fbpx
Wikipedia

Woolly mammoth

The woolly mammoth (Mammuthus primigenius) is an extinct species of mammoth that lived during the Pleistocene until its extinction in the Holocene epoch. It was one of the last in a line of mammoth species, beginning with the African Mammuthus subplanifrons in the early Pliocene. The woolly mammoth began to diverge from the steppe mammoth about 800,000 years ago in East Asia. Its closest extant relative is the Asian elephant. The Columbian mammoth (Mammuthus columbi) lived alongside the woolly mammoth in North America, and DNA studies show that the two hybridised with each other.

Woolly mammoth
Temporal range: Middle Pleistocene[1] – Late Holocene[1] 0.40–0.0037 Ma
Largest European specimen, a male at Südostbayerisches Naturkunde- und Mammut-Museum, Siegsdorf
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Proboscidea
Family: Elephantidae
Genus: Mammuthus
Species:
M. primigenius
Binomial name
Mammuthus primigenius
(Blumenbach, 1799)
Dymaxion map showing the Late Pleistocene distribution of M. primigenius in blue (light blue was land at the time), inferred from fossil finds
Synonyms
List:
  • Elephas primigenius Blumenbach, 1799
  • Elephas mammonteus Cuvier, 1799
  • Mammuthus boreus Brookes, 1828
  • Mammonteus primigenius Osborn, 1924
  • Elephas boreus Hay, 1924

The appearance and behaviour of this species are among the best studied of any prehistoric animal because of the discovery of frozen carcasses in Siberia and North America, as well as skeletons, teeth, stomach contents, dung, and depiction from life in prehistoric cave paintings. Mammoth remains had long been known in Asia before they became known to Europeans in the 17th century. The origin of these remains was long a matter of debate, and often explained as being remains of legendary creatures. The mammoth was identified as an extinct species of elephant by Georges Cuvier in 1796.

The woolly mammoth was roughly the same size as modern African elephants. Males reached shoulder heights between 2.67 and 3.49 m (8.8 and 11.5 ft) and weighed between 3.9 and 8.2 metric tons (4.3 and 9.0 short tons). Females reached 2.6–2.9 m (8.5–9.5 ft) in shoulder heights and weighed up to 4 metric tons (4.4 short tons). A newborn calf weighed about 90 kg (200 lb). The woolly mammoth was well adapted to the cold environment during the last ice age. It was covered in fur, with an outer covering of long guard hairs and a shorter undercoat. The colour of the coat varied from dark to light. The ears and tail were short to minimise frostbite and heat loss. It had long, curved tusks and four molars, which were replaced six times during the lifetime of an individual. Its behaviour was similar to that of modern elephants, and it used its tusks and trunk for manipulating objects, fighting, and foraging. The diet of the woolly mammoth was mainly grasses and sedges. Individuals could probably reach the age of 60. Its habitat was the mammoth steppe, which stretched across northern Eurasia and North America.

The woolly mammoth coexisted with early humans, who used its bones and tusks for making art, tools, and dwellings, and hunted the species for food. The population of woolly mammoths declined at the end of the Late Pleistocene, with the last populations on mainland Siberia persisting until around 10,000 years ago, although isolated populations survived on St. Paul Island until 5,600 years ago, and on Wrangel Island until 4,000 years ago. After its extinction, humans continued using its ivory as a raw material, a tradition that continues today. With a genome project for the mammoth completed in 2015, it has been proposed the species could be revived through various means, but none of the methods proposed are yet feasible.

Taxonomy

 
Copy of an interpretation of the "Adams mammoth" carcass from around 1800, with Johann Friedrich Blumenbach's handwriting

Remains of various extinct elephants were known by Europeans for centuries, but were generally interpreted, based on biblical accounts, as the remains of legendary creatures such as behemoths or giants. They were thought to be remains of modern elephants that had been brought to Europe during the Roman Republic, for example the war elephants of Hannibal and Pyrrhus of Epirus, or animals that had wandered north.[2] The first woolly mammoth remains studied by European scientists were examined by Hans Sloane in 1728 and consisted of fossilised teeth and tusks from Siberia. Sloane was the first to recognise that the remains belonged to elephants.[3] Sloane turned to another biblical explanation for the presence of elephants in the Arctic, asserting that they had been buried during the Great Flood, and that Siberia had previously been tropical before a drastic climate change.[4]

Others interpreted Sloane's conclusion slightly differently, arguing the flood had carried elephants from the tropics to the Arctic. Sloane's paper was based on travellers' descriptions and a few scattered bones collected in Siberia and Britain. He discussed the question of whether or not the remains were from elephants, but drew no conclusions.[5] In 1738, the German zoologist Johann Philipp Breyne argued that mammoth fossils represented some kind of elephant. He could not explain why a tropical animal would be found in such a cold area as Siberia, and suggested that they might have been transported there by the Great Flood.[6]

In 1796, French biologist Georges Cuvier was the first to identify the woolly mammoth remains not as modern elephants transported to the Arctic, but as an entirely new species. He argued this species had gone extinct and no longer existed, a concept that was not widely accepted at the time.[2][7] Following Cuvier's identification, German naturalist Johann Friedrich Blumenbach gave the woolly mammoth its scientific name, Elephas primigenius, in 1799, placing it in the same genus as the Asian elephant. This name is Latin for "the first-born elephant". Cuvier coined the name Elephas mammonteus a few months later, but the former name was subsequently used.[8] In 1828, the British naturalist Joshua Brookes used the name Mammuthus borealis for woolly mammoth fossils in his collection that he put up for sale, thereby coining a new genus name.[9]

 
1930s illustration of the lectotype molars; the left one is now lost.

Where and how the word "mammoth" originated is unclear. According to the Oxford English Dictionary, it comes from an old Vogul word mēmoŋt, "earth-horn".[10] It may be a version of mehemot, the Arabic version of the biblical word "behemoth". Another possible origin is Estonian, where maa means "earth", and mutt means "mole". The word was first used in Europe during the early 17th century, when referring to maimanto tusks discovered in Siberia.[11] American president Thomas Jefferson, who had a keen interest in palaeontology, was partially responsible for transforming the word "mammoth" from a noun describing the prehistoric elephant to an adjective describing anything of surprisingly large size. The first recorded use of the word as an adjective was in a description of a wheel of cheese (the "Cheshire Mammoth Cheese") given to Jefferson in 1802.[12]

By the early 20th century, the taxonomy of extinct elephants was complex. In 1942, American palaeontologist Henry Fairfield Osborn's posthumous monograph on the Proboscidea was published, wherein he used various taxon names that had previously been proposed for mammoth species, including replacing Mammuthus with Mammonteus, as he believed the former name to be invalidly published.[13] Mammoth taxonomy was simplified by various researchers from the 1970s onwards, all species were retained in the genus Mammuthus, and many proposed differences between species were instead interpreted as intraspecific variation.[14]

Osborn chose two molars (found in Siberia and Osterode) from Blumenbach's collection at Göttingen University as the lectotype specimens for the woolly mammoth, since holotype designation was not practised in Blumenbach's time. Soviet palaeontologist Vera Gromova further proposed the former should be considered the lectotype with the latter as paralectotype. Both molars were thought lost by the 1980s, and the more complete "Taimyr mammoth" found in Siberia in 1948 was therefore proposed as the neotype specimen in 1990. Resolutions to historical issues about the validity of the genus name Mammuthus and the type species designation of E. primigenius were also proposed.[15] The paralectotype molar (specimen GZG.V.010.018) has since been located in the Göttingen University collection, identified by comparing it with Osborn's illustration of a cast.[8][16]

Evolution

 
Georges Cuvier's 1796 comparison between the mandible of a woolly mammoth (bottom left and top right) and an Indian elephant (top left and bottom right)

The earliest known members of the Proboscidea, the clade which contains modern elephants, existed about 55 million years ago around the Tethys Sea. The closest known relatives of the Proboscidea are the sirenians (dugongs and manatees) and the hyraxes (an order of small, herbivorous mammals). The family Elephantidae existed 6 million years ago in Africa and includes the modern elephants and the mammoths. Among many now extinct clades, the mastodon (Mammut) is only a distant relative of the mammoths, and part of the separate family Mammutidae, which diverged 25 million years before the mammoths evolved.[17] The following cladogram shows the placement of the genus Mammuthus among other proboscideans, based on characteristics of the hyoid bone in the neck:[18]

Elephantimorpha

Mammutidae (mastodons)  

Elephantida

Gomphotheriidae (gomphotheres)  

Elephantoidea

Stegodontidae (stegodontids)  

Elephantidae

Loxodonta (African elephants)  

Elephantini

Palaeoloxodon (straight-tusked elephants)  

Elephantina

Elephas (Asian elephants)  

Mammuthus (mammoths)  

 
Comparison between the lower molars of a woolly mammoth (above) and a southern mammoth; note the lower number of enamel ridges in the older species (below)

Within six weeks from 2005–2006, three teams of researchers independently assembled mitochondrial genome profiles of the woolly mammoth from ancient DNA, which allowed them to confirm the close evolutionary relationship between mammoths and Asian elephants (Elephas maximus).[19][20] A 2015 DNA review confirmed Asian elephants as the closest living relative of the woolly mammoth.[21] African elephants (Loxodonta africana) branched away from this clade around 6 million years ago, close to the time of the similar split between chimpanzees and humans.[22] A 2010 study confirmed these relationships, and suggested the mammoth and Asian elephant lineages diverged 5.8–7.8 million years ago, while African elephants diverged from an earlier common ancestor 6.6–8.8 million years ago.[23]

In 2008, much of the woolly mammoth's chromosomal DNA was mapped. The analysis showed that the woolly mammoth and the African elephant are 98.55% to 99.40% identical.[24] The team mapped the woolly mammoth's nuclear genome sequence by extracting DNA from the hair follicles of both a 20,000-year-old mammoth retrieved from permafrost and another that died 60,000 years ago.[25] In 2012, proteins were confidently identified for the first time, collected from a 43,000-year-old woolly mammoth.[26]

Since many remains of each species of mammoth are known from several localities, reconstructing the evolutionary history of the genus through morphological studies is possible. Mammoth species can be identified from the number of enamel ridges (or lamellar plates) on their molars; primitive species had few ridges, and the number increased gradually as new species evolved to feed on more abrasive food items. The crowns of the teeth became deeper in height and the skulls became taller to accommodate this. At the same time, the skulls became shorter from front to back to minimise the weight of the head.[1][27] The short and tall skulls of woolly and Columbian mammoths (Mammuthus columbi) were the culmination of this process.[28]

The first known members of the genus Mammuthus are the African species Mammuthus subplanifrons from the Pliocene, and M. africanavus from the Pleistocene. The former is thought to be the ancestor of later forms. Mammoths entered Europe around 3 million years ago. The earliest European mammoth has been named M. rumanus; it spread across Europe and China. Only its molars are known, which show that it had 8–10 enamel ridges. A population evolved 12–14 ridges, splitting off from and replacing the earlier type, becoming the southern mammoth (M. meridionalis) about 2–1.7 million years ago. In turn, this species was replaced by the steppe mammoth (M. trogontherii) with 18–20 ridges, which evolved in eastern Asia around 1 million years ago.[1] Mammoths derived from M. trogontherii evolved molars with 26 ridges 400,000 years ago in Siberia and became the woolly mammoth.[1] Woolly mammoths entered North America about 100,000 years ago by crossing the Bering Strait.[28]

Subspecies and hybridisation

 
Cast of an intermediate form between M. trogontherii and M. primigenius; M. p. fraasi, Staatliches Museum für Naturkunde Stuttgart
 
Specimen (formerly assigned to M. jeffersonii) suggested to be a hybrid between Columbian and woolly mammoths at the American Museum of Natural History

Individuals and populations showing transitional morphologies between each of the mammoth species are known, and primitive and derived species coexisted until the former disappeared. The different species and their intermediate forms have been termed "chronospecies". Many taxa intermediate between M. primigenius and other mammoths have been proposed, but their validity is uncertain; depending on author, they are either considered primitive forms of an advanced species or advanced forms of a primitive species.[1] Distinguishing and determining these intermediate forms has been called one of the most long-lasting and complicated problems in Quaternary palaeontology. Regional and intermediate species and subspecies such as M. intermedius, M. chosaricus, M. p. primigenius, M. p. jatzkovi, M. p. sibiricus, M. p. fraasi, M. p. leith-adamsi, M. p. hydruntinus, M. p. astensis, M. p. americanus, M. p. compressus and M. p. alaskensis have been proposed.[13][29][30]

A 2011 genetic study showed that two examined specimens of the Columbian mammoth were grouped within a subclade of woolly mammoths. This suggests that the two populations interbred and produced fertile offspring. A North American type formerly referred to as M. jeffersonii may be a hybrid between the two species.[31] A 2015 study suggested that the animals in the range where M. columbi and M. primigenius overlapped formed a metapopulation of hybrids with varying morphology. It suggested that Eurasian M. primigenius had a similar relationship with M. trogontherii in areas where their range overlapped.[32]

In 2021, DNA older than a million years was sequenced for the first time, from two mammoth teeth of Early Pleistocene age found in eastern Siberia. One tooth from Adycha (1–1.3 million years old) belonged to a lineage that was ancestral to later woolly mammoths, whereas the other from Krestovka (1.1–1.65 million years old) belonged to new lineage. The study found that half of the ancestry of Columbian mammoths came from relatives of the Krestovka lineage (which probably represented the first mammoths that colonised the Americas) and the other half from the lineage of woolly mammoths, with the hybridisation happening more than 420,000 years ago, during the Middle Pleistocene. Later woolly and Columbian mammoths also interbred occasionally, and mammoth species may have hybridised routinely when brought together by glacial expansion. These findings were the first evidence of hybrid speciation from ancient DNA. The study also found that genetic adaptations to cold environments, such as hair growth and fat deposits, were already present in the steppe mammoth lineage and were not unique to woolly mammoths.[33][34]

Description

 
Size (red) compared to a human and other mammoths

The appearance of the woolly mammoth is probably the best known of any prehistoric animal due to the many frozen specimens with preserved soft tissue and depictions by contemporary humans in their art. Fully grown males reached shoulder heights between 2.67 and 3.49 m (8.8 and 11.5 ft) and weighed between 3.9 and 8.2 tonnes (4.3 and 9.0 short tons) (the largest being a specimen from Siegsdorf). The average male has been estimated to have had a shoulder height of 2.8 m (9.2 ft) and a weight of 4.5 tonnes (5.0 short tons) in the Siberian populations and a shoulder height of 3.15 m (10.3 ft) and a weight of 6 tonnes (6.6 short tons) in the European populations. This is similar to extant male African elephants, which commonly reach a shoulder height of 3.04–3.36 m (10.0–11.0 ft) and a weight of 5.2–6.9 tonnes (5.7–7.6 short tons), with a mean average shoulder height of 3.2 m (10.5 ft) and a weight of 6 tonnes (6.6 short tons), and is less than the size of the earlier mammoth species M. meridionalis and M. trogontherii, and the contemporary M. columbi. The reason for the smaller size is unknown. Female woolly mammoths reached 2.6–2.9 m (8.5–9.5 ft) in shoulder heights and were built more lightly than males, weighing up to 4 tonnes (4.4 short tons). A newborn calf would have weighed about 90 kg (200 lb). These sizes are deduced from comparison with modern elephants of similar size.[35][36]

Few frozen specimens have preserved genitals, so the sex is usually determined through examination of the skeleton. The best indication of sex is the size of the pelvic girdle, since the opening that functions as the birth canal is always wider in females than in males.[37] Though the mammoths on Wrangel Island were smaller than those of the mainland, their size varied, and they were not small enough to be considered "island dwarfs".[38] The last woolly mammoth populations are claimed to have decreased in size and increased their sexual dimorphism, but this was dismissed in a 2012 study.[39]

 
Model at the Royal BC Museum

Woolly mammoths had several adaptations to the cold, most noticeably the layer of fur covering all parts of their bodies. Other adaptations to cold weather include ears that are far smaller than those of modern elephants; they were about 38 cm (15 in) long and 18–28 cm (7.1–11.0 in) across, and the ear of the 6- to 12-month-old frozen calf "Dima" was under 13 cm (5.1 in) long. The small ears reduced heat loss and frostbite, and the tail was short for the same reason, only 36 cm (14 in) long in the "Berezovka mammoth". The tail contained 21 vertebrae, whereas the tails of modern elephants contain 28–33. Their skin was no thicker than that of present-day elephants, between 1.25 and 2.5 cm (0.49 and 0.98 in). They had a layer of fat up to 10 cm (3.9 in) thick under the skin, which helped to keep them warm. Woolly mammoths had broad flaps of skin under their tails which covered the anus; this is also seen in modern elephants.[40]

Other characteristic features depicted in cave paintings include a large, high, single-domed head and a sloping back with a high shoulder hump; this shape resulted from the spinous processes of the back vertebrae decreasing in length from front to rear. These features were not present in juveniles, which had convex backs like Asian elephants. Another feature shown in cave paintings was confirmed by the discovery of a frozen specimen in 1924, an adult nicknamed the "Middle Kolyma mammoth", which was preserved with a complete trunk tip. Unlike the trunk lobes of modern elephants, the upper "finger" at the tip of the trunk had a long pointed lobe and was 10 cm (3.9 in) long, while the lower "thumb" was 5 cm (2.0 in) and was broader. The trunk of "Dima" was 76 cm (2.49 ft) long, whereas the trunk of the adult "Liakhov mammoth" was 2 metres (6.6 ft) long.[40] The well-preserved trunk of a juvenile specimen nicknamed "Yuka" was described in 2015, and it was shown to possess a fleshy expansion a third above the tip. Rather than oval as the rest of the trunk, this part was ellipsoidal in cross section, and double the size in diameter. The feature was shown to be present in two other specimens, of different sexes and ages.[41]

