fbpx
Wikipedia

Epidermis

The epidermis is the outermost of the three layers that comprise the skin, the inner layers being the dermis and hypodermis.[1] The epidermis layer provides a barrier to infection from environmental pathogens[2] and regulates the amount of water released from the body into the atmosphere through transepidermal water loss.[3]

Epidermis
Microscopic image of the epidermis, which constitutes the outer layer of skin, shown here by the white bar
Microscopic image showing the layers of the epidermis. The stratum corneum appears more compact in this image than above because of different sample preparation.
Details
Part ofSkin
SystemIntegumentary system
Identifiers
LatinEpidermis
MeSHD004817
TA98A16.0.00.009
TA27046
THH3.12.00.1.01001
FMA70596
Anatomical terms of microanatomy
[edit on Wikidata]

The epidermis is composed of multiple layers of flattened cells[4] that overlie a base layer (stratum basale) composed of columnar cells arranged perpendicularly. The layers of cells develop from stem cells in the basal layer. The human epidermis is a familiar example of epithelium, particularly a stratified squamous epithelium.

The word epidermis is derived through Latin from Ancient Greek epidermis, itself from Ancient Greek epi 'over, upon' and from Ancient Greek derma 'skin'. Something related to or part of the epidermis is termed epidermal.

Structure

Cellular components

The epidermis primarily consists of keratinocytes[4] (proliferating basal and differentiated suprabasal), which comprise 90% of its cells, but also contains melanocytes, Langerhans cells, Merkel cells,[5]: 2–3  and inflammatory cells. Epidermal thickenings called Rete ridges (or rete pegs) extend downward between dermal papillae.[6] Blood capillaries are found beneath the epidermis, and are linked to an arteriole and a venule. The epidermis itself has no blood supply and is nourished almost exclusively by diffused oxygen from the surrounding air.[7] Cellular mechanisms for regulating water and sodium levels (ENaCs) are found in all layers of the epidermis.[8]

Cell junctions

Epidermal cells are tightly interconnected to serve as a tight barrier against the exterior environment. The junctions between the epidermal cells are of the adherens junction type, formed by transmembrane proteins called cadherins. Inside the cell, the cadherins are linked to actin filaments. In immunofluorescence microscopy, the actin filament network appears as a thick border surrounding the cells,[8] although the actin filaments are actually located inside the cell and run parallel to the cell membrane. Because of the proximity of the neighboring cells and tightness of the junctions, the actin immunofluorescence appears as a border between cells.[8]

Layers

 
Schematic image showing a section of epidermis, with epidermal layers labeled

The epidermis is composed of 4 or 5 layers, depending on the region of skin being considered.[9] Those layers from outermost to innermost are:[2]

cornified layer (stratum corneum)
 
Confocal image of the stratum corneum
Composed of 10 to 30 layers of polyhedral, anucleated corneocytes (final step of keratinocyte differentiation), with the palms and soles having the most layers. Corneocytes contain a protein envelope (cornified envelope proteins) underneath the plasma membrane, are filled with water-retaining keratin proteins, attached together through corneodesmosomes and surrounded in the extracellular space by stacked layers of lipids.[10] Most of the barrier functions of the epidermis localize to this layer.[11]
clear/translucent layer (stratum lucidum, only in palms and soles)
This narrow layer is found only on the palms and soles. The epidermis of these two areas is known as "thick skin" because with this extra layer, the skin has 5 epidermal layers instead of 4.
granular layer (stratum granulosum)
 
Confocal image of the stratum granulosum
Keratinocytes lose their nuclei and their cytoplasm appears granular. Lipids, contained into those keratinocytes within lamellar bodies, are released into the extracellular space through exocytosis to form a lipid barrier that prevents water loss from the body as well as entry of foreign substances. Those polar lipids are then converted into non-polar lipids and arranged parallel to the cell surface. For example glycosphingolipids become ceramides and phospholipids become free fatty acids.[10]
spinous layer (stratum spinosum)
 
Confocal image of the stratum spinosum already showing some clusters of basal cells
Keratinocytes become connected through desmosomes and produce lamellar bodies, from within the Golgi, enriched in polar lipids, glycosphingolipids, free sterols, phospholipids and catabolic enzymes.[3] Langerhans cells, immunologically active cells, are located in the middle of this layer.[10]
basal/germinal layer (stratum basale/germinativum)
 
Confocal image of the stratum basale already showing some papillae
Composed mainly of proliferating and non-proliferating keratinocytes, attached to the basement membrane by hemidesmosomes. Melanocytes are present, connected to numerous keratinocytes in this and other strata through dendrites. Merkel cells are also found in the stratum basale with large numbers in touch-sensitive sites such as the fingertips and lips. They are closely associated with cutaneous nerves and seem to be involved in light touch sensation.[10]
Malpighian layer (stratum malpighii)
This is usually defined as both the stratum basale and stratum spinosum.[4]

The epidermis is separated from the dermis, its underlying tissue, by a basement membrane.

