fbpx
Wikipedia

Regeneration (biology)

In biology, regeneration is the process of renewal, restoration, and tissue growth that makes genomes, cells, organisms, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage.[1] Every species is capable of regeneration, from bacteria to humans.[2][3] Regeneration can either be complete[4] where the new tissue is the same as the lost tissue,[4] or incomplete[5] where after the necrotic tissue comes fibrosis.[5]

Sunflower sea star regenerates its arms.
Dwarf yellow-headed gecko with regenerating tail

At its most elementary level, regeneration is mediated by the molecular processes of gene regulation and involves the cellular processes of cell proliferation, morphogenesis and cell differentiation.[6][7] Regeneration in biology, however, mainly refers to the morphogenic processes that characterize the phenotypic plasticity of traits allowing multi-cellular organisms to repair and maintain the integrity of their physiological and morphological states. Above the genetic level, regeneration is fundamentally regulated by asexual cellular processes.[8] Regeneration is different from reproduction. For example, hydra perform regeneration but reproduce by the method of budding.

The hydra and the planarian flatworm have long served as model organisms for their highly adaptive regenerative capabilities.[9] Once wounded, their cells become activated and restore the organs back to their pre-existing state.[10] The Caudata ("urodeles"; salamanders and newts), an order of tailed amphibians, is possibly the most adept vertebrate group at regeneration, given their capability of regenerating limbs, tails, jaws, eyes and a variety of internal structures.[2] The regeneration of organs is a common and widespread adaptive capability among metazoan creatures.[9] In a related context, some animals are able to reproduce asexually through fragmentation, budding, or fission.[8] A planarian parent, for example, will constrict, split in the middle, and each half generates a new end to form two clones of the original.[11]

Echinoderms (such as the sea star), crayfish, many reptiles, and amphibians exhibit remarkable examples of tissue regeneration. The case of autotomy, for example, serves as a defensive function as the animal detaches a limb or tail to avoid capture. After the limb or tail has been autotomized, cells move into action and the tissues will regenerate.[12][13][14] In some cases a shed limb can itself regenerate a new individual.[15] Limited regeneration of limbs occurs in most fishes and salamanders, and tail regeneration takes place in larval frogs and toads (but not adults). The whole limb of a salamander or a triton will grow again and again after amputation. In reptiles, chelonians, crocodilians and snakes are unable to regenerate lost parts, but many (not all) kinds of lizards, geckos and iguanas possess regeneration capacity in a high degree. Usually, it involves dropping a section of their tail and regenerating it as part of a defense mechanism. While escaping a predator, if the predator catches the tail, it will disconnect.[16]

Ecosystems

Ecosystems can be regenerative. Following a disturbance, such as a fire or pest outbreak in a forest, pioneering species will occupy, compete for space, and establish themselves in the newly opened habitat. The new growth of seedlings and community assembly process is known as regeneration in ecology.[17][18]

Cellular molecular fundamentals

Pattern formation in the morphogenesis of an animal is regulated by genetic induction factors that put cells to work after damage has occurred. Neural cells, for example, express growth-associated proteins, such as GAP-43, tubulin, actin, an array of novel neuropeptides, and cytokines that induce a cellular physiological response to regenerate from the damage.[19] Many of the genes that are involved in the original development of tissues are reinitialized during the regenerative process. Cells in the primordia of zebrafish fins, for example, express four genes from the homeobox msx family during development and regeneration.[20]

Tissues

"Strategies include the rearrangement of pre-existing tissue, the use of adult somatic stem cells and the dedifferentiation and/or transdifferentiation of cells, and more than one mode can operate in different tissues of the same animal.[1] All these strategies result in the re-establishment of appropriate tissue polarity, structure and form."[21]: 873  During the developmental process, genes are activated that serve to modify the properties of cell as they differentiate into different tissues. Development and regeneration involves the coordination and organization of populations cells into a blastema, which is "a mound of stem cells from which regeneration begins".[22] Dedifferentiation of cells means that they lose their tissue-specific characteristics as tissues remodel during the regeneration process. This should not be confused with the transdifferentiation of cells which is when they lose their tissue-specific characteristics during the regeneration process, and then re-differentiate to a different kind of cell.[21]

In animals

Arthropods

Limb regeneration

Many arthropods can regenerate limbs and other appendages following either injury or autotomy.[23] Regeneration capacity is constrained by the developmental stage and ability to molt.

Crustaceans, which continually molt, can regenerate throughout their lifetimes.[24] While molting cycles are generally hormonally regulated, limb amputation induces premature molting.[23][25]

Hemimetabolous insects such as crickets can regenerate limbs as nymphs, before their final molt.[26]

Holometabolous insects can regenerate appendages as larvae prior to the final molt and metamorphosis. Beetle larvae, for example, can regenerate amputated limbs. Fruit fly larvae do not have limbs but can regenerate their appendage primordia, imaginal discs.[27] In both systems, the regrowth of the new tissue delays pupation.[27][28]

Mechanisms underlying appendage limb regeneration in insects and crustaceans are highly conserved.[29] During limb regeneration species in both taxa form a blastema that proliferates and grows to repattern the missing tissue.[30]

Venom regeneration

Arachnids, including scorpions, are known to regenerate their venom, although the content of the regenerated venom is different from the original venom during its regeneration, as the venom volume is replaced before the active proteins are all replenished.[31]

Fruit fly model

The fruit fly Drosophila melanogaster is a useful model organism to understand the molecular mechanisms that control regeneration, especially gut and germline regeneration.[32] In these tissues, resident stem cells continually renew lost cells.[33] The Hippo signaling pathway was discovered in flies and was found to be required for midgut regeneration. Later, this conserved signaling pathway was also found to be essential for regeneration of many mammalian tissues, including heart, liver, skin, and lung, and intestine.[34]

Annelids

Many annelids (segmented worms) are capable of regeneration.[35] For example, Chaetopterus variopedatus and Branchiomma nigromaculata can regenerate both anterior and posterior body parts after latitudinal bisection.[36] The relationship between somatic and germline stem cell regeneration has been studied at the molecular level in the annelid Capitella teleta.[37] Leeches, however, appear incapable of segmental regeneration.[38] Furthermore, their close relatives, the branchiobdellids, are also incapable of segmental regeneration.[38][35] However, certain individuals, like the lumbriculids, can regenerate from only a few segments.[38] Segmental regeneration in these animals is epimorphic and occurs through blastema formation.[38] Segmental regeneration has been gained and lost during annelid evolution, as seen in oligochaetes, where head regeneration has been lost three separate times.[38]

Along with epimorphosis, some polychaetes like Sabella pavonina experience morphallactic regeneration.[38][39] Morphallaxis involves the de-differentiation, transformation, and re-differentation of cells to regenerate tissues. How prominent morphallactic regeneration is in oligochaetes is currently not well understood. Although relatively under-reported, it is possible that morphallaxis is a common mode of inter-segment regeneration in annelids. Following regeneration in L. variegatus, past posterior segments sometimes become anterior in the new body orientation, consistent with morphallaxis.

Following amputation, most annelids are capable of sealing their body via rapid muscular contraction. Constriction of body muscle can lead to infection prevention. In certain species, such as Limnodrilus, autolysis can be seen within hours after amputation in the ectoderm and mesoderm. Amputation is also thought to cause a large migration of cells to the injury site, and these form a wound plug.

Echinoderms

Tissue regeneration is widespread among echinoderms and has been well documented in starfish (Asteroidea), sea cucumbers (Holothuroidea), and sea urchins (Echinoidea). Appendage regeneration in echinoderms has been studied since at least the 19th century.[40] In addition to appendages, some species can regenerate internal organs and parts of their central nervous system.[41] In response to injury starfish can autotomize damaged appendages. Autotomy is the self-amputation of a body part, usually an appendage.  Depending on severity, starfish will then go through a four-week process where the appendage will be regenerated.[42] Some species must retain mouth cells to regenerate an appendage, due to the need for energy.[43] The first organs to regenerate, in all species documented to date, are associated with the digestive tract. Thus, most knowledge about visceral regeneration in holothurians concerns this system.[44]

Planaria (Platyhelminthes)

Regeneration research using Planarians began in the late 1800s and was popularized by T.H. Morgan at the beginning of the 20th century.[43] Alejandro Sanchez-Alvarado and Philip Newmark transformed planarians into a model genetic organism in the beginning of the 20th century to study the molecular mechanisms underlying regeneration in these animals.[45] Planarians exhibit an extraordinary ability to regenerate lost body parts. For example, a planarian split lengthwise or crosswise will regenerate into two separate individuals. In one experiment, T.H. Morgan found that a piece corresponding to 1/279th of a planarian[43] or a fragment with as few as 10,000 cells can successfully regenerate into a new worm within one to two weeks.[46] After amputation, stump cells form a blastema formed from neoblasts, pluripotent cells found throughout the planarian body.[47] New tissue grows from neoblasts with neoblasts comprising between 20 and 30% of all planarian cells.[46] Recent work has confirmed that neoblasts are totipotent since one single neoblast can regenerate an entire irradiated animal that has been rendered incapable of regeneration.[48] In order to prevent starvation a planarian will use their own cells for energy, this phenomenon is known as de-growth.[10]

Amphibians

Limb regeneration in the axolotl and newt has been extensively studied and researched. The nineteenth century studies of this subject are reviewed in Holland (2021).[49] Urodele amphibians, such as salamanders and newts, display the highest regenerative ability among tetrapods.[50][49] As such, they can fully regenerate their limbs, tail, jaws, and retina via epimorphic regeneration leading to functional replacement with new tissue.[51] Salamander limb regeneration occurs in two main steps. First, the local cells dedifferentiate at the wound site into progenitor to form a blastema.[52] Second, the blastemal cells will undergo cell proliferation, patterning, cell differentiation and tissue growth using similar genetic mechanisms that deployed during embryonic development.[53] Ultimately, blastemal cells will generate all the cells for the new structure.[50]

 
Axolotls can regenerate a variety of structures, including their limbs.

After amputation, the epidermis migrates to cover the stump in 1–2 hours, forming a structure called the wound epithelium (WE).[54] Epidermal cells continue to migrate over the WE, resulting in a thickened, specialized signaling center called the apical epithelial cap (AEC).[55] Over the next several days there are changes in the underlying stump tissues that result in the formation of a blastema (a mass of dedifferentiated proliferating cells). As the blastema forms, pattern formation genes – such as HoxA and HoxD – are activated as they were when the limb was formed in the embryo.[56][57] The positional identity of the distal tip of the limb (i.e. the autopod, which is the hand or foot) is formed first in the blastema. Intermediate positional identities between the stump and the distal tip are then filled in through a process called intercalation.[56] Motor neurons, muscle, and blood vessels grow with the regenerated limb, and reestablish the connections that were present prior to amputation. The time that this entire process takes varies according to the age of the animal, ranging from about a month to around three months in the adult and then the limb becomes fully functional. Researchers at Australian Regenerative Medicine Institute at Monash University have published that when macrophages, which eat up material debris,[58] were removed, salamanders lost their ability to regenerate and formed scarred tissue instead.[59]

In spite of the historically few researchers studying limb regeneration, remarkable progress has been made recently in establishing the neotenous amphibian the axolotl (Ambystoma mexicanum) as a model genetic organism. This progress has been facilitated by advances in genomics, bioinformatics, and somatic cell transgenesis in other fields, that have created the opportunity to investigate the mechanisms of important biological properties, such as limb regeneration, in the axolotl.[53] The Ambystoma Genetic Stock Center (AGSC) is a self-sustaining, breeding colony of the axolotl supported by the National Science Foundation as a Living Stock Collection. Located at the University of Kentucky, the AGSC is dedicated to supplying genetically well-characterized axolotl embryos, larvae, and adults to laboratories throughout the United States and abroad. An NIH-funded NCRR grant has led to the establishment of the Ambystoma EST database, the Salamander Genome Project (SGP) that has led to the creation of the first amphibian gene map and several annotated molecular data bases, and the creation of the research community web portal.[60] In 2022, a first spatiotemporal map revealed key insights about axolotl brain regeneration, also providing the interactive Axolotl Regenerative Telencephalon Interpretation via Spatiotemporal Transcriptomic Atlas .[61][62]

Frog model

Anurans (frogs) can only regenerate their limbs during embryonic development.[63] Reactive oxygen species (ROS) appear to be required for a regeneration response in the anuran larvae.[64] ROS production is essential to activate the Wnt signaling pathway, which has been associated with regeneration in other systems.[64]

Once the limb skeleton has developed in frogs, regeneration does not occur (Xenopus can grow a cartilaginous spike after amputation).[63] The adult Xenopus laevis is used as a model organism for regenerative medicine. In 2022, a cocktail of drugs and hormones (1,4-DPCA, BDNF, growth hormone, resolvin D5, and retinoic acid), in a single dose lasting 24 hours, was shown to trigger long-term leg regeneration in adult X. laevis. Instead of a single spike, a paddle-shaped growth is obtained at the end of the limb by 18 months.[65]

Hydra

Hydra is a genus of freshwater polyp in the phylum Cnidaria with highly proliferative stem cells that gives them the ability to regenerate their entire body.[66] Any fragment larger than a few hundred epithelial cells that is isolated from the body has the ability to regenerate into a smaller version of itself.[66] The high proportion of stem cells in the hydra supports its efficient regenerative ability.[67]

Regeneration among hydra occurs as foot regeneration arising from the basal part of the body, and head regeneration, arising from the apical region.[66] Regeneration tissues that are cut from the gastric region contain polarity, which allows them to distinguish between regenerating a head in the apical end and a foot in the basal end so that both regions are present in the newly regenerated organism.[66] Head regeneration requires complex reconstruction of the area, while foot regeneration is much simpler, similar to tissue repair.[68] In both foot and head regeneration, however, there are two distinct molecular cascades that occur once the tissue is wounded: early injury response and a subsequent, signal-driven pathway of the regenerating tissue that leads to cellular differentiation.[67] This early-injury response includes epithelial cell stretching for wound closure, the migration of interstitial progenitors towards the wound, cell death, phagocytosis of cell debris, and reconstruction of the extracellular matrix.[67]