Coat

 
SEM magnified image of an overhair

The coat consisted of an outer layer of long, coarse "guard hair", which was 30 cm (12 in) on the upper part of the body, up to 90 cm (35 in) in length on the flanks and underside, and 0.5 mm (0.020 in) in diameter, and a denser inner layer of shorter, slightly curly under-wool, up to 8 cm (3.1 in) long and 0.05 mm (0.0020 in) in diameter. The hairs on the upper leg were up to 38 cm (15 in) long, and those of the feet were 15 cm (5.9 in) long, reaching the toes. The hairs on the head were relatively short, but longer on the underside and the sides of the trunk. The tail was extended by coarse hairs up to 60 cm (24 in) long, which were thicker than the guard hairs. The woolly mammoth likely moulted seasonally, and the heaviest fur was shed during spring.[42]

Since mammoth carcasses were more likely to be preserved, possibly only the winter coat has been preserved in frozen specimens. Modern elephants have much less hair, though juveniles have a more extensive covering of hair than adults.[42] This is thought to be for thermoregulation, helping them lose heat in their hot environments.[43] Comparison between the over-hairs of woolly mammoths and extant elephants show that they did not differ much in overall morphology.[44] Woolly mammoths had numerous sebaceous glands in their skin, which secreted oils into their hair; this would have improved the wool's insulation, repelled water, and given the fur a glossy sheen.[45]

Preserved woolly mammoth fur is orange-brown, but this is believed to be an artefact from the bleaching of pigment during burial. The amount of pigmentation varied from hair to hair and within each hair.[40] A 2006 study sequenced the Mc1r gene (which influences hair colour in mammals) from woolly mammoth bones. Two alleles were found: a dominant (fully active) and a recessive (partially active) one. In mammals, recessive Mc1r alleles result in light hair. Mammoths born with at least one copy of the dominant allele would have had dark coats, while those with two copies of the recessive allele would have had light coats.[46] A 2011 study showed that light individuals would have been rare.[47] A 2014 study instead indicated that the colouration of an individual varied from nonpigmented on the overhairs, bicoloured, nonpigmented and mixed red-brown guard hairs, and nonpigmented underhairs, which would give a light overall appearance.[48]

Dentition

 
Skull from Poland with one broken and one downward spiralled tusk

Woolly mammoths had very long tusks (modified incisor teeth), which were more curved than those of modern elephants. The largest known male tusk is 4.2 m (14 ft) long and weighs 91 kg (201 lb), but 2.4–2.7 m (7.9–8.9 ft) and 45 kg (99 lb) was a more typical size. Female tusks were smaller and thinner, 1.5–1.8 m (4.9–5.9 ft) and weighing 9 kg (20 lb). For comparison, the record for longest tusks of the African bush elephant is 3.4 m (11 ft). The sheaths of the tusks were parallel and spaced closely. About a quarter of the length was inside the sockets. The tusks grew spirally in opposite directions from the base and continued in a curve until the tips pointed towards each other, sometimes crossing. In this way, most of the weight would have been close to the skull, and less torque would occur than with straight tusks.[49][50][51]

The tusks were usually asymmetrical and showed considerable variation, with some tusks curving down instead of outwards and some being shorter due to breakage. Calves developed small milk tusks a few centimetres long at six months old, which were replaced by permanent tusks a year later. Tusk growth continued throughout life, but became slower as the animal reached adulthood. The tusks grew by 2.5–15 cm (0.98–5.91 in) each year. Some cave paintings show woolly mammoths with small or no tusks, but whether this reflected reality or was artistic license is unknown. Female Asian elephants have no tusks, but no fossil evidence indicates that any adult woolly mammoths lacked them.[49][50]

 
Molar from Font de Champdamoy, France, Musée Georges-Garret

Woolly mammoths had four functional molar teeth at a time—two in the upper jaw and two in the lower. About 23 cm (9.1 in) of the crown was within the jaw, and 2.5 cm (1 in) was above. The crown was continually pushed forwards and up as it wore down, comparable to a conveyor belt. The teeth had up to 26 separated ridges of enamel, which were themselves covered in "prisms" that were directed towards the chewing surface. These were quite wear-resistant and kept together by cementum and dentine. A mammoth had six sets of molars throughout a lifetime, which were replaced five times, though a few specimens with a seventh set are known. The latter condition could extend the lifespan of the individual, unless the tooth consisted of only a few plates. The first molars were about the size of those of a human, 1.3 cm (0.51 in), the third were 15 cm (6 in) 15 cm (5.9 in) long, and the sixth were about 30 cm (1 ft) long and weighed 1.8 kg (4 lb). The molars grew larger and contained more ridges with each replacement.[52] The woolly mammoth is considered to have had the most complex molars of any elephant.[50]

Palaeobiology

 
Life restoration of fauna during the Pleistocene epoch in northern Spain, by Mauricio Antón, 2004

Adult woolly mammoths could effectively defend themselves from predators with their tusks, trunks and size, but juveniles and weakened adults were vulnerable to pack hunters such as wolves, cave hyenas, and large felines. The tusks may have been used in intraspecies fighting, such as fights over territory or mates. Display of the large tusks of males could have been used to attract females and to intimidate rivals. Because of their curvature, the tusks were unsuitable for stabbing, but may have been used for hitting, as indicated by injuries to some fossil shoulder blades.

The very long hairs on the tail probably compensated for the shortness of the tail, enabling its use as a flyswatter, similar to the tail on modern elephants. As in modern elephants, the sensitive and muscular trunk worked as a limb-like organ with many functions. It was used for manipulating objects, and in social interactions.[53] The well-preserved foot of the adult male "Yukagir mammoth" shows that the soles of the feet contained many cracks that would have helped in gripping surfaces during locomotion. Like modern elephants, woolly mammoths walked on their toes and had large, fleshy pads behind the toes.[40]

Like modern elephants, woolly mammoths were likely very social and lived in matriarchal (female-led) family groups. This is supported by fossil assemblages and cave paintings showing groups, implying that most of their other social behaviours were likely similar to those of modern elephants. How many mammoths lived at one location at a time is unknown, as fossil deposits are often accumulations of individuals that died over long periods of time. The numbers likely varied by season and lifecycle events. Modern elephants can form large herds, sometimes consisting of multiple family groups, and these herds can include thousands of animals migrating together. Mammoths may have formed large herds more often, since animals that live in open areas are more likely to do this than those in forested areas.[54] Trackways made by a woolly mammoth herd 11,300–11,000 years ago have been found in the St. Mary Reservoir in Canada, showing that in this case almost equal numbers of adults, subadults, and juveniles were found. The adults had a stride of 2 m (6.6 ft), and the juveniles ran to keep up.[55]

Adaptations to cold

 
 
 
 
Head and leg of the adult male "Yukagir mammoth" (the trunk is not preserved); note fur and small ears

The woolly mammoth was probably the most specialised member of the family Elephantidae. In addition to their fur, they had lipopexia (fat storage) in their neck and withers, for times when food availability was insufficient during winter, and their first three molars grew more quickly than in the calves of modern elephants. The expansion identified on the trunk of "Yuka" and other specimens was suggested to function as a "fur mitten"; the trunk tip was not covered in fur, but was used for foraging during winter, and could have been heated by curling it into the expansion. The expansion could be used to melt snow if a shortage of water to drink existed, as melting it directly inside the mouth could disturb the thermal balance of the animal.[41] As in reindeer and musk oxen, the haemoglobin of the woolly mammoth was adapted to the cold, with three mutations to improve oxygen delivery around the body and prevent freezing. This feature may have helped the mammoths to live at high latitudes.[56]

In a 2015 study, high-quality genome sequences from three Asian elephants and two woolly mammoths were compared. About 1.4 million DNA nucleotide differences were found between mammoths and elephants, which affect the sequence of more than 1,600 proteins. Differences were noted in genes for a number of aspects of physiology and biology that would be relevant to Arctic survival, including development of skin and hair, storage and metabolism of adipose tissue, and perceiving temperature. Genes related to both sensing temperature and transmitting that sensation to the brain were altered. One of the heat-sensing genes encodes a protein, TRPV3, found in skin, which affects hair growth. When inserted into human cells, the mammoth's version of the protein was found to be less sensitive to heat than the elephant's. This is consistent with a previous observation that mice lacking active TRPV3 are likely to spend more time in cooler cage locations than wild-type mice, and have wavier hair. Several alterations in circadian clock genes were found, perhaps needed to cope with the extreme polar variation in length of daylight. Similar mutations are known in other Arctic mammals, such as reindeer.[57][58]

A 2019 study of the woolly mammoth mitogenome suggest that these had metabolic adaptations related to extreme environments.[59] A genetic study from 2023 found that the woolly mammoth had already acquired a broad range of genes associated with the development of skin and hair, fat storage, metabolism, and the immune system by the time the species appeared, and that these continued to evolve within the last 700,000 years, including a gene that resulted in mammoths of the Late Quaternary having small ears.[60]

Diet

 
Mandibles and lower molars, Barcelona

Food at various stages of digestion has been found in the intestines of several woolly mammoths, giving a good picture of their diet. Woolly mammoths sustained themselves on plant food, mainly grasses and sedges, which were supplemented with herbaceous plants, flowering plants, shrubs, mosses, and tree matter. The composition and exact varieties differed from location to location. Woolly mammoths needed a varied diet to support their growth, like modern elephants. An adult of 6 tons would need to eat 180 kg (397 lb) daily, and may have foraged as long as 20 hours every day. The two-fingered tip of the trunk was probably adapted for picking up the short grasses of the last ice age (Quaternary glaciation, 2.58 million years ago to present) by wrapping around them, whereas modern elephants curl their trunks around the longer grass of their tropical environments. The trunk could be used for pulling off large grass tufts, delicately picking buds and flowers, and tearing off leaves and branches where trees and shrubs were present. The "Yukagir mammoth" had ingested plant matter that contained spores of dung fungus.[61] Isotope analysis shows that woolly mammoths fed mainly on C3 plants, unlike horses and rhinos.[62]

Scientists identified milk in the stomach and faecal matter in the intestines of the mammoth calf "Lyuba".[63] The faecal matter may have been eaten by "Lyuba" to promote development of the intestinal microbes necessary for digestion of vegetation, as is the case in modern elephants.[64] An isotope analysis of woolly mammoths from Yukon showed that the young nursed for at least 3 years, and were weaned and gradually changed to a diet of plants when they were 2–3 years old. This is later than in modern elephants and may be due to a higher risk of predator attack or difficulty in obtaining food during the long periods of winter darkness at high latitudes.[65]

 
Male tusk with signs of wear

The molars were adapted to their diet of coarse tundra grasses, with more enamel plates and a higher crown than their earlier, southern relatives. The woolly mammoth chewed its food by using its powerful jaw muscles to move the mandible forwards and close the mouth, then backwards while opening; the sharp enamel ridges thereby cut across each other, grinding the food. The ridges were wear-resistant to enable the animal to chew large quantities of food, which often contained grit. Woolly mammoths may have used their tusks as shovels to clear snow from the ground and reach the vegetation buried below, and to break ice to drink. This is indicated on many preserved tusks by flat, polished sections up to 30 centimetres (12 in) long, as well as scratches, on the part of the surface that would have reached the ground (especially at their outer curvature). The tusks were used for obtaining food in other ways, such as digging up plants and stripping off bark.[66][67]

Life history

 
Cross sections of African elephant and woolly mammoth tusks; growth rings can be used to determine age

The lifespan of mammals is related to their size, and since modern elephants can reach the age of 60 years, the same is thought to be true for woolly mammoths, which were of a similar size. The age of a mammoth can be roughly determined by counting the growth rings of its tusks when viewed in cross section, but this does not account for its early years, as these are represented by the tips of the tusks, which are usually worn away. In the remaining part of the tusk, each major line represents a year, and weekly and daily ones can be found in between. Dark bands correspond to summers, so determining the season in which a mammoth died is possible. The growth of the tusks slowed when foraging became harder, for example during winter, during disease, or when a male was banished from the herd (male elephants live with their herds until about the age of 10). Mammoth tusks dating to the harshest period of the last glaciation 25–20,000 years ago show slower growth rates.[68][69]

Woolly mammoths continued growing past adulthood, like other elephants. Unfused limb bones show that males grew until they reached the age of 40, and females grew until they were 25. The frozen calf "Dima" was 90 cm (35 in) tall when it died at the age of 6–12 months. At this age, the second set of molars would be in the process of erupting, and the first set would be worn out at 18 months of age. The third set of molars lasted for 10 years, and this process was repeated until the final, sixth set emerged when the animal was 30 years old. When the last set of molars was worn out, the animal would be unable to chew and feed, and it would die of starvation. A study of North American mammoths found that they often died during winter or spring, the hardest times for northern animals to survive.[68]

Examination of preserved calves shows that they were all born during spring and summer, and since modern elephants have gestation periods of 21–22 months, the mating season probably was from summer to autumn.[70] δ15N isotopic analysis of the teeth of "Lyuba" has demonstrated their prenatal development, and indicates its gestation period was similar to that of a modern elephant, and that it was born in spring.[71]

The best-preserved head of a frozen adult specimen, that of a male nicknamed the "Yukagir mammoth", shows that woolly mammoths had temporal glands between the ear and the eye.[72] This feature indicates that, like bull elephants, male woolly mammoths entered "musth", a period of heightened aggressiveness. The glands are used especially by males to produce an oily substance with a strong smell called temporin. Their fur may have helped in spreading the scent further.[73] This was confirmed by a 2023 study that compared the testosterone level in the dentine of an adult African elephant tusk with that of a male woolly mammoth.[74]

Palaeopathology

Evidence of several different bone diseases has been found in woolly mammoths. The most common of these was osteoarthritis, found in 2% of specimens. One specimen from Switzerland had several fused vertebrae as a result of this condition. The "Yukagir mammoth" had suffered from spondylitis in two vertebrae, and osteomyelitis is known from some specimens. Several specimens have healed bone fractures, showing that the animals had survived these injuries.[75] An extra number of cervical vertebrae has been found in 33% of specimens from the North Sea region, probably due to a drop in numbers and subsequent inbreeding.[76] Parasitic flies and protozoa were identified in the gut of the calf "Dima".[77]

Distortion in the molars is the most common health problem found in woolly mammoth fossils. Sometimes, the replacement was disrupted, and the molars were pushed into abnormal positions, but some animals are known to have survived this. Teeth from Britain showed that 2% of specimens had periodontal disease, with half of these containing caries.[78] The teeth sometimes had cancerous growths.[79]

Distribution and habitat

 
 
The Altai-Sayan assemblages, such as Khar-Us Nuur and Ukok-Sailiugem, are similar to the "mammoth steppe"

The habitat of the woolly mammoth is known as "mammoth steppe" or "tundra steppe". This environment stretched across northern Asia, many parts of Europe, and the northern part of North America during the last ice age. It was similar to the grassy steppes of modern Russia, but the flora was more diverse, abundant, and grew faster. Grasses, sedges, shrubs, and herbaceous plants were present, and scattered trees were mainly found in southern regions. This habitat was not dominated by ice and snow, as is popularly believed, since these regions are thought to have been high-pressure areas at the time. The habitat of the woolly mammoth supported other grazing herbivores such as the woolly rhinoceros, wild horses, and bison.[78] The Altai-Sayan assemblages are the modern biomes most similar to the "mammoth steppe".[80] A 2014 study concluded that forbs (a group of herbaceous plants) were more important in the steppe-tundra than previously acknowledged, and that it was a primary food source for the ice-age megafauna.[81]

 
Mural depicting a herd walking near the Somme River in France, by Charles R. Knight, 1916

The southernmost woolly mammoth specimen known is from the Shandong province of China, and is 33,000 years old.[82] The southernmost European remains are from the Depression of Granada in Spain and are of roughly the same age.[83][84] DNA studies have helped determine the phylogeography of the woolly mammoth. A 2008 DNA study showed two distinct groups of woolly mammoths: one that became extinct 45,000 years ago and another one that became extinct 12,000 years ago. The two groups are speculated to be divergent enough to be characterised as subspecies. The group that became extinct earlier stayed in the middle of the high Arctic, while the group with the later extinction had a much wider range.[85] Recent stable isotope studies of Siberian and New World mammoths have shown there were differences in climatic conditions on either side of the Bering land bridge (Beringia), with Siberia being more uniformly cold and dry throughout the Late Pleistocene.[86] During the Younger Dryas age, woolly mammoths briefly expanded into north-east Europe, whereafter the mainland populations became extinct.[87]

A 2008 genetic study showed that some of the woolly mammoths that entered North America through the Bering land bridge from Asia migrated back about 300,000 years ago and had replaced the previous Asian population by about 40,000 years ago, not long before the entire species became extinct.[88] Fossils of woolly mammoths and Columbian mammoths have been found together in a few localities of North America, including the Hot Springs sinkhole of South Dakota where their regions overlapped. It is unknown whether the two species were sympatric and lived there simultaneously, or if the woolly mammoths may have entered these southern areas during times when Columbian mammoth populations were absent there.[78]