Cellular kinetics

Cell division

As a stratified squamous epithelium, the epidermis is maintained by cell division within the stratum basale. Differentiating cells delaminate from the basement membrane and are displaced outward through the epidermal layers, undergoing multiple stages of differentiation until, in the stratum corneum, losing their nucleus and fusing to squamous sheets, which are eventually shed from the surface (desquamation). Differentiated keratinocytes secrete keratin proteins, which contribute to the formation of an extracellular matrix that is an integral part of the skin barrier function. In normal skin, the rate of keratinocyte production equals the rate of loss,[4] taking about two weeks for a cell to journey from the stratum basale to the top of the stratum granulosum, and an additional four weeks to cross the stratum corneum.[2] The entire epidermis is replaced by new cell growth over a period of about 48 days.[12]

Calcium concentration

Keratinocyte differentiation throughout the epidermis is in part mediated by a calcium gradient, increasing from the stratum basale until the outer stratum granulosum, where it reaches its maximum, and decreasing in the stratum corneum. Calcium concentration in the stratum corneum is very low in part because those relatively dry cells are not able to dissolve the ions. This calcium gradient parallels keratinocyte differentiation and as such is considered a key regulator in the formation of the epidermal layers.[3]

Elevation of extracellular calcium concentrations induces an increase in intracellular free calcium concentrations.[13] Part of that intracellular increase comes from calcium released from intracellular stores[14] and another part comes from transmembrane calcium influx,[15] through both calcium-sensitive chloride channels[16] and voltage-independent cation channels permeable to calcium.[17] Moreover, it has been suggested that an extracellular calcium-sensing receptor (CaSR) also contributes to the rise in intracellular calcium concentration.[18]

Development

Epidermal organogenesis, the formation of the epidermis, begins in the cells covering the embryo after neurulation, the formation of the central nervous system. In most vertebrates, this original one-layered structure quickly transforms into a two-layered tissue; a temporary outer layer, the periderm, which is disposed once the inner basal layer or stratum germinativum has formed.[19]

This inner layer is a germinal epithelium that gives rise to all epidermal cells. It divides to form the outer spinous layer (stratum spinosum). The cells of these two layers, together called the Malpighian layer(s) after Marcello Malpighi, divide to form the superficial granular layer (Stratum granulosum) of the epidermis.[19]

The cells in the stratum granulosum do not divide, but instead form skin cells called keratinocytes from the granules of keratin. These skin cells finally become the cornified layer (stratum corneum), the outermost epidermal layer, where the cells become flattened sacks with their nuclei located at one end of the cell. After birth these outermost cells are replaced by new cells from the stratum granulosum and throughout life they are shed at a rate of 30 - 90 milligrams of skin flakes every hour, or 0.720 - 2.16 grams per day.[20]

Epidermal development is a product of several growth factors, two of which are:[19]

Function

Barrier

The epidermis serves as a barrier to protect the body against microbial pathogens, oxidant stress (UV light), and chemical compounds, and provides mechanical resistance to minor injury. Most of this barrier role is played by the stratum corneum.[11]

Characteristics
  • Physical barrier: Epidermal keratinocytes are tightly linked by cell–cell junctions associated to cytoskeletal proteins, giving the epidermis its mechanical strength.[3]
  • Chemical barrier: Highly organized lipids, acids, hydrolytic enzymes, and antimicrobial peptides[3] inhibit passage of external chemicals and pathogens into the body.
  • Immunologically active barrier: The humoral and cellular constituents of the immune system[3] found in the epidermis actively combat infection.
  • Water content of the stratum corneum drops towards the surface, creating hostile conditions for pathogenic microorganism growth.[11]
  • An acidic pH (around 5.0) and low amounts of water make the epidermis hostile to many microorganic pathogens.[11]
  • Non-pathogenic microorganisms on the surface of the epidermis help defend against pathogens by competing for food, limiting its availability, and producing chemical secretions that inhibit the growth of pathogenic microbiota.[11]
Permeability

Skin hydration

The ability of the skin to hold water is primarily due to the stratum corneum and is critical for maintaining healthy skin.[23] Skin hydration is quantified using corneometry.[24] Lipids arranged through a gradient and in an organized manner between the cells of the stratum corneum form a barrier to transepidermal water loss.[25][26]

Skin color

The amount and distribution of melanin pigment in the epidermis is the main reason for variation in skin color in Homo sapiens. Melanin is found in the small melanosomes, particles formed in melanocytes from where they are transferred to the surrounding keratinocytes. The size, number, and arrangement of the melanosomes vary between racial groups, but while the number of melanocytes can vary between different body regions, their numbers remain the same in individual body regions in all human beings. In white and Asian skin the melanosomes are packed in "aggregates", but in black skin they are larger and distributed more evenly. The number of melanosomes in the keratinocytes increases with UV radiation exposure, while their distribution remain largely unaffected.[27]

Clinical significance

Laboratory culture of keratinocytes to form a 3D structure (artificial skin) recapitulating most of the properties of the epidermis is routinely used as a tool for drug development and testing.

