fbpx
Wikipedia

Pig

The pig (Sus domesticus), often called swine, hog, or domestic pig when distinguishing from other members of the genus Sus, is an omnivorous, domesticated, even-toed, hoofed mammal. It is variously considered a subspecies of Sus scrofa (the wild boar or Eurasian boar) or a distinct species. The pig's head-plus-body length ranges from 0.9 to 1.8 m (3 to 6 ft), and adult pigs typically weigh between 50 and 350 kg (110 and 770 lb), with well-fed individuals even exceeding this range. The size and weight of hogs largely depends on their breed. Compared to other artiodactyls, a pig's head is relatively long and pointed. Most even-toed ungulates are herbivorous, but pigs are omnivores, like their wild relative. Pigs grunt and make snorting sounds.

Pig
A pig oinking
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Family: Suidae
Genus: Sus
Species:
S. domesticus
Binomial name
Sus domesticus
Erxleben, 1777
Synonyms[1]

When used as livestock, pigs are farmed primarily for the production of meat, called pork. A group of pigs is called a passel, a team, or a sounder. The animal's bones, hide, and bristles are also used in products. Pigs, especially miniature breeds, are kept as pets.

Biology

 
Skull
 
Skeleton
 
Bones of the foot

The pig typically has a large head, with a long snout which is strengthened by a special prenasal bone and a disk of cartilage at the tip.[2] The snout is used to dig into the soil to find food and is a very acute sense organ. The dental formula of adult pigs is 3.1.4.33.1.4.3, giving a total of 44 teeth. The rear teeth are adapted for crushing. In the male, the canine teeth can form tusks, which grow continuously and are sharpened by constantly being ground against each other.[2]

Four hoofed toes are on each foot, with the two larger central toes bearing most of the weight, but the outer two also being used in soft ground.[3]

Most pigs have rather a bristled sparse hair covering on their skin, although woolly-coated breeds such as the Mangalitsa exist.[4]

Pigs possess both apocrine and eccrine sweat glands, although the latter appear limited to the snout and dorsonasal areas.[5] Pigs, however, like other "hairless" mammals (e.g. elephants, rhinos, and mole-rats), do not use thermal sweat glands in cooling.[6] Pigs are also less able than many other mammals to dissipate heat from wet mucous membranes in the mouth through panting. Their thermoneutral zone is 16 to 22 °C (61 to 72 °F).[7] At higher temperatures, pigs lose heat by wallowing in mud or water via evaporative cooling, although it has been suggested that wallowing may serve other functions, such as protection from sunburn, ecto-parasite control, and scent-marking.[8]

Pigs are one of four known mammalian species which possess mutations in the nicotinic acetylcholine receptor that protect against snake venom. Mongooses, honey badgers, hedgehogs, and pigs all have modifications to the receptor pocket which prevents the snake venom α-neurotoxin from binding. These represent four separate, independent mutations.[9]

Pigs have small lungs in relation to their body size, and are thus more susceptible than other domesticated animals to fatal bronchitis and pneumonia.[10] Pigs have a maximum life span of about 27 years.[11]

Genetics and genomics

The genome of the pig has been sequenced and contains about 22,342 protein-coding genes.[12][13][14]

Taxonomy

The pig is most often considered to be a subspecies of the wild boar, which was given the name Sus scrofa by Carl Linnaeus in 1758; following from this, the formal name of the pig is Sus scrofa domesticus.[15][16] However, in 1777, Johann Christian Polycarp Erxleben classified the pig as a separate species from the wild boar. He gave it the name Sus domesticus, which is still used by some taxonomists.[17][18] The American Society of Mammalogists considers it a separate species.[19]

History

 
Pottery Swine in Sanxingdui Museum, Shang dynasty
 
Bronze pig sculpture, Zhou dynasty

Archaeological evidence suggests that pigs were domesticated from wild boar in the Near East in the Tigris Basin,[20][page needed] Çayönü, Cafer Höyük, Nevalı Çori[21] being managed in the wild in a way similar to the way they are managed by some modern New Guineans.[22] Remains of pigs have been dated to earlier than 11,400 years ago in Cyprus. Those animals must have been introduced from the mainland, which suggests domestication in the adjacent mainland by then.[23] Pigs were separately domesticated in China beginning 8,000 years ago, and have been one of the most important domesticated animals there ever since.[24][25][26]

In the Near East, pig husbandry spread for the next few millennia. It reduced gradually during the Bronze Age, as rural populations focused instead on commodity-producing livestock. It was sustained in urbanized regions, however.[27]

DNA evidence from subfossil remains of teeth and jawbones of Neolithic pigs shows that the first domestic pigs in Europe had been brought from the Near East. This stimulated the domestication of local European wild boar, resulting in a third domestication event with the Near Eastern genes dying out in European pig stock. Modern domesticated pigs have involved complex exchanges, with European domesticated lines being exported, in turn, to the ancient Near East.[28][29] Historical records indicate that Asian pigs were introduced into Europe during the 18th and early 19th centuries.[25]

In August 2015, a study looked at over 100 pig genome sequences to ascertain their process of domestication, which was assumed to have been initiated by humans, involved few individuals, and relied on reproductive isolation between wild and domestic forms. The study found that the assumption of reproductive isolation with population bottlenecks was not supported. The study indicated that pigs were domesticated separately in Western Asia and China, with Western Asian pigs introduced into Europe, where they crossed with wild boar. A model that fit the data included a mixture with a now extinct ghost population of wild pigs during the Pleistocene. The study also found that despite back-crossing with wild pigs, the genomes of domestic pigs have strong signatures of selection at DNA loci that affect behavior and morphology. The study concluded that human selection for domestic traits likely counteracted the homogenizing effect of gene flow from wild boars and created domestication islands in the genome. The same process may also apply to other domesticated animals.[30][31] In 2019, a study showed that the pig had arrived in Europe from the Near East 8,500 years ago. Over the next 3,000 years they then admixed with the European wild boar until their genome showed less than 5% Near Eastern ancestry, yet retained their domesticated features.[32]

Among the animals that the Spanish introduced to the Chiloé Archipelago in the 16th century, pigs were the most successful to adapt. The pigs benefited from abundant shellfish and algae exposed by the large tides of the archipelago.[33] Pigs were brought to southeastern North America from Europe by de Soto and other early Spanish explorers. Escaped pigs became feral and caused a great deal of disruption to Native Americans.[34] Feral pig populations in the southeastern United States have since migrated north and are a growing concern in the Midwest. Considered an invasive species, many state agencies have programs to trap or hunt feral pigs as means of removal.[35][36][37] Domestic pigs have become feral in many other parts of the world (e.g. New Zealand and northern Queensland) and have caused substantial environmental damage.[38][39] Feral hybrids of the European wild boar with the domestic pig are also very disruptive to both environment and agriculture (among the 100 most damaging animal species),[40] especially in southeastern South America from Uruguay to Brazil's Mato Grosso do Sul and São Paulo.[41][42][43][44][45]

With around 1 billion individuals alive at any time, the domesticated pig is one of the most numerous large mammals on the planet.[46][47]

Reproduction

Female pigs reach sexual maturity at 3–12 months of age and come into estrus every 18–24 days if they are not successfully bred. The variation in ovulation rate can be attributed to intrinsic factors such as age and genotype, as well as extrinsic factors like nutrition, environment, and the supplementation of exogenous hormones.[48] The gestation period averages 112–120 days.[49]

 
Piglets keeping warm together

Estrus lasts two to three days, and the female's displayed receptiveness to mate is known as standing heat. Standing heat is a reflexive response that is stimulated when the female is in contact with the saliva of a sexually mature boar. Androstenol is one of the pheromones produced in the submaxillary salivary glands of boars that will trigger the female's response.[50] The female cervix contains a series of five interdigitating pads, or folds, that will hold the boar's corkscrew-shaped penis during copulation.[51] Females have bicornuate uteruses and two conceptuses must be present in both uterine horns for pregnancy to be established.[52] Maternal recognition of pregnancy in pigs occurs on days 11 to 12 of pregnancy and is marked by progesterone production from a functioning corpus luteum (CL).[53] To avoid luteolysis by PGF2α, rescuing of the CL must occur via embryonic signaling of estradiol 17β and PGE2.[54] This signaling acts on both the endometrium and luteal tissue to prevent the regression of the CL by activation of genes that are responsible for CL maintenance.[55] During mid to late pregnancy, the CL relies primarily on luteinizing hormone (LH) for maintenance until parturition.[54] Animal nutrition is important prior to reproduction and during gestation to ensure optimum reproductive performance is achieved.[56]

Archeological evidence indicates that medieval European pigs farrowed, or bore a litter of piglets, once per year.[57] By the nineteenth century, European piglets routinely double-farrowed, or bore two litters of piglets per year. It is unclear when this shift occurred.[58]

Behavior

 
Pigs in a wallow

In many ways pig behaviour appears to be intermediate between that of other artiodactyls and of carnivores.[59] Pigs seek out the company of other pigs and often huddle to maintain physical contact, although they do not naturally form large herds. They typically live in groups of about 8–10 adult sows, some young individuals, and some single males.[60]

Because of their relative lack of sweat glands, pigs often control their body temperature using behavioural thermoregulation. Wallowing, which often consists of coating the body with mud, is a behaviour frequently exhibited by pigs.[61] They do not submerge completely under the mud, but vary the depth and duration of wallowing depending on environmental conditions.[61] Typically, adult pigs start wallowing once the ambient temperature is around 17–21 °C (63–70 °F). They cover themselves from head to toe in mud.[61] Pigs may use mud as a sunscreen, or as a method of keeping parasites away.[61] Most bristled pigs will "blow their coat", meaning that they shed most of the longer, coarser stiff hair once a year, usually in spring or early summer, to prepare for the warmer months ahead.[62]

If conditions permit, pigs feed continuously for many hours and then sleep for many hours, in contrast to ruminants which tend to feed for a short time and then sleep for a short time. Pigs are omnivorous, and are highly versatile in their feeding behaviour. As they are foraging animals, they primarily eat leaves, stems, roots, fruits, and flowers.[63] Pigs play an important role in regions where pig toilets are employed. Pigs are highly intelligent animals,[64] on par with dogs,[65] and according to David DiSalvo's writing in Forbes, they are "widely considered the smartest domesticated animal in the world. Pigs have demonstrated the ability to move a cursor on a video screen with their snouts and understand what is happening onscreen, and have learned to distinguish between the scribbles they had seen before and those they were seeing for the first time."[66][a][70]

Rooting

 
Juliana piglet rooting on her sibling's belly

Rooting is an instinctual behavior in pigs that is characterized by a pig nudging its snout into something. Similar to a cat's kneading, rooting is found comforting. It first happens when piglets are born to obtain their mother's milk, and can become a habitual, obsessive behavior which is most prominent in animals weaned too early.[71] Often, pigs will root and dig into the ground to forage for food.[71] By means of rooting, pigs have been used to till farmland.[citation needed]

Rooting is known to also be used as a means of communication.[71] Nose rings that pierce the septum of the nose discourage rooting because they make the behavior painful.[citation needed]

The breed known as the kunekune hardly ever roots, as it can sustain itself by feeding on nothing other than grass.[72] Not having to root around in the soil to find underground food (e.g. tubers), it thus has evolved to, for the most part, not possess the instinct for rooting.

Nest-building

A behavioural characteristic of pigs which they share with carnivores is nest-building. Sows root in the ground to create depressions and then build nests in which to give birth. First, the sow digs a depression about the size of her body. She then collects twigs and leaves, and carries these in her mouth to the depression, building them into a mound. She distributes the softer, finer material to the centre of the mound using her feet. When the mound reaches the desired height, she places large branches, up to 2 metres in length, on the surface. She enters into the mound and roots around to create a depression within the gathered material. She then gives birth in a lying position, which, again, is different from other artiodactyls, which usually give birth in a standing position.[59]

Nest-building behaviour is an important part in the process of pre and post-partum maternal behaviour. Nest-building will occur during the last 24 hours before the onset of farrowing and becomes most intense during 12 to 6 hours before farrowing.[73] Nest-building is divided into two phases: one of which is the initial phase of rooting in the ground while the second phase is the collecting, carrying and arranging of the nest material.[73] The sow will separate from the group and seek a suitable nest site with some shelter from rain and wind that has well-drained soil. This nest-building behaviour is performed to provide the offspring with shelter, comfort, and thermoregulation. The nest will provide protection against weather and predators while keeping the piglets close to the sow and away from the rest of the herd. This ensures they do not get trampled on and that other piglets are not stealing milk from the sow.[74] Nest-building can be influenced by internal and external stimuli. Internal hormonal changes and the completion of one nesting phase are indicators of this maternal behaviour.[74] The onset is triggered by the rise in prolactin levels, which is caused by a decrease in progesterone and an increase in prostaglandin, while the gathering of the nest material seems to be regulated more by external stimuli such as temperature.[73] The longer time spent on nest-building will increase pre-partum oxytocin.[citation needed]

Nursing and suckling behaviour

 
Sow with prominent nipples. Pigs typically have 12–14 nipples.
 
