fbpx
Wikipedia

Brain–computer interface

A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI), is a direct communication pathway between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions.[1] They are often conceptualized as a human–machine interface that skips the intermediary component of the physical movement of body parts, although they also raise the possibility of the erasure of the discreteness of brain and machine. Implementations of BCIs range from non-invasive (EEG, MEG, MRI) and partially invasive (ECoG and endovascular) to invasive (microelectrode array), based on how close electrodes get to brain tissue.[2]

Research on BCIs began in the 1970s by Jacques Vidal at the University of California, Los Angeles (UCLA) under a grant from the National Science Foundation, followed by a contract from DARPA.[3][4] Vidal's 1973 paper marks the first appearance of the expression brain–computer interface in scientific literature.

Due to the cortical plasticity of the brain, signals from implanted prostheses can, after adaptation, be handled by the brain like natural sensor or effector channels.[5] Following years of animal experimentation, the first neuroprosthetic devices implanted in humans appeared in the mid-1990s.

Recently, studies in human-computer interaction via the application of machine learning to statistical temporal features extracted from the frontal lobe (EEG brainwave) data has had high levels of success in classifying mental states (relaxed, neutral, concentrating),[6] mental emotional states (negative, neutral, positive),[7] and thalamocortical dysrhythmia.[8]

History edit

The history of brain–computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). In 1924 Berger was the first to record human brain activity by means of EEG. Berger was able to identify oscillatory activity, such as Berger's wave or the alpha wave (8–13 Hz), by analyzing EEG traces.

Berger's first recording device was very rudimentary. He inserted silver wires under the scalps of his patients. These were later replaced by silver foils attached to the patient's head by rubber bandages. Berger connected these sensors to a Lippmann capillary electrometer, with disappointing results. However, more sophisticated measuring devices, such as the Siemens double-coil recording galvanometer, which displayed electric voltages as small as one ten thousandth of a volt, led to success.

Berger analyzed the interrelation of alternations in his EEG wave diagrams with brain diseases. EEGs permitted completely new possibilities for the research of human brain activities.

Although the term had not yet been coined, one of the earliest examples of a working brain-machine interface was the piece Music for Solo Performer (1965) by the American composer Alvin Lucier. The piece makes use of EEG and analog signal processing hardware (filters, amplifiers, and a mixing board) to stimulate acoustic percussion instruments. To perform the piece one must produce alpha waves and thereby "play" the various percussion instruments via loudspeakers which are placed near or directly on the instruments themselves.[9]

UCLA Professor Jacques Vidal coined the term "BCI" and produced the first peer-reviewed publications on this topic.[3][4] Vidal is widely recognized as the inventor of BCIs in the BCI community, as reflected in numerous peer-reviewed articles reviewing and discussing the field (e.g.,[10][11][12]). A review pointed out that Vidal's 1973 paper stated the "BCI challenge"[13] of controlling external objects using EEG signals, and especially use of Contingent Negative Variation (CNV) potential as a challenge for BCI control. The 1977 experiment Vidal described was the first application of BCI after his 1973 BCI challenge. It was a noninvasive EEG (actually Visual Evoked Potentials (VEP)) control of a cursor-like graphical object on a computer screen. The demonstration was movement in a maze.[14]

After his early contributions, Vidal was inactive in BCI research, and BCI events such as conferences, for many years. In 2011, however, he gave a lecture in Graz, Austria, supported by the Future BNCI project, presenting the first BCI, which earned a standing ovation. Vidal was joined by his wife, Laryce Vidal, who previously worked with him at UCLA on his first BCI project.

In 1988, a report was given on noninvasive EEG control of a physical object, a robot. The experiment described was EEG control of multiple start-stop-restart of the robot movement, along an arbitrary trajectory defined by a line drawn on a floor. The line-following behavior was the default robot behavior, utilizing autonomous intelligence and autonomous source of energy.[15][16] This 1988 report written by Stevo Bozinovski, Mihail Sestakov, and Liljana Bozinovska was the first one about a robot control using EEG.[17][18]

In 1990, a report was given on a closed loop, bidirectional adaptive BCI controlling computer buzzer by an anticipatory brain potential, the Contingent Negative Variation (CNV) potential.[19][20] The experiment described how an expectation state of the brain, manifested by CNV, controls in a feedback loop the S2 buzzer in the S1-S2-CNV paradigm. The obtained cognitive wave representing the expectation learning in the brain is named Electroexpectogram (EXG). The CNV brain potential was part of the BCI challenge presented by Vidal in his 1973 paper.

Studies in 2010s suggested the potential ability of neural stimulation to restore functional connectively and associated behaviors through modulation of molecular mechanisms of synaptic efficacy.[21][22] This opened the door for the concept that BCI technologies may be able to restore function in addition to enabling functionality.

Since 2013, DARPA has funded BCI technology through the BRAIN initiative, which has supported work out of the University of Pittsburgh Medical Center,[23] Paradromics,[24] Brown,[25] and Synchron,[26] among others.

Versus neuroprosthetics edit

Neuroprosthetics is an area of neuroscience concerned with neural prostheses, that is, using artificial devices to replace the function of impaired nervous systems and brain-related problems, or of sensory organs or organs itself (bladder, diaphragm, etc.). As of December 2010, cochlear implants had been implanted as neuroprosthetic device in approximately 736,900 people worldwide.[27] There are also several neuroprosthetic devices that aim to restore vision, including retinal implants. The first neuroprosthetic device, however, was the pacemaker.

The terms are sometimes used interchangeably. Neuroprosthetics and BCIs seek to achieve the same aims, such as restoring sight, hearing, movement, ability to communicate, and even cognitive function.[1] Both use similar experimental methods and surgical techniques.

Animal BCI research edit

Several laboratories have managed to record signals from monkey and rat cerebral cortices to operate BCIs to produce movement. Monkeys have navigated computer cursors on screen and commanded robotic arms to perform simple tasks simply by thinking about the task and seeing the visual feedback, but without any motor output.[28] In May 2008 photographs that showed a monkey at the University of Pittsburgh Medical Center operating a robotic arm by thinking were published in a number of well-known science journals and magazines.[29] Sheep too have been used to evaluate BCI technology including Synchron's Stentrode.

In 2020, Elon Musk's Neuralink was successfully implanted in a pig,[30] announced in a widely viewed webcast. In 2021, Elon Musk announced that he had successfully enabled a monkey to play video games using Neuralink's device.[31]

Early work edit

 
Monkey operating a robotic arm with brain–computer interfacing (Schwartz lab, University of Pittsburgh)

In 1969 the operant conditioning studies of Fetz and colleagues, at the Regional Primate Research Center and Department of Physiology and Biophysics, University of Washington School of Medicine in Seattle, showed for the first time that monkeys could learn to control the deflection of a biofeedback meter arm with neural activity.[32] Similar work in the 1970s established that monkeys could quickly learn to voluntarily control the firing rates of individual and multiple neurons in the primary motor cortex if they were rewarded for generating appropriate patterns of neural activity.[33]

Studies that developed algorithms to reconstruct movements from motor cortex neurons, which control movement, date back to the 1970s. In the 1980s, Apostolos Georgopoulos at Johns Hopkins University found a mathematical relationship between the electrical responses of single motor cortex neurons in rhesus macaque monkeys and the direction in which they moved their arms (based on a cosine function). He also found that dispersed groups of neurons, in different areas of the monkey's brains, collectively controlled motor commands, but was able to record the firings of neurons in only one area at a time, because of the technical limitations imposed by his equipment.[34]

There has been rapid development in BCIs since the mid-1990s.[35] Several groups have been able to capture complex brain motor cortex signals by recording from neural ensembles (groups of neurons) and using these to control external devices.

Prominent research successes edit

Kennedy and Yang Dan edit

Phillip Kennedy (who later founded Neural Signals in 1987) and colleagues built the first intracortical brain–computer interface by implanting neurotrophic-cone electrodes into monkeys.[citation needed]

 
Yang Dan and colleagues' recordings of cat vision using a BCI implanted in the lateral geniculate nucleus (top row: original image; bottom row: recording)

In 1999, researchers led by Yang Dan at the University of California, Berkeley decoded neuronal firings to reproduce images seen by cats. The team used an array of electrodes embedded in the thalamus (which integrates all of the brain's sensory input) of sharp-eyed cats. Researchers targeted 177 brain cells in the thalamus lateral geniculate nucleus area, which decodes signals from the retina. The cats were shown eight short movies, and their neuron firings were recorded. Using mathematical filters, the researchers decoded the signals to generate movies of what the cats saw and were able to reconstruct recognizable scenes and moving objects.[36] Similar results in humans have since been achieved by researchers in Japan (see below).

Nicolelis edit

Miguel Nicolelis, a professor at Duke University, in Durham, North Carolina, has been a prominent proponent of using multiple electrodes spread over a greater area of the brain to obtain neuronal signals to drive a BCI.

After conducting initial studies in rats during the 1990s, Nicolelis and his colleagues developed BCIs that decoded brain activity in owl monkeys and used the devices to reproduce monkey movements in robotic arms. Monkeys have advanced reaching and grasping abilities and good hand manipulation skills, making them ideal test subjects for this kind of work.

By 2000, the group succeeded in building a BCI that reproduced owl monkey movements while the monkey operated a joystick or reached for food.[37] The BCI operated in real time and could also control a separate robot remotely over Internet Protocol. But the monkeys could not see the arm moving and did not receive any feedback, a so-called open-loop BCI.

 
Diagram of the BCI developed by Miguel Nicolelis and colleagues for use on rhesus monkeys

Later experiments by Nicolelis using rhesus monkeys succeeded in closing the feedback loop and reproduced monkey reaching and grasping movements in a robot arm. With their deeply cleft and furrowed brains, rhesus monkeys are considered to be better models for human neurophysiology than owl monkeys. The monkeys were trained to reach and grasp objects on a computer screen by manipulating a joystick while corresponding movements by a robot arm were hidden.[38][39] The monkeys were later shown the robot directly and learned to control it by viewing its movements. The BCI used velocity predictions to control reaching movements and simultaneously predicted handgripping force. In 2011 O'Doherty and colleagues showed a BCI with sensory feedback with rhesus monkeys. The monkey was brain controlling the position of an avatar arm while receiving sensory feedback through direct intracortical stimulation (ICMS) in the arm representation area of the sensory cortex.[40]

Donoghue, Schwartz and Andersen edit

 
BCIs are a core focus of the Carney Institute for Brain Science at Brown University.

Other laboratories which have developed BCIs and algorithms that decode neuron signals include the Carney Institute for Brain Science at Brown University and the labs of Andrew Schwartz at the University of Pittsburgh and Richard Andersen at Caltech. These researchers have been able to produce working BCIs, even using recorded signals from far fewer neurons than did Nicolelis (15–30 neurons versus 50–200 neurons).

John Donoghue's lab at the Carney Institute reported training rhesus monkeys to use a BCI to track visual targets on a computer screen (closed-loop BCI) with or without assistance of a joystick.[41] Schwartz's group created a BCI for three-dimensional tracking in virtual reality and also reproduced BCI control in a robotic arm.[42] The same group also created headlines when they demonstrated that a monkey could feed itself pieces of fruit and marshmallows using a robotic arm controlled by the animal's own brain signals.[43][44][45]

Andersen's group used recordings of premovement activity from the posterior parietal cortex in their BCI, including signals created when experimental animals anticipated receiving a reward.[46]

Other research edit

In addition to predicting kinematic and kinetic parameters of limb movements, BCIs that predict electromyographic or electrical activity of the muscles of primates are being developed.[47] Such BCIs could be used to restore mobility in paralyzed limbs by electrically stimulating muscles.

Miguel Nicolelis and colleagues demonstrated that the activity of large neural ensembles can predict arm position. This work made possible creation of BCIs that read arm movement intentions and translate them into movements of artificial actuators. Carmena and colleagues[38] programmed the neural coding in a BCI that allowed a monkey to control reaching and grasping movements by a robotic arm. Lebedev and colleagues[39] argued that brain networks reorganize to create a new representation of the robotic appendage in addition to the representation of the animal's own limbs.

In 2019, researchers from UCSF published a study where they demonstrated a BCI that had the potential to help patients with speech impairment caused by neurological disorders. Their BCI used high-density electrocorticography to tap neural activity from a patient's brain and used deep learning methods to synthesize speech.[48][49] In 2021, researchers from the same group published a study showing the potential of a BCI to decode words and sentences in an anarthric patient who had been unable to speak for over 15 years.[50][51]

The biggest impediment to BCI technology at present is the lack of a sensor modality that provides safe, accurate and robust access to brain signals. It is conceivable or even likely, however, that such a sensor will be developed within the next twenty years. The use of such a sensor should greatly expand the range of communication functions that can be provided using a BCI.

Development and implementation of a BCI system is complex and time-consuming. In response to this problem, Gerwin Schalk has been developing a general-purpose system for BCI research, called BCI2000. BCI2000 has been in development since 2000 in a project led by the Brain–Computer Interface R&D Program at the Wadsworth Center of the New York State Department of Health in Albany, New York, United States.[52]

A new 'wireless' approach uses light-gated ion channels such as Channelrhodopsin to control the activity of genetically defined subsets of neurons in vivo. In the context of a simple learning task, illumination of transfected cells in the somatosensory cortex influenced the decision-making process of freely moving mice.[53]

The use of BMIs has also led to a deeper understanding of neural networks and the central nervous system. Research has shown that despite the inclination of neuroscientists to believe that neurons have the most effect when working together, single neurons can be conditioned through the use of BMIs to fire at a pattern that allows primates to control motor outputs. The use of BMIs has led to development of the single neuron insufficiency principle which states that even with a well tuned firing rate single neurons can only carry a narrow amount of information and therefore the highest level of accuracy is achieved by recording firings of the collective ensemble. Other principles discovered with the use of BMIs include the neuronal multitasking principle, the neuronal mass principle, the neural degeneracy principle, and the plasticity principle.[54]

BCIs are also proposed to be applied by users without disabilities. A user-centered categorization of BCI approaches by Thorsten O. Zander and Christian Kothe introduces the term passive BCI.[55] Next to active and reactive BCI that are used for directed control, passive BCIs allow for assessing and interpreting changes in the user state during Human-Computer Interaction (HCI). In a secondary, implicit control loop the computer system adapts to its user improving its usability in general.

Beyond BCI systems that decode neural activity to drive external effectors, BCI systems may be used to encode signals from the periphery. These sensory BCI devices enable real-time, behaviorally-relevant decisions based upon closed-loop neural stimulation.[56]

The BCI Award edit

The Annual BCI Research Award is awarded in recognition of outstanding and innovative research in the field of Brain-Computer Interfaces. Each year, a renowned research laboratory is asked to judge the submitted projects. The jury consists of world-leading BCI experts recruited by the awarding laboratory. The jury selects twelve nominees, then chooses a first, second, and third-place winner, who receive awards of $3,000, $2,000, and $1,000, respectively.

Human BCI research edit

Invasive BCIs edit

Invasive BCI requires surgery to implant electrodes under the scalp for communicating brain signals. The main advantage is to provide more accurate reading; however, its downside includes side effects from the surgery including scar tissue, which can make brain signals weaker. In addition, according to the research of Abdulkader et al., (2015),[57] the body may not accept the implanted electrodes and this can cause a medical condition.

Vision edit

Invasive BCI research has targeted repairing damaged sight and providing new functionality for people with paralysis. Invasive BCIs are implanted directly into the grey matter of the brain during neurosurgery. Because they lie in the grey matter, invasive devices produce the highest quality signals of BCI devices but are prone to scar-tissue build-up, causing the signal to become weaker, or even non-existent, as the body reacts to a foreign object in the brain.[58]

In vision science, direct brain implants have been used to treat non-congenital (acquired) blindness. One of the first scientists to produce a working brain interface to restore sight was private researcher William Dobelle.

Dobelle's first prototype was implanted into "Jerry", a man blinded in adulthood, in 1978. A single-array BCI containing 68 electrodes was implanted onto Jerry's visual cortex and succeeded in producing phosphenes, the sensation of seeing light. The system included cameras mounted on glasses to send signals to the implant. Initially, the implant allowed Jerry to see shades of grey in a limited field of vision at a low frame-rate. This also required him to be hooked up to a mainframe computer, but shrinking electronics and faster computers made his artificial eye more portable and now enable him to perform simple tasks unassisted.[59]

 
Dummy unit illustrating the design of a BrainGate interface

In 2002, Jens Naumann, also blinded in adulthood, became the first in a series of 16 paying patients to receive Dobelle's second generation implant, marking one of the earliest commercial uses of BCIs. The second generation device used a more sophisticated implant enabling better mapping of phosphenes into coherent vision. Phosphenes are spread out across the visual field in what researchers call "the starry-night effect". Immediately after his implant, Jens was able to use his imperfectly restored vision to drive an automobile slowly around the parking area of the research institute.[60] Unfortunately, Dobelle died in 2004[61] before his processes and developments were documented. Subsequently, when Mr. Naumann and the other patients in the program began having problems with their vision, there was no relief and they eventually lost their "sight" again. Naumann wrote about his experience with Dobelle's work in Search for Paradise: A Patient's Account of the Artificial Vision Experiment[62] and has returned to his farm in Southeast Ontario, Canada, to resume his normal activities.[63]

Movement edit

BCIs focusing on motor neuroprosthetics aim to either restore movement in individuals with paralysis or provide devices to assist them, such as interfaces with computers or robot arms.

Researchers at Emory University in Atlanta, led by Philip Kennedy and Roy Bakay, were first to install a brain implant in a human that produced signals of high enough quality to simulate movement. Their patient, Johnny Ray (1944–2002), developed 'locked-in syndrome' after having a brain-stem stroke in 1997. Ray's implant was installed in 1998 and he lived long enough to start working with the implant, eventually learning to control a computer cursor; he died in 2002 of a brain aneurysm.[64]

Tetraplegic Matt Nagle became the first person to control an artificial hand using a BCI in 2005 as part of the first nine-month human trial of Cyberkinetics's BrainGate chip-implant. Implanted in Nagle's right precentral gyrus (area of the motor cortex for arm movement), the 96-electrode BrainGate implant allowed Nagle to control a robotic arm by thinking about moving his hand as well as a computer cursor, lights and TV.[65] One year later, professor Jonathan Wolpaw received the prize of the Altran Foundation for Innovation to develop a Brain Computer Interface with electrodes located on the surface of the skull, instead of directly in the brain.[66]

More recently, research teams led by the BrainGate group at Brown University and a group led by University of Pittsburgh Medical Center, both in collaborations with the United States Department of Veterans Affairs, have demonstrated further success in direct control of robotic prosthetic limbs with many degrees of freedom using direct connections to arrays of neurons in the motor cortex of patients with tetraplegia.[67][68]

Communication edit

In May 2021, a Stanford University team reported a successful proof-of-concept test that enabled a quadraplegic participant to input English sentences at about 86 characters per minute and 18 words per minute. The participant imagined moving his hand to write letters, and the system performed handwriting recognition on electrical signals detected in the motor cortex, utilizing hidden Markov models and recurrent neural networks for decoding.[69][70]

A report published in July 2021 reported a paralyzed patient was able to communicate 15 words per minute using a brain implant that analyzed motor neurons that previously controlled the vocal tract.[71][50]

In a recent review article, researchers raised an open question of whether human information transfer rates can surpass that of language with BCIs. Given that recent language research has demonstrated that human information transfer rates are relatively constant across many languages, there may exist a limit at the level of information processing in the brain. On the contrary, this "upper limit" of information transfer rate may be intrinsic to language itself, as a modality for information transfer.[72]

In 2023 two studies used BCIs with recurrent neural network to decode speech at a record rate of 62 words per minute and 78 words per minute.[73][74][75]

Technical challenges edit

There exist a number of technical challenges to recording brain activity with invasive BCIs. Advances in CMOS technology are pushing and enabling integrated, invasive BCI designs with smaller size, lower power requirements, and higher signal acquisition capabilities.[76] Invasive BCIs involve electrodes that penetrate brain tissue in an attempt to record action potential signals (also known as spikes) from individual, or small groups of, neurons near the electrode. The interface between a recording electrode and the electrolytic solution surrounding neurons has been modelled using the Hodgkin-Huxley model.[77][78]

Electronic limitations to invasive BCIs have been an active area of research in recent decades. While intracellular recordings of neurons reveal action potential voltages on the scale of hundreds of millivolts, chronic invasive BCIs rely on recording extracellular voltages which typically are three orders of magnitude smaller, existing at hundreds of microvolts.[79] Further adding to the challenge of detecting signals on the scale of microvolts is the fact that the electrode-tissue interface has a high capacitance at small voltages. Due to the nature of these small signals, for BCI systems that incorporate functionality onto an integrated circuit, each electrode requires its own amplifier and ADC, which convert analog extracellular voltages into digital signals.[79] Because a typical neuron action potential lasts for one millisecond, BCIs measuring spikes must have sampling rates ranging from 300 Hz to 5 kHz. Yet another concern is that invasive BCIs must be low-power, so as to dissipate less heat to surrounding tissue; at the most basic level more power is traditionally needed to optimize signal-to-noise ratio.[78] Optimal battery design is an active area of research in BCIs.[80]

 
Illustration of invasive and partially invasive BCIs: electrocorticography (ECoG), endovascular, and intracortical microelectrode.

Challenges existing in the area of material science are central to the design of invasive BCIs. Variations in signal quality over time have been commonly observed with implantable microelectrodes.[81][82] Optimal material and mechanical characteristics for long term signal stability in invasive BCIs has been an active area of research.[83] It has been proposed that the formation of glial scarring, secondary to damage at the electrode-tissue interface, is likely responsible for electrode failure and reduced recording performance.[84] Research has suggested that blood-brain barrier leakage, either at the time of insertion or over time, may be responsible for the inflammatory and glial reaction to chronic microelectrodes implanted in the brain.[84][85] As a result, flexible[86][87][88] and tissue-like designs[89][90] have been researched and developed to minimize foreign-body reaction by means of matching the Young's modulus of the electrode closer to that of brain tissue.[89]

Partially invasive BCIs edit

Partially invasive BCI devices are implanted inside the skull but rest outside the brain rather than within the grey matter. They produce better resolution signals than non-invasive BCIs where the bone tissue of the cranium deflects and deforms signals and have a lower risk of forming scar-tissue in the brain than fully invasive BCIs. There has been preclinical demonstration of intracortical BCIs from the stroke perilesional cortex.[91]

Endovascular edit

A systematic review published in 2020 detailed multiple studies, both clinical and non-clinical, dating back decades investigating the feasibility of endovascular BCIs.[92]

In recent years, the biggest advance in partially invasive BCIs has emerged in the area of interventional neurology.[2] In 2010, researchers affiliated with University of Melbourne had begun developing a BCI that could be inserted via the vascular system. The Australian neurologist Thomas Oxley (Mount Sinai Hospital) conceived the idea for this BCI, called Stentrode, which has received funding from DARPA. Preclinical studies evaluated the technology in sheep.

The Stentrode, a monolithic stent electrode array, is designed to be delivered via an intravenous catheter under image-guidance to the superior sagittal sinus, in the region which lies adjacent to motor cortex.[93] This proximity to motor cortex underlies the Stentrode's ability to measure neural activity. The procedure is most similar to how venous sinus stents are placed for the treatment of idiopathic intracranial hypertension.[94] The Stentrode communicates neural activity to a battery-less telemetry unit implanted in the chest, which communicates wirelessly with an external telemetry unit capable of power and data transfer. While an endovascular BCI benefits from avoiding craniotomy for insertion, risks such as clotting and venous thrombosis are possible.

First-in-human trials with the Stentrode are underway.[93] In November 2020, two participants with amyotrophic lateral sclerosis were able to wirelessly control an operating system to text, email, shop, and bank using direct thought through the Stentrode brain-computer interface,[95] marking the first time a brain-computer interface was implanted via the patient's blood vessels, eliminating the need for open brain surgery. In January 2023, researchers reported no serious adverse events during the first year for all four patients who could use it to operate computers.[96][97]

ECoG edit

Electrocorticography (ECoG) measures the electrical activity of the brain taken from beneath the skull in a similar way to non-invasive electroencephalography, but the electrodes are embedded in a thin plastic pad that is placed above the cortex, beneath the dura mater.[98] ECoG technologies were first trialled in humans in 2004 by Eric Leuthardt and Daniel Moran from Washington University in St. Louis. In a later trial, the researchers enabled a teenage boy to play Space Invaders using his ECoG implant.[99] This research indicates that control is rapid, requires minimal training, and may be an ideal tradeoff with regards to signal fidelity and level of invasiveness.[note 1]

Signals can be either subdural or epidural, but are not taken from within the brain parenchyma itself. It has not been studied extensively until recently due to the limited access of subjects. Currently, the only manner to acquire the signal for study is through the use of patients requiring invasive monitoring for localization and resection of an epileptogenic focus.

ECoG is a very promising intermediate BCI modality because it has higher spatial resolution, better signal-to-noise ratio, wider frequency range, and less training requirements than scalp-recorded EEG, and at the same time has lower technical difficulty, lower clinical risk, and may have superior long-term stability than intracortical single-neuron recording.[101] This feature profile and recent evidence of the high level of control with minimal training requirements shows potential for real world application for people with motor disabilities.[102][103] Light reactive imaging BCI devices are still in the realm of theory.

Recent work published by Edward Chang and Joseph Makin from UCSF revealed that ECoG signals could be used to decode speech from epilepsy patients implanted with high-density ECoG arrays over the peri-Sylvian cortices.[104][105] Their study achieved word error rates of 3% (a marked improvement from prior publications) utilizing an encoder-decoder neural network, which translated ECoG data into one of fifty sentences composed of 250 unique words.

Non-invasive BCIs edit

There have also been experiments in humans using non-invasive neuroimaging technologies as interfaces. The substantial majority of published BCI work involves noninvasive EEG-based BCIs. Noninvasive EEG-based technologies and interfaces have been used for a much broader variety of applications. Although EEG-based interfaces are easy to wear and do not require surgery, they have relatively poor spatial resolution and cannot effectively use higher-frequency signals because the skull dampens signals, dispersing and blurring the electromagnetic waves created by the neurons. EEG-based interfaces also require some time and effort prior to each usage session, whereas non-EEG-based ones, as well as invasive ones require no prior-usage training. Overall, the best BCI for each user depends on numerous factors.

Functional near-infrared spectroscopy edit

In 2014 and 2017, a BCI using functional near-infrared spectroscopy for "locked-in" patients with amyotrophic lateral sclerosis (ALS) was able to restore some basic ability of the patients to communicate with other people.[106][107]

Electroencephalography (EEG)-based brain-computer interfaces edit

 
Recordings of brainwaves produced by an electroencephalogram

After the BCI challenge was stated by Vidal in 1973, the initial reports on non-invasive approach included control of a cursor in 2D using VEP (Vidal 1977), control of a buzzer using CNV (Bozinovska et al. 1988, 1990), control of a physical object, a robot, using a brain rhythm (alpha) (Bozinovski et al. 1988), control of a text written on a screen using P300 (Farwell and Donchin, 1988).[13]

In the early days of BCI research, another substantial barrier to using electroencephalography (EEG) as a brain–computer interface was the extensive training required before users can work the technology. For example, in experiments beginning in the mid-1990s, Niels Birbaumer at the University of Tübingen in Germany trained severely paralysed people to self-regulate the slow cortical potentials in their EEG to such an extent that these signals could be used as a binary signal to control a computer cursor.[108] (Birbaumer had earlier trained epileptics to prevent impending fits by controlling this low voltage wave.) The experiment saw ten patients trained to move a computer cursor by controlling their brainwaves. The process was slow, requiring more than an hour for patients to write 100 characters with the cursor, while training often took many months. However, the slow cortical potential approach to BCIs has not been used in several years, since other approaches require little or no training, are faster and more accurate, and work for a greater proportion of users.

Another research parameter is the type of oscillatory activity that is measured. Gert Pfurtscheller founded the BCI Lab 1991 and fed his research results on motor imagery in the first online BCI based on oscillatory features and classifiers. Together with Birbaumer and Jonathan Wolpaw at New York State University they focused on developing technology that would allow users to choose the brain signals they found easiest to operate a BCI, including mu and beta rhythms.

A further parameter is the method of feedback used and this is shown in studies of P300 signals. Patterns of P300 waves are generated involuntarily (stimulus-feedback) when people see something they recognize and may allow BCIs to decode categories of thoughts without training patients first. By contrast, the biofeedback methods described above require learning to control brainwaves so the resulting brain activity can be detected.