Hyperplasia

Epidermal hyperplasia (thickening resulting from cell proliferation) has various forms:

In contract, hyperkeratosis is a thickening of the stratum corneum, and is not necessarily due to hyperplasia.

Additional images

See also

References

  1. ^ Young, Barbara (2014). Wheater's functional histology a text and colour atlas. Elsevier. pp. 160 & 175. ISBN 9780702047473.
  2. ^ a b c Marks, James G; Miller, Jeffery (2006). Lookingbill and Marks' Principles of Dermatology (4th ed.). Elsevier. pp. 1–7. ISBN 978-1-4160-3185-7.
  3. ^ a b c d e f Proksch, E.; Brandner, J.; Jensen, J.M. (2008). "The skin: an indispensable barrier". Experimental Dermatology. 17 (12): 1063–1072. doi:10.1111/j.1600-0625.2008.00786.x. PMID 19043850. S2CID 31353914.
  4. ^ a b c d McGrath, J.A.; Eady, R.A.; Pope, F.M. (2004). Rook's Textbook of Dermatology (7th ed.). Blackwell Publishing. pp. 3.1–3.6. ISBN 978-0-632-06429-8.
  5. ^ a b James, William D.; Berger, Timothy G.; et al. (2006). Andrews' Diseases of the Skin: clinical Dermatology. Saunders Elsevier. ISBN 0-7216-2921-0.
  6. ^ TheFreeDictionary > rete ridge Citing: The American Heritage Medical Dictionary Copyright 2007, 2004
  7. ^ Stücker, M; Struk, A; Altmeyer, P; Herde, M; Baumgärtl, H; Lübbers, DW (2002). "The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis". The Journal of Physiology. 538 (3): 985–994. doi:10.1113/jphysiol.2001.013067. PMC 2290093. PMID 11826181.
  8. ^ a b c Hanukoglu I, Boggula VR, Vaknine H, Sharma S, Kleyman T, Hanukoglu A (January 2017). "Expression of epithelial sodium channel (ENaC) and CFTR in the human epidermis and epidermal appendages". Histochemistry and Cell Biology. 147 (6): 733–748. doi:10.1007/s00418-016-1535-3. PMID 28130590. S2CID 8504408.
  9. ^ The Ageing Skin - Structure
  10. ^ a b c d (PDF). Archived from the original (PDF) on 2010-12-14. Retrieved 2015-01-07.
  11. ^ a b c d e Elias, P.M. (2007). "The skin barrier as an innate immune element". Seminars in Immunopathology. 29 (1): 3–14. doi:10.1007/s00281-007-0060-9. PMID 17621950. S2CID 20311780.
  12. ^ Iizuka, Hajime (1994). "Epidermal turnover time". Journal of Dermatological Science. 8 (3): 215–217. doi:10.1016/0923-1811(94)90057-4. PMID 7865480.
  13. ^ Hennings, H; Kruszewski, FH; Yuspa, SH; Tucker, RW (1989). "Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes". Carcinogenesis. 10 (4): 777–80. doi:10.1093/carcin/10.4.777. PMID 2702726.
  14. ^ Pillai, S; Bikle, DD (1991). "Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: Differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3". Journal of Cellular Physiology. 146 (1): 94–100. doi:10.1002/jcp.1041460113. PMID 1990023. S2CID 21264605.
  15. ^ Reiss, M; Lipsey, LR; Zhou, ZL (1991). "Extracellular calcium-dependent regulation of transmembrane calcium fluxes in murine keratinocytes". Journal of Cellular Physiology. 147 (2): 281–91. doi:10.1002/jcp.1041470213. PMID 1645742. S2CID 25858560.
  16. ^ Mauro, TM; Pappone, PA; Isseroff, RR (1990). "Extracellular calcium affects the membrane currents of cultured human keratinocytes". Journal of Cellular Physiology. 143 (1): 13–20. doi:10.1002/jcp.1041430103. PMID 1690740. S2CID 8072916.
  17. ^ Mauro, TM; Isseroff, RR; Lasarow, R; Pappone, PA (1993). "Ion channels are linked to differentiation in keratinocytes". The Journal of Membrane Biology. 132 (3): 201–9. doi:10.1007/BF00235738. PMID 7684087. S2CID 13063458.