Regeneration in hydra has been defined as morphallaxis, the process where regeneration results from remodeling of existing material without cellular proliferation.[69][70] If a hydra is cut into two pieces, the remaining severed sections form two fully functional and independent hydra, approximately the same size as the two smaller severed sections.[66] This occurs through the exchange and rearrangement of soft tissues without the formation of new material.[67]

Aves (birds)

Owing to a limited literature on the subject, birds are believed to have very limited regenerative abilities as adults. Some studies[71] on roosters have suggested that birds can adequately regenerate some parts of the limbs and depending on the conditions in which regeneration takes place, such as age of the animal, the inter-relationship of the injured tissue with other muscles, and the type of operation, can involve complete regeneration of some musculoskeletal structure. Werber and Goldschmidt (1909) found that the goose and duck were capable of regenerating their beaks after partial amputation[71] and Sidorova (1962) observed liver regeneration via hypertrophy in roosters.[72] Birds are also capable of regenerating the hair cells in their cochlea following noise damage or ototoxic drug damage.[73] Despite this evidence, contemporary studies suggest reparative regeneration in avian species is limited to periods during embryonic development. An array of molecular biology techniques have been successful in manipulating cellular pathways known to contribute to spontaneous regeneration in chick embryos.[74] For instance, removing a portion of the elbow joint in a chick embryo via window excision or slice excision and comparing joint tissue specific markers and cartilage markers showed that window excision allowed 10 out of 20 limbs to regenerate and expressed joint genes similarly to a developing embryo. In contrast, slice excision did not allow the joint to regenerate due to the fusion of the skeletal elements seen by an expression of cartilage markers.[75]

Similar to the physiological regeneration of hair in mammals, birds can regenerate their feathers in order to repair damaged feathers or to attract mates with their plumage. Typically, seasonal changes that are associated with breeding seasons will prompt a hormonal signal for birds to begin regenerating feathers. This has been experimentally induced using thyroid hormones in the Rhode Island Red Fowls.[76]

Mammals

 
Spiny mice (Acomys cahirinus pictured here) can regenerate skin, cartilage, nerves and muscle.

Mammals are capable of cellular and physiological regeneration, but have generally poor reparative regenerative ability across the group.[1][24] Examples of physiological regeneration in mammals include epithelial renewal (e.g., skin and intestinal tract), red blood cell replacement, antler regeneration and hair cycling.[77][78] Male deer lose their antlers annually during the months of January to April then through regeneration are able to regrow them as an example of physiological regeneration. A deer antler is the only appendage of a mammal that can be regrown every year.[79] While reparative regeneration is a rare phenomenon in mammals, it does occur. A well-documented example is regeneration of the digit tip distal to the nail bed.[80] Reparative regeneration has also been observed in rabbits, pikas and African spiny mice. In 2012, researchers discovered that two species of African Spiny Mice, Acomys kempi and Acomys percivali, were capable of completely regenerating the autotomically released or otherwise damaged tissue. These species can regrow hair follicles, skin, sweat glands, fur and cartilage.[81] In addition to these two species, subsequent studies demonstrated that Acomys cahirinus could regenerate skin and excised tissue in the ear pinna.[82][83]

Despite these examples, it is generally accepted that adult mammals have limited regenerative capacity compared to most vertebrate embryos/larvae, adult salamanders and fish.[84] But the regeneration therapy approach of Robert O. Becker, using electrical stimulation, has shown promising results for rats[85] and mammals in general.[86]

Some researchers have also claimed that the MRL mouse strain exhibits enhanced regenerative abilities. Work comparing the differential gene expression of scarless healing MRL mice and a poorly-healing C57BL/6 mouse strain, identified 36 genes differentiating the healing process between MRL mice and other mice.[87][88] Study of the regenerative process in these animals is aimed at discovering how to duplicate them in humans, such as deactivation of the p21 gene.[89][90] However, recent work has shown that MRL mice actually close small ear holes with scar tissue, rather than regeneration as originally claimed.[82]

MRL mice are not protected against myocardial infarction; heart regeneration in adult mammals (neocardiogenesis) is limited, because heart muscle cells are nearly all terminally differentiated. MRL mice show the same amount of cardiac injury and scar formation as normal mice after a heart attack.[91] However, recent studies provide evidence that this may not always be the case, and that MRL mice can regenerate after heart damage.[92]

Humans

The regrowth of lost tissues or organs in the human body is being researched. Some tissues such as skin regrow quite readily; others have been thought to have little or no capacity for regeneration, but ongoing research suggests that there is some hope for a variety of tissues and organs.[1][93] Human organs that have been regenerated include the bladder, vagina and the penis.[94]

As are all metazoans, humans are capable of physiological regeneration (i.e. the replacement of cells during homeostatic maintenance that does not necessitate injury). For example, the regeneration of red blood cells via erythropoiesis occurs through the maturation of erythrocytes from hematopoietic stem cells in the bone marrow, their subsequent circulation for around 90 days in the blood stream, and their eventual cell-death in the spleen.[95] Another example of physiological regeneration is the sloughing and rebuilding of a functional endometrium during each menstrual cycle in females in response to varying levels of circulating estrogen and progesterone.[96]

However, humans are limited in their capacity for reparative regeneration, which occurs in response to injury. One of the most studied regenerative responses in humans is the hypertrophy of the liver following liver injury.[97][98] For example, the original mass of the liver is re-established in direct proportion to the amount of liver removed following partial hepatectomy,[99] which indicates that signals from the body regulate liver mass precisely, both positively and negatively, until the desired mass is reached. This response is considered cellular regeneration (a form of compensatory hypertrophy) where the function and mass of the liver is regenerated through the proliferation of existing mature hepatic cells (mainly hepatocytes), but the exact morphology of the liver is not regained.[98] This process is driven by growth factor and cytokine regulated pathways.[97] The normal sequence of inflammation and regeneration does not function accurately in cancer. Specifically, cytokine stimulation of cells leads to expression of genes that change cellular functions and suppress the immune response.[100]

Adult neurogenesis is also a form of cellular regeneration. For example, hippocampal neuron renewal occurs in normal adult humans at an annual turnover rate of 1.75% of neurons.[101] Cardiac myocyte renewal has been found to occur in normal adult humans,[102] and at a higher rate in adults following acute heart injury such as infarction.[103] Even in adult myocardium following infarction, proliferation is only found in around 1% of myocytes around the area of injury, which is not enough to restore function of cardiac muscle. However, this may be an important target for regenerative medicine as it implies that regeneration of cardiomyocytes, and consequently of myocardium, can be induced.

Another example of reparative regeneration in humans is fingertip regeneration, which occurs after phalange amputation distal to the nail bed (especially in children)[104][105] and rib regeneration, which occurs following osteotomy for scoliosis treatment (though usually regeneration is only partial and may take up to one year).[106]

Yet another example of regeneration in humans is vas deferens regeneration, which occurs after a vasectomy and which results in vasectomy failure.[107]

Reptiles

The ability and degree of regeneration in reptiles differs among the various species, but the most notable and well-studied occurrence is tail-regeneration in lizards.[108][109][110] In addition to lizards, regeneration has been observed in the tails and maxillary bone of crocodiles and adult neurogenesis has also been noted.[108][111][112] Tail regeneration has never been observed in snakes.[108] Lizards possess the highest regenerative capacity as a group.[108][109][110][113] Following autotomous tail loss, epimorphic regeneration of a new tail proceeds through a blastema-mediated process that results in a functionally and morphologically similar structure.[108][109]

Chondrichthyes

It has been estimated that the average shark loses about 30,000 to 40,000 teeth in a lifetime. Leopard sharks routinely replace their teeth every 9–12 days and this is an example of physiological regeneration. This can occur because shark teeth are not attached to a bone, but instead are developed within a bony cavity.[71]

Rhodopsin regeneration has been studied in skates and rays. After complete photo-bleaching, rhodopsin can completely regenerate within 2 hours in the retina.[114]

White bamboo sharks can regenerate at least two-thirds of their liver and this has been linked to three micro RNAs, xtr-miR-125b, fru-miR-204, and has-miR-142-3p_R-. In one study, two-thirds of the liver was removed and within 24 hours more than half of the liver had undergone hypertrophy.[115]

Some sharks can regenerate scales and even skin following damage. Within two weeks of skin wounding, mucus is secreted into the wound and this initiates the healing process. One study showed that the majority of the wounded area was regenerated within 4 months, but the regenerated area also showed a high degree of variability.[116]

