Demonstration of CRISPR Cas9 sgRNA mediated targeted gene modification in Arabidopsis tobacco sorghum and rice Nucleic Acids Research 41 20 e188 doi 10 1093 nar gkt780 PMC 3814374 PMID 23999092 Lemaux PG 2008 Genetically Engineered Plants and Foods A Scientist s Analysis of the Issues Part I Annual Review of Plant Biology 59 771 812 doi 10 1146 annurev arplant 58 032806 103840 PMID 18284373 Bevan MW Flavell RB Chilton MD 1983 A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation 1983 Biotechnology 24 5922 367 70 Bibcode 1983Natur 304 184B doi 10 1038 304184a0 PMID 1422041 S2CID 28713537 a b James C 1996 Global Review of the Field Testing and Commercialization of Transgenic Plants 1986 to 1995 PDF The International Service for the Acquisition of Agri biotech Applications Retrieved 17 July 2010 Vaeck M Reynaerts A Hofte H Jansens S De Beuckeleer M Dean C et al 1987 Transgenic plants protected from insect attack Nature 328 6125 33 37 Bibcode 1987Natur 328 33V doi 10 1038 328033a0 S2CID 4310501 James C 1997 Global Status of Transgenic Crops in 1997 PDF ISAAA Briefs No 5 31 a b Bruening G Lyons JM 2000 The case of the FLAVR SAVR tomato California Agriculture 54 4 6 7 doi 10 3733 ca v054n04p6 MacKenzie D 18 June 1994 Transgenic tobacco is European first New Scientist Genetically Altered Potato Ok d For Crops Lawrence Journal 6 May 1995 a b c d James C 2011 ISAAA Brief 43 Global Status of Commercialized Biotech GM Crops 2011 ISAAA Briefs Ithaca New York International Service for the Acquisition of Agri biotech Applications ISAAA Retrieved 2 June 2012 Vazquez Salat N Salter B Smets G Houdebine LM 1 November 2012 The current state of GMO governance are we ready for GM animals Biotechnology Advances Special issue on ACB 2011 30 6 1336 43 doi 10 1016 j biotechadv 2012 02 006 PMID 22361646 Aquabounty Cleared to Sell Salmon in USA for Commercial Purposes FDA 25 April 2019 Bodnar A October 2010 Risk Assessment and Mitigation of AquAdvantage Salmon PDF ISB News Report Archived from the original PDF on 8 March 2021 Retrieved 7 November 2019 Boyle R 24 January 2011 How To Genetically Modify a Seed Step By Step Popular Science Bombarded Define Bombarded at Dictionary com Dictionary com Shrawat AK Lorz H November 2006 Agrobacterium mediated transformation of cereals a promising approach crossing barriers Plant Biotechnology Journal 4 6 575 603 doi 10 1111 j 1467 7652 2006 00209 x PMID 17309731 Halford NG 2012 Genetically modified crops World Scientific Firm 2nd ed London Imperial College Press ISBN 978 1848168381 OCLC 785724094 Maghari BM Ardekani AM July 2011 Genetically modified foods and social concerns Avicenna Journal of Medical Biotechnology 3 3 109 17 PMC 3558185 PMID 23408723 Information Systems for Biotechnology News Report Catchpole GS Beckmann M Enot DP Mondhe M Zywicki B Taylor J et al October 2005 Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops PDF Proceedings of the National Academy of Sciences of the United States of America 102 40 14458 62 Bibcode 2005PNAS 10214458C doi 10 1073 pnas 0503955102 PMC 1242293 PMID 16186495 permanent dead link Koornneef M Meinke D March 2010 The development of Arabidopsis as a model plant The Plant Journal 61 6 909 21 doi 10 1111 j 1365 313X 2009 04086 x PMID 20409266 a b Banjara M Zhu L Shen G Payton P Zhang H 1 January 2012 Expression of an Arabidopsis sodium proton antiporter gene AtNHX1 in peanut to improve salt tolerance Plant Biotechnology Reports 6 59 67 doi 10 1007 s11816 011 0200 5 S2CID 12025029 McKie R 9 September 2001 GM corn set to stop man spreading his seed the Guardian Walmsley AM Arntzen CJ April 2000 Plants for delivery of edible vaccines Current Opinion in Biotechnology 11 2 126 9 doi 10 1016 S0958 1669 00 00070 7 PMID 10753769 Podevin N du Jardin P 2012 Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants GM Crops amp Food 3 4 296 300 doi 10 4161 gmcr 21406 PMID 22892689 Maxmen A 2 May 2012 First plant made drug on the market Nature Biology amp Biotechnology Industry Archived from the original on 18 October 2012 Retrieved 1 September 2012 NWT magazine April 2011 Hibberd J Molecular Physiology Department of Plant Sciences