Relationship with humans

 
Woolly mammoth engraved on ivory found in 1864, the first known contemporary depiction of a prehistoric animal

Modern humans co-existed with woolly mammoths during the Upper Palaeolithic period when the humans entered Europe from Africa between 30,000 and 40,000 years ago. Before this, Neanderthals had co-existed with mammoths during the Middle Palaeolithic and already used mammoth bones for tool-making and building materials. Woolly mammoths were very important to ice age humans, and human survival may have depended on the mammoth in some areas. Evidence for such co-existence was not recognised until the 19th century. William Buckland published his discovery of the Red Lady of Paviland skeleton in 1823, which was found in a cave alongside woolly mammoth bones, but he mistakenly denied that these were contemporaries. In 1864, Édouard Lartet found an engraving of a woolly mammoth on a piece of mammoth ivory in the Abri de la Madeleine cave in Dordogne, France. The engraving was the first widely accepted evidence for the co-existence of humans with prehistoric extinct animals and is the first contemporary depiction of such a creature known to modern science.[89]

 
 
 
 
Various prehistoric depictions of woolly mammoths, including cave paintings (above) and sculptures

The woolly mammoth is the third-most depicted animal in ice age art, after horses and bison, and these images were produced between 35,000 and 11,500 years ago. Today, more than 500 depictions of woolly mammoths are known, in media ranging from cave paintings and engravings on the walls of 46 caves in Russia, France, and Spain to engravings and sculptures (termed "portable art") made from ivory, antler, stone and bone. Cave paintings of woolly mammoths exist in several styles and sizes. The French Rouffignac Cave has the most depictions, 159, and some of the drawings are more than 2 metres (6.6 ft) in length. Other notable caves with mammoth depictions are the Chauvet Cave, Les Combarelles Cave, and Font-de-Gaume.[90] A depiction in the Cave of El Castillo may instead show Palaeoloxodon, the "straight-tusked elephant".[91]

"Portable art" can be more accurately dated than cave art since it is found in the same deposits as tools and other ice age artefacts. The largest collection of portable mammoth art, consisting of 62 depictions on 47 plaques, was found in the 1960s at an excavated open-air camp near Gönnersdorf in Germany. A correlation between the number of mammoths depicted and the species that were most often hunted does not seem to exist, since reindeer bones are the most frequently found animal remains at the site. Two spear throwers shaped as woolly mammoths have been found in France.[90] Some portable mammoth depictions may not have been produced where they were discovered, but could have moved around by ancient trading.[91]

Exploitation

 
Reconstructed bone hut based on finds in Mezhyrich, exhibited in Japan

Woolly mammoth bones were used as construction material for dwellings by both Neanderthals and modern humans during the ice age.[92] More than 70 such dwellings are known, mainly from the East European Plain. The bases of the huts were circular, and ranged from 8 to 24 square metres (86 to 258 sq ft). The arrangement of dwellings varied, and ranged from 1 to 20 m (3.3 to 65.6 ft) apart, depending on location. Large bones were used as foundations for the huts, tusks for the entrances, and the roofs were probably skins held in place by bones or tusks. Some huts had floors that extended 40 cm (16 in) below ground. Some of the bones used for materials may have come from mammoths killed by humans, but the state of the bones, and the fact that bones used to build a single dwelling varied by several thousands of years in age, suggests that they were collected remains of long-dead animals. Woolly mammoth bones were made into various tools, furniture, and musical instruments. Large bones, such as shoulder blades, were used to cover dead human bodies during burial.[93]

Woolly mammoth ivory was used to create art objects. Several Venus figurines, including the Venus of Brassempouy and the Venus of Lespugue, were made from this material. Weapons made from ivory, such as daggers, spears, and a boomerang, are known. A 2019 study found that woolly mammoth ivory was the most suitable bony material for the production of big game projectile points during the Late Plesistocene. To be able to process the ivory, the large tusks had to be chopped, chiseled, and split into smaller, more manageable pieces. Some ivory artefacts show that tusks had been straightened, and how this was achieved is unknown.[94][67]

 
 
 
Artifacts made from woolly mammoth ivory; The Venus of Brassempouy, the Venus of Moravany, and the Lion-Man

Several woolly mammoth specimens show evidence of being butchered by humans, which is indicated by breaks, cut marks, and associated stone tools. How much prehistoric humans relied on woolly mammoth meat is unknown, since many other large herbivores were available. Many mammoth carcasses may have been scavenged by humans rather than hunted. Some cave paintings show woolly mammoths in structures interpreted as pitfall traps. Few specimens show direct, unambiguous evidence of having been hunted by humans. A Siberian specimen with a spearhead embedded in its shoulder blade shows that a spear had been thrown at it with great force.[95]

At a site in southern Poland that contains bones from over 100 mammoths, stone spear tips have been found embedded in bones, and many stone spear points in the site were damaged from impact against mammoth bones, indicating that mammoths were the major prey for people at the time.[96] A specimen from the Mousterian age of Italy shows evidence of spear hunting by Neanderthals.[97] The juvenile specimen nicknamed "Yuka" is the first frozen mammoth with evidence of human interaction. It shows evidence of having been killed by a large predator, and of having been scavenged by humans shortly after. Some of its bones had been removed, and were found nearby.[98] A site near the Yana River in Siberia has revealed several specimens with evidence of human hunting, but the finds were interpreted to show that the animals were not hunted intensively, but perhaps mainly when ivory was needed.[99] Two woolly mammoths from Wisconsin, the "Schaefer" and "Hebior mammoths", show evidence of having been butchered by Palaeoamericans.[100][101]

Extinction

Most woolly mammoth populations disappeared during the late Pleistocene and mid-Holocene,[102] coinciding with the extinction of most North American Pleistocene megafauna (including the Columbian mammoth) as well as the extinctions or extirpations of steppe-associated fauna of Eurasia that coexisted with the mammoth species (such as the woolly rhinoceros, the cave lion, reindeer, saiga, the Arctic fox, and the steppe lemming). This extinction formed part of the Quaternary extinctions, which began 40,000 years ago and peaked between 14,000 and 11,500 years ago. Scientists are divided over whether hunting or climate change, which led to the shrinkage of its habitat, was the main factor that contributed to the extinction of the woolly mammoth, or whether it was due to a combination of the two.[103][104]

 
Palaeolithic projectile points made from mammoth ivory, Pekárna cave

Whatever the cause, large mammals are generally more vulnerable than smaller ones due to their smaller population size and low reproduction rates. Climatic patterns of the Eemian interglacial period of Europe (130–116 kyr BP) suggest that woolly mammoths and associated steppe faunas were sensitive to contractions of steppe-tundra habitats since they were adapted to cold, dry, and open environments. Genetic results and climatic models both indicate that habitats suitable for the woolly mammoth in Eurasia contracted during the interglacial period, which wouldhave caused population bottleneck effects that restricted its range to a few northern areas. As the climate favoured colder environments, however, woolly mammoth populations rebounded during later glacial periods.[105] The last glacial period of the late Pleistocene is considered that of the maximum geographic distribution of the woolly mammoth, occupying most of Europe, northern Asia, and northern North America, although several barriers such as ice sheets, high mountain chains, deserts, year-round water surfaces, and other grasslands prevented them from spreading farther.[106] Different woolly mammoth populations did not die out simultaneously across their range, but gradually became extinct over time.[107] The dynamics of different woolly mammoth populations varied as they experienced very different magnitudes of climatic and human impacts over time, suggesting that extinction causes would have varied by population.[108] Most populations disappeared between 14,000 and 10,000 years ago. The youngest fossils of the mainland population are from the Kyttyk Peninsula of Siberia and date to 9,650 years ago.[109][110]

 
Woolly mammoth and muskox remains displayed on Wrangel Island, where mammoths survived until 4,000 years ago

A small population of woolly mammoths survived on St. Paul Island, Alaska, well into the Holocene[111][112][113] with the most recently published date of extinction being 5,600 years B.P.[114] The last population known from fossils remained on Wrangel Island in the Arctic Ocean until 4,000 years ago, well into the start of human civilization and concurrent with the construction of the Great Pyramid of ancient Egypt.[115][116][117][118] However, ancient genetic evidence supports the existence of small mainland populations that died out at around the same time as their island counterparts; two studies in 2021 found that based on environmental DNA, mammoths survived in the Yukon until about 5,700 years ago, roughly concurrent with the St. Paul population, and on the Taymyr Peninsula of Siberia until 3,900 to 4,100 years ago, roughly concurrent with the Wrangel population. The Taymyr Peninsula, with its drier habitat, may have served as a refugium for the mammoth steppe, supporting mammoths and other widespread Ice Age mammals such as wild horses (Equus sp.).[102][119] However, ancient environmental DNA in cold environments can be reworked from older sediments into younger sediments that clearly post-date extinction, raising doubt about validity of these dates.[120]

DNA sequencing of remains of two mammoths, one from Siberia 44,800 years BP and one from Wrangel Island 4,300 years BP, indicates two major population crashes: one around 280,000 years ago from which the population recovered, and a second about 12,000 years ago, near the ice age's end, from which it did not.[121] The Wrangel Island mammoths were isolated for 5000 years by rising post-ice-age sea level, and resultant inbreeding in their small population of about 300 to 1000 individuals[122] led to a 20%[123] to 30%[118] loss of heterozygosity, and a 65% loss in mitochondrial DNA diversity.[118] The population seems to have subsequently been stable, without suffering further significant loss of genetic diversity.[118][124] Genetic evidence thus implies the extinction of this final population was sudden, rather than the culmination of a gradual decline.[118]

 
Map showing climatic suitability for woolly mammoths in the Late Pleistocene and Holocene of Eurasia: red is increasing suitability, green is decreasing suitability. Black points are records of mammoths, black lines are the northern limit of humans

Before their extinction, the Wrangel Island mammoths had accumulated numerous genetic defects due to their small population; in particular, a number of genes for olfactory receptors and urinary proteins became nonfunctional, possibly because they had lost their selective value on the island environment.[125] It is not clear whether these genetic changes contributed to their extinction.[126] It has been proposed that these changes are consistent with the concept of genomic meltdown;[125] however, the sudden disappearance of an apparently stable population may be more consistent with a catastrophic event, possibly related to climate (such as icing of the snowpack) or a human hunting expedition.[127]

The disappearance coincides roughly in time with the first evidence for humans on the island.[128] The woolly mammoths of eastern Beringia (modern Alaska and Yukon) had similarly died out about 13,300 years ago, soon (roughly 1000 years) after the first appearance of humans in the area, which parallels the fate of all the other late Pleistocene proboscids (mammoths, gomphotheres, and mastodons), as well as most of the rest of the megafauna, of the Americas.[129] In contrast, the St. Paul Island mammoth population apparently died out before human arrival because of habitat shrinkage resulting from the post-ice age sea-level rise,[129] perhaps in large measure as a result of a consequent reduction in the freshwater supply.[130]

Changes in climate shrank suitable mammoth habitat from 7,700,000 km2 (3,000,000 sq mi) 42,000 years ago to 800,000 km2 (310,000 sq mi) 6,000 years ago.[131][132] Woolly mammoths survived an even greater loss of habitat at the end of the Saale glaciation 125,000 years ago, and humans likely hunted the remaining populations to extinction at the end of the last glacial period.[133][134] Studies of an 11,300–11,000-year-old trackway in south-western Canada showed that M. primigenius was in decline while coexisting with humans, since far fewer tracks of juveniles were identified than would be expected in a normal herd.[55] A 2021 study indicates, however, that although humans likely exerted a significant selective pressure on mammoths that led to them going extinct earlier than they otherwise would have,[108] the final impetus for mammoth extinction was likely vegetation changes caused by a changed precipitation regime at the end of the Ice Age.[119]

The decline of the woolly mammoth could have increased temperatures by up to 0.2 °C (0.36 °F) at high latitudes in the Northern Hemisphere. Mammoths frequently ate birch trees, creating a grassland habitat. With the disappearance of mammoths, birch forests, which absorb more sunlight than grasslands, expanded, leading to regional warming.[135]

Fossil specimens

 
Mounted "family group" from Tomsk

Woolly mammoth fossils have been found in many different types of deposits, including former rivers and lakes, and in "Doggerland" in the North Sea, which was dry at times during the ice age. Such fossils are usually fragmentary and contain no soft tissue. Accumulations of modern elephant remains have been termed "elephants' graveyards", as these sites were erroneously thought to be where old elephants went to die. Similar accumulations of woolly mammoth bones have been found; these are thought to be the result of individuals dying near or in the rivers over thousands of years, and their bones eventually being brought together by the streams. Some accumulations are thought to be the remains of herds that died together at the same time, perhaps due to flooding. Natural traps, such as kettle holes, sink holes, and mud, have trapped mammoths in separate events over time.[136]

 
Skull discovered by fishermen in the North Sea ("Doggerland"), at Celtic and Prehistoric Museum, Ireland

Apart from frozen remains, the only soft tissue known is from a specimen that was preserved in a petroleum seep in Starunia, Poland. Frozen remains of woolly mammoths have been found in the northern parts of Siberia and Alaska, with far fewer finds in the latter. Such remains are mostly found above the Arctic Circle, in permafrost. Soft tissue apparently was less likely to be preserved between 30,000 and 15,000 years ago, perhaps because the climate was milder during that period. Most specimens have partially degraded before discovery, due to exposure or to being scavenged. This "natural mummification" required the animal to have been buried rapidly in liquid or semisolids such as silt, mud, and icy water, which then froze.[137]

The presence of undigested food in the stomach and seed pods still in the mouth of many of the specimens suggests neither starvation nor exposure is likely. The maturity of this ingested vegetation places the time of death in autumn rather than in spring, when flowers would be expected.[138] The animals may have fallen through ice into small ponds or potholes, entombing them. Many are certainly known to have been killed in rivers, perhaps through being swept away by floods. In one location, by the Byoryolyokh River in Yakutia in Siberia, more than 8,000 bones from at least 140 mammoths have been found in a single spot, apparently having been swept there by the current.[139]

Frozen specimens

 
 
The "Adams mammoth" as illustrated in the 1800s (left) and on exhibit in Vienna; skin can be seen on its head and feet.

Between 1692 and 1806, a handful of reports of frozen mammoth remains with soft tissue were published reached Europe, though none were collected during that time.[140] While frozen woolly mammoth carcasses had been excavated by Europeans as early as 1728, the first fully documented specimen was discovered near the delta of the Lena River in 1799 by Ossip Schumachov, a Siberian hunter.[141] While in Yakutsk in 1806, Michael Friedrich Adams heard about the frozen mammoth. Adams recovered the entire skeleton, apart from the tusks, which Shumachov had already sold, and one foreleg, most of the skin, and nearly 18 kg (40 lb) of hair. During his return voyage, he purchased a pair of tusks that he believed were the ones that Shumachov had sold. Adams brought all to the Zoological Museum of the Zoological Institute of the Russian Academy of Sciences, and the task of mounting the skeleton was given to Wilhelm Gottlieb Tilesius.[5][142] This was one of the first attempts at reconstructing the skeleton of an extinct animal. Most of the reconstruction is correct, but Tilesius placed each tusk in the opposite socket, so that they curved outward instead of inward. The error was not corrected until 1899, and the correct placement of mammoth tusks was still a matter of debate into the 20th century.[143][144]

 
 
The "Berezovka mammoth" during excavation in 1901 (left), and a model partially covered by its skin, Museum of Zoology in St. Petersburg

The 1901 excavation of the "Berezovka mammoth" is the best documented of the early finds. It was discovered at the Siberian Berezovka River (after a dog had noticed its smell), and the Russian authorities financed its excavation. The entire expedition took 10 months, and the specimen had to be cut to pieces before it could be transported to St. Petersburg. Most of the skin on the head as well as the trunk had been scavenged by predators, and most of the internal organs had rotted away. It was identified as a 35- to 40-year-old male, which had died 35,000 years ago. The animal still had grass between its teeth and on the tongue, showing that it had died suddenly. One of its shoulder blades was broken, which may have happened when it fell into a crevasse. It may have died of asphyxiation, as indicated by its erect penis. One third of a replica of the mammoth in the Museum of Zoology of St. Petersburg is covered in skin and hair of the "Berezovka mammoth".[137][138]

By 1929, the remains of 34 mammoths with frozen soft tissues (skin, flesh, or organs) had been documented. Only four of them were relatively complete. Since then, about that many more have been found. In most cases, the flesh showed signs of decay before its freezing and later desiccation.[145] Since 1860, Russian authorities have offered rewards of up to 1000 ₽ for finds of frozen woolly mammoth carcasses. Often, such finds were kept secret due to superstition. Several carcasses have been lost because they were not reported, and one was fed to dogs.[136] Despite the rewards, native Yakuts were also reluctant to report mammoth finds to the authorities due to bad treatment of them in the past.[140] In more recent years, scientific expeditions have been devoted to finding carcasses instead of relying solely on chance encounters. The most famous frozen specimen from Alaska is a calf nicknamed "Effie", which was found in 1948. It consists of the head, trunk, and a fore leg, and is about 25,000 years old.[136]

 
 
"Dima", a frozen calf, during excavation (left), and as exhibited in the Museum of Zoology; note fur on the legs