See also

Notes

  1. ^ a b c d Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (August 2013). "Role of pericytes in skeletal muscle regeneration and fat accumulation". Stem Cells and Development. 22 (16): 2298–314. doi:10.1089/scd.2012.0647. PMC 3730538. PMID 23517218.
  2. ^ a b Carlson BM (2007). Principles of Regenerative Biology. Elsevier Inc. p. 400. ISBN 978-0-12-369439-3.
  3. ^ Gabor MH, Hotchkiss RD (March 1979). "Parameters governing bacterial regeneration and genetic recombination after fusion of Bacillus subtilis protoplasts". Journal of Bacteriology. 137 (3): 1346–53. doi:10.1128/JB.137.3.1346-1353.1979. PMC 218319. PMID 108246.
  4. ^ a b Min S, Wang SW, Orr W (2006). . Pathology. pathol.med.stu.edu.cn. Archived from the original on 2012-12-07. Retrieved 2012-12-07. (1) Complete regeneration: The new tissue is the same as the tissue that was lost. After the repair process has been completed, the structure and function of the injured tissue are completely normal
  5. ^ a b Min S, Wang SW, Orr W (2006). . Pathology. pathol.med.stu.edu.cn. Archived from the original on 2013-11-10. Retrieved 2012-12-07. The new tissue is not the same as the tissue that was lost. After the repair process has been completed, there is a loss in the structure or function of the injured tissue. In this type of repair, it is common that granulation tissue (stromal connective tissue) proliferates to fill the defect created by the necrotic cells. The necrotic cells are then replaced by scar tissue.
  6. ^ Himeno Y, Engelman RW, Good RA (June 1992). "Influence of calorie restriction on oncogene expression and DNA synthesis during liver regeneration". Proceedings of the National Academy of Sciences of the United States of America. 89 (12): 5497–501. Bibcode:1992PNAS...89.5497H. doi:10.1073/pnas.89.12.5497. PMC 49319. PMID 1608960.
  7. ^ Bryant PJ, Fraser SE (May 1988). "Wound healing, cell communication, and DNA synthesis during imaginal disc regeneration in Drosophila". Developmental Biology. 127 (1): 197–208. doi:10.1016/0012-1606(88)90201-1. PMID 2452103.
  8. ^ a b Brockes JP, Kumar A (2008). "Comparative aspects of animal regeneration". Annual Review of Cell and Developmental Biology. 24: 525–49. doi:10.1146/annurev.cellbio.24.110707.175336. PMID 18598212.
  9. ^ a b Sánchez Alvarado A (June 2000). "Regeneration in the metazoans: why does it happen?" (PDF). BioEssays. 22 (6): 578–90. doi:10.1002/(SICI)1521-1878(200006)22:6<578::AID-BIES11>3.0.CO;2-#. PMID 10842312.
  10. ^ a b Reddien PW, Sánchez Alvarado A (2004). "Fundamentals of planarian regeneration". Annual Review of Cell and Developmental Biology. 20: 725–57. doi:10.1146/annurev.cellbio.20.010403.095114. PMID 15473858. S2CID 1320382.
  11. ^ Campbell NA (1996). Biology (4th ed.). California: The Benjamin Cummings Publishing Company, Inc. p. 1206. ISBN 978-0-8053-1940-8.
  12. ^ Wilkie IC (December 2001). "Autotomy as a prelude to regeneration in echinoderms". Microscopy Research and Technique. 55 (6): 369–96. doi:10.1002/jemt.1185. PMID 11782069. S2CID 20291486.
  13. ^ Maiorana VC (1977). "Tail autotomy, functional conflicts and their resolution by a salamander". Nature. 2265 (5594): 533–535. Bibcode:1977Natur.265..533M. doi:10.1038/265533a0. S2CID 4219251.
  14. ^ Maginnis TL (2006). "The costs of autotomy and regeneration in animals: a review and framework for future research". Behavioral Ecology. 7 (5): 857–872. doi:10.1093/beheco/arl010.
  15. ^ Edmondson, C. H. (1935). "Autotomy and regeneration of Hawaiian starfishes" (PDF). Bishop Museum Occasional Papers. 11 (8): 3–20.
  16. ^ "UCSB Science Line". scienceline.ucsb.edu. Retrieved 2015-11-02.
  17. ^ Dietze MC, Clark JS (2008). "Changing the gap dynamics paradigm: Vegetative regenerative control on forest response to disturbance" (PDF). Ecological Monographs. 78 (3): 331–347. doi:10.1890/07-0271.1.
  18. ^ Bailey J, Covington WW (2002). "Evaluation ponderosa pine regeneration rates following ecological restoration treatments in northern Arizona, USA" (PDF). Forest Ecology and Management. 155 (1–3): 271–278. doi:10.1016/S0378-1127(01)00564-3.
  19. ^ Fu SY, Gordon T (1997). "The cellular and molecular basis of peripheral nerve regeneration". Molecular Neurobiology. 14 (1–2): 67–116. doi:10.1007/BF02740621. PMID 9170101. S2CID 13045638.
  20. ^ Akimenko MA, Johnson SL, Westerfield M, Ekker M (February 1995). "Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish" (PDF). Development. 121 (2): 347–57. doi:10.1242/dev.121.2.347. PMID 7768177.
  21. ^ a b Sánchez Alvarado A, Tsonis PA (November 2006). "Bridging the regeneration gap: genetic insights from diverse animal models" (PDF). Nature Reviews Genetics. 7 (11): 873–84. doi:10.1038/nrg1923. PMID 17047686. S2CID 2978615.
  22. ^ Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (November 2007). "Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate". Science. 318 (5851): 772–7. Bibcode:2007Sci...318..772K. doi:10.1126/science.1147710. PMC 2696928. PMID 17975060.
  23. ^ a b Skinner DM (1985). "Molting and Regneration". In Bliss DE, Mantel LH (eds.). Integument, Pigments, and Hormonal Processes. Vol. 9. Academic Press. pp. 46–146. ISBN 978-0-323-13922-9.
  24. ^ a b Seifert AW, Monaghan JR, Smith MD, Pasch B, Stier AC, Michonneau F, Maden M (May 2012). "The influence of fundamental traits on mechanisms controlling appendage regeneration". Biological Reviews of the Cambridge Philosophical Society. 87 (2): 330–45. doi:10.1111/j.1469-185X.2011.00199.x. PMID 21929739. S2CID 22877405.
  25. ^ Travis DF (February 1955). "The Molting Cycle of the Spiny Lobster, Panulirus argus Latreille. II. Pre-Ecdysial Histological and Histochemical Changes in the Hepatopancreas and Integumental Tissues". Biological Bulletin. 108 (1): 88–112. doi:10.2307/1538400. JSTOR 1538400.
  26. ^ Mito, Taro; Ishimaru, Yoshiyasu; Watanabe, Takahito; Nakamura, Taro; Ylla, Guillem; Noji, Sumihare; Extavour, Cassandra G. (2022), "Cricket: The third domesticated insect", Current Topics in Developmental Biology, Elsevier, 147: 291–306, doi:10.1016/bs.ctdb.2022.02.003, ISBN 978-0-12-820154-1, PMID 35337452, retrieved 2022-06-08
  27. ^ a b Fox, Donald T.; Cohen, Erez; Smith-Bolton, Rachel (2020-04-01). "Model systems for regeneration: Drosophila". Development. 147 (7): dev173781. doi:10.1242/dev.173781. ISSN 1477-9129. PMC 7157589. PMID 32253254.
  28. ^ Roche, John P. (September 22, 2020). "Limb Regeneration in Lady Beetles: Product of Selection or Developmental Byproduct?". Entomology Today. Entomological Society of America. Retrieved September 23, 2020.
  29. ^ Das S (November 2015). "Morphological, Molecular, and Hormonal Basis of Limb Regeneration across Pancrustacea". Integrative and Comparative Biology. 55 (5): 869–77. doi:10.1093/icb/icv101. PMID 26296354.
  30. ^ Hamada Y, Bando T, Nakamura T, Ishimaru Y, Mito T, Noji S, Tomioka K, Ohuchi H (September 2015). "Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus". Development. 142 (17): 2916–27. doi:10.1242/dev.122598. PMID 26253405.
  31. ^ Nisani Z, Dunbar SG, Hayes WK (June 2007). "Cost of venom regeneration in Parabuthus transvaalicus (Arachnida: Buthidae)". Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. 147 (2): 509–13. doi:10.1016/j.cbpa.2007.01.027. PMID 17344080.
  32. ^ Fox, Donald T.; Cohen, Erez; Smith-Bolton, Rachel (2020-04-01). "Model systems for regeneration: Drosophila". Development. 147 (7): dev173781. doi:10.1242/dev.173781. ISSN 1477-9129. PMC 7157589. PMID 32253254.
  33. ^ Fox, Donald T.; Cohen, Erez; Smith-Bolton, Rachel (2020-04-01). "Model systems for regeneration: Drosophila". Development. 147 (7): dev173781. doi:10.1242/dev.173781. ISSN 1477-9129. PMC 7157589. PMID 32253254.
  34. ^ Moya, Iván M; Halder, Georg (2016-12-01). "The Hippo pathway in cellular reprogramming and regeneration of different organs". Current Opinion in Cell Biology. Differentiation and disease. 43: 62–68. doi:10.1016/j.ceb.2016.08.004. ISSN 0955-0674. PMID 27592171.
  35. ^ a b Bely AE (August 2006). "Distribution of segment regeneration ability in the Annelida". Integrative and Comparative Biology. 46 (4): 508–18. doi:10.1093/icb/icj051. PMID 21672762.
  36. ^ Hill SD (December 1972). "Caudal regeneration in the absence of a brain in two species of sedentary polychaetes". Journal of Embryology and Experimental Morphology. 28 (3): 667–80. PMID 4655324.
  37. ^ Giani VC, Yamaguchi E, Boyle MJ, Seaver EC (May 2011). "Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta". EvoDevo. 2: 10. doi:10.1186/2041-9139-2-10. PMC 3113731. PMID 21545709.
  38. ^ a b c d e f Zoran MJ (2001). "Regeneration in Annelids". Encyclopedia of Life Sciences. John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0022103. ISBN 978-0-470-01590-2.
  39. ^ Bely AE (October 2014). "Early events in annelid regeneration: a cellular perspective". Integrative and Comparative Biology. 54 (4): 688–99. doi:10.1093/icb/icu109. PMID 25122930.
  40. ^ Candia Carnevali MD, Bonasoro F, Patruno M, Thorndyke MC (October 1998). "Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms: the potential of arm explants". Development Genes and Evolution. 208 (8): 421–30. doi:10.1007/s004270050199. PMID 9799422. S2CID 23560812.
  41. ^ San Miguel-Ruiz JE, Maldonado-Soto AR, García-Arrarás JE (January 2009). "Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima". BMC Developmental Biology. 9: 3. doi:10.1186/1471-213X-9-3. PMC 2640377. PMID 19126208.
  42. ^ Patruno M, Thorndyke MC, Candia Carnevali MD, Bonasoro F, Beesley PW (March 2001). "Growth factors, heat-shock proteins and regeneration in echinoderms". The Journal of Experimental Biology. 204 (Pt 5): 843–8. doi:10.1242/jeb.204.5.843. PMID 11171408.
  43. ^ a b c Morgan TH (1900). "Regeneration in Planarians". Archiv für Entwicklungsmechanik der Organismen. 10 (1): 58–119. doi:10.1007/BF02156347. hdl:2027/hvd.32044107333064. S2CID 33712732.
  44. ^ García-Arrarás JE, Greenberg MJ (December 2001). "Visceral regeneration in holothurians". Microscopy Research and Technique. 55 (6): 438–51. doi:10.1002/jemt.1189. PMID 11782073. S2CID 11533400.
  45. ^ Sánchez Alvarado A, Newmark PA (1998). "The use of planarians to dissect the molecular basis of metazoan regeneration". Wound Repair and Regeneration. 6 (4): 413–20. doi:10.1046/j.1524-475x.1998.60418.x. PMID 9824561. S2CID 8085897.
  46. ^ a b Montgomery JR, Coward SJ (July 1974). "On the minimal size of a planarian capable of regeneration". Transactions of the American Microscopical Society. 93 (3): 386–91. doi:10.2307/3225439. JSTOR 3225439. PMID 4853459.
  47. ^ Elliott SA, Sánchez Alvarado A (2012). "The history and enduring contributions of planarians to the study of animal regeneration". Wiley Interdisciplinary Reviews: Developmental Biology. 2 (3): 301–26. doi:10.1002/wdev.82. PMC 3694279. PMID 23799578.
  48. ^ Wagner DE, Wang IE, Reddien PW (May 2011). "Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration". Science. 332 (6031): 811–6. Bibcode:2011Sci...332..811W. doi:10.1126/science.1203983. PMC 3338249. PMID 21566185.
  49. ^ a b Holland, Nicholas (2021), "Vicenzo Colucci's 1886 memoir, Intorno alla rigenerazione degli arti e della coda nei tritoni, annotated and translated into English as: Concerning regeneration of the limbs and tail in salamanders", The European Zoological Journal, 88: 837–890, doi:10.1080/24750263.2021.1943549
  50. ^ a b Brockes JP, Kumar A, Velloso CP (2001). "Regeneration as an evolutionary variable". Journal of Anatomy. 199 (Pt 1–2): 3–11. doi:10.1046/j.1469-7580.2001.19910003.x. PMC 1594962. PMID 11523827.
  51. ^ Brockes JP, Kumar A (August 2002). "Plasticity and reprogramming of differentiated cells in amphibian regeneration". Nature Reviews Molecular Cell Biology. 3 (8): 566–74. doi:10.1038/nrm881. PMID 12154368. S2CID 21409289.
  52. ^ Iten LE, Bryant SV (December 1973). "Forelimb regeneration from different levels of amputation in the newt, Notophthalmus viridescens: Length, rate, and stages". Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen. 173 (4): 263–282. doi:10.1007/BF00575834. PMID 28304797. S2CID 3946430.
  53. ^ a b Endo T, Bryant SV, Gardiner DM (June 2004). "A stepwise model system for limb regeneration" (PDF). Developmental Biology. 270 (1): 135–45. doi:10.1016/j.ydbio.2004.02.016. PMID 15136146. S2CID 7581434.
  54. ^ Satoh A, Bryant SV, Gardiner DM (June 2012). "Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum)". Developmental Biology. 366 (2): 374–81. doi:10.1016/j.ydbio.2012.03.022. PMID 22537500.
  55. ^ Christensen RN, Tassava RA (February 2000). "Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs". Developmental Dynamics. 217 (2): 216–24. doi:10.1002/(sici)1097-0177(200002)217:2<216::aid-dvdy8>3.0.co;2-8. PMID 10706145.
  56. ^ a b Bryant SV, Endo T, Gardiner DM (2002). "Vertebrate limb regeneration and the origin of limb stem cells". The International Journal of Developmental Biology. 46 (7): 887–96. PMID 12455626.
  57. ^ Mullen LM, Bryant SV, Torok MA, Blumberg B, Gardiner DM (November 1996). "Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration". Development. 122 (11): 3487–97. doi:10.1242/dev.122.11.3487. PMID 8951064.
  58. ^ Souppouris, Aaron (May 23, 2013). "Scientists identify cell that could hold the secret to limb regeneration". The Verge. Macrophages are a type of repairing cell that devour dead cells and pathogens, and trigger other immune cells to respond to pathogens.
  59. ^ Godwin JW, Pinto AR, Rosenthal NA (June 2013). "Macrophages are required for adult salamander limb regeneration". Proceedings of the National Academy of Sciences of the United States of America. 110 (23): 9415–20. Bibcode:2013PNAS..110.9415G. doi:10.1073/pnas.1300290110. PMC 3677454. PMID 23690624.
