fbpx
Wikipedia

Earthworm

An earthworm is a soil-dwelling terrestrial invertebrate that belongs to the phylum Annelida. The term is the common name for the largest members of the class (or subclass, depending on the author) Oligochaeta. In classical systems, they were in the order of Opisthopora since the male pores opened posterior to the female pores, although the internal male segments are anterior to the female. Theoretical cladistic studies have placed them in the suborder Lumbricina of the order Haplotaxida, but this may change.[clarification needed] Other slang names for earthworms include "dew-worm", "rainworm", "nightcrawler", and "angleworm" (from its use as angling hookbaits). Larger terrestrial earthworms are also called megadriles (which translates to "big worms") as opposed to the microdriles ("small worms") in the semiaquatic families Tubificidae, Lumbricidae and Enchytraeidae. The megadriles are characterized by a distinct clitellum (more extensive than that of microdriles) and a vascular system with true capillaries.[2]

Earthworm
Temporal range: 209–0 Ma[1]
An unidentified earthworm species with a well-developed clitellum
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Annelida
Class: Clitellata
Order: Opisthopora
Suborder: Lumbricina

Earthworms are commonly found in moist, compost-rich soil, eating a wide variety of organic matters,[3] which include detritus, living protozoa, rotifers, nematodes, bacteria, fungi and other microorganisms.[4] An earthworm's digestive system runs the length of its body.[5] They are one of nature's most important detritivores and coprophages, and also serve as food for many low-level consumers within the ecosystems.

Earthworms exhibit an externally segmented tube-within-a-tube body plan with corresponding internal segmentations, and usually have setae on all segments.[6] They have a cosmopolitan distribution wherever soil, water and temperature conditions allow.[7] They have a double transport system made of coelomic fluid that moves within the fluid-filled coelom and a simple, closed circulatory system, and respires (breathes) via cutaneous respiration. As soft-bodied invertebrates, they lack a true skeleton, but their structure is maintained by fluid-filled coelom chambers that function as a hydrostatic skeleton.[citation needed]

Earthworms have a central nervous system consisting of two ganglia above the mouth, one on either side, connected to an axial nerve running along its length to motor neurons and sensory cells in each segment. Large numbers of chemoreceptors concentrate near its mouth. Circumferential and longitudinal muscles edging each segment let the worm move. Similar sets of muscles line the gut tube, and their actions propel digested food toward the worm's anus.[8]

Earthworms are hermaphrodites: each worm carries male and female reproductive organs and genital pores. When mating, two individual earthworms will exchange sperm and fertilize each other's ova.

Anatomy

Form and function

 
Earthworm head

Depending on the species, an adult earthworm can be from 10 mm (0.39 in) long and 1 mm (0.039 in) wide to 3 m (9.8 ft) long and over 25 mm (0.98 in) wide, but the typical Lumbricus terrestris grows to about 360 mm (14 in) long.[9] Probably the longest worm on confirmed records is Amynthas mekongianus that extends up to 3 m (10 ft) [10] in the mud along the banks of the 4,350 km (2,703 mi) Mekong River in Southeast Asia.

From front to back, the basic shape of the earthworm is a cylindrical tube-in-a-tube, divided into a series of segments (called metameres) that compartmentalize the body. Furrows are generally[11] externally visible on the body demarking the segments; dorsal pores and nephridiopores exude a fluid that moistens and protects the worm's surface, allowing it to breathe. Except for the mouth and anal segments, each segment carries bristlelike hairs called lateral setae[12] used to anchor parts of the body during movement;[13] species may have four pairs of setae on each segment or more than eight sometimes forming a complete circle of setae per segment.[12] Special ventral setae are used to anchor mating earthworms by their penetration into the bodies of their mates.[14]

Generally, within a species, the number of segments found is consistent across specimens, and individuals are born with the number of segments they will have throughout their lives. The first body segment (segment number 1) features both the earthworm's mouth and, overhanging the mouth, a fleshy lobe called the prostomium, which seals the entrance when the worm is at rest, but is also used to feel and chemically sense the worm's surroundings. Some species of earthworm can even use the prehensile prostomium to grab and drag items such as grasses and leaves into their burrow.

An adult earthworm develops a belt-shaped glandular swelling, called the clitellum, which covers several segments toward the front part of the animal. This is part of the reproductive system and produces egg capsules. The posterior is most commonly cylindrical like the rest of the body, but depending on the species, it may also be quadrangular, octagonal, trapezoidal, or flattened. The last segment is called the periproct; the earthworm's anus, a short vertical slit, is found on this segment.[12]

 
A segment of an earthworm posterior to the clitellum including all of the segmental structures

The exterior of an individual segment is a thin cuticle over the skin, commonly pigmented red to brown, which has specialized cells that secrete mucus over the cuticle to keep the body moist and ease movement through the soil. Under the skin is a layer of nerve tissue, and two layers of muscles—a thin outer layer of circular muscle, and a much thicker inner layer of longitudinal muscle.[15] Interior to the muscle layer is a fluid-filled chamber called a coelom[16] that by its pressurization provides structure to the worm's boneless body. The segments are separated from each other by septa (the plural of "septum")[17] which are perforated transverse walls, allowing the coelomic fluid to pass between segments.[18] A pair of structures called nephrostomes are located at the back of each septum; a nephric tubule leads from each nephrostome through the septum and into the following segment. This tubule then leads to the main body fluid filtering organ, the nephridium or metanephridium, which removes metabolic waste from the coelomic fluid and expels it through pores called nephridiopores on the worm's sides; usually, two nephridia (sometimes more) are found in most segments.[19] At the centre of a worm is the digestive tract, which runs straight through from mouth to anus without coiling, and is flanked above and below by blood vessels (the dorsal blood vessel and the ventral blood vessel as well as a subneural blood vessel) and the ventral nerve cord, and is surrounded in each segment by a pair of pallial blood vessels that connect the dorsal to the subneural blood vessels.

Many earthworms can eject coelomic fluid through pores in the back in response to stress; the Australian Didymogaster sylvaticus (known as the "blue squirter earthworm") can squirt fluid as high as 30 cm (12 in).[20][18]

Nervous system

 
Nervous system of the anterior end of an earthworm

Central nervous system

The CNS consists of a bilobed brain (cerebral ganglia, or supra-pharyngeal ganglion), sub-pharyngeal ganglia, circum-pharyngeal connectives and a ventral nerve cord.

Earthworms' brains consist of a pair of pear-shaped cerebral ganglia. These are located in the dorsal side of the alimentary canal in the third segment, in a groove between the buccal cavity and pharynx.

A pair of circum-pharyngeal connectives from the brain encircle the pharynx and then connect with a pair of sub-pharyngeal ganglia located below the pharynx in the fourth segment. This arrangement means the brain, sub-pharyngeal ganglia and the circum-pharyngeal connectives form a nerve ring around the pharynx.

The ventral nerve cord (formed by nerve cells and nerve fibers) begins at the sub-pharyngeal ganglia and extends below the alimentary canal to the most posterior body segment. The ventral nerve cord has a swelling, or ganglion, in each segment, i.e. a segmental ganglion, which occurs from the fifth to the last segment of the body. There are also three giant axons, one medial giant axon (MGA) and two lateral giant axons (LGAs) on the mid-dorsal side of the ventral nerve cord. The MGA is 0.07 mm in diameter and transmits in an anterior-posterior direction at a rate of 32.2 m/s. The LGAs are slightly narrower at 0.05 mm in diameter and transmit in a posterior-anterior direction at 12.6 m/s. The two LGAs are connected at regular intervals along the body and are therefore considered one giant axon.[21][22]

Peripheral nervous system

  • Eight to ten nerves arise from the cerebral ganglia to supply the prostomium, buccal chamber and pharynx.
  • Three pairs of nerves arise from the subpharyangeal ganglia to supply the second, third and fourth segment.
  • Three pairs of nerves extend from each segmental ganglion to supply various structures of the segment.

The sympathetic nervous system consists of nerve plexuses in the epidermis and alimentary canal. (A plexus is a web of connected nerve cells.) The nerves that run along the body wall pass between the outer circular and inner longitudinal muscle layers of the wall. They give off branches that form the intermuscular plexus and the subepidermal plexus. These nerves connect with the cricopharyngeal connective.

Movement

 
A profile SEM image of Lumbricus terrestris setae, small bristle-like projections that facilitate movement by anchoring the earthworm in the soil.  
An earthworm crawling over asphalt.

On the surface, crawling speed varies both within and among individuals. Earthworms crawl faster primarily by taking longer "strides" and a greater frequency of strides. Larger Lumbricus terrestris worms crawl at a greater absolute speed than smaller worms. They achieve this by taking slightly longer strides but with slightly lower stride frequencies.[23]

Touching an earthworm, which causes a "pressure" response as well as (often) a response to the dehydrating quality of the salt on human skin (toxic to earthworms), stimulates the subepidermal nerve plexus which connects to the intermuscular plexus and causes the longitudinal muscles to contract. This causes the writhing movements observed when a human picks up an earthworm. This behaviour is a reflex and does not require the CNS; it occurs even if the nerve cord is removed. Each segment of the earthworm has its own nerve plexus. The plexus of one segment is not connected directly to that of adjacent segments. The nerve cord is required to connect the nervous systems of the segments.[24]

The giant axons carry the fastest signals along the nerve cord. These are emergency signals that initiate reflex escape behaviours. The larger dorsal giant axon conducts signals the fastest, from the rear to the front of the animal. If the rear of the worm is touched, a signal is rapidly sent forwards causing the longitudinal muscles in each segment to contract. This causes the worm to shorten very quickly as an attempt to escape from a predator or other potential threat. The two medial giant axons connect with each other and send signals from the front to the rear. Stimulation of these causes the earthworm to very quickly retreat (perhaps contracting into its burrow to escape a bird).

The presence of a nervous system is essential for an animal to be able to experience nociception or pain. However, other physiological capacities are also required such as opioid sensitivity and central modulation of responses by analgesics.[25] Enkephalin and α-endorphin-like substances have been found in earthworms. Injections of naloxone (an opioid antagonist) inhibit the escape responses of earthworms. This indicates that opioid substances play a role in sensory modulation, similar to that found in many vertebrates.[26]

Sensory reception

Photosensitivity

Earthworms do not have eyes (although some worms do); however, they do have specialized photosensitive cells called "light cells of Hess". These photoreceptor cells have a central intracellular cavity (phaosome) filled with microvilli. As well as the microvilli, there are several sensory cilia in the phaosome which are structurally independent of the microvilli.[27] The photoreceptors are distributed in most parts of the epidermis but are more concentrated on the back and sides of the worm. A relatively small number occurs on the ventral surface of the first segment. They are most numerous in the prostomium and reduce in density in the first three segments; they are very few in number past the third segment.[24]

Epidermal receptor (Sense organ)

These receptors are abundant and distributed all over the epidermis. Each receptor shows a slightly elevated cuticle which covers a group of tall, slender and columnar receptor cells. These cells bear small hairlike processes at their outer ends and their inner ends are connected with nerve fibres. The epidermal receptors are tactile in function. They are also concerned with changes in temperature and respond to chemical stimuli. Earthworms are extremely sensitive to touch and mechanical vibration.