In 2005 it was reported research on EEG emulation of digital control circuits for BCI, with example of a CNV flip-flop.[109] In 2009 it was reported noninvasive EEG control of a robotic arm using a CNV flip-flop.[110] In 2011 it was reported control of two robotic arms solving Tower of Hanoi task with three disks using a CNV flip-flop.[111] In 2015 it was described EEG-emulation of a Schmitt trigger, flip-flop, demultiplexer, and modem.[112]

While an EEG based brain-computer interface has been pursued extensively by a number of research labs, recent advancements made by Bin He and his team at the University of Minnesota suggest the potential of an EEG based brain-computer interface to accomplish tasks close to invasive brain-computer interface. Using advanced functional neuroimaging including BOLD functional MRI and EEG source imaging, Bin He and co-workers identified the co-variation and co-localization of electrophysiological and hemodynamic signals induced by motor imagination.[113] Refined by a neuroimaging approach and by a training protocol, Bin He and co-workers demonstrated the ability of a non-invasive EEG based brain-computer interface to control the flight of a virtual helicopter in 3-dimensional space, based upon motor imagination.[114] In June 2013 it was announced that Bin He had developed the technique to enable a remote-control helicopter to be guided through an obstacle course.[115]

In addition to a brain-computer interface based on brain waves, as recorded from scalp EEG electrodes, Bin He and co-workers explored a virtual EEG signal-based brain-computer interface by first solving the EEG inverse problem and then used the resulting virtual EEG for brain-computer interface tasks. Well-controlled studies suggested the merits of such a source analysis based brain-computer interface.[116]

A 2014 study found that severely motor-impaired patients could communicate faster and more reliably with non-invasive EEG BCI, than with any muscle-based communication channel.[117]

A 2016 study found that the Emotiv EPOC device may be more suitable for control tasks using the attention/meditation level or eye blinking than the Neurosky MindWave device.[118]

A 2019 study found that the application of evolutionary algorithms could improve EEG mental state classification with a non-invasive Muse device, enabling high quality classification of data acquired by a cheap consumer-grade EEG sensing device.[119]

In a 2021 systematic review of randomized controlled trials using BCI for upper-limb rehabilitation after stroke, EEG-based BCI was found to have significant efficacy in improving upper-limb motor function compared to control therapies. More specifically, BCI studies that utilized band power features, motor imagery, and functional electrical stimulation in their design were found to be more efficacious than alternatives.[120] Another 2021 systematic review focused on robotic-assisted EEG-based BCI for hand rehabilitation after stroke. Improvement in motor assessment scores was observed in three of eleven studies included in the systematic review.[121]

Dry active electrode arrays edit

In the early 1990s Babak Taheri, at University of California, Davis demonstrated the first single and also multichannel dry active electrode arrays using micro-machining. The single channel dry EEG electrode construction and results were published in 1994.[122] The arrayed electrode was also demonstrated to perform well compared to silver/silver chloride electrodes. The device consisted of four sites of sensors with integrated electronics to reduce noise by impedance matching. The advantages of such electrodes are: (1) no electrolyte used, (2) no skin preparation, (3) significantly reduced sensor size, and (4) compatibility with EEG monitoring systems. The active electrode array is an integrated system made of an array of capacitive sensors with local integrated circuitry housed in a package with batteries to power the circuitry. This level of integration was required to achieve the functional performance obtained by the electrode.

The electrode was tested on an electrical test bench and on human subjects in four modalities of EEG activity, namely: (1) spontaneous EEG, (2) sensory event-related potentials, (3) brain stem potentials, and (4) cognitive event-related potentials. The performance of the dry electrode compared favorably with that of the standard wet electrodes in terms of skin preparation, no gel requirements (dry), and higher signal-to-noise ratio.[123]

In 1999 researchers at Case Western Reserve University, in Cleveland, Ohio, led by Hunter Peckham, used 64-electrode EEG skullcap to return limited hand movements to quadriplegic Jim Jatich. As Jatich concentrated on simple but opposite concepts like up and down, his beta-rhythm EEG output was analysed using software to identify patterns in the noise. A basic pattern was identified and used to control a switch: Above average activity was set to on, below average off. As well as enabling Jatich to control a computer cursor the signals were also used to drive the nerve controllers embedded in his hands, restoring some movement.[124]

SSVEP mobile EEG BCIs edit

In 2009, the NCTU Brain-Computer-Interface-headband was reported. The researchers who developed this BCI-headband also engineered silicon-based microelectro-mechanical system (MEMS) dry electrodes designed for application in non-hairy sites of the body. These electrodes were secured to the DAQ board in the headband with snap-on electrode holders. The signal processing module measured alpha activity and the Bluetooth enabled phone assessed the patients' alertness and capacity for cognitive performance. When the subject became drowsy, the phone sent arousing feedback to the operator to rouse them. This research was supported by the National Science Council, Taiwan, R.O.C., NSC, National Chiao-Tung University, Taiwan's Ministry of Education, and the U.S. Army Research Laboratory.[125]

In 2011, researchers reported a cellular based BCI with the capability of taking EEG data and converting it into a command to cause the phone to ring. This research was supported in part by Abraxis Bioscience LLP, the U.S. Army Research Laboratory, and the Army Research Office. The developed technology was a wearable system composed of a four channel bio-signal acquisition/amplification module, a wireless transmission module, and a Bluetooth enabled cell phone.  The electrodes were placed so that they pick up steady state visual evoked potentials (SSVEPs).[126] SSVEPs are electrical responses to flickering visual stimuli with repetition rates over 6 Hz[126] that are best found in the parietal and occipital scalp regions of the visual cortex.[127][128][129] It was reported that with this BCI setup, all study participants were able to initiate the phone call with minimal practice in natural environments.[130]

The scientists claim that their studies using a single channel fast Fourier transform (FFT) and multiple channel system canonical correlation analysis (CCA) algorithm support the capacity of mobile BCIs.[126][131] The CCA algorithm has been applied in other experiments investigating BCIs with claimed high performance in accuracy as well as speed.[132] While the cellular based BCI technology was developed to initiate a phone call from SSVEPs, the researchers said that it can be translated for other applications, such as picking up sensorimotor mu/beta rhythms to function as a motor-imagery based BCI.[126]

In 2013, comparative tests were performed on android cell phone, tablet, and computer based BCIs, analyzing the power spectrum density of resultant EEG SSVEPs. The stated goals of this study, which involved scientists supported in part by the U.S. Army Research Laboratory, were to "increase the practicability, portability, and ubiquity of an SSVEP-based BCI, for daily use". Citation It was reported that the stimulation frequency on all mediums was accurate, although the cell phone's signal demonstrated some instability. The amplitudes of the SSVEPs for the laptop and tablet were also reported to be larger than those of the cell phone. These two qualitative characterizations were suggested as indicators of the feasibility of using a mobile stimulus BCI.[131]

Limitations edit

In 2011, researchers stated that continued work should address ease of use, performance robustness, reducing hardware and software costs.[126]

One of the difficulties with EEG readings is the large susceptibility to motion artifacts.[133] In most of the previously described research projects, the participants were asked to sit still, reducing head and eye movements as much as possible, and measurements were taken in a laboratory setting. However, since the emphasized application of these initiatives had been in creating a mobile device for daily use,[131] the technology had to be tested in motion.

In 2013, researchers tested mobile EEG-based BCI technology, measuring SSVEPs from participants as they walked on a treadmill at varying speeds. This research was supported by the Office of Naval Research, Army Research Office, and the U.S. Army Research Laboratory. Stated results were that as speed increased the SSVEP detectability using CCA decreased. As independent component analysis (ICA) had been shown to be efficient in separating EEG signals from noise,[134] the scientists applied ICA to CCA extracted EEG data. They stated that the CCA data with and without ICA processing were similar. Thus, they concluded that CCA independently demonstrated a robustness to motion artifacts that indicates it may be a beneficial algorithm to apply to BCIs used in real world conditions.[128] One of the major problems in EEG-based BCI applications is the low spatial resolution. Several solutions have been suggested to address this issue since 2019, which include: EEG source connectivity based on graph theory, EEG pattern recognition based on Topomap, EEG-fMRI fusion, and so on.

Prosthesis and environment control edit

Non-invasive BCIs have also been applied to enable brain-control of prosthetic upper and lower extremity devices in people with paralysis. For example, Gert Pfurtscheller of Graz University of Technology and colleagues demonstrated a BCI-controlled functional electrical stimulation system to restore upper extremity movements in a person with tetraplegia due to spinal cord injury.[135] Between 2012 and 2013, researchers at the University of California, Irvine demonstrated for the first time that it is possible to use BCI technology to restore brain-controlled walking after spinal cord injury. In their spinal cord injury research study, a person with paraplegia was able to operate a BCI-robotic gait orthosis to regain basic brain-controlled ambulation.[136][137] In 2009 Alex Blainey, an independent researcher based in the UK, successfully used the Emotiv EPOC to control a 5 axis robot arm.[138] He then went on to make several demonstration mind controlled wheelchairs and home automation that could be operated by people with limited or no motor control such as those with paraplegia and cerebral palsy.

Research into military use of BCIs funded by DARPA has been ongoing since the 1970s.[3][4] The current focus of research is user-to-user communication through analysis of neural signals.[139]

MEG and MRI edit

 
ATR Labs' reconstruction of human vision using fMRI (top row: original image; bottom row: reconstruction from mean of combined readings)

Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) have both been used successfully as non-invasive BCIs.[140] In a widely reported experiment, fMRI allowed two users being scanned to play Pong in real-time by altering their haemodynamic response or brain blood flow through biofeedback techniques.[141]

fMRI measurements of haemodynamic responses in real time have also been used to control robot arms with a seven-second delay between thought and movement.[142]

In 2008 research developed in the Advanced Telecommunications Research (ATR) Computational Neuroscience Laboratories in Kyoto, Japan, allowed the scientists to reconstruct images directly from the brain and display them on a computer in black and white at a resolution of 10x10 pixels. The article announcing these achievements was the cover story of the journal Neuron of 10 December 2008.[143]

In 2011 researchers from UC Berkeley published[144] a study reporting second-by-second reconstruction of videos watched by the study's subjects, from fMRI data. This was achieved by creating a statistical model relating visual patterns in videos shown to the subjects, to the brain activity caused by watching the videos. This model was then used to look up the 100 one-second video segments, in a database of 18 million seconds of random YouTube videos, whose visual patterns most closely matched the brain activity recorded when subjects watched a new video. These 100 one-second video extracts were then combined into a mashed-up image that resembled the video being watched.[145][146][147]

BCI control strategies in neurogaming edit

Motor imagery edit

Motor imagery involves the imagination of the movement of various body parts resulting in sensorimotor cortex activation, which modulates sensorimotor oscillations in the EEG. This can be detected by the BCI to infer a user's intent. Motor imagery typically requires a number of sessions of training before acceptable control of the BCI is acquired. These training sessions may take a number of hours over several days before users can consistently employ the technique with acceptable levels of precision. Regardless of the duration of the training session, users are unable to master the control scheme. This results in very slow pace of the gameplay.[148] Advanced machine learning methods were recently developed to compute a subject-specific model for detecting the performance of motor imagery. The top performing algorithm from BCI Competition IV[149] dataset 2 for motor imagery is the Filter Bank Common Spatial Pattern, developed by Ang et al. from A*STAR, Singapore.[150]

Bio/neurofeedback for passive BCI designs edit

Biofeedback is used to monitor a subject's mental relaxation. In some cases, biofeedback does not monitor electroencephalography (EEG), but instead bodily parameters such as electromyography (EMG), galvanic skin resistance (GSR), and heart rate variability (HRV). Many biofeedback systems are used to treat certain disorders such as attention deficit hyperactivity disorder (ADHD), sleep problems in children, teeth grinding, and chronic pain. EEG biofeedback systems typically monitor four different bands (theta: 4–7 Hz, alpha:8–12 Hz, SMR: 12–15 Hz, beta: 15–18 Hz) and challenge the subject to control them. Passive BCI[55] involves using BCI to enrich human–machine interaction with implicit information on the actual user's state, for example, simulations to detect when users intend to push brakes during an emergency car stopping procedure. Game developers using passive BCIs need to acknowledge that through repetition of game levels the user's cognitive state will change or adapt. Within the first play of a level, the user will react to things differently from during the second play: for example, the user will be less surprised at an event in the game if they are expecting it.[148]

Visual evoked potential (VEP) edit

A VEP is an electrical potential recorded after a subject is presented with a type of visual stimuli. There are several types of VEPs.

Steady-state visually evoked potentials (SSVEPs) use potentials generated by exciting the retina, using visual stimuli modulated at certain frequencies. SSVEP's stimuli are often formed from alternating checkerboard patterns and at times simply use flashing images. The frequency of the phase reversal of the stimulus used can be clearly distinguished in the spectrum of an EEG; this makes detection of SSVEP stimuli relatively easy. SSVEP has proved to be successful within many BCI systems. This is due to several factors, the signal elicited is measurable in as large a population as the transient VEP and blink movement and electrocardiographic artefacts do not affect the frequencies monitored. In addition, the SSVEP signal is exceptionally robust; the topographic organization of the primary visual cortex is such that a broader area obtains afferents from the central or fovial region of the visual field. SSVEP does have several problems however. As SSVEPs use flashing stimuli to infer a user's intent, the user must gaze at one of the flashing or iterating symbols in order to interact with the system. It is, therefore, likely that the symbols could become irritating and uncomfortable to use during longer play sessions, which can often last more than an hour which may not be an ideal gameplay.

Another type of VEP used with applications is the P300 potential. The P300 event-related potential is a positive peak in the EEG that occurs at roughly 300 ms after the appearance of a target stimulus (a stimulus for which the user is waiting or seeking) or oddball stimuli. The P300 amplitude decreases as the target stimuli and the ignored stimuli grow more similar.The P300 is thought to be related to a higher level attention process or an orienting response using P300 as a control scheme has the advantage of the participant only having to attend limited training sessions. The first application to use the P300 model was the P300 matrix. Within this system, a subject would choose a letter from a grid of 6 by 6 letters and numbers. The rows and columns of the grid flashed sequentially and every time the selected "choice letter" was illuminated the user's P300 was (potentially) elicited. However, the communication process, at approximately 17 characters per minute, was quite slow. The P300 is a BCI that offers a discrete selection rather than a continuous control mechanism. The advantage of P300 use within games is that the player does not have to teach himself/herself how to use a completely new control system and so only has to undertake short training instances, to learn the gameplay mechanics and basic use of the BCI paradigm.[148]

Non-brain-based human–computer interface (physiological computing) edit

Human-computer interaction can benefit from other recording modalities, such as EOG and eye-tracking. However, these modalities do not record brain activity and therefore do not fall within the exact scope of BCIs, but rather can be grouped under the wider field of physiological computing.[151]

Electro-oculography (EOG) edit

In 1989, a report was given on control of a mobile robot by eye movement using electrooculography (EOG) signals. A mobile robot was driven from a start to a goal point using five EOG commands, interpreted as forward, backward, left, right, and stop.[152]

Pupil-size oscillation edit

A 2016 article[153] described an entirely new communication device and non-EEG-based human-computer interface, which requires no visual fixation, or ability to move the eyes at all. The interface is based on covert interest; directing one's attention to a chosen letter on a virtual keyboard, without the need to move one's eyes to look directly at the letter. Each letter has its own (background) circle which micro-oscillates in brightness differently from all of the other letters. The letter selection is based on best fit between unintentional pupil-size oscillation and the background circle's brightness oscillation pattern. Accuracy is additionally improved by the user's mental rehearsing of the words 'bright' and 'dark' in synchrony with the brightness transitions of the letter's circle.

Synthetic telepathy edit

In a $6.3 million US Army initiative to invent devices for telepathic communication, Gerwin Schalk, underwritten in a $2.2 million grant, found the use of ECoG signals can discriminate the vowels and consonants embedded in spoken and imagined words, shedding light on the distinct mechanisms associated with production of vowels and consonants, and could provide the basis for brain-based communication using imagined speech.[103][154]

In 2002 Kevin Warwick had an array of 100 electrodes fired into his nervous system in order to link his nervous system into the Internet to investigate enhancement possibilities. With this in place Warwick successfully carried out a series of experiments. With electrodes also implanted into his wife's nervous system, they conducted the first direct electronic communication experiment between the nervous systems of two humans.[155][156][157][158]

Another group of researchers was able to achieve conscious brain-to-brain communication between two people separated by a distance using non-invasive technology that was in contact with the scalp of the participants. The words were encoded by binary streams using the sequences of 0's and 1's by the imaginary motor input of the person "emitting" the information. As the result of this experiment, pseudo-random bits of the information carried encoded words "hola" ("hi" in Spanish) and "ciao" ("goodbye" in Italian) and were transmitted mind-to-mind between humans separated by a distance, with blocked motor and sensory systems, which has low to no probability of this happening by chance.[159]

In the 1960s a researcher was successful after some training in using EEG to create Morse code using their brain alpha waves. Research funded by the US army is being conducted with the goal of allowing users to compose a message in their head, then transfer that message with just the power of thought to a particular individual.[160] On 27 February 2013 the group with Miguel Nicolelis at Duke University and IINN-ELS successfully connected the brains of two rats with electronic interfaces that allowed them to directly share information, in the first-ever direct brain-to-brain interface.[161][162][163]

Cell-culture BCIs edit

Researchers have built devices to interface with neural cells and entire neural networks in cultures outside animals. As well as furthering research on animal implantable devices, experiments on cultured neural tissue have focused on building problem-solving networks, constructing basic computers and manipulating robotic devices. Research into techniques for stimulating and recording from individual neurons grown on semiconductor chips is sometimes referred to as neuroelectronics or neurochips.[164]

 
The world's first neurochip, developed by Caltech researchers Jerome Pine and Michael Maher

Development of the first working neurochip was claimed by a Caltech team led by Jerome Pine and Michael Maher in 1997.[165] The Caltech chip had room for 16 neurons.

In 2003 a team led by Theodore Berger, at the University of Southern California, started work on a neurochip designed to function as an artificial or prosthetic hippocampus. The neurochip was designed to function in rat brains and was intended as a prototype for the eventual development of higher-brain prosthesis. The hippocampus was chosen because it is thought to be the most ordered and structured part of the brain and is the most studied area. Its function is to encode experiences for storage as long-term memories elsewhere in the brain.[166]

In 2004 Thomas DeMarse at the University of Florida used a culture of 25,000 neurons taken from a rat's brain to fly a F-22 fighter jet aircraft simulator.[167] After collection, the cortical neurons were cultured in a petri dish and rapidly began to reconnect themselves to form a living neural network. The cells were arranged over a grid of 60 electrodes and used to control the pitch and yaw functions of the simulator. The study's focus was on understanding how the human brain performs and learns computational tasks at a cellular level.

Collaborative BCIs edit

The idea of combining/integrating brain signals from multiple individuals was introduced at Humanity+ @Caltech, in December 2010, by a Caltech researcher at JPL, Adrian Stoica, who referred to the concept as multi-brain aggregation.[168][169][170] A provisional patent application was filed on January 19, 2011, with the non-provisional patent following one year later.[171] In May 2011, Yijun Wang and Tzyy-Ping Jung published, "A Collaborative Brain-Computer Interface for Improving Human Performance", and in January 2012 Miguel Eckstein published, "Neural decoding of collective wisdom with multi-brain computing".[172][173] Stoica's first paper on the topic appeared in 2012, after the publication of his patent application.[174] Given the timing of the publications between the patent and papers, Stoica, Wang & Jung, and Eckstein independently pioneered the concept, and are all considered as founders of the field. Later, Stoica would collaborate with University of Essex researchers, Riccardo Poli and Caterina Cinel.[175][176] The work was continued by Poli and Cinel, and their students: Ana Matran-Fernandez, Davide Valeriani, and Saugat Bhattacharyya.[177][178][179]

Ethical considerations edit

As technology continually blurs the line between science fiction and reality, the advent of brain-computer interfaces (BCIs) poses a profound ethical quandary. These neural interfaces, heralded as marvels of innovation, facilitate direct communication between the human brain and external devices. However, the ethical landscape surrounding BCIs is intricate and multifaceted, encompassing concerns of privacy invasion, autonomy, consent, and the potential societal implications of merging human cognition with machine interfaces. Delving into the ethical considerations of BCIs illuminates the intricate balance between technological advancement and safeguarding fundamental human rights and values. Many of the concerns raised can be divided into two groups, user centric issues and legal and social issues.  

Ethical concerns in the user centric sphere tend to revolve around the safety of the user and the effects that this technology will have on them over a period of time. These can include but are not limited to: long-term effects to the user remain largely unknown, obtaining informed consent from people who have difficulty communicating, the consequences of BCI technology for the quality of life of patients and their families, health-related side-effects (e.g. neurofeedback of sensorimotor rhythm training is reported to affect sleep quality), therapeutic applications and their potential misuse, safety risks, non-convertibility of some of the changes made to the brain, lack of access to maintenance, repair and spare parts in case of company bankruptcy,[180] etc.

The legal and social aspect of BCIs is a metaphorical minefield for any entity attempting to make BCIs mainstream. Some of these concerns would be issues of accountability and responsibility: claims that the influence of BCIs overrides free will and control over sensory-motor actions, claims that cognitive intention was inaccurately translated due to a BCI malfunction, personality changes involved caused by deep-brain stimulation, concerns regarding the state of becoming a "cyborg" - having parts of the body that are living and parts that are mechanical, questions about personality: what does it mean to be a human, blurring of the division between human and machine and inability to distinguish between human vs. machine-controlled actions,[181] use of the technology in advanced interrogation techniques by governmental authorities, “brain hacking” or the unauthorized access of someones BCI,[182] selective enhancement and social stratification, mind reading and privacy, tracking and "tagging system", mind control, movement control, and emotion control.[183] In addition many researchers have theorized that BCIs would only worsen social inequalities seen today.

In their current form, most BCIs are far removed from the ethical issues considered above. They are actually similar to corrective therapies in function. Clausen stated in 2009 that "BCIs pose ethical challenges, but these are conceptually similar to those that bioethicists have addressed for other realms of therapy[184]". Moreover, he suggests that bioethics is well-prepared to deal with the issues that arise with BCI technologies. Haselager and colleagues[185] pointed out that expectations of BCI efficacy and value play a great role in ethical analysis and the way BCI scientists should approach media. Furthermore, standard protocols can be implemented to ensure ethically sound informed-consent procedures with locked-in patients.

The case of BCIs today has parallels in medicine, as will its evolution. Similar to how pharmaceutical science began as a balance for impairments and is now used to increase focus and reduce need for sleep, BCIs will likely transform gradually from therapies to enhancements.[186] Efforts are made inside the BCI community to create consensus on ethical guidelines for BCI research, development and dissemination.[187] As innovation continues, ensuring equitable access to BCIs will be crucial, failing which generational inequalities can arise which can adversely affect the right to human flourishing.

Low-cost BCI-based interfaces edit

Recently a number of companies have scaled back medical grade EEG technology to create inexpensive BCIs for research as well as entertainment purposes. For example, toys such as the NeuroSky and Mattel MindFlex have seen some commercial success.

  • In 2006 Sony patented a neural interface system allowing radio waves to affect signals in the neural cortex.[188]
  • In 2007 NeuroSky released the first affordable consumer based EEG along with the game NeuroBoy. This was also the first large scale EEG device to use dry sensor technology.[189]
  • In 2008 OCZ Technology developed a device for use in video games relying primarily on electromyography.[190]
  • In 2008 Final Fantasy developer Square Enix announced that it was partnering with NeuroSky to create a game, Judecca.[191][192]
  • In 2009 Mattel partnered with NeuroSky to release the Mindflex, a game that used an EEG to steer a ball through an obstacle course. It is by far the best selling consumer based EEG to date.[191][193]
  • In 2009 Uncle Milton Industries partnered with NeuroSky to release the Star Wars Force Trainer, a game designed to create the illusion of possessing the Force.[191][194]
  • In 2009 Emotiv released the EPOC, a 14 channel EEG device that can read 4 mental states, 13 conscious states, facial expressions, and head movements. The EPOC is the first commercial BCI to use dry sensor technology, which can be dampened with a saline solution for a better connection.[195]
  • In November 2011 Time magazine selected "necomimi" produced by Neurowear as one of the best inventions of the year. The company announced that it expected to launch a consumer version of the garment, consisting of catlike ears controlled by a brain-wave reader produced by NeuroSky, in spring 2012.[196]
  • In February 2014 They Shall Walk (a nonprofit organization fixed on constructing exoskeletons, dubbed LIFESUITs, for paraplegics and quadriplegics) began a partnership with James W. Shakarji on the development of a wireless BCI.[197]
  • In 2016, a group of hobbyists developed an open-source BCI board that sends neural signals to the audio jack of a smartphone, dropping the cost of entry-level BCI to £20.[198] Basic diagnostic software is available for Android devices, as well as a text entry app for Unity.[199]
  • In 2020, NextMind released a dev kit including an EEG headset with dry electrodes at $399.[200][201] The device can be played with some demo applications or developers can create their own use cases using the provided Software Development Kit.

Future directions edit

 
Brain-computer interface

A consortium consisting of 12 European partners has completed a roadmap to support the European Commission in their funding decisions for the new framework program Horizon 2020. The project, which was funded by the European Commission, started in November 2013 and published a roadmap in April 2015.[202] A 2015 publication led by Clemens Brunner describes some of the analyses and achievements of this project, as well as the emerging Brain-Computer Interface Society.[203] For example, this article reviewed work within this project that further defined BCIs and applications, explored recent trends, discussed ethical issues, and evaluated different directions for new BCIs.

Other recent publications too have explored future BCI directions for new groups of disabled users (e.g.,[10][204])

Disorders of consciousness (DOC) edit

Some people have a disorder of consciousness (DOC). This state is defined to include people in a coma and those in a vegetative state (VS) or minimally conscious state (MCS). New BCI research seeks to help people with DOC in different ways. A key initial goal is to identify patients who can perform basic cognitive tasks, which would of course lead to a change in their diagnosis. That is, some people who are diagnosed with DOC may in fact be able to process information and make important life decisions (such as whether to seek therapy, where to live, and their views on end-of-life decisions regarding them). Some who are diagnosed with DOC die as a result of end-of-life decisions, which may be made by family members who sincerely feel this is in the patient's best interests. Given the new prospect of allowing these patients to provide their views on this decision, there would seem to be a strong ethical pressure to develop this research direction to guarantee that DOC patients are given an opportunity to decide whether they want to live.[205][206]

These and other articles describe new challenges and solutions to use BCI technology to help persons with DOC. One major challenge is that these patients cannot use BCIs based on vision. Hence, new tools rely on auditory and/or vibrotactile stimuli. Patients may wear headphones and/or vibrotactile stimulators placed on the wrists, neck, leg, and/or other locations. Another challenge is that patients may fade in and out of consciousness and can only communicate at certain times. This may indeed be a cause of mistaken diagnosis. Some patients may only be able to respond to physicians' requests for a few hours per day (which might not be predictable ahead of time) and thus may have been unresponsive during diagnosis. Therefore, new methods rely on tools that are easy to use in field settings, even without expert help, so family members and other people without any medical or technical background can still use them. This reduces the cost, time, need for expertise, and other burdens with DOC assessment. Automated tools can ask simple questions that patients can easily answer, such as "Is your father named George?" or "Were you born in the USA?" Automated instructions inform patients that they may convey yes or no by (for example) focusing their attention on stimuli on the right vs. left wrist. This focused attention produces reliable changes in EEG patterns that can help determine whether the patient is able to communicate. The results could be presented to physicians and therapists, which could lead to a revised diagnosis and therapy. In addition, these patients could then be provided with BCI-based communication tools that could help them convey basic needs, adjust bed position and HVAC (heating, ventilation, and air conditioning), and otherwise empower them to make major life decisions and communicate.[207][208][209]

Motor recovery edit

People may lose some of their ability to move due to many causes, such as stroke or injury. Research in recent years has demonstrated the utility of EEG-based BCI systems in aiding motor recovery and neurorehabilitation in patients who have had a stroke.[210][211][212][213] Several groups have explored systems and methods for motor recovery that include BCIs.[214][215][216][217] In this approach, a BCI measures motor activity while the patient imagines or attempts movements as directed by a therapist. The BCI may provide two benefits: (1) if the BCI indicates that a patient is not imagining a movement correctly (non-compliance), then the BCI could inform the patient and therapist; and (2) rewarding feedback such as functional stimulation or the movement of a virtual avatar also depends on the patient's correct movement imagery.

So far, BCIs for motor recovery have relied on the EEG to measure the patient's motor imagery. However, studies have also used fMRI to study different changes in the brain as persons undergo BCI-based stroke rehab training.[218][219][220] Imaging studies combined with EEG-based BCI systems hold promise for investigating neuroplasticity during motor recovery post-stroke.[220] Future systems might include the fMRI and other measures for real-time control, such as functional near-infrared, probably in tandem with EEGs. Non-invasive brain stimulation has also been explored in combination with BCIs for motor recovery.[221] In 2016, scientists out of the University of Melbourne published preclinical proof-of-concept data related to a potential brain-computer interface technology platform being developed for patients with paralysis to facilitate control of external devices such as robotic limbs, computers and exoskeletons by translating brain activity.[222][223] Clinical trials are currently underway.[224]

Functional brain mapping edit

Each year, about 400,000 people undergo brain mapping during neurosurgery. This procedure is often required for people with tumors or epilepsy that do not respond to medication.[225] During this procedure, electrodes are placed on the brain to precisely identify the locations of structures and functional areas. Patients may be awake during neurosurgery and asked to perform certain tasks, such as moving fingers or repeating words. This is necessary so that surgeons can remove only the desired tissue while sparing other regions, such as critical movement or language regions. Removing too much brain tissue can cause permanent damage, while removing too little tissue can leave the underlying condition untreated and require additional neurosurgery.[citation needed] Thus, there is a strong need to improve both methods and systems to map the brain as effectively as possible.