    • "Do salamanders' immune systems hold the key to regeneration?". ScienceDaily (Press release). May 20, 2013.
  60. ^ Voss SR, Muzinic L, Zimmerman G (2018). "Sal-Site". Ambystoma.org.
  61. ^ "Single-cell Stereo-seq reveals new insights into axolotl brain regeneration". News-Medical.net. 6 September 2022. Retrieved 19 October 2022.
  62. ^ Wei, Xiaoyu; Fu, Sulei; Li, Hanbo; Liu, Yang; Wang, Shuai; Feng, Weimin; Yang, Yunzhi; Liu, Xiawei; Zeng, Yan-Yun; Cheng, Mengnan; Lai, Yiwei; Qiu, Xiaojie; Wu, Liang; Zhang, Nannan; Jiang, Yujia; Xu, Jiangshan; Su, Xiaoshan; Peng, Cheng; Han, Lei; Lou, Wilson Pak-Kin; Liu, Chuanyu; Yuan, Yue; Ma, Kailong; Yang, Tao; Pan, Xiangyu; Gao, Shang; Chen, Ao; Esteban, Miguel A.; Yang, Huanming; Wang, Jian; Fan, Guangyi; Liu, Longqi; Chen, Liang; Xu, Xun; Fei, Ji-Feng; Gu, Ying (2 September 2022). "Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration". Science. 377 (6610): eabp9444. doi:10.1126/science.abp9444. ISSN 0036-8075. PMID 36048929. S2CID 252010604.
  63. ^ a b Liversage RA, Anderson M, Korneluk RG (February 2005). "Regenerative response of amputated forelimbs of Xenopus laevis froglets to partial denervation". Journal of Morphology. 191 (2): 131–144. doi:10.1002/jmor.1051910204. PMID 29921109. S2CID 49315283.
  64. ^ a b Reya T, Clevers H (April 2005). "Wnt signalling in stem cells and cancer". Nature. 434 (7035): 843–50. Bibcode:2005Natur.434..843R. doi:10.1038/nature03319. PMID 15829953. S2CID 3645313.
  65. ^ Murugan, Nirosha J.; Vigran, Hannah J.; Miller, Kelsie A.; Golding, Annie; Pham, Quang L.; Sperry, Megan M.; Rasmussen-Ivey, Cody; Kane, Anna W.; Kaplan, David L.; Levin, Michael (28 January 2022). "Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis". Science Advances. 8 (4): eabj2164. Bibcode:2022SciA....8.2164M. doi:10.1126/sciadv.abj2164. PMC 8791464. PMID 35080969.
  66. ^ a b c d e Bosch TC (March 2007). "Why polyps regenerate and we don't: towards a cellular and molecular framework for Hydra regeneration". Developmental Biology. 303 (2): 421–33. doi:10.1016/j.ydbio.2006.12.012. PMID 17234176.
  67. ^ a b c d Wenger Y, Buzgariu W, Reiter S, Galliot B (August 2014). "Injury-induced immune responses in Hydra". Seminars in Immunology. 26 (4): 277–94. doi:10.1016/j.smim.2014.06.004. PMID 25086685.
  68. ^ Buzgariu W, Crescenzi M, Galliot B (2014). Science Direct. "Robust G2 pausing of adult stem cells in Hydra". Differentiation; Research in Biological Diversity. 87 (1–2): 83–99. doi:10.1016/j.diff.2014.03.001. PMID 24703763.
  69. ^ Morgan TH (1901). Regeneration. Columbia University Biological Series. Vol. 7. New York: The MacMillan Company.
  70. ^ Agata K, Saito Y, Nakajima E (February 2007). "Unifying principles of regeneration I: Epimorphosis versus morphallaxis". Development, Growth & Differentiation. 49 (2): 73–8. doi:10.1111/j.1440-169X.2007.00919.x. PMID 17335428. S2CID 29433846.
  71. ^ a b c Vorontsova MA, Liosner LD (1960). Billet F (ed.). Asexual Reproduction and Regeneration. Translated by Allen PM. London: Pergamon Press. pp. 367–371.
  72. ^ Sidorova VF (July 1962). "Liver regeneration in birds". Biulleten' Eksperimental'noi Biologii I Meditsiny. 52 (6): 1426–9. doi:10.1007/BF00785312. PMID 14039265. S2CID 39410595.
  73. ^ Cotanche DA, Lee KH, Stone JS, Picard DA (January 1994). "Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage". Anatomy and Embryology. 189 (1): 1–18. doi:10.1007/BF00193125. PMID 8192233. S2CID 25619337.
  74. ^ Coleman CM (September 2008). "Chicken embryo as a model for regenerative medicine". Birth Defects Research. Part C, Embryo Today. 84 (3): 245–56. doi:10.1002/bdrc.20133. PMID 18773459.
  75. ^ Özpolat BD, Zapata M, Daniel Frugé J, Coote J, Lee J, Muneoka K, Anderson R (December 2012). "Regeneration of the elbow joint in the developing chick embryo recapitulates development". Developmental Biology. 372 (2): 229–38. doi:10.1016/j.ydbio.2012.09.020. PMC 3501998. PMID 23036343.
  76. ^ Hosker A (1936). "Regeneration of Feathers after Thyroid Feeding". Journal of Experimental Biology. 13 (3): 344–351. doi:10.1242/jeb.13.3.344.
  77. ^ Kresie L (April 2001). "Artificial blood: an update on current red cell and platelet substitutes". Proceedings. 14 (2): 158–61. doi:10.1080/08998280.2001.11927754. PMC 1291332. PMID 16369608.
  78. ^ Li C, Pearson A, McMahon C (2013). "Morphogenetic mechanisms in the cyclic regeneration of hair follicles and deer antlers from stem cells". BioMed Research International. 2013: 643601. doi:10.1155/2013/643601. PMC 3870647. PMID 24383056.
  79. ^ Price J, Allen S (May 2004). "Exploring the mechanisms regulating regeneration of deer antlers". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 359 (1445): 809–22. doi:10.1098/rstb.2004.1471. PMC 1693364. PMID 15293809.
  80. ^ Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K (February 2011). "Wound healing and blastema formation in regenerating digit tips of adult mice". Developmental Biology. 350 (2): 301–10. doi:10.1016/j.ydbio.2010.11.035. PMC 3031655. PMID 21145316.
  81. ^ Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M (September 2012). "Skin shedding and tissue regeneration in African spiny mice (Acomys)". Nature. 489 (7417): 561–5. Bibcode:2012Natur.489..561S. doi:10.1038/nature11499. PMC 3480082. PMID 23018966.
  82. ^ a b Gawriluk TR, Simkin J, Thompson KL, Biswas SK, Clare-Salzler Z, Kimani JM, Kiama SG, Smith JJ, Ezenwa VO, Seifert AW (April 2016). "Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals". Nature Communications. 7: 11164. Bibcode:2016NatCo...711164G. doi:10.1038/ncomms11164. PMC 4848467. PMID 27109826.
  83. ^ Matias Santos D, Rita AM, Casanellas I, Brito Ova A, Araújo IM, Power D, Tiscornia G (February 2016). "Ear wound regeneration in the African spiny mouse Acomys cahirinus". Regeneration. 3 (1): 52–61. doi:10.1002/reg2.50. PMC 4857749. PMID 27499879.
  84. ^ Xu K (July 2013). "Humans' Ability To Regenerate Damaged Organs Is At Our Fingertips". Business Insider.
  85. ^ Becker RO (January 1972). "Stimulation of partial limb regeneration in rats". Nature. 235 (5333): 109–11. Bibcode:1972Natur.235..109B. doi:10.1038/235109a0. PMID 4550399. S2CID 4209650.
  86. ^ Becker RO, Spadaro JA (May 1972). "Electrical stimulation of partial limb regeneration in mammals". Bulletin of the New York Academy of Medicine. 48 (4): 627–41. PMC 1806700. PMID 4503923.
  87. ^ Masinde G, Li X, Baylink DJ, Nguyen B, Mohan S (April 2005). "Isolation of wound healing/regeneration genes using restrictive fragment differential display-PCR in MRL/MPJ and C57BL/6 mice". Biochemical and Biophysical Research Communications. 330 (1): 117–22. doi:10.1016/j.bbrc.2005.02.143. PMID 15781240.
  88. ^ Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S (July 2007). "Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice". Proceedings of the National Academy of Sciences of the United States of America. 104 (27): 11489–94. Bibcode:2007PNAS..10411489H. doi:10.1073/pnas.0705003104. PMC 1899186. PMID 17592139.
  89. ^ Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J, Cheverud JM, Lieberman P, Heber-Katz E (March 2010). "Lack of p21 expression links cell cycle control and appendage regeneration in mice". Proceedings of the National Academy of Sciences of the United States of America. 107 (13): 5845–50. Bibcode:2010PNAS..107.5845B. doi:10.1073/pnas.1000830107. PMC 2851923. PMID 20231440.
    • "1 gene lost = 1 limb regained? Scientists demonstrate mammalian regeneration through single gene deletion". Medical Xpress. March 15, 2010.
  90. ^ Humans Could Regenerate Tissue Like Newts By Switching Off a Single Gene
  91. ^ Abdullah I, Lepore JJ, Epstein JA, Parmacek MS, Gruber PJ (March–April 2005). "MRL mice fail to heal the heart in response to ischemia-reperfusion injury". Wound Repair and Regeneration. 13 (2): 205–8. doi:10.1111/j.1067-1927.2005.130212.x. PMID 15828946. S2CID 7360046.
  92. ^ "Regeneration in the mammalian heart demonstrated by Wistar researchers | EurekAlert! Science News". Eurekalert.org. Retrieved 2019-03-16.
  93. ^ Min S, Wang SW, Orr W (2006). . Pathology. pathol.med.stu.edu.cn. Archived from the original on 2012-12-07. Retrieved 2013-11-10. After the repair process has been completed, the structure and function of the injured tissue are completely normal. This type of regeneration is common in physiological situations. Examples of physiological regeneration are the continual replacement of cells of the skin and repair of the endometrium after menstruation. Complete regeneration can occur in pathological situations in tissues that have good regenerative capacity.
  94. ^ Mohammadi D (4 October 2014). "Bioengineered organs: The story so far…". The Guardian. Retrieved 9 March 2015.
  95. ^ Carlson BM (2007). Principles of Regenerative Biology. Academic Press. pp. 25–26. ISBN 978-0-12-369439-3.
  96. ^ Ferenczy A, Bertrand G, Gelfand MM (April 1979). "Proliferation kinetics of human endometrium during the normal menstrual cycle". American Journal of Obstetrics and Gynecology. 133 (8): 859–67. doi:10.1016/0002-9378(79)90302-8. PMID 434029.
  97. ^ a b Michalopoulos GK, DeFrances MC (April 1997). "Liver regeneration". Science. 276 (5309): 60–6. doi:10.1126/science.276.5309.60. PMID 9082986. S2CID 2756510.
  98. ^ a b Taub R (October 2004). "Liver regeneration: from myth to mechanism". Nature Reviews Molecular Cell Biology. 5 (10): 836–47. doi:10.1038/nrm1489. PMID 15459664. S2CID 30647609.
  99. ^ Kawasaki S, Makuuchi M, Ishizone S, Matsunami H, Terada M, Kawarazaki H (March 1992). "Liver regeneration in recipients and donors after transplantation". Lancet. 339 (8793): 580–1. doi:10.1016/0140-6736(92)90867-3. PMID 1347095. S2CID 34148354.
  100. ^ Vlahopoulos SA (August 2017). "Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode". Cancer Biology & Medicine. 14 (3): 254–270. doi:10.20892/j.issn.2095-3941.2017.0029. PMC 5570602. PMID 28884042.
  101. ^ Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisén J (June 2013). "Dynamics of hippocampal neurogenesis in adult humans". Cell. 153 (6): 1219–1227. doi:10.1016/j.cell.2013.05.002. PMC 4394608. PMID 23746839.
  102. ^ Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (April 2009). "Evidence for cardiomyocyte renewal in humans". Science. 324 (5923): 98–102. Bibcode:2009Sci...324...98B. doi:10.1126/science.1164680. PMC 2991140. PMID 19342590.
  103. ^ Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (June 2001). "Evidence that human cardiac myocytes divide after myocardial infarction". The New England Journal of Medicine. 344 (23): 1750–7. doi:10.1056/NEJM200106073442303. PMID 11396441.
  104. ^ McKim LH (May 1932). "Regeneration of the distal phalanx". Canadian Medical Association Journal. 26 (5): 549–50. PMC 402335. PMID 20318716.
  105. ^ Muneoka K, Allan CH, Yang X, Lee J, Han M (December 2008). "Mammalian regeneration and regenerative medicine". Birth Defects Research. Part C, Embryo Today. 84 (4): 265–80. doi:10.1002/bdrc.20137. PMID 19067422.
  106. ^ Philip SJ, Kumar RJ, Menon KV (October 2005). "Morphological study of rib regeneration following costectomy in adolescent idiopathic scoliosis". European Spine Journal. 14 (8): 772–6. doi:10.1007/s00586-005-0949-8. PMC 3489251. PMID 16047208.
  107. ^ Korin Miller (September 11, 2017). "Here's What Happens When a Vasectomy Fails". SELF. Retrieved 2019-03-16.
  108. ^ a b c d e Alibardi L (2010). "Regeneration in Reptiles and Its Position Among Vertebrates". Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards a Model System with Implications for Tissue Regeneration in Mammals. Advances in Anatomy, Embryology, and Cell Biology. Vol. 207. Heidelberg: Springer. pp. iii, v–x, 1–109. doi:10.1007/978-3-642-03733-7_1. ISBN 978-3-642-03732-0. PMID 20334040.
  109. ^ a b c McLean KE, Vickaryous MK (August 2011). "A novel amniote model of epimorphic regeneration: the leopard gecko, Eublepharis macularius". BMC Developmental Biology. 11 (1): 50. doi:10.1186/1471-213x-11-50. PMC 3180301. PMID 21846350.
  110. ^ a b Bellairs A, Bryant S (1985). "Autonomy and Regeneration in Reptiles". In Gans C, Billet F (eds.). Biology of the Reptilia. Vol. 15. New York: John Wiley and Sons. pp. 301–410.
  111. ^ Brazaitis P (July 31, 1981). "Maxillary Regeneration in a Marsh Crocodile, Crocodylus palustris". Journal of Herpetology. 15 (3): 360–362. doi:10.2307/1563441. JSTOR 1563441.
  112. ^ Font E, Desfilis E, Pérez-Cañellas MM, García-Verdugo JM (2001). "Neurogenesis and neuronal regeneration in the adult reptilian brain". Brain, Behavior and Evolution. 58 (5): 276–95. doi:10.1159/000057570. PMID 11978946. S2CID 1079753.
  113. ^ Vickaryous M (2014). "Vickaryous Lab: Regeneration - Evolution - Development". Department of Biomedical Sciences, University of Guelph.
  114. ^ Sun Y, Ripps H (November 1992). "Rhodopsin regeneration in the normal and in the detached/replaced retina of the skate". Experimental Eye Research. 55 (5): 679–89. doi:10.1016/0014-4835(92)90173-p. PMID 1478278.
  115. ^ Lu C, Zhang J, Nie Z, Chen J, Zhang W, Ren X, Yu W, Liu L, Jiang C, Zhang Y, Guo J, Wu W, Shu J, Lv Z (2013). "Study of microRNAs related to the liver regeneration of the whitespotted bamboo shark, Chiloscyllium plagiosum". BioMed Research International. 2013: 795676. doi:10.1155/2013/795676. PMC 3789328. PMID 24151623.
  116. ^ Reif W (June 1978). "Wound Healing in Sharks". Zoomorphology. 90 (2): 101–111. doi:10.1007/bf02568678. S2CID 29300907.