Buccal receptor (Sense organ)

These receptors are located only in the epithelium of the buccal chamber. These receptors are gustatory and olfactory (related to taste and smell). They also respond to chemical stimuli. (Chemoreceptor)

Digestive system

The gut of the earthworm is a straight tube that extends from the worm's mouth to its anus. It is differentiated into an alimentary canal and associated glands which are embedded in the wall of the alimentary canal itself. The alimentary canal consists of a mouth, buccal cavity (generally running through the first one or two segments of the earthworm), pharynx (running generally about four segments in length), esophagus, crop, gizzard (usually), and intestine. [28]

Food enters at the mouth. The pharynx acts as a suction pump; its muscular walls draw in food. In the pharynx, the pharyngeal glands secrete mucus. Food moves into the esophagus, where calcium (from the blood and ingested from previous meals) is pumped in to maintain proper blood calcium levels in the blood and food pH. From there the food passes into the crop and gizzard. In the gizzard, strong muscular contractions grind the food with the help of mineral particles ingested along with the food. Once through the gizzard, food continues through the intestine for digestion. The intestine secretes pepsin to digest proteins, amylase to digest polysaccharides, cellulase to digest cellulose, and lipase to digest fats.[8] Earthworms use, in addition to the digestive proteins, a class of surface active compounds called drilodefensins, which help digest plant material.[29] Instead of being coiled like a mammalian intestine, in an earthworm's intestine a large mid-dorsal, tongue-like fold is present, called typhlosole which increases surface area to increase nutrient absorption by having many folds running along its length. The intestine has its own pair of muscle layers like the body, but in reverse order—an inner circular layer within an outer longitudinal layer.[30]

Circulatory system

Earthworms have a dual circulatory system in which both the coelomic fluid and a closed circulatory system carry the food, waste, and respiratory gases. The closed circulatory system has five main blood vessels: the dorsal (top) vessel, which runs above the digestive tract; the ventral (bottom) vessel, which runs below the digestive tract; the subneural vessel, which runs below the ventral nerve cord; and two lateroneural vessels on either side of the nerve cord.[31]

The dorsal vessel is mainly a collecting structure in the intestinal region. It receives a pair commissural and dorsal intestines in each segment. The ventral vessel branches off to a pair of ventro-tegumentaries and ventro-intestinals in each segment. The subneural vessel also gives out a pair of commissurals running along the posterior surface of the septum.

The pumping action on the dorsal vessel moves the blood forward, while the other four longitudinal vessels carry the blood rearward. In segments seven through eleven, a pair of aortic arches ring the coelom and acts as hearts, pumping the blood to the ventral vessel that acts as the aorta. The blood consists of ameboid cells and haemoglobin dissolved in the plasma. The second circulatory system derives from the cells of the digestive system that line the coelom. As the digestive cells become full, they release non-living cells of fat into the fluid-filled coelom, where they float freely but can pass through the walls separating each segment, moving food to other parts and assist in wound healing.[32]

Excretory system

The excretory system contains a pair of nephridia in every segment, except for the first three and the last ones.[33] The three types of nephridia are: integumentary, septal, and pharyngeal. The integumentary nephridia lie attached to the inner side of the body wall in all segments except the first two. The septal nephridia are attached to both sides of the septa behind the 15th segment. The pharyngeal nephridia are attached to the fourth, fifth and sixth segments.[33] The waste in the coelom fluid from a forward segment is drawn in by the beating of cilia of the nephrostome. From there it is carried through the septum (wall) via a tube which forms a series of loops entwined by blood capillaries that also transfer waste into the tubule of the nephrostome. The excretory wastes are then finally discharged through a pore on the worm's side.[34]

Respiration

Earthworms have no special respiratory organs. Gases are exchanged through the moist skin and capillaries, where the oxygen is picked up by the haemoglobin dissolved in the blood plasma and carbon dioxide is released. Water, as well as salts, can also be moved through the skin by active transport.

Life and physiology

At birth, earthworms emerge small but fully formed, lacking only their sex structures which develop in about 60 to 90 days. They attain full size in about one year. Scientists predict that the average lifespan under field conditions is four to eight years, while most garden varieties live only one to two years.

Reproduction

 
Earthworm copulation
 
Earthworm cocoons from L. terrestris
 
An earthworm cocoon from L. rubellus

Several common earthworm species are mostly parthenogenetic, meaning that growth and development of embryos happens without fertilization. Among lumbricid earthworms, parthenogenesis arose from sexual relatives many times.[35] Parthenogenesis in some Aporrectodea trapezoides lineages arose 6.4 to 1.1 million years ago from sexual ancestors.[36] A few species exhibit pseudogamous parthogenesis, meaning that mating is necessary to stimulate reproduction, even though no male genetic material passes to the offspring.[37]

Earthworm mating occurs on the surface, most often at night. Earthworms are hermaphrodites; that is, they have both male and female sexual organs. The sexual organs are located in segments 9 to 15. Earthworms have one or two pairs of testes contained within sacs. The two or four pairs of seminal vesicles produce, store and release the sperm via the male pores. Ovaries and oviducts in segment 13 release eggs via female pores on segment 14, while sperm is expelled from segment 15. One or more pairs of spermathecae are present in segments 9 and 10 (depending on the species) which are internal sacs that receive and store sperm from the other worm during copulation. As a result, segment 15 of one worm exudes sperm into segments 9 and 10 with its storage vesicles of its mate. Some species use external spermatophores for sperm transfer.

In Hormogaster samnitica and Hormogaster elisae transcriptome DNA libraries were sequenced and two sex pheromones, Attractin and Temptin, were detected in all tissue samples of both species.[38] Sex pheromones are probably important in earthworms because they live in an environment where chemical signaling may play a crucial role in attracting a partner and in facilitating outcrossing. Outcrossing would provide the benefit of masking the expression of deleterious recessive mutations in progeny[39] (see Complementation).

Copulation and reproduction are separate processes in earthworms. The mating pair overlap front ends ventrally and each exchanges sperm with the other. The clitellum becomes very reddish to pinkish in colour. Sometime after copulation, long after the worms have separated, the clitellum (behind the spermathecae) secretes material which forms a ring around the worm. The worm then backs out of the ring, and as it does so, it injects its own eggs and the other worm's sperm into it. Thus each worm becomes the genetic father of some of their offspring (due to its own sperm transferred to other earthworm) and the genetic mother (offsprings from its own egg cells) of the rest. As the worm slips out of the ring, the ends of the cocoon seal to form a vaguely onion-shaped incubator (cocoon) in which the embryonic worms develop. Hence fertilization is external. The cocoon is then deposited in the soil. After three weeks, 2 to 20 offspring hatch with an average of 4. Development is direct i.e. without formation of any larva.

Locomotion

 
Close up of an earthworm in garden soil

Earthworms travel underground by means of waves of muscular contractions which alternately shorten and lengthen the body (peristalsis). The shortened part is anchored to the surrounding soil by tiny clawlike bristles (setae) set along its segmented length. In all the body segments except the first, last and clitellum, there is a ring of S-shaped setae embedded in the epidermal pit of each segment (perichaetine). The whole burrowing process is aided by the secretion of lubricating mucus. As a result of their movement through their lubricated tunnels, worms can make gurgling noises underground when disturbed. Earthworms move through soil by expanding crevices with force; when forces are measured according to body weight, hatchlings can push 500 times their own body weight whereas large adults can push only 10 times their own body weight.[40]

Regeneration

Earthworms have the ability to regenerate lost segments, but this ability varies between species and depends on the extent of the damage. Stephenson (1930) devoted a chapter of his monograph to this topic, while G. E. Gates spent 20 years studying regeneration in a variety of species, but "because little interest was shown", Gates (1972) published only a few of his findings that, nevertheless, show it is theoretically possible to grow two whole worms from a bisected specimen in certain species.

Gates's reports included:

  • Eisenia fetida (Savigny, 1826) with head regeneration, in an anterior direction, possible at each intersegmental level back to and including 23/24, while tails were regenerated at any levels behind 20/21; thus two worms may grow from one.[41]
  • Lumbricus terrestris (Linnaeus, 1758) replacing anterior segments from as far back as 13/14 and 16/17 but tail regeneration was never found.
  • Perionyx excavatus (Perrier, 1872) readily regenerated lost parts of the body, in an anterior direction from as far back as 17/18, and in a posterior direction as far forward as 20/21.
  • Lampito mauritii (Kinberg, 1867) with regeneration in anterior direction at all levels back to 25/26 and tail regeneration from 30/31; head regeneration was sometimes believed to be caused by internal amputation resulting from Sarcophaga sp. larval infestation.
  • Criodrilus lacuum (Hoffmeister, 1845) also has prodigious regenerative capacity with 'head' regeneration from as far back as 40/41.[42]

An unidentified Tasmanian earthworm shown growing a replacement head has been reported.[43]

Taxonomy and distribution

Within the world of taxonomy, the stable 'Classical System' of Michaelsen (1900) and Stephenson (1930) was gradually eroded by the controversy over how to classify earthworms, such that Fender and McKey-Fender (1990) went so far as to say, "The family-level classification of the megascolecid earthworms is in chaos."[44] Over the years, many scientists have developed their own classification systems for earthworms, which led to confusion, and these systems have been and still continue to be revised and updated. The classification system used here which was developed by Blakemore (2000), is a modern reversion to the Classical System that is historically proven and widely accepted.[45]

Categorization of a megadrile earthworm into one of its taxonomic families under suborders Lumbricina and Moniligastrida is based on such features as the makeup of the clitellum, the location and disposition of the sex features (pores, prostatic glands, etc.), number of gizzards, and body shape.[45] Currently, over 6,000 species of terrestrial earthworms are named, as provided in a species name database,[46] but the number of synonyms is unknown.

The families, with their known distributions or origins:[45]

  • Acanthodrilidae
  • Ailoscolecidae – the Pyrenees and the southeast USA
  • Almidae – tropical equatorial (South America, Africa, Indo-Asia)
  • Benhamiinae – Ethiopian, Neotropical (a possible subfamily of Octochaetidae)
  • Criodrilidae – southwestern Palaearctic: Europe, Middle East, Russia and Siberia to Pacific coast; Japan (Biwadrilus); mainly aquatic
  • Diplocardiinae/-idae – Gondwanan or Laurasian? (a subfamily of Acanthodrilidae)
  • Enchytraeidae – cosmopolitan but uncommon in tropics (usually classed with Microdriles)
  • Eudrilidae – Tropical Africa south of the Sahara
  • Exxidae – Neotropical: Central America and the Caribbean
  • Glossoscolecidae – Neotropical: Central and South America, Caribbean
  • Haplotaxidae – cosmopolitan distribution (usually classed with Microdriles)
  • Hormogastridae – Mediterranean
  • Kynotidae – Malagasian: Madagascar
  • Lumbricidae – Holarctic: North America, Europe, Middle East, Central Asia to Japan
  • Lutodrilidae – Louisiana the southeast USA
  • Megascolecidae
  • Microchaetidae – Terrestrial in Africa especially South African grasslands
  • Moniligastridae – Oriental and Indian subregion
  • Ocnerodrilidae – Neotropics, Africa; India
  • Octochaetidae – Australasian, Indian, Oriental, Ethiopian, Neotropical
  • Octochaetinae – Australasian, Indian, Oriental (subfamily if Benhamiinae is accepted)
  • Sparganophilidae – Nearctic, Neotropical: North and Central America
  • Tumakidae – Colombia, South America

As an invasive species

From a total of around 7,000 species, only about 150 species are widely distributed around the world. These are the peregrine or cosmopolitan earthworms.[47] Of the 182 taxa of earthworms found in the United States and Canada, 60 (33%) are introduced species.