In several recent publications, BCI research experts and medical doctors have collaborated to explore new ways to use BCI technology to improve neurosurgical mapping. This work focuses largely on high gamma activity, which is difficult to detect with non-invasive means. Results have led to improved methods for identifying key areas for movement, language, and other functions. A recent article addressed advances in functional brain mapping and summarizes a workshop.[226]

Flexible devices edit

Flexible electronics are polymers or other flexible materials (e.g. silk,[227] pentacene, PDMS, Parylene, polyimide[228]) that are printed with circuitry; the flexible nature of the organic background materials allowing the electronics created to bend, and the fabrication techniques used to create these devices resembles those used to create integrated circuits and microelectromechanical systems (MEMS).[citation needed] Flexible electronics were first developed in the 1960s and 1970s, but research interest increased in the mid-2000s.[229]

Flexible neural interfaces have been extensively tested in recent years in an effort to minimize brain tissue trauma related to mechanical mismatch between electrode and tissue.[230] Minimizing tissue trauma could, in theory, extend the lifespan of BCIs relying on flexible electrode-tissue interfaces.

Neural dust edit

Neural dust is a term used to refer to millimeter-sized devices operated as wirelessly powered nerve sensors that were proposed in a 2011 paper from the University of California, Berkeley Wireless Research Center, which described both the challenges and outstanding benefits of creating a long lasting wireless BCI.[231][232] In one proposed model of the neural dust sensor, the transistor model allowed for a method of separating between local field potentials and action potential "spikes", which would allow for a greatly diversified wealth of data acquirable from the recordings.[231]

See also edit

Notes edit

  1. ^ These electrodes had not been implanted in the patient with the intention of developing a BCI. The patient had had severe epilepsy and the electrodes were temporarily implanted to help his physicians localize seizure foci; the BCI researchers simply took advantage of this.[100]