  18. ^ Tu, CL; Oda, Y; Bikle, DD (1999). "Effects of a calcium receptor activator on the cellular response to calcium in human keratinocytes". The Journal of Investigative Dermatology. 113 (3): 340–5. doi:10.1046/j.1523-1747.1999.00698.x. PMID 10469331.
  19. ^ a b c Gilbert, Scott F (2000). "The Epidermis and the Origin of Cutaneous Structures". Developmental Biology. Sinauer Associates. ISBN 978-0-87893-243-6.
  20. ^ Weschler, Charles J. (April 8, 2011). "Squalene and Cholesterol in Dust from Danish Homes and Daycare Centers" (PDF). Environ. Sci. Technol. 45 (9): 3872–3879. Bibcode:2011EnST...45.3872W. doi:10.1021/es103894r. PMID 21476540.
  21. ^ Denda, M.; Tsuchiya, T.; Elias, P.M.; Feingold, K.R. (2000). "Stress alters cutaneous permeability barrier homeostasis". Am J Physiol Regul Integr Comp Physiol. 278 (2): R367–372. doi:10.1152/ajpregu.2000.278.2.R367. PMID 10666137. S2CID 558526.
  22. ^ Tsai, Jui-Chen; Guy, Richard H.; Thornfeldt, Carl R.; Gao, Wen Ni; Feingold, Kenneth R.; Elias, Peter M. (1996). "Metabolic Approaches To Enhance Transdermal Drug Delivery. 1. Effect of Lipid Synthesis Inhibitors". Journal of Pharmaceutical Sciences. 85 (6): 643–648. doi:10.1021/js950219p. PMID 8773963.
  23. ^ Blank, IH (1952). "Factors which influence the water content of the stratum corneum". The Journal of Investigative Dermatology. 18 (6): 433–40. doi:10.1038/jid.1952.52. PMID 14938659.
  24. ^ C. W. Blichmann, J. Serup: Assessment of Skin Moisture, Acta Derm. Venereol. (Stockli) 1988; 68: 284–290
  25. ^ Downing, DT; Stewart, ME; Wertz, PW; Colton, SW; Abraham, W; Strauss, JS (1987). "Skin lipids: An update". The Journal of Investigative Dermatology. 88 (3 Suppl): 2s–6s. doi:10.1111/1523-1747.ep12468850. PMID 2950180.
  26. ^ Bonté, F; Saunois, A; Pinguet, P; Meybeck, A (1997). "Existence of a lipid gradient in the upper stratum corneum and its possible biological significance". Archives of Dermatological Research. 289 (2): 78–82. doi:10.1007/s004030050158. PMID 9049040. S2CID 10787600.
  27. ^ Montagna, William; Prota, Giuseppe; Kenney, John A. (1993). Black skin: structure and function. Gulf Professional Publishing. p. 69. ISBN 978-0-12-505260-3.
  28. ^ Kumar, Vinay; Fausto, Nelso; Abbas, Abul (2004) Robbins & Cotran Pathologic Basis of Disease (7th ed.). Saunders. Page 1230. ISBN 0-7216-0187-1.
  29. ^ M. S. Stone; T. L. Ray (September 1995). . DermPathTutor. Department of Dermatology, University of Iowa. Archived from the original on 29 May 2012. Retrieved 17 May 2012.
  30. ^ Tenore, G.; Palaia, G.; Del Vecchio, A.; Galanakis, A.; Romeo, U. (2013-10-24). "Focal epithelial hyperplasia (Heck's disease)". Annali di Stomatologia. 4 (Suppl 2): 43. ISSN 1824-0852. PMC 3860189. PMID 24353818.
  31. ^ a b Chakrabarti, Suvadip; Chakrabarti, PreetiRihal; Agrawal, Deepak; Somanath, Shreyas (2014). "Pseudoepitheliomatous hyperplasia: A clinical entity mistaken for squamous cell carcinoma". Journal of Cutaneous and Aesthetic Surgery. 7 (4): 232–4. doi:10.4103/0974-2077.150787. ISSN 0974-2077. PMC 4338470. PMID 25722605.
  32. ^ Lynch, Jane M. (2004). "Understanding Pseudoepitheliomatous Hyperplasia". Pathology Case Reviews. 9 (2): 36–45. doi:10.1097/01.pcr.0000117275.18471.5f. ISSN 1082-9784. S2CID 71497554.