Ecology

 
Permanent vertical burrow

Earthworms are classified into three main ecophysiological categories: (1) leaf litter- or compost-dwelling worms that are nonburrowing, live at the soil-litter interface and eat decomposing organic matter (epigeic) e.g. Eisenia fetida; (2) topsoil- or subsoil-dwelling worms that feed (on soil), burrow and cast within the soil, creating horizontal burrows in upper 10–30  cm of soil (endogeic); and (3) worms that construct permanent deep vertical burrows which they use to visit the surface to obtain plant material for food, such as leaves (anecic, meaning "reaching up"), e.g. Lumbricus terrestris.[48]

Earthworm populations depend on both physical and chemical properties of the soil, such as temperature, moisture, pH, salts, aeration, and texture, as well as available food, and the ability of the species to reproduce and disperse. One of the most important environmental factors is pH, but earthworms vary in their preferences. Most favour neutral to slightly acidic soils. Lumbricus terrestris is still present in a pH of 5.4, Dendrobaena octaedra at a pH of 4.3 and some Megascolecidae are present in extremely acidic humic soils. Soil pH may also influence the numbers of worms that go into diapause. The more acidic the soil, the sooner worms go into diapause, and remain in diapause the longest time at a pH of 6.4.

Earthworms are preyed upon by many species of birds (e.g. robins, starlings, thrushes, gulls, crows), snakes, wood turtles, mammals (e.g. bears, boars, foxes, hedgehogs, pigs, moles[49]) and invertebrates (e.g. ants,[50] flatworms, ground beetles and other beetles, snails, spiders, and slugs). Earthworms have many internal parasites, including protozoa, platyhelminthes, mites, and nematodes; they can be found in the worms' blood, seminal vesicles, coelom, or intestine, or in their cocoons (e.g. the mite Histiostoma murchiei is a parasite of earthworm cocoons[51]).

The earthworm activity aerates and mixes the soil, and is conducive to mineralization of nutrients and their uptake by vegetation. Certain species of earthworm come to the surface and graze on the higher concentrations of organic matter present there, mixing it with the mineral soil. Because a high level of organic matter mixing is associated with soil fertility, an abundance of earthworms is generally considered beneficial by farmers and gardeners.[52][53] As long ago as 1881 Charles Darwin wrote: "It may be doubted whether there are many other animals which have played so important a part in the history of the world, as have these lowly organized creatures."[54]

 
Devil's coach horse beetle preying on Lumbricus sp.

Also, while, as the name suggests, the main habitat of earthworms is in soil, they are not restricted to this habitat. The brandling worm Eisenia fetida lives in decaying plant matter and manure. Arctiostrotus vancouverensis from Vancouver Island and the Olympic Peninsula is generally found in decaying conifer logs. Aporrectodea limicola, Sparganophilus spp., and several others are found in mud in streams. Some species are arboreal,[citation needed] some aquatic and some euryhaline (salt-water tolerant) and littoral (living on the sea-shore, e.g. Pontodrilus litoralis).[55] Even in the soil species, special habitats, such as soils derived from serpentine, have an earthworm fauna of their own.

Vermicomposting of organic "wastes" and addition of this organic matter to the soil, preferably as a surface mulch, will provide several species of earthworms with their food and nutrient requirements, and will create the optimum conditions of temperature and moisture that will stimulate their activity.

Earthworms are environmental indicators of soil health. Earthworms feed on the decaying matter in the soil and analyzing the contents of their digestive tracts gives insight into the overall condition of the soil. The earthworm gut accumulates chemicals, including heavy metals such as cadmium, mercury, zinc, and copper. The population size of the earthworm indicates the quality of the soil, as healthy soil would contain a larger number of earthworms.[56]

Environmental impacts

The major benefits of earthworm activities to soil fertility for agriculture can be summarized as:

  • Biological: In many soils, earthworms play a major role in the conversion of large pieces of organic matter into rich humus, thus improving soil fertility. This is achieved by the worm's actions of pulling below the surface deposited organic matter such as leaf fall or manure, either for food or to plug its burrow. Once in the burrow, the worm will shred the leaf, partially digest it and mingle it with the earth. Worm casts (see bottom right) can contain 40 percent more humus than the top 9 inches (230 mm) of soil in which the worm is living.[57]
 
Faeces in the form of casts
  • Chemical: In addition to dead organic matter, the earthworm also ingests any other soil particles that are small enough—including sand grains up to 120 inch (1.3 mm)—into its gizzard, wherein those minute fragments of grit grind everything into a fine paste which is then digested in the intestine. When the worm excretes this in the form of casts, deposited on the surface or deeper in the soil, minerals and plant nutrients are changed to an accessible form for plants to use. Investigations in the United States show that fresh earthworm casts are five times richer in available nitrogen, seven times richer in available phosphates, and 11 times richer in available potassium than the surrounding upper 6 inches (150 mm) of soil. In conditions where humus is plentiful, the weight of casts produced may be greater than 4.5 kilograms (9.9 lb) per worm per year.[57]
  • Physical: The earthworm's burrowing creates a multitude of channels through the soil and is of great value in maintaining the soil structure, enabling processes of aeration and drainage.[58] Permaculture co-founder Bill Mollison points out that by sliding in their tunnels, earthworms "act as an innumerable army of pistons pumping air in and out of the soils on a 24-hour cycle (more rapidly at night)".[59] Thus, the earthworm not only creates passages for air and water to traverse the soil, but also modifies the vital organic component that makes a soil healthy (see Bioturbation). Earthworms promote the formation of nutrient-rich casts (globules of soil, stable in soil mucus) that have high soil aggregation and soil fertility and quality.[57] In podzol soils, earthworms can obliterate the characteristic banded appearance of the soil profile by mixing the organic (LFH), eluvial (E) and upper illuvial (B) horizons to create a single dark Ap horizon.[60][61]

Earthworms accelerate nutrient cycling in the soil-plant system through fragmentation & mixing of plant debris – physical grinding & chemical digestion.[57] The earthworm's existence cannot be taken for granted. Dr. W. E. Shewell-Cooper observed "tremendous numerical differences between adjacent gardens", and worm populations are affected by a host of environmental factors, many of which can be influenced by good management practices on the part of the gardener or farmer.[62]

Darwin estimated that arable land contains up to 53,000 per acre (130,000/ha) of worms, but more recent research has produced figures suggesting that even poor soil may support 250,000 per acre (620,000/ha), whilst rich fertile farmland may have up to 1,750,000 per acre (4,300,000/ha), meaning that the weight of earthworms beneath a farmer's soil could be greater than that of the livestock upon its surface. Richly organic topsoil populations of earthworms are much higher – averaging 500 per square metre (46/sq ft) and up to 400 g2[dubious ] – such that, for the 7 billion of us, each person alive today has support of 7 million earthworms.[63]

The ability to break down organic materials and excrete concentrated nutrients makes the earthworm a functional contributor in restoration projects. In response to ecosystem disturbances, some sites have utilized earthworms to prepare soil for the return of native flora. Research from the Station d'écologie Tropicale de Lamto asserts that the earthworms positively influence the rate of macroaggregate formation, an important feature for soil structure.[64] The stability of aggregates in response to water was also found to be improved when constructed by earthworms.[64]

Though not fully quantified yet, greenhouse gas emissions of earthworms likely contribute to global warming, especially since top-dwelling earthworms increase the speed of carbon cycles and have been spread by humans into many new geographies.[65]

Threats

Nitrogenous fertilizers tend to create acidic conditions, which are fatal to the worms, and dead specimens are often found on the surface following the application of substances such as DDT, lime sulphur, and lead arsenate. In Australia, changes in farming practices such as the application of superphosphates on pastures and a switch from pastoral farming to arable farming had a devastating effect on populations of the giant Gippsland earthworm, leading to their classification as a protected species. Globally, certain earthworms populations have been devastated by deviation from organic production and the spraying of synthetic fertilizers and biocides, with at least three species now listed as extinct but many more endangered.[66]

Economic impact

 
Earthworms being raised at La Chonita Hacienda in Mexico

Various species of worms are used in vermiculture, the practice of feeding organic waste to earthworms to decompose food waste. These are usually Eisenia fetida (or its close relative Eisenia andrei) or the brandling worm, commonly known as the tiger worm or red wiggler. They are distinct from soil-dwelling earthworms. In the tropics, the African nightcrawler Eudrilus eugeniae[67] and the Indian blue Perionyx excavatus are used.

Earthworms are sold all over the world; the market is sizable. According to Doug Collicutt, "In 1980, 370 million worms were exported from Canada, with a Canadian export value of $13 million and an American retail value of $54 million."[68]

Earthworms provide an excellent source of protein for fish, fowl and pigs but were also used traditionally for human consumption. Noke is a culinary term used by the Māori of New Zealand, and refers to earthworms which are considered delicacies for their chiefs.