References edit

  1. ^ a b Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA (2016). "Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation". Frontiers in Neuroscience. 10: 584. doi:10.3389/fnins.2016.00584. PMC 5186786. PMID 28082858.
  2. ^ a b Michael L Martini, BA, Eric Karl Oermann, MD, Nicholas L Opie, PhD, Fedor Panov, MD, Thomas Oxley, MD, PhD, Kurt Yaeger, MD, Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review, Neurosurgery, Volume 86, Issue 2, February 2020, Pages E108–E117, [1]
  3. ^ a b c Vidal JJ (1973). "Toward direct brain-computer communication". Annual Review of Biophysics and Bioengineering. 2 (1): 157–180. doi:10.1146/annurev.bb.02.060173.001105. PMID 4583653.
  4. ^ a b c Vidal J (1977). "Real-Time Detection of Brain Events in EEG". Proceedings of the IEEE. 65 (5): 633–641. doi:10.1109/PROC.1977.10542. S2CID 7928242.
  5. ^ Levine SP, Huggins JE, BeMent SL, Kushwaha RK, Schuh LA, Rohde MM, et al. (June 2000). "A direct brain interface based on event-related potentials". IEEE Transactions on Rehabilitation Engineering. 8 (2): 180–185. doi:10.1109/86.847809. PMID 10896180.
  6. ^ Bird JJ, Manso LJ, Ribeiro EP, Ekárt A, Faria DR (September 2018). A Study on Mental State Classification using EEG-based Brain-Machine Interface. Madeira Island, Portugal: 9th international Conference on Intelligent Systems 2018. Retrieved 3 December 2018.
  7. ^ Bird JJ, Ekart A, Buckingham CD, Faria DR (2019). . St Hugh's College, University of Oxford, United Kingdom: The International Conference on Digital Image and Signal Processing (DISP'19). Archived from the original on 3 December 2018. Retrieved 3 December 2018.
  8. ^ Vanneste S, Song JJ, De Ridder D (March 2018). "Thalamocortical dysrhythmia detected by machine learning". Nature Communications. 9 (1): 1103. Bibcode:2018NatCo...9.1103V. doi:10.1038/s41467-018-02820-0. PMC 5856824. PMID 29549239.
  9. ^ Straebel V, Thoben W (2014). "Alvin Lucier's music for solo performer: experimental music beyond sonification". Organised Sound. 19 (1): 17–29. doi:10.1017/S135577181300037X. S2CID 62506825.
  10. ^ a b Wolpaw, J.R. and Wolpaw, E.W. (2012). "Brain-Computer Interfaces: Something New Under the Sun". In: Brain-Computer Interfaces: Principles and Practice, Wolpaw, J.R. and Wolpaw (eds.), E.W. Oxford University Press.
  11. ^ Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (June 2002). "Brain-computer interfaces for communication and control". Clinical Neurophysiology. 113 (6): 767–791. doi:10.1016/s1388-2457(02)00057-3. PMID 12048038. S2CID 17571592.
  12. ^ Allison BZ, Wolpaw EW, Wolpaw JR (July 2007). "Brain-computer interface systems: progress and prospects". Expert Review of Medical Devices. 4 (4): 463–474. doi:10.1586/17434440.4.4.463. PMID 17605682. S2CID 4690450.
  13. ^ a b Bozinovski S, Bozinovska L (2019). "Brain-computer interface in Europe: The thirtieth anniversary". Automatika. 60 (1): 36–47. doi:10.1080/00051144.2019.1570644.
  14. ^ Vidal, Jacques J. (1977). (PDF). Proceedings of the IEEE. 65 (5): 633–641. doi:10.1109/PROC.1977.10542. S2CID 7928242. Archived from the original (PDF) on 19 July 2015. Retrieved 4 November 2022.
  15. ^ S. Bozinovski, M. Sestakov, L. Bozinovska: Using EEG alpha rhythm to control a mobile robot, In G. Harris, C. Walker (eds.) Proc. IEEE Annual Conference of Medical and Biological Society, p. 1515-1516, New Orleans, 1988
  16. ^ S. Bozinovski: Mobile robot trajectory control: From fixed rails to direct bioelectric control, In O. Kaynak (ed.) Proc. IEEE Workshop on Intelligent Motion Control, p. 63-67, Istanbul, 1990
  17. ^ M. Lebedev: Augmentation of sensorimotor functions with neural prostheses. Opera Medica and Physiologica. Vol. 2 (3): 211-227, 2016
  18. ^ M. Lebedev, M. Nicolelis: Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation, Physiological Review 97:737-867, 2017
  19. ^ L. Bozinovska, G. Stojanov, M. Sestakov, S. Bozinovski: CNV pattern recognition: step toward a cognitive wave observation, In L. Torres, E. Masgrau, E. Lagunas (eds.) Signal Processing V: Theories and Applications, Proc. EUSIPCO-90: Fifth European Signal Processing Conference, Elsevier, p. 1659-1662, Barcelona, 1990
  20. ^ L. Bozinovska, S. Bozinovski, G. Stojanov, Electroexpectogram: experimental design and algorithms, In Proc IEEE International Biomedical Engineering Days, p. 55-60, Istanbul, 1992
  21. ^ Miranda RA, Casebeer WD, Hein AM, Judy JW, Krotkov EP, Laabs TL, et al. (April 2015). "DARPA-funded efforts in the development of novel brain-computer interface technologies". Journal of Neuroscience Methods. 244: 52–67. doi:10.1016/j.jneumeth.2014.07.019. PMID 25107852. S2CID 14678623.
  22. ^ Jacobs M, Premji A, Nelson AJ (16 May 2012). "Plasticity-inducing TMS protocols to investigate somatosensory control of hand function". Neural Plasticity. 2012: 350574. doi:10.1155/2012/350574. PMC 3362131. PMID 22666612.
  23. ^ Fox, Maggie (13 October 2016). "Brain Chip Helps Paralyzed Man Feel His Fingers". NBC News. Retrieved 23 March 2021.
  24. ^ Hatmaker, Taylor (10 July 2017). "DARPA awards $65 million to develop the perfect, tiny two-way brain-computer inerface". Tech Crunch. Retrieved 23 March 2021.
  25. ^ Stacey, Kevin (10 July 2017). "Brown to receive up to $19M to engineer next-generation brain-computer interface". Brown University. Retrieved 23 March 2021.
  26. ^ "Minimally Invasive "Stentrode" Shows Potential as Neural Interface for Brain". Defense Advanced Research Projects Agency (DARPA). 8 February 2016. Retrieved 23 March 2021.
  27. ^ "Cochlear Implants". National Institute on Deafness and Other Communication Disorders. February 2016. Retrieved 1 April 2024.
  28. ^ Miguel Nicolelis et al. (2001) Duke neurobiologist has developed system that allows monkeys to control robot arms via brain signals 19 December 2008 at the Wayback Machine
  29. ^ Baum M (6 September 2008). . Pitt Chronicle. Archived from the original on 10 September 2009. Retrieved 6 July 2009.
  30. ^ Lewis T (November 2020). "Elon Musk's Pig-Brain Implant Is Still a Long Way from 'Solving Paralysis'". Scientific American. Retrieved 23 March 2021.
  31. ^ Shead S (February 2021). "Elon Musk says his start-up Neuralink has wired up a monkey to play video games using its mind". CNBC. Retrieved 23 March 2021.
  32. ^ Fetz EE (February 1969). "Operant conditioning of cortical unit activity". Science. 163 (3870): 955–958. Bibcode:1969Sci...163..955F. doi:10.1126/science.163.3870.955. PMID 4974291. S2CID 45427819.
  33. ^ Schmidt EM, McIntosh JS, Durelli L, Bak MJ (September 1978). "Fine control of operantly conditioned firing patterns of cortical neurons". Experimental Neurology. 61 (2): 349–369. doi:10.1016/0014-4886(78)90252-2. PMID 101388. S2CID 37539476.
  34. ^ Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (January 1989). "Mental rotation of the neuronal population vector". Science. 243 (4888): 234–236. Bibcode:1989Sci...243..234G. doi:10.1126/science.2911737. PMID 2911737. S2CID 37161168.
  35. ^ Lebedev MA, Nicolelis MA (September 2006). "Brain-machine interfaces: past, present and future". Trends in Neurosciences. 29 (9): 536–546. doi:10.1016/j.tins.2006.07.004. PMID 16859758. S2CID 701524.
  36. ^ Stanley GB, Li FF, Dan Y (September 1999). "Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus". The Journal of Neuroscience. 19 (18): 8036–8042. doi:10.1523/JNEUROSCI.19-18-08036.1999. PMC 6782475. PMID 10479703.
  37. ^ Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, et al. (November 2000). "Real-time prediction of hand trajectory by ensembles of cortical neurons in primates". Nature. 408 (6810): 361–365. Bibcode:2000Natur.408..361W. doi:10.1038/35042582. PMID 11099043. S2CID 795720.
  38. ^ a b Carmena JM, Lebedev MA, Crist RE, O'Doherty JE, Santucci DM, Dimitrov DF, et al. (November 2003). "Learning to control a brain-machine interface for reaching and grasping by primates". PLOS Biology. 1 (2): E42. doi:10.1371/journal.pbio.0000042. PMC 261882. PMID 14624244.
  39. ^ a b Lebedev MA, Carmena JM, O'Doherty JE, Zacksenhouse M, Henriquez CS, Principe JC, Nicolelis MA (May 2005). "Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface". The Journal of Neuroscience. 25 (19): 4681–4693. doi:10.1523/JNEUROSCI.4088-04.2005. PMC 6724781. PMID 15888644.
  40. ^ O'Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MA (October 2011). "Active tactile exploration using a brain-machine-brain interface". Nature. 479 (7372): 228–231. Bibcode:2011Natur.479..228O. doi:10.1038/nature10489. PMC 3236080. PMID 21976021.
  41. ^ Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (March 2002). "Instant neural control of a movement signal". Nature. 416 (6877): 141–142. Bibcode:2002Natur.416..141S. doi:10.1038/416141a. PMID 11894084. S2CID 4383116.
  42. ^ Taylor DM, Tillery SI, Schwartz AB (June 2002). "Direct cortical control of 3D neuroprosthetic devices". Science. 296 (5574): 1829–1832. Bibcode:2002Sci...296.1829T. CiteSeerX 10.1.1.1027.4335. doi:10.1126/science.1070291. PMID 12052948. S2CID 9402759.
  43. ^ Pitt team to build on brain-controlled arm 4 July 2007 at the Wayback Machine, Pittsburgh Tribune Review, 5 September 2006.
  44. ^ Video on YouTube
  45. ^ Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (June 2008). "Cortical control of a prosthetic arm for self-feeding". Nature. 453 (7198): 1098–1101. Bibcode:2008Natur.453.1098V. doi:10.1038/nature06996. PMID 18509337. S2CID 4404323.
  46. ^ Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (July 2004). "Cognitive control signals for neural prosthetics". Science. 305 (5681): 258–262. Bibcode:2004Sci...305..258M. doi:10.1126/science.1097938. PMID 15247483. S2CID 3112034.
  47. ^ Santucci DM, Kralik JD, Lebedev MA, Nicolelis MA (September 2005). "Frontal and parietal cortical ensembles predict single-trial muscle activity during reaching movements in primates". The European Journal of Neuroscience. 22 (6): 1529–1540. doi:10.1111/j.1460-9568.2005.04320.x. PMID 16190906. S2CID 31277881.
  48. ^ Anumanchipalli GK, Chartier J, Chang EF (April 2019). "Speech synthesis from neural decoding of spoken sentences". Nature. 568 (7753): 493–498. Bibcode:2019Natur.568..493A. doi:10.1038/s41586-019-1119-1. PMC 9714519. PMID 31019317. S2CID 129946122.
  49. ^ Pandarinath C, Ali YH (April 2019). "Brain implants that let you speak your mind". Nature. 568 (7753): 466–467. Bibcode:2019Natur.568..466P. doi:10.1038/d41586-019-01181-y. PMID 31019323.
  50. ^ a b Moses DA, Metzger SL, Liu JR, Anumanchipalli GK, Makin JG, Sun PF, et al. (July 2021). "Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria". The New England Journal of Medicine. 385 (3): 217–227. doi:10.1056/NEJMoa2027540. PMC 8972947. PMID 34260835. S2CID 235907121.
  51. ^ Belluck, Pam (14 July 2021). "Tapping Into the Brain to Help a Paralyzed Man Speak". The New York Times.
  52. ^ "Using BCI2000 in BCI Research". National Center for Adaptive Neurotechnology. Retrieved 5 December 2023.
  53. ^ Huber D, Petreanu L, Ghitani N, Ranade S, Hromádka T, Mainen Z, Svoboda K (January 2008). "Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice". Nature. 451 (7174): 61–64. Bibcode:2008Natur.451...61H. doi:10.1038/nature06445. PMC 3425380. PMID 18094685.
  54. ^ Nicolelis MA, Lebedev MA (July 2009). "Principles of neural ensemble physiology underlying the operation of brain-machine interfaces". Nature Reviews. Neuroscience. 10 (7): 530–540. doi:10.1038/nrn2653. PMID 19543222. S2CID 9290258.
  55. ^ a b Zander TO, Kothe C (April 2011). "Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general". Journal of Neural Engineering. 8 (2): 025005. Bibcode:2011JNEng...8b5005Z. doi:10.1088/1741-2560/8/2/025005. PMID 21436512. S2CID 37168897.
  56. ^ Richardson AG, Ghenbot Y, Liu X, Hao H, Rinehart C, DeLuccia S, et al. (August 2019). "Learning active sensing strategies using a sensory brain-machine interface". Proceedings of the National Academy of Sciences of the United States of America. 116 (35): 17509–17514. Bibcode:2019PNAS..11617509R. doi:10.1073/pnas.1909953116. PMC 6717311. PMID 31409713.
  57. ^ Abdulkader SN, Atia A, Mostafa MS (July 2015). "Brain computer interfacing: Applications and challenges". Egyptian Informatics Journal. 16 (2): 213–230. doi:10.1016/j.eij.2015.06.002. ISSN 1110-8665.
  58. ^ Polikov VS, Tresco PA, Reichert WM (October 2005). "Response of brain tissue to chronically implanted neural electrodes". Journal of Neuroscience Methods. 148 (1): 1–18. doi:10.1016/j.jneumeth.2005.08.015. PMID 16198003. S2CID 11248506.
  59. ^ "Vision quest". Wired. (September 2002).
  60. ^ Kotler S. "Vision Quest". Wired. ISSN 1059-1028. Retrieved 10 November 2021.
  61. ^ Tuller D (1 November 2004). "Dr. William Dobelle, Artificial Vision Pioneer, Dies at 62". The New York Times.
  62. ^ Naumann J (2012). Search for Paradise: A Patient's Account of the Artificial Vision Experiment. Xlibris. ISBN 978-1-4797-0920-5.
  63. ^ nurun.com (28 November 2012). "Mr. Jen Naumann's high-tech paradise lost". Thewhig.com. Retrieved 19 December 2016.
  64. ^ Kennedy PR, Bakay RA (June 1998). "Restoration of neural output from a paralyzed patient by a direct brain connection". NeuroReport. 9 (8): 1707–1711. doi:10.1097/00001756-199806010-00007. PMID 9665587. S2CID 5681602.
  65. ^ Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. (July 2006). "Neuronal ensemble control of prosthetic devices by a human with tetraplegia". Nature. 442 (7099). Gerhard M. Friehs, Jon A. Mukand, Maryam Saleh, Abraham H. Caplan, Almut Branner, David Chen, Richard D. Penn and John P. Donoghue: 164–171. Bibcode:2006Natur.442..164H. doi:10.1038/nature04970. PMID 16838014. S2CID 4347367.
  66. ^ Martins Iduwe. "Brain Computer Interface". Academia.edu. Retrieved 5 December 2023.
  67. ^ Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. (May 2012). "Reach and grasp by people with tetraplegia using a neurally controlled robotic arm". Nature. 485 (7398): 372–375. Bibcode:2012Natur.485..372H. doi:10.1038/nature11076. PMC 3640850. PMID 22596161.
  68. ^ Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. (February 2013). "High-performance neuroprosthetic control by an individual with tetraplegia". Lancet. 381 (9866): 557–564. doi:10.1016/S0140-6736(12)61816-9. PMC 3641862. PMID 23253623.
  69. ^ Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV (May 2021). "High-performance brain-to-text communication via handwriting". Nature. 593 (7858): 249–254. Bibcode:2021Natur.593..249W. doi:10.1038/s41586-021-03506-2. PMC 8163299. PMID 33981047.
  70. ^ Willett FR (2021). "A High-Performance Handwriting BCI". In Guger C, Allison BZ, Gunduz A (eds.). Brain-Computer Interface Research: A State-of-the-Art Summary 10. SpringerBriefs in Electrical and Computer Engineering. Cham: Springer International Publishing. pp. 105–109. doi:10.1007/978-3-030-79287-9_11. ISBN 978-3-030-79287-9. S2CID 239736609.
  71. ^ Hamliton J (14 July 2021). "Experimental Brain Implant Lets Man With Paralysis Turn His Thoughts Into Words". All Things Considered. NPR.
  72. ^ Pandarinath C, Bensmaia SJ (September 2021). "The science and engineering behind sensitized brain-controlled bionic hands". Physiological Reviews. 102 (2): 551–604. doi:10.1152/physrev.00034.2020. PMC 8742729. PMID 34541898. S2CID 237574228.
  73. ^ Willett, Francis R.; Kunz, Erin M.; Fan, Chaofei; Avansino, Donald T.; Wilson, Guy H.; Choi, Eun Young; Kamdar, Foram; Glasser, Matthew F.; Hochberg, Leigh R.; Druckmann, Shaul; Shenoy, Krishna V.; Henderson, Jaimie M. (23 August 2023). "A high-performance speech neuroprosthesis". Nature. 620 (7976): 1031–1036. Bibcode:2023Natur.620.1031W. doi:10.1038/s41586-023-06377-x. ISSN 1476-4687. PMC 10468393. PMID 37612500.
  74. ^ Metzger, Sean L.; Littlejohn, Kaylo T.; Silva, Alexander B.; Moses, David A.; Seaton, Margaret P.; Wang, Ran; Dougherty, Maximilian E.; Liu, Jessie R.; Wu, Peter; Berger, Michael A.; Zhuravleva, Inga; Tu-Chan, Adelyn; Ganguly, Karunesh; Anumanchipalli, Gopala K.; Chang, Edward F. (23 August 2023). "A high-performance neuroprosthesis for speech decoding and avatar control". Nature. 620 (7976): 1037–1046. Bibcode:2023Natur.620.1037M. doi:10.1038/s41586-023-06443-4. ISSN 1476-4687. PMC 10826467. PMID 37612505. S2CID 261098775.
  75. ^ Naddaf, Miryam (23 August 2023). "Brain-reading devices allow paralysed people to talk using their thoughts". Nature. 620 (7976): 930–931. Bibcode:2023Natur.620..930N. doi:10.1038/d41586-023-02682-7. PMID 37612493. S2CID 261099321.
  76. ^ Zhang M, Tang Z, Liu X, Van der Spiegel J (April 2020). "Electronic neural interfaces". Nature Electronics. 3 (4): 191–200. doi:10.1038/s41928-020-0390-3. ISSN 2520-1131. S2CID 216508360.
  77. ^ Hodgkin AL, Huxley AF (August 1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve". The Journal of Physiology. 117 (4): 500–544. doi:10.1113/jphysiol.1952.sp004764. PMC 1392413. PMID 12991237.
  78. ^ a b Obien ME, Deligkaris K, Bullmann T, Bakkum DJ, Frey U (2015). "Revealing neuronal function through microelectrode array recordings". Frontiers in Neuroscience. 8: 423. doi:10.3389/fnins.2014.00423. PMC 4285113. PMID 25610364.
  79. ^ a b Harrison RR (July 2008). "The Design of Integrated Circuits to Observe Brain Activity". Proceedings of the IEEE. 96 (7): 1203–1216. doi:10.1109/JPROC.2008.922581. ISSN 1558-2256. S2CID 7020369.
  80. ^ Haci D, Liu Y, Ghoreishizadeh SS, Constandinou TG (February 2020). "Key Considerations for Power Management in Active Implantable Medical Devices". 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS). pp. 1–4. doi:10.1109/LASCAS45839.2020.9069004. ISBN 978-1-7281-3427-7. S2CID 215817530.
  81. ^ Downey JE, Schwed N, Chase SM, Schwartz AB, Collinger JL (August 2018). "Intracortical recording stability in human brain-computer interface users". Journal of Neural Engineering. 15 (4): 046016. Bibcode:2018JNEng..15d6016D. doi:10.1088/1741-2552/aab7a0. PMID 29553484. S2CID 3961913.
  82. ^ Freire MA, Morya E, Faber J, Santos JR, Guimaraes JS, Lemos NA, Sameshima K, Pereira A, Ribeiro S, Nicolelis M (November 2011). "Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants". PLOS ONE. 6 (11): e27554. Bibcode:2011PLoSO...627554F. doi:10.1371/journal.pone.0027554. PMC 4476592. PMID 26098896.
  83. ^ Szostak KM, Grand L, Constandinou TG (2017). "Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics". Frontiers in Neuroscience. 11: 665. doi:10.3389/fnins.2017.00665. PMC 5725438. PMID 29270103.
  84. ^ a b Saxena T, Karumbaiah L, Gaupp EA, Patkar R, Patil K, Betancur M, et al. (July 2013). "The impact of chronic blood-brain barrier breach on intracortical electrode function". Biomaterials. 34 (20): 4703–4713. doi:10.1016/j.biomaterials.2013.03.007. PMID 23562053.
  85. ^ Nolta NF, Christensen MB, Crane PD, Skousen JL, Tresco PA (1 June 2015). "BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance". Biomaterials. 53: 753–762. doi:10.1016/j.biomaterials.2015.02.081. PMID 25890770.
  86. ^ Robinson JT, Pohlmeyer E, Gather MC, Kemere C, Kitching JE, Malliaras GG, et al. (November 2019). "Developing Next-generation Brain Sensing Technologies - A Review". IEEE Sensors Journal. 19 (22): 10163–10175. doi:10.1109/JSEN.2019.2931159. PMC 7047830. PMID 32116472.
  87. ^ Luan L, Wei X, Zhao Z, Siegel JJ, Potnis O, Tuppen CA, et al. (February 2017). "Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration". Science Advances. 3 (2): e1601966. Bibcode:2017SciA....3E1966L. doi:10.1126/sciadv.1601966. PMC 5310823. PMID 28246640.
  88. ^ Frank JA, Antonini MJ, Anikeeva P (September 2019). "Next-generation interfaces for studying neural function". Nature Biotechnology. 37 (9): 1013–1023. doi:10.1038/s41587-019-0198-8. PMC 7243676. PMID 31406326.
  89. ^ a b Hong G, Viveros RD, Zwang TJ, Yang X, Lieber CM (July 2018). "Tissue-like Neural Probes for Understanding and Modulating the Brain". Biochemistry. 57 (27): 3995–4004. doi:10.1021/acs.biochem.8b00122. PMC 6039269. PMID 29529359.
  90. ^ Viveros RD, Zhou T, Hong G, Fu TM, Lin HG, Lieber CM (June 2019). "Advanced One- and Two-Dimensional Mesh Designs for Injectable Electronics". Nano Letters. 19 (6): 4180–4187. Bibcode:2019NanoL..19.4180V. doi:10.1021/acs.nanolett.9b01727. PMC 6565464. PMID 31075202.
  91. ^ Gulati T, Won SJ, Ramanathan DS, Wong CC, Bodepudi A, Swanson RA, Ganguly K (June 2015). "Robust neuroprosthetic control from the stroke perilesional cortex". The Journal of Neuroscience. 35 (22): 8653–8661. doi:10.1523/JNEUROSCI.5007-14.2015. PMC 6605327. PMID 26041930.
  92. ^ Soldozy S, Young S, Kumar JS, Capek S, Felbaum DR, Jean WC, et al. (July 2020). "A systematic review of endovascular stent-electrode arrays, a minimally invasive approach to brain-machine interfaces". Neurosurgical Focus. 49 (1): E3. doi:10.3171/2020.4.FOCUS20186. PMID 32610291. S2CID 220308983.
  93. ^ a b Opie N (2021). "The StentrodeTM Neural Interface System". In Guger C, Allison BZ, Tangermann M (eds.). Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Cham: Springer International Publishing. pp. 127–132. doi:10.1007/978-3-030-60460-8_13. ISBN 978-3-030-60460-8. S2CID 234102889.
  94. ^ Teleb MS, Cziep ME, Lazzaro MA, Gheith A, Asif K, Remler B, Zaidat OO (May 2014). "Idiopathic Intracranial Hypertension. A Systematic Analysis of Transverse Sinus Stenting". Interventional Neurology. 2 (3): 132–143. doi:10.1159/000357503. PMC 4080637. PMID 24999351.
  95. ^ Bryson S (5 November 2020). "Stentrode Device Allows Computer Control by ALS Patients with Partial Upper Limb Paralysis". ALS News Today.
  96. ^ Lanese, Nicoletta (12 January 2023). "New 'thought-controlled' device reads brain activity through the jugular". livescience.com. from the original on 16 February 2023. Retrieved 16 February 2023.
  97. ^ Mitchell, Peter; Lee, Sarah C. M.; Yoo, Peter E.; Morokoff, Andrew; Sharma, Rahul P.; Williams, Daryl L.; MacIsaac, Christopher; Howard, Mark E.; Irving, Lou; Vrljic, Ivan; Williams, Cameron; Bush, Steven; Balabanski, Anna H.; Drummond, Katharine J.; Desmond, Patricia; Weber, Douglas; Denison, Timothy; Mathers, Susan; O’Brien, Terence J.; Mocco, J.; Grayden, David B.; Liebeskind, David S.; Opie, Nicholas L.; Oxley, Thomas J.; Campbell, Bruce C. V. (9 January 2023). "Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients: The Stentrode With Thought-Controlled Digital Switch (SWITCH) Study". JAMA Neurology. 80 (3): 270–278. doi:10.1001/jamaneurol.2022.4847. ISSN 2168-6149. PMC 9857731. PMID 36622685. S2CID 255545643.
  98. ^ Serruya M, Donoghue J (2004). (PDF). In Horch KW, Dhillon GS (eds.). Neuroprosthetics: Theory and Practice. Imperial College Press. pp. 1158–1196. doi:10.1142/9789812561763_0040. Archived from the original (PDF) on 4 April 2005.
  99. ^ "Teenager moves video icons just by imagination". Press release. Washington University in St Louis. 9 October 2006.
  100. ^ Schalk G, Miller KJ, Anderson NR, Wilson JA, Smyth MD, Ojemann JG, et al. (March 2008). "Two-dimensional movement control using electrocorticographic signals in humans". Journal of Neural Engineering. 5 (1): 75–84. Bibcode:2008JNEng...5...75S. doi:10.1088/1741-2560/5/1/008. PMC 2744037. PMID 18310813.
  101. ^ Nicolas-Alonso LF, Gomez-Gil J (31 January 2012). "Brain computer interfaces, a review". Sensors. 12 (2): 1211–1279. Bibcode:2012Senso..12.1211N. doi:10.3390/s120201211. PMC 3304110. PMID 22438708.
  102. ^ Yanagisawa T (2011). "Electrocorticographic Control of Prosthetic Arm in Paralyzed Patients". American Neurological Association. Vol. 71, no. 3. pp. 353–361. doi:10.1002/ana.22613. ECoG- Based BCI has advantage in signal and durability that are absolutely necessary for clinical application
  103. ^ a b Pei X (2011). "Decoding Vowels and Consonants in Spoken and Imagined Words Using Electrocorticographic Signals in Humans". J Neural Eng 046028th ser. 8.4. PMID 21750369. Justin Williams, a biomedical engineer at the university, has already transformed the ECoG implant into a micro device that can be installed with a minimum of fuss. It has been tested in animals for a long period of time – the micro ECoG stays in place and doesn't seem to negatively affect the immune system.
  104. ^ Makin JG, Moses DA, Chang EF (2021). "Speech Decoding as Machine Translation". In Guger C, Allison BZ, Gunduz A (eds.). Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Cham: Springer International Publishing. pp. 23–33. doi:10.1007/978-3-030-79287-9_3. ISBN 978-3-030-79287-9. S2CID 239756345.
  105. ^ Makin JG, Moses DA, Chang EF (April 2020). "Machine translation of cortical activity to text with an encoder-decoder framework". Nature Neuroscience. 23 (4): 575–582. doi:10.1038/s41593-020-0608-8. PMC 10560395. PMID 32231340. S2CID 214704481.
  106. ^ Gallegos-Ayala G, Furdea A, Takano K, Ruf CA, Flor H, Birbaumer N (May 2014). "Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy". Neurology. 82 (21): 1930–1932. doi:10.1212/WNL.0000000000000449. PMC 4049706. PMID 24789862.
  107. ^ Chaudhary U, Xia B, Silvoni S, Cohen LG, Birbaumer N (January 2017). "Brain-Computer Interface-Based Communication in the Completely Locked-In State". PLOS Biology. 15 (1): e1002593. doi:10.1371/journal.pbio.1002593. PMC 5283652. PMID 28141803.
  108. ^ Winters, Jeffrey (May 2003). "Communicating by Brain Waves". Psychology Today.
  109. ^ Adrijan Bozinovski "CNV flip-flop as a brain-computer interface paradigm" In J. Kern, S. Tonkovic, et al. (Eds) Proc 7th Conference of the Croatian Association of Medical Informatics, pp. 149-154, Rijeka, 2005
  110. ^ Bozinovski, Adrijan; Bozinovska, Liljana (2009). Anticipatory brain potentials in a Brain-Robot Interface paradigm. 2009 4th International IEEE/EMBS Conference on Neural Engineering. IEEE. pp. 451–454. doi:10.1109/ner.2009.5109330.
  111. ^ Božinovski, Adrijan; Tonković, Stanko; Išgum, Velimir; Božinovska, Liljana (2011). "Robot Control Using Anticipatory Brain Potentials". Automatika. 52 (1): 20–30. doi:10.1080/00051144.2011.11828400. S2CID 33223634.
  112. ^ Bozinovski, Stevo; Bozinovski, Adrijan (2015). "Mental States, EEG Manifestations, and Mentally Emulated Digital Circuits for Brain-Robot Interaction". IEEE Transactions on Autonomous Mental Development. 7 (1). Institute of Electrical and Electronics Engineers (IEEE): 39–51. doi:10.1109/tamd.2014.2387271. ISSN 1943-0604. S2CID 21464338.
  113. ^ Yuan H, Liu T, Szarkowski R, Rios C, Ashe J, He B (February 2010). "Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements". NeuroImage. 49 (3): 2596–2606. doi:10.1016/j.neuroimage.2009.10.028. PMC 2818527. PMID 19850134.
  114. ^ Doud AJ, Lucas JP, Pisansky MT, He B (2011). Gribble PL (ed.). "Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface". PLOS ONE. 6 (10): e26322. Bibcode:2011PLoSO...626322D. doi:10.1371/journal.pone.0026322. PMC 3202533. PMID 22046274.
  115. ^ "Thought-guided helicopter takes off". BBC News. 5 June 2013. Retrieved 5 June 2013.
  116. ^ Qin L, Ding L, He B (September 2004). "Motor imagery classification by means of source analysis for brain-computer interface applications". Journal of Neural Engineering. 1 (3): 135–141. Bibcode:2004JNEng...1..135Q. doi:10.1088/1741-2560/1/3/002. PMC 1945182. PMID 15876632.
  117. ^ Höhne J, Holz E, Staiger-Sälzer P, Müller KR, Kübler A, Tangermann M (2014). "Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution". PLOS ONE. 9 (8): e104854. Bibcode:2014PLoSO...9j4854H. doi:10.1371/journal.pone.0104854. PMC 4146550. PMID 25162231.
  118. ^ Maskeliunas R, Damasevicius R, Martisius I, Vasiljevas M (2016). "Consumer-grade EEG devices: are they usable for control tasks?". PeerJ. 4: e1746. doi:10.7717/peerj.1746. PMC 4806709. PMID 27014511.
  119. ^ Bird JJ, Faria DR, Manso LJ, Ekárt A, Buckingham CD (13 March 2019). "A Deep Evolutionary Approach to Bioinspired Classifier Optimisation for Brain-Machine Interaction". Complexity. 2019. Hindawi Limited: 1–14. arXiv:1908.04784. doi:10.1155/2019/4316548. ISSN 1076-2787.
  120. ^ Mansour S, Ang KK, Nair KP, Phua KS, Arvaneh M (January 2022). "Efficacy of Brain-Computer Interface and the Impact of Its Design Characteristics on Poststroke Upper-limb Rehabilitation: A Systematic Review and Meta-analysis of Randomized Controlled Trials". Clinical EEG and Neuroscience. 53 (1): 79–90. doi:10.1177/15500594211009065. PMC 8619716. PMID 33913351. S2CID 233446181.
  121. ^ Baniqued PD, Stanyer EC, Awais M, Alazmani A, Jackson AE, Mon-Williams MA, et al. (January 2021). "Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review". Journal of Neuroengineering and Rehabilitation. 18 (1): 15. doi:10.1186/s12984-021-00820-8. PMC 7825186. PMID 33485365.
  122. ^ Taheri BA, Knight RT, Smith RL (May 1994). "A dry electrode for EEG recording". Electroencephalography and Clinical Neurophysiology. 90 (5): 376–383. doi:10.1016/0013-4694(94)90053-1. PMID 7514984.
  123. ^ Alizadeh-Taheri B (1994). Active Micromachined Scalp Electrode Array for Eeg Signal Recording (PHD Thesis thesis). p. 82. Bibcode:1994PhDT........82A.
  124. ^ Hockenberry, John (August 2001). "The Next Brainiacs". Wired. Vol. 9, no. 8.
  125. ^ Lin CT, Ko LW, Chang CJ, Wang YT, Chung CH, Yang FS, et al. (2009), "Wearable and Wireless Brain-Computer Interface and Its Applications", Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, Lecture Notes in Computer Science, vol. 5638, Springer Berlin Heidelberg, pp. 741–748, doi:10.1007/978-3-642-02812-0_84, ISBN 978-3-642-02811-3, S2CID 14515754
  126. ^ a b c d e Wang YT, Wang Y, Jung TP (April 2011). "A cell-phone-based brain-computer interface for communication in daily life". Journal of Neural Engineering. 8 (2): 025018. Bibcode:2011JNEng...8b5018W. doi:10.1088/1741-2560/8/2/025018. PMID 21436517. S2CID 10943518.
  127. ^ Guger C, Allison BZ, Großwindhager B, Prückl R, Hintermüller C, Kapeller C, et al. (2012). "How Many People Could Use an SSVEP BCI?". Frontiers in Neuroscience. 6: 169. doi:10.3389/fnins.2012.00169. PMC 3500831. PMID 23181009.
  128. ^ a b Lin YP, Wang Y, Jung TP (2013). "A mobile SSVEP-based brain-computer interface for freely moving humans: The robustness of canonical correlation analysis to motion artifacts". 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Vol. 2013. pp. 1350–1353. doi:10.1109/EMBC.2013.6609759. ISBN 978-1-4577-0216-7. PMID 24109946. S2CID 23136360.
  129. ^ Rashid M, Sulaiman N, Abdul Majeed AP, Musa RM, Ab Nasir AF, Bari BS, Khatun S (2020). "Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review". Frontiers in Neurorobotics. 14: 25. doi:10.3389/fnbot.2020.00025. PMC 7283463. PMID 32581758.
  130. ^ US 20130127708, issued 23 May 2013 
  131. ^ a b c Wang YT, Wang Y, Cheng CK, Jung TP (2013). "Developing stimulus presentation on mobile devices for a truly portable SSVEP-based BCI". 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Vol. 2013. pp. 5271–5274. doi:10.1109/EMBC.2013.6610738. ISBN 978-1-4577-0216-7. PMID 24110925. S2CID 14324159.
  132. ^ Bin G, Gao X, Yan Z, Hong B, Gao S (August 2009). "An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method". Journal of Neural Engineering. 6 (4): 046002. Bibcode:2009JNEng...6d6002B. doi:10.1088/1741-2560/6/4/046002. PMID 19494422. S2CID 32640699.
  133. ^ Symeonidou ER, Nordin AD, Hairston WD, Ferris DP (April 2018). "Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion". Sensors. 18 (4): 1073. Bibcode:2018Senso..18.1073S. doi:10.3390/s18041073. PMC 5948545. PMID 29614020.
  134. ^ Wang Y, Wang R, Gao X, Hong B, Gao S (June 2006). "A practical VEP-based brain-computer interface". IEEE Transactions on Neural Systems and Rehabilitation Engineering. 14 (2): 234–239. doi:10.1109/TNSRE.2006.875576. PMID 16792302.
  135. ^ Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R (November 2003). "'Thought'--control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia". Neuroscience Letters. 351 (1): 33–36. doi:10.1016/S0304-3940(03)00947-9. PMID 14550907. S2CID 38568963.
  136. ^ Do AH, Wang PT, King CE, Chun SN, Nenadic Z (December 2013). "Brain-computer interface controlled robotic gait orthosis". Journal of Neuroengineering and Rehabilitation. 10 (1): 111. doi:10.1186/1743-0003-10-111. PMC 3907014. PMID 24321081.
  137. ^ Subject with Paraplegia Operates BCI-controlled RoGO (4x) at YouTube.com
  138. ^ Alex Blainey controls a cheap consumer robot arm using the EPOC headset via a serial relay port at YouTube.com
  139. ^ Drummond, Katie (14 May 2009). "Pentagon Preps Soldier Telepathy Push". Wired. Retrieved 6 May 2009.
  140. ^ Ranganatha Sitaram, Andrea Caria, Ralf Veit, Tilman Gaber, Giuseppina Rota, Andrea Kuebler and Niels Birbaumer(2007) "FMRI Brain–Computer Interface: A Tool for Neuroscientific Research and Treatment"
  141. ^ Peplow, Mark (27 August 2004). "Mental ping-pong could aid paraplegics". News@nature. doi:10.1038/news040823-18.
  142. ^ . Tech-on. 26 May 2006. Archived from the original on 23 June 2017. Retrieved 22 September 2006.
  143. ^ Miyawaki Y, Uchida H, Yamashita O, Sato MA, Morito Y, Tanabe HC, et al. (December 2008). "Visual image reconstruction from human brain activity using a combination of multiscale local image decoders". Neuron. 60 (5): 915–929. doi:10.1016/j.neuron.2008.11.004. PMID 19081384. S2CID 17327816.
  144. ^ Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL (October 2011). "Reconstructing visual experiences from brain activity evoked by natural movies". Current Biology. 21 (19): 1641–1646. doi:10.1016/j.cub.2011.08.031. PMC 3326357. PMID 21945275.
  145. ^ Yam, Philip (22 September 2011). "Breakthrough Could Enable Others to Watch Your Dreams and Memories". Scientific American. Retrieved 25 September 2011.
  146. ^ . The Gallant Lab at UC Berkeley. Archived from the original on 25 September 2011. Retrieved 25 September 2011.
  147. ^ Anwar, Yasmin (22 September 2011). "Scientists use brain imaging to reveal the movies in our mind". UC Berkeley News Center. Retrieved 25 September 2011.
  148. ^ a b c Marshall D, Coyle D, Wilson S, Callaghan M (2013). "Games, Gameplay, and BCI: The State of the Art". IEEE Transactions on Computational Intelligence and AI in Games. 5 (2): 83. doi:10.1109/TCIAIG.2013.2263555. S2CID 206636315.
  149. ^ "Goals of the organizers". BBC. Retrieved 19 December 2022.
  150. ^ Ang KK, Chin ZY, Wang C, Guan C, Zhang H (1 January 2012). "Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b". Frontiers in Neuroscience. 6: 39. doi:10.3389/fnins.2012.00039. PMC 3314883. PMID 22479236.
  151. ^ Fairclough, Stephen H. (January 2009). "Fundamentals of physiological computing". Interacting with Computers. 21 (1–2): 133–145. doi:10.1016/j.intcom.2008.10.011. S2CID 16314534.
  152. ^ Bozinovski S (2017). "Signal Processing Robotics Using Signals Generated by a Human Head: From Pioneering Works to EEG-Based Emulation of Digital Circuits". Advances in Robot Design and Intelligent Control. Advances in Intelligent Systems and Computing. Vol. 540. pp. 449–462. doi:10.1007/978-3-319-49058-8_49. ISBN 978-3-319-49057-1.
  153. ^ Mathôt S, Melmi JB, van der Linden L, Van der Stigchel S (2016). "The Mind-Writing Pupil: A Human-Computer Interface Based on Decoding of Covert Attention through Pupillometry". PLOS ONE. 11 (2): e0148805. Bibcode:2016PLoSO..1148805M. doi:10.1371/journal.pone.0148805. PMC 4743834. PMID 26848745.