epidermis, this, article, about, human, skin, outer, layer, cells, plants, botany, other, uses, disambiguation, epidermis, outermost, three, layers, that, comprise, skin, inner, layers, being, dermis, hypodermis, epidermis, layer, provides, barrier, infection,. This article is about human skin For the outer layer of cells in plants see Epidermis botany For other uses see Epidermis disambiguation The epidermis is the outermost of the three layers that comprise the skin the inner layers being the dermis and hypodermis 1 The epidermis layer provides a barrier to infection from environmental pathogens 2 and regulates the amount of water released from the body into the atmosphere through transepidermal water loss 3 EpidermisMicroscopic image of the epidermis which constitutes the outer layer of skin shown here by the white barMicroscopic image showing the layers of the epidermis The stratum corneum appears more compact in this image than above because of different sample preparation DetailsPart ofSkinSystemIntegumentary systemIdentifiersLatinEpidermisMeSHD004817TA98A16 0 00 009TA27046THH3 12 00 1 01001FMA70596Anatomical terms of microanatomy edit on Wikidata The epidermis is composed of multiple layers of flattened cells 4 that overlie a base layer stratum basale composed of columnar cells arranged perpendicularly The layers of cells develop from stem cells in the basal layer The human epidermis is a familiar example of epithelium particularly a stratified squamous epithelium The word epidermis is derived through Latin from Ancient Greek epidermis itself from Ancient Greek epi over upon and from Ancient Greek derma skin Something related to or part of the epidermis is termed epidermal Contents 1 Structure 1 1 Cellular components 1 2 Cell junctions 1 3 Layers 1 4 Cellular kinetics 1 4 1 Cell division 1 4 2 Calcium concentration 1 5 Development 2 Function 2 1 Barrier 2 2 Skin hydration 2 3 Skin color 3 Clinical significance 3 1 Hyperplasia 4 Additional images 5 See also 6 ReferencesStructure EditCellular components Edit The epidermis primarily consists of keratinocytes 4 proliferating basal and differentiated suprabasal which comprise 90 of its cells but also contains melanocytes Langerhans cells Merkel cells 5 2 3 and inflammatory cells Epidermal thickenings called Rete ridges or rete pegs extend downward between dermal papillae 6 Blood capillaries are found beneath the epidermis and are linked to an arteriole and a venule The epidermis itself has no blood supply and is nourished almost exclusively by diffused oxygen from the surrounding air 7 Cellular mechanisms for regulating water and sodium levels ENaCs are found in all layers of the epidermis 8 Cell junctions Edit Epidermal cells are tightly interconnected to serve as a tight barrier against the exterior environment The junctions between the epidermal cells are of the adherens junction type formed by transmembrane proteins called cadherins Inside the cell the cadherins are linked to actin filaments In immunofluorescence microscopy the actin filament network appears as a thick border surrounding the cells 8 although the actin filaments are actually located inside the cell and run parallel to the cell membrane Because of the proximity of the neighboring cells and tightness of the junctions the actin immunofluorescence appears as a border between cells 8 Layers Edit Schematic image showing a section of epidermis with epidermal layers labeled The epidermis is composed of 4 or 5 layers depending on the region of skin being considered 9 Those layers from outermost to innermost are 2 cornified layer stratum corneum Confocal image of the stratum corneumComposed of 10 to 30 layers of polyhedral anucleated corneocytes final step of keratinocyte differentiation with the palms and soles having the most layers Corneocytes contain a protein envelope cornified envelope proteins underneath the plasma membrane are filled with water retaining keratin proteins attached together through corneodesmosomes and surrounded in the extracellular space by stacked layers of lipids 10 Most of the barrier functions of the epidermis localize to this layer 11 clear translucent layer stratum lucidum only in palms and soles This narrow layer is found only on the palms and soles The epidermis of these two areas is known as thick skin because with this extra layer the skin has 5 epidermal layers instead of 4 granular layer stratum granulosum Confocal image of the stratum granulosumKeratinocytes lose their nuclei and their cytoplasm appears granular Lipids contained into those keratinocytes within lamellar bodies are released into the extracellular space through exocytosis to form a lipid barrier that prevents water loss from the body as well as entry of foreign substances Those polar lipids are then converted into non polar lipids and arranged parallel to the cell surface For example glycosphingolipids become ceramides and phospholipids become free fatty acids 10 spinous layer stratum spinosum Confocal image of