See also

References

  1. ^ Anderson, Frank; James, Samuel. "The evolution of earthworms". BMC. Retrieved 3 February 2024.
  2. ^ Omodeo, Pietro (2000). "Evolution and biogeography of megadriles (Annelida, Clitellata)". Italian Journal of Zoology. 67–2 (2): 179–201. doi:10.1080/11250000009356313. S2CID 86293273.
  3. ^ Bonkowski, Michael; Griffiths, Bryan S.; Ritz, Karl (November 2000). "Food preferences of earthworms for soil fungi". Pedobiologia. 44–6 (6): 667. doi:10.1078/S0031-4056(04)70080-3.
  4. ^ Lofty, Clive A.; Lofty, J. R. (1977). Biology of Earthworms. London: Chapman & Hall. p. 80. ISBN 0-412-14950-8.
  5. ^ Edwards, Clive A.; Lofty, J.R. (1977). Biology of Earthworms. London: Chapman & Hall. p. 19. ISBN 0-412-14950-8.
  6. ^ Edwards, Clive A.; Lofty, J. R. (1977). Biology of Earthworms. London: Chapman & Hall. pp. preface. ISBN 0-412-14950-8.
  7. ^ Coleman, David C.; Crossley, D.A.; Hendrix, Paul F. (2004). Fundamentals of Soil Ecology. Amsterdam; Boston: Elsevier Academic Press. p. 170. ISBN 0-12-179726-0.
  8. ^ a b Cleveland P. Hickman Jr.; Larry S. Roberts; Frances M Hickman (1984). Integrated Principles of Zoology (7th ed.). Times Mirror/Mosby College Publishing. p. 344. ISBN 978-0-8016-2173-4.
  9. ^ Blakemore 2012, p. xl.
  10. ^ Blakemore, R. J.; et al. (2007). "Megascolex (Promegascolex) mekongianus Cognetti, 1922 – its extent, ecology and allocation to Amynthas (Clitellata/Oligochaeta: Megascolecidae)" (PDF). Opuscula Zoologica.
  11. ^ Edwards & Bohlen 1996, p. 11.
  12. ^ a b c Sims & Gerard 1985, pp. 3–6.
  13. ^ Edwards & Bohlen 1996, p. 3.
  14. ^ Feldkamp, J. (1924). "Feldkamp, J. "Untersuchungen über die Geschlechtsmerkmale und die Begattung der Regenwurmer Zoologische Jahrbücher". Anatomie. 46: 609–632.
  15. ^ Edwards & Bohlen 1996, p. 8-9.
  16. ^ Edwards & Bohlen 1996, p. 1.
  17. ^ Sims & Gerard 1985, p. 8.
  18. ^ a b Edwards & Bohlen 1996, p. 12.
  19. ^ Edwards & Bohlen 1996, p. 6.
  20. ^ Myrmecofourmis (2018). "Meet the squirting earthworm". Youtube. Archived from the original (video) on 2021-10-30.
  21. ^ "Experiment: Comparing speeds of two nerve fiber sizes". BackyardBrains. Retrieved April 4, 2015.
  22. ^ Drewes, C. D.; Landa, K. B.; McFall, J. L. (1978). "Giant nerve fibre activity in intact, freely moving earthworms". The Journal of Experimental Biology. 72: 217–227. doi:10.1242/jeb.72.1.217. PMID 624897.
  23. ^ Quillin, K.J. (1999). "Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris". Journal of Experimental Biology. 202 (6): 661–674. doi:10.1242/jeb.202.6.661. PMID 10021320.
  24. ^ a b "Earthworm-nervous system". Cronodon. Retrieved April 3, 2015.
  25. ^ Elwood, R.W. (2011). "Pain and suffering in invertebrates?". ILAR Journal. 52 (2): 175–84. doi:10.1093/ilar.52.2.175. PMID 21709310.
  26. ^ Smith, J.A. (1991). "A question of pain in invertebrates". ILAR Journal. 33 (1–2): 25–31. doi:10.1093/ilar.33.1-2.25.
  27. ^ Röhlich, P.; Aros, B.; Virágh, Sz. (1970). "Fine structure of photoreceptor cells in the earthworm, Lumbricus Terrestris". Zeitschrift für Zellforschung und Mikroskopische Anatomie. 104 (3): 345–357. doi:10.1007/BF00335687. PMID 4193489. S2CID 22771585.
  28. ^ Edwards & Bohlen 1996, p. 13.
  29. ^ Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A. John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy (2015-08-04). "Unique metabolites protect earthworms against plant polyphenols". Nature Communications. 6: 7869. Bibcode:2015NatCo...6.7869L. doi:10.1038/ncomms8869. PMC 4532835. PMID 26241769.
  30. ^ Edwards & Bohlen 1996, pp. 13–15.
  31. ^ Sims & Gerard 1985, p. 10.
  32. ^ Cleveland P. Hickman Jr.; Larry S. Roberts; Frances M Hickman (1984). Integrated Principles of Zoology (7th ed.). Times Mirror/Mosby College Publishing. pp. 344–345. ISBN 978-0-8016-2173-4.
  33. ^ a b Farabee, H.J. . Archived from the original on 30 July 2012. Retrieved 29 July 2012.
  34. ^ Cleveland P. Hickman Jr.; Larry S. Roberts; Frances M Hickman (1984). Integrated Principles of Zoology (7th ed.). Times Mirror/Mosby College Publishing. pp. 345–346. ISBN 978-0-8016-2173-4.
  35. ^ Domínguez J, Aira M, Breinholt JW, Stojanovic M, James SW, Pérez-Losada M (2015). "Underground evolution: New roots for the old tree of lumbricid earthworms". Mol. Phylogenet. Evol. 83: 7–19. doi:10.1016/j.ympev.2014.10.024. PMC 4766815. PMID 25463017.
  36. ^ Fernández R, Almodóvar A, Novo M, Simancas B, Díaz Cosín DJ (2012). "Adding complexity to the complex: new insights into the phylogeny, diversification and origin of parthenogenesis in the Aporrectodea caliginosa species complex (Oligochaeta, Lumbricidae)". Mol. Phylogenet. Evol. 64 (2): 368–79. doi:10.1016/j.ympev.2012.04.011. PMID 22542691.
  37. ^ Cosín D.J.D., Novo M., Fernández R. (2011) Reproduction of Earthworms: Sexual Selection and Parthenogenesis. In: Karaca A. (eds) Biology of Earthworms. Soil Biology, vol 24. Springer, Berlin, Heidelberg, pp. 76ff. [1]
  38. ^ Novo M, Riesgo A, Fernández-Guerra A, Giribet G (2013). "Pheromone evolution, reproductive genes, and comparative transcriptomics in mediterranean earthworms (annelida, oligochaeta, hormogastridae)". Mol. Biol. Evol. 30 (7): 1614–29. doi:10.1093/molbev/mst074. hdl:10261/94159. PMID 23596327.
  39. ^ Bernstein H, Hopf FA, Michod RE (1987). "The molecular basis of the evolution of sex". Molecular Genetics of Development. Advances in Genetics. Vol. 24. pp. 323–70. doi:10.1016/S0065-2660(08)60012-7. ISBN 978-0-12-017624-3. PMID 3324702. {{cite book}}: |journal= ignored (help)
  40. ^ Quillan, K.J. (2000). "Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris". Journal of Experimental Biology. 203 (Pt 18): 2757–2770. doi:10.1242/jeb.203.18.2757. PMID 10952876. Retrieved April 4, 2015.
  41. ^ Gates, G. E. (April 1949). (PDF). The Biological Bulletin. 96 (2): 129–139. doi:10.2307/1538195. JSTOR 1538195. PMID 18120625. Archived from the original (PDF) on 2007-04-01.
  42. ^ Gates, G. E. (1 January 1953). "On Regenerative Capacity of Earthworms of the Family Lumbricidae". The American Midland Naturalist. 50 (2): 414–419. doi:10.2307/2422100. JSTOR 2422100.
  43. ^ . Archived from the original on 2006-06-22. Retrieved 2006-11-20.
  44. ^ Fender & McKey-Fender (1990). Soil Biology Guide. Wiley-Interscience. ISBN 978-0-471-04551-9.
  45. ^ a b c Blakemore, R.J. (2006) (March 2006). "Revised Key to Worldwide Earthworm Families from Blakemore (2000) plus Reviews of Criodrilidae (including Biwadrilidae) and Octochaetidae" (PDF). A Series of Searchable Texts on Earthworm Biodiversity, Ecology and Systematics from Various Regions of the World. annelida.net. Retrieved May 15, 2012.{{cite web}}: CS1 maint: numeric names: authors list (link)
  46. ^ "Earthworms". Earthworms.elte.hu. Retrieved 19 March 2022.
  47. ^ [ref Blakemore (2016) Cosmopolitan Earthworms]
  48. ^ Earthworms: Renewers of Agroecosystems (SA Fall, 1990 (v3n1)) 2007-07-13 at the Wayback Machine
  49. ^ Gould, Edwin; McShea, William; Grand, Theodore (1993). "Function of the Star in the Star-Nosed Mole, Condylura cristata". Journal of Mammalogy. 74 (1): 108–116. doi:10.2307/1381909. ISSN 0022-2372. JSTOR 1381909.
  50. ^ Dejean, A.; Schatx, B. (1999). "Prey Capture Behavior of Psalidomyrmex procerus (Formicidae; Ponerinae), a Specialist Predator of Earthworms (Annelida)". Sociobiology: 545–554. ISSN 0361-6525.
  51. ^ Oliver, James H. (1962). "A Mite Parasitic in the Cocoons of Earthworms". The Journal of Parasitology. 48 (1): 120–123. doi:10.2307/3275424. ISSN 0022-3395. JSTOR 3275424. PMID 14481811.
  52. ^ NSW Department of Primary Industries, How earthworms can help your soil 2017-08-07 at the Wayback Machine
  53. ^ Galveston County Master Gardener Association, Beneficials in the garden: #38 Earthworms
  54. ^ Darwin, Charles (1881). The Formation of Vegetable Mould through the Action of Worms, with Observations on their Habits. John Murray. Found at Project Gutenberg Etext Formation of Vegetable Mould, by Darwin
  55. ^ Blakemore, R.J. (2007). "Origin and means of dispersal of cosmopolitan Pontodrilus litoralis (Oligochaeta: Megascolecidae)". European Journal of Soil Biology.{{cite web}}: CS1 maint: numeric names: authors list (link)
  56. ^ Fründ, Heinz-Christian; Graefe, Ulfert; Tischer, Sabine (2011), Karaca, Ayten (ed.), "Earthworms as Bioindicators of Soil Quality", Biology of Earthworms, Soil Biology, Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 24, pp. 261–278, doi:10.1007/978-3-642-14636-7_16, ISBN 978-3-642-14635-0, retrieved 2021-02-18
  57. ^ a b c d Nyle C. Brady; Ray R. Weil (2009). Elements of the Nature and Properties of Soils (3rd ed.). Prentice Hall. ISBN 978-0-13-501433-2.
  58. ^ Lines-Kelly, Rebecca (2021). "How earthworms can help your soil". www.dpi.nsw.gov.au. from the original on 2021-10-08. Retrieved 2021-11-30.
  59. ^ Mollison, Bill, Permaculture- A Designer's Manual, Tagari Press, 1988
  60. ^ R. T. Fisher (January 1928). "Soil Changes and Silviculture on the Harvard Forest" (PDF). Ecology. 9 (1): 6–11. Bibcode:1928Ecol....9....6F. doi:10.2307/1929537. JSTOR 1929537. Retrieved 2022-03-19.
  61. ^ Langmaid, K. K. (1 February 1964). "Some Effects of Earthworm Invasion in Virgin Podzols". Canadian Journal of Soil Science. 44 (1): 34–37. doi:10.4141/cjss64-005. Retrieved 19 March 2022.
  62. ^ Cooper, Shewell; Soil, Humus And Health ISBN 978-0-583-12796-7
  63. ^ Blakemore, R.J. (2017) (2017-02-12). "Nature article to commemorate Charles Darwin's birthday on 12th February". VermEcology.{{cite web}}: CS1 maint: numeric names: authors list (link)
  64. ^ a b Blanchart, Eric (1992-12-01). "Restoration by earthworms (megascolecidae) of the macroaggregate structure of a destructured savanna soil under field conditions". Soil Biology and Biochemistry. 24 (12): 1587–1594. doi:10.1016/0038-0717(92)90155-Q.
  65. ^ Burke, David (December 26, 2019). "The power of earthworm poop and how it could influence climate change". CBC.
  66. ^ Blakemore, R.J. (2018) (2018). "Critical Decline of Earthworms from Organic Origins under Intensive, Humic SOM-Depleting Agriculture". Soil Systems. Soil Systems 2(2): 33. 2 (2): 33. doi:10.3390/soilsystems2020033.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  67. ^ Blakemore, R.J. (2015). . African Invertebrates 56: 527-548. Archived from the original on 2016-10-22.{{cite web}}: CS1 maint: numeric names: authors list (link)
  68. ^ Collicutt, Doug. "Biology of the Night Crawler (Lumbricus terrestris)". NatureNorth. Retrieved 5 June 2022.