  154. ^ Kennedy, Pagan (18 September 2011). "The Cyborg in Us All". The New York Times. Retrieved 28 January 2012.
  155. ^ Selim, Jocelyn; Drinkell, Pete (1 November 2002). . Discover. Archived from the original on 6 January 2008.
  156. ^ Giaimo, Cara (10 June 2015). "Nervous System Hookup Leads to Telepathic Hand-Holding". Atlas Obscura.
  157. ^ Warwick, K, Gasson, M, Hutt, B, Goodhew, I, Kyberd, P, Schulzrinne, H and Wu, X: "Thought Communication and Control: A First Step using Radiotelegraphy", IEE Proceedings on Communications, 151(3), pp.185–189, 2004
  158. ^ Warwick K, Gasson M, Hutt B, Goodhew I, Kyberd P, Andrews B, et al. (October 2003). "The application of implant technology for cybernetic systems". Archives of Neurology. 60 (10): 1369–1373. doi:10.1001/archneur.60.10.1369. PMID 14568806.
  159. ^ Grau C, Ginhoux R, Riera A, Nguyen TL, Chauvat H, Berg M, et al. (2014). "Conscious brain-to-brain communication in humans using non-invasive technologies". PLOS ONE. 9 (8): e105225. Bibcode:2014PLoSO...9j5225G. doi:10.1371/journal.pone.0105225. PMC 4138179. PMID 25137064.
  160. ^ Bland, Eric (13 October 2008). "Army Developing 'synthetic telepathy'". Discovery News. Retrieved 13 October 2008.
  161. ^ Pais-Vieira M, Lebedev M, Kunicki C, Wang J, Nicolelis MA (28 February 2013). "A brain-to-brain interface for real-time sharing of sensorimotor information". Scientific Reports. 3: 1319. Bibcode:2013NatSR...3E1319P. doi:10.1038/srep01319. PMC 3584574. PMID 23448946.
  162. ^ Gorman, James (28 February 2013). "One Rat Thinks, and Another Reacts". The New York Times. Retrieved 28 February 2013.
  163. ^ Sample, Ian (1 March 2013). "Brain-to-brain interface lets rats share information via internet". The Guardian. Retrieved 2 March 2013.
  164. ^ Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, et al. (June 2007). "Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits". The Journal of Neuroscience. 27 (26): 6931–6936. doi:10.1523/JNEUROSCI.1051-07.2007. PMC 6672220. PMID 17596441.
  165. ^ Caltech Scientists Devise First Neurochip, Caltech, 26 October 1997
  166. ^ Sandhana, Lakshmi (22 October 2004). . Wired News. Archived from the original on 10 September 2006.
  167. ^ "'Brain' in a dish flies flight simulator". CNN. 4 November 2004.
  168. ^ "David Pearce – Humanity Plus". 5 October 2017. Retrieved 30 December 2021.
  169. ^ Stoica A (2010). "Speculations on Robots, Cyborgs & Telepresence". YouTube. from the original on 28 December 2021. Retrieved 28 December 2021.
  170. ^ "Experts to 'redefine the future' at Humanity+ @ CalTech". Kurzweil. Retrieved 30 December 2021.
  171. ^ WO2012100081A2, Stoica, Adrian, "Aggregation of bio-signals from multiple individuals to achieve a collective outcome", issued 2012-07-26 
  172. ^ Wang Y, Jung TP (31 May 2011). "A collaborative brain-computer interface for improving human performance". PLOS ONE. 6 (5): e20422. Bibcode:2011PLoSO...620422W. doi:10.1371/journal.pone.0020422. PMC 3105048. PMID 21655253.
  173. ^ Eckstein MP, Das K, Pham BT, Peterson MF, Abbey CK, Sy JL, Giesbrecht B (January 2012). "Neural decoding of collective wisdom with multi-brain computing". NeuroImage. 59 (1): 94–108. doi:10.1016/j.neuroimage.2011.07.009. PMID 21782959. S2CID 14930969.
  174. ^ Stoica A (September 2012). "MultiMind: Multi-Brain Signal Fusion to Exceed the Power of a Single Brain". 2012 Third International Conference on Emerging Security Technologies. pp. 94–98. doi:10.1109/EST.2012.47. ISBN 978-0-7695-4791-6. S2CID 6783719.
  175. ^ Poli R, Cinel C, Matran-Fernandez A, Sepulveda F, Stoica A (19 March 2013). "Towards cooperative brain-computer interfaces for space navigation". Proceedings of the 2013 international conference on Intelligent user interfaces. IUI '13. New York, NY, USA: Association for Computing Machinery. pp. 149–160. doi:10.1145/2449396.2449417. ISBN 978-1-4503-1965-2. S2CID 13201979.
  176. ^ Poli R, Cinel C, Sepulveda F, Stoica A (February 2013). "Improving decision-making based on visual perception via a collaborative brain-computer interface". 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA). San Diego, CA: IEEE. pp. 1–8. doi:10.1109/CogSIMA.2013.6523816. ISBN 978-1-4673-2437-3. S2CID 25136642.
  177. ^ Matran-Fernandez A, Poli R, Cinel C (November 2013). "Collaborative brain-computer interfaces for the automatic classification of images". 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). pp. 1096–1099. doi:10.1109/NER.2013.6696128. ISBN 978-1-4673-1969-0. S2CID 40341170.
  178. ^ Valeriani D, Cinel C, Poli R (August 2017). "Group Augmentation in Realistic Visual-Search Decisions via a Hybrid Brain-Computer Interface". Scientific Reports. 7 (1): 7772. Bibcode:2017NatSR...7.7772V. doi:10.1038/s41598-017-08265-7. PMC 5552884. PMID 28798411.
  179. ^ Bhattacharyya S, Valeriani D, Cinel C, Citi L, Poli R (August 2021). "Anytime collaborative brain-computer interfaces for enhancing perceptual group decision-making". Scientific Reports. 11 (1): 17008. Bibcode:2021NatSR..1117008B. doi:10.1038/s41598-021-96434-0. PMC 8379268. PMID 34417494.
  180. ^ "Paralyzed Again". MIT Technology Review. Retrieved 8 December 2023.
  181. ^ "Gale - Product Login". galeapps.gale.com. Retrieved 8 December 2023.
  182. ^ Ienca, Marcello; Haselager, Pim (June 2016). "Hacking the brain: brain-computer interfacing technology and the ethics of neurosecurity". Ethics & Information Technology. 18 (2): 117–129. doi:10.1007/s10676-016-9398-9. S2CID 5132634.
  183. ^ Steinert, Steffen; Friedrich, Orsolya (1 February 2020). "Wired Emotions: Ethical Issues of Affective Brain–Computer Interfaces". Science and Engineering Ethics. 26 (1): 351–367. doi:10.1007/s11948-019-00087-2. ISSN 1471-5546. PMC 6978299. PMID 30868377.
  184. ^ Clausen, Jens (1 February 2009). "Man, machine and in between". Nature. 457 (7233): 1080–1081. Bibcode:2009Natur.457.1080C. doi:10.1038/4571080a. ISSN 0028-0836. PMID 19242454. S2CID 205043226.
  185. ^ Haselager, Pim; Vlek, Rutger; Hill, Jeremy; Nijboer, Femke (1 November 2009). "A note on ethical aspects of BCI". Neural Networks. Brain-Machine Interface. 22 (9): 1352–1357. doi:10.1016/j.neunet.2009.06.046. hdl:2066/77533. ISSN 0893-6080. PMID 19616405.
  186. ^ Attiah, Mark A.; Farah, Martha J. (15 May 2014). "Minds, motherboards, and money: futurism and realism in the neuroethics of BCI technologies". Frontiers in Systems Neuroscience. 8: 86. doi:10.3389/fnsys.2014.00086. ISSN 1662-5137. PMC 4030132. PMID 24860445.
  187. ^ Nijboer, Femke; Clausen, Jens; Allison, Brendan Z.; Haselager, Pim (2013). "The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing". Neuroethics. 6 (3): 541–578. doi:10.1007/s12152-011-9132-6. ISSN 1874-5490. PMC 3825606. PMID 24273623.
  188. ^ . Archived from the original on 7 April 2012.
  189. ^ "Mind Games". The Economist. 23 March 2007.
  190. ^ "nia Game Controller Product Page". OCZ Technology Group. Retrieved 30 January 2013.
  191. ^ a b c Li S (8 August 2010). "Mind reading is on the market". Los Angeles Times. Archived from the original on 4 January 2013.
  192. ^ Fruhlinger, Joshua (9 October 2008). "Brains-on with NeuroSky and Square Enix's Judecca mind-control game". Engadget. Retrieved 29 May 2012.
  193. ^ . Physorg.com (10 January 2009). Retrieved on 12 September 2010.
  194. ^ Snider, Mike (7 January 2009). "Toy trains 'Star Wars' fans to use The Force". USA Today. Retrieved 1 May 2010.
  195. ^ "Emotiv Homepage". Emotiv.com. Retrieved 29 December 2009.
  196. ^ . Neurowear. 22 November 2011. Archived from the original on 25 January 2012.
  197. ^ "LIFESUIT Updates & News – They Shall Walk". Theyshallwalk.org. Retrieved 19 December 2016.
  198. ^ "SmartphoneBCI". GitHub. Retrieved 5 June 2018.
  199. ^ "SSVEP_keyboard". GitHub. Retrieved 5 April 2017.
  200. ^ Protalinski, Emil (8 December 2020). "NextMind ships its real-time brain computer interface Dev Kit for $399". VentureBeat. Retrieved 8 September 2021.
  201. ^ Etherington, Darrell (21 December 2020). "NextMind's Dev Kit for mind-controlled computing offers a rare 'wow' factor in tech". TechCrunch. Retrieved 1 April 2024.
  202. ^ "Roadmap - BNCI Horizon 2020". bnci-horizon-2020.eu. Retrieved 5 May 2019.
  203. ^ Brunner C, Birbaumer N, Blankertz B, Guger C, Kübler A, Mattia D, et al. (2015). "BNCI Horizon 2020: towards a roadmap for the BCI community". Brain-Computer Interfaces. 2: 1–10. doi:10.1080/2326263X.2015.1008956. hdl:1874/350349. S2CID 15822773.
  204. ^ Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A (2013). Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications. Berlin Heidelberg: Springer Verlag. ISBN 978-3-642-29746-5.
  205. ^ Edlinger G, Allison BZ, Guger C (2015). "How many people could use a BCI system?". In Kansaku K, Cohen L, Birbaumer N (eds.). Clinical Systems Neuroscience. Tokyo: pringer Verlag Japan. pp. 33–66. ISBN 978-4-431-55037-2.
  206. ^ Chatelle C, Chennu S, Noirhomme Q, Cruse D, Owen AM, Laureys S (2012). "Brain-computer interfacing in disorders of consciousness". Brain Injury. 26 (12): 1510–1522. doi:10.3109/02699052.2012.698362. hdl:2268/162403. PMID 22759199. S2CID 6498232.
  207. ^ Boly M, Massimini M, Garrido MI, Gosseries O, Noirhomme Q, Laureys S, Soddu A (2012). "Brain connectivity in disorders of consciousness". Brain Connectivity. 2 (1): 1–10. doi:10.1089/brain.2011.0049. hdl:2268/131984. PMID 22512333. S2CID 6447538.
  208. ^ Gibson RM, Fernández-Espejo D, Gonzalez-Lara LE, Kwan BY, Lee DH, Owen AM, Cruse D (2014). "Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness". Frontiers in Human Neuroscience. 8: 950. doi:10.3389/fnhum.2014.00950. PMC 4244609. PMID 25505400.
  209. ^ Risetti M, Formisano R, Toppi J, Quitadamo LR, Bianchi L, Astolfi L, et al. (2013). "On ERPs detection in disorders of consciousness rehabilitation". Frontiers in Human Neuroscience. 7: 775. doi:10.3389/fnhum.2013.00775. PMC 3834290. PMID 24312041.
  210. ^ Silvoni S, Ramos-Murguialday A, Cavinato M, Volpato C, Cisotto G, Turolla A, et al. (October 2011). "Brain-computer interface in stroke: a review of progress". Clinical EEG and Neuroscience. 42 (4): 245–252. doi:10.1177/155005941104200410. PMID 22208122. S2CID 37902399.
  211. ^ Leamy DJ, Kocijan J, Domijan K, Duffin J, Roche RA, Commins S, et al. (January 2014). "An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy". Journal of Neuroengineering and Rehabilitation. 11: 9. doi:10.1186/1743-0003-11-9. PMC 3996183. PMID 24468185.
  212. ^ Tung SW, Guan C, Ang KK, Phua KS, Wang C, Zhao L, et al. (July 2013). "Motor imagery BCI for upper limb stroke rehabilitation: An evaluation of the EEG recordings using coherence analysis". 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Vol. 2013. pp. 261–264. doi:10.1109/EMBC.2013.6609487. ISBN 978-1-4577-0216-7. PMID 24109674. S2CID 5071115.
  213. ^ Bai Z, Fong KN, Zhang JJ, Chan J, Ting KH (April 2020). "Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis". Journal of Neuroengineering and Rehabilitation. 17 (1): 57. doi:10.1186/s12984-020-00686-2. PMC 7183617. PMID 32334608.
  214. ^ Remsik A, Young B, Vermilyea R, Kiekhoefer L, Abrams J, Evander Elmore S, et al. (May 2016). "A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke". Expert Review of Medical Devices. 13 (5): 445–454. doi:10.1080/17434440.2016.1174572. PMC 5131699. PMID 27112213.
  215. ^ Monge-Pereira E, Ibañez-Pereda J, Alguacil-Diego IM, Serrano JI, Spottorno-Rubio MP, Molina-Rueda F (September 2017). "Use of Electroencephalography Brain-Computer Interface Systems as a Rehabilitative Approach for Upper Limb Function After a Stroke: A Systematic Review". PM&R. 9 (9): 918–932. doi:10.1016/j.pmrj.2017.04.016. PMID 28512066. S2CID 20808455.
  216. ^ Sabathiel N, Irimia DC, Allison BZ, Guger C, Edlinger G (17 July 2016). "Paired Associative Stimulation with Brain-Computer Interfaces: A New Paradigm for Stroke Rehabilitation". Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience. Lecture Notes in Computer Science. Vol. 9743. pp. 261–272. doi:10.1007/978-3-319-39955-3_25. ISBN 978-3-319-39954-6.
  217. ^ Riccio A, Pichiorri F, Schettini F, Toppi J, Risetti M, Formisano R, et al. (2016). "Interfacing brain with computer to improve communication and rehabilitation after brain damage". Brain-Computer Interfaces: Lab Experiments to Real-World Applications. Progress in Brain Research. Vol. 228. pp. 357–387. doi:10.1016/bs.pbr.2016.04.018. ISBN 978-0-12-804216-8. PMID 27590975.
  218. ^ Várkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CW, et al. (January 2013). "Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke". Neurorehabilitation and Neural Repair. 27 (1): 53–62. doi:10.1177/1545968312445910. PMID 22645108. S2CID 7120989.
  219. ^ Young BM, Nigogosyan Z, Remsik A, Walton LM, Song J, Nair VA, et al. (2014). "Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain-computer interface device". Frontiers in Neuroengineering. 7: 25. doi:10.3389/fneng.2014.00025. PMC 4086321. PMID 25071547.
  220. ^ a b Yuan K, Chen C, Wang X, Chu WC, Tong RK (January 2021). "BCI Training Effects on Chronic Stroke Correlate with Functional Reorganization in Motor-Related Regions: A Concurrent EEG and fMRI Study". Brain Sciences. 11 (1): 56. doi:10.3390/brainsci11010056. PMC 7824842. PMID 33418846.
  221. ^ Mrachacz-Kersting N, Voigt M, Stevenson AJ, Aliakbaryhosseinabadi S, Jiang N, Dremstrup K, Farina D (November 2017). "The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity". Brain Research. 1674: 91–100. doi:10.1016/j.brainres.2017.08.025. hdl:10012/12325. PMID 28859916. S2CID 5866337.
  222. ^ Opie N (2 April 2019). "Research Overview". University of Melbourne Medicine. University of Melbourne. Retrieved 5 December 2019.
  223. ^ Oxley TJ, Opie NL, John SE, Rind GS, Ronayne SM, Wheeler TL, et al. (March 2016). "Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity". Nature Biotechnology. 34 (3): 320–327. doi:10.1038/nbt.3428. PMID 26854476. S2CID 205282364.
  224. ^ "Synchron begins trialling Stentrode neural interface technology". Verdict Medical Devices. 22 September 2019. Retrieved 5 December 2019.
  225. ^ Radzik I, Miziak B, Dudka J, Chrościńska-Krawczyk M, Czuczwar SJ (June 2015). "Prospects of epileptogenesis prevention". Pharmacological Reports. 67 (3): 663–668. doi:10.1016/j.pharep.2015.01.016. PMID 25933984. S2CID 31284248.
  226. ^ Ritaccio A, Brunner P, Gunduz A, Hermes D, Hirsch LJ, Jacobs J, et al. (December 2014). "Proceedings of the Fifth International Workshop on Advances in Electrocorticography". Epilepsy & Behavior. 41: 183–192. doi:10.1016/j.yebeh.2014.09.015. PMC 4268064. PMID 25461213.
  227. ^ Kim DH, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim YS, et al. (June 2010). "Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics". Nature Materials. 9 (6): 511–517. Bibcode:2010NatMa...9..511K. doi:10.1038/nmat2745. PMC 3034223. PMID 20400953.
  228. ^ Boppart SA, Wheeler BC, Wallace CS (January 1992). "A flexible perforated microelectrode array for extended neural recordings". IEEE Transactions on Bio-Medical Engineering. 39 (1): 37–42. doi:10.1109/10.108125. PMID 1572679. S2CID 36593459.
  229. ^ Kim DH, Ghaffari R, Lu N, Rogers JA (2012). "Flexible and stretchable electronics for biointegrated devices". Annual Review of Biomedical Engineering. 14: 113–128. doi:10.1146/annurev-bioeng-071811-150018. PMID 22524391. S2CID 5223203.
  230. ^ Thompson CH, Zoratti MJ, Langhals NB, Purcell EK (April 2016). "Regenerative Electrode Interfaces for Neural Prostheses". Tissue Engineering. Part B, Reviews. 22 (2): 125–135. doi:
brain, computer, interface, direct, brain, control, prosthetic, devices, neuroprosthetics, this, article, require, copy, editing, grammar, style, cohesion, tone, spelling, assist, editing, april, 2024, learn, when, remove, this, message, brain, computer, inter. For direct brain control of prosthetic devices see Neuroprosthetics This article may require copy editing for grammar style cohesion tone or spelling You can assist by editing it April 2024 Learn how and when to remove this message A brain computer interface BCI sometimes called a brain machine interface BMI is a direct communication pathway between the brain s electrical activity and an external device most commonly a computer or robotic limb BCIs are often directed at researching mapping assisting augmenting or repairing human cognitive or sensory motor functions 1 They are often conceptualized as a human machine interface that skips the intermediary component of the physical movement of body parts although they also raise the possibility of the erasure of the discreteness of brain and machine Implementations of BCIs range from non invasive EEG MEG MRI and partially invasive ECoG and endovascular to invasive microelectrode array based on how close electrodes get to brain tissue 2 Research on BCIs began in the 1970s by Jacques Vidal at the University of California Los Angeles UCLA under a grant from the National Science Foundation followed by a contract from DARPA 3 4 Vidal s 1973 paper marks the first appearance of the expression brain computer interface in scientific literature Due to the cortical plasticity of the brain signals from implanted prostheses can after adaptation be handled by the brain like natural sensor or effector channels 5 Following years of animal experimentation the first neuroprosthetic devices implanted in humans appeared in the mid 1990s Recently studies in human computer interaction via the application of machine learning to statistical temporal features extracted from the frontal lobe EEG brainwave data has had high levels of success in classifying mental states relaxed neutral concentrating 6 mental emotional states negative neutral positive 7 and thalamocortical dysrhythmia 8 Contents 1 History 2 Versus neuroprosthetics 3 Animal BCI research 3 1 Early work 3 2 Prominent research successes 3 2 1 Kennedy and Yang Dan 3 2 2 Nicolelis 3 2 3 Donoghue Schwartz and Andersen 3 2 4 Other research 3 2 5 The BCI Award 4 Human BCI research 4 1 Invasive BCIs 4 1 1 Vision 4 1 2 Movement 4 1 3 Communication 4 1 4 Technical challenges 4 2 Partially invasive BCIs 4 2 1 Endovascular 4 2 2 ECoG 4 3 Non invasive BCIs 4 3 1 Functional near infrared spectroscopy 4 3 2 Electroencephalography EEG based brain computer interfaces 4 3 3 Dry active electrode arrays 4 3 4 SSVEP mobile EEG BCIs 4 3 5 Limitations 4 3 6 Prosthesis and environment control 4 3 7 MEG and MRI 4 3 8 BCI control strategies in neurogaming 4 3 8 1 Motor imagery 4 3 8 2 Bio neurofeedback for passive BCI designs 4 3 8 3 Visual evoked potential VEP 4 3 9 Non brain based human computer interface physiological computing 4 3 9 1 Electro oculography EOG 4 3 9 2 Pupil size oscillation 4 4 Synthetic telepathy 5 Cell culture BCIs 6 Collaborative BCIs 7 Ethical considerations 8 Low cost BCI based interfaces 9 Future directions 9 1 Disorders of consciousness DOC 9 2 Motor recovery 9 3 Functional brain mapping 9 4 Flexible devices 9 5 Neural dust 10 See also 11 Notes 12 References 13 Further reading 14 External linksHistory editThe history of brain computer interfaces BCIs starts with Hans Berger s discovery of the electrical activity of the human brain and the development of electroencephalography EEG In 1924 Berger was the first to record human brain activity by means of EEG Berger was able to identify oscillatory activity such as Berger s wave or the alpha wave 8 13 Hz by analyzing EEG traces Berger s first recording device was very rudimentary He inserted silver wires under the scalps of his patients These were later replaced by silver foils attached to the patient s head by rubber bandages Berger connected these sensors to a Lippmann capillary electrometer with disappointing results However more sophisticated measuring devices such as the Siemens double coil recording galvanometer which displayed electric voltages as small as one ten thousandth of a volt led to success Berger analyzed the interrelation of alternations in his EEG wave diagrams with brain diseases EEGs permitted completely new possibilities for the research of human brain activities Although the term had not yet been coined one of the earliest examples of a working brain machine interface was the piece Music for Solo Performer 1965 by the American composer Alvin Lucier The piece makes use of EEG and analog signal processing hardware filters amplifiers and a mixing board to stimulate acoustic percussion instruments To perform the piece one must produce alpha waves and thereby play the various percussion instruments via loudspeakers which are placed near or directly on the instruments themselves 9 UCLA Professor Jacques Vidal coined the term BCI and produced the first peer reviewed publications on this topic 3 4 Vidal is widely recognized as the inventor of BCIs in the BCI community as reflected in numerous peer reviewed articles reviewing and discussing the field e g 10 11 12 A review pointed out that Vidal s 1973 paper stated the BCI challenge 13 of controlling external objects using EEG signals and especially use of Contingent Negative Variation CNV potential as a challenge for BCI control The 1977 experiment Vidal described was the first application of BCI after his 1973 BCI challenge It was a noninvasive EEG actually Visual Evoked Potentials VEP control of a cursor like graphical object on a computer screen The demonstration was movement in a maze 14 After his early contributions Vidal was inactive in BCI research and BCI events such as conferences for many years In 2011 however he gave a lecture in Graz Austria supported by the Future BNCI project presenting the first BCI which earned a standing ovation Vidal was joined by his wife Laryce Vidal who previously worked with him at UCLA on his first BCI project In 1988 a report was given on noninvasive EEG control of a physical object a robot The experiment described was EEG control of multiple start stop restart of the robot movement along an arbitrary trajectory defined by a line drawn on a floor The line following behavior was the default robot behavior utilizing autonomous intelligence and autonomous source of energy 15 16 This 1988 report written by Stevo Bozinovski Mihail Sestakov and Liljana Bozinovska was the first one about a robot control using EEG 17 18 In 1990 a report was given on a closed loop bidirectional adaptive BCI controlling computer buzzer by an anticipatory brain potential the Contingent Negative Variation CNV potential 19 20 The experiment described how an expectation state of the brain manifested by CNV controls in a feedback loop the S2 buzzer in the S1 S2 CNV paradigm The obtained cognitive wave representing the expectation learning in the brain is named Electroexpectogram EXG The CNV brain potential was part of the BCI challenge presented by Vidal in his 1973 paper Studies in 2010s suggested the potential ability of neural stimulation to restore functional connectively and associated behaviors through modulation of molecular mechanisms of synaptic efficacy 21 22 This opened the door for the concept that BCI technologies may be able to restore function in addition to enabling functionality Since 2013 DARPA has funded BCI technology through the BRAIN initiative which has supported work out of the University of Pittsburgh Medical Center 23 Paradromics 24 Brown 25 and Synchron 26 among others Versus neuroprosthetics editMain article Neuroprosthetics Neuroprosthetics is an area of neuroscience concerned with neural prostheses that is using artificial devices to replace the function of impaired nervous systems and brain related problems or of sensory organs or organs itself bladder diaphragm etc As of December 2010 cochlear implants had been implanted as neuroprosthetic device in approximately 736 900 people worldwide 27 There are also several neuroprosthetic devices that aim to restore vision including retinal implants The first neuroprosthetic device however was the pacemaker The terms are sometimes used interchangeably Neuroprosthetics and BCIs seek to achieve the same aims such as restoring sight hearing movement ability to communicate and even cognitive function 1 Both use similar experimental methods and surgical techniques Animal BCI research editSee also Remote control animal Several laboratories have managed to record signals from monkey and rat cerebral cortices to operate BCIs to produce movement Monkeys have navigated computer cursors on screen and commanded robotic arms to perform simple tasks simply by thinking about the task and seeing the visual feedback but without any motor output 28 In May 2008 photographs that showed a monkey at the University of Pittsburgh Medical Center operating a robotic arm by thinking were published in a number of well known science journals and magazines 29 Sheep too have been used to evaluate BCI technology including Synchron s Stentrode In 2020 Elon Musk s Neuralink was successfully implanted in a pig 30 announced in a widely viewed webcast In 2021 Elon Musk announced that he had successfully enabled a monkey to play video games using Neuralink s device 31 Early work edit nbsp Monkey operating a robotic arm with brain computer interfacing Schwartz lab University of Pittsburgh In 1969 the operant conditioning studies of Fetz and colleagues at the Regional Primate Research Center and Department of Physiology and Biophysics University of Washington School of Medicine in Seattle showed for the first time that monkeys could learn to control the deflection of a biofeedback meter arm with neural activity 32 Similar work in the 1970s established that monkeys could quickly learn to voluntarily control the firing rates of individual and multiple neurons in the primary motor cortex if they were rewarded for generating appropriate patterns of neural activity 33 Studies that developed algorithms to reconstruct movements from motor cortex neurons which control movement date back to the 1970s In the 1980s Apostolos Georgopoulos at Johns Hopkins University found a mathematical relationship between the electrical responses of single motor cortex neurons in rhesus macaque monkeys and the direction in which they moved their arms based on a cosine function He also found that dispersed groups of neurons in different areas of the monkey s brains collectively controlled motor commands but was able to record the firings of neurons in only one area at a time because of the technical limitations imposed by his equipment 34 There has been rapid development in BCIs since the mid 1990s 35 Several groups have been able to capture complex brain motor cortex signals by recording from neural ensembles groups of neurons and using these to control external devices Prominent research successes edit Kennedy and Yang Dan edit Phillip Kennedy who later founded Neural Signals in 1987 and colleagues built the first intracortical brain computer interface by implanting neurotrophic cone electrodes into monkeys citation needed nbsp Yang Dan and colleagues recordings of cat vision using a BCI implanted in the lateral geniculate nucleus top row original image bottom row recording In 1999 researchers led by Yang Dan at the University of California Berkeley decoded neuronal firings to reproduce images seen by cats The team used an array of electrodes embedded in the thalamus which integrates all of the brain s sensory input of sharp eyed cats Researchers targeted 177 brain cells in the thalamus lateral geniculate nucleus area which decodes signals from the retina The cats were shown eight short movies and their neuron firings were recorded Using mathematical filters the researchers decoded the signals to generate movies of what the cats saw and were able to reconstruct recognizable scenes and moving objects 36 Similar results in humans have since been achieved by researchers in Japan see below Nicolelis edit Miguel Nicolelis a professor at Duke University in Durham North Carolina has been a prominent proponent of using multiple electrodes spread over a greater area of the brain to obtain neuronal signals to drive a BCI After conducting initial studies in rats during the 1990s Nicolelis and his colleagues developed BCIs that decoded brain activity in owl monkeys and used the devices to reproduce monkey movements in robotic arms Monkeys have advanced reaching and grasping abilities and good hand manipulation skills making them ideal test subjects for this kind of work By 2000 the group succeeded in building a BCI that reproduced owl monkey movements while the monkey operated a joystick or reached for food 37 The BCI operated in real time and could also control a separate robot remotely over Internet Protocol But the monkeys could not see the arm moving and did not receive any feedback a so called open loop BCI nbsp Diagram of the BCI developed by Miguel Nicolelis and colleagues for use on rhesus monkeys Later experiments by Nicolelis using rhesus monkeys succeeded in closing the feedback loop and reproduced monkey reaching and grasping movements in a robot arm With their deeply cleft and furrowed brains rhesus monkeys are considered to be better models for human neurophysiology than owl monkeys The monkeys were trained to reach and grasp objects on a computer screen by manipulating a joystick while corresponding movements by a robot arm were hidden 38 39 The monkeys were later shown the robot directly and learned to control it by viewing its movements The BCI used velocity predictions to control reaching movements and simultaneously predicted handgripping force In 2011 O Doherty and colleagues showed a BCI with sensory feedback with rhesus monkeys The monkey was brain controlling the position of an avatar arm while receiving sensory feedback through direct intracortical stimulation ICMS in the arm representation area of the sensory cortex 40 Donoghue Schwartz and Andersen edit nbsp BCIs are a core focus of the Carney Institute for Brain Science at Brown University Other laboratories which have developed BCIs and algorithms that decode neuron signals include the Carney Institute for Brain Science at Brown University and the labs of Andrew Schwartz at the University of Pittsburgh and Richard Andersen at Caltech These researchers have been able to produce working BCIs even using recorded signals from far fewer neurons than did Nicolelis 15 30 neurons versus 50 200 neurons John Donoghue s lab at the Carney Institute reported training rhesus monkeys to use a BCI to track visual targets on a computer screen closed loop BCI with or without assistance of a joystick 41 Schwartz s group created a BCI for three dimensional tracking in virtual reality and also reproduced BCI control in a robotic arm 42 The same group also created headlines when they demonstrated that a monkey could feed itself pieces of fruit and marshmallows using a robotic arm controlled by the animal s own brain signals 43 44 45 Andersen s group used recordings of premovement activity from the posterior parietal cortex in their BCI including signals created when experimental animals anticipated receiving a reward 46 Other research edit In addition to predicting kinematic and kinetic parameters of limb movements BCIs that predict electromyographic or electrical activity of the muscles of primates are being developed 47 Such BCIs could be used to restore mobility in paralyzed limbs by electrically stimulating muscles Miguel Nicolelis and colleagues demonstrated that the activity of large neural ensembles can predict arm position This work made possible creation of BCIs that read arm movement intentions and translate them into movements of artificial actuators Carmena and colleagues 38 programmed the neural coding in a BCI that allowed a monkey to control reaching and grasping movements by a robotic arm Lebedev and colleagues 39 argued that brain networks reorganize to create a new representation of the robotic appendage in addition to the representation of the animal s own limbs In 2019 researchers from UCSF published a study where they demonstrated a BCI that had the potential to help patients with speech impairment caused by neurological disorders Their BCI used high density electrocorticography to tap neural activity from a patient s brain and used deep learning methods to synthesize speech 48 49 In 2021 researchers from the same group published a study showing the potential of a BCI to decode words and sentences in an anarthric patient who had been unable to speak for over 15 years 50 51 The biggest impediment to BCI technology at present is the lack of a sensor modality that provides safe accurate and robust access to brain signals It is conceivable or even likely however that such a sensor will be developed within the next twenty years The use of such a sensor should greatly expand the range of communication functions that can be provided using a BCI Development and implementation of a BCI system is complex and time consuming In response to this problem Gerwin Schalk has been developing a general purpose system for BCI research called BCI2000 BCI2000 has been in development since 2000 in a project led by the Brain Computer Interface R amp D Program at the Wadsworth Center of the New York State Department of Health in Albany New York United States 52 A new wireless approach uses light gated ion channels such as Channelrhodopsin to control the activity of genetically defined subsets of neurons in vivo In the context of a simple learning task illumination of transfected cells in the somatosensory cortex influenced the decision making process of freely moving mice 53 The use of BMIs has also led to a deeper understanding of neural networks and the central nervous system Research has shown that despite the inclination of neuroscientists to believe that neurons have the most effect when working together single neurons can be conditioned through the use of BMIs to fire at a pattern that allows primates to control motor outputs The use of BMIs has led to development of the single neuron insufficiency principle which states that even with a well tuned firing rate single neurons can only carry a narrow amount of information and therefore the highest level of accuracy is achieved by recording firings of the collective ensemble Other principles discovered with the use of BMIs include the neuronal multitasking principle the neuronal mass principle the neural degeneracy principle and the plasticity principle 54 BCIs are also proposed to be applied by users without disabilities A user centered categorization of BCI approaches by Thorsten O Zander and Christian Kothe introduces the term passive BCI 55 Next to active and reactive BCI that are used for directed control passive BCIs allow for assessing and interpreting changes in the user state during Human Computer Interaction HCI In a secondary implicit control loop the computer system adapts to its user improving its usability in general Beyond BCI systems that decode neural activity to drive external effectors BCI systems may be used to encode signals from the periphery These sensory BCI devices enable