University of Cambridge Archived from the original on 17 May 2013 Retrieved 1 September 2012 Price GD Badger MR Woodger FJ Long BM 2008 Advances in understanding the cyanobacterial CO2 concentrating mechanism CCM functional components Ci transporters diversity genetic regulation and prospects for engineering into plants Journal of Experimental Botany 59 7 1441 61 doi 10 1093 jxb erm112 PMID 17578868 Gonzalez N De Bodt S Sulpice R Jikumaru Y Chae E Dhondt S et al July 2010 Increased leaf size different means to an end Plant Physiology 153 3 1261 79 doi 10 1104 pp 110 156018 PMC 2899902 PMID 20460583 Koenig D Bayer E Kang J Kuhlemeier C Sinha N September 2009 Auxin patterns Solanum lycopersicum leaf morphogenesis Development 136 17 2997 3006 doi 10 1242 dev 033811 PMID 19666826 Projects changing respectively plant growth and plant flowers PDF permanent dead link Project changing number of stomata in plants conducted by Ikuko Hara Nishimura PDF permanent dead link One Per Cent Grow your own living lights New Scientist 4 May 2013 MacKenzie D 2 August 2008 How the humble potato could feed the world New Scientist pp 30 33 Talbot D 19 July 2014 Beijing Researchers Use Gene Editing to Create Disease Resistant Wheat MIT Technology Review Technologyreview com Retrieved 23 July 2014 Wang Y Cheng X Shan Q Zhang Y Liu J Gao C Qiu JL September 2014 Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nature Biotechnology 32 9 947 51 doi 10 1038 nbt 2969 PMID 25038773 S2CID 205280231 Waltz E April 2016 Gene edited CRISPR mushroom escapes US regulation Nature 532 7599 293 Bibcode 2016Natur 532 293W doi 10 1038 nature 2016 19754 PMID 27111611 Brodwin E 18 April 2016 The next generation of GMO food is here and it s technically not a GMO Business Insider Sun X Mumm RH 2015 Optimized breeding strategies for multiple trait integration III Parameters for success in version testing Molecular Breeding 35 10 201 doi 10 1007 s11032 015 0397 z PMC 4605974 PMID 26491398 Economic Impact of Transgenic Crops in Developing Countries Agbioworld org Retrieved 8 February 2011 Areal FJ Riesgo L Rodriguez Cerezo E 2012 Economic and agronomic impact of commercialized GM crops A meta analysis The Journal of Agricultural Science 151 7 33 doi 10 1017 S0021859612000111 S2CID 85891950 Finger R El Benni N Kaphengst T Evans C Herbert S Lehmann B Morse S Stupak N 2011 A Meta Analysis on Farm Level Costs and Benefits of GM Crops PDF Sustainability 3 12 743 62 doi 10 3390 su3050743 Hutchison WD Burkness EC Mitchell PD Moon RD Leslie TW Fleischer SJ et al October 2010 Areawide suppression of European corn borer with Bt maize reaps savings to non Bt maize growers Science 330 6001 222 5 Bibcode 2010Sci 330 222H doi 10 1126 science 1190242 PMID 20929774 S2CID 238816 Karnowski S 8 October 2010 High Tech Corn Fights Pests at Home and Nearby Sci Tech Today Retrieved 9 October 2010 permanent dead link Falck Zepeda JB Traxler G Nelson RG 2000 Surplus Distribution from the Introduction of a Biotechnology Innovation American Journal of Agricultural Economics 82 2 360 69 doi 10 1111 0002 9092 00031 JSTOR 1244657 S2CID 153595694 a b James C 2014 Global Status of Commercialized Biotech GM Crops 2014 ISAAA Brief 49 Brookes G Barfoot P GM crops global socio economic and environmental impacts 1996 2010 PDF PG Economics Ltd a b c d Van Eenennaam Alison L De Figueiredo Silva Felipe Trott Josephine F Zilberman David 16 February 2021 Genetic Engineering of Livestock The Opportunity Cost of Regulatory Delay Annual Review of Animal Biosciences Annual Reviews 9 1 453 478 doi 10 1146 annurev animal 061220 023052 ISSN 2165 8102 PMID 33186503 S2CID 226948372 a b Zilberman David Kaplan Scott Wesseler Justus 17 February 2022 The Loss from Underutilizing GM Technologies AgBioForum Illinois Missouri Biotechnology Alliance S2CID 56129052 Smale M Zambrano P Cartel M 2006 Bales and balance A review of the methods used to assess the economic impact of Bt cotton on farmers in developing economies PDF AgBioForum 9 3 195 212 Archived from the original PDF on 4 March 2016 Retrieved 8 February 2016 European Academies Science Advisory Council EASAC 27 June 2013 Planting