Two piglets suckling

Pigs display complex nursing and suckling behaviour.[75] Nursing occurs every 50–60 minutes, and the sow requires stimulation from piglets before milk let-down. Sensory inputs (vocalisation, odours from mammary and birth fluids, and hair patterns of the sow) are particularly important immediately post-birth to facilitate teat location by the piglets.[76] Initially, the piglets compete for position at the udder; then the piglets massage around their respective teats with their snouts, during which time the sow grunts at slow, regular intervals. Each series of grunts varies in frequency, tone and magnitude, indicating the stages of nursing to the piglets.[77]

The phase of competition for teats and of nosing the udder lasts for about one minute and ends when milk flow begins. In the third phase, the piglets hold the teats in their mouths and suck with slow mouth movements (one per second), and the rate of the sow's grunting increases for approximately 20 seconds. The grunt peak in the third phase of suckling does not coincide with milk ejection, but rather the release of oxytocin from the pituitary into the bloodstream.[78] Phase four coincides with the period of main milk flow (10–20 seconds) when the piglets suddenly withdraw slightly from the udder and start sucking with rapid mouth movements of about three per second. The sow grunts rapidly, lower in tone and often in quick runs of three or four, during this phase. Finally, the flow stops and so does the grunting of the sow. The piglets may then dart from teat to teat and recommence suckling with slow movements, or nosing the udder. Piglets massage and suckle the sow's teats after milk flow ceases as a way of letting the sow know their nutritional status. This helps her to regulate the amount of milk released from that teat in future sucklings. The more intense the post-feed massaging of a teat, the greater the future milk release from that teat will be.[79]

Teat order

 
A sow with suckling piglets

In pigs, dominance hierarchies can be formed at a very early age. Piglets are highly precocious and within minutes of being born, or sometimes seconds, will attempt to suckle. The piglets are born with sharp teeth and fight to develop a teat order as the anterior teats produce a greater quantity of milk. Once established, this teat order remains stable with each piglet tending to feed on a particular teat or group of teats.[59] Stimulation of the anterior teats appears to be important in causing milk letdown,[80] so it might be advantageous to the entire litter to have these teats occupied by healthy piglets. Using an artificial sow to rear groups of piglets, recognition of a teat in a particular area of the udder depended initially on visual orientation by means of reference points on the udder to find the area, and then the olfactory sense for the more accurate search within that area.[81]

Senses

Pigs have panoramic vision of approximately 310° and binocular vision of 35° to 50°. It is thought they have no eye accommodation.[82] Other animals that have no accommodation, e.g. sheep, lift their heads to see distant objects.[83] The extent to which pigs have colour vision is still a source of some debate; however, the presence of cone cells in the retina with two distinct wavelength sensitivities (blue and green) suggests that at least some colour vision is present.[84]

Pigs have a well-developed sense of smell, and use is made of this in Europe where they are trained to locate underground truffles. Olfactory rather than visual stimuli are used in the identification of other pigs.[85] Hearing is also well developed, and localisation of sounds is made by moving the head. Pigs use auditory stimuli extensively as a means of communication in all social activities.[86] Alarm or aversive stimuli are transmitted to other pigs not only by auditory cues but also by pheromones.[87] Similarly, recognition between the sow and her piglets is by olfactory and vocal cues.[88]

Breeds

Many breeds of pig exist, with different colors, shapes, and sizes. According to The Livestock Conservancy, as of 2016, three breeds of pig are critically rare (having a global population of fewer than 2000). They are the Choctaw hog, the Mulefoot, and the Ossabaw Island hog.[89] The smallest known pig breed in the world is the Göttingen minipig, typically weighing about 26 kilograms (57 lb) as a healthy, full-grown adult.[90]

In agriculture

Global Pig stock
in 2019
Number in millions
1.   China (Mainland)310.4
2.   European Union143.1
3.   United States78.7
4.   Brazil40.6
5.   Russia23.7
6.   Myanmar21.6
7.   Vietnam19.6
8.   Mexico18.4
9.   Canada14.1
10.   Philippines12.7

World total850.3
Source: UN Food and Agriculture Organization
 
Interior of pig farm at Bjärka-Säby Castle, Sweden, 1911
 
Exterior of pig farm in Vampula, Finland, 2021
 
A Large White, a breed commonly used in meat production

When in use as livestock, the pig is mostly farmed for its meat, pork. Other food products made from pigs include pork sausage (which includes casings that are made from the intestines), bacon, gammon, ham and pork rinds. The head of a pig can be used to make a preserved jelly called head cheese, which is sometimes known as brawn. Liver, chitterlings, blood (for black pudding), and other offal from pigs are also widely used for food. In some religions, such as Judaism and Islam, pork is a taboo food. Approximately 1.5 billion pigs are slaughtered each year for meat.[91]

The use of pig milk for human consumption does take place, but as there are certain difficulties in obtaining it, there is little commercial production.

Livestock pigs are exhibited at agricultural shows, judged either as stud stock compared to the standard features of each pig breed, or in commercial classes where the animals are judged primarily on their suitability for slaughter to provide premium meat.

The skin of pigs is eaten and used to produce seat covers, apparel, and other items.

In some developing and developed nations, the pig is usually raised outdoors in yards or fields. In some areas, pigs are allowed to forage in woods where they may be taken care of by swineherds. In industrialized nations such as the United States, pig farming has switched from the traditional pig farm to large-scale intensive pig farms. This has resulted in lower production costs but can cause significant cruelty problems. As consumers have become concerned with the humane treatment of livestock, demand for pasture-raised pork in these nations has increased.[92]

As pets

 
Mini pig

Vietnamese pot-bellied pigs, a miniature breed of pig, have made popular pets in the United States, beginning in the latter half of the 20th century.

In many respects, pot-bellied pigs are desirable and entertaining pets. They are considered intelligent, gregarious, and trainable. They lack the genetic hereditary weaknesses which commonly afflict certain pedigree cat and dog breeds, are generally quite sturdy, and have a reasonably affordable diet despite requiring large quantities of food. However, they can be strong-willed, defiant, and independent pets which will sometimes defy training. They require access to an outdoor space at all times, and depending on the individual pig, may become housebroken easily or never settle indoors. While hardy, an injured or sick pig will require costly surgery or larger than average quantities of medicine than most pets.[93]

Pigs are highly intelligent, social creatures. They are considered hypoallergenic, and are known to do quite well with people who have the usual animal allergies. Since these animals are known to have a life expectancy of 15 to 20 years, they require a long-term commitment.

Given pigs are bred primarily as livestock and have not been bred as companion animals for very long, selective breeding for a placid or biddable temperament is not well established. Pigs have radically different psychology to dogs and exhibit fight-or-flight instincts, independent nature, and natural assertiveness which can manifest as aggression towards children and a tendency to panic and lash out with little warning. Cats generally are safe around pigs as neither species has an incentive to express aggression or fear towards the other, although dogs will view pigs as prey animals and in turn, pigs will challenge dogs for food, leading to very violent fights.[94]

 
A "Salt & Pepper" miniature pig

Care

Male and female swine that have not been de-sexed may express unwanted aggressive behavior, and are prone to developing serious health issues.[95] Regular trimming of the hooves is necessary; hooves left untreated cause major pain in the pig, can create malformations in bone structure and may cause the pig to be more susceptible to fungal growth between crevices of the hoof,[96] or between the cracks in a split hoof. Male pigs, especially when left unaltered, can grow large, sharp tusks which may continue growing for years. Domestic owners may wish to keep their pigs' tusks trimmed back,[97] or have them removed entirely.

As prey animals, pigs' natural instinctive behavior causes them to have a strong fear of being picked up, resulting in the animal expressing stress through struggling and squealing, but they will usually calm down once placed back onto the ground. This instinctual fear may be lessened if the pig has been frequently held since infancy. When holding pigs, supporting them under the legs makes being held not as stressful for the animal.[98] Pigs need enrichment activities[99] to keep their intelligent minds occupied; if pigs get bored, they often become destructive.[100] As rooting is found to be comforting, pigs kept in the house may root household objects, furniture or surfaces. While some owners are known to pierce their pigs' noses to discourage rooting behaviour, the efficacy and humaneness of this practice is questionable.[101] Pet pigs should be let outside daily to allow them to fulfill their natural desire of rooting around.

In human medical applications

Pigs, both as live animals and a source of post-mortem tissues, are one of the most valuable animal models used in biomedical research today, because of their biological, physiological, and anatomical similarities to human beings.[102][103] For instance, human skin is very similar to the pigskin, therefore pigskin has been used in many preclinical studies.[102][103] Porcine[clarification needed] are used in finding treatments, cures for diseases, xenotransplantation,[104] and for general education. They are also used in the development of medical instruments and devices, surgical techniques and instrumentation, and FDA-approved research. These animals contribute to the reduction methods for animal research, as they supply more information from fewer animals used, for a lower cost.

Xenotransplantation

Pigs are currently thought to be the best non-human candidates for organ donation to humans, and to date they are the only animal that has successfully donated an organ to a human body. The first successful donation of a non-human organ to a human body was conducted on 15 September 2021, when a kidney from a pig was transplanted to a brain-dead human and immediately started functioning similarly to a human kidney.[105][106] The procedure, led by Dr. Robert Montgomery, used a donor pig that was genetically engineered to not have a specific carbohydrate that the human body considers a threat–Galactose-alpha-1,3-galactose.[107] This followed an earlier major breakthrough when the carbohydrate was removed from genetically engineered mice.[108]

Besides similarity between pig and human organs, pigs are among the best animals suited for human donation due the lower risk of cross-species disease transmission. This is caused by pigs' increased phylogenetic distance from humans.[109] Furthermore, they are readily available, and new infectious agents are less likely since they have been in close contact with humans through domestication for many generations.[110]

Some obstacles to successful organ donation from a pig to a human arise from the response of the recipient's immune system—generally more extreme than in allotransplantations, ultimately results in rejection of the xenograft, and in some cases results in the death of the recipient—including hyperacute rejection, acute vascular rejection, cellular rejection, and chronic rejection.