real time behaviorally relevant decisions based upon closed loop neural stimulation 56 The BCI Award edit The Annual BCI Research Award is awarded in recognition of outstanding and innovative research in the field of Brain Computer Interfaces Each year a renowned research laboratory is asked to judge the submitted projects The jury consists of world leading BCI experts recruited by the awarding laboratory The jury selects twelve nominees then chooses a first second and third place winner who receive awards of 3 000 2 000 and 1 000 respectively Human BCI research editInvasive BCIs edit Invasive BCI requires surgery to implant electrodes under the scalp for communicating brain signals The main advantage is to provide more accurate reading however its downside includes side effects from the surgery including scar tissue which can make brain signals weaker In addition according to the research of Abdulkader et al 2015 57 the body may not accept the implanted electrodes and this can cause a medical condition Vision edit Invasive BCI research has targeted repairing damaged sight and providing new functionality for people with paralysis Invasive BCIs are implanted directly into the grey matter of the brain during neurosurgery Because they lie in the grey matter invasive devices produce the highest quality signals of BCI devices but are prone to scar tissue build up causing the signal to become weaker or even non existent as the body reacts to a foreign object in the brain 58 In vision science direct brain implants have been used to treat non congenital acquired blindness One of the first scientists to produce a working brain interface to restore sight was private researcher William Dobelle Dobelle s first prototype was implanted into Jerry a man blinded in adulthood in 1978 A single array BCI containing 68 electrodes was implanted onto Jerry s visual cortex and succeeded in producing phosphenes the sensation of seeing light The system included cameras mounted on glasses to send signals to the implant Initially the implant allowed Jerry to see shades of grey in a limited field of vision at a low frame rate This also required him to be hooked up to a mainframe computer but shrinking electronics and faster computers made his artificial eye more portable and now enable him to perform simple tasks unassisted 59 nbsp Dummy unit illustrating the design of a BrainGate interface In 2002 Jens Naumann also blinded in adulthood became the first in a series of 16 paying patients to receive Dobelle s second generation implant marking one of the earliest commercial uses of BCIs The second generation device used a more sophisticated implant enabling better mapping of phosphenes into coherent vision Phosphenes are spread out across the visual field in what researchers call the starry night effect Immediately after his implant Jens was able to use his imperfectly restored vision to drive an automobile slowly around the parking area of the research institute 60 Unfortunately Dobelle died in 2004 61 before his processes and developments were documented Subsequently when Mr Naumann and the other patients in the program began having problems with their vision there was no relief and they eventually lost their sight again Naumann wrote about his experience with Dobelle s work in Search for Paradise A Patient s Account of the Artificial Vision Experiment 62 and has returned to his farm in Southeast Ontario Canada to resume his normal activities 63 Movement edit BCIs focusing on motor neuroprosthetics aim to either restore movement in individuals with paralysis or provide devices to assist them such as interfaces with computers or robot arms Researchers at Emory University in Atlanta led by Philip Kennedy and Roy Bakay were first to install a brain implant in a human that produced signals of high enough quality to simulate movement Their patient Johnny Ray 1944 2002 developed locked in syndrome after having a brain stem stroke in 1997 Ray s implant was installed in 1998 and he lived long enough to start working with the implant eventually learning to control a computer cursor he died in 2002 of a brain aneurysm 64 Tetraplegic Matt Nagle became the first person to control an artificial hand using a BCI in 2005 as part of the first nine month human trial of Cyberkinetics s BrainGate chip implant Implanted in Nagle s right precentral gyrus area of the motor cortex for arm movement the 96 electrode BrainGate implant allowed Nagle to control a robotic arm by thinking about moving his hand as well as a computer cursor lights and TV 65 One year later professor Jonathan Wolpaw received the prize of the Altran Foundation for Innovation to develop a Brain Computer Interface with electrodes located on the surface of the skull instead of directly in the brain 66 More recently research teams led by the BrainGate group at Brown University and a group led by University of Pittsburgh Medical Center both in collaborations with the United States Department of Veterans Affairs have demonstrated further success in direct control of robotic prosthetic limbs with many degrees of freedom using direct connections to arrays of neurons in the motor cortex of patients with tetraplegia 67 68 Communication edit In May 2021 a Stanford University team reported a successful proof of concept test that enabled a quadraplegic participant to input English sentences at about 86 characters per minute and 18 words per minute The participant imagined moving his hand to write letters and the system performed handwriting recognition on electrical signals detected in the motor cortex utilizing hidden Markov models and recurrent neural networks for decoding 69 70 A report published in July 2021 reported a paralyzed patient was able to communicate 15 words per minute using a brain implant that analyzed motor neurons that previously controlled the vocal tract 71 50 In a recent review article researchers raised an open question of whether human information transfer rates can surpass that of language with BCIs Given that recent language research has demonstrated that human information transfer rates are relatively constant across many languages there may exist a limit at the level of information processing in the brain On the contrary this upper limit of information transfer rate may be intrinsic to language itself as a modality for information transfer 72 In 2023 two studies used BCIs with recurrent neural network to decode speech at a record rate of 62 words per minute and 78 words per minute 73 74 75 Technical challenges edit There exist a number of technical challenges to recording brain activity with invasive BCIs Advances in CMOS technology are pushing and enabling integrated invasive BCI designs with smaller size lower power requirements and higher signal acquisition capabilities 76 Invasive BCIs involve electrodes that penetrate brain tissue in an attempt to record action potential signals also known as spikes from individual or small groups of neurons near the electrode The interface between a recording electrode and the electrolytic solution surrounding neurons has been modelled using the Hodgkin Huxley model 77 78 Electronic limitations to invasive BCIs have been an active area of research in recent decades While intracellular recordings of neurons reveal action potential voltages on the scale of hundreds of millivolts chronic invasive BCIs rely on recording extracellular voltages which typically are three orders of magnitude smaller existing at hundreds of microvolts 79 Further adding to the challenge of detecting signals on the scale of microvolts is the fact that the electrode tissue interface has a high capacitance at small voltages Due to the nature of these small signals for BCI systems that incorporate functionality onto an integrated circuit each electrode requires its own amplifier and ADC which convert analog extracellular voltages into digital signals 79 Because a typical neuron action potential lasts for one millisecond BCIs measuring spikes must have sampling rates ranging from 300 Hz to 5 kHz Yet another concern is that invasive BCIs must be low power so as to dissipate less heat to surrounding tissue at the most basic level more power is traditionally needed to optimize signal to noise ratio 78 Optimal battery design is an active area of research in BCIs 80 nbsp Illustration of invasive and partially invasive BCIs electrocorticography ECoG endovascular and intracortical microelectrode Challenges existing in the area of material science are central to the design of invasive BCIs Variations in signal quality over time have been commonly observed with implantable microelectrodes 81 82 Optimal material and mechanical characteristics for long term signal stability in invasive BCIs has been an active area of research 83 It has been proposed that the formation of glial scarring secondary to damage at the electrode tissue interface is likely responsible for electrode failure and reduced recording performance 84 Research has suggested that blood brain barrier leakage either at the time of insertion or over time may be responsible for the inflammatory and glial reaction to chronic microelectrodes implanted in the brain 84 85 As a result flexible 86 87 88 and tissue like designs 89 90 have been researched and developed to minimize foreign body reaction by means of matching the Young s modulus of the electrode closer to that of brain tissue 89 Partially invasive BCIs edit Partially invasive BCI devices are implanted inside the skull but rest outside the brain rather than within the grey matter They produce better resolution signals than non invasive BCIs where the bone tissue of the cranium deflects and deforms signals and have a lower risk of forming scar tissue in the brain than fully invasive BCIs There has been preclinical demonstration of intracortical BCIs from the stroke perilesional cortex 91 Endovascular edit A systematic review published in 2020 detailed multiple studies both clinical and non clinical dating back decades investigating the feasibility of endovascular BCIs 92 In recent years the biggest advance in partially invasive BCIs has emerged in the area of interventional neurology 2 In 2010 researchers affiliated with University of Melbourne had begun developing a BCI that could be inserted via the vascular system The Australian neurologist Thomas Oxley Mount Sinai Hospital conceived the idea for this BCI called Stentrode which has received funding from DARPA Preclinical studies evaluated the technology in sheep The Stentrode a monolithic stent electrode array is designed to be delivered via an intravenous catheter under image guidance to the superior sagittal sinus in the region which lies adjacent to motor cortex 93 This proximity to motor cortex underlies the Stentrode s ability to measure neural activity The procedure is most similar to how venous sinus stents are placed for the treatment of idiopathic intracranial hypertension 94 The Stentrode communicates neural activity to a battery less telemetry unit implanted in the chest which communicates wirelessly with an external telemetry unit capable of power and data transfer While an endovascular BCI benefits from avoiding craniotomy for insertion risks such as clotting and venous thrombosis are possible First in human trials with the Stentrode are underway 93 In November 2020 two participants with amyotrophic lateral sclerosis were able to wirelessly control an operating system to text email shop and bank using direct thought through the Stentrode brain computer interface 95 marking the first time a brain computer interface was implanted via the patient s blood vessels eliminating the need for open brain surgery In January 2023 researchers reported no serious adverse events during the first year for all four patients who could use it to operate computers 96 97 ECoG edit Electrocorticography ECoG measures the electrical activity of the brain taken from beneath the skull in a similar way to non invasive electroencephalography but the electrodes are embedded in a thin plastic pad that is placed above the cortex beneath the dura mater 98 ECoG technologies were first trialled in humans in 2004 by Eric Leuthardt and Daniel Moran from Washington University in St Louis In a later trial the researchers enabled a teenage boy to play Space Invaders using his ECoG implant 99 This research indicates that control is rapid requires minimal training and may be an ideal tradeoff with regards to signal fidelity and level of invasiveness note 1 Signals can be either subdural or epidural but are not taken from within the brain parenchyma itself It has not been studied extensively until recently due to the limited access of subjects Currently the only manner to acquire the signal for study is through the use of patients requiring invasive monitoring for localization and resection of an epileptogenic focus ECoG is a very promising intermediate BCI modality because it has higher spatial resolution better signal to noise ratio wider frequency range and less training requirements than scalp recorded EEG and at the same time has lower technical difficulty lower clinical risk and may have superior long term stability than intracortical single neuron recording 101 This feature profile and recent evidence of the high level of control with minimal training requirements shows potential for real world application for people with motor disabilities 102 103 Light reactive imaging BCI devices are still in the realm of theory Recent work published by Edward Chang and Joseph Makin from UCSF revealed that ECoG signals could be used to decode speech from epilepsy patients implanted with high density ECoG arrays over the peri Sylvian cortices 104 105 Their study achieved word error rates of 3 a marked improvement from prior publications utilizing an encoder decoder neural network which translated ECoG data into one of fifty sentences composed of 250 unique words Non invasive BCIs edit There have also been experiments in humans using non invasive neuroimaging technologies as interfaces The substantial majority of published BCI work involves noninvasive EEG based BCIs Noninvasive EEG based technologies and interfaces have been used for a much broader variety of applications Although EEG based interfaces are easy to wear and do not require surgery they have relatively poor spatial resolution and cannot effectively use higher frequency signals because the skull dampens signals dispersing and blurring the electromagnetic waves created by the neurons EEG based interfaces also require some time and effort prior to each usage session whereas non EEG based ones as well as invasive ones require no prior usage training Overall the best BCI for each user depends on numerous factors Functional near infrared spectroscopy edit In 2014 and 2017 a BCI using functional near infrared spectroscopy for locked in patients with amyotrophic lateral sclerosis ALS was able to restore some basic ability of the patients to communicate with other people 106 107 Electroencephalography EEG based brain computer interfaces edit nbsp Recordings of brainwaves produced by an electroencephalogram After the BCI challenge was stated by Vidal in 1973 the initial reports on non invasive approach included control of a cursor in 2D using VEP Vidal 1977 control of a buzzer using CNV Bozinovska et al 1988 1990 control of a physical object a robot using a brain rhythm alpha Bozinovski et al 1988 control of a text written on a screen using P300 Farwell and Donchin 1988 13 In the early days of BCI research another substantial barrier to using electroencephalography EEG as a brain computer interface was the extensive training required before users can work the technology For example in experiments beginning in the mid 1990s Niels Birbaumer at the University of Tubingen in Germany trained severely paralysed people to self regulate the slow cortical potentials in their EEG to such an extent that these signals could be used as a binary signal to control a computer cursor 108 Birbaumer had earlier trained epileptics to prevent impending fits by controlling this low voltage wave The experiment saw ten patients trained to move a computer cursor by controlling their brainwaves The process was slow requiring more than an hour for patients to write 100 characters with the cursor while training often took many months However the slow cortical potential approach to BCIs has not been used in several years since other approaches require little or no training are faster and more accurate and work for a greater proportion of users Another research parameter is the type of oscillatory activity that is measured Gert Pfurtscheller founded the BCI Lab 1991 and fed his research results on motor imagery in the first online BCI based on oscillatory features and classifiers Together with Birbaumer and Jonathan Wolpaw at New York State University they focused on developing technology that would allow users to choose the brain signals they found easiest to operate a BCI including mu and beta rhythms A further parameter is the method of feedback used and this is shown in studies of P300 signals Patterns of P300 waves are generated involuntarily stimulus feedback when people see something they recognize and may allow BCIs to decode categories of thoughts without training patients first By contrast the biofeedback methods described above require learning to control brainwaves so the resulting brain activity can be detected In 2005 it was reported research on EEG emulation of digital control circuits for BCI with example of a CNV flip flop 109 In 2009 it was reported noninvasive EEG control of a robotic arm using a CNV flip flop 110 In 2011 it was reported control of two robotic arms solving Tower of Hanoi task with three disks using a CNV flip flop 111 In 2015 it was described EEG emulation of a Schmitt trigger flip flop demultiplexer and modem 112 While an EEG based brain computer interface has been pursued extensively by a number of research labs recent advancements made by Bin He and his team at the University of Minnesota suggest the potential of an EEG based brain computer interface to accomplish tasks close to invasive brain computer interface Using advanced functional neuroimaging including BOLD functional MRI and EEG source imaging Bin He and co workers identified the co variation and co localization of electrophysiological and hemodynamic signals induced by motor imagination 113 Refined by a neuroimaging approach and by a training protocol Bin He and co workers demonstrated the ability of a non invasive EEG based brain computer interface to control the flight of a virtual helicopter in 3 dimensional space based upon motor imagination 114 In June 2013 it was announced that Bin He had developed the technique to enable a remote control helicopter to be guided through an obstacle course 115 In addition to a brain computer interface based on brain waves as recorded from scalp EEG electrodes Bin He and co workers explored a virtual EEG signal based brain computer interface by first solving the EEG inverse problem and then used the resulting virtual EEG for brain computer interface tasks Well controlled studies suggested the merits of such a source analysis based brain computer interface 116 A 2014 study found that severely motor impaired patients could communicate faster and more reliably with non invasive EEG BCI than with any muscle based communication channel 117 A 2016 study found that the Emotiv EPOC device may be more suitable for control tasks using the attention meditation level or eye blinking than the Neurosky MindWave device 118 A 2019 study found that the application of evolutionary algorithms could improve EEG mental state classification with a non invasive Muse device enabling high quality classification of data acquired by a cheap consumer grade EEG sensing device 119 In a 2021 systematic review of randomized controlled trials using BCI for upper limb rehabilitation after stroke EEG based BCI was found to have significant efficacy in improving upper limb motor function compared to control therapies More specifically BCI studies that utilized band power features motor imagery and functional electrical stimulation in their design were found to be more efficacious than alternatives 120 Another 2021 systematic review focused on robotic assisted EEG based BCI for hand rehabilitation after stroke Improvement in motor assessment scores was observed in three of eleven studies included in the systematic review 121 Dry active electrode arrays edit In the early 1990s Babak Taheri at University of California Davis demonstrated the first single and also multichannel dry active electrode arrays using micro machining The single channel dry EEG electrode construction and results were published in 1994 122 The arrayed electrode was also demonstrated to perform well compared to silver silver chloride electrodes The device consisted of four sites of sensors with integrated electronics to reduce noise by impedance matching The advantages of such electrodes are 1 no electrolyte used 2 no skin preparation 3 significantly reduced sensor size and 4 compatibility with EEG monitoring systems The active electrode array is an integrated system made of an array of capacitive sensors with local integrated circuitry housed in a package with batteries to power the circuitry This level of integration was required to achieve the functional performance obtained by the electrode The electrode was tested on an electrical test bench and on human subjects in four modalities of EEG activity namely 1 spontaneous EEG 2 sensory event related potentials 3 brain stem potentials and 4 cognitive event related potentials The performance of the dry electrode compared favorably with that of the standard wet electrodes in terms of skin preparation no gel requirements dry and higher signal to noise ratio 123 In 1999 researchers at Case Western Reserve University in Cleveland Ohio led by Hunter Peckham used 64 electrode EEG skullcap to return limited hand movements to quadriplegic Jim Jatich As Jatich concentrated on simple but opposite concepts like up and down his beta rhythm EEG output was analysed using software to identify patterns in the noise A basic pattern was identified and used to control a switch Above average activity was set to on below average off As well as enabling Jatich to control a computer cursor the signals were also used to drive the nerve controllers embedded in his hands restoring some movement 124 SSVEP mobile EEG BCIs edit In 2009 the NCTU Brain Computer Interface headband was reported The researchers who developed this BCI headband also engineered silicon based microelectro mechanical system MEMS dry electrodes designed for application in non hairy sites of the body These electrodes were secured to the DAQ board in the headband with snap on electrode holders The signal processing module measured alpha activity and the Bluetooth enabled phone assessed the patients alertness and capacity for cognitive performance When the subject became drowsy the phone sent arousing feedback to the operator to rouse them This research was supported by the National Science Council Taiwan R O C NSC National Chiao Tung University Taiwan s Ministry of Education and the U S Army Research Laboratory 125 In 2011 researchers reported a cellular based BCI with the capability of taking EEG data and converting it into a command to cause the phone to ring This research was supported in part by Abraxis Bioscience LLP the U S Army Research Laboratory and the Army Research Office The developed technology was a wearable system composed of a four channel bio signal acquisition amplification module a wireless transmission module and a Bluetooth enabled cell phone The electrodes were placed so that they pick up steady state visual evoked potentials SSVEPs 126 SSVEPs are electrical responses to flickering visual stimuli with repetition rates over 6 Hz 126 that are best found in the parietal and occipital scalp regions of the visual cortex 127 128 129 It was reported that with this BCI setup all study participants were able to initiate the phone call with minimal practice in natural environments 130 The scientists claim that their studies using a single channel fast Fourier transform FFT and multiple channel system canonical correlation analysis CCA algorithm support the capacity of mobile BCIs 126 131 The CCA algorithm has been applied in other experiments investigating BCIs with claimed high performance in accuracy as well as speed 132 While the cellular based BCI technology was developed to initiate a phone call from SSVEPs the researchers said that it can be translated for other applications such as picking up sensorimotor mu beta rhythms to function as a motor imagery based BCI 126 In 2013 comparative tests were performed on android cell phone tablet and computer based BCIs analyzing the power spectrum density of resultant EEG SSVEPs The stated goals of this study which involved scientists supported in part by the U S Army Research Laboratory were to increase the practicability portability and ubiquity of an SSVEP based BCI for daily use Citation It was reported that the stimulation frequency on all mediums was accurate although the cell phone s signal demonstrated some instability The amplitudes of the SSVEPs for the laptop and tablet were also reported to be larger than those of the cell phone These two qualitative characterizations were suggested as indicators of the feasibility of using a mobile stimulus BCI 131 Limitations edit In 2011 researchers stated that continued work should address ease of use performance robustness reducing hardware and software costs 126 One of the difficulties with EEG readings is the large susceptibility to motion artifacts 133 In most of the previously described research projects the participants were asked to sit still reducing head and eye movements as much as possible and measurements were taken in a laboratory setting However since the emphasized application of these initiatives had been in creating a mobile device for daily use 131 the technology had to be tested in motion In 2013 researchers tested mobile EEG based BCI technology measuring SSVEPs from participants as they walked on a treadmill at varying speeds This research was supported by the Office of Naval Research Army Research Office and the U S Army Research Laboratory Stated results were that as speed increased the SSVEP detectability using CCA decreased As independent component analysis ICA had been shown to be efficient in separating EEG signals from noise 134 the scientists applied ICA to CCA extracted EEG data They stated that the CCA data with and without ICA processing were similar Thus they concluded that CCA independently demonstrated a robustness to motion artifacts that indicates it may be a beneficial algorithm to apply to BCIs used in real world conditions 128 One of the major problems in EEG based BCI applications is the low spatial resolution Several solutions have been suggested to address this issue since 2019 which include EEG source connectivity based on graph theory EEG pattern recognition based on Topomap EEG fMRI fusion and so on Prosthesis and environment control edit Non invasive BCIs have also been applied to enable brain control of prosthetic upper and lower extremity devices in people with paralysis For example Gert Pfurtscheller of Graz University of Technology and colleagues demonstrated a BCI controlled functional electrical stimulation system to restore upper extremity movements in a person with tetraplegia due to spinal cord injury 135 Between 2012 and 2013 researchers at the University of California Irvine demonstrated for the first time that it is possible to use BCI technology to restore brain controlled walking after spinal cord injury In their spinal cord injury research study a person with paraplegia was able to operate a BCI robotic gait orthosis to regain basic brain controlled ambulation 136 137 In 2009 Alex Blainey an independent researcher based in the UK successfully used the Emotiv EPOC to control a 5 axis robot arm 138 He then went on to make several demonstration mind controlled wheelchairs and home automation that could be operated by people with limited or no motor control such as those with paraplegia and cerebral palsy Research into military use of BCIs funded by DARPA has been ongoing since the 1970s 3 4 The current focus of research is user to user communication through analysis of neural signals 139 MEG and MRI edit Main articles Magnetoencephalography and Magnetic resonance imaging nbsp ATR Labs reconstruction of human vision using fMRI top row original image bottom row reconstruction from mean of combined readings Magnetoencephalography MEG and functional magnetic resonance imaging fMRI have both been used successfully as non invasive BCIs 140 In a widely reported experiment fMRI allowed two users being scanned to play Pong in real time by altering their haemodynamic response or brain blood flow through biofeedback techniques 141 fMRI measurements of haemodynamic responses in real time have also been used to control robot arms with a seven second delay between thought and movement 142 In 2008 research developed in the Advanced Telecommunications Research ATR Computational Neuroscience Laboratories in Kyoto Japan allowed the scientists to reconstruct images directly from the brain and display them on a computer in black and white at a resolution of 10x10 pixels The article announcing these achievements was the cover story of the journal Neuron of 10 December 2008 143 In 2011 researchers from UC Berkeley published 144 a study reporting second by second reconstruction of videos watched by the study s subjects from fMRI data This was achieved by creating a statistical model relating visual patterns in videos shown to the subjects to the brain activity caused by watching the videos This model was then used to look up the 100 one second video segments in a database of 18 million seconds of random YouTube videos whose visual patterns most closely matched the brain activity recorded when subjects watched a new video These 100 one second video extracts were then combined into a mashed up image that resembled the video being watched 145 146 147 BCI control strategies in neurogaming edit Motor imagery edit Motor imagery involves the imagination of the movement of various body parts resulting in sensorimotor cortex activation which modulates sensorimotor oscillations in the EEG This can be detected by the BCI to infer a user s intent Motor imagery typically requires a number of sessions of training before acceptable control of the BCI is acquired These training sessions may take a number of hours over several days before users can consistently employ the technique with acceptable levels of precision Regardless of the duration of the training session users are unable to master the control scheme This results in very slow pace of the gameplay 148 Advanced machine learning methods were recently developed to compute a subject specific model for detecting the performance of motor imagery The top performing algorithm from BCI Competition IV 149 dataset 2 for motor imagery is the Filter Bank Common Spatial Pattern developed by Ang et al from A STAR Singapore 150 Bio neurofeedback for passive BCI designs edit Biofeedback is used to monitor a subject s mental relaxation In some cases biofeedback does not monitor electroencephalography EEG but instead bodily parameters such as electromyography EMG galvanic skin resistance GSR and heart rate variability HRV Many biofeedback systems are used to treat certain disorders such as attention deficit hyperactivity disorder ADHD sleep problems in children teeth grinding and chronic pain EEG biofeedback systems typically monitor four different bands theta 4 7 Hz alpha 8 12 Hz SMR 12 15 Hz beta 15 18 Hz and challenge the subject to control them Passive BCI 55 involves using BCI to enrich human machine interaction with implicit information on the actual user s state for example simulations to detect when users intend to push brakes during an emergency car stopping procedure Game developers using passive BCIs need to acknowledge that through repetition of game levels the user s cognitive state will change or adapt Within the first play of a level the user will react to things differently from during the second play for example the user will be less surprised at an event in the game if they are expecting it 148 Visual evoked potential VEP edit A VEP is an electrical potential recorded after a subject is presented with a type of visual stimuli There are several types of VEPs Steady state visually evoked potentials SSVEPs use potentials generated by exciting the retina using visual stimuli modulated at certain frequencies SSVEP s stimuli are often formed from alternating checkerboard patterns and at times simply use flashing images The frequency of the phase reversal of the stimulus used can be clearly distinguished in the spectrum of an EEG this makes detection of SSVEP stimuli relatively easy SSVEP has proved to be successful within many BCI systems This is due to several factors the signal elicited is measurable in as large a population as the transient VEP and blink movement and electrocardiographic artefacts do not affect the frequencies monitored In addition the SSVEP signal is exceptionally robust the topographic organization of the primary visual cortex is such that a broader area obtains afferents from the central or fovial region of the visual field SSVEP does have several problems however As SSVEPs use flashing stimuli to infer a user s intent the user must gaze at one of the flashing or iterating symbols in order to interact with the system It is therefore likely that the symbols could become irritating and uncomfortable to use during longer play sessions which can often last more than an hour which may not be an ideal gameplay Another type of VEP used with applications is the P300 potential The P300 event related potential is a positive peak in the EEG that occurs at roughly 300 ms after the appearance of a target stimulus a stimulus for which the user is waiting or seeking or oddball stimuli The P300 amplitude decreases as the target stimuli and the ignored stimuli grow more similar The P300 is thought to be related to a higher level attention process or an orienting response using P300 as a control scheme has the advantage of the participant only having to attend limited training sessions The first application to use the P300 model was the P300 matrix Within this system a subject would choose a letter from a grid of 6 by 6 letters and numbers The rows and columns of the grid flashed sequentially and every time the selected choice letter was illuminated the user s P300 was potentially elicited However the communication process at approximately 17 characters per minute was quite slow The P300 is a BCI that offers a discrete selection rather than a continuous control mechanism The advantage of P300 use within games