the future opportunities and challenges for using crop genetic improvement technologies for sustainable agriculture EASAC Policy Report 21 a b Tilling T Neeta L Vikuolie M Rajib D 2010 Genetically modified GM crops lifeline for livestock a review Agricultural Reviews 31 4 279 85 Langreth R Herper M 31 December 2009 The Planet Versus Monsanto Forbes Cavallaro M 26 June 2009 The Seeds Of A Monsanto Short Play Forbes Regalado A 30 July 2015 Monsanto Roundup Ready Soybean Patent Expiration Ushers in Generic GMOs MIT Technology Review MIT Technology Review Retrieved 22 October 2015 Monsanto Will Let Bio Crop Patents Expire BusinessWeek 21 January 2010 Archived from the original on 27 January 2010 Roundup Ready Soybean Patent Expiration Monsanto Monsanto Licensing Monsanto com 3 November 2008 Monsanto GMO Ignites Big Seed War NPR Syngenta US Corn and Soybean Seed Garst Golden Harvest NK Agrisure Syngenta com Agronomy Library Pioneer Hi Bred Agronomy Library Pioneer com Archived from the original on 17 October 2012 Retrieved 1 March 2015 a b c Genetically modified crops Field research Economist 8 November 2014 Retrieved 3 October 2016 Gurian Sherman Douglas April 2009 Failure To Yield Evaluating the Performance of Genetically Engineered Crops PDF Union of Concerned Scientists S2CID 6332194 Rice and maize yields boosted up to 10 per cent by CRISPR gene editing New Scientist Retrieved 19 April 2022 Chen Wenkang Chen Lu Zhang Xuan Yang Ning Guo Jianghua Wang Min Ji Shenghui Zhao Xiangyu Yin Pengfei Cai Lichun Xu Jing Zhang Lili Han Yingjia Xiao Yingni Xu Gen Wang Yuebin Wang Shuhui Wu Sheng Yang Fang Jackson David Cheng Jinkui Chen Saihua Sun Chuanqing Qin Feng Tian Feng Fernie Alisdair R Li Jiansheng Yan Jianbing Yang Xiaohong 25 March 2022 Convergent selection of a WD40 protein that enhances grain yield in maize and rice Science 375 6587 eabg7985 doi 10 1126 science abg7985 PMID 35324310 S2CID 247677363 SeedQuest Central information website for the global seed industry www seedquest com Bt Brinjal in India Pocket K ISAAA org www isaaa org Weasel LH December 2008 Food Fray New York Amacom Publishing ISBN 978 0 8144 3640 0 a b c d e Pollack A 7 November 2014 U S D A Approves Modified Potato Next Up French Fry Fans The New York Times a b c J R Simplot Co Availability of Petition for Determination of Nonregulated Status of Potato Genetically Engineered for Low Acrylamide Potential and Reduced Black Spot Bruise Federal Register 3 May 2013 a b Pollack A 13 February 2015 Gene Altered Apples Get U S Approval The New York Times Tennille T 13 February 2015 First Genetically Modified Apple Approved for Sale in U S Wall Street Journal Retrieved 3 October 2016 Apple to apple transformation Okanagan Specialty Fruits Archived from the original on 25 September 2013 Retrieved 3 August 2012 Arctic apples FAQ Arctic Apples 2014 Retrieved 3 October 2016 FDA concludes Arctic Apples and Innate Potatoes are safe for consumption United States Food and Drug Administration 20 March 2015 a b Kromdijk J Glowacka K Leonelli L Gabilly ST Iwai M Niyogi KK Long SP November 2016 Improving photosynthesis and crop productivity by accelerating recovery from photoprotection Science 354 6314 857 861 Bibcode 2016Sci 354 857K doi 10 1126 science aai8878 PMID 27856901 Devlin H 17 November 2016 Plants modified to boost photosynthesis produce greater yields study shows The Guardian Retrieved 27 July 2019 Thompson S 24 January 2017 How GM crops can help us to feed a fast growing world The Conversation Advanced genetic tools could help boost crop yields and feed billions more people Archived from the original on 9 September 2018 Retrieved 10 August 2018 Best S 24 October 2017 Supercharged GMO rice could increase yields 50 percent with improved photosynthesis Karki S Rizal G Quick WP October 2013 Improvement of photosynthesis in rice Oryza sativa L by inserting the C4 pathway Rice 6 1 28 doi 10 1186 1939 8433 6 28 PMC 4883725 PMID 24280149 Evans JR August 2013 Improving photosynthesis Plant Physiology 162 4 1780 93 doi 10 1104 pp 113 219006 PMC 3729760 PMID 23812345 Pollack A 15 November 2013 In a Bean a Boon to Biotech The New York