Examples of viruses carried by pigs include porcine herpesvirus, rotavirus, parvovirus, and circovirus. Of particular concern are PERVs (porcine endogenous retroviruses), vertically transmitted viruses that embed in swine genomes. The risks with xenosis are twofold, as not only could the individual become infected, but a novel infection could initiate an epidemic in the human population. Because of this risk, the FDA has suggested any recipients of xenotransplants shall be closely monitored for the remainder of their life, and quarantined if they show signs of xenosis.[111]

Pig cells have been engineered to inactivate all 62 PERVs in the genome using CRISPR Cas9 genome editing technology, and eliminated infection from the pig to human cells in culture.[112]

Folklore

In the belief of traditional Irish fishermen, the pig is seen as a thing of bad luck and should not be mentioned.[113]

Glossary of terms

Because the pig is a major domesticated animal, English has many terms unique to the species:

  • barrow – a castrated male swine[114]
  • boar – a mature male swine; often a wild or feral swine[115]
  • boneen – a very young pig (Ireland)
  • farrow (noun) – a litter of piglets
  • farrow (verb) – to give birth to piglets[116]
  • gilt – a female pig that has never been pregnant or is pregnant for the first time[117]
  • hog – a domestic swine, especially a fully-grown specimen
  • parcel – collective noun for pigs
  • pig – strictly, an immature swine; more generally, any swine, especially of the domestic variety
  • piglet – a very young pig[118]
  • queen – a female pig that has never been mated
  • savaging – the act of a sow attacking her own piglets, sometimes killing and cannibalising them
  • shoat – a young pig, especially one that has been weaned
  • sounder – collective noun for pigs
  • sow – a mature female swine[119]
  • swine (singular and plural) – hogs collectively or generally; also a derogatory epithet[120]
  • swineherd – one who tends to swine raised as livestock; a pig farmer

See also

Notes

  1. ^ David DiSalvo's article in Forbes refers to via an article in Penn State Agricultural Magazine[67] referenced from 'Pork' by Catherine Becker at Ohio State University[68] referencing work by Candace Croney, now head of Purdue center for animal welfare science.[69]