the stratum spinosum already showing some clusters of basal cellsKeratinocytes become connected through desmosomes and produce lamellar bodies from within the Golgi enriched in polar lipids glycosphingolipids free sterols phospholipids and catabolic enzymes 3 Langerhans cells immunologically active cells are located in the middle of this layer 10 basal germinal layer stratum basale germinativum Confocal image of the stratum basale already showing some papillaeComposed mainly of proliferating and non proliferating keratinocytes attached to the basement membrane by hemidesmosomes Melanocytes are present connected to numerous keratinocytes in this and other strata through dendrites Merkel cells are also found in the stratum basale with large numbers in touch sensitive sites such as the fingertips and lips They are closely associated with cutaneous nerves and seem to be involved in light touch sensation 10 Malpighian layer stratum malpighii This is usually defined as both the stratum basale and stratum spinosum 4 The epidermis is separated from the dermis its underlying tissue by a basement membrane Cellular kinetics Edit Cell division Edit As a stratified squamous epithelium the epidermis is maintained by cell division within the stratum basale Differentiating cells delaminate from the basement membrane and are displaced outward through the epidermal layers undergoing multiple stages of differentiation until in the stratum corneum losing their nucleus and fusing to squamous sheets which are eventually shed from the surface desquamation Differentiated keratinocytes secrete keratin proteins which contribute to the formation of an extracellular matrix that is an integral part of the skin barrier function In normal skin the rate of keratinocyte production equals the rate of loss 4 taking about two weeks for a cell to journey from the stratum basale to the top of the stratum granulosum and an additional four weeks to cross the stratum corneum 2 The entire epidermis is replaced by new cell growth over a period of about 48 days 12 Calcium concentration Edit Keratinocyte differentiation throughout the epidermis is in part mediated by a calcium gradient increasing from the stratum basale until the outer stratum granulosum where it reaches its maximum and decreasing in the stratum corneum Calcium concentration in the stratum corneum is very low in part because those relatively dry cells are not able to dissolve the ions This calcium gradient parallels keratinocyte differentiation and as such is considered a key regulator in the formation of the epidermal layers 3 Elevation of extracellular calcium concentrations induces an increase in intracellular free calcium concentrations 13 Part of that intracellular increase comes from calcium released from intracellular stores 14 and another part comes from transmembrane calcium influx 15 through both calcium sensitive chloride channels 16 and voltage independent cation channels permeable to calcium 17 Moreover it has been suggested that an extracellular calcium sensing receptor CaSR also contributes to the rise in intracellular calcium concentration 18 Development Edit Epidermal organogenesis the formation of the epidermis begins in the cells covering the embryo after neurulation the formation of the central nervous system In most vertebrates this original one layered structure quickly transforms into a two layered tissue a temporary outer layer the periderm which is disposed once the inner basal layer or stratum germinativum has formed 19 This inner layer is a germinal epithelium that gives rise to all epidermal cells It divides to form the outer spinous layer stratum spinosum The cells of these two layers together called the Malpighian layer s after Marcello Malpighi divide to form the superficial granular layer Stratum granulosum of the epidermis 19 The cells in the stratum granulosum do not divide but instead form skin cells called keratinocytes from the granules of keratin These skin cells finally become the cornified layer stratum corneum the outermost epidermal layer where the cells become flattened sacks with their nuclei located at one end of the cell After birth these outermost cells are replaced by new cells from the stratum granulosum and throughout life they are shed at a rate of 30 90 milligrams of skin flakes every hour or 0 720 2 16 grams per day 20 Epidermal development is a product of several growth factors two of which are 19 Transforming growth factor Alpha TGFa is an autocrine growth factor by which basal cells stimulate their own division Keratinocyte growth factor KGF or FGF7 is a paracrine growth factor produced by the underlying dermal fibroblasts in which the proliferation of basal cells is regulated Function EditBarrier Edit The epidermis serves as a barrier to protect the body against microbial pathogens oxidant stress UV light and chemical compounds and provides mechanical resistance to minor injury Most of this barrier role is played by the stratum corneum 11 