Times Crop plants green factories for fish oils Rothamsted Research 14 November 2013 Ruiz Lopez N Haslam RP Napier JA Sayanova O January 2014 Successful high level accumulation of fish oil omega 3 long chain polyunsaturated fatty acids in a transgenic oilseed crop The Plant Journal 77 2 198 208 doi 10 1111 tpj 12378 PMC 4253037 PMID 24308505 About Golden Rice International Rice Research Institute Archived from the original on 2 November 2012 Retrieved 20 August 2012 Nayar A 2011 Grants aim to fight malnutrition Nature doi 10 1038 news 2011 233 Philpott T 3 February 2016 WTF Happened to Golden Rice Mother Jones Retrieved 24 March 2016 Sayre R Beeching JR Cahoon EB Egesi C Fauquet C Fellman J et al 2011 The BioCassava plus program biofortification of cassava for sub Saharan Africa Annual Review of Plant Biology 62 251 72 doi 10 1146 annurev arplant 042110 103751 PMID 21526968 Paarlburg RD January 2011 Maize in Africa Anticipating Regulatory Hurdles PDF International Life Sciences Institute Report Archived from the original PDF on 22 December 2014 Australia continues to test drought resistant GM wheat GMO Compass 16 July 2008 Archived from the original on 16 March 2012 Retrieved 25 April 2011 Staff 14 May 2011 USA USDA allows large scale GM eucalyptus trial GMO Compass Archived from the original on 26 October 2012 Retrieved 29 September 2011 Eisenstein M September 2013 Plant breeding Discovery in a dry spell Nature 501 7468 S7 9 Bibcode 2013Natur 501S 7E doi 10 1038 501S7a PMID 24067764 S2CID 4464117 Gabbatiss J 4 December 2017 Scientists aim to develop drought resistant crops using genetic engineering Independent Liang C 2016 Genetically modified crops with drought tolerance achievements challenges and perspectives Drought Stress Tolerance in Plants Vol 2 Cham Springer pp 531 547 Biotechnology with Salinity for Coping in Problem Soils International Service for the Acquisition of Agri biotech Applications ISAAA Sawahel W 22 July 2009 Genetic change could make crops thrive on salty soils SciDev Net ISAAA ISAAA Brief 55 2019 Executive Summary www isaaa org Retrieved 29 September 2023 Green Jerry M 20 January 2014 Current state of herbicides in herbicide resistant crops Pest Management Science 70 9 1351 1357 doi 10 1002 ps 3727 ISSN 1526 498X PMID 24446395 Carpenter J Gianessi L 1999 Herbicide tolerant soybeans Why growers are adopting Roundup Ready varieties AgBioForum 2 2 65 72 Archived from the original on 19 November 2012 Retrieved 7 December 2013 Heck GR Armstrong CL Astwood JD Behr CF Bookout JT Brown SM et al 1 January 2005 Development and Characterization of a CP4 EPSPS Based Glyphosate Tolerant Corn Event Crop Sci 45 1 329 39 doi 10 2135 cropsci2005 0329 Archived from the original Free full text on 22 August 2009 Funke T Han H Healy Fried ML Fischer M Schonbrunn E August 2006 Molecular basis for the herbicide resistance of Roundup Ready crops Proceedings of the National Academy of Sciences of the United States of America 103 35 13010 5 Bibcode 2006PNAS 10313010F doi 10 1073 pnas 0603638103 PMC 1559744 PMID 16916934 MacKenzie D 18 June 1994 Transgenic tobacco is European first New Scientist Gianessi LP Silvers CS Sankula S Carpenter JE June 2002 Plant biotechnology current and potential impact for improving pest management in US agriculture an analysis of 40 case studies PDF Washington DC National Center for Food and Agricultural Policy Archived from the original PDF on 3 March 2016 Kasey J 8 September 2011 Attack of the Superweed Bloomberg Businessweek dead link Ganchiff M 24 August 2013 New Herbicide Resistant Crops Being Considered By USDA Midwest Wine Press a b Gene list aad1 ISAAA GM Approval Database Retrieved 27 February 2015 EPA Announces Final Decision to Register Enlist Duo Herbicide Containing 2 4 D and Glyphosate Risk assessment ensures protection of human health including infants children EPA Press Release 15 October 2014 EPA Documents Registration of Enlist Duo 18 September 2014 Archived from the original on 16 December 2021 Retrieved 27 February 2015 Peterson MA Shan G Walsh TA Wright TR May 2011 Utility of Aryloxyalkanoate Dioxygenase Transgenes for Development of