Sources

  • Tanaka EM (October 2003). "Cell differentiation and cell fate during urodele tail and limb regeneration". Current Opinion in Genetics & Development. 13 (5): 497–501. doi:10.1016/j.gde.2003.08.003. PMID 14550415.
  • Holland ND (2021). "Vicenzo Colucci's 1886 memoir, Intorno alla rigenerazione degli arti e della coda nei tritoni, annotated and translated into English as: Concerning regeneration of the limbs and tail in salamanders". The European Zoological Journal. 88: 837–890. doi:10.1080/24750263.2021.1943549. S2CID 238904520.
  • Nye HL, Cameron JA, Chernoff EA, Stocum DL (February 2003). "Regeneration of the urodele limb: a review". Developmental Dynamics. 226 (2): 280–94. doi:10.1002/dvdy.10236. PMID 12557206. S2CID 28442979.
  • Yu H, Mohan S, Masinde GL, Baylink DJ (December 2005). "Mapping the dominant wound healing and soft tissue regeneration QTL in MRL x CAST". Mammalian Genome. 16 (12): 918–24. doi:10.1007/s00335-005-0077-0. PMID 16341671. S2CID 24505367.
  • Gardiner DM, Blumberg B, Komine Y, Bryant SV (June 1995). "Regulation of HoxA expression in developing and regenerating axolotl limbs". Development. 121 (6): 1731–41. doi:10.1242/dev.121.6.1731. PMID 7600989.
  • Torok MA, Gardiner DM, Shubin NH, Bryant SV (August 1998). "Expression of HoxD genes in developing and regenerating axolotl limbs". Developmental Biology. 200 (2): 225–33. doi:10.1006/dbio.1998.8956. PMID 9705229.
  • Putta S, Smith JJ, Walker JA, Rondet M, Weisrock DW, Monaghan J, Samuels AK, Kump K, King DC, Maness NJ, Habermann B, Tanaka E, Bryant SV, Gardiner DM, Parichy DM, Voss SR (August 2004). "From biomedicine to natural history research: EST resources for ambystomatid salamanders". BMC Genomics. 5 (1): 54. doi:10.1186/1471-2164-5-54. PMC 509418. PMID 15310388.
  • Andrews, Wyatt (March 23, 2008). . Sunday Morning. CBS News. Archived from the original on 2008-03-24.