Footnotes

  1. ^ Groves, Colin P. (1995). "On the nomenclature of domestic animals". Bulletin of Zoological Nomenclature. 52 (2): 137–141. doi:10.5962/bhl.part.6749. Biodiversity Heritage Library
  2. ^ a b "Sus scrofa (wild boar)". Animal Diversity Web.
  3. ^ Lockhart, Kim. . gunnersden.com. Archived from the original on 23 August 2018. Retrieved 15 August 2012.
  4. ^ "Royal visit delights at the Three Counties Show". Malvern Gazette.
  5. ^ Sumena, K.B.; Lucy, K.M.; Chungath, J.J.; Ashok, N.; Harshan, K.R. (2010). "Regional histology of the subcutaneous tissue and the sweat glands of large white Yorkshire pigs" (PDF). Tamilnadu Journal of Veterinary and Animal Sciences. 6 (3): 128–135.[permanent dead link]
  6. ^ Folk, G.E.; Semken, H.A. (1991). "The evolution of sweat glands". International Journal of Biometeorology. 35 (3): 180–186. Bibcode:1991IJBm...35..180F. doi:10.1007/bf01049065. PMID 1778649. S2CID 28234765.
  7. ^ "Sweat like a pig?". Australian Broadcasting Corporation. 22 April 2008.
  8. ^ Bracke, M.B.M. (2011). "Review of wallowing in pigs: Description of the behaviour and its motivational basis". Applied Animal Behaviour Science. 132 (1): 1–13. doi:10.1016/j.applanim.2011.01.002.
  9. ^ Drabeck, D.H.; Dean, A.M.; Jansa, S.A. (1 June 2015). "Why the honey badger don't care: Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites". Toxicon. 99: 68–72. doi:10.1016/j.toxicon.2015.03.007. PMID 25796346.
  10. ^ . Archived from the original on 17 March 2014. Retrieved 25 November 2017.
  11. ^ Hoffman J, Valencak TG (2020). "A short life on the farm: aging and longevity in agricultural, large-bodied mammals". GeroScience. 42 (3): 909–922. doi:10.1007/s11357-020-00190-4. PMC 7286991. PMID 32361879.
  12. ^ Li, Mingzhou; Chen, Lei; Tian, Shilin; Lin, Yu; Tang, Qianzi; Zhou, Xuming; Li, Diyan; Yeung, Carol K. L.; Che, Tiandong; Jin, Long; Fu, Yuhua (1 May 2017). "Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies". Genome Research. 27 (5): 865–874. doi:10.1101/gr.207456.116. ISSN 1088-9051. PMC 5411780. PMID 27646534.
  13. ^ Warr, A.; et al. (2020). "Validate User". GigaScience. 9 (6). doi:10.1093/gigascience/giaa051. PMC 7448572. PMID 32543654.
  14. ^ Karlsson, Max; Sjöstedt, Evelina; Oksvold, Per; Sivertsson, Åsa; Huang, Jinrong; Álvez, María Bueno; Arif, Muhammad; Li, Xiangyu; Lin, Lin; Yu, Jiaying; Ma, Tao (25 January 2022). "Genome-wide annotation of protein-coding genes in pig". BMC Biology. 20 (1): 25. doi:10.1186/s12915-022-01229-y. ISSN 1741-7007. PMC 8788080. PMID 35073880.
  15. ^ "Taxonomy Browser". ncbi.nlm.nih.gov.
  16. ^ Gentry, Anthea; Clutton-Brock, Juliet; Colin P. Groves (2004). (PDF). Journal of Archaeological Science. 31 (5): 645–651. doi:10.1016/j.jas.2003.10.006. Archived from the original (PDF) on 8 April 2011.
  17. ^ Corbet and Hill (1992), referred to in Wilson, D. E.; Reeder, D. M., eds. (2005). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Johns Hopkins University Press. ISBN 978-0-8018-8221-0. OCLC 62265494.
  18. ^ Gentry, Anthea; Clutton-Brock, Juliet; Groves, Colin P. (1996). "Proposed conservation of usage of 15 mammal specific names based on wild species which are antedated by or contemporary with those based on domestic animals". Bulletin of Zoological Nomenclature. 53: 28–37. doi:10.5962/bhl.part.14102.
  19. ^ "Explore the Database". www.mammaldiversity.org. Retrieved 21 August 2021.
  20. ^ Nelson, Sarah M. (1998). Ancestors for the Pigs. Pigs in prehistory. University of Pennsylvania Museum of Archaeology and Anthropology. ISBN 9781931707091.
  21. ^ Ottoni, C; Flink, LG; Evin, A; Geörg, C; De Cupere, B; Van Neer, W; Bartosiewicz, L; Linderholm, A; Barnett, R; Peters, J; Decorte, R; Waelkens, M; Vanderheyden, N; Ricaut, FX; Cakirlar, C; Cevik, O; Hoelzel, AR; Mashkour, M; Karimlu, AF; Seno, SS; Daujat, J; Brock, F; Pinhasi, R; Hongo, H; Perez-Enciso, M; Rasmussen, M; Frantz, L; Megens, HJ; Crooijmans, R; Groenen, M; Arbuckle, B; Benecke, N; Vidarsdottir, US; Burger, J; Cucchi, T; Dobney, K; Larson, G (2013). "Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics". Mol Biol Evol. 30 (4): 824–32. doi:10.1093/molbev/mss261. PMC 3603306. PMID 23180578. our data suggest a narrative that begins with the domestication of pigs in Southwest Asia, at Upper Tigris sites including Çayönü Tepesi (Ervynck et al. 2001) and possibly Upper Euphrates sites including Cafer Höyük (Helmer 2008) and Nevalı Çori (Peters et al. 2005)
  22. ^ Rosenberg, M; Nesbitt, R; Redding, RW; Peasnall, BL (1998). "Hallan Çemi, pig husbandry, and post-Pleistocene adaptations along the Taurus-Zagros Arc (Turkey)". Paléorient. 24 (1): 25–41. doi:10.3406/paleo.1998.4667. S2CID 85302206.
  23. ^ Vigne, JD; Zazzo, A; Saliège, JF; Poplin, F; Guilaine, J; Simmons, A (2009). "Pre-Neolithic wild boar management and introduction to Cyprus more than 11,400 years ago". Proceedings of the National Academy of Sciences of the United States of America. 106 (38): 16135–8. Bibcode:2009PNAS..10616135V. doi:10.1073/pnas.0905015106. PMC 2752532. PMID 19706455.
  24. ^ Lander, Brian; Schneider, Mindi; Brunson, Katherine (2019). "A History of Pigs in China: From Curious Omnivores to Industrial Pork". Journal of Asian Studies. 79 (4): 865–889. doi:10.1017/S0021911820000054.
  25. ^ a b Giuffra, E; Kijas, JM; Amarger, V; Carlborg, O; Jeon, JT; Andersson, L (2000). "The origin of the domestic pig: independent domestication and subsequent introgression". Genetics. 154 (4): 1785–91. doi:10.1093/genetics/154.4.1785. PMC 1461048. PMID 10747069.
  26. ^ Jean-Denis Vigne; Anne Tresset; Jean-Pierre Digard (3 July 2012). History of domestication (PDF) (Speech).
  27. ^ Price, Max (March 2020). "The Genesis of the Near Eastern Pig". American Society of Overseas Research (ASOR). Retrieved 8 August 2021.
  28. ^ BBC News, "Pig DNA reveals farming history" 4 September 2007. The report concerns an article in the journal PNAS
  29. ^ Larson, G; Albarella, U; Dobney, K; Rowley-Conwy, P; Schibler, J; Tresset, A; Vigne, JD; Edwards, CJ; et al. (2007). "Ancient DNA, pig domestication, and the spread of the Neolithic into Europe" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 104 (39): 15276–81. Bibcode:2007PNAS..10415276L. doi:10.1073/pnas.0703411104. PMC 1976408. PMID 17855556.
  30. ^ Frantz, L (2015). "Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes". Nat. Genet. 47 (10): 1141–8. doi:10.1038/ng.3394. PMID 26323058. S2CID 205350534.
  31. ^ Pennisi, E (2015). "The taming of the pig took some wild turns". Science. doi:10.1126/science.aad1692.
  32. ^ Frantz, Laurent A. F.; Haile, James; Lin, Audrey T.; Scheu, Amelie; Geörg, Christina; Benecke, Norbert; Alexander, Michelle; Linderholm, Anna; Mullin, Victoria E.; Daly, Kevin G.; Battista, Vincent M.; Price, Max; Gron, Kurt J.; Alexandri, Panoraia; Arbogast, Rose-Marie; Arbuckle, Benjamin; Bӑlӑşescu, Adrian; Barnett, Ross; Bartosiewicz, László; Baryshnikov, Gennady; Bonsall, Clive; Borić, Dušan; Boroneanţ, Adina; Bulatović, Jelena; Çakirlar, Canan; Carretero, José-Miguel; Chapman, John; Church, Mike; Crooijmans, Richard; et al. (2019). "Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe". Proceedings of the National Academy of Sciences. 116 (35): 17231–17238. Bibcode:2019PNAS..11617231F. doi:10.1073/pnas.1901169116. PMC 6717267. PMID 31405970.
  33. ^ Torrejón, Fernando; Cisternas, Marco; Araneda, Alberto (2004). "Efectos ambientales de la colonización española desde el río Maullín al archipiélago de Chiloé, sur de Chile" [Environmental effects of the spanish colonization from de Maullín river to the Chiloé archipelago, southern Chile]. Revista Chilena de Historia Natural (in Spanish). 77 (4): 661–677. doi:10.4067/s0716-078x2004000400009.
  34. ^ II.G.13. – Hogs. 20 December 2007 at the Wayback Machine
  35. ^ . mdc.mo.gov. Archived from the original on 8 March 2017. Retrieved 7 March 2017.
  36. ^ . agfc.com. Archived from the original on 22 February 2017. Retrieved 7 March 2017.
  37. ^ . georgiawildlife.com. Archived from the original on 8 March 2017. Retrieved 8 March 2017.
  38. ^ Yoon, Carol Kaesuk (2 December 1992). "Alien Species Threaten Hawaii's Environment". The New York Times.
  39. ^ "Introduced Birds and Mammals in New Zealand and Their Effect on the Environment – NZETC". nzetc.org.
  40. ^ "World's 100 most destructive species named". The Independent. 21 November 2004. Archived from the original on 26 May 2022. Retrieved 7 March 2017.
  41. ^ Marília, Do G1 Bauru e (12 April 2013). "Autorização para abate do javaporco tranquiliza produtores em Assis, SP". Bauru e Marília.
  42. ^ . Archived from the original on 3 July 2017.
  43. ^ "Javaporco dá prejuízo e amedronta produtores rurais de Maracaí, SP".
  44. ^ MS Rural – farmers are authorized to make populational control of exotic species, such as the European boar 12 October 2014 at the Wayback Machine (in Portuguese)
  45. ^ "Status and Distribution of wild boar in Rio Grande do Sul, Southern Brazil". 2009.
  46. ^ "PSD Online". fas.usda.gov.
  47. ^ Swine Summary Selected Countries 29 March 2012 at the Wayback Machine, United States Department of Agriculture, Foreign Agricultural Service, (total number is Production (Pig Crop) plus Total Beginning Stocks
  48. ^ Hughes, Paul (1980). Reproduction in the Pig. Massachusetts: The Butterworth Group. ISBN 0408709464.
  49. ^ "Feral Hog Reproductive Biology". 16 May 2012.
  50. ^ . extension.missouri.edu. Archived from the original on 8 March 2017. Retrieved 7 March 2017.
  51. ^ "The Female – Swine Reproduction". livestocktrail.illinois.edu. Retrieved 7 March 2017.
  52. ^ Bazer, F. W.; Vallet, J. L.; Roberts, R. M.; Sharp, D. D.; Thatcher, W. W. (1986). "Role of conceptus secretory products in establishment of pregnancy". J. Reprod. Fertil. 76 (2): 841–850. doi:10.1530/jrf.0.0760841. PMID 3517318.
  53. ^ Bazer, Fuller W.; Song, Gwonhwa; Kim, Jinyoung; Dunlap, Kathrin A.; Satterfield, Michael Carey; Johnson, Gregory A.; Burghardt, Robert C.; Wu, Guoyao (1 January 2012). "Uterine biology in pigs and sheep". Journal of Animal Science and Biotechnology. 3 (1): 23. doi:10.1186/2049-1891-3-23. ISSN 2049-1891. PMC 3436697. PMID 22958877.
  54. ^ a b Ziecik, A. J.; et al. (2018). "Regulation of the porcine corpus luteum during pregnancy". Reproduction. 156 (3): R57–R67. doi:10.1530/rep-17-0662. PMID 29794023.