is that the player does not have to teach himself herself how to use a completely new control system and so only has to undertake short training instances to learn the gameplay mechanics and basic use of the BCI paradigm 148 Non brain based human computer interface physiological computing edit Human computer interaction can benefit from other recording modalities such as EOG and eye tracking However these modalities do not record brain activity and therefore do not fall within the exact scope of BCIs but rather can be grouped under the wider field of physiological computing 151 Electro oculography EOG edit In 1989 a report was given on control of a mobile robot by eye movement using electrooculography EOG signals A mobile robot was driven from a start to a goal point using five EOG commands interpreted as forward backward left right and stop 152 Pupil size oscillation edit A 2016 article 153 described an entirely new communication device and non EEG based human computer interface which requires no visual fixation or ability to move the eyes at all The interface is based on covert interest directing one s attention to a chosen letter on a virtual keyboard without the need to move one s eyes to look directly at the letter Each letter has its own background circle which micro oscillates in brightness differently from all of the other letters The letter selection is based on best fit between unintentional pupil size oscillation and the background circle s brightness oscillation pattern Accuracy is additionally improved by the user s mental rehearsing of the words bright and dark in synchrony with the brightness transitions of the letter s circle Synthetic telepathy edit In a 6 3 million US Army initiative to invent devices for telepathic communication Gerwin Schalk underwritten in a 2 2 million grant found the use of ECoG signals can discriminate the vowels and consonants embedded in spoken and imagined words shedding light on the distinct mechanisms associated with production of vowels and consonants and could provide the basis for brain based communication using imagined speech 103 154 In 2002 Kevin Warwick had an array of 100 electrodes fired into his nervous system in order to link his nervous system into the Internet to investigate enhancement possibilities With this in place Warwick successfully carried out a series of experiments With electrodes also implanted into his wife s nervous system they conducted the first direct electronic communication experiment between the nervous systems of two humans 155 156 157 158 Another group of researchers was able to achieve conscious brain to brain communication between two people separated by a distance using non invasive technology that was in contact with the scalp of the participants The words were encoded by binary streams using the sequences of 0 s and 1 s by the imaginary motor input of the person emitting the information As the result of this experiment pseudo random bits of the information carried encoded words hola hi in Spanish and ciao goodbye in Italian and were transmitted mind to mind between humans separated by a distance with blocked motor and sensory systems which has low to no probability of this happening by chance 159 In the 1960s a researcher was successful after some training in using EEG to create Morse code using their brain alpha waves Research funded by the US army is being conducted with the goal of allowing users to compose a message in their head then transfer that message with just the power of thought to a particular individual 160 On 27 February 2013 the group with Miguel Nicolelis at Duke University and IINN ELS successfully connected the brains of two rats with electronic interfaces that allowed them to directly share information in the first ever direct brain to brain interface 161 162 163 Cell culture BCIs editMain article Cultured neuronal network Researchers have built devices to interface with neural cells and entire neural networks in cultures outside animals As well as furthering research on animal implantable devices experiments on cultured neural tissue have focused on building problem solving networks constructing basic computers and manipulating robotic devices Research into techniques for stimulating and recording from individual neurons grown on semiconductor chips is sometimes referred to as neuroelectronics or neurochips 164 nbsp The world s first neurochip developed by Caltech researchers Jerome Pine and Michael Maher Development of the first working neurochip was claimed by a Caltech team led by Jerome Pine and Michael Maher in 1997 165 The Caltech chip had room for 16 neurons In 2003 a team led by Theodore Berger at the University of Southern California started work on a neurochip designed to function as an artificial or prosthetic hippocampus The neurochip was designed to function in rat brains and was intended as a prototype for the eventual development of higher brain prosthesis The hippocampus was chosen because it is thought to be the most ordered and structured part of the brain and is the most studied area Its function is to encode experiences for storage as long term memories elsewhere in the brain 166 In 2004 Thomas DeMarse at the University of Florida used a culture of 25 000 neurons taken from a rat s brain to fly a F 22 fighter jet aircraft simulator 167 After collection the cortical neurons were cultured in a petri dish and rapidly began to reconnect themselves to form a living neural network The cells were arranged over a grid of 60 electrodes and used to control the pitch and yaw functions of the simulator The study s focus was on understanding how the human brain performs and learns computational tasks at a cellular level Collaborative BCIs editThe idea of combining integrating brain signals from multiple individuals was introduced at Humanity Caltech in December 2010 by a Caltech researcher at JPL Adrian Stoica who referred to the concept as multi brain aggregation 168 169 170 A provisional patent application was filed on January 19 2011 with the non provisional patent following one year later 171 In May 2011 Yijun Wang and Tzyy Ping Jung published A Collaborative Brain Computer Interface for Improving Human Performance and in January 2012 Miguel Eckstein published Neural decoding of collective wisdom with multi brain computing 172 173 Stoica s first paper on the topic appeared in 2012 after the publication of his patent application 174 Given the timing of the publications between the patent and papers Stoica Wang amp Jung and Eckstein independently pioneered the concept and are all considered as founders of the field Later Stoica would collaborate with University of Essex researchers Riccardo Poli and Caterina Cinel 175 176 The work was continued by Poli and Cinel and their students Ana Matran Fernandez Davide Valeriani and Saugat Bhattacharyya 177 178 179 Ethical considerations editAs technology continually blurs the line between science fiction and reality the advent of brain computer interfaces BCIs poses a profound ethical quandary These neural interfaces heralded as marvels of innovation facilitate direct communication between the human brain and external devices However the ethical landscape surrounding BCIs is intricate and multifaceted encompassing concerns of privacy invasion autonomy consent and the potential societal implications of merging human cognition with machine interfaces Delving into the ethical considerations of BCIs illuminates the intricate balance between technological advancement and safeguarding fundamental human rights and values Many of the concerns raised can be divided into two groups user centric issues and legal and social issues Ethical concerns in the user centric sphere tend to revolve around the safety of the user and the effects that this technology will have on them over a period of time These can include but are not limited to long term effects to the user remain largely unknown obtaining informed consent from people who have difficulty communicating the consequences of BCI technology for the quality of life of patients and their families health related side effects e g neurofeedback of sensorimotor rhythm training is reported to affect sleep quality therapeutic applications and their potential misuse safety risks non convertibility of some of the changes made to the brain lack of access to maintenance repair and spare parts in case of company bankruptcy 180 etc The legal and social aspect of BCIs is a metaphorical minefield for any entity attempting to make BCIs mainstream Some of these concerns would be issues of accountability and responsibility claims that the influence of BCIs overrides free will and control over sensory motor actions claims that cognitive intention was inaccurately translated due to a BCI malfunction personality changes involved caused by deep brain stimulation concerns regarding the state of becoming a cyborg having parts of the body that are living and parts that are mechanical questions about personality what does it mean to be a human blurring of the division between human and machine and inability to distinguish between human vs machine controlled actions 181 use of the technology in advanced interrogation techniques by governmental authorities brain hacking or the unauthorized access of someones BCI 182 selective enhancement and social stratification mind reading and privacy tracking and tagging system mind control movement control and emotion control 183 In addition many researchers have theorized that BCIs would only worsen social inequalities seen today In their current form most BCIs are far removed from the ethical issues considered above They are actually similar to corrective therapies in function Clausen stated in 2009 that BCIs pose ethical challenges but these are conceptually similar to those that bioethicists have addressed for other realms of therapy 184 Moreover he suggests that bioethics is well prepared to deal with the issues that arise with BCI technologies Haselager and colleagues 185 pointed out that expectations of BCI efficacy and value play a great role in ethical analysis and the way BCI scientists should approach media Furthermore standard protocols can be implemented to ensure ethically sound informed consent procedures with locked in patients The case of BCIs today has parallels in medicine as will its evolution Similar to how pharmaceutical science began as a balance for impairments and is now used to increase focus and reduce need for sleep BCIs will likely transform gradually from therapies to enhancements 186 Efforts are made inside the BCI community to create consensus on ethical guidelines for BCI research development and dissemination 187 As innovation continues ensuring equitable access to BCIs will be crucial failing which generational inequalities can arise which can adversely affect the right to human flourishing Low cost BCI based interfaces editMain article Consumer brain computer interfaces Recently a number of companies have scaled back medical grade EEG technology to create inexpensive BCIs for research as well as entertainment purposes For example toys such as the NeuroSky and Mattel MindFlex have seen some commercial success In 2006 Sony patented a neural interface system allowing radio waves to affect signals in the neural cortex 188 In 2007 NeuroSky released the first affordable consumer based EEG along with the game NeuroBoy This was also the first large scale EEG device to use dry sensor technology 189 In 2008 OCZ Technology developed a device for use in video games relying primarily on electromyography 190 In 2008 Final Fantasy developer Square Enix announced that it was partnering with NeuroSky to create a game Judecca 191 192 In 2009 Mattel partnered with NeuroSky to release the Mindflex a game that used an EEG to steer a ball through an obstacle course It is by far the best selling consumer based EEG to date 191 193 In 2009 Uncle Milton Industries partnered with NeuroSky to release the Star Wars Force Trainer a game designed to create the illusion of possessing the Force 191 194 In 2009 Emotiv released the EPOC a 14 channel EEG device that can read 4 mental states 13 conscious states facial expressions and head movements The EPOC is the first commercial BCI to use dry sensor technology which can be dampened with a saline solution for a better connection 195 In November 2011 Time magazine selected necomimi produced by Neurowear as one of the best inventions of the year The company announced that it expected to launch a consumer version of the garment consisting of catlike ears controlled by a brain wave reader produced by NeuroSky in spring 2012 196 In February 2014 They Shall Walk a nonprofit organization fixed on constructing exoskeletons dubbed LIFESUITs for paraplegics and quadriplegics began a partnership with James W Shakarji on the development of a wireless BCI 197 In 2016 a group of hobbyists developed an open source BCI board that sends neural signals to the audio jack of a smartphone dropping the cost of entry level BCI to 20 198 Basic diagnostic software is available for Android devices as well as a text entry app for Unity 199 In 2020 NextMind released a dev kit including an EEG headset with dry electrodes at 399 200 201 The device can be played with some demo applications or developers can create their own use cases using the provided Software Development Kit Future directions edit nbsp Brain computer interface A consortium consisting of 12 European partners has completed a roadmap to support the European Commission in their funding decisions for the new framework program Horizon 2020 The project which was funded by the European Commission started in November 2013 and published a roadmap in April 2015 202 A 2015 publication led by Clemens Brunner describes some of the analyses and achievements of this project as well as the emerging Brain Computer Interface Society 203 For example this article reviewed work within this project that further defined BCIs and applications explored recent trends discussed ethical issues and evaluated different directions for new BCIs Other recent publications too have explored future BCI directions for new groups of disabled users e g 10 204 Disorders of consciousness DOC edit Some people have a disorder of consciousness DOC This state is defined to include people in a coma and those in a vegetative state VS or minimally conscious state MCS New BCI research seeks to help people with DOC in different ways A key initial goal is to identify patients who can perform basic cognitive tasks which would of course lead to a change in their diagnosis That is some people who are diagnosed with DOC may in fact be able to process information and make important life decisions such as whether to seek therapy where to live and their views on end of life decisions regarding them Some who are diagnosed with DOC die as a result of end of life decisions which may be made by family members who sincerely feel this is in the patient s best interests Given the new prospect of allowing these patients to provide their views on this decision there would seem to be a strong ethical pressure to develop this research direction to guarantee that DOC patients are given an opportunity to decide whether they want to live 205 206 These and other articles describe new challenges and solutions to use BCI technology to help persons with DOC One major challenge is that these patients cannot use BCIs based on vision Hence new tools rely on auditory and or vibrotactile stimuli Patients may wear headphones and or vibrotactile stimulators placed on the wrists neck leg and or other locations Another challenge is that patients may fade in and out of consciousness and can only communicate at certain times This may indeed be a cause of mistaken diagnosis Some patients may only be able to respond to physicians requests for a few hours per day which might not be predictable ahead of time and thus may have been unresponsive during diagnosis Therefore new methods rely on tools that are easy to use in field settings even without expert help so family members and other people without any medical or technical background can still use them This reduces the cost time need for expertise and other burdens with DOC assessment Automated tools can ask simple questions that patients can easily answer such as Is your father named George or Were you born in the USA Automated instructions inform patients that they may convey yes or no by for example focusing their attention on stimuli on the right vs left wrist This focused attention produces reliable changes in EEG patterns that can help determine whether the patient is able to communicate The results could be presented to physicians and therapists which could lead to a revised diagnosis and therapy In addition these patients could then be provided with BCI based communication tools that could help them convey basic needs adjust bed position and HVAC heating ventilation and air conditioning and otherwise empower them to make major life decisions and communicate 207 208 209 Motor recovery edit People may lose some of their ability to move due to many causes such as stroke or injury Research in recent years has demonstrated the utility of EEG based BCI systems in aiding motor recovery and neurorehabilitation in patients who have had a stroke 210 211 212 213 Several groups have explored systems and methods for motor recovery that include BCIs 214 215 216 217 In this approach a BCI measures motor activity while the patient imagines or attempts movements as directed by a therapist The BCI may provide two benefits 1 if the BCI indicates that a patient is not imagining a movement correctly non compliance then the BCI could inform the patient and therapist and 2 rewarding feedback such as functional stimulation or the movement of a virtual avatar also depends on the patient s correct movement imagery So far BCIs for motor recovery have relied on the EEG to measure the patient s motor imagery However studies have also used fMRI to study different changes in the brain as persons undergo BCI based stroke rehab training 218 219 220 Imaging studies combined with EEG based BCI systems hold promise for investigating neuroplasticity during motor recovery post stroke 220 Future systems might include the fMRI and other measures for real time control such as functional near infrared probably in tandem with EEGs Non invasive brain stimulation has also been explored in combination with BCIs for motor recovery 221 In 2016 scientists out of the University of Melbourne published preclinical proof of concept data related to a potential brain computer interface technology platform being developed for patients with paralysis to facilitate control of external devices such as robotic limbs computers and exoskeletons by translating brain activity 222 223 Clinical trials are currently underway 224 Functional brain mapping edit Each year about 400 000 people undergo brain mapping during neurosurgery This procedure is often required for people with tumors or epilepsy that do not respond to medication 225 During this procedure electrodes are placed on the brain to precisely identify the locations of structures and functional areas Patients may be awake during neurosurgery and asked to perform certain tasks such as moving fingers or repeating words This is necessary so that surgeons can remove only the desired tissue while sparing other regions such as critical movement or language regions Removing too much brain tissue can cause permanent damage while removing too little tissue can leave the underlying condition untreated and require additional neurosurgery citation needed Thus there is a strong need to improve both methods and systems to map the brain as effectively as possible In several recent publications BCI research experts and medical doctors have collaborated to explore new ways to use BCI technology to improve neurosurgical mapping This work focuses largely on high gamma activity which is difficult to detect with non invasive means Results have led to improved methods for identifying key areas for movement language and other functions A recent article addressed advances in functional brain mapping and summarizes a workshop 226 Flexible devices edit Flexible electronics are polymers or other flexible materials e g silk 227 pentacene PDMS Parylene polyimide 228 that are printed with circuitry the flexible nature of the organic background materials allowing the electronics created to bend and the fabrication techniques used to create these devices resembles those used to create integrated circuits and microelectromechanical systems MEMS citation needed Flexible electronics were first developed in the 1960s and 1970s but research interest increased in the mid 2000s 229 Flexible neural interfaces have been extensively tested in recent years in an effort to minimize brain tissue trauma related to mechanical mismatch between electrode and tissue 230 Minimizing tissue trauma could in theory extend the lifespan of BCIs relying on flexible electrode tissue interfaces Neural dust edit Main article Neural dust Neural dust is a term used to refer to millimeter sized devices operated as wirelessly powered nerve sensors that were proposed in a 2011 paper from the University of California Berkeley Wireless Research Center which described both the challenges and outstanding benefits of creating a long lasting wireless BCI 231 232 In one proposed model of the neural dust sensor the transistor model allowed for a method of separating between local field potentials and action potential spikes which would allow for a greatly diversified wealth of data acquirable from the recordings 231 See also editInformatics Intendix 2009 AlterEgo a system that reads unspoken verbalizations and responds with bone conduction headphones Augmented learning Biological machine Cortical implants Deep brain stimulation Human senses Experience machine Kernel neurotechnology company Lie detection Microwave auditory effect Neural engineering Neuralink Neurorobotics Neurostimulation Nootropic Project Cyborg Simulated reality Telepresence Thought identification Wetware computer Uses similar technology for IO Whole brain emulation Wirehead science fiction Notes edit These electrodes had not been implanted in the patient with the intention of developing a BCI The patient had had severe epilepsy and the electrodes were temporarily implanted to help his physicians localize seizure foci the BCI researchers simply took advantage of this 100 References edit a b Krucoff MO Rahimpour S Slutzky MW Edgerton VR Turner DA 2016 Enhancing Nervous System Recovery through Neurobiologics Neural Interface Training and Neurorehabilitation Frontiers in Neuroscience 10 584 doi 10 3389 fnins 2016 00584 PMC 5186786 PMID 28082858 a b Michael L Martini BA Eric Karl Oermann MD Nicholas L Opie PhD Fedor Panov MD Thomas Oxley MD PhD Kurt Yaeger MD Sensor Modalities for Brain Computer Interface Technology A Comprehensive Literature Review Neurosurgery Volume 86 Issue 2 February 2020 Pages E108 E117 1 a b c Vidal JJ 1973 Toward direct brain computer communication Annual Review of Biophysics and Bioengineering 2 1 157 180 doi 10 1146 annurev bb 02 060173 001105 PMID 4583653 a b c Vidal J 1977 Real Time Detection of Brain Events in EEG Proceedings of the IEEE 65 5 633 641 doi 10 1109 PROC 1977 10542 S2CID 7928242 Levine SP Huggins JE BeMent SL Kushwaha RK Schuh LA Rohde MM et al June 2000 A direct brain interface based on event related potentials IEEE Transactions on Rehabilitation Engineering 8 2 180 185 doi 10 1109 86 847809 PMID 10896180 Bird JJ Manso LJ Ribeiro EP Ekart A Faria DR September 2018 A Study on Mental State Classification using EEG based Brain Machine Interface Madeira Island Portugal 9th international Conference on Intelligent Systems 2018 Retrieved 3 December 2018 Bird JJ Ekart A Buckingham CD Faria DR 2019 Mental Emotional Sentiment Classification with an EEG based Brain Machine Interface St Hugh s College University of Oxford United Kingdom The International Conference on Digital Image and Signal Processing DISP 19 Archived from the original on 3 December 2018 Retrieved 3 December 2018 Vanneste S Song JJ De Ridder D March 2018 Thalamocortical dysrhythmia detected by machine learning Nature Communications 9 1 1103 Bibcode 2018NatCo 9 1103V doi 10 1038 s41467 018 02820 0 PMC 5856824 PMID 29549239 Straebel V Thoben W 2014 Alvin Lucier s music for solo performer experimental music beyond sonification Organised Sound 19 1 17 29 doi 10 1017 S135577181300037X S2CID 62506825 a b Wolpaw J R and Wolpaw E W 2012 Brain Computer Interfaces Something New Under the Sun In Brain Computer Interfaces Principles and Practice Wolpaw J R and Wolpaw eds E W Oxford University Press Wolpaw JR Birbaumer N McFarland DJ Pfurtscheller G Vaughan TM June 2002 Brain computer interfaces for communication and control Clinical Neurophysiology 113 6 767 791 doi 10 1016 s1388 2457 02 00057 3 PMID 12048038 S2CID 17571592 Allison BZ Wolpaw EW Wolpaw JR July 2007 Brain computer interface systems progress and prospects Expert Review of Medical Devices 4 4 463 474 doi 10 1586 17434440 4 4 463 PMID 17605682 S2CID 4690450 a b Bozinovski S Bozinovska L 2019 Brain computer interface in Europe The thirtieth anniversary Automatika 60 1 36 47 doi 10 1080 00051144 2019 1570644 Vidal Jacques J 1977 Real time detection of brain events in EEG PDF Proceedings of the IEEE 65 5 633 641 doi 10 1109 PROC 1977 10542 S2CID 7928242 Archived from the original PDF on 19 July 2015 Retrieved 4 November 2022 S Bozinovski M Sestakov L Bozinovska Using EEG alpha rhythm to control a mobile robot In G Harris C Walker eds Proc IEEE Annual Conference of Medical and Biological Society p 1515 1516 New Orleans 1988 S Bozinovski Mobile robot trajectory control From fixed rails to direct bioelectric control In O Kaynak ed Proc IEEE Workshop on Intelligent Motion Control p 63 67 Istanbul 1990 M Lebedev Augmentation of sensorimotor functions with neural prostheses Opera Medica and Physiologica Vol 2 3 211 227 2016 M Lebedev M Nicolelis Brain machine interfaces from basic science to neuroprostheses and neurorehabilitation Physiological Review 97 737 867 2017 L Bozinovska G Stojanov M Sestakov S Bozinovski CNV pattern recognition step toward a cognitive wave observation In L Torres E Masgrau E Lagunas eds Signal Processing V Theories and Applications Proc EUSIPCO 90 Fifth European Signal Processing Conference Elsevier p 1659 1662 Barcelona 1990 L Bozinovska S Bozinovski G Stojanov Electroexpectogram experimental design and algorithms In Proc IEEE International Biomedical Engineering Days p 55 60 Istanbul 1992 Miranda RA Casebeer WD Hein AM Judy JW Krotkov EP Laabs TL et al April 2015 DARPA funded efforts in the development of novel brain computer interface technologies Journal of Neuroscience Methods 244 52 67 doi 10 1016 j jneumeth 2014 07 019 PMID 25107852 S2CID 14678623 Jacobs M Premji A Nelson AJ 16 May 2012 Plasticity inducing TMS protocols to investigate somatosensory control of hand function Neural Plasticity 2012 350574 doi 10 1155 2012 350574 PMC 3362131 PMID 22666612 Fox Maggie 13 October 2016 Brain Chip Helps Paralyzed Man Feel His Fingers NBC News Retrieved 23 March 2021 Hatmaker Taylor 10 July 2017 DARPA awards 65 million to develop the perfect tiny two way brain computer inerface Tech Crunch Retrieved 23 March 2021 Stacey Kevin 10 July 2017 Brown to receive up to 19M to engineer next generation brain computer interface Brown University Retrieved 23 March 2021 Minimally Invasive Stentrode Shows Potential as Neural Interface for Brain Defense Advanced Research Projects Agency DARPA 8 February 2016 Retrieved 23 March 2021 Cochlear Implants National Institute on Deafness and Other Communication Disorders February 2016 Retrieved 1 April 2024 Miguel Nicolelis et al 2001 Duke neurobiologist has developed system that allows monkeys to control robot arms via brain signals Archived 19 December 2008 at the Wayback Machine Baum M 6 September 2008 Monkey Uses Brain Power to Feed Itself With Robotic Arm Pitt Chronicle Archived from the original on 10 September 2009 Retrieved 6 July 2009 Lewis T November 2020 Elon Musk s Pig Brain Implant Is Still a Long Way from Solving Paralysis Scientific American Retrieved 23 March 2021 Shead S February 2021 Elon Musk says his start up Neuralink has wired up a monkey to play video games using its mind CNBC Retrieved 23 March 2021 Fetz EE February 1969 Operant conditioning of cortical unit activity Science 163 3870 955 958 Bibcode 1969Sci 163 955F doi 10 1126 science 163 3870 955 PMID 4974291 S2CID 45427819 Schmidt EM McIntosh JS Durelli L Bak MJ September 1978 Fine control of operantly conditioned firing patterns of cortical neurons Experimental Neurology 61 2 349 369 doi 10 1016 0014 4886 78 90252 2 PMID 101388 S2CID 37539476 Georgopoulos AP Lurito JT Petrides M Schwartz AB Massey JT January 1989 Mental rotation of the neuronal population vector Science 243 4888 234 236 Bibcode 1989Sci 243 234G doi 10 1126 science 2911737 PMID 2911737 S2CID 37161168 Lebedev MA Nicolelis MA September 2006 Brain machine interfaces past present and future Trends in Neurosciences 29 9 536 546 doi 10 1016 j tins 2006 07 004 PMID 16859758 S2CID 701524 Stanley GB Li FF Dan Y September 1999 Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus The Journal of Neuroscience 19 18 8036 8042 doi 10 1523 JNEUROSCI 19 18 08036 1999 PMC 6782475 PMID 10479703 Wessberg J Stambaugh CR Kralik JD Beck PD Laubach M Chapin JK et al November 2000 Real time prediction of hand trajectory by ensembles of cortical neurons in primates Nature 408 6810 361 365 Bibcode 2000Natur 408 361W doi 10 1038 35042582 PMID 11099043 S2CID 795720 a b Carmena JM Lebedev MA Crist RE O Doherty JE Santucci DM Dimitrov DF et al November 2003 Learning to control a brain machine interface for reaching and grasping by primates PLOS Biology 1 2 E42 doi 10 1371 journal pbio 0000042 PMC 261882 PMID 14624244 a b Lebedev MA Carmena JM O Doherty JE Zacksenhouse M Henriquez CS Principe JC Nicolelis MA May 2005 Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain machine interface The Journal of Neuroscience 25 19 4681 4693 doi 10 1523 JNEUROSCI 4088 04 2005 PMC 6724781 PMID 15888644 O Doherty JE Lebedev MA Ifft PJ Zhuang KZ Shokur S Bleuler H Nicolelis MA October 2011 Active tactile exploration using a brain machine brain interface Nature 479 7372 228 231 Bibcode 2011Natur 479 228O doi 10 1038 nature10489 PMC 3236080 PMID 21976021 Serruya MD Hatsopoulos NG Paninski L Fellows MR Donoghue JP March 2002 Instant neural control of a movement signal Nature 416 6877 141 142 Bibcode 2002Natur 416 141S doi 10 1038 416141a PMID 11894084 S2CID 4383116 Taylor DM Tillery SI Schwartz AB June 2002 Direct cortical control of 3D neuroprosthetic devices Science 296 5574 1829 1832 Bibcode 2002Sci 296 1829T CiteSeerX 10 1 1 1027 4335 doi 10 1126 science 1070291 PMID 12052948 S2CID 9402759 Pitt team to build on brain controlled arm Archived 4 July 2007 at the Wayback Machine Pittsburgh Tribune Review 5 September 2006 Video on YouTube Velliste M Perel S Spalding MC Whitford AS Schwartz AB June 2008 Cortical control of a prosthetic arm for self feeding Nature 453 7198 1098 1101 Bibcode 2008Natur 453 1098V doi 10 1038 nature06996 PMID 18509337 S2CID 4404323 Musallam S Corneil BD Greger B Scherberger H Andersen RA July 2004 Cognitive control signals for neural prosthetics Science 305 5681 258 262 Bibcode 2004Sci 305 258M doi 10 1126 science 1097938 PMID 15247483 S2CID 3112034 Santucci DM Kralik JD Lebedev MA Nicolelis MA September 2005 Frontal and parietal cortical ensembles predict single trial muscle activity during reaching movements in primates The European Journal of Neuroscience 22 6 1529 1540 doi 10 1111 j 1460 9568 2005 04320 x PMID 16190906 S2CID 31277881 Anumanchipalli GK Chartier J Chang EF April 2019 Speech synthesis from neural decoding of spoken sentences Nature 568 7753 493 498 Bibcode 2019Natur 568 493A doi 10 1038 s41586 019 1119 1 PMC 9714519 PMID 31019317 S2CID 129946122 Pandarinath C Ali YH April 2019 Brain implants that let you speak your mind Nature 568 7753 466 467 Bibcode 2019Natur 568 466P doi 10 1038 d41586 019 01181 y PMID 31019323 a b Moses DA Metzger SL Liu JR Anumanchipalli GK Makin JG Sun PF et al July 2021 Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria The New England Journal of Medicine 385 3 217 227 doi 10 1056 NEJMoa2027540 PMC 8972947 PMID 34260835 S2CID 235907121 Belluck Pam 14 July 2021 Tapping Into the Brain to Help a Paralyzed Man Speak The New York Times Using BCI2000 in BCI Research National Center for Adaptive Neurotechnology Retrieved 5 December 2023 Huber D Petreanu L Ghitani N Ranade S Hromadka T Mainen Z Svoboda K January 2008 Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice Nature 451 7174 61 64 Bibcode 2008Natur 451 61H doi 10 1038 nature06445 PMC 3425380 PMID 18094685 Nicolelis MA Lebedev MA July 2009 Principles of neural ensemble physiology underlying the operation of brain machine interfaces Nature Reviews Neuroscience 10 7 530 540 doi 10 1038 nrn2653 PMID 19543222 S2CID 9290258 a b Zander TO Kothe C April 2011 Towards passive brain computer interfaces applying brain computer interface technology to human machine systems in general Journal of Neural Engineering 8 2 025005 Bibcode 2011JNEng 8b5005Z doi 10 1088 1741 2560 8 2 025005 PMID 21436512 S2CID 37168897 Richardson AG Ghenbot Y Liu X Hao H Rinehart C DeLuccia S et al August 2019 Learning active sensing strategies using a sensory brain machine interface Proceedings of the National Academy of Sciences of the United States of America 116 35 17509 17514 Bibcode 2019PNAS 11617509R doi 10 1073 pnas 1909953116 PMC 6717311 PMID 31409713 Abdulkader SN Atia A Mostafa MS July 2015 Brain computer interfacing Applications and challenges Egyptian Informatics Journal 16 2 213 230 doi 10 1016 j eij 2015 06 002 ISSN 1110 8665 Polikov VS Tresco PA Reichert WM October 2005 Response of brain tissue to chronically implanted neural electrodes Journal of Neuroscience Methods 148 1 1 18 doi 10 1016 j jneumeth 2005 08 015 PMID 16198003 S2CID 11248506 Vision quest Wired September 2002 Kotler S Vision Quest Wired ISSN 1059 1028 Retrieved 10 November 2021 Tuller D 1 November 2004 Dr William Dobelle Artificial Vision Pioneer Dies at 62 The New York Times Naumann J 2012 Search for Paradise A Patient s Account of the Artificial Vision Experiment Xlibris ISBN 978 1 4797 0920 5 nurun com 28 November 2012 Mr Jen Naumann s high tech paradise lost Thewhig com Retrieved 19 December 2016 Kennedy PR Bakay RA June 1998 Restoration of neural output from a paralyzed patient by a direct brain connection NeuroReport 9 8 1707 1711 doi 10 1097 00001756 199806010 00007 PMID 9665587 S2CID 5681602 Hochberg LR Serruya MD Friehs GM Mukand JA Saleh M Caplan AH et al July 2006 Neuronal ensemble control of prosthetic devices by a human with tetraplegia Nature 442 7099 Gerhard M Friehs Jon A Mukand Maryam Saleh Abraham H Caplan