In 1977, the well-preserved carcass of a seven- to eight-month-old woolly mammoth calf named "Dima" was discovered. This carcass was recovered near a tributary of the Kolyma River in northeastern Siberia. This specimen weighed about 100 kg (220 lb) at death and was 104 cm (41 in) high and 115 cm (45 in) long. Radiocarbon dating determined that "Dima" died about 40,000 years ago. Its internal organs are similar to those of modern elephants, but its ears are only one-tenth the size of those of an African elephant of similar age. A less complete juvenile, nicknamed "Mascha", was found on the Yamal Peninsula in 1988. It was 3–4 months old, and a laceration on its right foot may have been the cause of death. It is the westernmost frozen mammoth found.[146]

In 1997, a piece of mammoth tusk was discovered protruding from the tundra of the Taymyr Peninsula in Siberia, Russia. In 1999, this 20,380-year-old carcass and 25 tons of surrounding sediment were transported by an Mi-26 heavy lift helicopter to an ice cave in Khatanga. The specimen was nicknamed the "Jarkov mammoth". In October 2000, the careful defrosting operations in this cave began with the use of hair dryers to keep the hair and other soft tissues intact.[147][148]

 
 
The calf "Lyuba", in Royal BC Museum and IFC Mall

In 2002, a well-preserved carcass was discovered near the Maxunuokha River in northern Yakutia, which was recovered during three excavations. This adult male specimen was called the "Yukagir mammoth", and is estimated to have lived around 18,560 years ago, and to have been 282.9 cm (9.2 ft) tall at the shoulder, and weighed between 4 and 5 tonnes. It is one of the best-preserved mammoths ever found due to the almost complete head, covered in skin, but without the trunk. Some postcranial remains were found, some with soft tissue.[72]

In 2007, the carcass of a female calf nicknamed "Lyuba" was discovered near the Yuribey River, where it had been buried for 41,800 years.[64][149] By cutting a section through a molar and analysing its growth lines, they found that the animal had died at the age of one month.[71] The mummified calf weighed 50 kg (110 lb), was 85 cm (33 in) high and 130 cm (51 in) in length.[150][151] At the time of discovery, its eyes and trunk were intact and some fur remained on its body. Its organs and skin are very well preserved.[152] "Lyuba" is believed to have been suffocated by mud in a river that its herd was crossing.[64][153] After death, its body may have been colonised by bacteria that produce lactic acid, which "pickled" it, preserving the mammoth in a nearly pristine state.[64]

 
 
The frozen calf "Yuka" (left), and its skull and jaw which may have been extracted from the carcass by prehistoric humans

In 2012, a juvenile was found in Siberia, which had man-made cut marks. Scientists estimated its age at death to be 2.5 years, and nicknamed it "Yuka". Its skull and pelvis had been removed prior to discovery, but were found nearby.[98][154] After being discovered, the skin of "Yuka" was prepared to produce a taxidermy mount.[41] In 2019, a group of researchers managed to obtain signs of biological activity after transferring nuclei of "Yuka" into mouse oocytes.[155]

In 2013, a well-preserved carcass was found on Maly Lyakhovsky Island, one of the islands in the New Siberian Islands archipelago, a female between 50 and 60 years old at the time of death. The carcass contained well-preserved muscular tissue. When it was extracted from the ice, liquid blood spilled from the abdominal cavity. The finders interpreted this as indicating woolly mammoth blood possessed antifreezing properties.[156] In 2022, a complete female baby woolly mammoth was found by a miner in the Klondike gold fields of Yukon, Canada. The specimen is estimated to have died 30,000 years ago, and was nicknamed "Nun cho ga", meaning "big baby animal" in the local Hän language. It is the best preserved woolly mammoth mummy found in North America, and was the same size as Lyuba.[157][158]

Possible revival

 
 
Models of an adult and the calf "Dima" in State Museum of Natural History Stuttgart

The existence of preserved soft tissue remains and DNA of woolly mammoths has led to the idea that the species could be resurrected by scientific means. Several methods have been proposed to achieve this. Cloning would involve removal of the DNA-containing nucleus of the egg cell of a female elephant and replacement with a nucleus from woolly mammoth tissue. The cell would then be stimulated into dividing and inserted back into a female elephant. The resulting calf would have the genes of the woolly mammoth, although its fetal environment would be different. Most intact mammoths have had little usable DNA because of their conditions of preservation. There is not enough to guide the production of an embryo.[159][160]

A second method involves artificially inseminating an elephant egg cell with sperm cells from a frozen woolly mammoth carcass. The resulting offspring would be an elephant–mammoth hybrid, and the process would have to be repeated so more hybrids could be used in breeding. After several generations of cross-breeding these hybrids, an almost pure woolly mammoth would be produced. The fact that sperm cells of modern mammals are viable for 15 years at most after deep-freezing makes this method unfeasible.[160]

 
Elephants are highly gregarious, as shown by these Sri Lankan elephants

Several projects are working on gradually replacing the genes in elephant cells with mammoth genes.[161][162] By 2015 and using the new CRISPR DNA editing technique, one team, led by George Church, had some woolly mammoth genes edited into the genome of an Asian elephant; focusing on cold-resistance initially,[163] the target genes are for the external ear size, subcutaneous fat, hemoglobin, and hair attributes.[164][165] If any method is ever successful, a suggestion has been made to introduce the hybrids to a wildlife reserve in Siberia called the Pleistocene Park.[166]

Some researchers question the ethics of such recreation attempts. In addition to the technical problems, not much habitat is left that would be suitable for elephant-mammoth hybrids. Because the species was social and gregarious, creating a few specimens would not be ideal. The time and resources required would be enormous, and the scientific benefits would be unclear, suggesting these resources should instead be used to preserve extant elephant species which are endangered.[160][167][168] The ethics of using elephants as surrogate mothers in hybridisation attempts has been questioned, as most embryos would not survive, and knowing the exact needs of a hybrid elephant–mammoth calf would be impossible.[169] Another concern is the introduction of unknown pathogens if de-extinction efforts were to succeed.[170] In 2021, an Austin-based company raised funds to reintroduce the species in the Arctic tundra.[171]

Cultural significance

 
 
A mammoth tusk with Inuit carvings of scenes on the Yukon River, 19th century, De Young Museum

The woolly mammoth has remained culturally significant long after its extinction. Indigenous peoples of Siberia had long found what are now known to be woolly mammoth remains, collecting their tusks for the ivory trade. Native Siberians believed woolly mammoth remains to be those of giant mole-like animals that lived underground and died when burrowing to the surface.[172][173] Woolly mammoth tusks had been articles of trade in Asia long before Europeans became acquainted with them. Güyük, the 13th-century Khan of the Mongols, is reputed to have sat on a throne made from mammoth ivory.[140] Inspired by the Siberian natives' concept of the mammoth as an underground creature, it was recorded in the 16th-century Chinese pharmaceutical encyclopedia, Ben Cao Gangmu, as yin shu, "the hidden rodent".[174]

The indigenous peoples of North America used woolly mammoth ivory and bone for tools and art.[175] As in Siberia, North American natives had "myths of observation" explaining the remains of woolly mammoths and other elephants; the Bering Strait Inupiat believed the bones came from burrowing creatures, while other peoples associated them with primordial giants or "great beasts".[176][177][178] Observers have interpreted legends from several Native American peoples as containing folk memory of extinct elephants, though other scholars are skeptical that folk memory could survive such a long time.[176][178][179]

 
 
Peter III and Elizabeth of Russia carved in mammoth ivory

Siberian mammoth ivory is reported to have been exported to Russia and Europe in the 10th century. The first Siberian ivory to reach western Europe was brought to London in 1611. When Russia occupied Siberia, the ivory trade grew and it became a widely exported commodity, with huge amounts being excavated. From the 19th century and onwards, woolly mammoth ivory became a highly prized commodity, used as raw material for many products. Today, it is still in great demand as a replacement for the now-banned export of elephant ivory, and has been referred to as "white gold".[180]

Local dealers estimate that 10 million mammoths are still frozen in Siberia, and conservationists have suggested that this could help save the living species of elephants from extinction. Elephants are hunted by poachers for their ivory, but if this could instead be supplied by the already extinct mammoths, the demand could instead be met by these. Trade in elephant ivory has been forbidden in most places following the 1989 Lausanne Conference, but dealers have been known to label it as mammoth ivory to get it through customs. Mammoth ivory looks similar to elephant ivory, but the former is browner and the Schreger lines are coarser in texture.[180] In the 21st century, global warming has made access to Siberian tusks easier, since the permafrost thaws more quickly, exposing the mammoths embedded within it.[181]

Stories abound about frozen woolly mammoth meat that was consumed once defrosted, especially that of the "Berezovka mammoth", but most of these are considered dubious. The carcasses were in most cases decayed, and the stench so unbearable that only wild scavengers and the dogs accompanying the finders showed any interest in the flesh. Such meat apparently was once recommended against illness in China, and Siberian natives have occasionally cooked the meat of frozen carcasses they discovered.[182] According to one of the more famous stories, members of The Explorers Club dined on meat of a frozen mammoth from Alaska in 1951. In 2016, a group of researchers genetically examined a sample of the meal, and found it to belong to a green sea turtle (it had also been claimed to belong to Megatherium). The researchers concluded that the dinner had been a publicity stunt.[183] In 2011, the Chinese palaeontologist Lida Xing livestreamed while eating meat from a Siberian mammoth leg (thoroughly cooked and flavoured with salt) and told his audience it tasted bad and like soil. This triggered controversy and gained mixed reactions, but Xing stated he did it to promote science.[184]

Alleged survival

 
 
 
Woolly mammoths represented in heraldry

There have been occasional claims that the woolly mammoth is not extinct and that small, isolated herds might survive in the vast and sparsely inhabited tundra of the Northern Hemisphere. In the 19th century, several reports of "large shaggy beasts" were passed on to the Russian authorities by Siberian tribesmen, but no scientific proof ever surfaced. A French chargé d'affaires working in Vladivostok, M. Gallon, said in 1946 that in 1920, he had met a Russian fur-trapper who claimed to have seen living giant, furry "elephants" deep into the taiga.[185] Due to the large area of Siberia, the possibility that woolly mammoths survived into more recent times cannot be completely ruled out, but evidence indicates that they became extinct thousands of years ago. These natives likely had gained their knowledge of woolly mammoths from carcasses they encountered and that this is the source for their legends of the animal.[186]

In the late 19th century, rumours existed about surviving mammoths in Alaska.[185] In 1899, Henry Tukeman detailed his killing of a mammoth in Alaska and his subsequent donation of the specimen to the Smithsonian Institution in Washington, DC. The museum denied the story.[187] The Swedish writer Bengt Sjögren suggested in 1962 that the myth began when the American biologist Charles Haskins Townsend travelled in Alaska, saw Inuit trading mammoth tusks, asked if mammoths were still living in Alaska, and provided them with a drawing of the animal.[185] Bernard Heuvelmans included the possibility of residual populations of Siberian mammoths in his 1955 book, On The Track Of Unknown Animals; while his book was a systematic investigation into possible unknown species, it became the basis of the cryptozoology movement.[188]