Further reading

  • Kevin Strange and Viravuth Yin, "A Shot at Regeneration: A once abandoned drug compound shows an ability to rebuild organs damaged by illness and injury", Scientific American, vol. 320, no. 4 (April 2019), pp. 56–61.

[1]

External links

  1. ^ Holland, Nicholas (2021), "Vicenzo Colucci's 1886 memoir, Intorno alla rigenerazione degli arti e della coda nei tritoni, annotated and translated into English as: Concerning regeneration of the limbs and tail in salamanders", The European Zoological Journal, 88: 837–890, doi:10.1080/24750263.2021.1943549, S2CID 238904520

regeneration, biology, biology, regeneration, process, renewal, restoration, tissue, growth, that, makes, genomes, cells, organisms, ecosystems, resilient, natural, fluctuations, events, that, cause, disturbance, damage, every, species, capable, regeneration, . In biology regeneration is the process of renewal restoration and tissue growth that makes genomes cells organisms and ecosystems resilient to natural fluctuations or events that cause disturbance or damage 1 Every species is capable of regeneration from bacteria to humans 2 3 Regeneration can either be complete 4 where the new tissue is the same as the lost tissue 4 or incomplete 5 where after the necrotic tissue comes fibrosis 5 Sunflower sea star regenerates its arms Dwarf yellow headed gecko with regenerating tail At its most elementary level regeneration is mediated by the molecular processes of gene regulation and involves the cellular processes of cell proliferation morphogenesis and cell differentiation 6 7 Regeneration in biology however mainly refers to the morphogenic processes that characterize the phenotypic plasticity of traits allowing multi cellular organisms to repair and maintain the integrity of their physiological and morphological states Above the genetic level regeneration is fundamentally regulated by asexual cellular processes 8 Regeneration is different from reproduction For example hydra perform regeneration but reproduce by the method of budding The hydra and the planarian flatworm have long served as model organisms for their highly adaptive regenerative capabilities 9 Once wounded their cells become activated and restore the organs back to their pre existing state 10 The Caudata urodeles salamanders and newts an order of tailed amphibians is possibly the most adept vertebrate group at regeneration given their capability of regenerating limbs tails jaws eyes and a variety of internal structures 2 The regeneration of organs is a common and widespread adaptive capability among metazoan creatures 9 In a related context some animals are able to reproduce asexually through fragmentation budding or fission 8 A planarian parent for example will constrict split in the middle and each half generates a new end to form two clones of the original 11 Echinoderms such as the sea star crayfish many reptiles and amphibians exhibit remarkable examples of tissue regeneration The case of autotomy for example serves as a defensive function as the animal detaches a limb or tail to avoid capture After the limb or tail has been autotomized cells move into action and the tissues will regenerate 12 13 14 In some cases a shed limb can itself regenerate a new individual 15 Limited regeneration of limbs occurs in most fishes and salamanders and tail regeneration takes place in larval frogs and toads but not adults The whole limb of a salamander or a triton will grow again and again after amputation In reptiles chelonians crocodilians and snakes are unable to regenerate lost parts but many not all kinds of lizards geckos and iguanas possess regeneration capacity in a high degree Usually it involves dropping a section of their tail and regenerating it as part of a defense mechanism While escaping a predator if the predator catches the tail it will disconnect 16 Contents 1 Ecosystems 2 Cellular molecular fundamentals 3 Tissues 4 In animals 4 1 Arthropods 4 1 1 Limb regeneration 4 1 2 Venom regeneration 4 1 3 Fruit fly model 4 2 Annelids 4 3 Echinoderms 4 4 Planaria Platyhelminthes 4 5 Amphibians 4 5 1 Frog model 4 6 Hydra 4 7 Aves birds 4 8 Mammals 4 8 1 Humans 4 9 Reptiles 4 10 Chondrichthyes 5 See also 6 Notes 7 Sources 8 Further reading 9 External linksEcosystems EditMain article Regeneration ecology Ecosystems can be regenerative Following a disturbance such as a fire or pest outbreak in a forest pioneering species will occupy compete for space and establish themselves in the newly opened habitat The new growth of seedlings and community assembly process is known as regeneration in ecology 17 18 Cellular molecular fundamentals EditPattern formation in the morphogenesis of an animal is regulated by genetic induction factors that put cells to work after damage has occurred Neural cells for example express growth associated proteins such as GAP 43 tubulin actin an array of novel neuropeptides and cytokines that induce a cellular physiological response to regenerate from the damage 19 Many of the genes that are involved in the original development of tissues are reinitialized during the regenerative process Cells in the primordia of zebrafish fins for example express four genes from the homeobox msx family during development and regeneration 20 Tissues Edit Strategies include the rearrangement of pre existing tissue the use of adult somatic stem cells and the dedifferentiation and or transdifferentiation of cells and more than one mode can operate in different tissues of the same animal 1 All these strategies result in the re establishment of appropriate tissue polarity structure and form 21 873 During the developmental process genes are activated that serve to modify the properties of cell as they differentiate into different tissues Development and regeneration involves the coordination and organization of populations cells into a blastema which is a mound of stem cells from which regeneration begins 22 Dedifferentiation of cells means that they lose their tissue specific characteristics as tissues remodel during the regeneration process This should not be confused with the transdifferentiation of cells which is when they lose their tissue specific characteristics during the regeneration process and then re differentiate to a different kind of cell 21 In animals EditArthropods Edit Limb regeneration Edit Many arthropods can regenerate limbs and other appendages following either injury or autotomy 23 Regeneration capacity is constrained by the developmental stage and ability to molt Crustaceans which continually molt can regenerate throughout their lifetimes 24 While molting cycles are generally hormonally regulated limb amputation induces premature molting 23 25 Hemimetabolous insects such as crickets can regenerate limbs as nymphs before their final molt 26 Holometabolous insects can regenerate appendages as larvae prior to the final molt and metamorphosis Beetle larvae for example can regenerate amputated limbs Fruit fly larvae do not have limbs but can regenerate their appendage primordia imaginal discs 27 In both systems the regrowth of the new tissue delays pupation 27 28 Mechanisms underlying appendage limb regeneration in insects and crustaceans are highly conserved 29 During limb regeneration species in both taxa form a blastema that proliferates and grows to repattern the missing tissue 30 Venom regeneration Edit Arachnids including scorpions are known to regenerate their venom although the content of the regenerated venom is different from the original venom during its regeneration as the venom volume is replaced before the active proteins are all replenished 31 Fruit fly model Edit The fruit fly Drosophila melanogaster is a useful model organism to understand the molecular mechanisms that control regeneration especially gut and germline regeneration 32 In these tissues resident stem cells continually renew lost cells 33 The Hippo signaling pathway was discovered in flies and was found to be required for midgut regeneration Later this conserved signaling pathway was also found to be essential for regeneration of many mammalian tissues including heart liver skin and lung and intestine 34 Annelids Edit Many annelids segmented worms are capable of regeneration 35 For example Chaetopterus variopedatus and Branchiomma nigromaculata can regenerate both anterior and posterior body parts after latitudinal bisection 36 The relationship between somatic and germline stem cell regeneration has been studied at the molecular level in the annelid Capitella teleta 37 Leeches however appear incapable of segmental regeneration 38 Furthermore their close relatives the branchiobdellids are also incapable of segmental regeneration 38 35 However certain individuals like the lumbriculids can regenerate from only a few segments 38 Segmental regeneration in these animals is epimorphic and occurs through blastema formation 38 Segmental regeneration has been gained and lost during annelid evolution as seen in oligochaetes where head regeneration has been lost three separate times 38 Along with epimorphosis some polychaetes like Sabella pavonina experience morphallactic regeneration 38 39 Morphallaxis involves the de differentiation transformation and re differentation of cells to regenerate tissues How prominent morphallactic regeneration is in oligochaetes is currently not well understood Although relatively under reported it is possible that morphallaxis is a common mode of inter segment regeneration in annelids Following regeneration in L variegatus past posterior segments sometimes become anterior in the new body orientation consistent with morphallaxis Following amputation most annelids are capable of sealing their body via rapid muscular contraction Constriction of body muscle can lead to infection prevention In certain species such as Limnodrilus autolysis can be seen within hours after amputation in the ectoderm and mesoderm Amputation is also thought to cause a large migration of cells to the injury site and these form a wound plug Echinoderms Edit Tissue regeneration is widespread among echinoderms and has been well documented in starfish Asteroidea sea cucumbers Holothuroidea and sea urchins Echinoidea Appendage regeneration in echinoderms has been studied since at least the 19th century 40 In addition to appendages some species can regenerate internal organs and parts of their central nervous system 41 In response to injury starfish can autotomize damaged appendages Autotomy is the self amputation of a body part usually an appendage Depending on severity starfish will then go through a four week process where the appendage will be regenerated 42 Some species must retain mouth cells to regenerate an appendage due to the need for energy 43 The first organs to regenerate in all species documented to date are associated with the digestive tract Thus most knowledge about visceral regeneration in holothurians concerns this system 44 Planaria Platyhelminthes Edit Regeneration research using Planarians began in the late 1800s and was popularized by T H Morgan at the beginning of the 20th century 43 Alejandro Sanchez Alvarado and Philip Newmark transformed planarians into a model genetic organism in the beginning of the 20th century to study the molecular mechanisms underlying regeneration in these animals 45 Planarians exhibit an extraordinary ability to regenerate lost body parts For example a planarian split lengthwise or crosswise will regenerate into two separate individuals In one experiment T H Morgan found that a piece corresponding to 1 279th of a planarian 43 or a fragment with as few as 10 000 cells can successfully regenerate into a new worm within one to two weeks 46 After amputation stump cells form a blastema formed from neoblasts pluripotent cells found throughout the planarian body 47 New tissue grows from neoblasts with neoblasts comprising between 20 and 30 of all planarian cells 46 Recent work has confirmed that neoblasts are totipotent since one single neoblast can regenerate an entire irradiated animal that has been rendered incapable of regeneration 48 In order to prevent starvation a planarian will use their own cells for energy this phenomenon is known as de growth 10 Amphibians Edit Limb regeneration in the axolotl and newt has been extensively studied and researched The nineteenth century studies of this subject are reviewed in Holland 2021 49 Urodele amphibians such as salamanders and newts display the highest regenerative ability among tetrapods 50 49 As such they can fully regenerate their limbs tail jaws and retina via epimorphic regeneration leading to functional replacement with new tissue 51 Salamander limb regeneration occurs in two main steps First the local cells dedifferentiate at the wound site into progenitor to form a blastema 52 Second the blastemal cells will undergo cell proliferation patterning cell differentiation and tissue growth using similar genetic mechanisms that deployed during embryonic development 53 Ultimately blastemal cells will generate all the cells for the new structure 50 Axolotls can regenerate a variety of structures including their limbs After amputation the epidermis migrates to cover the stump in 1 2 hours forming a structure called the wound epithelium WE 54 Epidermal cells continue to migrate over the WE resulting in a thickened specialized signaling center called the apical epithelial cap AEC 55 Over the next several days there are changes in the underlying stump tissues that result in the formation of a blastema a mass of dedifferentiated proliferating cells As the blastema forms pattern formation genes such as HoxA and HoxD are activated as they were when the limb was formed in the embryo 56 57 The positional identity of the distal tip of the limb i e the autopod which is the hand or foot is formed first in the blastema Intermediate positional identities between the stump and the distal tip are then filled in through a process called intercalation 56 Motor neurons muscle and blood vessels grow with the regenerated limb and reestablish the connections that were present prior to amputation The time that this entire process takes varies according to the age of the animal ranging from about a month to around three months in the adult and then the limb becomes fully functional Researchers at Australian Regenerative Medicine Institute at Monash University have published that when macrophages which eat up material debris 58 were removed salamanders lost their ability to regenerate and formed scarred tissue instead 59 In spite of the historically few researchers studying limb regeneration remarkable progress has been made recently in establishing the neotenous amphibian the axolotl Ambystoma mexicanum as a model genetic organism This progress has been facilitated by advances in genomics bioinformatics and somatic cell transgenesis in other fields that have created the opportunity to investigate the mechanisms of important biological properties such as limb regeneration in the axolotl 53 The Ambystoma Genetic Stock Center AGSC is a self sustaining breeding colony of the axolotl supported by the National Science Foundation as a Living Stock Collection Located at the University of Kentucky the AGSC is dedicated to supplying genetically well characterized axolotl embryos larvae and adults to laboratories throughout the United States and abroad An NIH funded NCRR grant has led to the establishment of the Ambystoma EST database the Salamander Genome Project SGP that has led to the creation of the first amphibian gene map and several annotated molecular data bases and the creation of the research community web portal 60 In 2022 a first spatiotemporal map revealed key insights about axolotl brain regeneration also providing the interactive Axolotl Regenerative Telencephalon Interpretation via Spatiotemporal Transcriptomic Atlas 61 62 Frog model Edit Anurans frogs can only regenerate their limbs during embryonic development 63 Reactive oxygen species ROS appear to be required for a regeneration response in the anuran larvae 64 ROS production is essential to activate the Wnt signaling pathway which has been associated with regeneration in other systems 64 Once the limb skeleton has developed in frogs regeneration does not occur Xenopus can grow a cartilaginous spike after amputation 63 The adult Xenopus laevis is used as a model organism for regenerative medicine In 2022 a cocktail of drugs and hormones 1 4 DPCA BDNF growth hormone resolvin D5 and retinoic acid in a single dose lasting 24 hours was shown to trigger long term leg regeneration in adult X laevis Instead of a single spike a paddle shaped growth is obtained at the end of the limb by 18 months 65 Hydra Edit Hydra is a genus of freshwater polyp in the phylum Cnidaria with highly proliferative stem cells that gives them the ability to regenerate their entire body 66 Any fragment larger than a few hundred epithelial cells that is isolated from the body has the ability to regenerate into a smaller version of itself 66 The high proportion of stem cells in the hydra supports its efficient regenerative ability 67 Regeneration among hydra occurs as foot regeneration arising from the basal part of the body and head regeneration arising from the apical region 66 Regeneration tissues that are cut from the gastric region contain polarity which allows them to distinguish between regenerating a head in the apical end and a foot in the basal end so that both regions are present in the newly regenerated organism 66 Head regeneration requires complex reconstruction of the area while foot regeneration is much simpler similar to tissue repair 68 In both foot and head regeneration however there are two distinct molecular cascades that occur once the tissue is wounded early injury response and a subsequent signal driven pathway of the regenerating tissue that leads to cellular differentiation 67 This early injury response includes epithelial cell stretching for wound closure the migration of interstitial progenitors towards the wound cell death phagocytosis of cell debris and reconstruction of the extracellular matrix 67 Regeneration in hydra has been defined as morphallaxis the process where regeneration results from remodeling of existing material without cellular proliferation 69 70 If a hydra is cut into two pieces the remaining severed sections form two fully functional and independent hydra approximately the same size as the two smaller severed sections 66 This occurs through the exchange and rearrangement of soft tissues without the formation of new material 67 Aves birds Edit Owing to a limited literature on the subject birds are believed to have very limited regenerative abilities as adults Some studies 71 on roosters have suggested that birds can adequately