  55. ^ Waclawik, A.; et al. (2017). "Embryo‐maternal dialogue during pregnancy establishment and implantation in the pig". Molecular Reproduction and Development. 84 (9): 842–855. doi:10.1002/mrd.22835. PMID 28628266.
  56. ^ Farmer, Chantal (2015). The gestating and lactating sow. The Netherlands: Wageningen Academic Publishers. ISBN 9789086868032. OCLC 899008362.
  57. ^ Ervynck, A., & Dobney, K. (2002). A Pig all Seasons? Approaches to the Assessment of Second Farrowing in Archaeological Pig Populations. Archaeofauna, (11).
  58. ^ Bintliff, J.; Earle, T.; Peebles, C. (2008). A Companion to Archaeology. Wiley. p. 305. ISBN 978-0-470-99860-1.
  59. ^ a b c Clutton-Brock, J., (1987). A Natural History of Domesticated Mammals. Cambridge University Press, Cambridge pp.73–74
  60. ^ Algers, Bo; Uvnäs-Moberg, Kerstin (1 June 2007). "Maternal behavior in pigs". Hormones and Behavior. Reproductive Behavior in Farm and Laboratory Animals11th Annual Meeting of the Society for Behavioral Neuroendocrinology. 52 (1): 78–85. doi:10.1016/j.yhbeh.2007.03.022. PMID 17482189. S2CID 9742677.
  61. ^ a b c d Bracke, M.B.M (2011). "Review of wallowing in pigs: description of the behaviour and its motivational basis". Applied Animal Behaviour Science. 132 (1–2): 1–13. doi:10.1016/j.applanim.2011.01.002.
  62. ^ "Blowing Coat – Mini Pig Shedding FAQ". americanminipigassociation.com. 2 April 2016.
  63. ^ Kongsted, A. G.; Horsted, K.; Hermansen, J. E. (2013). "Free-range pigs foraging on Jerusalem artichokes (Helianthus tuberosus L.) – Effect of feeding strategy on growth, feed conversion and animal behaviour". Acta Agriculturae Scandinavica, Section A. 63 (2): 76–83. doi:10.1080/09064702.2013.787116. S2CID 84886946.
  64. ^ "10 of the smartest animals on Earth". MNN – Mother Nature Network. Retrieved 8 March 2017.
  65. ^ "Signs of Intelligent Life | Natural History Magazine". naturalhistorymag.com. Retrieved 3 June 2019.
  66. ^ David Disalvo 2014/11/26 how-smart-was-that-turkey-and-ham-before-it-became-dinner at forbes.com Accessed 27 January 2017
  67. ^ "In a Pig's Eye" – by Eston Martz Penn State Agricultural Magazine, Fall/ Winter 1997 Penn State College of Agricultural Sciences[permanent dead link] Accessed 27 January 2017
  68. ^ Catherine Becker: 'Pork' at u.osu.edu[permanent dead link] Accessed 27 January 2017
  69. ^ 'Croney to head Purdue Center for Animal Welfare Science' Accessed 27 January 2017
  70. ^ Angier, Natalie (9 November 2009). "Pigs Prove to Be Smart, if Not Vain". The New York Times. New York City. Retrieved 28 July 2010.
  71. ^ a b c "Rooting & Nudging Behaviors in Mini Pigs". americanminipigassociation.com. 8 June 2016.
  72. ^ "Kunekune pigs are just right for farm life". tractorsupply.com.
  73. ^ a b c Algers, Bo; Uvnäs-Moberg, Kerstin (1 June 2007). "Maternal behavior in pigs". Hormones and Behavior. 52 (1): 78–85. doi:10.1016/j.yhbeh.2007.03.022. ISSN 0018-506X. PMID 17482189. S2CID 9742677.
  74. ^ a b Wischner, D.; Kemper, N.; Krieter, J. (2009). "Nest-building behaviour in sows and consequences for pig husbandry". Livestock Science. 124 (1): 1–8. doi:10.1016/j.livsci.2009.01.015.
  75. ^ Fraser, D (1980). "A review of the behavioural mechanisms of milk ejection of the domestic pig". Applied Animal Ethology. 6 (3): 247–256. doi:10.1016/0304-3762(80)90026-7.
  76. ^ Rohde Parfet, K.A.; Gonyou, H.W. (1991). "Attraction of newborn piglets to auditory, visual, olfactory and tactile stimuli". Journal of Animal Science. 69 (1): 125–133. doi:10.2527/1991.691125x. PMID 2005005. S2CID 31788525.
  77. ^ Algers, B (1993). "Nursing in pigs: communicating needs and distributing resources". Journal of Animal Science. 71 (10): 2826–2831. doi:10.2527/1993.71102826x. PMID 8226386.
  78. ^ Castren, H.; Algers, B.; Jensen, P.; Saloniemi, H. (1989). "Suckling behaviour and milk consumption in newborn piglets as a response to sow grunting". Applied Animal Behaviour Science. 24 (3): 227–238. doi:10.1016/0168-1591(89)90069-5.
  79. ^ Jensen, P.; Gustafsson, G.; Augustsson, H. (1998). "Massaging after milk ejection in domestic pigs – an example of honest begging?". Animal Behaviour. 55 (4): 779–786. doi:10.1006/anbe.1997.0651. PMID 9632466. S2CID 12493158.
  80. ^ Fraser, D (1973). "The nursing and suckling behaviour in pigs. I. The importance of stimulation of the anterior teats". British Veterinary Journal. 129 (4): 324–336. doi:10.1016/s0007-1935(17)36434-5. PMID 4733757.
  81. ^ Jeppesen, L.E. (1982). "Teat-order in groups of piglets reared on an artificial sow. II. Maintenance of teat order with some evidence for the use of odour cues". Applied Animal Ethology. 8 (4): 347–355. doi:10.1016/0304-3762(82)90067-0.
  82. ^ . Archived from the original on 17 March 2012. Retrieved 9 December 2012.
  83. ^ . Archived from the original on 26 December 2012. Retrieved 9 December 2012.
  84. ^ Lomas, C.A.; Piggins, D.; Phillips, C.J.C. (1998). "Visual awareness". Applied Animal Behaviour Science. 57 (3–4): 247–257. doi:10.1016/s0168-1591(98)00100-2.
  85. ^ Houpt, K.A., (1998). Domestic Animal Behavior for Veterinarians and Animal Scientists. 3rd edition. Iowa State University Press, Ames.
  86. ^ Gonyou, H.W., (2001). The social behaviour of pigs. In "Social Behaviour in Farm Animals", eds. Keeling, L.J., and Gonyou, H.W. CABI, Oxford.
  87. ^ Vieuille-Thomas, C.; Signoret, J.P. (1992). "Pheromonal transmission of an aversive experience in domestic pigs". Journal of Chemical Ecology. 18 (9): 1551–1557. doi:10.1007/bf00993228. PMID 24254286. S2CID 4386919.
  88. ^ Jensen, P.; Redbo, I. (1987). "Behaviour during nest leaving in free-ranging domestic pigs". Applied Animal Behaviour Science. 18 (3–4): 355–362. doi:10.1016/0168-1591(87)90229-2.
  89. ^ "The Livestock Conservancy". livestockconservancy.org. Retrieved 7 March 2017.
  90. ^ (PDF). Ellegaard Göttingen Minipigs. Archived from the original (PDF) on 19 April 2016. Retrieved 2 July 2018.
  91. ^ "FAOSTAT". fao.org. Retrieved 25 October 2019.
  92. ^ Strom, Stephanie (2 January 2014). "Demand Grows for Hogs That Are Raised Humanely Outdoors". The New York Times. Retrieved 15 April 2015.
  93. ^ "The Pros and Cons of Keeping Pot-Bellied Pigs as Pets". Did You Know Pets. 8 April 2020. Retrieved 10 November 2020.
  94. ^ "Info/Resource - Pigs 4 Ever - Gifts, supplies and resources for Pot-Bellied Pigs". pigs4ever.com. Retrieved 11 October 2020.
  95. ^ "Spay and Neuter – American Mini Pig Association". americanminipigassociation.com.
  96. ^ "Hoof Trimming – American Mini Pig Association". americanminipigassociation.com.
  97. ^ "Tusk Trimming in Mini Pigs Using Gigli Wire Saw -". 2 September 2016. Retrieved 7 May 2019.
  98. ^ "Mini Pig Training: How to Hold a Mini Pig – Life with a Mini Pig". 21 June 2015.
  99. ^ "Enrichment Activities for a Bored Pig – American mini Pig Association". Retrieved 7 May 2019.
  100. ^ "Aggressive Mini Pigs- How To Correct Aggression Issues". Mini Pig Info.
  101. ^ "Nose Rings in Mini Pigs, Cruel and Ineffective, Nose Ring Alternatives -". 1 September 2016. Retrieved 7 May 2019.
  102. ^ a b Herron, Alan J. (5 December 2009). "Pigs as Dermatologic Models of Human Skin Disease" (PDF). ivis.org. DVM Center for Comparative Medicine and Department of Pathology Baylor College of Medicine Houston, Texas. Retrieved 27 January 2018. pig skin has been shown to be the most similar to human skin. Pigskin is structurally similar to the human epidermal and dermal-epidermal thickness ratios. Pigs and humans have similar hair follicle and blood vessel patterns in the skin. Biochemically, pigs contain dermal collagen and elastic content that is more similar to humans than other laboratory animals. Finally, pigs have similar physical and molecular responses to various growth factors.
  103. ^ a b Liu, J.; Kim, L.; Madsen, T.; Bouchard, G. F. "Comparison of Human, Porcine and Rodent Wound Healing With New Miniature Swine Study Data" (PDF). sinclairresearch.com. Sinclair Research Centre, Auxvasse, MO, USA; Veterinary Medical Diagnostic Laboratory, Columbia, MO, USA. Retrieved 27 January 2018. Pig skin is anatomically, physiologically, biochemically and immunologically similar to human skin
  104. ^ "Xenotransplantation: How Pig Organs Could Be Transplanted into Humans". animalbiotech.com. Animal Biotech Industries. 19 March 2018. Retrieved 5 November 2018.
  105. ^ "Successful pig-to-human kidney transplant a "transformative moment"". www.yahoo.com. Retrieved 2 November 2021.
  106. ^ Lapid, Nancy (20 October 2021). "U.S. surgeons successfully test pig kidney transplant in human patient". Reuters. Retrieved 2 November 2021.
  107. ^ "Progress in Xenotransplantation Opens Door to New Supply of Critically Needed Organs". NYU Langone News. Retrieved 2 November 2021.
  108. ^ Latemple, D. C.; Galili, U. (1998). "Adult and neonatal anti-Gal response in knock-out mice for alpha1,3galactosyltransferase". Xenotransplantation. 5 (3): 191–196. doi:10.1111/j.1399-3089.1998.tb00027.x. PMID 9741457. S2CID 39194181.
  109. ^ Dooldeniya, M. D.; Warrens, A. N. (2003). "Xenotransplantation: Where are we today?". Journal of the Royal Society of Medicine. 96 (3): 111–117. doi:10.1177/014107680309600303. PMC 539416. PMID 12612110.
  110. ^ Taylor, L. (2007) Xenotransplantation. Emedicine.com
  111. ^ FDA. (2006) Xenotransplantation Action Plan: FDA Approach to the Regulation of Xenotransplantation. Center for Biologics Evaluation and Research.
  112. ^ Carl Zimmerman (15 October 2015). "Editing of Pig DNA May Lead to More Organs for People". The New York Times.
  113. ^ Ní Fhloinn, Bairbre (2018). Cold Iron: Aspects of the Occupational Folklore of Irish Fishermen. Comhairle Bhéaloideas Éireann. pp. 38–56. ISBN 978-0-9565628-7-6.
  114. ^ Dictionary of Agriculture (2006), "barrow," 21. "noun a male pig after castration, while a suckler or weaner"
  115. ^ Dictionary of Agriculture (2006), "boar," 30. "noun a male uncastrated pig"
  116. ^ Dictionary of Agriculture (2006), "farrowing," 97. "noun the act of giving birth to piglets"
  117. ^ Dictionary of Agriculture (2006), "gilt," 97. "noun a young female pig"
  118. ^ Dictionary of Agriculture (2006), "piglet," 189. "noun a young pig"
  119. ^ Dictionary of Agriculture (2006), "sow," 229. "noun a female pig"
  120. ^ Dictionary of Agriculture (2006), "swine," 240. "noun a collective term for pigs"