References

  1. ^ a b c d e f Lister, A. M.; Sher, A. V.; Van Essen, H.; Wei, G. (2005). "The pattern and process of mammoth evolution in Eurasia". Quaternary International. 126–128: 49–64. Bibcode:2005QuInt.126...49L. doi:10.1016/j.quaint.2004.04.014.
  2. ^ a b Switek, B. (2010). Written in Stone: Evolution, the Fossil Record, and Our Place in Nature. Bellevue Literary Press. pp. 174–180. ISBN 978-1-934137-29-1.
  3. ^ Sloane, H. (1727–1728). "An Account of Elephants Teeth and Bones Found under Ground". Philosophical Transactions. 35 (399–406): 457–471. Bibcode:1727RSPT...35..457S. doi:10.1098/rstl.1727.0042.
  4. ^ Sloane, H. (1727–1728). "Of Fossile Teeth and Bones of Elephants. Part the Second". Philosophical Transactions. 35 (399–406): 497–514. Bibcode:1727RSPT...35..497S. doi:10.1098/rstl.1727.0048.
  5. ^ a b The Academy of Natural Sciences (2007). . The Academy of Natural Sciences. Archived from the original on 27 September 2007. Retrieved 29 September 2007.
  6. ^ Breyne, J. P.; s., T.; Wolochowicz, M. (1737). "A Letter from John Phil. Breyne, M. D. F. R. S. To Sir Hans Sloane, Bart. Pres. R. S. With Observations, and a Description of Some Mammoth's Bones Dug up in Siberia, Proving Them to Have Belonged to Elephants". Philosophical Transactions of the Royal Society of London. 40 (445–451): 124–138. Bibcode:1737RSPT...40..124P. doi:10.1098/rstl.1737.0026.
  7. ^ Cuvier, G. (1796). "Mémoire sur les épèces d'elephans tant vivantes que fossils, lu à la séance publique de l'Institut National le 15 germinal, an IV". Magasin Encyclopédique, 2e Anée (in French): 440–445.
  8. ^ a b Reich, M.; Gehler, A.; Mohl, D.; van der Plicht, H.; Lister, A. M. (2007). "The rediscovery of type material of Mammuthus primigenius (Mammalia: Proboscidea)". International Mammoth Conference IV (Poster): 295.
  9. ^ Brookes, J. (1828). A catalogue of the anatomical & zoological museum of Joshua Brookes. Vol. 1. London: Richard Taylor. p. 73. from the original on 24 September 2015.
  10. ^ "Mammoth entry in Oxford English Dictionary". 2000.
  11. ^ Lister, 2007. p. 49
  12. ^ Simpson, J. (2009). "Word Stories: Mammoth 22 May 2013 at the Wayback Machine." Oxford English Dictionary Online, Oxford University Press. Accessed 5 June 2009.
  13. ^ a b Osborn, H. F. (1942). Percy, M. R. (ed.). Proboscidea: A monograph of the discovery, evolution, migration and extinction of the mastodonts and elephants of the world. Vol. 2. New York: J. Pierpont Morgan Fund. pp. 1116–1169. from the original on 13 March 2016.
  14. ^ Maglio, V. J. (1973). "Origin and evolution of the Elephantidae". Transactions of the American Philosophical Society. 63 (3): 1–149. doi:10.2307/1379357. JSTOR 1379357.
  15. ^ Garutt, W. E.; Gentry, A.; Lister, A. M. (1990). "Mammuthus Brookes, 1828 (Mammalia, Proboscidea): proposed conservation, and Elephas primigenius Blumenbach, 1799 (currently Mammuthus primigenius): proposed designation as the type species of Mammuthus, and designation of a neotype". Bulletin of Zoological Nomenclature. 47: 38–44. doi:10.5962/bhl.part.2651. from the original on 13 July 2015.
  16. ^ Reich, M.; Gehler, A. (2008). "Giants' Bones and Unicorn Horns Ice Age Elephants Offer 21st Century Insights". Collections – Wisdom, Insight, Innovation. 8: 44–50.
  17. ^ Lister, 2007. pp. 18–21
  18. ^ Shoshani, J.; Ferretti, M. P.; Lister, A. M.; Agenbroad, L. D.; Saegusa, H.; Mol, D.; Takahashi, K. (2007). "Relationships within the Elephantinae using hyoid characters". Quaternary International. 169–170: 174–185. Bibcode:2007QuInt.169..174S. doi:10.1016/j.quaint.2007.02.003.
  19. ^ Gross, L. (2006). "Reading the Evolutionary History of the Woolly Mammoth in Its Mitochondrial Genome". PLOS Biology. 4 (3): e74. doi:10.1371/journal.pbio.0040074. PMC 1360100. PMID 20076539.
  20. ^ Cooper, A. (2006). "The year of the mammoth". PLOS Biology. 4 (3): e78. doi:10.1371/journal.pbio.0040078. PMC 1360097. PMID 16448215.
  21. ^ Roca, Alfred L.; Ishida, Yasuko; Brandt, Adam L.; Benjamin, Neal R.; Zhao, Kai; Georgiadis, Nicholas J. (2015). "Elephant Natural History: A Genomic Perspective". Annual Review of Animal Biosciences. 3 (1): 139–167. doi:10.1146/annurev-animal-022114-110838. PMID 25493538.
  22. ^ Krause, J.; Dear, P. H.; Pollack, J. L.; Slatkin, M.; Spriggs, H.; Barnes, I.; Lister, A. M.; Ebersberger, I.; Pääbo, S.; Hofreiter, M. (2005). "Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae". Nature. 439 (7077): 724–727. Bibcode:2006Natur.439..724K. doi:10.1038/nature04432. PMID 16362058. S2CID 4318327.
  23. ^ Rohland, N.; Reich, D.; Mallick, S.; Meyer, M.; Green, R. E.; Georgiadis, N. J.; Roca, A. L.; Hofreiter, M. (2010). Penny, David (ed.). "Genomic DNA Sequences from Mastodon and Woolly Mammoth Reveal Deep Speciation of Forest and Savanna Elephants". PLOS Biology. 8 (12): e1000564. doi:10.1371/journal.pbio.1000564. PMC 3006346. PMID 21203580.
  24. ^ Will findings recreate the woolly mammoth? 11 February 2009 at the Wayback Machine, Pittsburgh Post-Gazette, 20 November 2008
  25. ^ "Woolly-Mammoth Genome Sequenced". Science Daily. 20 November 2008. from the original on 11 January 2011. Retrieved 22 June 2010.
  26. ^ Cappellini, E.; Jensen, L. J.; Szklarczyk, D.; Ginolhac, A. L.; Da Fonseca, R. A. R.; Stafford, T. W.; Holen, S. R.; Collins, M. J.; Orlando, L.; Willerslev, E.; Gilbert, M. T. P.; Olsen, J. V. (2012). "Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins". Journal of Proteome Research. 11 (2): 917–926. doi:10.1021/pr200721u. PMID 22103443.
  27. ^ Ferretti, M. P. (2003). "Structure and evolution of mammoth molar enamel". Acta Palaeontologica Polonica. 3. 48: 383–396.
  28. ^ a b Lister, 2007. pp. 12–43
  29. ^ Foronova, I. V.; Zudin, A. N. (2001). Discreteness of evolution and variability in mammoth lineage: method for group study (PDF). The World of Elephants – Proceedings of the 1st International Congress. Rome. pp. 540–543. (PDF) from the original on 24 October 2014.
  30. ^ Foronova, I.V. (2014). "Mammuthus intermedius (Proboscidea, Elephantidae) from the late Middle Pleistocene of the southern Western and Central Siberia, Russia: the problem of intermediate elements in the mammoth lineage" (PDF). Russian Journal of Theriology. 2. 13 (2): 71–82. doi:10.15298/rusjtheriol.13.2.03. (PDF) from the original on 4 March 2016.
  31. ^ Enk, J.; Devault, A.; Debruyne, R.; King, C. E.; Treangen, T.; O'Rourke, D.; Salzberg, S. L.; Fisher, D.; MacPhee, R.; Poinar, H. (2011). "Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths". Genome Biology. 12 (5): R51. doi:10.1186/gb-2011-12-5-r51. PMC 3219973. PMID 21627792.
  32. ^ Lister, A. M.; Sher, A. V. (13 November 2015). "Evolution and dispersal of mammoths across the Northern Hemisphere". Science. 350 (6262): 805–809. Bibcode:2015Sci...350..805L. doi:10.1126/science.aac5660. PMID 26564853. S2CID 206639522.
  33. ^ van der Valk, T.; Pečnerová, P.; Díez-del-Molino, D.; Bergström, A.; Oppenheimer, J.; Hartmann, S.; Xenikoudakis, G.; Thomas, J. A.; Dehasque, M.; Sağlıcan, E.; Fidan, F. Rabia; Barnes, I.; Liu, S.; Somel, M.; Heintzman, P. D.; Nikolskiy, P.; Shapiro, B.; Skoglund, P.; Hofreiter, M.; Lister, A. M.; Götherström, A.; Dalén, L. (2021). "Million-year-old DNA sheds light on the genomic history of mammoths". Nature. 591 (7849): 265–269. Bibcode:2021Natur.591..265V. doi:10.1038/s41586-021-03224-9. ISSN 1476-4687. PMC 7116897. PMID 33597750.
  34. ^ Callaway, E. (2021). "Million-year-old mammoth genomes shatter record for oldest ancient DNA". nature.com. Vol. 590, no. 7847. pp. 537–538. doi:10.1038/d41586-021-00436-x. Retrieved 17 February 2021.
  35. ^ Lister, A.; Bahn, P. (2007). Mammoths – Giants of the Ice Age (3 ed.). London: Frances Lincoln. ISBN 978-0-520-26160-0. OCLC 30155747.
  36. ^ Larramendi, Asier (2015). "Proboscideans: Shoulder Height, Body Mass and Shape". Acta Palaeontologica Polonica. 61. doi:10.4202/app.00136.2014.
  37. ^ Lister, 2007. pp. 174–175
  38. ^ Vartanyan, S. L.; Arslanov, K. A.; Karhu, J. A.; Possnert, G. R.; Sulerzhitsky, L. D. (2008). "Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia" (PDF). Quaternary Research. 70 (1): 51–59. Bibcode:2008QuRes..70...51V. doi:10.1016/j.yqres.2008.03.005. S2CID 111383180.
  39. ^ Den Ouden, N.; Reumer, J. W. F.; Van Den Hoek Ostende, L. W. (2012). "Did mammoth end up a lilliput? Temporal body size trends in Late Pleistocene Mammoths, Mammuthus primigenius (Blumenbach, 1799) inferred from dental data". Quaternary International. 255: 53–58. Bibcode:2012QuInt.255...53D. doi:10.1016/j.quaint.2011.07.038.
  40. ^ a b c d Lister, 2007. pp. 82–87
  41. ^ a b c Plotnikov, V. V.; Maschenko, E. N.; Pavlov, I. S.; Protopopov, A. V.; Boeskorov, G. G.; Petrova, E. A. (2015). "New data on trunk morphology in the woolly mammoth, Mammuthus primigenius (Blumenbach)". Paleontological Journal. 49 (2): 200–210. doi:10.1134/S0031030115020070. S2CID 84849714.
  42. ^ a b Lister, 2007. pp. 83–84
  43. ^ Myhrvold, C. L.; Stone, H. A.; Bou-Zeid, E. (10 October 2012). "What is the use of elephant hair?". PLOS ONE. 7 (10): e47018. Bibcode:2012PLoSO...747018M. doi:10.1371/journal.pone.0047018. PMC 3468452. PMID 23071700.
  44. ^ Valente, A. (1983). "Hair structure of the woolly mammoth, Mammuthus primigenius and the modern elephants, Elephas maximus and Loxodonta africana". Journal of Zoology. 199 (2): 271–274. doi:10.1111/j.1469-7998.1983.tb02095.x.
  45. ^ Repin, V. E.; Taranov, O. S.; Ryabchikova, E. I.; Tikhonov, A. N.; Pugachev, V. G. (2004). "Sebaceous Glands of the Woolly Mammoth, Mammothus primigenius Blum.: Histological Evidence". Doklady Biological Sciences. 398 (1–6): 382–384. doi:10.1023/B:DOBS.0000046662.43270.66. PMID 15587793. S2CID 6401669.
  46. ^ Rompler, H.; Rohland, N.; Lalueza-Fox, C.; Willerslev, E.; Kuznetsova, T.; Rabeder, G.; Bertranpetit, J.; Schöneberg, T.; Hofreiter, M. (2006). "Nuclear Gene Indicates Coat-Color Polymorphism in Mammoths" (PDF). Science. 313 (5783): 62. doi:10.1126/science.1128994. PMID 16825562. S2CID 20153467.
  47. ^ Workman, C.; Dalen, L.; Vartanyan, S.; Shapiro, B.; Kosintsev, P.; Sher, A.; Gotherstrom, A.; Barnes, I. (2011). "Population-level genotyping of coat colour polymorphism in woolly mammoth (Mammuthus primigenius)". Quaternary Science Reviews. 30 (17–18): 2304–2308. Bibcode:2011QSRv...30.2304W. doi:10.1016/j.quascirev.2010.08.020.
  48. ^ Tridico, Silvana R.; Rigby, Paul; Kirkbride, K. Paul; Haile, James; Bunce, Michael (2014). "Megafaunal split ends: microscopical characterisation of hair structure and function in extinct woolly mammoth and woolly rhino". Quaternary Science Reviews. 83: 68–75. Bibcode:2014QSRv...83...68T. doi:10.1016/j.quascirev.2013.10.032. from the original on 2 November 2017.
  49. ^ a b Lister, 2007. pp. 94–95
  50. ^ a b c Kurten, B.; Anderson, E. (1980). Pleistocene Mammals of North America. New York: Columbia University Press. pp. 348–354. ISBN 978-0-231-03733-4.
  51. ^ Boeskorov, G.; Tikhonov, A.; Shchelchkova, M.; Ballard, J. P.; Mol, D. (2020). "Big tuskers: Maximum sizes of tusks in woolly mammoths - Mammuthus primigenius (Blumenbach) - from East Siberia". Quaternary International. 537: 88–96. Bibcode:2020QuInt.537...88B. doi:10.1016/j.quaint.2019.12.023. S2CID 213262363.
  52. ^ Lister, 2007. pp. 92–93
  53. ^ Lister, 2007. pp. 95–105
  54. ^ Lister, 2007. pp. 62–63
  55. ^ a b McNeil, P.; Hills, L.; Kooyman, B.; Tolman, S. (2005). "Mammoth tracks indicate a declining Late Pleistocene population in southwestern Alberta, Canada". Quaternary Science Reviews. 24 (10–11): 1253–1259. Bibcode:2005QSRv...24.1253M. doi:10.1016/j.quascirev.2004.08.019.
  56. ^ Campbell, K. L.; Roberts, J. E. E.; Watson, L. N.; Stetefeld, J. R.; Sloan, A. M.; Signore, A. V.; Howatt, J. W.; Tame, J. R. H.; Rohland, N.; Shen, T. J.; Austin, J. J.; Hofreiter, M.; Ho, C.; Weber, R. E.; Cooper, A. (2010). "Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance". Nature Genetics. 42 (6): 536–540. doi:10.1038/ng.574. PMID 20436470. S2CID 9670466.
  57. ^ Lynch, V.; Bedoya-Reina, O. C.; Ratan, A.; Sulak, M.; Drautz-Moses, D. I.; Perry, G. H.; Miller, W.; Schuster, S. C. (2015). "Elephantid genomes reveal the molecular bases of Woolly Mammoth adaptations to the arctic". Cell Reports. 12 (2): 217–228. doi:10.1016/j.celrep.2015.06.027. PMID 26146078.
  58. ^ Ewen Callaway, Nature magazine (4 May 2015). "Mammoth Genomes Provide Recipe for Creating Arctic Elephants". scientificamerican.com. from the original on 5 May 2015.
  59. ^ Ngatia, J. N.; Lan, T. M.; Dinh, T. D.; Zhang, L.; Ahmed, Ahmed Khalid; Xu, Yan Chun (2019). "Signals of positive selection in mitochondrial protein‐coding genes of woolly mammoth: Adaptation to extreme environments?". Ecology and Evolution. 9 (12): 6821–6832. doi:10.1002/ece3.5250. PMC 6662336. PMID 31380018.
  60. ^ Díez-del-Molino, David; Dehasque, Marianne; Chacón-Duque, J. Camilo; Pečnerová, Patrícia; Tikhonov, Alexei; Protopopov, Albert; Plotnikov, Valeri; Kanellidou, Foteini; Nikolskiy, Pavel; Mortensen, Peter; Danilov, Gleb K.; Vartanyan, Sergey; Gilbert, M. Thomas P.; Lister, Adrian M.; Heintzman, Peter D.; van der Valk, Tom; Dalén, Love (2023). "Genomics of adaptive evolution in the woolly mammoth". Current Biology. 33 (9): 1753–1764.e4. doi:10.1016/j.cub.2023.03.084. PMID 37030294.
  61. ^ Lister, 2007. pp. 88–91
  62. ^ Bocherens, H.; Fizet, M.; Mariotti, A.; Gangloff, R. A.; Burns, J. A. (1994). "Contribution of isotopic biogeochemistry (13C,15N,18O) to the paleoecology of mammoths (Mammuthus primigenius)". Historical Biology. 7 (3): 187–202. doi:10.1080/10292389409380453.