New Herbicide Resistant Crop Technologies PDF Information Systems for Biotechnology Schultz C 25 September 2014 The USDA Approved a New GM Crop to Deal With Problems Created by the Old GM Crops The Smithsonian com Johnson WG Hallett SG Legleiter TR Whitford F Weller SC Bordelon BP et al November 2012 2 4 D and Dicamba tolerant Crops Some Facts to Consider PDF Purdue University Extension Retrieved 3 October 2016 Bomgardner MM Widespread crop damage from dicamba herbicide fuels controversy August 21 2017 Issue Vol 95 Issue 33 Chemical amp Engineering News cen acs org Iowa Soybeans Dicamba How Many Hours Were Available to Spray in 2017 AgFax 19 September 2017 Retrieved 1 October 2017 Pest amp Crop Newsletter extension entm purdue edu Purdue Cooperative Extension Service Retrieved 1 October 2017 Genetically Altered Potato Ok d For Crops Lawrence Journal World 6 May 1995 Vaeck M Reynaerts A Hofte H Jansens S De Beuckeleer M Dean C et al 1987 Transgenic plants protected from insect attack Nature 328 6125 33 37 Bibcode 1987Natur 328 33V doi 10 1038 328033a0 S2CID 4310501 Naranjo S 22 April 2008 The Present and Future Role of Insect Resistant Genetically Modified Cotton in IPM PDF USDA gov United States department of agriculture Retrieved 3 December 2015 National Academy of Sciences 2001 Transgenic Plants and World Agriculture Washington National Academy Press Kipp E February 2000 Genetically Altered Papayas Save the Harvest Botany Global Issues Map Archived from the original on 13 December 2004 The Rainbow Papaya Story Hawaii Papaya Industry Association 2006 Archived from the original on 7 January 2015 Retrieved 27 December 2014 Ronald P McWilliams J 14 May 2010 Genetically Engineered Distortions The New York Times Wenslaff TF Osgood RB October 2000 Production Of UH Sunup Transgenic Papaya Seed In Hawaii PDF Hawaii Agriculture Research Center Archived from the original PDF on 31 March 2012 Genetically Engineered Foods Plant Virus Resistance PDF Cornell Cooperative Extension Cornell University 2002 Retrieved 3 October 2016 How Many Foods Are Genetically Engineered University of California 16 February 2012 Retrieved 3 October 2016 Wang GY 2009 Genetic Engineering for Maize Improvement in China Electronic Journal of Biotechnology Retrieved 1 December 2015 Weinreb G Yeshayahou K 2 May 2012 FDA approves Protalix Gaucher treatment Globes Archived from the original on 29 May 2013 Jha A 14 August 2012 Julian Ma I m growing antibodies in tobacco plants to help prevent HIV The Guardian Retrieved 12 March 2012 Carrington D 19 January 2012 GM microbe breakthrough paves way for large scale seaweed farming for biofuels The Guardian Retrieved 12 March 2012 Prabin Kumar Sharma Manalisha Saharia Richa Srivstava Sanjeev Kumar Lingaraj Sahoo 21 November 2018 Tailoring Microalgae for Efficient Biofuel Production Frontiers in Marine Science 5 doi 10 3389 fmars 2018 00382 Singapore Biodiesel Company Develops GM Jatropha Crop Biotech Update www isaaa org Lochhead C 30 April 2012 Genetically modified crops results raise concern The San Francisco Chronicle Wout Boerjan Lab VIB Flemish Institute for Biotechnology Gent 2013 Archived from the original on 28 May 2013 Retrieved 27 April 2013 Smith RA Cass CL Mazaheri M Sekhon RS Heckwolf M Kaeppler H de Leon N Mansfield SD Kaeppler SM Sedbrook JC Karlen SD Ralph J 2017 Suppression of CINNAMOYL CoA REDUCTASE increases the level of monolignol ferulates incorporated into maize lignins Biotechnology for Biofuels 10 109 doi 10 1186 s13068 017 0793 1 PMC 5414125 PMID 28469705 Wilkerson CG Mansfield SD Lu F Withers S Park JY Karlen SD Gonzales Vigil E Padmakshan D Unda F Rencoret J Ralph J April 2014 Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone Science 344 6179 90 3 Bibcode 2014Sci 344 90W doi 10 1126 science 1250161 hdl 10261 95743 PMID 24700858 S2CID 25429319 Hal Hodson 3 April 2014 Redesigned crops could produce far more fuel New Scientist van Beilen JB Poirier Y May 2008 Production of renewable polymers from crop plants The Plant Journal 54 4 684 701 doi 10 1111 j 1365 313x 2008 03431 x PMID 18476872 The History and Future of GM Potatoes PotatoPro Newsletter 10 