References

  • Bateman, Heather; Curtis, Steve; McAdam, Katy, eds. (2006). Dictionary of Agriculture (3rd ed.). A & C Black. ISBN 978-0-7136-7778-2.
  • Keuling, O.; Leus, K. (2019). "Sus scrofa". IUCN Red List of Threatened Species. 2019: e.T41775A44141833. doi:10.2305/IUCN.UK.2019-3.RLTS.T41775A44141833.en. Retrieved 11 November 2021.

External links

  • British Pig Association
  • Globe and Mail article Canada's transgenic Enviropig is stuck in a genetic modification poke
  • Information on Micro Pigs 19 July 2019 at the Wayback Machine
  • , gilt pig breeders
  • JSR Genetics, Pig genetics company
  • Pig Sanctuary
  • from UC Davis
  • The process of pig slaughtery

other, uses, disambiguation, swine, redirects, here, other, uses, swine, disambiguation, domesticus, often, called, swine, domestic, when, distinguishing, from, other, members, genus, omnivorous, domesticated, even, toed, hoofed, mammal, variously, considered,. For other uses see Pig disambiguation Swine redirects here For other uses see Swine disambiguation The pig Sus domesticus often called swine hog or domestic pig when distinguishing from other members of the genus Sus is an omnivorous domesticated even toed hoofed mammal It is variously considered a subspecies of Sus scrofa the wild boar or Eurasian boar or a distinct species The pig s head plus body length ranges from 0 9 to 1 8 m 3 to 6 ft and adult pigs typically weigh between 50 and 350 kg 110 and 770 lb with well fed individuals even exceeding this range The size and weight of hogs largely depends on their breed Compared to other artiodactyls a pig s head is relatively long and pointed Most even toed ungulates are herbivorous but pigs are omnivores like their wild relative Pigs grunt and make snorting sounds Pig source source track A pig oinkingScientific classificationKingdom AnimaliaPhylum ChordataClass MammaliaOrder ArtiodactylaFamily SuidaeGenus SusSpecies S domesticusBinomial nameSus domesticusErxleben 1777Synonyms 1 Sus domestica Sus scrofa domesticus Linnaeus 1758When used as livestock pigs are farmed primarily for the production of meat called pork A group of pigs is called a passel a team or a sounder The animal s bones hide and bristles are also used in products Pigs especially miniature breeds are kept as pets Contents 1 Biology 1 1 Genetics and genomics 2 Taxonomy 3 History 4 Reproduction 5 Behavior 5 1 Rooting 5 2 Nest building 5 3 Nursing and suckling behaviour 5 4 Teat order 5 5 Senses 6 Breeds 7 In agriculture 8 As pets 8 1 Care 9 In human medical applications 9 1 Xenotransplantation 10 Folklore 11 Glossary of terms 12 See also 13 Notes 14 Footnotes 15 References 16 External linksBiology Skull Skeleton Bones of the foot The pig typically has a large head with a long snout which is strengthened by a special prenasal bone and a disk of cartilage at the tip 2 The snout is used to dig into the soil to find food and is a very acute sense organ The dental formula of adult pigs is 3 1 4 3 3 1 4 3 giving a total of 44 teeth The rear teeth are adapted for crushing In the male the canine teeth can form tusks which grow continuously and are sharpened by constantly being ground against each other 2 Four hoofed toes are on each foot with the two larger central toes bearing most of the weight but the outer two also being used in soft ground 3 Most pigs have rather a bristled sparse hair covering on their skin although woolly coated breeds such as the Mangalitsa exist 4 Pigs possess both apocrine and eccrine sweat glands although the latter appear limited to the snout and dorsonasal areas 5 Pigs however like other hairless mammals e g elephants rhinos and mole rats do not use thermal sweat glands in cooling 6 Pigs are also less able than many other mammals to dissipate heat from wet mucous membranes in the mouth through panting Their thermoneutral zone is 16 to 22 C 61 to 72 F 7 At higher temperatures pigs lose heat by wallowing in mud or water via evaporative cooling although it has been suggested that wallowing may serve other functions such as protection from sunburn ecto parasite control and scent marking 8 Pigs are one of four known mammalian species which possess mutations in the nicotinic acetylcholine receptor that protect against snake venom Mongooses honey badgers hedgehogs and pigs all have modifications to the receptor pocket which prevents the snake venom a neurotoxin from binding These represent four separate independent mutations 9 Pigs have small lungs in relation to their body size and are thus more susceptible than other domesticated animals to fatal bronchitis and pneumonia 10 Pigs have a maximum life span of about 27 years 11 Genetics and genomics The genome of the pig has been sequenced and contains about 22 342 protein coding genes 12 13 14 TaxonomyThe pig is most often considered to be a subspecies of the wild boar which was given the name Sus scrofa by Carl Linnaeus in 1758 following from this the formal name of the pig is Sus scrofa domesticus 15 16 However in 1777 Johann Christian Polycarp Erxleben classified the pig as a separate species from the wild boar He gave it the name Sus domesticus which is still used by some taxonomists 17 18 The American Society of Mammalogists considers it a separate species 19 History Pottery Swine in Sanxingdui Museum Shang dynasty Bronze pig sculpture Zhou dynasty Archaeological evidence suggests that pigs were domesticated from wild boar in the Near East in the Tigris Basin 20 page needed Cayonu Cafer Hoyuk Nevali Cori 21 being managed in the wild in a way similar to the way they are managed by some modern New Guineans 22 Remains of pigs have been dated to earlier than 11 400 years ago in Cyprus Those animals must have been introduced from the mainland which suggests domestication in the adjacent mainland by then 23 Pigs were separately domesticated in China beginning 8 000 years ago and have been one of the most important domesticated animals there ever since 24 25 26 In the Near East pig husbandry spread for the next few millennia It reduced gradually during the Bronze Age as rural populations focused instead on commodity producing livestock It was sustained in urbanized regions however 27 DNA evidence from subfossil remains of teeth and jawbones of Neolithic pigs shows that the first domestic pigs in Europe had been brought from the Near East This stimulated the domestication of local European wild boar resulting in a third domestication event with the Near Eastern genes dying out in European pig stock Modern domesticated pigs have involved complex exchanges with European domesticated lines being exported in turn to the ancient Near East 28 29 Historical records indicate that Asian pigs were introduced into Europe during the 18th and early 19th centuries 25 In August 2015 a study looked at over 100 pig genome sequences to ascertain their process of domestication which was assumed to have been initiated by humans involved few individuals and relied on reproductive isolation between wild and domestic forms The study found that the assumption of reproductive isolation with population bottlenecks was not supported The study indicated that pigs were domesticated separately in Western Asia and China with Western Asian pigs introduced into Europe where they crossed with wild boar A model that fit the data included a mixture with a now extinct ghost population of wild pigs during the Pleistocene The study also found that despite back crossing with wild pigs the genomes of domestic pigs have strong signatures of selection at DNA loci that affect behavior and morphology The study concluded that human selection for domestic traits likely counteracted the homogenizing effect of gene flow from wild boars and created domestication islands in the genome The same process may also apply to other domesticated animals 30 31 In 2019 a study showed that the pig had arrived in Europe from the Near East 8 500 years ago Over the next 3 000 years they then admixed with the European wild boar until their genome showed less than 5 Near Eastern ancestry yet retained their domesticated features 32 Among the animals that the Spanish introduced to the Chiloe Archipelago in the 16th century pigs were the most successful to adapt The pigs benefited from abundant shellfish and algae exposed by the large tides of the archipelago 33 Pigs were brought to southeastern North America from Europe by de Soto and other early Spanish explorers Escaped pigs became feral and caused a great deal of disruption to Native Americans 34 Feral pig populations in the southeastern United States have since migrated north and are a growing concern in the Midwest Considered an invasive species many state agencies have programs to trap or hunt feral pigs as means of removal 35 36 37 Domestic pigs have become feral in many other parts of the world e g New Zealand and northern Queensland and have caused substantial environmental damage 38 39 Feral hybrids of the European wild boar with the domestic pig are also very disruptive to both environment and agriculture among the 100 most damaging animal species 40 especially in southeastern South America from Uruguay to Brazil s Mato Grosso do Sul and Sao Paulo 41 42 43 44 45 With around 1 billion individuals alive at any time the domesticated pig is one of the most numerous large mammals on the planet 46 47 ReproductionFemale pigs reach sexual maturity at 3 12 months of age and come into estrus every 18 24 days if they are not successfully bred The variation in ovulation rate can be attributed to intrinsic factors such as age and genotype as well as extrinsic factors like nutrition environment and the supplementation of exogenous hormones 48 The gestation period averages 112 120 days 49 Piglets keeping warm together Estrus lasts two to three days and the female s displayed receptiveness to mate is known as standing heat Standing heat is a reflexive response that is stimulated when the female is in contact with the saliva of a sexually mature boar Androstenol is one of the pheromones produced in the submaxillary salivary glands of boars that will trigger the female s response 50 The female cervix contains a series of five interdigitating pads or folds that will hold the boar s corkscrew shaped penis during copulation 51 Females have bicornuate uteruses and two conceptuses must be present in both uterine horns for pregnancy to be established 52 Maternal recognition of pregnancy in pigs occurs on days 11 to 12 of pregnancy and is marked by progesterone production from a functioning corpus luteum CL 53 To avoid luteolysis by PGF2a rescuing of the CL must occur via embryonic signaling of estradiol 17b and PGE2 54 This signaling acts on both the endometrium and luteal tissue to prevent the regression of the CL by activation of genes that are responsible for CL maintenance 55 During mid to late pregnancy the CL relies primarily on luteinizing hormone LH for maintenance until parturition 54 Animal nutrition is important prior to reproduction and during gestation to ensure optimum reproductive performance is achieved 56 Archeological evidence indicates that medieval European pigs farrowed or bore a litter of piglets once per year 57 By the nineteenth century European piglets routinely double farrowed or bore two litters of piglets per year It is unclear when this shift occurred 58 Behavior Pigs in a wallow In many ways pig behaviour appears to be intermediate between that of other artiodactyls and of carnivores 59 Pigs seek out the company of other pigs and often huddle to maintain physical contact although they do not naturally form large herds They typically live in groups of about 8 10 adult sows some young individuals and some single males 60 Because of their relative lack of sweat glands pigs often control their body temperature using behavioural thermoregulation Wallowing which often consists of coating the body with mud is a behaviour frequently exhibited by pigs 61 They do not submerge completely under the mud but vary the depth and duration of wallowing depending on environmental conditions 61 Typically adult pigs start wallowing once the ambient temperature is around 17 21 C 63 70 F They cover themselves from head to toe in mud 61 Pigs may use mud as a sunscreen or as a method of keeping parasites away 61 Most bristled pigs will blow their coat meaning that they shed most of the longer coarser stiff hair once a year usually in spring or early summer to prepare for the warmer months ahead 62 If conditions permit pigs feed continuously for many hours and then sleep for many hours in contrast to ruminants which tend to feed for a short time and then sleep for a short time Pigs are omnivorous and are highly versatile in their feeding behaviour As they are foraging animals they primarily eat leaves stems roots fruits and flowers 63 Pigs play an important role in regions where pig toilets are employed Pigs are highly intelligent animals 64 on par with dogs 65 and according to David DiSalvo s writing in Forbes they are widely considered the smartest domesticated animal in the world Pigs have demonstrated the ability to move a cursor on a video screen with their snouts and understand what is happening onscreen and have learned to distinguish between the scribbles they had seen before and those they were seeing for the first time 66 a 70 Rooting Juliana piglet rooting on her sibling s belly Rooting is an instinctual behavior in pigs that is characterized by a pig nudging its snout into something Similar to a cat s kneading rooting is found comforting It first happens when piglets are born to obtain their mother s milk and can become a habitual obsessive behavior which is most prominent in animals weaned too early 71 Often pigs will root and dig into the ground to forage for food 71 By means of rooting pigs have been used to till farmland citation needed Rooting is known to also be used as a means of communication 71 Nose rings that pierce the septum of the nose discourage rooting because they make the behavior painful citation needed The breed known as the kunekune hardly ever roots as it can sustain itself by feeding on nothing other than grass 72 Not having to root around in the soil to find underground food e g tubers it thus has evolved to for the most part not possess the instinct for rooting Nest building A behavioural characteristic of pigs which they share with carnivores is nest building Sows root in the ground to create depressions and then build nests in which to give birth First the sow digs a depression about the size of her body She then collects twigs and leaves and carries these in her mouth to the depression building them into a mound She distributes the softer finer material to the centre of the mound using her feet When the mound reaches the desired height she places large branches up to 2 metres in length on the surface She enters into the mound and roots around to create a depression within the gathered material She then gives birth in a lying position which again is different from other artiodactyls which usually give birth in a standing position 59 Nest building behaviour is an important part in the process of pre and post partum maternal behaviour Nest building will occur during the last 24 hours before the onset of farrowing and becomes most intense during 12 to 6 hours before farrowing 73 Nest building is divided into two phases one of which is the initial phase of rooting in the ground while the second phase is the collecting carrying and arranging of the nest material 73 The sow will separate from the group and seek a suitable nest site with some shelter from rain and wind that has well drained soil This nest building behaviour is performed to provide the offspring with shelter comfort and thermoregulation The nest will provide protection against weather and predators while keeping the piglets close to the sow and away from the rest of the herd This ensures they do not get trampled on and that other piglets are not stealing milk from the sow 74 Nest building can be influenced by internal and external stimuli Internal hormonal changes and the completion of one nesting phase are indicators of this maternal behaviour 74 The onset is triggered by the rise in prolactin levels which is caused by a decrease in progesterone and an increase in prostaglandin while the gathering of the nest material seems to be regulated more by external stimuli such as temperature 73 The longer time spent on nest building will increase pre partum oxytocin citation needed Nursing and suckling behaviour Sow with prominent nipples Pigs typically have 12 14 nipples Two piglets suckling Pigs display complex nursing and suckling behaviour 75 Nursing occurs every 50 60 minutes and the sow requires stimulation from piglets before milk let down Sensory inputs vocalisation odours from mammary and birth fluids and hair patterns of the sow are particularly important immediately post birth to facilitate teat location by the piglets 76 Initially the piglets