  63. ^ Van Geel, B.; Fisher, D. C.; Rountrey, A. N.; Van Arkel, J.; Duivenvoorden, J. F.; Nieman, A. M.; Van Reenen, G. B. A.; Tikhonov, A. N.; Buigues, B.; Gravendeel, B. (2011). "Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia)". Quaternary Science Reviews. 30 (27–28): 3935–3946. Bibcode:2011QSRv...30.3935V. doi:10.1016/j.quascirev.2011.10.009.
  64. ^ a b c d Fisher, D. C.; Tikhonov, A. N.; Kosintsev, P. A.; Rountrey, A. N.; Buigues, B.; Van Der Plicht, J. (2012). "Anatomy, death, and preservation of a woolly mammoth (Mammuthus primigenius) calf, Yamal Peninsula, northwest Siberia" (PDF). Quaternary International. 255: 94–105. Bibcode:2012QuInt.255...94F. doi:10.1016/j.quaint.2011.05.040. hdl:11370/a3961dcc-4eaf-47fb-9ad7-904d79a0f4f8.
  65. ^ Metcalfe, J. Z.; Longstaffe, F. J.; Zazula, G. D. (2010). "Nursing, weaning, and tooth development in woolly mammoths from Old Crow, Yukon, Canada: Implications for Pleistocene extinctions". Palaeogeography, Palaeoclimatology, Palaeoecology. 298 (3–4): 257–270. Bibcode:2010PPP...298..257M. doi:10.1016/j.palaeo.2010.09.032.
  66. ^ Lister, 2007. pp. 92–95
  67. ^ a b Pfeifer, S. J.; Hartramph, W. L.; Kahlke, R.-D.; Müller, F. A. (2019). "Mammoth ivory was the most suitable osseous raw material for the production of Late Pleistocene big game projectile points". Scientific Reports. 9 (1): 2303. doi:10.1038/s41598-019-38779-1. PMC 6381109. PMID 30783179.
  68. ^ a b Lister, 2007. pp. 83–107.
  69. ^ Herbert, B.; Fisher, D. (5 May 2010). "A Mammoth Find: Clues to the Past, Present and Future". Helix. Northwestern University. from the original on 18 August 2016. Retrieved 1 August 2016.
  70. ^ Lister, 2007. pp. 104–105
  71. ^ a b Rountrey, A. N.; Fisher, D. C.; Tikhonov, A. N.; Kosintsev, P. A.; Lazarev, P. A.; Boeskorov, G.; Buigues, B. (2012). "Early tooth development, gestation, and season of birth in mammoths". Quaternary International. 255: 196–205. Bibcode:2012QuInt.255..196R. doi:10.1016/j.quaint.2011.06.006.
  72. ^ a b Mol, D.; Shoshani, J.; Tikhonov, A.; van Geel, B.; Sano, S.; Lasarev, P.; Agenbroad, L. (2006). "The Yukagir mammoth: brief history, 14c dates, individual age, gender, size, physical and environmental conditions and storage". Scientific Annals, School of Geology Aristotle University of Thessaloniki. 98: 299–314.
  73. ^ Lister, 2007. pp. 102–103
  74. ^ Cherney, Michael D.; Fisher, Daniel C.; Auchus, Richard J.; Rountrey, Adam N.; Selcer, Perrin; Shirley, Ethan A.; Beld, Scott G.; Buigues, Bernard; Mol, Dick; Boeskorov, Gennady G.; Vartanyan, Sergey L.; Tikhonov, Alexei N. (2023). "Testosterone histories from tusks reveal woolly mammoth musth episodes". Nature. 617 (7961): 533–539. doi:10.1038/s41586-023-06020-9. PMID 37138076.
  75. ^ Lister, 2007. pp. 108–111
  76. ^ Reumer, J. W. F.; Ten Broek, C. M. A.; Galis, F. (2014). "Extraordinary incidence of cervical ribs indicates vulnerable condition in Late Pleistocene mammoths". PeerJ. 2: e318. doi:10.7717/peerj.318. PMC 3970796. PMID 24711969.
  77. ^ Lister, 2007. p. 87
  78. ^ a b c Lister, 2007. pp. 88–89
  79. ^ Lister, 2007. pp. 108–109
  80. ^ Pavelková Řičánková, V.; Robovský, J.; Riegert, J. (13 January 2014). "Ecological Structure of Recent and Last Glacial Mammalian Faunas in Northern Eurasia: The Case of Altai-Sayan Refugium". PLOS ONE. 9 (1): e85056. Bibcode:2014PLoSO...985056P. doi:10.1371/journal.pone.0085056. PMC 3890305. PMID 24454791.
  81. ^ Willerslev, E.; Davison, J.; Moora, M.; Zobel, M.; Coissac, E.; Edwards, M. E.; Lorenzen, E. D.; Vestergård, M.; Gussarova, G.; Haile, J.; Craine, J.; Gielly, L.; Boessenkool, S.; Epp, L. S.; Pearman, P. B.; Cheddadi, R.; Murray, D.; Bråthen, K. A.; Yoccoz, N.; Binney, H.; Cruaud, C.; Wincker, P.; Goslar, T.; Alsos, I. G.; Bellemain, E.; Brysting, A. K.; Elven, R.; Sønstebø, J. R. H.; Murton, J.; et al. (2014). "Fifty thousand years of Arctic vegetation and megafaunal diet" (PDF). Nature. 506 (7486): 47–51. Bibcode:2014Natur.506...47W. doi:10.1038/nature12921. PMID 24499916. S2CID 4461741.
  82. ^ Takahashi, K.; Wei, G.; Uno, H.; Yoneda, M.; Jin, C.; Sun, C.; Zhang, S.; Zhong, B. (2007). "AMS 14C chronology of the world's southernmost woolly mammoth (Mammuthus primigenius Blum.)". Quaternary Science Reviews. 26 (7–8): 954–957. Bibcode:2007QSRv...26..954T. doi:10.1016/j.quascirev.2006.12.001.
  83. ^ Álvarez-Lao, D. J.; García, N. (2012). "Comparative revision of the Iberian woolly mammoth (Mammuthus primigenius) record into a European context". Quaternary Science Reviews. 32: 64–74. Bibcode:2012QSRv...32...64A. doi:10.1016/j.quascirev.2011.11.004.
  84. ^ Diego J. Alvarez-Lao; et al. (2009), "The Padul mammoth finds — On the southernmost record of Mammuthus primigenius in Europe and its southern spread during the Late Pleistocene" (PDF), Palaeogeography, Palaeoclimatology, Palaeoecology, 278 (1–4): 57–70, Bibcode:2009PPP...278...57A, doi:10.1016/j.palaeo.2009.04.011
  85. ^ Gilbert, M. T. P.; Drautz, D. I.; Lesk, A. M.; Ho, S. Y. W.; Qi, J.; Ratan, A.; Hsu, C. -H.; Sher, A.; Dalen, L.; Gotherstrom, A.; Tomsho, L. P.; Rendulic, S.; Packard, M.; Campos, P. F.; Kuznetsova, T. V.; Shidlovskiy, F.; Tikhonov, A.; Willerslev, E.; Iacumin, P.; Buigues, B.; Ericson, P. G. P.; Germonpre, M.; Kosintsev, P.; Nikolaev, V.; Nowak-Kemp, M.; Knight, J. R.; Irzyk, G. P.; Perbost, C. S.; Fredrikson, K. M.; Harkins, T. T. (2008). "Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes". Proceedings of the National Academy of Sciences. 105 (24): 8327–8332. Bibcode:2008PNAS..105.8327G. doi:10.1073/pnas.0802315105. PMC 2423413. PMID 18541911.
  86. ^ Szpak, P.; Gröcke, D. R.; Debruyne, R.; MacPhee, R. D. E.; Guthrie, R. D.; Froese, D.; Zazula, G. D.; Patterson, W. P.; Poinar, H. N. (2010). "Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: Implications for paleoecology of the mammoth steppe". Palaeogeography, Palaeoclimatology, Palaeoecology. 286 (1–2): 88–96. Bibcode:2010PPP...286...88S. doi:10.1016/j.palaeo.2009.12.009.
  87. ^ Stuart, A. J. (2005). "The extinction of woolly mammoth (Mammuthus primigenius) and straight-tusked elephant (Palaeoloxodon antiquus) in Europe" (PDF). Quaternary International. 126–128: 171–177. Bibcode:2005QuInt.126..171S. doi:10.1016/j.quaint.2004.04.021.
  88. ^ Debruyne, R.; Chu, G.; King, C. E.; Bos, K.; Kuch, M.; Schwarz, C.; Szpak, P.; Gröcke, D. R.; Matheus, P.; Zazula, G.; Guthrie, D.; Froese, D.; Buigues, B.; De Marliave, C.; Flemming, C.; Poinar, D.; Fisher, D.; Southon, J.; Tikhonov, A. N.; MacPhee, R. D. E.; Poinar, H. N. (2008). "Out of America: Ancient DNA Evidence for a New World Origin of Late Quaternary Woolly Mammoths". Current Biology. 18 (17): 1320–1326. doi:10.1016/j.cub.2008.07.061. PMID 18771918. S2CID 18663366.
  89. ^ Lister, 2007. pp. 116–117
  90. ^ a b Lister, 2007. pp. 118–125
  91. ^ a b Braun, I. M.; Palombo, M. R. (2012). "Mammuthus primigenius in the cave and portable art: An overview with a short account on the elephant fossil record in Southern Europe during the last glacial". Quaternary International. 276–277: 61–76. Bibcode:2012QuInt.276...61B. doi:10.1016/j.quaint.2012.07.010.
  92. ^ Demay, L.; Péan, S.; Patou-Mathis, M. (October 2012). "Mammoths used as food and building resources by Neanderthals: Zooarchaeological study applied to layer 4, Molodova I (Ukraine)" (PDF). Quaternary International. 276–277: 212–226. Bibcode:2012QuInt.276..212D. doi:10.1016/j.quaint.2011.11.019. hdl:2268/190618.
  93. ^ Lister, 2007. pp. 128–132
  94. ^ Lister, 2007. pp. 131–137
  95. ^ Lister, 2007. pp. 151–155
  96. ^ Wojtal, Piotr (2019). "The earliest direct evidence of mammoth hunting in Central Europe". Quaternary Science Reviews. 213: 162–166. doi:10.1016/j.quascirev.2019.04.004. S2CID 149647112.
  97. ^ Mussi, M.; Villa, P. (2008). "Single carcass of Mammuthus primigenius with lithic artifacts in the Upper Pleistocene of northern Italy" (PDF). Journal of Archaeological Science. 35 (9): 2606–2613. doi:10.1016/j.jas.2008.04.014.
  98. ^ a b Aviss, B. (4 April 2012). "Woolly mammoth carcass may have been cut into by humans". BBC. from the original on 6 April 2012. Retrieved 9 April 2012.
  99. ^ Nikolskiy, P.; Pitulko, V. (2013). "Evidence from the Yana Palaeolithic site, Arctic Siberia, yields clues to the riddle of mammoth hunting". Journal of Archaeological Science. 40 (12): 4189–4197. doi:10.1016/j.jas.2013.05.020.
  100. ^ Overstreet, D. F.; Kolb, M. F. (2003). "Geoarchaeological contexts for Late Pleistocene archaeological sites with human-modified woolly mammoth remains in southeastern Wisconsin, U.S.A". Geoarchaeology. 18: 91–114. doi:10.1002/gea.10052. S2CID 129431648.
  101. ^ Joyce, D. J. (2006). "Chronology and new research on the Schaefer mammoth (?Mammuthus primigenius) site, Kenosha County, Wisconsin, USA". Quaternary International. 142–143: 44–57. Bibcode:2006QuInt.142...44J. doi:10.1016/j.quaint.2005.03.004.
  102. ^ a b Murchie, Tyler J.; Monteath, Alistair J.; Mahony, Matthew E.; Long, George S.; Cocker, Scott; Sadoway, Tara; Karpinski, Emil; Zazula, Grant; MacPhee, Ross D. E.; Froese, Duane; Poinar, Hendrik N. (2021). "Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA". Nature Communications. 12 (7120 (2021)): 2031. Bibcode:2007QSRv...26.2031B. doi:10.1038/s41467-021-27439-6. PMC 8654998. PMID 34880234.
  103. ^ Nogués-Bravo, David; Rodríguez, Jesús; Hortal, Joaquín; Batra, Persaram; Araújo, Miguel B. (1 April 2008). "Climate Change, Humans, and the Extinction of the Woolly Mammoth". PLOS Biology. 6 (4): e79. doi:10.1371/journal.pbio.0060079. ISSN 1545-7885. PMC 2276529. PMID 18384234.
  104. ^ Stuart, Anthony J.; Lister, Adrian M. (2007). "Patterns of Late Quaternary megafaunal extinctions in Europe and northern Asia". CFS Courier Forschungsinstitut Senckenberg. 259: 289–299.
  105. ^ Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M.; Vartanyan, Sergey; Sablin, Mikhail; Sher, Andrei; Edmark, Veronica Nyström; Brandström, Mikael D.; Germonpré, Mietje; Barnes, Ian; Thomas, Jessica A. (2013). "Holarctic genetic structure and range dynamics in the woolly mammoth". Proceedings of the Royal Society B. 280 (1770): 1–10. doi:10.1098/rspb.2013.1910. PMC 3779339. PMID 24026825.
  106. ^ Kahlke, Ralk-Dietrich (2015). "The maximum geographic extension of Late Pleistocene Mammuthus primigenius (Proboscidea, Mammalia) and its limiting factors". Quaternary International. 379: 147–154. doi:10.1016/j.quaint.2015.03.023.
  107. ^ Murchie, Tyler J.; Monteath, Alistair J.; Mahony, Matthew E.; Long, George S.; Cocker, Scott; Sadoway, Tara; Karpinski, Emil; Zazula, Grant; MacPhee, Ross D. E.; Froese, Duane; Poinar, Hendrik N. (8 December 2021). "Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA". Nature Communications. 12 (1): 7120. Bibcode:2021NatCo..12.7120M. doi:10.1038/s41467-021-27439-6. ISSN 2041-1723. PMC 8654998. PMID 34880234.
  108. ^ a b Fordham, Damien A.; Brown, Stuart C.; Akçakaya, H. Reşit; Brook, Barry W.; Haythorne, Sean; Manica, Andrea; Shoemaker, Kevin T.; Austin, Jeremy J.; Blonder, Benjamin; Pilowsky, Julia; Rahbek, Carsten (2022). "Process-explicit models reveal pathway to extinction for woolly mammoth using pattern-oriented validation". Ecology Letters. 25 (1): 125–137. doi:10.1111/ele.13911. hdl:11343/299174. ISSN 1461-0248. PMID 34738712.
  109. ^ Lister, 2007. pp. 146–148
  110. ^ Stuart, A. J.; Sulerzhitsky, L. D.; Orlova, L. A.; Kuzmin, Y. V.; Lister, A. M. (2002). "The latest woolly mammoths (Mammuthus primigenius Blumenbach) in Europe and Asia: A review of the current evidence" (PDF). Quaternary Science Reviews. 21 (14–15): 1559–1569. Bibcode:2002QSRv...21.1559S. doi:10.1016/S0277-3791(02)00026-4.
  111. ^ Dale Guthrie, R. (2004). "Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island". Nature. 429 (6993): 746–749. Bibcode:2004Natur.429..746D. doi:10.1038/nature02612. PMID 15201907. S2CID 186242235.
  112. ^ Yesner, D. R.; Veltre, D. W.; Crossen, K. J.; Graham, R. W. "5,700-year-old Mammoth Remains from Qagnax Cave, Pribilof Islands, Alaska". Second World of Elephants Congress, (Hot Springs: Mammoth Site, 2005): 200–203.
  113. ^ Crossen, K. S. (2005). . Geological Society of America. 37: 463. Archived from the original on 3 March 2016. Retrieved 13 February 2020.
  114. ^ Graham, R. W.; Belmecheri, S.; Choy, K.; Culleton, B. J.; Davies, L. J.; Froese, D.; Heintzman, P. D.; Hritz, C.; Kapp, J. D.; Newsom, L. A.; Rawcliffe, R.; Saulnier-Talbot, É.; Shapiro, B.; Wang, Y.; Williams, J. W.; Wooller, M. J. (1 August 2016). "Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska". Proceedings of the National Academy of Sciences. 113 (33): 9310–4. Bibcode:2016PNAS..113.9310G. doi:10.1073/pnas.1604903113. PMC 4995940. PMID 27482085.
  115. ^ Markus Milligan. . HeritageDaily – Heritage & Archaeology News. Archived from the original on 30 June 2015. Retrieved 5 July 2015.
  116. ^ Stuart, A. J.; Kosintsev, P. A.; Higham, T. F. G.; Lister, A. M. (2004). "Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth" (PDF). Nature. 431 (7009): 684–689. Bibcode:2004Natur.431..684S. doi:10.1038/nature02890. PMID 15470427. S2CID 4415073.
  117. ^ Vartanyan, S. L.; et al. (1995). "Radiocarbon Dating Evidence for Mammoths on Wrangel Island, Arctic Ocean, until 2000 BC". Radiocarbon. 37 (1): 1–6. doi:10.1017/S0033822200014703. ISSN 0033-8222. from the original on 2 April 2012.
  118. ^ a b c d e Nyström, V.; Humphrey, J.; Skoglund, P.; McKeown, N. J.; Vartanyan, S.; Shaw, P. W.; Lidén, K.; Jakobsson, M.; Barnes, I. A. N.; Angerbjörn, A.; Lister, A.; Dalén, L. (2012). "Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation". Molecular Ecology. 21 (14): 3391–3402. doi:10.1111/j.1365-294X.2012.05525.x. PMID 22443459.