regenerate some parts of the limbs and depending on the conditions in which regeneration takes place such as age of the animal the inter relationship of the injured tissue with other muscles and the type of operation can involve complete regeneration of some musculoskeletal structure Werber and Goldschmidt 1909 found that the goose and duck were capable of regenerating their beaks after partial amputation 71 and Sidorova 1962 observed liver regeneration via hypertrophy in roosters 72 Birds are also capable of regenerating the hair cells in their cochlea following noise damage or ototoxic drug damage 73 Despite this evidence contemporary studies suggest reparative regeneration in avian species is limited to periods during embryonic development An array of molecular biology techniques have been successful in manipulating cellular pathways known to contribute to spontaneous regeneration in chick embryos 74 For instance removing a portion of the elbow joint in a chick embryo via window excision or slice excision and comparing joint tissue specific markers and cartilage markers showed that window excision allowed 10 out of 20 limbs to regenerate and expressed joint genes similarly to a developing embryo In contrast slice excision did not allow the joint to regenerate due to the fusion of the skeletal elements seen by an expression of cartilage markers 75 Similar to the physiological regeneration of hair in mammals birds can regenerate their feathers in order to repair damaged feathers or to attract mates with their plumage Typically seasonal changes that are associated with breeding seasons will prompt a hormonal signal for birds to begin regenerating feathers This has been experimentally induced using thyroid hormones in the Rhode Island Red Fowls 76 Mammals Edit Spiny mice Acomys cahirinus pictured here can regenerate skin cartilage nerves and muscle Mammals are capable of cellular and physiological regeneration but have generally poor reparative regenerative ability across the group 1 24 Examples of physiological regeneration in mammals include epithelial renewal e g skin and intestinal tract red blood cell replacement antler regeneration and hair cycling 77 78 Male deer lose their antlers annually during the months of January to April then through regeneration are able to regrow them as an example of physiological regeneration A deer antler is the only appendage of a mammal that can be regrown every year 79 While reparative regeneration is a rare phenomenon in mammals it does occur A well documented example is regeneration of the digit tip distal to the nail bed 80 Reparative regeneration has also been observed in rabbits pikas and African spiny mice In 2012 researchers discovered that two species of African Spiny Mice Acomys kempi and Acomys percivali were capable of completely regenerating the autotomically released or otherwise damaged tissue These species can regrow hair follicles skin sweat glands fur and cartilage 81 In addition to these two species subsequent studies demonstrated that Acomys cahirinus could regenerate skin and excised tissue in the ear pinna 82 83 Despite these examples it is generally accepted that adult mammals have limited regenerative capacity compared to most vertebrate embryos larvae adult salamanders and fish 84 But the regeneration therapy approach of Robert O Becker using electrical stimulation has shown promising results for rats 85 and mammals in general 86 Some researchers have also claimed that the MRL mouse strain exhibits enhanced regenerative abilities Work comparing the differential gene expression of scarless healing MRL mice and a poorly healing C57BL 6 mouse strain identified 36 genes differentiating the healing process between MRL mice and other mice 87 88 Study of the regenerative process in these animals is aimed at discovering how to duplicate them in humans such as deactivation of the p21 gene 89 90 However recent work has shown that MRL mice actually close small ear holes with scar tissue rather than regeneration as originally claimed 82 MRL mice are not protected against myocardial infarction heart regeneration in adult mammals neocardiogenesis is limited because heart muscle cells are nearly all terminally differentiated MRL mice show the same amount of cardiac injury and scar formation as normal mice after a heart attack 91 However recent studies provide evidence that this may not always be the case and that MRL mice can regenerate after heart damage 92 Humans Edit Main article Regeneration in humans The regrowth of lost tissues or organs in the human body is being researched Some tissues such as skin regrow quite readily others have been thought to have little or no capacity for regeneration but ongoing research suggests that there is some hope for a variety of tissues and organs 1 93 Human organs that have been regenerated include the bladder vagina and the penis 94 As are all metazoans humans are capable of physiological regeneration i e the replacement of cells during homeostatic maintenance that does not necessitate injury For example the regeneration of red blood cells via erythropoiesis occurs through the maturation of erythrocytes from hematopoietic stem cells in the bone marrow their subsequent circulation for around 90 days in the blood stream and their eventual cell death in the spleen 95 Another example of physiological regeneration is the sloughing and rebuilding of a functional endometrium during each menstrual cycle in females in response to varying levels of circulating estrogen and progesterone 96 However humans are limited in their capacity for reparative regeneration which occurs in response to injury One of the most studied regenerative responses in humans is the hypertrophy of the liver following liver injury 97 98 For example the original mass of the liver is re established in direct proportion to the amount of liver removed following partial hepatectomy 99 which indicates that signals from the body regulate liver mass precisely both positively and negatively until the desired mass is reached This response is considered cellular regeneration a form of compensatory hypertrophy where the function and mass of the liver is regenerated through the proliferation of existing mature hepatic cells mainly hepatocytes but the exact morphology of the liver is not regained 98 This process is driven by growth factor and cytokine regulated pathways 97 The normal sequence of inflammation and regeneration does not function accurately in cancer Specifically cytokine stimulation of cells leads to expression of genes that change cellular functions and suppress the immune response 100 Adult neurogenesis is also a form of cellular regeneration For example hippocampal neuron renewal occurs in normal adult humans at an annual turnover rate of 1 75 of neurons 101 Cardiac myocyte renewal has been found to occur in normal adult humans 102 and at a higher rate in adults following acute heart injury such as infarction 103 Even in adult myocardium following infarction proliferation is only found in around 1 of myocytes around the area of injury which is not enough to restore function of cardiac muscle However this may be an important target for regenerative medicine as it implies that regeneration of cardiomyocytes and consequently of myocardium can be induced Another example of reparative regeneration in humans is fingertip regeneration which occurs after phalange amputation distal to the nail bed especially in children 104 105 and rib regeneration which occurs following osteotomy for scoliosis treatment though usually regeneration is only partial and may take up to one year 106 Yet another example of regeneration in humans is vas deferens regeneration which occurs after a vasectomy and which results in vasectomy failure 107 Reptiles Edit The ability and degree of regeneration in reptiles differs among the various species but the most notable and well studied occurrence is tail regeneration in lizards 108 109 110 In addition to lizards regeneration has been observed in the tails and maxillary bone of crocodiles and adult neurogenesis has also been noted 108 111 112 Tail regeneration has never been observed in snakes 108 Lizards possess the highest regenerative capacity as a group 108 109 110 113 Following autotomous tail loss epimorphic regeneration of a new tail proceeds through a blastema mediated process that results in a functionally and morphologically similar structure 108 109 Chondrichthyes Edit It has been estimated that the average shark loses about 30 000 to 40 000 teeth in a lifetime Leopard sharks routinely replace their teeth every 9 12 days and this is an example of physiological regeneration This can occur because shark teeth are not attached to a bone but instead are developed within a bony cavity 71 Rhodopsin regeneration has been studied in skates and rays After complete photo bleaching rhodopsin can completely regenerate within 2 hours in the retina 114 White bamboo sharks can regenerate at least two thirds of their liver and this has been linked to three micro RNAs xtr miR 125b fru miR 204 and has miR 142 3p R In one study two thirds of the liver was removed and within 24 hours more than half of the liver had undergone hypertrophy 115 Some sharks can regenerate scales and even skin following damage Within two weeks of skin wounding mucus is secreted into the wound and this initiates the healing process One study showed that the majority of the wounded area was regenerated within 4 months but the regenerated area also showed a high degree of variability 116 See also EditAutotomy Regenerative medicine Neuroregeneration Epimorphosis Morphallaxis PolyphyodontNotes Edit a b c d Birbrair A Zhang T Wang ZM Messi ML Enikolopov GN Mintz A Delbono O August 2013 Role of pericytes in skeletal muscle regeneration and fat accumulation Stem Cells and Development 22 16 2298 314 doi 10 1089 scd 2012 0647 PMC 3730538 PMID 23517218 a b Carlson BM 2007 Principles of Regenerative Biology Elsevier Inc p 400 ISBN 978 0 12 369439 3 Gabor MH Hotchkiss RD March 1979 Parameters governing bacterial regeneration and genetic recombination after fusion of Bacillus subtilis protoplasts Journal of Bacteriology 137 3 1346 53 doi 10 1128 JB 137 3 1346 1353 1979 PMC 218319 PMID 108246 a b Min S Wang SW Orr W 2006 Graphic general pathology 2 2 complete regeneration Pathology pathol med stu edu cn Archived from the original on 2012 12 07 Retrieved 2012 12 07 1 Complete regeneration The new tissue is the same as the tissue that was lost After the repair process has been completed the structure and function of the injured tissue are completely normal a b Min S Wang SW Orr W 2006 Graphic general pathology 2 3 Incomplete regeneration Pathology pathol med stu edu cn Archived from the original on 2013 11 10 Retrieved 2012 12 07 The new tissue is not the same as the tissue that was lost After the repair process has been completed there is a loss in the structure or function of the injured tissue In this type of repair it is common that granulation tissue stromal connective tissue proliferates to fill the defect created by the necrotic cells The necrotic cells are then replaced by scar tissue Himeno Y Engelman RW Good RA June 1992 Influence of calorie restriction on oncogene expression and DNA synthesis during liver regeneration Proceedings of the National Academy of Sciences of the United States of America 89 12 5497 501 Bibcode 1992PNAS 89 5497H doi 10 1073 pnas 89 12 5497 PMC 49319 PMID 1608960 Bryant PJ Fraser SE May 1988 Wound healing cell communication and DNA synthesis during imaginal disc regeneration in Drosophila Developmental Biology 127 1 197 208 doi 10 1016 0012 1606 88 90201 1 PMID 2452103 a b Brockes JP Kumar A 2008 Comparative aspects of animal regeneration Annual Review of Cell and Developmental Biology 24 525 49 doi 10 1146 annurev cellbio 24 110707 175336 PMID 18598212 a b Sanchez Alvarado A June 2000 Regeneration in the metazoans why does it happen PDF BioEssays 22 6 578 90 doi 10 1002 SICI 1521 1878 200006 22 6 lt 578 AID BIES11 gt 3 0 CO 2 PMID 10842312 a b Reddien PW Sanchez Alvarado A 2004 Fundamentals of planarian regeneration Annual Review of Cell and Developmental Biology 20 725 57 doi 10 1146 annurev cellbio 20 010403 095114 PMID 15473858 S2CID 1320382 Campbell NA 1996 Biology 4th ed California The Benjamin Cummings Publishing Company Inc p 1206 ISBN 978 0 8053 1940 8 Wilkie IC December 2001 Autotomy as a prelude to regeneration in echinoderms Microscopy Research and Technique 55 6 369 96 doi 10 1002 jemt 1185 PMID 11782069 S2CID 20291486 Maiorana VC 1977 Tail autotomy functional conflicts and their resolution by a salamander Nature 2265 5594 533 535 Bibcode 1977Natur 265 533M doi 10 1038 265533a0 S2CID 4219251 Maginnis TL 2006 The costs of autotomy and regeneration in animals a review and framework for future research Behavioral Ecology 7 5 857 872 doi 10 1093 beheco arl010 Edmondson C H 1935 Autotomy and regeneration of Hawaiian starfishes PDF Bishop Museum Occasional Papers 11 8 3 20 UCSB Science Line scienceline ucsb edu Retrieved 2015 11 02 Dietze MC Clark JS 2008 Changing the gap dynamics paradigm Vegetative regenerative control on forest response to disturbance PDF Ecological Monographs 78 3 331 347 doi 10 1890 07 0271 1 Bailey J Covington WW 2002 Evaluation ponderosa pine regeneration rates following ecological restoration treatments in northern Arizona USA PDF Forest Ecology and Management 155 1 3 271 278 doi 10 1016 S0378 1127 01 00564 3 Fu SY Gordon T 1997 The cellular and molecular basis of peripheral nerve regeneration Molecular Neurobiology 14 1 2 67 116 doi 10 1007 BF02740621 PMID 9170101 S2CID 13045638 Akimenko MA Johnson SL Westerfield M Ekker M February 1995 Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish PDF Development 121 2 347 57 doi 10 1242 dev 121 2 347 PMID 7768177 a b Sanchez Alvarado A Tsonis PA November 2006 Bridging the regeneration gap genetic insights from diverse animal models PDF Nature Reviews Genetics 7 11 873 84 doi 10 1038 nrg1923 PMID 17047686 S2CID 2978615 Kumar A Godwin JW Gates PB Garza Garcia AA Brockes JP November 2007 Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate Science 318 5851 772 7 Bibcode 2007Sci 318 772K doi 10 1126 science 1147710 PMC 2696928 PMID 17975060 a b Skinner DM 1985 Molting and Regneration In Bliss DE Mantel LH eds Integument Pigments and Hormonal Processes Vol 9 Academic Press pp 46 146 ISBN 978 0 323 13922 9 a b Seifert AW Monaghan JR Smith MD Pasch B Stier AC Michonneau F Maden M May 2012 The influence of fundamental traits on mechanisms controlling appendage regeneration Biological Reviews of the Cambridge Philosophical Society 87 2 330 45 doi 10 1111 j 1469 185X 2011 00199 x PMID 21929739 S2CID 22877405 Travis DF February 1955 The Molting Cycle of the Spiny Lobster Panulirus argus Latreille II Pre Ecdysial Histological and Histochemical Changes in the Hepatopancreas and Integumental Tissues Biological Bulletin 108 1 88 112 doi 10 2307 1538400 JSTOR 1538400 Mito Taro Ishimaru Yoshiyasu Watanabe Takahito Nakamura Taro Ylla Guillem Noji Sumihare Extavour Cassandra G 2022 Cricket The third domesticated insect Current Topics in Developmental Biology Elsevier 147 291 306 doi 10 1016 bs ctdb 2022 02 003 ISBN 978 0 12 820154 1 PMID 35337452 retrieved 2022 06 08 a b Fox Donald T Cohen Erez Smith Bolton Rachel 2020 04 01 Model systems for regeneration Drosophila Development 147 7 dev173781 doi 10 1242 dev 173781 ISSN 1477 9129 PMC 7157589 PMID 32253254 Roche John P September 22 2020 Limb Regeneration in Lady Beetles Product of Selection or Developmental Byproduct Entomology Today Entomological Society of America Retrieved September 23 2020 Das S November 2015 Morphological Molecular and Hormonal Basis of Limb Regeneration across Pancrustacea Integrative and Comparative Biology 55 5 869 77 doi 10 1093 icb icv101 PMID 26296354 Hamada Y Bando T Nakamura T Ishimaru Y Mito T Noji S Tomioka K Ohuchi H September 2015 Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus Development 142 17 2916 27 doi 10 1242 dev 122598 PMID 26253405 Nisani Z Dunbar SG Hayes WK June 2007 Cost of venom regeneration in Parabuthus transvaalicus Arachnida Buthidae Comparative Biochemistry and Physiology Part A Molecular amp Integrative Physiology 147 2 509 13 doi 10 1016 j cbpa 2007 01 027 PMID 17344080 Fox Donald T Cohen Erez Smith Bolton Rachel 2020 04 01 Model systems for regeneration Drosophila Development 147 7 dev173781 doi 10 1242 dev 173781 ISSN 1477 9129 PMC 7157589 PMID 32253254 Fox Donald T Cohen Erez Smith Bolton Rachel 2020 04 01 Model systems for regeneration Drosophila Development 147 7 dev173781 doi 10 1242 dev 173781 ISSN 1477 9129 PMC 7157589 PMID 32253254 Moya Ivan M Halder Georg 2016 12 01 The Hippo pathway in cellular reprogramming and regeneration of different organs Current Opinion in Cell Biology Differentiation and disease 43 62 68 doi 10 1016 j ceb 2016 08 004 ISSN 0955 0674 PMID 27592171 a b Bely AE August 2006 Distribution of segment regeneration ability in the Annelida Integrative and Comparative Biology 46 4 508 18 doi 10 1093 icb icj051 PMID 21672762 Hill SD December 1972 Caudal regeneration in the absence of a brain in two species of sedentary polychaetes Journal of Embryology and Experimental Morphology 28 3 667 80 PMID 4655324 Giani VC Yamaguchi E Boyle MJ Seaver EC May 2011 Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta EvoDevo 2 10 doi 10 1186 2041 9139 2 10 PMC 3113731 PMID 21545709 a b c d e f Zoran MJ 2001 Regeneration in Annelids Encyclopedia of Life Sciences John Wiley amp Sons Ltd doi 10 1002 9780470015902 a0022103 ISBN 978 0 470 01590 2 Bely AE October 2014 Early events in annelid regeneration a cellular perspective Integrative and Comparative Biology 54 4 688 99 doi 10 1093 icb icu109 PMID 25122930 Candia Carnevali MD Bonasoro F Patruno M Thorndyke MC October 1998 Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms the potential of arm explants Development Genes and Evolution 208 8 421 30 doi 10 1007 s004270050199 PMID 9799422 S2CID 23560812 San Miguel Ruiz JE Maldonado Soto AR Garcia Arraras JE January 2009 Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima BMC Developmental Biology 9 3 doi 10 1186 1471 213X 9 3 PMC 2640377 PMID 19126208 Patruno M Thorndyke MC Candia Carnevali MD Bonasoro F Beesley PW March 2001 Growth factors heat shock proteins and regeneration in echinoderms The Journal of Experimental Biology 204 Pt 5 843 8 doi 10 1242 jeb 204 5 843 PMID 11171408 a b c Morgan TH 1900 Regeneration in Planarians Archiv fur Entwicklungsmechanik der Organismen 10 1 58 119 doi 10 1007 BF02156347 hdl 2027 hvd 32044107333064 S2CID 33712732 Garcia Arraras JE Greenberg MJ December 2001 Visceral regeneration in holothurians