Almut Branner David Chen Richard D Penn and John P Donoghue 164 171 Bibcode 2006Natur 442 164H doi 10 1038 nature04970 PMID 16838014 S2CID 4347367 Martins Iduwe Brain Computer Interface Academia edu Retrieved 5 December 2023 Hochberg LR Bacher D Jarosiewicz B Masse NY Simeral JD Vogel J et al May 2012 Reach and grasp by people with tetraplegia using a neurally controlled robotic arm Nature 485 7398 372 375 Bibcode 2012Natur 485 372H doi 10 1038 nature11076 PMC 3640850 PMID 22596161 Collinger JL Wodlinger B Downey JE Wang W Tyler Kabara EC Weber DJ et al February 2013 High performance neuroprosthetic control by an individual with tetraplegia Lancet 381 9866 557 564 doi 10 1016 S0140 6736 12 61816 9 PMC 3641862 PMID 23253623 Willett FR Avansino DT Hochberg LR Henderson JM Shenoy KV May 2021 High performance brain to text communication via handwriting Nature 593 7858 249 254 Bibcode 2021Natur 593 249W doi 10 1038 s41586 021 03506 2 PMC 8163299 PMID 33981047 Willett FR 2021 A High Performance Handwriting BCI In Guger C Allison BZ Gunduz A eds Brain Computer Interface Research A State of the Art Summary 10 SpringerBriefs in Electrical and Computer Engineering Cham Springer International Publishing pp 105 109 doi 10 1007 978 3 030 79287 9 11 ISBN 978 3 030 79287 9 S2CID 239736609 Hamliton J 14 July 2021 Experimental Brain Implant Lets Man With Paralysis Turn His Thoughts Into Words All Things Considered NPR Pandarinath C Bensmaia SJ September 2021 The science and engineering behind sensitized brain controlled bionic hands Physiological Reviews 102 2 551 604 doi 10 1152 physrev 00034 2020 PMC 8742729 PMID 34541898 S2CID 237574228 Willett Francis R Kunz Erin M Fan Chaofei Avansino Donald T Wilson Guy H Choi Eun Young Kamdar Foram Glasser Matthew F Hochberg Leigh R Druckmann Shaul Shenoy Krishna V Henderson Jaimie M 23 August 2023 A high performance speech neuroprosthesis Nature 620 7976 1031 1036 Bibcode 2023Natur 620 1031W doi 10 1038 s41586 023 06377 x ISSN 1476 4687 PMC 10468393 PMID 37612500 Metzger Sean L Littlejohn Kaylo T Silva Alexander B Moses David A Seaton Margaret P Wang Ran Dougherty Maximilian E Liu Jessie R Wu Peter Berger Michael A Zhuravleva Inga Tu Chan Adelyn Ganguly Karunesh Anumanchipalli Gopala K Chang Edward F 23 August 2023 A high performance neuroprosthesis for speech decoding and avatar control Nature 620 7976 1037 1046 Bibcode 2023Natur 620 1037M doi 10 1038 s41586 023 06443 4 ISSN 1476 4687 PMC 10826467 PMID 37612505 S2CID 261098775 Naddaf Miryam 23 August 2023 Brain reading devices allow paralysed people to talk using their thoughts Nature 620 7976 930 931 Bibcode 2023Natur 620 930N doi 10 1038 d41586 023 02682 7 PMID 37612493 S2CID 261099321 Zhang M Tang Z Liu X Van der Spiegel J April 2020 Electronic neural interfaces Nature Electronics 3 4 191 200 doi 10 1038 s41928 020 0390 3 ISSN 2520 1131 S2CID 216508360 Hodgkin AL Huxley AF August 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve The Journal of Physiology 117 4 500 544 doi 10 1113 jphysiol 1952 sp004764 PMC 1392413 PMID 12991237 a b Obien ME Deligkaris K Bullmann T Bakkum DJ Frey U 2015 Revealing neuronal function through microelectrode array recordings Frontiers in Neuroscience 8 423 doi 10 3389 fnins 2014 00423 PMC 4285113 PMID 25610364 a b Harrison RR July 2008 The Design of Integrated Circuits to Observe Brain Activity Proceedings of the IEEE 96 7 1203 1216 doi 10 1109 JPROC 2008 922581 ISSN 1558 2256 S2CID 7020369 Haci D Liu Y Ghoreishizadeh SS Constandinou TG February 2020 Key Considerations for Power Management in Active Implantable Medical Devices 2020 IEEE 11th Latin American Symposium on Circuits amp Systems LASCAS pp 1 4 doi 10 1109 LASCAS45839 2020 9069004 ISBN 978 1 7281 3427 7 S2CID 215817530 Downey JE Schwed N Chase SM Schwartz AB Collinger JL August 2018 Intracortical recording stability in human brain computer interface users Journal of Neural Engineering 15 4 046016 Bibcode 2018JNEng 15d6016D doi 10 1088 1741 2552 aab7a0 PMID 29553484 S2CID 3961913 Freire MA Morya E Faber J Santos JR Guimaraes JS Lemos NA Sameshima K Pereira A Ribeiro S Nicolelis M November 2011 Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants PLOS ONE 6 11 e27554 Bibcode 2011PLoSO 627554F doi 10 1371 journal pone 0027554 PMC 4476592 PMID 26098896 Szostak KM Grand L Constandinou TG 2017 Neural Interfaces for Intracortical Recording Requirements Fabrication Methods and Characteristics Frontiers in Neuroscience 11 665 doi 10 3389 fnins 2017 00665 PMC 5725438 PMID 29270103 a b Saxena T Karumbaiah L Gaupp EA Patkar R Patil K Betancur M et al July 2013 The impact of chronic blood brain barrier breach on intracortical electrode function Biomaterials 34 20 4703 4713 doi 10 1016 j biomaterials 2013 03 007 PMID 23562053 Nolta NF Christensen MB Crane PD Skousen JL Tresco PA 1 June 2015 BBB leakage astrogliosis and tissue loss correlate with silicon microelectrode array recording performance Biomaterials 53 753 762 doi 10 1016 j biomaterials 2015 02 081 PMID 25890770 Robinson JT Pohlmeyer E Gather MC Kemere C Kitching JE Malliaras GG et al November 2019 Developing Next generation Brain Sensing Technologies A Review IEEE Sensors Journal 19 22 10163 10175 doi 10 1109 JSEN 2019 2931159 PMC 7047830 PMID 32116472 Luan L Wei X Zhao Z Siegel JJ Potnis O Tuppen CA et al February 2017 Ultraflexible nanoelectronic probes form reliable glial scar free neural integration Science Advances 3 2 e1601966 Bibcode 2017SciA 3E1966L doi 10 1126 sciadv 1601966 PMC 5310823 PMID 28246640 Frank JA Antonini MJ Anikeeva P September 2019 Next generation interfaces for studying neural function Nature Biotechnology 37 9 1013 1023 doi 10 1038 s41587 019 0198 8 PMC 7243676 PMID 31406326 a b Hong G Viveros RD Zwang TJ Yang X Lieber CM July 2018 Tissue like Neural Probes for Understanding and Modulating the Brain Biochemistry 57 27 3995 4004 doi 10 1021 acs biochem 8b00122 PMC 6039269 PMID 29529359 Viveros RD Zhou T Hong G Fu TM Lin HG Lieber CM June 2019 Advanced One and Two Dimensional Mesh Designs for Injectable Electronics Nano Letters 19 6 4180 4187 Bibcode 2019NanoL 19 4180V doi 10 1021 acs nanolett 9b01727 PMC 6565464 PMID 31075202 Gulati T Won SJ Ramanathan DS Wong CC Bodepudi A Swanson RA Ganguly K June 2015 Robust neuroprosthetic control from the stroke perilesional cortex The Journal of Neuroscience 35 22 8653 8661 doi 10 1523 JNEUROSCI 5007 14 2015 PMC 6605327 PMID 26041930 Soldozy S Young S Kumar JS Capek S Felbaum DR Jean WC et al July 2020 A systematic review of endovascular stent electrode arrays a minimally invasive approach to brain machine interfaces Neurosurgical Focus 49 1 E3 doi 10 3171 2020 4 FOCUS20186 PMID 32610291 S2CID 220308983 a b Opie N 2021 The StentrodeTM Neural Interface System In Guger C Allison BZ Tangermann M eds Brain Computer Interface Research SpringerBriefs in Electrical and Computer Engineering Cham Springer International Publishing pp 127 132 doi 10 1007 978 3 030 60460 8 13 ISBN 978 3 030 60460 8 S2CID 234102889 Teleb MS Cziep ME Lazzaro MA Gheith A Asif K Remler B Zaidat OO May 2014 Idiopathic Intracranial Hypertension A Systematic Analysis of Transverse Sinus Stenting Interventional Neurology 2 3 132 143 doi 10 1159 000357503 PMC 4080637 PMID 24999351 Bryson S 5 November 2020 Stentrode Device Allows Computer Control by ALS Patients with Partial Upper Limb Paralysis ALS News Today Lanese Nicoletta 12 January 2023 New thought controlled device reads brain activity through the jugular livescience com Archived from the original on 16 February 2023 Retrieved 16 February 2023 Mitchell Peter Lee Sarah C M Yoo Peter E Morokoff Andrew Sharma Rahul P Williams Daryl L MacIsaac Christopher Howard Mark E Irving Lou Vrljic Ivan Williams Cameron Bush Steven Balabanski Anna H Drummond Katharine J Desmond Patricia Weber Douglas Denison Timothy Mathers Susan O Brien Terence J Mocco J Grayden David B Liebeskind David S Opie Nicholas L Oxley Thomas J Campbell Bruce C V 9 January 2023 Assessment of Safety of a Fully Implanted Endovascular Brain Computer Interface for Severe Paralysis in 4 Patients The Stentrode With Thought Controlled Digital Switch SWITCH Study JAMA Neurology 80 3 270 278 doi 10 1001 jamaneurol 2022 4847 ISSN 2168 6149 PMC 9857731 PMID 36622685 S2CID 255545643 Serruya M Donoghue J 2004 Chapter III Design Principles of a Neuromotor Prosthetic Device PDF In Horch KW Dhillon GS eds Neuroprosthetics Theory and Practice Imperial College Press pp 1158 1196 doi 10 1142 9789812561763 0040 Archived from the original PDF on 4 April 2005 Teenager moves video icons just by imagination Press release Washington University in St Louis 9 October 2006 Schalk G Miller KJ Anderson NR Wilson JA Smyth MD Ojemann JG et al March 2008 Two dimensional movement control using electrocorticographic signals in humans Journal of Neural Engineering 5 1 75 84 Bibcode 2008JNEng 5 75S doi 10 1088 1741 2560 5 1 008 PMC 2744037 PMID 18310813 Nicolas Alonso LF Gomez Gil J 31 January 2012 Brain computer interfaces a review Sensors 12 2 1211 1279 Bibcode 2012Senso 12 1211N doi 10 3390 s120201211 PMC 3304110 PMID 22438708 Yanagisawa T 2011 Electrocorticographic Control of Prosthetic Arm in Paralyzed Patients American Neurological Association Vol 71 no 3 pp 353 361 doi 10 1002 ana 22613 ECoG Based BCI has advantage in signal and durability that are absolutely necessary for clinical application a b Pei X 2011 Decoding Vowels and Consonants in Spoken and Imagined Words Using Electrocorticographic Signals in Humans J Neural Eng 046028th ser 8 4 PMID 21750369 Justin Williams a biomedical engineer at the university has already transformed the ECoG implant into a micro device that can be installed with a minimum of fuss It has been tested in animals for a long period of time the micro ECoG stays in place and doesn t seem to negatively affect the immune system Makin JG Moses DA Chang EF 2021 Speech Decoding as Machine Translation In Guger C Allison BZ Gunduz A eds Brain Computer Interface Research SpringerBriefs in Electrical and Computer Engineering Cham Springer International Publishing pp 23 33 doi 10 1007 978 3 030 79287 9 3 ISBN 978 3 030 79287 9 S2CID 239756345 Makin JG Moses DA Chang EF April 2020 Machine translation of cortical activity to text with an encoder decoder framework Nature Neuroscience 23 4 575 582 doi 10 1038 s41593 020 0608 8 PMC 10560395 PMID 32231340 S2CID 214704481 Gallegos Ayala G Furdea A Takano K Ruf CA Flor H Birbaumer N May 2014 Brain communication in a completely locked in patient using bedside near infrared spectroscopy Neurology 82 21 1930 1932 doi 10 1212 WNL 0000000000000449 PMC 4049706 PMID 24789862 Chaudhary U Xia B Silvoni S Cohen LG Birbaumer N January 2017 Brain Computer Interface Based Communication in the Completely Locked In State PLOS Biology 15 1 e1002593 doi 10 1371 journal pbio 1002593 PMC 5283652 PMID 28141803 Winters Jeffrey May 2003 Communicating by Brain Waves Psychology Today Adrijan Bozinovski CNV flip flop as a brain computer interface paradigm In J Kern S Tonkovic et al Eds Proc 7th Conference of the Croatian Association of Medical Informatics pp 149 154 Rijeka 2005 Bozinovski Adrijan Bozinovska Liljana 2009 Anticipatory brain potentials in a Brain Robot Interface paradigm 2009 4th International IEEE EMBS Conference on Neural Engineering IEEE pp 451 454 doi 10 1109 ner 2009 5109330 Bozinovski Adrijan Tonkovic Stanko Isgum Velimir Bozinovska Liljana 2011 Robot Control Using Anticipatory Brain Potentials Automatika 52 1 20 30 doi 10 1080 00051144 2011 11828400 S2CID 33223634 Bozinovski Stevo Bozinovski Adrijan 2015 Mental States EEG Manifestations and Mentally Emulated Digital Circuits for Brain Robot Interaction IEEE Transactions on Autonomous Mental Development 7 1 Institute of Electrical and Electronics Engineers IEEE 39 51 doi 10 1109 tamd 2014 2387271 ISSN 1943 0604 S2CID 21464338 Yuan H Liu T Szarkowski R Rios C Ashe J He B February 2010 Negative covariation between task related responses in alpha beta band activity and BOLD in human sensorimotor cortex an EEG and fMRI study of motor imagery and movements NeuroImage 49 3 2596 2606 doi 10 1016 j neuroimage 2009 10 028 PMC 2818527 PMID 19850134 Doud AJ Lucas JP Pisansky MT He B 2011 Gribble PL ed Continuous three dimensional control of a virtual helicopter using a motor imagery based brain computer interface PLOS ONE 6 10 e26322 Bibcode 2011PLoSO 626322D doi 10 1371 journal pone 0026322 PMC 3202533 PMID 22046274 Thought guided helicopter takes off BBC News 5 June 2013 Retrieved 5 June 2013 Qin L Ding L He B September 2004 Motor imagery classification by means of source analysis for brain computer interface applications Journal of Neural Engineering 1 3 135 141 Bibcode 2004JNEng 1 135Q doi 10 1088 1741 2560 1 3 002 PMC 1945182 PMID 15876632 Hohne J Holz E Staiger Salzer P Muller KR Kubler A Tangermann M 2014 Motor imagery for severely motor impaired patients evidence for brain computer interfacing as superior control solution PLOS ONE 9 8 e104854 Bibcode 2014PLoSO 9j4854H doi 10 1371 journal pone 0104854 PMC 4146550 PMID 25162231 Maskeliunas R Damasevicius R Martisius I Vasiljevas M 2016 Consumer grade EEG devices are they usable for control tasks PeerJ 4 e1746 doi 10 7717 peerj 1746 PMC 4806709 PMID 27014511 Bird JJ Faria DR Manso LJ Ekart A Buckingham CD 13 March 2019 A Deep Evolutionary Approach to Bioinspired Classifier Optimisation for Brain Machine Interaction Complexity 2019 Hindawi Limited 1 14 arXiv 1908 04784 doi 10 1155 2019 4316548 ISSN 1076 2787 Mansour S Ang KK Nair KP Phua KS Arvaneh M January 2022 Efficacy of Brain Computer Interface and the Impact of Its Design Characteristics on Poststroke Upper limb Rehabilitation A Systematic Review and Meta analysis of Randomized Controlled Trials Clinical EEG and Neuroscience 53 1 79 90 doi 10 1177 15500594211009065 PMC 8619716 PMID 33913351 S2CID 233446181 Baniqued PD Stanyer EC Awais M Alazmani A Jackson AE Mon Williams MA et al January 2021 Brain computer interface robotics for hand rehabilitation after stroke a systematic review Journal of Neuroengineering and Rehabilitation 18 1 15 doi 10 1186 s12984 021 00820 8 PMC 7825186 PMID 33485365 Taheri BA Knight RT Smith RL May 1994 A dry electrode for EEG recording Electroencephalography and Clinical Neurophysiology 90 5 376 383 doi 10 1016 0013 4694 94 90053 1 PMID 7514984 Alizadeh Taheri B 1994 Active Micromachined Scalp Electrode Array for Eeg Signal Recording PHD Thesis thesis p 82 Bibcode 1994PhDT 82A Hockenberry John August 2001 The Next Brainiacs Wired Vol 9 no 8 Lin CT Ko LW Chang CJ Wang YT Chung CH Yang FS et al 2009 Wearable and Wireless Brain Computer Interface and Its Applications Foundations of Augmented Cognition Neuroergonomics and Operational Neuroscience Lecture Notes in Computer Science vol 5638 Springer Berlin Heidelberg pp 741 748 doi 10 1007 978 3 642 02812 0 84 ISBN 978 3 642 02811 3 S2CID 14515754 a b c d e Wang YT Wang Y Jung TP April 2011 A cell phone based brain computer interface for communication in daily life Journal of Neural Engineering 8 2 025018 Bibcode 2011JNEng 8b5018W doi 10 1088 1741 2560 8 2 025018 PMID 21436517 S2CID 10943518 Guger C Allison BZ Grosswindhager B Pruckl R Hintermuller C Kapeller C et al 2012 How Many People Could Use an SSVEP BCI Frontiers in Neuroscience 6 169 doi 10 3389 fnins 2012 00169 PMC 3500831 PMID 23181009 a b Lin YP Wang Y Jung TP 2013 A mobile SSVEP based brain computer interface for freely moving humans The robustness of canonical correlation analysis to motion artifacts 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC Vol 2013 pp 1350 1353 doi 10 1109 EMBC 2013 6609759 ISBN 978 1 4577 0216 7 PMID 24109946 S2CID 23136360 Rashid M Sulaiman N Abdul Majeed AP Musa RM Ab Nasir AF Bari BS Khatun S 2020 Current Status Challenges and Possible Solutions of EEG Based Brain Computer Interface A Comprehensive Review Frontiers in Neurorobotics 14 25 doi 10 3389 fnbot 2020 00025 PMC 7283463 PMID 32581758 US 20130127708 issued 23 May 2013 a b c Wang YT Wang Y Cheng CK Jung TP 2013 Developing stimulus presentation on mobile devices for a truly portable SSVEP based BCI 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC Vol 2013 pp 5271 5274 doi 10 1109 EMBC 2013 6610738 ISBN 978 1 4577 0216 7 PMID 24110925 S2CID 14324159 Bin G Gao X Yan Z Hong B Gao S August 2009 An online multi channel SSVEP based brain computer interface using a canonical correlation analysis method Journal of Neural Engineering 6 4 046002 Bibcode 2009JNEng 6d6002B doi 10 1088 1741 2560 6 4 046002 PMID 19494422 S2CID 32640699 Symeonidou ER Nordin AD Hairston WD Ferris DP April 2018 Effects of Cable Sway Electrode Surface Area and Electrode Mass on Electroencephalography Signal Quality during Motion Sensors 18 4 1073 Bibcode 2018Senso 18 1073S doi 10 3390 s18041073 PMC 5948545 PMID 29614020 Wang Y Wang R Gao X Hong B Gao S June 2006 A practical VEP based brain computer interface IEEE Transactions on Neural Systems and Rehabilitation Engineering 14 2 234 239 doi 10 1109 TNSRE 2006 875576 PMID 16792302 Pfurtscheller G Muller GR Pfurtscheller J Gerner HJ Rupp R November 2003 Thought control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia Neuroscience Letters 351 1 33 36 doi 10 1016 S0304 3940 03 00947 9 PMID 14550907 S2CID 38568963 Do AH Wang PT King CE Chun SN Nenadic Z December 2013 Brain computer interface controlled robotic gait orthosis Journal of Neuroengineering and Rehabilitation 10 1 111 doi 10 1186 1743 0003 10 111 PMC 3907014 PMID 24321081 Subject with Paraplegia Operates BCI controlled RoGO 4x at YouTube com Alex Blainey controls a cheap consumer robot arm using the EPOC headset via a serial relay port at YouTube com Drummond Katie 14 May 2009 Pentagon Preps Soldier Telepathy Push Wired Retrieved 6 May 2009 Ranganatha Sitaram Andrea Caria Ralf Veit Tilman Gaber Giuseppina Rota Andrea Kuebler and Niels Birbaumer 2007 FMRI Brain Computer Interface A Tool for Neuroscientific Research and Treatment Peplow Mark 27 August 2004 Mental ping pong could aid paraplegics News nature doi 10 1038 news040823 18 To operate robot only with brain ATR and Honda develop BMI base technology Tech on 26 May 2006 Archived from the original on 23 June 2017 Retrieved 22 September 2006 Miyawaki Y Uchida H Yamashita O Sato MA Morito Y Tanabe HC et al December 2008 Visual image reconstruction from human brain activity using a combination of multiscale local image decoders Neuron 60 5 915 929 doi 10 1016 j neuron 2008 11 004 PMID 19081384 S2CID 17327816 Nishimoto S Vu AT Naselaris T Benjamini Y Yu B Gallant JL October 2011 Reconstructing visual experiences from brain activity evoked by natural movies Current Biology 21 19 1641 1646 doi 10 1016 j cub 2011 08 031 PMC 3326357 PMID 21945275 Yam Philip 22 September 2011 Breakthrough Could Enable Others to Watch Your Dreams and Memories Scientific American Retrieved 25 September 2011 Reconstructing visual experiences from brain activity evoked by natural movies Project page The Gallant Lab at UC Berkeley Archived from the original on 25 September 2011 Retrieved 25 September 2011 Anwar Yasmin 22 September 2011 Scientists use brain imaging to reveal the movies in our mind UC Berkeley News Center Retrieved 25 September 2011 a b c Marshall D Coyle D Wilson S Callaghan M 2013 Games Gameplay and BCI The State of the Art IEEE Transactions on Computational Intelligence and AI in Games 5 2 83 doi 10 1109 TCIAIG 2013 2263555 S2CID 206636315 Goals of the organizers BBC Retrieved 19 December 2022 Ang KK Chin ZY Wang C Guan C Zhang H 1 January 2012 Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b Frontiers in Neuroscience 6 39 doi 10 3389 fnins 2012 00039 PMC 3314883 PMID 22479236 Fairclough Stephen H January 2009 Fundamentals of physiological computing Interacting with Computers 21 1 2 133 145 doi 10 1016 j intcom 2008 10 011 S2CID 16314534 Bozinovski S 2017 Signal Processing Robotics Using Signals Generated by a Human Head From Pioneering Works to EEG Based Emulation of Digital Circuits Advances in Robot Design and Intelligent Control Advances in Intelligent Systems and Computing Vol 540 pp 449 462 doi 10 1007 978 3 319 49058 8 49 ISBN 978 3 319 49057 1 Mathot S Melmi JB van der Linden L Van der Stigchel S 2016 The Mind Writing Pupil A Human Computer Interface Based on Decoding of Covert Attention through Pupillometry PLOS ONE 11 2 e0148805 Bibcode 2016PLoSO 1148805M doi 10 1371 journal pone 0148805 PMC 4743834 PMID 26848745 Kennedy Pagan 18 September 2011 The Cyborg in Us All The New York Times Retrieved 28 January 2012 Selim Jocelyn Drinkell Pete 1 November 2002 The Bionic Connection Discover Archived from the original on 6 January 2008 Giaimo Cara 10 June 2015 Nervous System Hookup Leads to Telepathic Hand Holding Atlas Obscura Warwick K Gasson M Hutt B Goodhew I Kyberd P Schulzrinne H and Wu X Thought Communication and Control A First Step using Radiotelegraphy IEE Proceedings on Communications 151 3 pp 185 189 2004 Warwick K Gasson M Hutt B Goodhew I Kyberd P Andrews B et al October 2003 The application of implant technology for cybernetic systems Archives of Neurology 60 10 1369 1373 doi 10 1001 archneur 60 10 1369 PMID 14568806 Grau C Ginhoux R Riera A Nguyen TL Chauvat H Berg M et al 2014 Conscious brain to brain communication in humans using non invasive technologies PLOS ONE 9 8 e105225 Bibcode 2014PLoSO 9j5225G doi 10 1371 journal pone 0105225 PMC 4138179 PMID 25137064 Bland Eric 13 October 2008 Army Developing synthetic telepathy Discovery News Retrieved 13 October 2008 Pais Vieira M Lebedev M Kunicki C Wang J Nicolelis MA 28 February 2013 A brain to brain interface for real time sharing of sensorimotor information Scientific Reports 3 1319 Bibcode 2013NatSR 3E1319P doi 10 1038 srep01319 PMC 3584574 PMID 23448946 Gorman James 28 February 2013 One Rat Thinks and Another Reacts The New York Times Retrieved 28 February 2013 Sample Ian 1 March 2013 Brain to brain interface lets rats share information via internet The Guardian Retrieved 2 March 2013 Mazzatenta A Giugliano M Campidelli S Gambazzi L Businaro L Markram H et al June 2007 Interfacing neurons with carbon nanotubes electrical signal transfer and synaptic stimulation in cultured brain circuits The Journal of Neuroscience 27 26 6931 6936 doi 10 1523 JNEUROSCI 1051 07 2007 PMC 6672220 PMID 17596441 Caltech Scientists Devise First Neurochip Caltech 26 October 1997 Sandhana Lakshmi 22 October 2004 Coming to a brain near you Wired News Archived from the original on 10 September 2006 Brain in a dish flies flight simulator CNN 4 November 2004 David Pearce Humanity Plus 5 October 2017 Retrieved 30 December 2021 Stoica A 2010 Speculations on Robots Cyborgs amp Telepresence YouTube Archived from the original on 28 December 2021 Retrieved 28 December 2021 Experts to redefine the future at Humanity CalTech Kurzweil Retrieved 30 December 2021 WO2012100081A2 Stoica Adrian Aggregation of bio signals from multiple individuals to achieve a collective outcome issued 2012 07 26 Wang Y Jung TP 31 May 2011 A collaborative brain computer interface for improving human performance PLOS ONE 6 5 e20422 Bibcode 2011PLoSO 620422W doi 10 1371 journal pone 0020422 PMC 3105048 PMID 21655253 Eckstein MP Das K Pham BT Peterson MF Abbey CK Sy JL Giesbrecht B January 2012 Neural decoding of collective wisdom with multi brain computing NeuroImage 59 1 94 108 doi 10 1016 j neuroimage 2011 07 009 PMID 21782959 S2CID 14930969 Stoica A September 2012 MultiMind Multi Brain Signal Fusion to Exceed the Power of a Single Brain 2012 Third International Conference on Emerging Security Technologies pp 94 98 doi 10 1109 EST 2012 47 ISBN 978 0 7695 4791 6 S2CID 6783719 Poli R Cinel C Matran Fernandez A Sepulveda F Stoica A 19 March 2013 Towards cooperative brain computer interfaces for space navigation Proceedings of the 2013 international conference on Intelligent user interfaces IUI 13 New York NY USA Association for Computing Machinery pp 149 160 doi 10 1145 2449396 2449417 ISBN 978 1 4503 1965 2 S2CID 13201979 Poli R Cinel C Sepulveda F Stoica A February 2013 Improving decision making based on visual perception via a collaborative brain computer interface 2013 IEEE International Multi Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support CogSIMA San Diego CA IEEE pp 1 8 doi 10 1109 CogSIMA 2013 6523816 ISBN 978 1 4673 2437 3 S2CID 25136642 Matran Fernandez A Poli R Cinel C November 2013 Collaborative brain computer interfaces for the automatic classification of images 2013 6th International IEEE EMBS Conference on Neural Engineering NER pp 1096 1099 doi 10 1109 NER 2013 6696128 ISBN 978 1 4673 1969 0 S2CID 40341170 Valeriani D Cinel C Poli R August 2017 Group Augmentation in Realistic Visual Search Decisions via a Hybrid Brain Computer Interface Scientific Reports 7 1 7772 Bibcode 2017NatSR 7 7772V doi 10 1038 s41598 017 08265 7 PMC 5552884 PMID 28798411 Bhattacharyya S Valeriani D Cinel C Citi L Poli R August 2021 Anytime collaborative brain computer interfaces for enhancing perceptual group decision making Scientific Reports 11 1 17008 Bibcode 2021NatSR 1117008B doi 10 1038 s41598 021 96434 0 PMC 8379268 PMID 34417494 Paralyzed Again MIT Technology Review Retrieved 8 December 2023 Gale Product Login galeapps gale com Retrieved 8 December 2023 Ienca Marcello Haselager Pim June 2016 Hacking the brain brain computer interfacing technology and the ethics of neurosecurity Ethics amp Information Technology 18 2 117 129 doi 10 1007 s10676 016 9398 9 S2CID 5132634 Steinert Steffen Friedrich Orsolya 1 February 2020 Wired Emotions Ethical Issues of Affective Brain Computer Interfaces Science and Engineering Ethics 26 1 351 367 doi 10 1007 s11948 019 00087 2 ISSN 1471 5546 PMC 6978299 PMID 30868377 Clausen Jens 1 February 2009 Man machine and in between Nature 457 7233 1080 1081 Bibcode 2009Natur 457 1080C doi 10 1038 4571080a ISSN 0028 0836 PMID 19242454 S2CID 205043226 Haselager Pim Vlek Rutger Hill Jeremy Nijboer Femke 1 November 2009 A note on ethical aspects of BCI Neural Networks Brain Machine Interface 22 9 1352 1357 doi 10 1016 j neunet 2009 06 046 hdl 2066 77533 ISSN 0893 6080 PMID 19616405 Attiah Mark A Farah Martha J 15 May 2014 Minds motherboards and money futurism and realism in the neuroethics of BCI technologies Frontiers in Systems Neuroscience 8 86 doi 10 3389 fnsys 2014 00086 ISSN 1662 5137 PMC 4030132 PMID 24860445 Nijboer Femke Clausen Jens Allison Brendan Z Haselager Pim 2013 The Asilomar Survey Stakeholders Opinions on Ethical Issues Related to Brain Computer Interfacing Neuroethics 6 3 541 578 doi 10 1007 s12152 011 9132 6 ISSN 1874 5490 PMC 3825606 PMID 24273623 Sony patent neural interface Archived from the original on 7 April 2012 Mind Games The Economist 23 March 2007 nia Game Controller Product Page OCZ Technology Group Retrieved 30 January 2013 a b c Li S 8 August 2010 Mind reading is on the market Los Angeles Times Archived from the original on 4 January 2013 Fruhlinger Joshua 9 October 2008 Brains on with NeuroSky and Square Enix s Judecca mind control game Engadget Retrieved 29 May 2012 New games powered by brain waves Physorg com 10 January 2009 Retrieved on 12 September 2010 Snider Mike 7 January 2009 Toy trains Star Wars fans to use The Force USA Today Retrieved 1 May 2010 Emotiv Homepage Emotiv com Retrieved 29 December 2009 necomimi selected Time Magazine The 50 best invention of the year Neurowear 22 November 2011 Archived from the original on 25 January 2012 LIFESUIT Updates amp News They Shall Walk Theyshallwalk org Retrieved 19 December 2016 SmartphoneBCI GitHub Retrieved 5 June 2018 SSVEP keyboard GitHub Retrieved 5 April 2017 Protalinski Emil 8 December 2020 NextMind ships its real time brain computer interface Dev Kit for 399 VentureBeat Retrieved 8 September 2021 Etherington Darrell 21 December 2020 NextMind s Dev Kit for mind controlled computing offers a rare wow factor in tech TechCrunch Retrieved 1 April 2024 Roadmap BNCI Horizon 2020 bnci horizon 2020 eu Retrieved 5 May 2019 Brunner C Birbaumer N Blankertz B Guger C Kubler A Mattia D et al 2015 BNCI Horizon 2020 towards a roadmap for the BCI community Brain Computer Interfaces 2 1 10 doi 10 1080 2326263X 2015 1008956 hdl 1874 350349 S2CID 15822773 Allison BZ Dunne S Leeb R Millan J Nijholt A 2013 Towards Practical Brain Computer Interfaces Bridging the Gap from Research to Real World Applications Berlin Heidelberg Springer Verlag ISBN 978 3 642 29746 5 Edlinger G Allison BZ Guger C 2015 How many people could use a BCI system In Kansaku K Cohen L Birbaumer N eds Clinical Systems Neuroscience Tokyo pringer Verlag Japan pp 33 66 ISBN 978 4 431 55037 2 Chatelle C Chennu S Noirhomme Q Cruse D Owen AM Laureys S 2012 Brain computer interfacing in disorders of consciousness Brain Injury 26 12 1510 1522 doi 10 3109 02699052 2012 698362 hdl 2268 162403 PMID 22759199 S2CID 6498232 Boly M Massimini M Garrido MI Gosseries O Noirhomme Q Laureys S Soddu A 2012 Brain connectivity in disorders of consciousness Brain Connectivity 2 1 1 10 doi 10 1089 brain 2011 0049 hdl 2268 131984 PMID 22512333 S2CID 6447538 Gibson RM Fernandez Espejo D Gonzalez Lara LE Kwan BY Lee DH Owen AM Cruse D 2014 Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness Frontiers in Human Neuroscience 8 950 doi 10 3389 fnhum 2014 00950 PMC 4244609 PMID 25505400 Risetti M Formisano R Toppi J Quitadamo LR Bianchi L Astolfi L et al 2013 On ERPs detection in disorders of consciousness rehabilitation Frontiers in Human Neuroscience 7 775 doi 10 3389 fnhum 2013 00775 PMC 3834290 PMID 24312041 Silvoni S Ramos Murguialday A Cavinato M Volpato C Cisotto G Turolla A et al October 2011 Brain computer interface in stroke a review of progress Clinical EEG and Neuroscience 42 4 245 252 doi 10 1177 155005941104200410 PMID 22208122 S2CID 37902399 Leamy DJ Kocijan J Domijan K Duffin J Roche RA Commins S et al January 2014 An exploration of EEG features during recovery following stroke implications for BCI mediated neurorehabilitation therapy Journal of Neuroengineering and Rehabilitation 11 9 doi 10 1186 1743 0003 11 9 PMC 3996183 PMID 24468185 Tung SW Guan C Ang KK Phua KS Wang C Zhao L et al July 2013 Motor imagery BCI for upper limb stroke rehabilitation An evaluation of the EEG recordings using coherence analysis 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC Vol 2013 pp 261 264 doi 10 1109 EMBC 2013 6609487 ISBN 978 1 4577 0216 7 PMID 24109674 S2CID 5071115 Bai Z Fong KN Zhang JJ Chan J Ting KH April 2020 Immediate and long term effects of BCI based rehabilitation of the upper extremity after stroke a systematic review and meta analysis Journal of Neuroengineering and Rehabilitation 17 1 57 doi 10 1186 s12984 020 00686 2 PMC 7183617 PMID 32334608 Remsik A Young B Vermilyea R Kiekhoefer L Abrams J Evander Elmore S et al May 2016 A review of the progression and future implications of brain computer interface therapies for restoration of distal upper extremity motor function after stroke Expert Review of Medical Devices 13 5 445 454 doi 10 1080 17434440 2016 1174572 PMC 5131699 PMID 27112213 Monge Pereira E Ibanez Pereda J Alguacil Diego IM Serrano JI Spottorno Rubio MP Molina Rueda F September 2017 Use of Electroencephalography Brain Computer Interface Systems as a Rehabilitative Approach for Upper Limb Function After a Stroke A Systematic Review PM amp R 9 9 918 932 doi 10 1016 j pmrj 2017 04 016 PMID 28512066 S2CID 20808455 Sabathiel N Irimia DC Allison BZ Guger C Edlinger G 17 July 2016 Paired Associative Stimulation with Brain Computer Interfaces A New Paradigm for Stroke Rehabilitation Foundations of Augmented Cognition Neuroergonomics and Operational Neuroscience Lecture Notes in Computer Science Vol 9743 pp 261 272 doi 10 1007 978 3 319 39955 3 25 ISBN 978 3 319 39954 6 Riccio A Pichiorri F Schettini F Toppi J Risetti M Formisano R et al 2016 Interfacing brain with computer to improve communication and rehabilitation after brain damage Brain Computer Interfaces Lab Experiments to Real World Applications Progress in Brain Research Vol 228 pp 357 387 doi 10 1016 bs pbr 2016 04 018 ISBN 978 0 12 804216 8 PMID 27590975 Varkuti B Guan C Pan Y Phua KS Ang KK Kuah CW et al January 2013 Resting state changes in functional connectivity correlate with movement recovery for BCI and robot assisted upper extremity training after stroke Neurorehabilitation and Neural Repair 27 1 53 62 doi 10 1177 1545968312445910 PMID 22645108 S2CID 7120989 Young BM Nigogosyan Z Remsik A Walton LM Song J Nair VA et al 2014 Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain computer interface device Frontiers in Neuroengineering 7 25 doi 10 3389 fneng 2014 00025 PMC 4086321 PMID 25071547 a b Yuan K Chen C Wang X Chu WC Tong RK January 2021 BCI Training Effects on Chronic Stroke Correlate with Functional Reorganization in Motor Related Regions A Concurrent EEG and fMRI Study Brain Sciences 11 1 56 doi 10 3390 brainsci11010056 PMC 7824842 PMID 33418846 Mrachacz Kersting N Voigt M Stevenson AJ Aliakbaryhosseinabadi S Jiang N Dremstrup K Farina D November 2017 The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity Brain Research 1674 91 100 doi 10 1016 j brainres 2017 08 025 hdl 10012 12325 PMID 28859916 S2CID 5866337 Opie N 2 April 2019 Research Overview University of Melbourne Medicine University of Melbourne Retrieved 5 December 2019 Oxley TJ Opie NL John SE Rind GS Ronayne SM Wheeler TL et al March 2016 Minimally invasive endovascular stent electrode array for high fidelity chronic recordings of cortical neural activity Nature Biotechnology 34 3 320 327 doi 10 1038 nbt 3428 PMID 26854476 S2CID 205282364 Synchron begins trialling Stentrode neural interface technology Verdict Medical Devices 22 September 2019 Retrieved 5 December 2019 Radzik I Miziak B Dudka J Chroscinska Krawczyk M Czuczwar SJ June 2015 Prospects of epileptogenesis prevention Pharmacological Reports 67 3 663 668 doi 10 1016 j pharep 2015 01 016 PMID 25933984 S2CID 31284248 Ritaccio A Brunner P Gunduz A Hermes D Hirsch LJ Jacobs J et al December 2014 Proceedings of the Fifth International Workshop on Advances in Electrocorticography Epilepsy amp Behavior 41 183 192 doi 10 1016 j yebeh 2014 09 015 PMC 4268064 PMID 25461213 Kim DH Viventi J Amsden JJ Xiao J Vigeland L Kim YS et al June 2010 Dissolvable films of silk fibroin for ultrathin conformal bio integrated electronics Nature Materials 9 6 511 517 Bibcode 2010NatMa 9 511K doi 10 1038 nmat2745 PMC 3034223 PMID 20400953 Boppart SA Wheeler BC Wallace CS January 1992 A flexible perforated microelectrode array for extended neural recordings IEEE Transactions on Bio Medical Engineering 39 1 37 42 doi 10 1109 10 108125 PMID 1572679 S2CID 36593459 Kim DH Ghaffari R Lu N Rogers JA 2012 Flexible and stretchable electronics for biointegrated devices Annual Review of Biomedical Engineering 14 113 128 doi 10 1146 annurev bioeng 071811 150018 PMID 22524391 S2CID 5223203 Thompson CH Zoratti MJ Langhals NB Purcell EK April 2016 Regenerative Electrode Interfaces for Neural Prostheses Tissue Engineering Part B Reviews 22 2 125 135 doi span, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.