March 2010 Archived from the original on 12 October 2013 Retrieved 31 August 2012 Conrow J 14 January 2021 GM plant grows insect sex pheromones as alternative to crop pesticides Alliance for Science Retrieved 17 July 2021 Strange A 20 September 2011 Scientists engineer plants to eat toxic pollution The Irish Times Retrieved 20 September 2011 a b Chard A 2011 Growing a grass that loves bombs The British Science Association Archived from the original on 24 July 2012 Retrieved 20 September 2011 Langston J 22 November 2016 New grasses neutralize toxic pollution from bombs explosives and munitions ScienceDaily Retrieved 30 November 2016 Meagher RB April 2000 Phytoremediation of toxic elemental and organic pollutants Current Opinion in Plant Biology 3 2 153 62 doi 10 1016 S1369 5266 99 00054 0 PMID 10712958 Martins VA 2008 Genomic Insights into Oil Biodegradation in Marine Systems Microbial Biodegradation Genomics and Molecular Biology Caister Academic Press ISBN 978 1 904455 17 2 permanent dead link Daniel C 1 March 2003 Corn That Clones Itself Technology Review Kwon CT Heo J Lemmon ZH Capua Y Hutton SF Van Eck J Park SJ Lippman ZB February 2020 Rapid customization of Solanaceae fruit crops for urban agriculture Nature Biotechnology 38 2 182 188 doi 10 1038 s41587 019 0361 2 PMID 31873217 S2CID 209464229 Ueta R Abe C Watanabe T Sugano SS Ishihara R Ezura H Osakabe Y Osakabe K March 2017 Rapid breeding of parthenocarpic tomato plants using CRISPR Cas9 Scientific Reports 7 1 507 Bibcode 2017NatSR 7 507U doi 10 1038 s41598 017 00501 4 PMC 5428692 PMID 28360425 Alice Klein 11 April 2017 Gene editing opens doors to seedless fruit with no need for bees New Scientist a b c GM Crops List GM Approval Database ISAAA org www isaaa org Retrieved 30 January 2016 a b c d e f g h i j k l m n All the GMOs Approved In the U S Time Retrieved 11 February 2016 www gmo compass org Lucerne GMO Database www gmo compass org Archived from the original on 2 July 2016 Retrieved 11 February 2016 UPDATE 3 U S farmers get approval to plant GMO alfalfa Reuters 27 January 2011 Retrieved 11 February 2016 Infographics Global Status of Commercialized Biotech GM Crops 2014 ISAAA Brief 49 2014 ISAAA org www isaaa org Retrieved 11 February 2016 a b Kilman S Modified Beet Gets New Life Wall Street Journal Retrieved 15 February 2016 Pollack A 27 November 2007 Round 2 for Biotech Beets The New York Times ISSN 0362 4331 Retrieved 15 February 2016 Facts and trends India PDF International Service for the Acquisition of Agri biotech Applications Executive Summary Global Status of Commercialized Biotech GM Crops 2014 ISAAA Brief 49 2014 ISAAA org www isaaa org Retrieved 16 February 2016 Facts and trends Mexico PDF International Service for the Acquisition of Agri biotech Applications Facts and trends China PDF International Service for the Acquisition of Agri biotech Applications Facts and trends Colombia PDF International Service for the Acquisition of Agri biotech Applications Carter C Moschini GC Sheldon I eds 2011 Genetically Modified Food and Global Welfare Frontiers of Economics and Globalization United Kingdom Emerald Group Publishing Limited p 89 ISBN 978 0857247575 GM potato to be grown in Europe The Guardian Associated Press 3 March 2010 ISSN 0261 3077 Retrieved 15 February 2016 a b c d Fernandez Cornejo J Wechsler S Livingston M Mitchell L February 2014 Genetically Engineered Crops in the United States summary PDF Economic Research Service USDA United States Department of Agriculture p 2 Archived from the original PDF on 27 November 2014 Retrieved 3 October 2016 Charles Dan 29 October 2020 As Biotech crops lose their power scientist push for new restrictions NPR Tabashnik BE Carriere Y Dennehy TJ Morin S Sisterson MS Roush RT et al August 2003 Insect resistance to transgenic Bt crops lessons from the laboratory and field PDF Journal of Economic Entomology 96 4 1031 8 doi 10 1603 0022 0493 96 4 1031 PMID 14503572 S2CID 31944651 Archived from the original PDF on 14 March 2013 Roush RT 1997 Bt transgenic crops just another pretty insecticide or a chance for a new start in the resistance management Pestic Sci 51 3 328 34 doi 10 