CharacteristicsPhysical barrier Epidermal keratinocytes are tightly linked by cell cell junctions associated to cytoskeletal proteins giving the epidermis its mechanical strength 3 Chemical barrier Highly organized lipids acids hydrolytic enzymes and antimicrobial peptides 3 inhibit passage of external chemicals and pathogens into the body Immunologically active barrier The humoral and cellular constituents of the immune system 3 found in the epidermis actively combat infection Water content of the stratum corneum drops towards the surface creating hostile conditions for pathogenic microorganism growth 11 An acidic pH around 5 0 and low amounts of water make the epidermis hostile to many microorganic pathogens 11 Non pathogenic microorganisms on the surface of the epidermis help defend against pathogens by competing for food limiting its availability and producing chemical secretions that inhibit the growth of pathogenic microbiota 11 PermeabilityPsychological stress through an increase in glucocorticoids compromises the stratum corneum and thus the barrier function 21 Sudden and large shifts in humidity alter stratum corneum hydration in a way that could allow entry of pathogenic microorganisms 22 Skin hydration Edit The ability of the skin to hold water is primarily due to the stratum corneum and is critical for maintaining healthy skin 23 Skin hydration is quantified using corneometry 24 Lipids arranged through a gradient and in an organized manner between the cells of the stratum corneum form a barrier to transepidermal water loss 25 26 Skin color Edit The amount and distribution of melanin pigment in the epidermis is the main reason for variation in skin color in Homo sapiens Melanin is found in the small melanosomes particles formed in melanocytes from where they are transferred to the surrounding keratinocytes The size number and arrangement of the melanosomes vary between racial groups but while the number of melanocytes can vary between different body regions their numbers remain the same in individual body regions in all human beings In white and Asian skin the melanosomes are packed in aggregates but in black skin they are larger and distributed more evenly The number of melanosomes in the keratinocytes increases with UV radiation exposure while their distribution remain largely unaffected 27 Clinical significance EditFor a comprehensive list see List of cutaneous conditions Laboratory culture of keratinocytes to form a 3D structure artificial skin recapitulating most of the properties of the epidermis is routinely used as a tool for drug development and testing Hyperplasia Edit Epidermal hyperplasia thickening resulting from cell proliferation has various forms Acanthosis is diffuse epidermal hyperplasia thickening of the skin and not to be confused with acanthocytes 28 It implies increased thickness of the Malpighian layer stratum basale and stratum spinosum 29 Acanthosis nigricans is a black poorly defined velvety hyperpigmented acanthosis usually observed in the back of neck axilla and other folded regions of the skin Focal epithelial hyperplasia Heck s disease is an asymptomatic benign neoplastic condition characterized by multiple white to pinkish papules that occur diffusely in the oral cavity 30 5 411 Pseudoepitheliomatous hyperplasia PEH is a benign condition characterized by hyperplasia of the epidermis and epithelium of skin appendages 31 with irregular squamous strands extending down into the dermis 32 and closely simulating squamous cell carcinoma SCC 31 Acanthosis nigricans Heck s disease Pseudoepitheliomatous hyperplasia PEH low magnification with acanthotic squamous epithelium with irregular thick finger like downgrowths into the underlying dermis PEH high magnification with reactive appearing squamous downgrowths with no significant cytologic atypia In contract hyperkeratosis is a thickening of the stratum corneum and is not necessarily due to hyperplasia Additional images Edit Epidermis and dermis of human skin Cross section of all skin layers Illustration of epidermal layers Optical coherence tomography of fingertipSee also EditSkin repairReferences Edit Young Barbara 2014 Wheater s functional histology a text and colour atlas Elsevier pp 160 amp 175 ISBN 9780702047473 a b c Marks James G Miller Jeffery 2006 Lookingbill and Marks Principles of Dermatology 4th ed Elsevier pp 1 7 ISBN 978 1 4160 3185 7 a b c d e f Proksch E Brandner J Jensen J M 2008 The skin an indispensable barrier Experimental Dermatology 17 12 1063 1072 doi 10 1111 j 1600 0625 2008 00786 x PMID 19043850 S2CID 31353914 a b c d McGrath J A Eady R A Pope F M 2004 Rook s Textbook of Dermatology 7th ed Blackwell Publishing pp 3 1 3 6 ISBN 978 0 632 06429 8 a b James William D Berger Timothy G et al 2006 Andrews Diseases of the Skin clinical Dermatology Saunders Elsevier ISBN 0 7216 2921 0 TheFreeDictionary gt rete ridge Citing The American Heritage Medical Dictionary Copyright 2007 2004 Stucker M Struk A Altmeyer P Herde M Baumgartl H Lubbers