Works cited

  • Blakemore, Robert J. (2012). Cosmopolitan Earthworms – an Eco-Taxonomic Guide to the Peregrine Species of the World. (5th Ed). Yokohama, Japan: VermEcology.
  • Edwards, Clive A.; Bohlen, P. J. (1996). Biology and Ecology of Earthworms. Springer Science & Business Media. ISBN 978-0-412-56160-3.
  • Sims, Reginald William; Gerard, B (1985). Earthworms: Keys and Notes for the Identification and Study of the Species. London: Published for The Linnean Society of London and the Estuarine and Brackish-Water Sciences Association by E. J. Brill/Dr. W. Backhuys.

Further reading

  • Edwards, Clive A. (ed.) Earthworm Ecology. Boca Raton: CRC Press, 2004. Second revised edition. ISBN 0-8493-1819-X
  • Lee, Keneth E. Earthworms: Their Ecology and Relationships with Soils and Land Use. Academic Press. Sydney, 1985. ISBN 0-12-440860-5
  • Stewart, Amy. The Earth Moved: On the Remarkable Achievements of Earthworms. Chapel Hill, N.C.: Algonquin Books, 2004. ISBN 1-56512-337-9

External links

  •   Media related to Earthworms at Wikimedia Commons
  •   Data related to Lumbricina at Wikispecies
  • Chisholm, Hugh, ed. (1911). "Earthworm" . Encyclopædia Britannica (11th ed.). Cambridge University Press.