compete for position at the udder then the piglets massage around their respective teats with their snouts during which time the sow grunts at slow regular intervals Each series of grunts varies in frequency tone and magnitude indicating the stages of nursing to the piglets 77 The phase of competition for teats and of nosing the udder lasts for about one minute and ends when milk flow begins In the third phase the piglets hold the teats in their mouths and suck with slow mouth movements one per second and the rate of the sow s grunting increases for approximately 20 seconds The grunt peak in the third phase of suckling does not coincide with milk ejection but rather the release of oxytocin from the pituitary into the bloodstream 78 Phase four coincides with the period of main milk flow 10 20 seconds when the piglets suddenly withdraw slightly from the udder and start sucking with rapid mouth movements of about three per second The sow grunts rapidly lower in tone and often in quick runs of three or four during this phase Finally the flow stops and so does the grunting of the sow The piglets may then dart from teat to teat and recommence suckling with slow movements or nosing the udder Piglets massage and suckle the sow s teats after milk flow ceases as a way of letting the sow know their nutritional status This helps her to regulate the amount of milk released from that teat in future sucklings The more intense the post feed massaging of a teat the greater the future milk release from that teat will be 79 Teat order A sow with suckling piglets In pigs dominance hierarchies can be formed at a very early age Piglets are highly precocious and within minutes of being born or sometimes seconds will attempt to suckle The piglets are born with sharp teeth and fight to develop a teat order as the anterior teats produce a greater quantity of milk Once established this teat order remains stable with each piglet tending to feed on a particular teat or group of teats 59 Stimulation of the anterior teats appears to be important in causing milk letdown 80 so it might be advantageous to the entire litter to have these teats occupied by healthy piglets Using an artificial sow to rear groups of piglets recognition of a teat in a particular area of the udder depended initially on visual orientation by means of reference points on the udder to find the area and then the olfactory sense for the more accurate search within that area 81 Senses Pigs have panoramic vision of approximately 310 and binocular vision of 35 to 50 It is thought they have no eye accommodation 82 Other animals that have no accommodation e g sheep lift their heads to see distant objects 83 The extent to which pigs have colour vision is still a source of some debate however the presence of cone cells in the retina with two distinct wavelength sensitivities blue and green suggests that at least some colour vision is present 84 Pigs have a well developed sense of smell and use is made of this in Europe where they are trained to locate underground truffles Olfactory rather than visual stimuli are used in the identification of other pigs 85 Hearing is also well developed and localisation of sounds is made by moving the head Pigs use auditory stimuli extensively as a means of communication in all social activities 86 Alarm or aversive stimuli are transmitted to other pigs not only by auditory cues but also by pheromones 87 Similarly recognition between the sow and her piglets is by olfactory and vocal cues 88 BreedsMain article List of pig breeds Many breeds of pig exist with different colors shapes and sizes According to The Livestock Conservancy as of 2016 three breeds of pig are critically rare having a global population of fewer than 2000 They are the Choctaw hog the Mulefoot and the Ossabaw Island hog 89 The smallest known pig breed in the world is the Gottingen minipig typically weighing about 26 kilograms 57 lb as a healthy full grown adult 90 In agricultureMain article Pig farmingGlobal Pig stockin 2019Number in millions1 China Mainland 310 42 European Union143 13 United States78 74 Brazil40 65 Russia23 76 Myanmar21 67 Vietnam19 68 Mexico18 49 Canada14 110 Philippines12 7World total850 3Source UN Food and Agriculture Organization Interior of pig farm at Bjarka Saby Castle Sweden 1911 Exterior of pig farm in Vampula Finland 2021 A Large White a breed commonly used in meat production When in use as livestock the pig is mostly farmed for its meat pork Other food products made from pigs include pork sausage which includes casings that are made from the intestines bacon gammon ham and pork rinds The head of a pig can be used to make a preserved jelly called head cheese which is sometimes known as brawn Liver chitterlings blood for black pudding and other offal from pigs are also widely used for food In some religions such as Judaism and Islam pork is a taboo food Approximately 1 5 billion pigs are slaughtered each year for meat 91 The use of pig milk for human consumption does take place but as there are certain difficulties in obtaining it there is little commercial production Livestock pigs are exhibited at agricultural shows judged either as stud stock compared to the standard features of each pig breed or in commercial classes where the animals are judged primarily on their suitability for slaughter to provide premium meat The skin of pigs is eaten and used to produce seat covers apparel and other items In some developing and developed nations the pig is usually raised outdoors in yards or fields In some areas pigs are allowed to forage in woods where they may be taken care of by swineherds In industrialized nations such as the United States pig farming has switched from the traditional pig farm to large scale intensive pig farms This has resulted in lower production costs but can cause significant cruelty problems As consumers have become concerned with the humane treatment of livestock demand for pasture raised pork in these nations has increased 92 As pets Mini pig Vietnamese pot bellied pigs a miniature breed of pig have made popular pets in the United States beginning in the latter half of the 20th century In many respects pot bellied pigs are desirable and entertaining pets They are considered intelligent gregarious and trainable They lack the genetic hereditary weaknesses which commonly afflict certain pedigree cat and dog breeds are generally quite sturdy and have a reasonably affordable diet despite requiring large quantities of food However they can be strong willed defiant and independent pets which will sometimes defy training They require access to an outdoor space at all times and depending on the individual pig may become housebroken easily or never settle indoors While hardy an injured or sick pig will require costly surgery or larger than average quantities of medicine than most pets 93 Pigs are highly intelligent social creatures They are considered hypoallergenic and are known to do quite well with people who have the usual animal allergies Since these animals are known to have a life expectancy of 15 to 20 years they require a long term commitment Given pigs are bred primarily as livestock and have not been bred as companion animals for very long selective breeding for a placid or biddable temperament is not well established Pigs have radically different psychology to dogs and exhibit fight or flight instincts independent nature and natural assertiveness which can manifest as aggression towards children and a tendency to panic and lash out with little warning Cats generally are safe around pigs as neither species has an incentive to express aggression or fear towards the other although dogs will view pigs as prey animals and in turn pigs will challenge dogs for food leading to very violent fights 94 A Salt amp Pepper miniature pig Care Male and female swine that have not been de sexed may express unwanted aggressive behavior and are prone to developing serious health issues 95 Regular trimming of the hooves is necessary hooves left untreated cause major pain in the pig can create malformations in bone structure and may cause the pig to be more susceptible to fungal growth between crevices of the hoof 96 or between the cracks in a split hoof Male pigs especially when left unaltered can grow large sharp tusks which may continue growing for years Domestic owners may wish to keep their pigs tusks trimmed back 97 or have them removed entirely As prey animals pigs natural instinctive behavior causes them to have a strong fear of being picked up resulting in the animal expressing stress through struggling and squealing but they will usually calm down once placed back onto the ground This instinctual fear may be lessened if the pig has been frequently held since infancy When holding pigs supporting them under the legs makes being held not as stressful for the animal 98 Pigs need enrichment activities 99 to keep their intelligent minds occupied if pigs get bored they often become destructive 100 As rooting is found to be comforting pigs kept in the house may root household objects furniture or surfaces While some owners are known to pierce their pigs noses to discourage rooting behaviour the efficacy and humaneness of this practice is questionable 101 Pet pigs should be let outside daily to allow them to fulfill their natural desire of rooting around In human medical applicationsPigs both as live animals and a source of post mortem tissues are one of the most valuable animal models used in biomedical research today because of their biological physiological and anatomical similarities to human beings 102 103 For instance human skin is very similar to the pigskin therefore pigskin has been used in many preclinical studies 102 103 Porcine clarification needed are used in finding treatments cures for diseases xenotransplantation 104 and for general education They are also used in the development of medical instruments and devices surgical techniques and instrumentation and FDA approved research These animals contribute to the reduction methods for animal research as they supply more information from fewer animals used for a lower cost Xenotransplantation Main article Xenotransplantation Pigs are currently thought to be the best non human candidates for organ donation to humans and to date they are the only animal that has successfully donated an organ to a human body The first successful donation of a non human organ to a human body was conducted on 15 September 2021 when a kidney from a pig was transplanted to a brain dead human and immediately started functioning similarly to a human kidney 105 106 The procedure led by Dr Robert Montgomery used a donor pig that was genetically engineered to not have a specific carbohydrate that the human body considers a threat Galactose alpha 1 3 galactose 107 This followed an earlier major breakthrough when the carbohydrate was removed from genetically engineered mice 108 Besides similarity between pig and human organs pigs are among the best animals suited for human donation due the lower risk of cross species disease transmission This is caused by pigs increased phylogenetic distance from humans 109 Furthermore they are readily available and new infectious agents are less likely since they have been in close contact with humans through domestication for many generations 110 Some obstacles to successful organ donation from a pig to a human arise from the response of the recipient s immune system generally more extreme than in allotransplantations ultimately results in rejection of the xenograft and in some cases results in the death of the recipient including hyperacute rejection acute vascular rejection cellular rejection and chronic rejection Examples of viruses carried by pigs include porcine herpesvirus rotavirus parvovirus and circovirus Of particular concern are PERVs porcine endogenous retroviruses vertically transmitted viruses that embed in swine genomes The risks with xenosis are twofold as not only could the individual become infected but a novel infection could initiate an epidemic in the human population Because of this risk the FDA has suggested any recipients of xenotransplants shall be closely monitored for the remainder of their life and quarantined if they show signs of xenosis 111 Pig cells have been engineered to inactivate all 62 PERVs in the genome using CRISPR Cas9 genome editing technology and eliminated infection from the pig to human cells in culture 112 FolkloreMain article Pigs in culture In the belief of traditional Irish fishermen the pig is seen as a thing of bad luck and should not be mentioned 113 Glossary of termsFurther information Pig farming Terminology Because the pig is a major domesticated animal English has many terms unique to the species barrow a castrated male swine 114 boar a mature male swine often a wild or feral swine 115 boneen a very young pig Ireland farrow noun a litter of piglets farrow verb to give birth to piglets 116 gilt a female pig that has never been pregnant or is pregnant for the first time 117 hog a domestic swine especially a fully grown specimen parcel collective noun for pigs pig strictly an immature swine more generally any swine especially of the domestic variety piglet a very young pig 118 queen a female pig that has never been mated savaging the act of a sow attacking her own piglets sometimes killing and cannibalising them shoat a young pig especially one that has been weaned sounder collective noun for pigs sow a mature female swine 119 swine singular and plural hogs collectively or generally also a derogatory epithet 120 swineherd one who tends to swine raised as livestock a pig farmerSee alsoFarming Mycoplasma hyorhinis Peccary domestication List of individual pigs Pet Pigs in culture Truffle hog Xenotransfusion List of pig breedsNotes David DiSalvo s article in Forbes refers to via an article in Penn State Agricultural Magazine 67 referenced from Pork by Catherine Becker at Ohio State University 68 referencing work by Candace Croney now head of Purdue center for animal welfare science 69 Footnotes Groves Colin P 1995 On the nomenclature of domestic animals Bulletin of Zoological Nomenclature 52 2 137 141 doi 10 5962 bhl part 6749 Biodiversity Heritage Library a b Sus scrofa wild boar Animal Diversity Web Lockhart Kim American Wild Game Feral Pigs Hogs Pigs Wild Boar gunnersden com Archived from the original on 23 August 2018 Retrieved 15 August 2012 Royal visit delights at the Three Counties Show Malvern Gazette Sumena K B Lucy K M Chungath J J Ashok N Harshan K R 2010 Regional histology of the subcutaneous tissue and the sweat glands of large white Yorkshire pigs PDF Tamilnadu Journal of Veterinary and Animal Sciences 6 3 128 135 permanent dead link Folk G E Semken H A 1991 The evolution of sweat glands International Journal of Biometeorology 35 3 180 186 Bibcode 1991IJBm 35 180F doi 10 1007 bf01049065 PMID 1778649 S2CID 28234765 Sweat like a pig Australian Broadcasting Corporation 22 April 2008 Bracke M B M 2011 Review of wallowing in pigs Description of the behaviour and its motivational basis Applied Animal Behaviour Science 132 1 1 13 doi 10 1016 j applanim 2011 01 002 Drabeck D H Dean A M Jansa S A 1 June 2015 Why the honey badger don t care Convergent evolution of venom targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites Toxicon 99 68 72 doi 10 1016 j toxicon 2015 03 007 PMID 25796346 Pros and Cons of Potbellied Pigs Archived from the original on 17 March 2014 Retrieved 25 November 2017 Hoffman J Valencak TG 2020 A short life on the farm aging and longevity in agricultural large bodied mammals GeroScience 42 3 909 922 doi 10 1007 s11357 020 00190 4 PMC 7286991 PMID 32361879 Li Mingzhou Chen Lei Tian Shilin Lin Yu Tang Qianzi Zhou Xuming Li Diyan Yeung Carol K L Che Tiandong Jin Long Fu Yuhua 1 May 2017 Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies Genome Research 27 5 865 874 doi 10 1101 gr 207456 116 ISSN 1088 9051 PMC 5411780 PMID 27646534 Warr A et al 2020 Validate User GigaScience 9 6 doi 10 1093 gigascience giaa051 PMC 7448572 PMID 32543654 Karlsson Max Sjostedt Evelina Oksvold Per Sivertsson Asa Huang Jinrong Alvez Maria Bueno Arif Muhammad Li Xiangyu Lin Lin Yu Jiaying Ma Tao 25 January 2022 Genome wide annotation of protein coding genes in pig BMC Biology 20 1 25 doi 10 1186 s12915 022 01229 y ISSN 1741 7007 PMC 8788080 PMID 35073880 Taxonomy Browser ncbi nlm nih gov Gentry Anthea Clutton Brock Juliet Colin P Groves 2004 The naming of wild animal species and their domestic derivatives PDF Journal of Archaeological Science 31 5 645 651 doi 10 1016 j jas 2003 10 006 Archived from the original PDF on 8 April 2011 Corbet and Hill 1992 referred to in Wilson D E Reeder D M eds 2005 Mammal Species of the World A Taxonomic and Geographic Reference 3rd ed Johns Hopkins University Press ISBN 978 0 8018 8221 0 OCLC 62265494 Gentry Anthea Clutton Brock Juliet Groves Colin P 1996 Proposed conservation of usage of 