DW 2002 The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis The Journal of Physiology 538 3 985 994 doi 10 1113 jphysiol 2001 013067 PMC 2290093 PMID 11826181 a b c Hanukoglu I Boggula VR Vaknine H Sharma S Kleyman T Hanukoglu A January 2017 Expression of epithelial sodium channel ENaC and CFTR in the human epidermis and epidermal appendages Histochemistry and Cell Biology 147 6 733 748 doi 10 1007 s00418 016 1535 3 PMID 28130590 S2CID 8504408 The Ageing Skin Structure a b c d Skin structure and function PDF Archived from the original PDF on 2010 12 14 Retrieved 2015 01 07 a b c d e Elias P M 2007 The skin barrier as an innate immune element Seminars in Immunopathology 29 1 3 14 doi 10 1007 s00281 007 0060 9 PMID 17621950 S2CID 20311780 Iizuka Hajime 1994 Epidermal turnover time Journal of Dermatological Science 8 3 215 217 doi 10 1016 0923 1811 94 90057 4 PMID 7865480 Hennings H Kruszewski FH Yuspa SH Tucker RW 1989 Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes Carcinogenesis 10 4 777 80 doi 10 1093 carcin 10 4 777 PMID 2702726 Pillai S Bikle DD 1991 Role of intracellular free calcium in the cornified envelope formation of keratinocytes Differences in the mode of action of extracellular calcium and 1 25 dihydroxyvitamin D3 Journal of Cellular Physiology 146 1 94 100 doi 10 1002 jcp 1041460113 PMID 1990023 S2CID 21264605 Reiss M Lipsey LR Zhou ZL 1991 Extracellular calcium dependent regulation of transmembrane calcium fluxes in murine keratinocytes Journal of Cellular Physiology 147 2 281 91 doi 10 1002 jcp 1041470213 PMID 1645742 S2CID 25858560 Mauro TM Pappone PA Isseroff RR 1990 Extracellular calcium affects the membrane currents of cultured human keratinocytes Journal of Cellular Physiology 143 1 13 20 doi 10 1002 jcp 1041430103 PMID 1690740 S2CID 8072916 Mauro TM Isseroff RR Lasarow R Pappone PA 1993 Ion channels are linked to differentiation in keratinocytes The Journal of Membrane Biology 132 3 201 9 doi 10 1007 BF00235738 PMID 7684087 S2CID 13063458 Tu CL Oda Y Bikle DD 1999 Effects of a calcium receptor activator on the cellular response to calcium in human keratinocytes The Journal of Investigative Dermatology 113 3 340 5 doi 10 1046 j 1523 1747 1999 00698 x PMID 10469331 a b c Gilbert Scott F 2000 The Epidermis and the Origin of Cutaneous Structures Developmental Biology Sinauer Associates ISBN 978 0 87893 243 6 Weschler Charles J April 8 2011 Squalene and Cholesterol in Dust from Danish Homes and Daycare Centers PDF Environ Sci Technol 45 9 3872 3879 Bibcode 2011EnST 45 3872W doi 10 1021 es103894r PMID 21476540 Denda M Tsuchiya T Elias P M Feingold K R 2000 Stress alters cutaneous permeability barrier homeostasis Am J Physiol Regul Integr Comp Physiol 278 2 R367 372 doi 10 1152 ajpregu 2000 278 2 R367 PMID 10666137 S2CID 558526 Tsai Jui Chen Guy Richard H Thornfeldt Carl R Gao Wen Ni Feingold Kenneth R Elias Peter M 1996 Metabolic Approaches To Enhance Transdermal Drug Delivery 1 Effect of Lipid Synthesis Inhibitors Journal of Pharmaceutical Sciences 85 6 643 648 doi 10 1021 js950219p PMID 8773963 Blank IH 1952 Factors which influence the water content of the stratum corneum The Journal of Investigative Dermatology 18 6 433 40 doi 10 1038 jid 1952 52 PMID 14938659 C W Blichmann J Serup Assessment of Skin Moisture Acta Derm Venereol Stockli 1988 68 284 290 Downing DT Stewart ME Wertz PW Colton SW Abraham W Strauss JS 1987 Skin lipids An update The Journal of Investigative Dermatology 88 3 Suppl 2s 6s doi 10 1111 1523 1747 ep12468850 PMID 2950180 Bonte F Saunois A Pinguet P Meybeck A 1997 Existence of a lipid gradient in the upper stratum corneum and its possible biological significance Archives of Dermatological Research 289 2 78 82 doi 10 1007 s004030050158 PMID 9049040 S2CID 10787600 Montagna William Prota Giuseppe Kenney John A 1993 Black skin structure and function Gulf Professional Publishing p 69 ISBN 978 0 12 505260 3 Kumar Vinay Fausto Nelso Abbas Abul 2004 Robbins amp Cotran Pathologic Basis of Disease 7th ed Saunders Page 1230 ISBN 0 7216 0187 1 M S Stone T L Ray September 1995 Acanthosis DermPathTutor Department of Dermatology University of Iowa Archived from the original on 29 May 2012 Retrieved 17 May 2012 Tenore G Palaia G Del Vecchio A Galanakis A Romeo U 2013 10 24 Focal epithelial hyperplasia Heck s disease Annali di Stomatologia 4 Suppl 2 43 ISSN 1824 0852 PMC 3860189 PMID 24353818 a b Chakrabarti Suvadip Chakrabarti PreetiRihal Agrawal Deepak Somanath Shreyas 2014 Pseudoepitheliomatous hyperplasia A clinical entity mistaken for squamous cell carcinoma Journal of Cutaneous and Aesthetic Surgery 7 4 232 4 doi 10 4103 0974 2077 150787 ISSN 0974 2077 PMC 4338470 PMID 25722605 Lynch Jane M 2004 Understanding Pseudoepitheliomatous Hyperplasia Pathology Case Reviews 9 2 36 45 doi 10 1097 01 pcr 0000117275 18471 5f ISSN 1082 9784 S2CID 71497554 Retrieved from https en wikipedia org w index php title Epidermis amp oldid 1128392569, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.