earthworm, earthworm, soil, dwelling, terrestrial, invertebrate, that, belongs, phylum, annelida, term, common, name, largest, members, class, subclass, depending, author, oligochaeta, classical, systems, they, were, order, opisthopora, since, male, pores, ope. An earthworm is a soil dwelling terrestrial invertebrate that belongs to the phylum Annelida The term is the common name for the largest members of the class or subclass depending on the author Oligochaeta In classical systems they were in the order of Opisthopora since the male pores opened posterior to the female pores although the internal male segments are anterior to the female Theoretical cladistic studies have placed them in the suborder Lumbricina of the order Haplotaxida but this may change clarification needed Other slang names for earthworms include dew worm rainworm nightcrawler and angleworm from its use as angling hookbaits Larger terrestrial earthworms are also called megadriles which translates to big worms as opposed to the microdriles small worms in the semiaquatic families Tubificidae Lumbricidae and Enchytraeidae The megadriles are characterized by a distinct clitellum more extensive than that of microdriles and a vascular system with true capillaries 2 EarthwormTemporal range 209 0 Ma 1 PreꞒ Ꞓ O S D C P T J K Pg NAn unidentified earthworm species with a well developed clitellumScientific classificationDomain EukaryotaKingdom AnimaliaPhylum AnnelidaClass ClitellataOrder OpisthoporaSuborder LumbricinaEarthworms are commonly found in moist compost rich soil eating a wide variety of organic matters 3 which include detritus living protozoa rotifers nematodes bacteria fungi and other microorganisms 4 An earthworm s digestive system runs the length of its body 5 They are one of nature s most important detritivores and coprophages and also serve as food for many low level consumers within the ecosystems Earthworms exhibit an externally segmented tube within a tube body plan with corresponding internal segmentations and usually have setae on all segments 6 They have a cosmopolitan distribution wherever soil water and temperature conditions allow 7 They have a double transport system made of coelomic fluid that moves within the fluid filled coelom and a simple closed circulatory system and respires breathes via cutaneous respiration As soft bodied invertebrates they lack a true skeleton but their structure is maintained by fluid filled coelom chambers that function as a hydrostatic skeleton citation needed Earthworms have a central nervous system consisting of two ganglia above the mouth one on either side connected to an axial nerve running along its length to motor neurons and sensory cells in each segment Large numbers of chemoreceptors concentrate near its mouth Circumferential and longitudinal muscles edging each segment let the worm move Similar sets of muscles line the gut tube and their actions propel digested food toward the worm s anus 8 Earthworms are hermaphrodites each worm carries male and female reproductive organs and genital pores When mating two individual earthworms will exchange sperm and fertilize each other s ova Contents 1 Anatomy 1 1 Form and function 1 2 Nervous system 1 2 1 Central nervous system 1 2 2 Peripheral nervous system 1 2 3 Movement 1 3 Sensory reception 1 3 1 Photosensitivity 1 3 2 Epidermal receptor Sense organ 1 3 3 Buccal receptor Sense organ 1 4 Digestive system 1 5 Circulatory system 1 6 Excretory system 1 7 Respiration 2 Life and physiology 2 1 Reproduction 2 2 Locomotion 2 3 Regeneration 3 Taxonomy and distribution 3 1 As an invasive species 4 Ecology 4 1 Environmental impacts 5 Threats 6 Economic impact 7 See also 8 References 8 1 Works cited 9 Further reading 10 External linksAnatomyForm and function nbsp Earthworm headDepending on the species an adult earthworm can be from 10 mm 0 39 in long and 1 mm 0 039 in wide to 3 m 9 8 ft long and over 25 mm 0 98 in wide but the typical Lumbricus terrestris grows to about 360 mm 14 in long 9 Probably the longest worm on confirmed records is Amynthas mekongianus that extends up to 3 m 10 ft 10 in the mud along the banks of the 4 350 km 2 703 mi Mekong River in Southeast Asia From front to back the basic shape of the earthworm is a cylindrical tube in a tube divided into a series of segments called metameres that compartmentalize the body Furrows are generally 11 externally visible on the body demarking the segments dorsal pores and nephridiopores exude a fluid that moistens and protects the worm s surface allowing it to breathe Except for the mouth and anal segments each segment carries bristlelike hairs called lateral setae 12 used to anchor parts of the body during movement 13 species may have four pairs of setae on each segment or more than eight sometimes forming a complete circle of setae per segment 12 Special ventral setae are used to anchor mating earthworms by their penetration into the bodies of their mates 14 Generally within a species the number of segments found is consistent across specimens and individuals are born with the number of segments they will have throughout their lives The first body segment segment number 1 features both the earthworm s mouth and overhanging the mouth a fleshy lobe called the prostomium which seals the entrance when the worm is at rest but is also used to feel and chemically sense the worm s surroundings Some species of earthworm can even use the prehensile prostomium to grab and drag items such as grasses and leaves into their burrow An adult earthworm develops a belt shaped glandular swelling called the clitellum which covers several segments toward the front part of the animal This is part of the reproductive system and produces egg capsules The posterior is most commonly cylindrical like the rest of the body but depending on the species it may also be quadrangular octagonal trapezoidal or flattened The last segment is called the periproct the earthworm s anus a short vertical slit is found on this segment 12 nbsp A segment of an earthworm posterior to the clitellum including all of the segmental structuresThe exterior of an individual segment is a thin cuticle over the skin commonly pigmented red to brown which has specialized cells that secrete mucus over the cuticle to keep the body moist and ease movement through the soil Under the skin is a layer of nerve tissue and two layers of muscles a thin outer layer of circular muscle and a much thicker inner layer of longitudinal muscle 15 Interior to the muscle layer is a fluid filled chamber called a coelom 16 that by its pressurization provides structure to the worm s boneless body The segments are separated from each other by septa the plural of septum 17 which are perforated transverse walls allowing the coelomic fluid to pass between segments 18 A pair of structures called nephrostomes are located at the back of each septum a nephric tubule leads from each nephrostome through the septum and into the following segment This tubule then leads to the main body fluid filtering organ the nephridium or metanephridium which removes metabolic waste from the coelomic fluid and expels it through pores called nephridiopores on the worm s sides usually two nephridia sometimes more are found in most segments 19 At the centre of a worm is the digestive tract which runs straight through from mouth to anus without coiling and is flanked above and below by blood vessels the dorsal blood vessel and the ventral blood vessel as well as a subneural blood vessel and the ventral nerve cord and is surrounded in each segment by a pair of pallial blood vessels that connect the dorsal to the subneural blood vessels Many earthworms can eject coelomic fluid through pores in the back in response to stress the Australian Didymogaster sylvaticus known as the blue squirter earthworm can squirt fluid as high as 30 cm 12 in 20 18 Nervous system nbsp Nervous system of the anterior end of an earthwormCentral nervous system The CNS consists of a bilobed brain cerebral ganglia or supra pharyngeal ganglion sub pharyngeal ganglia circum pharyngeal connectives and a ventral nerve cord Earthworms brains consist of a pair of pear shaped cerebral ganglia These are located in the dorsal side of the alimentary canal in the third segment in a groove between the buccal cavity and pharynx A pair of circum pharyngeal connectives from the brain encircle the pharynx and then connect with a pair of sub pharyngeal ganglia located below the pharynx in the fourth segment This arrangement means the brain sub pharyngeal ganglia and the circum pharyngeal connectives form a nerve ring around the pharynx The ventral nerve cord formed by nerve cells and nerve fibers begins at the sub pharyngeal ganglia and extends below the alimentary canal to the most posterior body segment The ventral nerve cord has a swelling or ganglion in each segment i e a segmental ganglion which occurs from the fifth to the last segment of the body There are also three giant axons one medial giant axon MGA and two lateral giant axons LGAs on the mid dorsal side of the ventral nerve cord The MGA is 0 07 mm in diameter and transmits in an anterior posterior direction at a rate of 32 2 m s The LGAs are slightly narrower at 0 05 mm in diameter and transmit in a posterior anterior direction at 12 6 m s The two LGAs are connected at regular intervals along the body and are therefore considered one giant axon 21 22 Peripheral nervous system Eight to ten nerves arise from the cerebral ganglia to supply the prostomium buccal chamber and pharynx Three pairs of nerves arise from the subpharyangeal ganglia to supply the second third and fourth segment Three pairs of nerves extend from each segmental ganglion to supply various structures of the segment The sympathetic nervous system consists of nerve plexuses in the epidermis and alimentary canal A plexus is a web of connected nerve cells The nerves that run along the body wall pass between the outer circular and inner longitudinal muscle layers of the wall They give off branches that form the intermuscular plexus and the subepidermal plexus These nerves connect with the cricopharyngeal connective Movement nbsp A profile SEM image of Lumbricus terrestris setae small bristle like projections that facilitate movement by anchoring the earthworm in the soil source source source source source source source source source source An earthworm crawling over asphalt On the surface crawling speed varies both within and among individuals Earthworms crawl faster primarily by taking longer strides and a greater frequency of strides Larger Lumbricus terrestris worms crawl at a greater absolute speed than smaller worms They achieve this by taking slightly longer strides but with slightly lower stride frequencies 23 Touching an earthworm which causes a pressure response as well as often a response to the dehydrating quality of the salt on human skin toxic to earthworms stimulates the subepidermal nerve plexus which connects to the intermuscular plexus and causes the longitudinal muscles to contract This causes the writhing movements observed when a human picks up an earthworm This behaviour is a reflex and does not require the CNS it occurs even if the nerve cord is removed Each segment of the earthworm has its own nerve plexus The plexus of one segment is not connected directly to that of adjacent segments The nerve cord is required to connect the nervous systems of the segments 24 The giant axons carry the fastest signals along the nerve cord These are emergency signals that initiate reflex escape behaviours The larger dorsal giant axon conducts signals the fastest from the rear to the front of the animal If the rear of the worm is touched a signal is rapidly sent forwards causing the longitudinal muscles in each segment to contract This causes the worm to shorten very quickly as an attempt to escape from a predator or other potential threat The two medial giant axons connect with each other and send signals from the front to the rear Stimulation of these causes the earthworm to very quickly retreat perhaps contracting into its burrow to escape a bird The presence of a nervous system is essential for an animal to be able to experience nociception or pain However other physiological capacities are also required such as opioid sensitivity and central modulation of responses by analgesics 25 Enkephalin and a endorphin like substances have been found in earthworms Injections of naloxone an opioid antagonist inhibit the escape responses of earthworms This indicates that opioid substances play a role in sensory modulation similar to that found in many vertebrates 26 Sensory reception Photosensitivity See also Photosensitivity Earthworms do not have eyes although some worms do however they do have specialized photosensitive cells called light cells of Hess These photoreceptor cells have a central intracellular cavity phaosome filled with microvilli As well as the microvilli there are several sensory cilia in the phaosome which are structurally independent of the microvilli 27 The photoreceptors are distributed in most parts of the epidermis but are more concentrated on the back and sides of the worm A relatively small number occurs on the ventral surface of the first segment They are most numerous in the prostomium and reduce in density in the first three segments they are very few in number past the third segment 24 Epidermal receptor Sense organ These receptors are abundant and distributed all over the epidermis Each receptor shows a slightly elevated cuticle which covers a group of tall slender and columnar receptor cells These cells bear small hairlike processes at their outer ends and their inner ends are connected with nerve fibres The epidermal receptors are tactile in function They are also concerned with changes in temperature and respond to chemical stimuli Earthworms are extremely sensitive to touch and mechanical vibration Buccal receptor Sense organ These receptors are located only in the epithelium of the buccal chamber These receptors are gustatory and olfactory related to taste and smell They also respond to chemical stimuli Chemoreceptor Digestive system The gut of the earthworm is a straight tube that extends from the worm s mouth to its anus It is differentiated into an alimentary canal and associated glands which are embedded in the wall of the alimentary canal itself The alimentary canal consists of a mouth buccal cavity generally running through the first one or two segments of the earthworm pharynx running generally about four segments in length esophagus crop gizzard usually and intestine 28 Food enters at the mouth The pharynx acts as a suction pump its muscular walls draw in food In the pharynx the pharyngeal glands secrete mucus Food moves into the esophagus where calcium from the blood and ingested from previous meals is pumped in to maintain proper blood calcium levels in the blood and food pH From there the food passes into the crop and gizzard In the gizzard strong muscular contractions grind the food with the help of mineral particles ingested along with the food Once through the gizzard food continues through the intestine for digestion The intestine secretes pepsin to digest proteins amylase to digest polysaccharides cellulase to digest cellulose and lipase to digest fats 8 Earthworms use in addition to the digestive proteins a class of surface active compounds called drilodefensins which help digest plant material 29 Instead of being coiled like a mammalian intestine in an earthworm s intestine a large mid dorsal tongue like fold is present called typhlosole which increases surface area to increase nutrient absorption by having many folds running along its length The intestine has its own pair of muscle layers like the body but in reverse order an inner circular layer within an outer longitudinal layer 30 Circulatory system Earthworms have a dual circulatory system in which both the coelomic fluid and a closed circulatory system carry the food waste and respiratory gases The closed circulatory system has five main blood vessels the dorsal top vessel which runs above the digestive tract the