Microscopy Research and Technique 55 6 438 51 doi 10 1002 jemt 1189 PMID 11782073 S2CID 11533400 Sanchez Alvarado A Newmark PA 1998 The use of planarians to dissect the molecular basis of metazoan regeneration Wound Repair and Regeneration 6 4 413 20 doi 10 1046 j 1524 475x 1998 60418 x PMID 9824561 S2CID 8085897 a b Montgomery JR Coward SJ July 1974 On the minimal size of a planarian capable of regeneration Transactions of the American Microscopical Society 93 3 386 91 doi 10 2307 3225439 JSTOR 3225439 PMID 4853459 Elliott SA Sanchez Alvarado A 2012 The history and enduring contributions of planarians to the study of animal regeneration Wiley Interdisciplinary Reviews Developmental Biology 2 3 301 26 doi 10 1002 wdev 82 PMC 3694279 PMID 23799578 Wagner DE Wang IE Reddien PW May 2011 Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration Science 332 6031 811 6 Bibcode 2011Sci 332 811W doi 10 1126 science 1203983 PMC 3338249 PMID 21566185 a b Holland Nicholas 2021 Vicenzo Colucci s 1886 memoir Intorno alla rigenerazione degli arti e della coda nei tritoni annotated and translated into English as Concerning regeneration of the limbs and tail in salamanders The European Zoological Journal 88 837 890 doi 10 1080 24750263 2021 1943549 a b Brockes JP Kumar A Velloso CP 2001 Regeneration as an evolutionary variable Journal of Anatomy 199 Pt 1 2 3 11 doi 10 1046 j 1469 7580 2001 19910003 x PMC 1594962 PMID 11523827 Brockes JP Kumar A August 2002 Plasticity and reprogramming of differentiated cells in amphibian regeneration Nature Reviews Molecular Cell Biology 3 8 566 74 doi 10 1038 nrm881 PMID 12154368 S2CID 21409289 Iten LE Bryant SV December 1973 Forelimb regeneration from different levels of amputation in the newt Notophthalmus viridescens Length rate and stages Wilhelm Roux Archiv fur Entwicklungsmechanik der Organismen 173 4 263 282 doi 10 1007 BF00575834 PMID 28304797 S2CID 3946430 a b Endo T Bryant SV Gardiner DM June 2004 A stepwise model system for limb regeneration PDF Developmental Biology 270 1 135 45 doi 10 1016 j ydbio 2004 02 016 PMID 15136146 S2CID 7581434 Satoh A Bryant SV Gardiner DM June 2012 Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl Ambystoma mexicanum Developmental Biology 366 2 374 81 doi 10 1016 j ydbio 2012 03 022 PMID 22537500 Christensen RN Tassava RA February 2000 Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs Developmental Dynamics 217 2 216 24 doi 10 1002 sici 1097 0177 200002 217 2 lt 216 aid dvdy8 gt 3 0 co 2 8 PMID 10706145 a b Bryant SV Endo T Gardiner DM 2002 Vertebrate limb regeneration and the origin of limb stem cells The International Journal of Developmental Biology 46 7 887 96 PMID 12455626 Mullen LM Bryant SV Torok MA Blumberg B Gardiner DM November 1996 Nerve dependency of regeneration the role of Distal less and FGF signaling in amphibian limb regeneration Development 122 11 3487 97 doi 10 1242 dev 122 11 3487 PMID 8951064 Souppouris Aaron May 23 2013 Scientists identify cell that could hold the secret to limb regeneration The Verge Macrophages are a type of repairing cell that devour dead cells and pathogens and trigger other immune cells to respond to pathogens Godwin JW Pinto AR Rosenthal NA June 2013 Macrophages are required for adult salamander limb regeneration Proceedings of the National Academy of Sciences of the United States of America 110 23 9415 20 Bibcode 2013PNAS 110 9415G doi 10 1073 pnas 1300290110 PMC 3677454 PMID 23690624 Do salamanders immune systems hold the key to regeneration ScienceDaily Press release May 20 2013 Voss SR Muzinic L Zimmerman G 2018 Sal Site Ambystoma org Single cell Stereo seq reveals new insights into axolotl brain regeneration News Medical net 6 September 2022 Retrieved 19 October 2022 Wei Xiaoyu Fu Sulei Li Hanbo Liu Yang Wang Shuai Feng Weimin Yang Yunzhi Liu Xiawei Zeng Yan Yun Cheng Mengnan Lai Yiwei Qiu Xiaojie Wu Liang Zhang Nannan Jiang Yujia Xu Jiangshan Su Xiaoshan Peng Cheng Han Lei Lou Wilson Pak Kin Liu Chuanyu Yuan Yue Ma Kailong Yang Tao Pan Xiangyu Gao Shang Chen Ao Esteban Miguel A Yang Huanming Wang Jian Fan Guangyi Liu Longqi Chen Liang Xu Xun Fei Ji Feng Gu Ying 2 September 2022 Single cell Stereo seq reveals induced progenitor cells involved in axolotl brain regeneration Science 377 6610 eabp9444 doi 10 1126 science abp9444 ISSN 0036 8075 PMID 36048929 S2CID 252010604 a b Liversage RA Anderson M Korneluk RG February 2005 Regenerative response of amputated forelimbs of Xenopus laevis froglets to partial denervation Journal of Morphology 191 2 131 144 doi 10 1002 jmor 1051910204 PMID 29921109 S2CID 49315283 a b Reya T Clevers H April 2005 Wnt signalling in stem cells and cancer Nature 434 7035 843 50 Bibcode 2005Natur 434 843R doi 10 1038 nature03319 PMID 15829953 S2CID 3645313 Murugan Nirosha J Vigran Hannah J Miller Kelsie A Golding Annie Pham Quang L Sperry Megan M Rasmussen Ivey Cody Kane Anna W Kaplan David L Levin Michael 28 January 2022 Acute multidrug delivery via a wearable bioreactor facilitates long term limb regeneration and functional recovery in adult Xenopus laevis Science Advances 8 4 eabj2164 Bibcode 2022SciA 8 2164M doi 10 1126 sciadv abj2164 PMC 8791464 PMID 35080969 a b c d e Bosch TC March 2007 Why polyps regenerate and we don t towards a cellular and molecular framework for Hydra regeneration Developmental Biology 303 2 421 33 doi 10 1016 j ydbio 2006 12 012 PMID 17234176 a b c d Wenger Y Buzgariu W Reiter S Galliot B August 2014 Injury induced immune responses in Hydra Seminars in Immunology 26 4 277 94 doi 10 1016 j smim 2014 06 004 PMID 25086685 Buzgariu W Crescenzi M Galliot B 2014 Science Direct Robust G2 pausing of adult stem cells in Hydra Differentiation Research in Biological Diversity 87 1 2 83 99 doi 10 1016 j diff 2014 03 001 PMID 24703763 Morgan TH 1901 Regeneration Columbia University Biological Series Vol 7 New York The MacMillan Company Agata K Saito Y Nakajima E February 2007 Unifying principles of regeneration I Epimorphosis versus morphallaxis Development Growth amp Differentiation 49 2 73 8 doi 10 1111 j 1440 169X 2007 00919 x PMID 17335428 S2CID 29433846 a b c Vorontsova MA Liosner LD 1960 Billet F ed Asexual Reproduction and Regeneration Translated by Allen PM London Pergamon Press pp 367 371 Sidorova VF July 1962 Liver regeneration in birds Biulleten Eksperimental noi Biologii I Meditsiny 52 6 1426 9 doi 10 1007 BF00785312 PMID 14039265 S2CID 39410595 Cotanche DA Lee KH Stone JS Picard DA January 1994 Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage Anatomy and Embryology 189 1 1 18 doi 10 1007 BF00193125 PMID 8192233 S2CID 25619337 Coleman CM September 2008 Chicken embryo as a model for regenerative medicine Birth Defects Research Part C Embryo Today 84 3 245 56 doi 10 1002 bdrc 20133 PMID 18773459 Ozpolat BD Zapata M Daniel Fruge J Coote J Lee J Muneoka K Anderson R December 2012 Regeneration of the elbow joint in the developing chick embryo recapitulates development Developmental Biology 372 2 229 38 doi 10 1016 j ydbio 2012 09 020 PMC 3501998 PMID 23036343 Hosker A 1936 Regeneration of Feathers after Thyroid Feeding Journal of Experimental Biology 13 3 344 351 doi 10 1242 jeb 13 3 344 Kresie L April 2001 Artificial blood an update on current red cell and platelet substitutes Proceedings 14 2 158 61 doi 10 1080 08998280 2001 11927754 PMC 1291332 PMID 16369608 Li C Pearson A McMahon C 2013 Morphogenetic mechanisms in the cyclic regeneration of hair follicles and deer antlers from stem cells BioMed Research International 2013 643601 doi 10 1155 2013 643601 PMC 3870647 PMID 24383056 Price J Allen S May 2004 Exploring the mechanisms regulating regeneration of deer antlers Philosophical Transactions of the Royal Society of London Series B Biological Sciences 359 1445 809 22 doi 10 1098 rstb 2004 1471 PMC 1693364 PMID 15293809 Fernando WA Leininger E Simkin J Li N Malcom CA Sathyamoorthi S Han M Muneoka K February 2011 Wound healing and blastema formation in regenerating digit tips of adult mice Developmental Biology 350 2 301 10 doi 10 1016 j ydbio 2010 11 035 PMC 3031655 PMID 21145316 Seifert AW Kiama SG Seifert MG Goheen JR Palmer TM Maden M September 2012 Skin shedding and tissue regeneration in African spiny mice Acomys Nature 489 7417 561 5 Bibcode 2012Natur 489 561S doi 10 1038 nature11499 PMC 3480082 PMID 23018966 a b Gawriluk TR Simkin J Thompson KL Biswas SK Clare Salzler Z Kimani JM Kiama SG Smith JJ Ezenwa VO Seifert AW April 2016 Comparative analysis of ear hole closure identifies epimorphic regeneration as a discrete trait in mammals Nature Communications 7 11164 Bibcode 2016NatCo 711164G doi 10 1038 ncomms11164 PMC 4848467 PMID 27109826 Matias Santos D Rita AM Casanellas I Brito Ova A Araujo IM Power D Tiscornia G February 2016 Ear wound regeneration in the African spiny mouse Acomys cahirinus Regeneration 3 1 52 61 doi 10 1002 reg2 50 PMC 4857749 PMID 27499879 Xu K July 2013 Humans Ability To Regenerate Damaged Organs Is At Our Fingertips Business Insider Becker RO January 1972 Stimulation of partial limb regeneration in rats Nature 235 5333 109 11 Bibcode 1972Natur 235 109B doi 10 1038 235109a0 PMID 4550399 S2CID 4209650 Becker RO Spadaro JA May 1972 Electrical stimulation of partial limb regeneration in mammals Bulletin of the New York Academy of Medicine 48 4 627 41 PMC 1806700 PMID 4503923 Masinde G Li X Baylink DJ Nguyen B Mohan S April 2005 Isolation of wound healing regeneration genes using restrictive fragment differential display PCR in MRL MPJ and C57BL 6 mice Biochemical and Biophysical Research Communications 330 1 117 22 doi 10 1016 j bbrc 2005 02 143 PMID 15781240 Hayashi ML Rao BS Seo JS Choi HS Dolan BM Choi SY Chattarji S Tonegawa S July 2007 Inhibition of p21 activated kinase rescues symptoms of fragile X syndrome in mice Proceedings of the National Academy of Sciences of the United States of America 104 27 11489 94 Bibcode 2007PNAS 10411489H doi 10 1073 pnas 0705003104 PMC 1899186 PMID 17592139 Bedelbaeva K Snyder A Gourevitch D Clark L Zhang XM Leferovich J Cheverud JM Lieberman P Heber Katz E March 2010 Lack of p21 expression links cell cycle control and appendage regeneration in mice Proceedings of the National Academy of Sciences of the United States of America 107 13 5845 50 Bibcode 2010PNAS 107 5845B doi 10 1073 pnas 1000830107 PMC 2851923 PMID 20231440 1 gene lost 1 limb regained Scientists demonstrate mammalian regeneration through single gene deletion Medical Xpress March 15 2010 Humans Could Regenerate Tissue Like Newts By Switching Off a Single Gene Abdullah I Lepore JJ Epstein JA Parmacek MS Gruber PJ March April 2005 MRL mice fail to heal the heart in response to ischemia reperfusion injury Wound Repair and Regeneration 13 2 205 8 doi 10 1111 j 1067 1927 2005 130212 x PMID 15828946 S2CID 7360046 Regeneration in the mammalian heart demonstrated by Wistar researchers EurekAlert Science News Eurekalert org Retrieved 2019 03 16 Min S Wang SW Orr W 2006 Graphic general pathology 2 2 complete regeneration Pathology pathol med stu edu cn Archived from the original on 2012 12 07 Retrieved 2013 11 10 After the repair process has been completed the structure and function of the injured tissue are completely normal This type of regeneration is common in physiological situations Examples of physiological regeneration are the continual replacement of cells of the skin and repair of the endometrium after menstruation Complete regeneration can occur in pathological situations in tissues that have good regenerative capacity Mohammadi D 4 October 2014 Bioengineered organs The story so far The Guardian Retrieved 9 March 2015 Carlson BM 2007 Principles of Regenerative Biology Academic Press pp 25 26 ISBN 978 0 12 369439 3 Ferenczy A Bertrand G Gelfand MM April 1979 Proliferation kinetics of human endometrium during the normal menstrual cycle American Journal of Obstetrics and Gynecology 133 8 859 67 doi 10 1016 0002 9378 79 90302 8 PMID 434029 a b Michalopoulos GK DeFrances MC April 1997 Liver regeneration Science 276 5309 60 6 doi 10 1126 science 276 5309 60 PMID 9082986 S2CID 2756510 a b Taub R October 2004 Liver regeneration from myth to mechanism Nature Reviews Molecular Cell Biology 5 10 836 47 doi 10 1038 nrm1489 PMID 15459664 S2CID 30647609 Kawasaki S Makuuchi M Ishizone S Matsunami H Terada M Kawarazaki H March 1992 Liver regeneration in recipients and donors after transplantation Lancet 339 8793 580 1 doi 10 1016 0140 6736 92 90867 3 PMID 1347095 S2CID 34148354 Vlahopoulos SA August 2017 Aberrant control of NF kB in cancer permits transcriptional and phenotypic plasticity to curtail dependence on host tissue molecular mode Cancer Biology amp Medicine 14 3 254 270 doi 10 20892 j issn 2095 3941 2017 0029 PMC 5570602 PMID 28884042 Spalding KL Bergmann O Alkass K Bernard S Salehpour M Huttner HB Bostrom E Westerlund I Vial C Buchholz BA Possnert G Mash DC Druid H Frisen J June 2013 Dynamics of hippocampal neurogenesis in adult humans Cell 153 6 1219 1227 doi 10 1016 j cell 2013 05 002 PMC 4394608 PMID 23746839 Bergmann O Bhardwaj RD Bernard S Zdunek S Barnabe Heider F Walsh S Zupicich J Alkass K Buchholz BA Druid H Jovinge S Frisen J April 2009 Evidence for cardiomyocyte renewal in humans Science 324 5923 98 102 Bibcode 2009Sci 324 98B doi 10 1126 science 1164680 PMC 2991140 PMID 19342590 Beltrami AP Urbanek K Kajstura J Yan SM Finato N Bussani R Nadal Ginard B Silvestri F Leri A Beltrami CA Anversa P June 2001 Evidence that human cardiac myocytes divide after myocardial infarction The New England Journal of Medicine 344 23 1750 7 doi 10 1056 NEJM200106073442303 PMID 11396441 McKim LH May 1932 Regeneration of the distal phalanx Canadian Medical Association Journal 26 5 549 50 PMC 402335 PMID 20318716 Muneoka K Allan CH Yang X Lee J Han M December 2008 Mammalian regeneration and regenerative medicine Birth Defects Research Part C Embryo Today 84 4 265 80 doi 10 1002 bdrc 20137 PMID 19067422 Philip SJ Kumar RJ Menon KV October 2005 Morphological study of rib regeneration following costectomy in adolescent idiopathic scoliosis European Spine Journal 14 8 772 6 doi 10 1007 s00586 005 0949 8 PMC 3489251 PMID 16047208 Korin Miller September 11 2017 Here s What Happens When a Vasectomy Fails SELF Retrieved 2019 03 16 a b c d e Alibardi L 2010 Regeneration in Reptiles and Its Position Among Vertebrates Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards a Model System with Implications for Tissue Regeneration in Mammals Advances in Anatomy Embryology and Cell Biology Vol 207 Heidelberg Springer pp iii v x 1 109 doi 10 1007 978 3 642 03733 7 1 ISBN 978 3 642 03732 0 PMID 20334040 a b c McLean KE Vickaryous MK August 2011 A novel amniote model of epimorphic regeneration the leopard gecko Eublepharis macularius BMC Developmental Biology 11 1 50 doi 10 1186 1471 213x 11 50 PMC 3180301 PMID 21846350 a b Bellairs A Bryant S 1985 Autonomy and Regeneration in Reptiles In Gans C Billet F eds Biology of the Reptilia Vol 15 New York John Wiley and Sons pp 301 410 Brazaitis P July 31 1981 Maxillary Regeneration in a Marsh Crocodile Crocodylus palustris Journal of Herpetology 15 3 360 362 doi 10 2307 1563441 JSTOR 1563441 Font E Desfilis E Perez Canellas MM Garcia Verdugo JM 2001 Neurogenesis and neuronal regeneration in the adult reptilian brain Brain Behavior and Evolution 58 5 276 95 doi 10 1159 000057570 PMID 11978946 S2CID 1079753 Vickaryous M 2014 Vickaryous Lab Regeneration Evolution Development Department of Biomedical Sciences University of Guelph Sun Y Ripps H November 1992 Rhodopsin regeneration in the normal and in the detached replaced retina of the skate Experimental Eye Research 55 5 679 89 doi 10 1016 0014 4835 92 90173 p PMID 1478278 Lu C Zhang J Nie Z Chen J Zhang W Ren X Yu W Liu L Jiang C Zhang Y Guo J Wu W Shu J Lv Z 2013 Study of microRNAs related to the liver regeneration of the whitespotted bamboo shark Chiloscyllium plagiosum BioMed Research International 2013 795676 doi 10 1155 2013 795676 PMC 3789328 PMID 24151623 Reif W June 1978 Wound Healing in Sharks Zoomorphology 90 2 101 111 doi 10 1007 bf02568678 S2CID 29300907 Sources EditTanaka EM October 2003 Cell differentiation and cell fate during urodele tail and limb regeneration Current Opinion in Genetics amp Development 13 5 497 501 doi 10 1016 j gde 2003 08 003 PMID 14550415 Holland ND 2021 Vicenzo Colucci s 1886 memoir Intorno alla rigenerazione degli arti e della coda nei tritoni annotated and translated into English as Concerning regeneration of the limbs and tail in salamanders The European Zoological Journal 88 837 890 doi 10 1080 24750263 2021 1943549 S2CID 238904520 Nye HL Cameron JA Chernoff EA Stocum DL February 2003 Regeneration of the urodele limb a review Developmental Dynamics 226 2 280 94 doi 10 1002 dvdy 10236 PMID 12557206 S2CID 28442979 Yu H Mohan S Masinde GL Baylink DJ December 2005 Mapping the dominant wound healing and soft tissue regeneration QTL in MRL x CAST Mammalian Genome 16 12 918 24 doi 10 1007 s00335 005 0077 0 PMID 16341671 S2CID 24505367 Gardiner DM Blumberg B Komine Y Bryant SV June 1995 Regulation of HoxA expression in developing and regenerating axolotl limbs Development 121 6 1731 41 doi 10 1242 dev 121 6 1731 PMID 7600989 Torok MA Gardiner DM Shubin NH Bryant SV August 1998 Expression of HoxD genes in developing and regenerating axolotl limbs Developmental Biology 200 2 225 33 doi 10 1006 dbio 1998 8956 PMID 9705229 Putta S Smith JJ Walker JA Rondet M Weisrock DW Monaghan J Samuels AK Kump K King DC Maness NJ Habermann B Tanaka E Bryant SV Gardiner DM Parichy DM Voss SR August 2004 From biomedicine to natural history research EST resources for ambystomatid salamanders BMC Genomics 5 1 54 doi 10 1186 1471 2164 5 54 PMC 509418 PMID 15310388 Andrews Wyatt March 23 2008 Medicine s Cutting Edge Re Growing Organs Sunday Morning CBS News Archived from the original on 2008 03 24 Further reading EditKevin Strange and Viravuth Yin A Shot at Regeneration A once abandoned drug compound shows an ability to rebuild organs damaged by illness and injury Scientific American vol 320 no 4 April 2019 pp 56 61 1 External links Edit Wikiquote has quotations related to Regeneration biology Wikisource has the text of the 1911 Encyclopaedia Britannica article Regeneration of Lost Parts Rines George Edwin ed 1920 Regeneration in zoology Encyclopedia Americana Holland Nicholas 2021 Vicenzo Colucci s 1886 memoir Intorno alla rigenerazione degli arti e della coda nei tritoni annotated and translated into English as Concerning regeneration of the limbs and tail in salamanders The European Zoological Journal 88 837 890 doi 10 1080 24750263 2021 1943549 S2CID 238904520 Retrieved from https en wikipedia org w index php title Regeneration biology amp oldid 1136280710, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.