1002 SICI 1096 9063 199711 51 3 lt 328 AID PS650 gt 3 0 CO 2 B Dong HZ Li WJ 2007 Variability of Endotoxin Expression in Bt Transgenic Cotton Journal of Agronomy and Crop Science 193 1 21 29 Bibcode 2007JAgCS 193 21D doi 10 1111 j 1439 037X 2006 00240 x Tabashnik BE Carriere Y Dennehy TJ Morin S Sisterson MS Roush RT et al August 2003 Insect resistance to transgenic Bt crops lessons from the laboratory and field Journal of Economic Entomology 96 4 1031 8 doi 10 1603 0022 0493 96 4 1031 PMID 14503572 S2CID 31944651 APPDMZ ccvivr Monsanto Pink Bollworm Resistance to GM Cotton in India The Real Deal Explaining Monsanto s Refuge in the Bag Concept www monsanto com Archived from the original on 10 September 2010 Retrieved 3 December 2015 Siegfried BD Hellmich RL 2012 Understanding successful resistance management the European corn borer and Bt corn in the United States GM Crops amp Food 3 3 184 93 doi 10 4161 gmcr 20715 PMID 22688691 Devos Y Meihls LN Kiss J Hibbard BE April 2013 Resistance evolution to the first generation of genetically modified Diabrotica active Bt maize events by western corn rootworm management and monitoring considerations Transgenic Research 22 2 269 99 doi 10 1007 s11248 012 9657 4 PMID 23011587 S2CID 10821353 Culpepper AS Grey TL Vencill WK Kichler JM Webster TM Brown SM et al 2006 Glyphosate resistant Palmer amaranth Amaranthus palmeri confirmed in Georgia Weed Science 54 4 620 26 doi 10 1614 ws 06 001r 1 S2CID 56236569 Gallant A Pigweed in the Cotton A superweed invades Georgia Modern Farmer Brookes Graham 2 July 2020 Genetically modified GM crop use in Colombia farm level economic and environmental contributions GM Crops amp Food 11 3 140 153 doi 10 1080 21645698 2020 1715156 ISSN 2164 5698 PMC 7518743 PMID 32008444 a b Fernandez Cornejo J Hallahan C Nehring RF Wechsler S Grube A 2014 Conservation Tillage Herbicide Use and Genetically Engineered Crops in the United States The Case of Soybeans AgBioForum 15 3 Archived from the original on 6 June 2016 Retrieved 3 October 2016 Kovak Emma Blaustein Rejto Dan Qaim Matin 8 February 2022 Genetically modified crops support climate change mitigation Trends in Plant Science 27 7 627 629 doi 10 1016 j tplants 2022 01 004 ISSN 1360 1385 PMID 35148945 Brookes Graham 2 July 2020 Genetically modified GM crop use in Colombia farm level economic and environmental contributions GM Crops amp Food 11 3 140 153 doi 10 1080 21645698 2020 1715156 ISSN 2164 5698 PMC 7518743 PMID 32008444 Martey Edward Etwire Prince M Kuwornu John K M 1 May 2020 Economic impacts of smallholder farmers adoption of drought tolerant maize varieties Land Use Policy 94 104524 doi 10 1016 j landusepol 2020 104524 ISSN 0264 8377 S2CID 213380155 Wesseler J Kalaitzandonakes N 2011 Present and Future EU GMO policy In Oskam A Meesters G Silvis H eds EU Policy for Agriculture Food and Rural Areas Second ed Wageningen Wageningen Academic Publishers pp 23 323 Beckmann V Soregaroli C Wesseler J 2011 Coexistence of genetically modified GM and non modified non GM crops Are the two main property rights regimes equivalent with respect to the coexistence value In Carter C Moschini GC Sheldon I eds Genetically modified food and global welfare Frontiers of Economics and Globalization Series Vol 10 Bingley UK Emerald Group Publishing pp 201 224 Executive Summary ISAAA 2012 Annual Report Fernandez Cornejo J 1 July 2009 Adoption of Genetically Engineered Crops in the U S Data Sets Economic Research Service United States Department of Agriculture OCLC 53942168 Archived from the original on 5 September 2009 Retrieved 24 September 2009 Adoption of Genetically Engineered Crops in the U S USDA Economic Research Service 14 July 2014 Retrieved 6 August 2014 James C 2007 Executive Summary G lobal Status of Commercialized Biotech GM Crops 2007 ISAAA Briefs Vol 37 The International Service for the Acquisition of Agri biotech Applications ISAAA ISBN 978 1 892456 42 7 OCLC 262649526 Archived from the original on 6 June 2008 Retrieved 24 September 2009 Roundup Ready soybean trait patent nears expiration in 2014 Hpj com Retrieved 6 June 2016 USDA ERS Adoption of Genetically Engineered Crops