  119. ^ a b Wang, Y; Pedersen, M.W.; Alsos, I.g.; et al. (2021). "Late Quaternary dynamics of Arctic biota from ancient environmental genomics". Nature. 600 (7887): 86–92. Bibcode:2021Natur.600...86W. doi:10.1038/s41586-021-04016-x. PMC 8636272. PMID 34671161.
  120. ^ Seeber, Pa; Batke, L; Dvornikov, Y; Schmidt, A; Wang, Y; Stoof-Leichsenring, Kr; Moon, Kl; Shapiro, B; Epp, Ls (1 September 2023). Mitochondrial genomes of Pleistocene megafauna retrieved from recent sediment layers of two Siberian lakes (Report). elife. doi:10.7554/elife.89992.1.
  121. ^ Palkopoulou, Eleftheria; Mallick, Swapan; Skoglund, Pontus; Enk, Jacob; Rohland, Nadin; Li, Heng; Omrak, Ayça; Vartanyan, Sergey; Poinar, Hendrik; Götherström, Anders; Reich, David; Dalén, Love (2015). "Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly Mammoth". Current Biology. 25 (10): 1395–1400. doi:10.1016/j.cub.2015.04.007. PMC 4439331. PMID 25913407.
  122. ^ Dunham, W. (24 April 2015). "Lonely end for the world's last woolly mammoths". ABC Science. Reuters. from the original on 26 April 2015. Retrieved 24 April 2015.
  123. ^ Palkopoulou, E.; Mallick, S.; Skoglund, P.; Enk, J.; Rohland, N.; Li, H.; Omrak, A.; Vartanyan, S.; Poinar, H.; Götherström, A.; Reich, D.; Dalén, L. (23 April 2015). "Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly Mammoth". Current Biology. 25 (10): 1395–1400. doi:10.1016/j.cub.2015.04.007. PMC 4439331. PMID 25913407.
  124. ^ Nystrom, V.; Dalen, L.; Vartanyan, S.; Liden, K.; Ryman, N.; Angerbjorn, A. (2010). "Temporal genetic change in the last remaining population of woolly mammoth". Proceedings of the Royal Society B: Biological Sciences. 277 (1692): 2331–2337. doi:10.1098/rspb.2010.0301. PMC 2894910. PMID 20356891.
  125. ^ a b Barsh, G. S.; Rogers, R. L.; Slatkin, M. (2 March 2017). "Excess of genomic defects in a woolly mammoth on Wrangel Island". PLOS Genetics. 13 (3): e1006601. doi:10.1371/journal.pgen.1006601. PMC 5333797. PMID 28253255.
  126. ^ Switek, B. (2 March 2017). "Dying woolly mammoths were in 'genetic meltdown'". Nature. doi:10.1038/nature.2017.21575. S2CID 184732688.
  127. ^ Arppe, L.; Karhu, J. A.; Vartanyan, S.; Drucker, D. G.; Etu-Sihvola, H.; Bocherens, H. (2019). "Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population". Quaternary Science Reviews. 222: 105884. Bibcode:2019QSRv..22205884A. doi:10.1016/j.quascirev.2019.105884.
  128. ^ Ackerman, R. E. (1998). "Early maritime traditions in the Bering, Chukchi, and East Siberian seas". Arctic Anthropology. 35 (1): 247–262. JSTOR 40316468.
  129. ^ a b Fiedel, Stuart (2009). "Sudden Deaths: The Chronology of Terminal Pleistocene Megafaunal Extinction". In Haynes, G. (ed.). American Megafaunal Extinctions at the End of the Pleistocene. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 21–37. doi:10.1007/978-1-4020-8793-6_2. ISBN 978-1-4020-8792-9.
  130. ^ Graham, R. W.; Belmecheri, S.; Choy, K.; Culleton, B. J.; Davies, L. J.; Froese, D.; Heintzman, P. D.; Hritz, C.; Kapp, J. D.; Newsom, L. A.; Rawcliffe, R.; Saulnier-Talbot, É.; Shapiro, B.; Wang, Y.; Williams, J. W.; Wooller, M. J. (1 August 2016). "Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska". Proceedings of the National Academy of Sciences. 113 (33): 9310–4. Bibcode:2016PNAS..113.9310G. doi:10.1073/pnas.1604903113. PMC 4995940. PMID 27482085.
  131. ^ Nogués-Bravo, D.; Rodríguez, J. S.; Hortal, J. N.; Batra, P.; Araújo, M. B. (2008). Barnosky, Anthony (ed.). "Climate Change, Humans, and the Extinction of the Woolly Mammoth". PLOS Biology. 6 (4): e79. doi:10.1371/journal.pbio.0060079. PMC 2276529. PMID 18384234.
  132. ^ Sedwick, C. (2008). "What Killed the Woolly Mammoth?". PLOS Biology. 6 (4): e99. doi:10.1371/journal.pbio.0060099. PMC 2276526. PMID 20076709.
  133. ^ Martin, P. S (2005). Twilight of the Mammoths: Ice Age Extinctions and the Rewilding of America. University of California Press. pp. 165–173. ISBN 978-0-520-23141-2.
  134. ^ Burney, D.; Flannery, T. (2005). (PDF). Trends in Ecology & Evolution. 20 (7): 395–401. doi:10.1016/j.tree.2005.04.022. PMID 16701402. Archived from the original (PDF) on 10 June 2010.
  135. ^ Doughty, C. E.; Wolf, A.; Field, C. B. (2010). "Biophysical feedbacks between the Pleistocene megafauna extinction and climate: the first human-induced global warming?". Geophysical Research Letters. 37 (15): L15703. Bibcode:2010GeoRL..3715703D. doi:10.1029/2010GL043985.
  136. ^ a b c Lister, 2007. pp. 45–75
  137. ^ a b Lister, 2007. pp. 50–53
  138. ^ a b Pfizenmayer, E. W. (1939). Siberian Man and Mammoth. London: Blackie and Son. pp. 46–61.
  139. ^ Vereshchagin, N. K. (2009). "The mammoth "cemeteries" of north-east Siberia". Polar Record. 17 (106): 3–12. doi:10.1017/S0032247400031296. S2CID 129654739.
  140. ^ a b c Tolmachoff, I. P. (1929). "The carcasses of the mammoth and rhinoceros found in the frozen ground of Siberia". Transactions of the American Philosophical Society. 23 (1): 11–23. doi:10.2307/1005437. JSTOR 1005437.
  141. ^ Adams, M. (1808). "Some Account of a Journey to the Frozen-Sea, and of the Discovery of the Remains of a Mammoth". The Philadelphia Medical and Physical Journal. 3: 120–137.
  142. ^ Tilesio, W. G. (1815). "De skeleto mammonteo Sibirico ad maris glacialis littora anno 1807 effosso, cui praemissae Elephantini generis specierum distinctiones". Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg (in Latin). 5: 406–514.
  143. ^ Cohen, C. (2002). The Fate of the Mammoth: Fossils, Myth, and History. University of Chicago Press. p. 113. ISBN 978-0-226-11292-3.
  144. ^ Pfizenmayer, E. (1907). "A Contribution to the Morphology of the Mammoth, Elephas Primigenius Blumenbach; With an Explanation of My Attempt at a Restoration". Annual Report of the Board of Regents of the Smithsonian Institution: 326–334.
  145. ^ Farrand, W. R. (1961). "Frozen Mammoths and Modern Geology: The death of the giants can be explained as a hazard of tundra life, without evoking catastrophic events". Science. 133 (3455): 729–735. Bibcode:1961Sci...133..729F. doi:10.1126/science.133.3455.729. PMID 17777646.
  146. ^ Lister, 2007. pp. 57–58
  147. ^ Mol, D. et al. (2001). "The Jarkov Mammoth: 20,000-Year-Old carcass of a Siberian woolly mammoth Mammuthus primigenius (Blumenbach, 1799)". The World of Elephants, Proceedings of the 1st International Congress ( 16–20 October 2001, Rome): 305–309.
  148. ^ Debruyne, R. G.; Barriel, V. R.; Tassy, P. (2003). "Mitochondrial cytochrome b of the Lyakhov mammoth (Proboscidea, Mammalia): New data and phylogenetic analyses of Elephantidae". Molecular Phylogenetics and Evolution. 26 (3): 421–434. doi:10.1016/S1055-7903(02)00292-0. PMID 12644401.
  149. ^ Kosintsev, P. A.; Lapteva, E. G.; Trofimova, S. S.; Zanina, O. G.; Tikhonov, A. N.; Van Der Plicht, J. (2012). "Environmental reconstruction inferred from the intestinal contents of the Yamal baby mammoth Lyuba (Mammuthus primigenius Blumenbach, 1799)" (PDF). Quaternary International. 255: 231–238. Bibcode:2012QuInt.255..231K. doi:10.1016/j.quaint.2011.03.027. S2CID 129303118.
  150. ^ Rincon, P. (10 July 2007). "Baby mammoth discovery unveiled". news.bbc.co.uk. BBC News. from the original on 11 August 2007. Retrieved 13 July 2007.
  151. ^ Solovyov, D. (11 July 2007). "Baby mammoth find promises breakthrough". reuters.com. Reuters. from the original on 13 July 2007. Retrieved 13 July 2007.
  152. ^ Smith, O. (21 April 2009). "Baby mammoth Lyuba, pristinely preserved, offers scientists rare look into mysteries of Ice Age". Daily News. New York. from the original on 15 August 2009.
  153. ^ Fisher, Daniel C. (2014). "X-ray computed tomography of two mammoth calf mummies". Journal of Paleontology. 88 (4): 664–675. doi:10.1666/13-092. S2CID 28393815.
  154. ^ Mashchenko, E. N.; Protopopov, A. V.; Plotnikov, V. V.; Pavlov, I. S. (2013). "Specific characters of the mammoth calf (Mammuthus primigenius) from the Khroma River (Yakutia)". Biology Bulletin. 40 (7): 626–641. doi:10.1134/S1062359013070042. S2CID 16675371.
  155. ^ Yamagata, K.; Nagai, K.; Miyamoto, H.; Anzai, M.; Kato, H.; Miyamoto, K.; Kurosaka, S.; Azuma, R.; Kolodeznikov, I. I.; Protopopov, A. V.; Plotnikov, V. V.; Kobayashi, H.; Kawahara-Miki, R.; Kono, T.; Uchida, M.; Shibata, Y.; Handa, T.; Kimura, H.; Hosoi, Y.; Mitani, T.; Matsumoto, K.; Iritani, A. (2019). "Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging". Scientific Reports. 9 (1): 4050. Bibcode:2019NatSR...9.4050Y. doi:10.1038/s41598-019-40546-1. PMC 6411884. PMID 30858410.
  156. ^ Wong, K. (2013). "Can a mammoth carcass really preserve flowing blood and possibly live cells?". Nature. doi:10.1038/nature.2013.13103. S2CID 87298066.
  157. ^ Reardon, Sophie (2022). "Rare mummified baby woolly mammoth with skin and hair found in Canada". www.cbsnews.com. Retrieved 26 June 2022.
  158. ^ Proulx, Michel (24 June 2022). "'She's perfect and she's beautiful': Frozen baby woolly mammoth discovered in Yukon gold fields". Canadian Broadcasting Corporation. Retrieved 8 November 2022.
  159. ^ Bringing them Back to Life 29 March 2017 at the Wayback Machine. Carl Zimmer, National Geographic. April 2013.
  160. ^ a b c Lister, 2007. pp. 42–43
  161. ^ Ghosh, Pallab (23 April 2015). . BBC News. Archived from the original on 24 April 2015.
  162. ^ The Long Now Foundation – Revive and Restore 24 April 2015 at the Wayback Machine.
  163. ^ Can scientists bring mammoths back to life by cloning? 8 October 2017 at the Wayback Machine Jackson Landers. 9 February 2015. The Washington Post.
  164. ^ Webster, Ben (23 March 2015). "Scientist takes mammoth-cloning a step closer". The Sunday Times.
  165. ^ Sarah Fecht (24 March 2014), Woolly Mammoth DNA Successfully Spliced Into Elephant Cells, Popular Science, from the original on 26 March 2015
  166. ^ Zimov, S. A. (2005). "Essays on Science and Society: Pleistocene Park: Return of the Mammoth's Ecosystem". Science. 308 (5723): 796–798. doi:10.1126/science.1113442. PMID 15879196.
  167. ^ Rohwer, Y.; Marris, E. (2018). "An analysis of potential ethical justifications for mammoth de-extinction and a call for empirical research". Ethics, Policy & Environment. 21 (1): 127–142. doi:10.1080/21550085.2018.1448043. S2CID 158056898.
  168. ^ Griffin, A. (23 March 2015). "Woolly mammoth could be revived after scientists paste DNA into elephant's genetic code". The Independent. from the original on 25 September 2015.
  169. ^ Loi, Pasqualino; Saragusty, Joseph; Ptak, Grazyna (2014). "Cloning the Mammoth: A Complicated Task or Just a Dream?". Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology. Vol. 753. pp. 489–502. doi:10.1007/978-1-4939-0820-2_19. ISBN 978-1-4939-0819-6. PMID 25091921.
  170. ^ "Woolly mammoths are being brought back from extinction by scientists". euronews. 17 September 2021. Retrieved 19 September 2021.
  171. ^ Carlson, Kara. "Could Austin entrepreneur's company help bring back the woolly mammoth?". Austin American-Statesman. Retrieved 19 September 2021.
  172. ^ Newcomb, Raymond Lee (1888). Our lost explorers : the narrative of the Jeannette Arctic Expedition as related by the survivors, and in the records and last journals of Lieutenant De Long 17 March 2016 at the Wayback Machine. p. 96
  173. ^ Patkanov, S. (1897), , vol. I, St. Petersburg: St. Petersburg, pp. 123–124, archived from the original on 7 November 2018. (Here the belief is attested among the Khanty people of the Irtysh River basin).
  174. ^ Laufer, Berthold (1913), "Arabic and Chinese Trade in Walrus and Narwhal Ivory", T'oung Pao, Second Series, 14 (3): 329, doi:10.1163/156853213X00213, hdl:2027/hvd.32044009725912, JSTOR 4526349. Bertholds's source for the Irtysh Ostyaks' belief is Patkanov 1897, pp. 123–124
  175. ^ Cohen, C. (2002). The Fate of the Mammoth: Fossils, Myth, and History. University of Chicago Press. pp. 197–198. ISBN 978-0-226-11292-3. Retrieved 10 August 2015. eskimo mammoth ivory.
  176. ^ a b Strong, W. D. (1934). "North American Indian traditions suggesting a knowledge of the mammoth". American Anthropologist. 36: 81–88. doi:10.1525/aa.1934.36.1.02a00060.
  177. ^ Lankford, G. E. (1980). "Pleistocene Animals in Folk Memory". The Journal of American Folklore. 93 (369): 294–296. doi:10.2307/540573. JSTOR 540573. {subscription required}
  178. ^ a b Mayor, A. (2005). Fossil Legends of the First Americans. Princeton: Princeton University Press. p. 97. ISBN 978-0-691-11345-6.
  179. ^ Lankford, G. E. (1980). "Pleistocene Animals in Folk Memory". The Journal of American Folklore. 93 (369): 293–304. doi:10.2307/540573. JSTOR 540573. {subscription required}
  180. ^ a b Lister, 2007. pp. 137–139
  181. ^ Larmer, B. (April 2013). "Mammoth Tusk Hunters". nationalgeographic.com. from the original on 2 April 2013.
  182. ^ Lister, 2007. p. 54
  183. ^ Glass, J. R.; Davis, M.; Walsh, T. J.; Sargis, E. J.; Caccone, A.; Fiorillo, A. (2016). "Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?". PLOS ONE. 11 (2): e0146825. Bibcode:2016PLoSO..1146825G. doi:10.1371/journal.pone.0146825. PMC 4740485. PMID 26840445.
  184. ^ Weiyun, T. (2011). "'Lucky Hands' in pursuit of dinosaurs". SHINE. Retrieved 4 July 2019.
  185. ^ a b c Sjögren, B. (1962). Farliga djur och djur som inte finns (in Swedish). Prisma. p. 168.
  186. ^ Lister, 2007. p. 55
  187. ^ Murray, M. (1960). . Tacoma Public Library. Archived from the original on 18 January 2012. Retrieved 17 January 2008.
  188. ^ McCarthy, Michael (28 September 2009), The Big Question: Are so-called 'extinct' species really extinct, and will we rediscover any?, retrieved 5 August 2019