15 mammal specific names based on wild species which are antedated by or contemporary with those based on domestic animals Bulletin of Zoological Nomenclature 53 28 37 doi 10 5962 bhl part 14102 Explore the Database www mammaldiversity org Retrieved 21 August 2021 Nelson Sarah M 1998 Ancestors for the Pigs Pigs in prehistory University of Pennsylvania Museum of Archaeology and Anthropology ISBN 9781931707091 Ottoni C Flink LG Evin A Georg C De Cupere B Van Neer W Bartosiewicz L Linderholm A Barnett R Peters J Decorte R Waelkens M Vanderheyden N Ricaut FX Cakirlar C Cevik O Hoelzel AR Mashkour M Karimlu AF Seno SS Daujat J Brock F Pinhasi R Hongo H Perez Enciso M Rasmussen M Frantz L Megens HJ Crooijmans R Groenen M Arbuckle B Benecke N Vidarsdottir US Burger J Cucchi T Dobney K Larson G 2013 Pig Domestication and Human Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics Mol Biol Evol 30 4 824 32 doi 10 1093 molbev mss261 PMC 3603306 PMID 23180578 our data suggest a narrative that begins with the domestication of pigs in Southwest Asia at Upper Tigris sites including Cayonu Tepesi Ervynck et al 2001 and possibly Upper Euphrates sites including Cafer Hoyuk Helmer 2008 and Nevali Cori Peters et al 2005 Rosenberg M Nesbitt R Redding RW Peasnall BL 1998 Hallan Cemi pig husbandry and post Pleistocene adaptations along the Taurus Zagros Arc Turkey Paleorient 24 1 25 41 doi 10 3406 paleo 1998 4667 S2CID 85302206 Vigne JD Zazzo A Saliege JF Poplin F Guilaine J Simmons A 2009 Pre Neolithic wild boar management and introduction to Cyprus more than 11 400 years ago Proceedings of the National Academy of Sciences of the United States of America 106 38 16135 8 Bibcode 2009PNAS 10616135V doi 10 1073 pnas 0905015106 PMC 2752532 PMID 19706455 Lander Brian Schneider Mindi Brunson Katherine 2019 A History of Pigs in China From Curious Omnivores to Industrial Pork Journal of Asian Studies 79 4 865 889 doi 10 1017 S0021911820000054 a b Giuffra E Kijas JM Amarger V Carlborg O Jeon JT Andersson L 2000 The origin of the domestic pig independent domestication and subsequent introgression Genetics 154 4 1785 91 doi 10 1093 genetics 154 4 1785 PMC 1461048 PMID 10747069 Jean Denis Vigne Anne Tresset Jean Pierre Digard 3 July 2012 History of domestication PDF Speech Price Max March 2020 The Genesis of the Near Eastern Pig American Society of Overseas Research ASOR Retrieved 8 August 2021 BBC News Pig DNA reveals farming history 4 September 2007 The report concerns an article in the journal PNAS Larson G Albarella U Dobney K Rowley Conwy P Schibler J Tresset A Vigne JD Edwards CJ et al 2007 Ancient DNA pig domestication and the spread of the Neolithic into Europe PDF Proceedings of the National Academy of Sciences of the United States of America 104 39 15276 81 Bibcode 2007PNAS 10415276L doi 10 1073 pnas 0703411104 PMC 1976408 PMID 17855556 Frantz L 2015 Evidence of long term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes Nat Genet 47 10 1141 8 doi 10 1038 ng 3394 PMID 26323058 S2CID 205350534 Pennisi E 2015 The taming of the pig took some wild turns Science doi 10 1126 science aad1692 Frantz Laurent A F Haile James Lin Audrey T Scheu Amelie Georg Christina Benecke Norbert Alexander Michelle Linderholm Anna Mullin Victoria E Daly Kevin G Battista Vincent M Price Max Gron Kurt J Alexandri Panoraia Arbogast Rose Marie Arbuckle Benjamin Bӑlӑsescu Adrian Barnett Ross Bartosiewicz Laszlo Baryshnikov Gennady Bonsall Clive Boric Dusan Boroneanţ Adina Bulatovic Jelena Cakirlar Canan Carretero Jose Miguel Chapman John Church Mike Crooijmans Richard et al 2019 Ancient pigs reveal a near complete genomic turnover following their introduction to Europe Proceedings of the National Academy of Sciences 116 35 17231 17238 Bibcode 2019PNAS 11617231F doi 10 1073 pnas 1901169116 PMC 6717267 PMID 31405970 Torrejon Fernando Cisternas Marco Araneda Alberto 2004 Efectos ambientales de la colonizacion espanola desde el rio Maullin al archipielago de Chiloe sur de Chile Environmental effects of the spanish colonization from de Maullin river to the Chiloe archipelago southern Chile Revista Chilena de Historia Natural in Spanish 77 4 661 677 doi 10 4067 s0716 078x2004000400009 II G 13 Hogs Archived 20 December 2007 at the Wayback Machine Feral Hogs in Missouri Missouri Department of Conservation mdc mo gov Archived from the original on 8 March 2017 Retrieved 7 March 2017 Feral Hog Hunting Regulations agfc com Archived from the original on 22 February 2017 Retrieved 7 March 2017 Feral Hog Management Georgia DNR Wildlife Resources Division georgiawildlife com Archived from the original on 8 March 2017 Retrieved 8 March 2017 Yoon Carol Kaesuk 2 December 1992 Alien Species Threaten Hawaii s Environment The New York Times Introduced Birds and Mammals in New Zealand and Their Effect on the Environment NZETC nzetc org World s 100 most destructive species named The Independent 21 November 2004 Archived from the original on 26 May 2022 Retrieved 7 March 2017 Marilia Do G1 Bauru e 12 April 2013 Autorizacao para abate do javaporco tranquiliza produtores em Assis SP Bauru e Marilia IBAMA authorizes capture and slaughter of javaporcos Folha do Sul Gaucho Archived from the original on 3 July 2017 Javaporco da prejuizo e amedronta produtores rurais de Maracai SP MS Rural farmers are authorized to make populational control of exotic species such as the European boar Archived 12 October 2014 at the Wayback Machine in Portuguese Status and Distribution of wild boar in Rio Grande do Sul Southern Brazil 2009 PSD Online fas usda gov Swine Summary Selected Countries Archived 29 March 2012 at the Wayback Machine United States Department of Agriculture Foreign Agricultural Service total number is Production Pig Crop plus Total Beginning Stocks Hughes Paul 1980 Reproduction in the Pig Massachusetts The Butterworth Group ISBN 0408709464 Feral Hog Reproductive Biology 16 May 2012 G2312 Artificial Insemination in Swine Breeding the Female University of Missouri Extension extension missouri edu Archived from the original on 8 March 2017 Retrieved 7 March 2017 The Female Swine Reproduction livestocktrail illinois edu Retrieved 7 March 2017 Bazer F W Vallet J L Roberts R M Sharp D D Thatcher W W 1986 Role of conceptus secretory products in establishment of pregnancy J Reprod Fertil 76 2 841 850 doi 10 1530 jrf 0 0760841 PMID 3517318 Bazer Fuller W Song Gwonhwa Kim Jinyoung Dunlap Kathrin A Satterfield Michael Carey Johnson Gregory A Burghardt Robert C Wu Guoyao 1 January 2012 Uterine biology in pigs and sheep Journal of Animal Science and Biotechnology 3 1 23 doi 10 1186 2049 1891 3 23 ISSN 2049 1891 PMC 3436697 PMID 22958877 a b Ziecik A J et al 2018 Regulation of the porcine corpus luteum during pregnancy Reproduction 156 3 R57 R67 doi 10 1530 rep 17 0662 PMID 29794023 Waclawik A et al 2017 Embryo maternal dialogue during pregnancy establishment and implantation in the pig Molecular Reproduction and Development 84 9 842 855 doi 10 1002 mrd 22835 PMID 28628266 Farmer Chantal 2015 The gestating and lactating sow The Netherlands Wageningen Academic Publishers ISBN 9789086868032 OCLC 899008362 Ervynck A amp Dobney K 2002 A Pig all Seasons Approaches to the Assessment of Second Farrowing in Archaeological Pig Populations Archaeofauna 11 Bintliff J Earle T Peebles C 2008 A Companion to Archaeology Wiley p 305 ISBN 978 0 470 99860 1 a b c Clutton Brock J 1987 A Natural History of Domesticated Mammals Cambridge University Press Cambridge pp 73 74 Algers Bo Uvnas Moberg Kerstin 1 June 2007 Maternal behavior in pigs Hormones and Behavior Reproductive Behavior in Farm and Laboratory Animals11th Annual Meeting of the Society for Behavioral Neuroendocrinology 52 1 78 85 doi 10 1016 j yhbeh 2007 03 022 PMID 17482189 S2CID 9742677 a b c d Bracke M B M 2011 Review of wallowing in pigs description of the behaviour and its motivational basis Applied Animal Behaviour Science 132 1 2 1 13 doi 10 1016 j applanim 2011 01 002 Blowing Coat Mini Pig Shedding FAQ americanminipigassociation com 2 April 2016 Kongsted A G Horsted K Hermansen J E 2013 Free range pigs foraging on Jerusalem artichokes Helianthus tuberosus L Effect of feeding strategy on growth feed conversion and animal behaviour Acta Agriculturae Scandinavica Section A 63 2 76 83 doi 10 1080 09064702 2013 787116 S2CID 84886946 10 of the smartest animals on Earth MNN Mother Nature Network Retrieved 8 March 2017 Signs of Intelligent Life Natural History Magazine naturalhistorymag com Retrieved 3 June 2019 David Disalvo 2014 11 26 how smart was that turkey and ham before it became dinner at forbes com Accessed 27 January 2017 In a Pig s Eye by Eston Martz Penn State Agricultural Magazine Fall Winter 1997 Penn State College of Agricultural Sciences permanent dead link Accessed 27 January 2017 Catherine Becker Pork at u osu edu permanent dead link Accessed 27 January 2017 Croney to head Purdue Center for Animal Welfare Science Accessed 27 January 2017 Angier Natalie 9 November 2009 Pigs Prove to Be Smart if Not Vain The New York Times New York City Retrieved 28 July 2010 a b c Rooting amp Nudging Behaviors in Mini Pigs americanminipigassociation com 8 June 2016 Kunekune pigs are just right for farm life tractorsupply com a b c Algers Bo Uvnas Moberg Kerstin 1 June 2007 Maternal behavior in pigs Hormones and Behavior 52 1 78 85 doi 10 1016 j yhbeh 2007 03 022 ISSN 0018 506X PMID 17482189 S2CID 9742677 a b Wischner D Kemper N Krieter J 2009 Nest building behaviour in sows and consequences for pig husbandry Livestock Science 124 1 1 8 doi 10 1016 j livsci 2009 01 015 Fraser D 1980 A review of the behavioural mechanisms of milk ejection of the domestic pig Applied Animal Ethology 6 3 247 256 doi 10 1016 0304 3762 80 90026 7 Rohde Parfet K A Gonyou H W 1991 Attraction of newborn piglets to auditory visual olfactory and tactile stimuli Journal of Animal Science 69 1 125 133 doi 10 2527 1991 691125x PMID 2005005 S2CID 31788525 Algers B 1993 Nursing in pigs communicating needs and distributing resources Journal of Animal Science 71 10 2826 2831 doi 10 2527 1993 71102826x PMID 8226386 Castren H Algers B Jensen P Saloniemi H 1989 Suckling behaviour and milk consumption in newborn piglets as a response to sow grunting Applied Animal Behaviour Science 24 3 227 238 doi 10 1016 0168 1591 89 90069 5 Jensen P Gustafsson G Augustsson H 1998 Massaging after milk ejection in domestic pigs an example of honest begging Animal Behaviour 55 4 779 786 doi 10 1006 anbe 1997 0651 PMID 9632466 S2CID 12493158 Fraser D 1973 The nursing and suckling behaviour in pigs I The importance of stimulation of the anterior teats British Veterinary Journal 129 4 324 336 doi 10 1016 s0007 1935 17 36434 5 PMID 4733757 Jeppesen L E 1982 Teat order in groups of piglets reared on an artificial sow II Maintenance of teat order with some evidence for the use of odour cues Applied Animal Ethology 8 4 347 355 doi 10 1016 0304 3762 82 90067 0 Animalbehaviour net Pigs Archived from the original on 17 March 2012 Retrieved 9 December 2012 Animalbehaviour net Sheep Archived from the original on 26 December 2012 Retrieved 9 December 2012 Lomas C A Piggins D Phillips C J C 1998 Visual awareness Applied Animal Behaviour Science 57 3 4 247 257 doi 10 1016 s0168 1591 98 00100 2 Houpt K A 1998 Domestic Animal Behavior for Veterinarians and Animal Scientists 3rd edition Iowa State University Press Ames Gonyou H W 2001 The social behaviour of pigs In Social Behaviour in Farm Animals eds Keeling L J and Gonyou H W CABI Oxford Vieuille Thomas C Signoret J P 1992 Pheromonal transmission of an aversive experience in domestic pigs Journal of Chemical Ecology 18 9 1551 1557 doi 10 1007 bf00993228 PMID 24254286 S2CID 4386919 Jensen P Redbo I 1987 Behaviour during nest leaving in free ranging domestic pigs Applied Animal Behaviour Science 18 3 4 355 362 doi 10 1016 0168 1591 87 90229 2 The Livestock Conservancy livestockconservancy org Retrieved 7 March 2017 Taking good care of Ellegaard Gottingen Minipigs PDF Ellegaard Gottingen Minipigs Archived from the original PDF on 19 April 2016 Retrieved 2 July 2018 FAOSTAT fao org Retrieved 25 October 2019 Strom Stephanie 2 January 2014 Demand Grows for Hogs That Are Raised Humanely Outdoors The New York Times Retrieved 15 April 2015 The Pros and Cons of Keeping Pot Bellied Pigs as Pets Did You Know Pets 8 April 2020 Retrieved 10 November 2020 Info Resource Pigs 4 Ever Gifts supplies and resources for Pot Bellied Pigs pigs4ever com Retrieved 11 October 2020 Spay and Neuter American Mini Pig Association americanminipigassociation com Hoof Trimming American Mini Pig Association americanminipigassociation com Tusk Trimming in Mini Pigs Using Gigli Wire Saw 2 September 2016 Retrieved 7 May 2019 Mini Pig Training How to Hold a Mini Pig Life with a Mini Pig 21 June 2015 Enrichment Activities for a Bored Pig American mini Pig Association Retrieved 7 May 2019 Aggressive Mini Pigs How To Correct Aggression Issues Mini Pig Info Nose Rings in Mini Pigs Cruel and Ineffective Nose Ring Alternatives 1 September 2016 Retrieved 7 May 2019 a b Herron Alan J 5 December 2009 Pigs as Dermatologic Models of Human Skin Disease PDF ivis org DVM Center for Comparative Medicine and Department of Pathology Baylor College of Medicine Houston Texas Retrieved 27 January 2018 pig skin has been shown to be the most similar to human skin Pigskin is structurally similar to the human epidermal and dermal epidermal thickness ratios Pigs and humans have similar hair follicle and blood vessel patterns in the skin Biochemically pigs contain dermal collagen and elastic content that is more similar to humans than other laboratory animals Finally pigs have similar physical and molecular responses to various growth factors a b Liu J Kim L Madsen T Bouchard G F Comparison of Human Porcine and Rodent Wound Healing With New Miniature Swine Study Data PDF sinclairresearch com Sinclair Research Centre Auxvasse MO USA Veterinary Medical Diagnostic Laboratory Columbia MO USA Retrieved 27 January 2018 Pig skin is anatomically physiologically biochemically and immunologically similar to human skin Xenotransplantation How Pig Organs Could Be Transplanted into Humans animalbiotech com Animal Biotech Industries 19 March 2018 Retrieved 5 November 2018 Successful pig to human kidney transplant a transformative moment www yahoo com Retrieved 2 November 2021 Lapid Nancy 20 October 2021 U S surgeons successfully test pig kidney transplant in human patient Reuters Retrieved 2 November 2021 Progress in Xenotransplantation Opens Door to New Supply of Critically Needed Organs NYU Langone News Retrieved 2 November 2021 Latemple D C Galili U 1998 Adult and neonatal anti Gal response in knock out mice for alpha1 3galactosyltransferase Xenotransplantation 5 3 191 196 doi 10 1111 j 1399 3089 1998 tb00027 x PMID 9741457 S2CID 39194181 Dooldeniya M D Warrens A N 2003 Xenotransplantation Where are we today Journal of the Royal Society of Medicine 96 3 111 117 doi 10 1177 014107680309600303 PMC 539416 PMID 12612110 Taylor L 2007 Xenotransplantation Emedicine com FDA 2006 Xenotransplantation Action Plan FDA Approach to the Regulation of Xenotransplantation Center for Biologics Evaluation and Research Carl Zimmerman 15 October 2015 Editing of Pig DNA May Lead to More Organs for People The New York Times Ni Fhloinn Bairbre 2018 Cold Iron Aspects of the Occupational Folklore of Irish Fishermen Comhairle Bhealoideas Eireann pp 38 56 ISBN 978 0 9565628 7 6 Dictionary of Agriculture 2006 barrow 21 noun a male pig after castration while a suckler or weaner Dictionary of Agriculture 2006 boar 30 noun a male uncastrated pig Dictionary of Agriculture 2006 farrowing 97 noun the act of giving birth to piglets Dictionary of Agriculture 2006 gilt 97 noun a young female pig Dictionary of Agriculture 2006 piglet 189 noun a young pig Dictionary of Agriculture 2006 sow 229 noun a female pig Dictionary of Agriculture 2006 swine 240 noun a collective term for pigs ReferencesAnimal Welfare AVMA Policy on Pregnant Sow Housing Bateman Heather Curtis Steve McAdam Katy eds 2006 Dictionary of Agriculture 3rd ed A amp C Black ISBN 978 0 7136 7778 2 CAST Scientific Assessment of the Welfare of Dry Sows kept in Individual Accommodations March 2009 Keuling O Leus K 2019 Sus scrofa IUCN Red List of Threatened Species 2019 e T41775A44141833 doi 10 2305 IUCN UK 2019 3 RLTS T41775A44141833 en Retrieved 11 November 2021 External links Wikimedia Commons has media related to Sus domesticus An introduction to pig keeping British Pig Association Globe and Mail article Canada s transgenic Enviropig is stuck in a genetic modification poke Information on Micro Pigs Archived 19 July 2019 at the Wayback Machine JJ Genetics gilt pig breeders JSR Genetics Pig genetics company Pig Sanctuary Swine Care Swine Study Guide from UC Davis The process of pig slaughtery Retrieved from https en wikipedia org w index php title Pig amp oldid 1149505031, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.