in the U S www ers usda gov Acreage NASS PDF National Agricultural Statistics Board annual report 30 June 2010 Retrieved 23 July 2010 USA Cultivation of GM Plants in 2009 Maize soybean cotton 88 percent genetically modified GMO Compass Archived from the original on 19 July 2012 Retrieved 25 July 2010 Fernandez Cornejo J 5 July 2012 Adoption of Genetically Engineered Crops in the U S Recent Trends USDA Economic Research Service Retrieved 29 September 2012 Bren L November December 2003 Genetic engineering the future of foods FDA Consumer U S Food and Drug Administration 37 6 28 34 PMID 14986586 Lemaux PG 19 February 2008 Genetically Engineered Plants and Foods A Scientist s Analysis of the Issues Part I Annual Review of Plant Biology 59 771 812 doi 10 1146 annurev arplant 58 032806 103840 PMID 18284373 Spain Bt maize prevails GMO Compass 31 March 2010 Archived from the original on 25 October 2012 Retrieved 10 August 2010 GM plants in the EU in 2009 Field area for Bt maize decreases GMO Compass 29 March 2010 Archived from the original on 13 July 2012 Retrieved 10 August 2010 EU GMO ban was illegal WTO rules Euractiv com 12 May 2006 Archived from the original on 20 October 2017 Retrieved 5 January 2010 GMO Update US EU Biotech Dispute EU Regulations Thailand International Centre for Trade and Sustainable Development Archived from the original on 4 March 2012 Retrieved 5 January 2010 Genetically Modified Organisms Food Safety European Commission 17 October 2016 GM Crops Now Banned in 38 Countries Worldwide Sustainable Pulse Research Sustainable Pulse 22 October 2015 GM Crop Bans Confirmed in 19 EU Countries Sustainable Pulse 4 October 2015 Paull J June 2015 The threat of genetically modified organisms GMOs to organic agriculture A case study update PDF Agriculture amp Food 3 56 63 HRH Charles Prince of Wales 8 June 1998 The Seeds of Disaster Speech Prince of Wales Retrieved 13 October 2021 Qiu J 16 August 2013 Genetically modified crops pass benefits to weeds Nature doi 10 1038 nature 2013 13517 ISSN 1476 4687 S2CID 87415065 Satheeshkumar P K Narayanan Anoop 2017 Abdulhameed Sabu Pradeep N S Sugathan Shiburaj eds Biopiracy Bioresources and Bioprocess in Biotechnology Volume 1 Status and Strategies for Exploration Singapore Springer pp 185 204 doi 10 1007 978 981 10 3573 9 9 ISBN 978 981 10 3573 9 retrieved 20 October 2023 Report 2 of the Council on Science and Public Health Labeling of Bioengineered Foods PDF American Medical Association 2012 Archived from the original PDF on 7 September 2012 United States Institute of Medicine and National Research Council 2004 Safety of Genetically Engineered Foods Approaches to Assessing Unintended Health Effects National Academies Press ISBN 9780309092098 See pp11ff on need for better standards and tools to evaluate GM food Key S Ma JK Drake PM June 2008 Genetically modified plants and human health Journal of the Royal Society of Medicine 101 6 290 8 doi 10 1258 jrsm 2008 070372 PMC 2408621 PMID 18515776 Pollack A 21 May 2012 An Entrepreneur Bankrolls a Genetically Engineered Salmon The New York Times National bioengineered food disclosure standard 29 July 2016 Domingo JL Gine Bordonaba J May 2011 A literature review on the safety assessment of genetically modified plants PDF Environment International 37 4 734 42 doi 10 1016 j envint 2011 01 003 PMID 21296423 Krimsky S 2015 An Illusory Consensus behind GMO Health Assessment PDF Science Technology amp Human Values 40 6 883 914 doi 10 1177 0162243915598381 S2CID 40855100 Archived from the original PDF on 7 February 2016 Retrieved 9 February 2016 Panchin AY Tuzhikov AI March 2017 Published GMO studies find no evidence of harm when corrected for multiple comparisons Critical Reviews in Biotechnology 37 2 213 217 doi 10 3109 07388551 2015 1130684 PMID 26767435 S2CID 11786594 External links edit EU Register of authorised GM crops Biotechnology Consultations on Food from GE Plant Varieties Current amp Previously Registered Section 3 PIP Registrations Retrieved from https en wikipedia org w index php title Genetically modified crops amp oldid 1193304584, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.