ventral bottom vessel which runs below the digestive tract the subneural vessel which runs below the ventral nerve cord and two lateroneural vessels on either side of the nerve cord 31 The dorsal vessel is mainly a collecting structure in the intestinal region It receives a pair commissural and dorsal intestines in each segment The ventral vessel branches off to a pair of ventro tegumentaries and ventro intestinals in each segment The subneural vessel also gives out a pair of commissurals running along the posterior surface of the septum The pumping action on the dorsal vessel moves the blood forward while the other four longitudinal vessels carry the blood rearward In segments seven through eleven a pair of aortic arches ring the coelom and acts as hearts pumping the blood to the ventral vessel that acts as the aorta The blood consists of ameboid cells and haemoglobin dissolved in the plasma The second circulatory system derives from the cells of the digestive system that line the coelom As the digestive cells become full they release non living cells of fat into the fluid filled coelom where they float freely but can pass through the walls separating each segment moving food to other parts and assist in wound healing 32 Excretory system The excretory system contains a pair of nephridia in every segment except for the first three and the last ones 33 The three types of nephridia are integumentary septal and pharyngeal The integumentary nephridia lie attached to the inner side of the body wall in all segments except the first two The septal nephridia are attached to both sides of the septa behind the 15th segment The pharyngeal nephridia are attached to the fourth fifth and sixth segments 33 The waste in the coelom fluid from a forward segment is drawn in by the beating of cilia of the nephrostome From there it is carried through the septum wall via a tube which forms a series of loops entwined by blood capillaries that also transfer waste into the tubule of the nephrostome The excretory wastes are then finally discharged through a pore on the worm s side 34 Respiration Earthworms have no special respiratory organs Gases are exchanged through the moist skin and capillaries where the oxygen is picked up by the haemoglobin dissolved in the blood plasma and carbon dioxide is released Water as well as salts can also be moved through the skin by active transport Life and physiologyAt birth earthworms emerge small but fully formed lacking only their sex structures which develop in about 60 to 90 days They attain full size in about one year Scientists predict that the average lifespan under field conditions is four to eight years while most garden varieties live only one to two years Reproduction nbsp Earthworm copulation nbsp Earthworm cocoons from L terrestris nbsp An earthworm cocoon from L rubellusSeveral common earthworm species are mostly parthenogenetic meaning that growth and development of embryos happens without fertilization Among lumbricid earthworms parthenogenesis arose from sexual relatives many times 35 Parthenogenesis in some Aporrectodea trapezoides lineages arose 6 4 to 1 1 million years ago from sexual ancestors 36 A few species exhibit pseudogamous parthogenesis meaning that mating is necessary to stimulate reproduction even though no male genetic material passes to the offspring 37 Earthworm mating occurs on the surface most often at night Earthworms are hermaphrodites that is they have both male and female sexual organs The sexual organs are located in segments 9 to 15 Earthworms have one or two pairs of testes contained within sacs The two or four pairs of seminal vesicles produce store and release the sperm via the male pores Ovaries and oviducts in segment 13 release eggs via female pores on segment 14 while sperm is expelled from segment 15 One or more pairs of spermathecae are present in segments 9 and 10 depending on the species which are internal sacs that receive and store sperm from the other worm during copulation As a result segment 15 of one worm exudes sperm into segments 9 and 10 with its storage vesicles of its mate Some species use external spermatophores for sperm transfer In Hormogaster samnitica and Hormogaster elisae transcriptome DNA libraries were sequenced and two sex pheromones Attractin and Temptin were detected in all tissue samples of both species 38 Sex pheromones are probably important in earthworms because they live in an environment where chemical signaling may play a crucial role in attracting a partner and in facilitating outcrossing Outcrossing would provide the benefit of masking the expression of deleterious recessive mutations in progeny 39 see Complementation Copulation and reproduction are separate processes in earthworms The mating pair overlap front ends ventrally and each exchanges sperm with the other The clitellum becomes very reddish to pinkish in colour Sometime after copulation long after the worms have separated the clitellum behind the spermathecae secretes material which forms a ring around the worm The worm then backs out of the ring and as it does so it injects its own eggs and the other worm s sperm into it Thus each worm becomes the genetic father of some of their offspring due to its own sperm transferred to other earthworm and the genetic mother offsprings from its own egg cells of the rest As the worm slips out of the ring the ends of the cocoon seal to form a vaguely onion shaped incubator cocoon in which the embryonic worms develop Hence fertilization is external The cocoon is then deposited in the soil After three weeks 2 to 20 offspring hatch with an average of 4 Development is direct i e without formation of any larva Locomotion nbsp Close up of an earthworm in garden soilEarthworms travel underground by means of waves of muscular contractions which alternately shorten and lengthen the body peristalsis The shortened part is anchored to the surrounding soil by tiny clawlike bristles setae set along its segmented length In all the body segments except the first last and clitellum there is a ring of S shaped setae embedded in the epidermal pit of each segment perichaetine The whole burrowing process is aided by the secretion of lubricating mucus As a result of their movement through their lubricated tunnels worms can make gurgling noises underground when disturbed Earthworms move through soil by expanding crevices with force when forces are measured according to body weight hatchlings can push 500 times their own body weight whereas large adults can push only 10 times their own body weight 40 Regeneration Earthworms have the ability to regenerate lost segments but this ability varies between species and depends on the extent of the damage Stephenson 1930 devoted a chapter of his monograph to this topic while G E Gates spent 20 years studying regeneration in a variety of species but because little interest was shown Gates 1972 published only a few of his findings that nevertheless show it is theoretically possible to grow two whole worms from a bisected specimen in certain species Gates s reports included Eisenia fetida Savigny 1826 with head regeneration in an anterior direction possible at each intersegmental level back to and including 23 24 while tails were regenerated at any levels behind 20 21 thus two worms may grow from one 41 Lumbricus terrestris Linnaeus 1758 replacing anterior segments from as far back as 13 14 and 16 17 but tail regeneration was never found Perionyx excavatus Perrier 1872 readily regenerated lost parts of the body in an anterior direction from as far back as 17 18 and in a posterior direction as far forward as 20 21 Lampito mauritii Kinberg 1867 with regeneration in anterior direction at all levels back to 25 26 and tail regeneration from 30 31 head regeneration was sometimes believed to be caused by internal amputation resulting from Sarcophaga sp larval infestation Criodrilus lacuum Hoffmeister 1845 also has prodigious regenerative capacity with head regeneration from as far back as 40 41 42 An unidentified Tasmanian earthworm shown growing a replacement head has been reported 43 Taxonomy and distributionWithin the world of taxonomy the stable Classical System of Michaelsen 1900 and Stephenson 1930 was gradually eroded by the controversy over how to classify earthworms such that Fender and McKey Fender 1990 went so far as to say The family level classification of the megascolecid earthworms is in chaos 44 Over the years many scientists have developed their own classification systems for earthworms which led to confusion and these systems have been and still continue to be revised and updated The classification system used here which was developed by Blakemore 2000 is a modern reversion to the Classical System that is historically proven and widely accepted 45 Categorization of a megadrile earthworm into one of its taxonomic families under suborders Lumbricina and Moniligastrida is based on such features as the makeup of the clitellum the location and disposition of the sex features pores prostatic glands etc number of gizzards and body shape 45 Currently over 6 000 species of terrestrial earthworms are named as provided in a species name database 46 but the number of synonyms is unknown The families with their known distributions or origins 45 Acanthodrilidae Ailoscolecidae the Pyrenees and the southeast USA Almidae tropical equatorial South America Africa Indo Asia Benhamiinae Ethiopian Neotropical a possible subfamily of Octochaetidae Criodrilidae southwestern Palaearctic Europe Middle East Russia and Siberia to Pacific coast Japan Biwadrilus mainly aquatic Diplocardiinae idae Gondwanan or Laurasian a subfamily of Acanthodrilidae Enchytraeidae cosmopolitan but uncommon in tropics usually classed with Microdriles Eudrilidae Tropical Africa south of the Sahara Exxidae Neotropical Central America and the Caribbean Glossoscolecidae Neotropical Central and South America Caribbean Haplotaxidae cosmopolitan distribution usually classed with Microdriles Hormogastridae Mediterranean Kynotidae Malagasian Madagascar Lumbricidae Holarctic North America Europe Middle East Central Asia to Japan Lutodrilidae Louisiana the southeast USA Megascolecidae Microchaetidae Terrestrial in Africa especially South African grasslands Moniligastridae Oriental and Indian subregion Ocnerodrilidae Neotropics Africa India Octochaetidae Australasian Indian Oriental Ethiopian Neotropical Octochaetinae Australasian Indian Oriental subfamily if Benhamiinae is accepted Sparganophilidae Nearctic Neotropical North and Central America Tumakidae Colombia South AmericaAs an invasive species Main articles Earthworms as invasive species and Invasive earthworms of North America From a total of around 7 000 species only about 150 species are widely distributed around the world These are the peregrine or cosmopolitan earthworms 47 Of the 182 taxa of earthworms found in the United States and Canada 60 33 are introduced species Ecology nbsp Permanent vertical burrowEarthworms are classified into three main ecophysiological categories 1 leaf litter or compost dwelling worms that are nonburrowing live at the soil litter interface and eat decomposing organic matter epigeic e g Eisenia fetida 2 topsoil or subsoil dwelling worms that feed on soil burrow and cast within the soil creating horizontal burrows in upper 10 30 cm of soil endogeic and 3 worms that construct permanent deep vertical burrows which they use to visit the surface to obtain plant material for food such as leaves anecic meaning reaching up e g Lumbricus terrestris 48 Earthworm populations depend on both physical and chemical properties of the soil such as temperature moisture pH salts aeration and texture as well as available food and the ability of the species to reproduce and disperse One of the most important environmental factors is pH but earthworms vary in their preferences Most favour neutral to slightly acidic soils Lumbricus terrestris is still present in a pH of 5 4 Dendrobaena octaedra at a pH of 4 3 and some Megascolecidae are present in extremely acidic humic soils Soil pH may also influence the numbers of worms that go into diapause The more acidic the soil the sooner worms go into diapause and remain in diapause the longest time at a pH of 6 4 Earthworms are preyed upon by many species of birds e g robins starlings thrushes gulls crows snakes wood turtles mammals e g bears boars foxes hedgehogs pigs moles 49 and invertebrates e g ants 50 flatworms ground beetles and other beetles snails spiders and slugs Earthworms have many internal parasites including protozoa platyhelminthes mites and nematodes they can be found in the worms blood seminal vesicles coelom or intestine or in their cocoons e g the mite Histiostoma murchiei is a parasite of earthworm cocoons 51 The earthworm activity aerates and mixes the soil and is conducive to mineralization of nutrients and their uptake by vegetation Certain species of earthworm come to the surface and graze on the higher concentrations of organic matter present there mixing it with the mineral soil Because a high level of organic matter mixing is associated with soil fertility an abundance of earthworms is generally considered beneficial by farmers and gardeners 52 53 As long ago as 1881 Charles Darwin wrote It may be doubted whether there are many other animals which have played so important a part in the history of the world as have these lowly organized creatures 54 nbsp Devil s coach horse beetle preying on Lumbricus sp Also while as the name suggests the main habitat of earthworms is in soil they are not restricted to this habitat The brandling worm Eisenia fetida lives in decaying plant matter and manure Arctiostrotus vancouverensis from Vancouver Island and the Olympic Peninsula is generally found in decaying conifer logs Aporrectodea limicola Sparganophilus spp and several others are found in mud in streams Some species are arboreal citation needed some aquatic and some euryhaline salt water tolerant and littoral living on the sea shore e g Pontodrilus litoralis 55 Even in the soil species special habitats such as soils derived from serpentine have an earthworm fauna of their own Vermicomposting of organic wastes and addition of this organic matter to the soil preferably as a surface mulch will provide several species of earthworms with their food and nutrient requirements and will create the optimum conditions of temperature and moisture that will stimulate their activity Earthworms are environmental indicators of soil health Earthworms feed on the decaying matter in the soil and analyzing the contents of their digestive tracts gives insight into the overall condition of the soil The earthworm gut accumulates chemicals including heavy metals such as cadmium mercury zinc and copper The population size of the earthworm indicates the quality of the soil as healthy soil would contain a larger number of earthworms 56 Environmental impacts The major benefits of earthworm activities to soil fertility for agriculture can be summarized as Biological In many soils earthworms play a major role in the conversion of large pieces of organic matter into rich humus thus improving soil fertility This is achieved by the worm s actions of pulling below the surface deposited organic matter such as leaf fall or manure either for food or to plug its burrow Once in the burrow the worm will shred the leaf partially digest it and mingle it with the earth Worm casts see bottom right can contain 40 percent more humus than the top 9 inches 230 mm of soil in which the worm is living 57 nbsp Faeces in the form of castsChemical In addition to dead organic matter the earthworm also ingests any other soil particles that are small enough including sand grains up to 1 20 inch 1 3 mm into its gizzard wherein those minute fragments of grit grind everything into a fine paste which is then digested in the intestine When the worm excretes this in the form of casts deposited on the surface or deeper in the soil minerals and plant nutrients are changed to an accessible form for plants to use Investigations in the United States show that fresh earthworm casts are five times richer in available nitrogen seven times richer in available phosphates and 11 times richer in available potassium than the surrounding upper 6 inches 150 mm of soil In conditions where humus is plentiful the weight of casts produced may be greater than 4 5 kilograms 9 9 lb per worm per year 57 Physical The earthworm s burrowing creates a multitude of channels through the soil and is of great value in maintaining the soil structure enabling processes of aeration and drainage 58 Permaculture co founder Bill Mollison points out that by sliding in their tunnels earthworms act as an innumerable army of pistons pumping air in and out of the soils on a 24 hour cycle more rapidly at night 59 Thus the earthworm not only creates passages for air and water to traverse the soil but also modifies the vital organic component that makes a soil healthy see Bioturbation Earthworms promote the formation of nutrient rich casts globules of soil stable in soil mucus that have high soil aggregation and soil fertility and quality 57 In podzol soils earthworms can obliterate the characteristic banded appearance of the soil profile by mixing the organic LFH eluvial E and upper illuvial B horizons to create a single dark Ap horizon 60 61 Earthworms accelerate nutrient cycling in the soil plant system through fragmentation amp mixing of plant debris physical grinding amp chemical digestion 57 The earthworm s existence cannot be taken for granted Dr W E Shewell Cooper observed tremendous numerical differences between adjacent gardens and worm populations are affected by a host of environmental factors many of which can be influenced by good management practices on the part of the gardener or farmer 62 Darwin estimated that arable land contains up to 53 000 per acre 130 000 ha of worms but more recent research has produced figures suggesting that even poor soil may support 250 000 per acre 620 000 ha whilst rich fertile farmland may have up to 1 750 000 per acre 4 300 000 ha meaning that the weight of earthworms beneath a farmer s soil could be greater than that of the livestock upon its surface Richly organic topsoil populations of earthworms are much higher averaging 500 per square metre 46 sq ft and up to 400 g2 dubious discuss such that for the 7 billion of us each person alive today has support of 7 million earthworms 63 The ability to break down organic materials and excrete concentrated nutrients makes the earthworm a functional contributor in restoration projects In response to ecosystem disturbances some sites have utilized earthworms to prepare soil for the return of native flora Research from the Station d ecologie Tropicale de Lamto asserts that the earthworms positively influence the rate of macroaggregate formation an important feature for soil structure 64 The stability of aggregates in response to water was also found to be improved when constructed by earthworms 64 Though not fully quantified yet greenhouse gas emissions of earthworms likely contribute to global warming especially since top dwelling earthworms increase the speed of carbon cycles and have been spread by humans into many new geographies 65 ThreatsSee also Biodiversity loss Earthworms Nitrogenous fertilizers tend to create acidic conditions which are fatal to the worms and dead specimens are often found on the surface following the application of substances such as DDT lime sulphur and lead arsenate In Australia changes in farming practices such as the application of superphosphates on pastures and a switch from pastoral farming to arable farming had a devastating effect on populations of the giant Gippsland earthworm leading to their classification as a protected species Globally certain earthworms populations have been devastated by deviation from organic production and the spraying of synthetic fertilizers and biocides with at least three species now listed as extinct but many more endangered 66 Economic impact nbsp Earthworms being raised at La Chonita Hacienda in MexicoVarious species of worms are used in vermiculture the practice of feeding organic waste to earthworms to decompose food waste These are usually Eisenia fetida or its close relative Eisenia andrei or the brandling worm commonly known as the tiger worm or red wiggler They are distinct from soil dwelling earthworms In the tropics the African nightcrawler Eudrilus eugeniae 67 and the Indian blue Perionyx excavatus are used Earthworms are sold all over the world the market is sizable According to Doug Collicutt In 1980 370 million worms were exported from Canada with a Canadian export value of 13 million and an American retail value of 54 million 68 Earthworms provide an excellent source of protein for fish fowl and pigs but were also used traditionally for human consumption Noke is a culinary term used by the Maori of New Zealand and refers to earthworms which are considered delicacies for their chiefs See alsoDrilosphere the part of the soil influenced by earthworm secretions and castings The Formation of Vegetable Mould through the Action of Worms an 1881 book by Charles Darwin Soil life Vermicompost Vermifilter Vermifilter toilet Worm charmingReferences Anderson Frank James Samuel The evolution of earthworms BMC Retrieved 3 February 2024 Omodeo Pietro 2000 Evolution and biogeography of megadriles Annelida Clitellata Italian Journal of Zoology 67 2 2 179 201 doi 10 1080 11250000009356313 S2CID 86293273 Bonkowski Michael Griffiths Bryan S Ritz Karl November 2000 Food preferences of earthworms for soil fungi Pedobiologia 44 6 6 667 doi 10 1078 S0031 4056 04 70080 3 Lofty Clive A Lofty J R 1977 Biology of Earthworms London Chapman amp Hall p 80 ISBN 0 412 14950 8 Edwards Clive A Lofty J R 1977 Biology of Earthworms London Chapman amp Hall p 19 ISBN 0 412 14950 8 Edwards Clive A Lofty J R 1977 Biology of Earthworms London Chapman amp Hall pp preface ISBN 0 412 14950 8 Coleman David C Crossley D A Hendrix Paul F 2004 Fundamentals of Soil Ecology Amsterdam Boston Elsevier Academic Press p 170 ISBN 0 12 179726 0 a b Cleveland P Hickman Jr Larry S Roberts Frances M Hickman 1984 Integrated Principles of Zoology 7th ed Times Mirror Mosby College Publishing p 344 ISBN 978 0 8016 2173 4 Blakemore 2012 p xl Blakemore R J et al 2007 Megascolex Promegascolex mekongianus Cognetti 1922 its extent ecology and allocation to Amynthas Clitellata Oligochaeta Megascolecidae PDF Opuscula Zoologica Edwards amp Bohlen 1996 p 11 a b c Sims amp Gerard 1985 pp 3 6 Edwards amp Bohlen 1996 p 3 Feldkamp J 1924 Feldkamp J Untersuchungen uber die Geschlechtsmerkmale und die Begattung der Regenwurmer Zoologische Jahrbucher Anatomie 46 609 632 Edwards amp Bohlen 1996 p 8 9 Edwards amp Bohlen 1996 p 1 Sims amp Gerard 1985 p 8 a b Edwards amp Bohlen 1996 p 12 Edwards amp Bohlen 1996 p 6 Myrmecofourmis 2018 Meet the squirting earthworm Youtube Archived from the original video on 2021 10 30 Experiment Comparing speeds of two nerve fiber sizes BackyardBrains Retrieved April 4 2015 Drewes C D Landa K B McFall J L 1978 Giant nerve fibre activity in intact freely moving earthworms The Journal of Experimental Biology 72 217 227 doi 10 1242 jeb 72 1 217 PMID 624897 Quillin K J 1999 Kinematic scaling of locomotion by hydrostatic animals ontogeny of peristaltic crawling by the earthworm lumbricus terrestris Journal of Experimental Biology 202 6 661 674 doi 10 1242 jeb 202 6 661 PMID 10021320 a b Earthworm nervous system Cronodon Retrieved April 3 2015 Elwood R W 2011 Pain and suffering in invertebrates ILAR Journal 52 2 175 84 doi 10 1093 ilar 52 2 175 PMID 21709310 Smith J A 1991 A question of pain in invertebrates ILAR Journal 33 1 2 25 31 doi 10 1093 ilar 33 1 2 25 Rohlich P Aros B Viragh Sz 1970 Fine structure of photoreceptor cells in the earthworm Lumbricus Terrestris Zeitschrift fur Zellforschung und Mikroskopische Anatomie 104 3 345 357 doi 10 1007 BF00335687 PMID 4193489 S2CID 22771585 Edwards amp Bohlen 1996 p 13 Liebeke Manuel Strittmatter Nicole Fearn Sarah Morgan A John Kille Peter Fuchser Jens Wallis David Palchykov Vitalii Robertson Jeremy 2015 08 04 Unique metabolites protect earthworms against plant polyphenols Nature Communications 6 7869 Bibcode 2015NatCo 6 7869L doi 10 1038 ncomms8869 PMC 4532835 PMID 26241769 Edwards amp Bohlen 1996 pp 13 15 Sims amp Gerard 1985 p 10 Cleveland P Hickman Jr Larry S Roberts Frances M Hickman 1984 Integrated Principles of Zoology 7th ed Times Mirror Mosby College Publishing pp 344 345 ISBN 978 0 8016 2173 4 a b Farabee H J Excretory System Archived from the original on 30 July 2012 Retrieved 29 July 2012 Cleveland P Hickman Jr Larry S Roberts Frances M Hickman 1984 Integrated Principles of Zoology 7th ed Times Mirror Mosby College Publishing pp 345 346 ISBN 978 0 8016 2173 4 Dominguez J Aira M Breinholt JW Stojanovic M James SW Perez Losada M 2015 Underground evolution New roots for the old tree of lumbricid earthworms Mol Phylogenet Evol 83 7 19 doi 10 1016 j ympev 2014 10 024 PMC 4766815 PMID 25463017 Fernandez R Almodovar A Novo M Simancas B Diaz Cosin DJ 2012 Adding complexity to the complex new insights into the phylogeny diversification and origin of parthenogenesis in the Aporrectodea caliginosa species complex Oligochaeta Lumbricidae Mol Phylogenet Evol 64 2 368 79 doi 10 1016 j ympev 2012 04 011 PMID 22542691 Cosin D J D Novo M Fernandez R 2011 Reproduction of Earthworms Sexual Selection and Parthenogenesis In Karaca A eds Biology of Earthworms Soil Biology vol 24 Springer Berlin Heidelberg pp 76ff 1 Novo M Riesgo A Fernandez Guerra A Giribet G 2013 Pheromone evolution reproductive genes and comparative transcriptomics in mediterranean earthworms annelida oligochaeta hormogastridae Mol Biol Evol 30 7 1614 29 doi 10 1093 molbev mst074 hdl 10261 94159 PMID 23596327 Bernstein H Hopf FA Michod RE 1987 The molecular basis of the evolution of sex Molecular Genetics of Development Advances in Genetics Vol 24 pp 323 70 doi 10 1016 S0065 2660 08 60012 7 ISBN 978 0 12 017624 3 PMID 3324702 a href Template Cite book html title Template Cite book cite book a journal ignored help Quillan K J 2000 Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris Journal of Experimental Biology 203 Pt 18 2757 2770 doi 10 1242 jeb 203 18 2757 PMID 10952876 Retrieved April 4 2015 Gates G E April 1949 Regeneration in an Earthworm Eisenia Foetida Savigny 1826 I Anterior Regeneration PDF The Biological Bulletin 96 2 129 139 doi 10 2307 1538195 JSTOR 1538195 PMID 18120625 Archived from the original PDF on 2007 04 01 Gates G E 1 January 1953 On Regenerative Capacity of Earthworms of the Family Lumbricidae The American Midland Naturalist 50 2 414 419 doi 10 2307 2422100 JSTOR 2422100 Invertebrata 20a items Archived from the original on 2006 06 22 Retrieved 2006 11 20 Fender amp McKey Fender 1990 Soil Biology Guide Wiley Interscience ISBN 978 0 471 04551 9 a b c Blakemore R J 2006 March 2006 Revised Key to Worldwide Earthworm Families from Blakemore 2000 plus Reviews of Criodrilidae including Biwadrilidae and Octochaetidae PDF A Series of Searchable Texts on Earthworm Biodiversity Ecology and Systematics from Various Regions of the World annelida net Retrieved May 15 2012 a href Template Cite web html title Template Cite web cite web a CS1 maint numeric names authors list link Earthworms Earthworms elte hu Retrieved 19 March 2022 ref Blakemore 2016 Cosmopolitan Earthworms Earthworms Renewers of Agroecosystems SA Fall 1990 v3n1 Archived 2007 07 13 at the Wayback Machine Gould Edwin McShea William Grand Theodore 1993 Function of the Star in the Star Nosed Mole Condylura cristata Journal of Mammalogy 74 1 108 116 doi 10 2307 1381909 ISSN 0022 2372 JSTOR 1381909 Dejean A Schatx B 1999 Prey Capture Behavior of Psalidomyrmex procerus Formicidae Ponerinae a Specialist Predator of Earthworms Annelida Sociobiology 545 554 ISSN 0361 6525 Oliver James H 1962 A Mite Parasitic in the Cocoons of Earthworms The Journal of Parasitology 48 1 120 123 doi 10 2307 3275424 ISSN 0022 3395 JSTOR 3275424 PMID 14481811 NSW Department of Primary Industries How earthworms can help your soil Archived 2017 08 07 at the Wayback Machine Galveston County Master Gardener Association Beneficials in the garden 38 Earthworms Darwin Charles 1881 The Formation of Vegetable Mould through the Action of Worms with Observations on their Habits John Murray Found at Project Gutenberg Etext Formation of Vegetable Mould by Darwin Blakemore R J 2007 Origin and means of dispersal of cosmopolitan Pontodrilus litoralis Oligochaeta Megascolecidae European Journal of Soil Biology a href Template Cite web html title Template Cite web cite web a CS1 maint numeric names authors list link Frund Heinz Christian Graefe Ulfert Tischer Sabine 2011 Karaca Ayten ed Earthworms as Bioindicators of Soil Quality Biology of Earthworms Soil Biology Berlin Heidelberg Springer Berlin Heidelberg vol 24 pp 261 278 doi 10 1007 978 3 642 14636 7 16 ISBN 978 3 642 14635 0 retrieved 2021 02 18 a b c d Nyle C Brady Ray R Weil 2009 Elements of the Nature and Properties of Soils 3rd ed Prentice Hall ISBN 978 0 13 501433 2 Lines Kelly Rebecca 2021 How earthworms can help your soil www dpi nsw gov au Archived from the original on 2021 10 08 Retrieved 2021 11 30 Mollison Bill Permaculture A Designer s Manual Tagari Press 1988 R T Fisher January 1928 Soil Changes and Silviculture on the Harvard Forest PDF Ecology 9 1 6 11 Bibcode 1928Ecol 9 6F doi 10 2307 1929537 JSTOR 1929537 Retrieved 2022 03 19 Langmaid K K 1 February 1964 Some Effects of Earthworm Invasion in Virgin Podzols Canadian Journal of Soil Science 44 1 34 37 doi 10 4141 cjss64 005 Retrieved 19 March 2022 Cooper Shewell Soil Humus And Health ISBN 978 0 583 12796 7 Blakemore R J 2017 2017 02 12 Nature article to commemorate Charles Darwin s birthday on 12th February VermEcology a href Template Cite web html title Template Cite web cite web a CS1 maint numeric names authors list link a b Blanchart Eric 1992 12 01 Restoration by earthworms megascolecidae of the macroaggregate structure of a destructured savanna soil under field conditions Soil Biology and Biochemistry 24 12 1587 1594 doi 10 1016 0038 0717 92 90155 Q Burke David December 26 2019 The power of earthworm poop and how it could influence climate change CBC Blakemore R J 2018 2018 Critical Decline of Earthworms from Organic Origins under Intensive Humic SOM Depleting Agriculture Soil Systems Soil Systems 2 2 33 2 2 33 doi 10 3390 soilsystems2020033 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint numeric names authors list link Blakemore R J 2015 Eco taxonomic profile of the iconic vermicomposter the African Nightcrawler Eudrilus eugeniae Kinberg 1867 African Invertebrates 56 527 548 Archived from the original on 2016 10 22 a href Template Cite web html title Template Cite web cite web a CS1 maint numeric names authors list link Collicutt Doug Biology of the Night Crawler Lumbricus terrestris NatureNorth Retrieved 5 June 2022 Works cited Blakemore Robert J 2012 Cosmopolitan Earthworms an Eco Taxonomic Guide to the Peregrine Species of the World 5th Ed Yokohama Japan VermEcology Edwards Clive A Bohlen P J 1996 Biology and Ecology of Earthworms Springer Science amp Business Media ISBN 978 0 412 56160 3 Sims Reginald William Gerard B 1985 Earthworms Keys and Notes for the Identification and Study of the Species London Published for The Linnean Society of London and the Estuarine and Brackish Water Sciences Association by E J Brill Dr W Backhuys Further readingEdwards Clive A ed Earthworm Ecology Boca Raton CRC Press 2004 Second revised edition ISBN 0 8493 1819 X Lee Keneth E Earthworms Their Ecology and Relationships with Soils and Land Use Academic Press Sydney 1985 ISBN 0 12 440860 5 Stewart Amy The Earth Moved On the Remarkable Achievements of Earthworms Chapel Hill N C Algonquin Books 2004 ISBN 1 56512 337 9External links nbsp Media related to Earthworms at Wikimedia Commons nbsp Data related to Lumbricina at Wikispecies Chisholm Hugh ed 1911 Earthworm Encyclopaedia Britannica 11th ed Cambridge University Press Retrieved from https en wikipedia org w index php title Earthworm amp oldid 1202633992, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.