Bibliography

  • Lister, A.; Bahn, P. (2007). Mammoths – Giants of the Ice Age (3 ed.). London: Frances Lincoln. ISBN 978-0-520-26160-0. OCLC 30155747.
  • Shapiro, Beth (5 April 2015). How to Clone a Mammoth: The Science of De-Extinction. Princeton University Press. ISBN 978-1-4008-6548-2. OCLC 965621402.

External links

  •   Data related to Mammuthus primigenius at Wikispecies
  • Natural History Museum: "The last of the mammoths" – three-minute video about the extinction of the woolly mammoth, presented by Adrian Lister
  • National Geographic: "Mammoth tusk treasure hunt" – two-minute video about mammoth tusk collecting in modern Siberia

woolly, mammoth, woolly, mammoth, mammuthus, primigenius, extinct, species, mammoth, that, lived, during, pleistocene, until, extinction, holocene, epoch, last, line, mammoth, species, beginning, with, african, mammuthus, subplanifrons, early, pliocene, woolly. The woolly mammoth Mammuthus primigenius is an extinct species of mammoth that lived during the Pleistocene until its extinction in the Holocene epoch It was one of the last in a line of mammoth species beginning with the African Mammuthus subplanifrons in the early Pliocene The woolly mammoth began to diverge from the steppe mammoth about 800 000 years ago in East Asia Its closest extant relative is the Asian elephant The Columbian mammoth Mammuthus columbi lived alongside the woolly mammoth in North America and DNA studies show that the two hybridised with each other Woolly mammothTemporal range Middle Pleistocene 1 Late Holocene 1 0 40 0 0037 Ma PreꞒ Ꞓ O S D C P T J K Pg N Largest European specimen a male at Sudostbayerisches Naturkunde und Mammut Museum SiegsdorfScientific classificationDomain EukaryotaKingdom AnimaliaPhylum ChordataClass MammaliaOrder ProboscideaFamily ElephantidaeGenus MammuthusSpecies M primigeniusBinomial name Mammuthus primigenius Blumenbach 1799 Dymaxion map showing the Late Pleistocene distribution of M primigenius in blue light blue was land at the time inferred from fossil findsSynonymsList Elephas primigenius Blumenbach 1799Elephas mammonteus Cuvier 1799Mammuthus boreus Brookes 1828Mammonteus primigenius Osborn 1924Elephas boreus Hay 1924The appearance and behaviour of this species are among the best studied of any prehistoric animal because of the discovery of frozen carcasses in Siberia and North America as well as skeletons teeth stomach contents dung and depiction from life in prehistoric cave paintings Mammoth remains had long been known in Asia before they became known to Europeans in the 17th century The origin of these remains was long a matter of debate and often explained as being remains of legendary creatures The mammoth was identified as an extinct species of elephant by Georges Cuvier in 1796 The woolly mammoth was roughly the same size as modern African elephants Males reached shoulder heights between 2 67 and 3 49 m 8 8 and 11 5 ft and weighed between 3 9 and 8 2 metric tons 4 3 and 9 0 short tons Females reached 2 6 2 9 m 8 5 9 5 ft in shoulder heights and weighed up to 4 metric tons 4 4 short tons A newborn calf weighed about 90 kg 200 lb The woolly mammoth was well adapted to the cold environment during the last ice age It was covered in fur with an outer covering of long guard hairs and a shorter undercoat The colour of the coat varied from dark to light The ears and tail were short to minimise frostbite and heat loss It had long curved tusks and four molars which were replaced six times during the lifetime of an individual Its behaviour was similar to that of modern elephants and it used its tusks and trunk for manipulating objects fighting and foraging The diet of the woolly mammoth was mainly grasses and sedges Individuals could probably reach the age of 60 Its habitat was the mammoth steppe which stretched across northern Eurasia and North America The woolly mammoth coexisted with early humans who used its bones and tusks for making art tools and dwellings and hunted the species for food The population of woolly mammoths declined at the end of the Late Pleistocene with the last populations on mainland Siberia persisting until around 10 000 years ago although isolated populations survived on St Paul Island until 5 600 years ago and on Wrangel Island until 4 000 years ago After its extinction humans continued using its ivory as a raw material a tradition that continues today With a genome project for the mammoth completed in 2015 it has been proposed the species could be revived through various means but none of the methods proposed are yet feasible Contents 1 Taxonomy 1 1 Evolution 1 2 Subspecies and hybridisation 2 Description 2 1 Coat 2 2 Dentition 3 Palaeobiology 3 1 Adaptations to cold 3 2 Diet 3 3 Life history 3 4 Palaeopathology 4 Distribution and habitat 5 Relationship with humans 5 1 Exploitation 6 Extinction 7 Fossil specimens 7 1 Frozen specimens 8 Possible revival 9 Cultural significance 9 1 Alleged survival 10 References 10 1 Bibliography 11 External linksTaxonomy nbsp Copy of an interpretation of the Adams mammoth carcass from around 1800 with Johann Friedrich Blumenbach s handwritingRemains of various extinct elephants were known by Europeans for centuries but were generally interpreted based on biblical accounts as the remains of legendary creatures such as behemoths or giants They were thought to be remains of modern elephants that had been brought to Europe during the Roman Republic for example the war elephants of Hannibal and Pyrrhus of Epirus or animals that had wandered north 2 The first woolly mammoth remains studied by European scientists were examined by Hans Sloane in 1728 and consisted of fossilised teeth and tusks from Siberia Sloane was the first to recognise that the remains belonged to elephants 3 Sloane turned to another biblical explanation for the presence of elephants in the Arctic asserting that they had been buried during the Great Flood and that Siberia had previously been tropical before a drastic climate change 4 Others interpreted Sloane s conclusion slightly differently arguing the flood had carried elephants from the tropics to the Arctic Sloane s paper was based on travellers descriptions and a few scattered bones collected in Siberia and Britain He discussed the question of whether or not the remains were from elephants but drew no conclusions 5 In 1738 the German zoologist Johann Philipp Breyne argued that mammoth fossils represented some kind of elephant He could not explain why a tropical animal would be found in such a cold area as Siberia and suggested that they might have been transported there by the Great Flood 6 In 1796 French biologist Georges Cuvier was the first to identify the woolly mammoth remains not as modern elephants transported to the Arctic but as an entirely new species He argued this species had gone extinct and no longer existed a concept that was not widely accepted at the time 2 7 Following Cuvier s identification German naturalist Johann Friedrich Blumenbach gave the woolly mammoth its scientific name Elephas primigenius in 1799 placing it in the same genus as the Asian elephant This name is Latin for the first born elephant Cuvier coined the name Elephas mammonteus a few months later but the former name was subsequently used 8 In 1828 the British naturalist Joshua Brookes used the name Mammuthus borealis for woolly mammoth fossils in his collection that he put up for sale thereby coining a new genus name 9 nbsp 1930s illustration of the lectotype molars the left one is now lost Where and how the word mammoth originated is unclear According to theOxford English Dictionary it comes from an old Vogul word memoŋt earth horn 10 It may be a version of mehemot the Arabic version of the biblical word behemoth Another possible origin is Estonian where maa means earth and mutt means mole The word was first used in Europe during the early 17th century when referring to maimanto tusks discovered in Siberia 11 American president Thomas Jefferson who had a keen interest in palaeontology was partially responsible for transforming the word mammoth from a noun describing the prehistoric elephant to an adjective describing anything of surprisingly large size The first recorded use of the word as an adjective was in a description of a wheel of cheese the Cheshire Mammoth Cheese given to Jefferson in 1802 12 By the early 20th century the taxonomy of extinct elephants was complex In 1942 American palaeontologist Henry Fairfield Osborn s posthumous monograph on the Proboscidea was published wherein he used various taxon names that had previously been proposed for mammoth species including replacing Mammuthus with Mammonteus as he believed the former name to be invalidly published 13 Mammoth taxonomy was simplified by various researchers from the 1970s onwards all species were retained in the genus Mammuthus and many proposed differences between species were instead interpreted as intraspecific variation 14 Osborn chose two molars found in Siberia and Osterode from Blumenbach s collection at Gottingen University as the lectotype specimens for the woolly mammoth since holotype designation was not practised in Blumenbach s time Soviet palaeontologist Vera Gromova further proposed the former should be considered the lectotype with the latter as paralectotype Both molars were thought lost by the 1980s and the more complete Taimyr mammoth found in Siberia in 1948 was therefore proposed as the neotype specimen in 1990 Resolutions to historical issues about the validity of the genus name Mammuthus and the type species designation of E primigenius were also proposed 15 The paralectotype molar specimen GZG V 010 018 has since been located in the Gottingen University collection identified by comparing it with Osborn s illustration of a cast 8 16 Evolution nbsp Georges Cuvier s 1796 comparison between the mandible of a woolly mammoth bottom left and top right and an Indian elephant top left and bottom right The earliest known members of the Proboscidea the clade which contains modern elephants existed about 55 million years ago around the Tethys Sea The closest known relatives of the Proboscidea are the sirenians dugongs and manatees and the hyraxes an order of small herbivorous mammals The family Elephantidae existed 6 million years ago in Africa and includes the modern elephants and the mammoths Among many now extinct clades the mastodon Mammut is only a distant relative of the mammoths and part of the separate family Mammutidae which diverged 25 million years before the mammoths evolved 17 The following cladogram shows the placement of the genus Mammuthus among other proboscideans based on characteristics of the hyoid bone in the neck 18 Elephantimorpha Mammutidae mastodons nbsp Elephantida Gomphotheriidae gomphotheres nbsp Elephantoidea Stegodontidae stegodontids nbsp Elephantidae Loxodonta African elephants nbsp Elephantini Palaeoloxodon straight tusked elephants nbsp Elephantina Elephas Asian elephants nbsp Mammuthus mammoths nbsp nbsp Comparison between the lower molars of a woolly mammoth above and a southern mammoth note the lower number of enamel ridges in the older species below Within six weeks from 2005 2006 three teams of researchers independently assembled mitochondrial genome profiles of the woolly mammoth from ancient DNA which allowed them to confirm the close evolutionary relationship between mammoths and Asian elephants Elephas maximus 19 20 A 2015 DNA review confirmed Asian elephants as the closest living relative of the woolly mammoth 21 African elephants Loxodonta africana branched away from this clade around 6 million years ago close to the time of the similar split between chimpanzees and humans 22 A 2010 study confirmed these relationships and suggested the mammoth and Asian elephant lineages diverged 5 8 7 8 million years ago while African elephants diverged from an earlier common ancestor 6 6 8 8 million years ago 23 In 2008 much of the woolly mammoth s chromosomal DNA was mapped The analysis showed that the woolly mammoth and the African elephant are 98 55 to 99 40 identical 24 The team mapped the woolly mammoth s nuclear genome sequence by extracting DNA from the hair follicles of both a 20 000 year old mammoth retrieved from permafrost and another that died 60 000 years ago 25 In 2012 proteins were confidently identified for the first time collected from a 43 000 year old woolly mammoth 26 Since many remains of each species of mammoth are known from several localities reconstructing the evolutionary history of the genus through morphological studies is possible Mammoth species can be identified from the number of enamel ridges or lamellar plates on their molars primitive species had few ridges and the number increased gradually as new species evolved to feed on more abrasive food items The crowns of the teeth became deeper in height and the skulls became taller to accommodate this At the same time the skulls became shorter from front to back to minimise the weight of the head 1 27 The short and tall skulls of woolly and Columbian mammoths Mammuthus columbi were the culmination of this process 28 The first known members of the genus Mammuthus are the African species Mammuthus subplanifrons from the Pliocene and M africanavus from the Pleistocene The former is thought to be the ancestor of later forms Mammoths entered Europe around 3 million years ago The earliest European mammoth has been named M rumanus it spread across Europe and China Only its molars are known which show that it had 8 10 enamel ridges A population evolved 12 14 ridges splitting off from and replacing the earlier type becoming the southern mammoth M meridionalis about 2 1 7 million years ago In turn this species was replaced by the steppe mammoth M trogontherii with 18 20 ridges which evolved in eastern Asia around 1 million years ago 1 Mammoths derived from M trogontherii evolved molars with 26 ridges 400 000 years ago in Siberia and became the woolly mammoth 1 Woolly mammoths entered North America about 100 000 years ago by crossing the Bering Strait 28 Subspecies and hybridisation nbsp Cast of an intermediate form between M trogontherii and M primigenius M p fraasi Staatliches Museum fur Naturkunde Stuttgart nbsp Specimen formerly assigned to M jeffersonii suggested to be a hybrid between Columbian and woolly mammoths at the American Museum of Natural History Individuals and populations showing transitional morphologies between each of the mammoth species are known and primitive and derived species coexisted until the former disappeared The different species and their intermediate forms have been termed chronospecies Many taxa intermediate between M primigenius and other mammoths have been proposed but their validity is uncertain depending on author they are either considered primitive forms of an advanced species or advanced forms of a primitive species 1 Distinguishing and determining these intermediate forms has been called one of the most long lasting and complicated problems in Quaternary palaeontology Regional and intermediate species and subspecies such as M intermedius M chosaricus M p primigenius M p jatzkovi M p sibiricus M p fraasi M p leith adamsi M p hydruntinus M p astensis M p americanus M p compressus and M p alaskensis have been proposed 13 29 30 A 2011 genetic study showed that two examined specimens of the Columbian mammoth were grouped within a subclade of woolly mammoths This suggests that the two populations interbred and produced fertile offspring A North American type formerly referred to as M jeffersonii may be a hybrid between the two species 31 A 2015 study suggested that the animals in the range where M columbi and M primigenius overlapped formed a metapopulation of hybrids with varying morphology It suggested that Eurasian M primigenius had a similar relationship with M trogontherii in areas where their range overlapped 32 In 2021 DNA older than a million years was sequenced for the first time from two mammoth teeth of Early Pleistocene age found in eastern Siberia One tooth from Adycha 1 1 3 million years old belonged to a lineage that was ancestral to later woolly mammoths whereas the other from Krestovka 1 1 1 65 million years old belonged to new lineage The study found that half of the ancestry of Columbian mammoths came from relatives of the Krestovka lineage which probably represented the first mammoths that colonised the Americas and the other half from the lineage of woolly mammoths with the hybridisation happening more than 420 000 years ago during the Middle Pleistocene Later woolly and Columbian mammoths also interbred occasionally and mammoth species may have hybridised routinely when brought together by glacial expansion These findings were the first evidence of hybrid speciation from ancient DNA The study also found that genetic adaptations to cold environments such as hair growth and fat deposits were already present in the steppe mammoth lineage and were not unique to woolly mammoths 33 34 Description nbsp Size red compared to a human and other mammothsThe appearance of the woolly mammoth is probably the best known of any prehistoric animal due to the many frozen specimens with preserved soft tissue and depictions by contemporary humans in their art Fully grown males reached shoulder heights between 2 67 and 3 49 m 8 8 and 11 5 ft and weighed between 3 9 and 8 2 tonnes 4 3 and 9 0 short tons the largest being a specimen from Siegsdorf The average male has been estimated to have had a shoulder height of 2 8 m 9 2 ft and a weight of 4 5 tonnes 5 0 short tons in the Siberian populations and a shoulder height of 3 15 m 10 3 ft and a weight of 6 tonnes 6 6 short tons in the European populations This is similar to extant male African elephants which commonly reach a shoulder height of 3 04 3 36 m 10 0 11 0 ft and a weight of 5 2 6 9 tonnes 5 7 7 6 short tons with a mean average shoulder height of 3 2 m 10 5 ft and a weight of 6 tonnes 6 6 short tons and is less than the size of the earlier mammoth species M meridionalis and M trogontherii and the contemporary M columbi The reason for the smaller size is unknown Female woolly mammoths reached 2 6 2 9 m 8 5 9 5 ft in shoulder heights and were built more lightly than males weighing up to 4 tonnes 4 4 short tons A newborn calf would have weighed about 90 kg 200 lb These sizes are deduced from comparison with modern elephants of similar size 35 36 Few frozen specimens have preserved genitals so the sex is usually determined through examination of the skeleton The best indication of sex is the size of the pelvic girdle since the opening that functions as the birth canal is always wider in females than in males 37 Though the mammoths on Wrangel Island were smaller than those of the mainland their size varied and they were not small enough to be considered island dwarfs 38 The last woolly mammoth populations are claimed to have decreased in size and increased their sexual dimorphism but this was dismissed in a 2012 study 39 nbsp Model at the Royal BC MuseumWoolly mammoths had several adaptations to the cold most noticeably the layer of fur covering all parts of their bodies Other adaptations to cold weather include ears that are far smaller than those of modern elephants they were about 38 cm 15 in long and 18 28 cm 7 1 11 0 in across and the ear of the 6 to 12 month old frozen calf Dima was under 13 cm 5 1 in long The small ears reduced heat loss and frostbite and the tail was short for the same reason only 36 cm 14 in long in the Berezovka mammoth The tail contained 21 vertebrae whereas the tails of modern elephants contain 28 33 Their skin was no thicker than that of present day elephants between 1 25 and 2 5 cm 0 49 and 0 98 in They had a layer of fat up to 10 cm 3 9 in thick under the skin which helped to keep them warm Woolly mammoths had broad flaps of skin under their tails which covered the anus this is also seen in modern elephants 40 Other characteristic features depicted in cave paintings include a large high single domed head and a sloping back with a high shoulder hump this shape resulted from the spinous processes of the back vertebrae decreasing in length from front to rear These features were not present in juveniles which had convex backs like Asian elephants Another feature shown in cave paintings was confirmed by the discovery of a frozen specimen in 1924 an adult nicknamed the Middle Kolyma mammoth which was preserved with a complete trunk tip Unlike the trunk lobes of modern elephants the upper finger at the tip of the trunk had a long pointed lobe and was 10 cm 3 9 in long while the lower thumb was 5 cm 2 0 in and was broader The trunk of Dima was 76 cm 2 49 ft long whereas the trunk of the adult Liakhov mammoth was 2 metres 6 6 ft long 40 The well preserved trunk of a juvenile specimen nicknamed Yuka was described in 2015 and it was shown to possess a fleshy expansion a third above the tip Rather than oval as the rest of the trunk this part was ellipsoidal in cross section and double the size in diameter The feature was shown to be present in two other specimens of different sexes and ages 41 Coat nbsp Fur in Naturhistorisches Museum Vienna nbsp SEM magnified image of an overhair The coat consisted of an outer layer of long coarse guard hair which was 30 cm 12 in on the upper part of the body up to 90 cm 35 in in length on the flanks and underside and 0 5 mm 0 020 in in diameter and a denser inner layer of shorter slightly curly under wool up to 8 cm 3 1 in long and 0 05 mm 0 0020 in in diameter The hairs on the upper leg were up to 38 cm 15 in long and those of the feet were 15 cm 5 9 in long reaching the toes The hairs on the head were relatively short but longer on the underside and the sides of the trunk The tail was extended by coarse hairs up to 60 cm 24 in long which were thicker than the guard hairs The woolly mammoth likely moulted seasonally and the heaviest fur was shed during spring 42 Since mammoth carcasses were more likely to be preserved possibly only the winter coat has been preserved in frozen specimens Modern elephants have much less hair though juveniles have a more extensive covering of hair than adults 42 This is thought to be for thermoregulation helping them lose heat in their hot environments 43 Comparison between the over hairs of woolly mammoths and extant elephants show that they did not differ much in overall morphology 44 Woolly mammoths had numerous sebaceous glands in their skin which secreted oils into their hair this would have improved the wool s insulation repelled water and given the fur a glossy sheen 45 Preserved woolly mammoth fur is orange brown but this is believed to be an artefact from the bleaching of pigment during burial The amount of pigmentation varied from hair to hair and within each hair 40 A 2006 study sequenced the Mc1r gene which influences hair colour in mammals from woolly mammoth bones Two alleles were found a dominant fully active and a recessive partially active one In mammals recessiveMc1r alleles result in light hair Mammoths born with at least one copy of the dominant allele would have had dark coats while those with two copies of the recessive allele would have had light coats 46 A 2011 study showed that light individuals would have been rare 47 A 2014 study instead indicated that the colouration of an individual varied from nonpigmented on the overhairs bicoloured nonpigmented and mixed red brown guard hairs and nonpigmented underhairs which would give a light overall appearance 48 Dentition nbsp Skull from Poland with one broken and one downward spiralled tuskWoolly mammoths had very long tusks modified incisor teeth which were more curved than those of modern elephants The largest known male tusk is 4 2 m 14 ft long and weighs 91 kg 201 lb but 2 4 2 7 m 7 9 8 9 ft and 45 kg 99 lb was a more typical size Female tusks were smaller and thinner 1 5 1 8 m 4 9 5 9 ft and weighing 9 kg 20 lb For comparison the record for longest tusks of the African bush elephant is 3 4 m 11 ft The sheaths of the tusks were parallel and spaced closely About a quarter of the length was inside the sockets The tusks grew spirally in opposite directions from the base and continued in a curve until the tips pointed towards each other sometimes crossing In this way most of the weight would have been close to the skull and less torque would occur than with straight tusks 49 50 51 The tusks were usually asymmetrical and showed considerable variation with some tusks curving down instead of outwards and some being shorter due to breakage Calves developed small milk tusks a few centimetres long at six months old which were replaced by permanent tusks a year later Tusk growth continued throughout life but became slower as the animal reached adulthood The tusks grew by 2 5 15 cm 0 98 5 91 in each year Some cave paintings show woolly mammoths with small or no tusks but whether this reflected reality or was artistic license is unknown Female Asian elephants have no tusks but no fossil evidence indicates that any adult woolly mammoths lacked them 49 50 nbsp Molar from Font de Champdamoy France Musee Georges GarretWoolly mammoths had four functional molar teeth at a time two in the upper jaw and two in the lower About 23 cm 9 1 in of the crown was within the jaw and 2 5 cm 1 in was above The crown was continually pushed forwards and up as it wore down comparable to a conveyor belt The teeth had up to 26 separated ridges of enamel which were themselves covered in prisms that were directed towards the chewing surface These were quite wear resistant and kept together by cementum and dentine A mammoth had six sets of molars throughout a lifetime which were replaced five times though a few specimens with a seventh set are known The latter condition could extend the lifespan of the individual unless the tooth consisted of only a few plates The first molars were about the size of those of a human 1 3 cm 0 51 in the third were 15 cm 6 in 15 cm 5 9 in long and the sixth were about 30 cm 1 ft long and weighed 1 8 kg 4 lb The molars grew larger and contained more ridges with each replacement 52 The woolly mammoth is considered to have had the most complex molars of any elephant 50 Palaeobiology nbsp Life restoration of fauna during the Pleistocene epoch in northern Spain by Mauricio Anton 2004Adult woolly mammoths could effectively defend themselves from predators with their tusks trunks and size but juveniles and weakened adults were vulnerable to pack hunters such as wolves cave hyenas and large felines The tusks may have been used in intraspecies fighting such as fights over territory or mates Display of the large tusks of males could have been used to attract females and to intimidate rivals Because of their curvature the tusks were unsuitable for stabbing but may have been used for hitting as indicated by injuries to some fossil shoulder blades The very long hairs on the tail probably compensated for the shortness of the tail enabling its use as a flyswatter similar to the tail on modern elephants As in modern elephants the sensitive and muscular trunk worked as a limb like organ with many functions It was used for manipulating objects and in social interactions 53 The well preserved foot of the adult male Yukagir mammoth shows that the soles of the feet contained many cracks that would have helped in gripping surfaces during locomotion Like modern elephants woolly mammoths walked on their toes and had large fleshy pads behind the toes 40 Like modern elephants woolly mammoths were likely very social and lived in matriarchal female led family groups This is supported by fossil assemblages and cave paintings showing groups implying that most of their other social behaviours were likely similar to those of modern elephants How many mammoths lived at one location at a time is unknown as fossil deposits are often accumulations of individuals that died over long periods of time The numbers likely varied by season and lifecycle events Modern elephants can form large herds sometimes consisting of multiple family groups and these herds can include thousands of animals migrating together Mammoths may have formed large herds more often since animals that live in open areas are more likely to do this than those in forested areas 54 Trackways made by a woolly mammoth herd 11 300 11 000 years ago have been found in the St Mary Reservoir in Canada showing that in this case almost equal numbers of adults subadults and juveniles were found The adults had a stride of 2 m 6 6 ft and the juveniles ran to keep up 55 Adaptations to cold nbsp nbsp nbsp nbsp Head and leg of the adult male Yukagir mammoth the trunk is not preserved note fur and small ears The woolly mammoth was probably the most specialised member of the family Elephantidae In addition to their fur they had lipopexia fat storage in their neck and withers for times when food availability was insufficient during winter and their first three molars grew more quickly than in the calves of modern elephants The expansion identified on the trunk of Yuka and other specimens was suggested to function as a fur mitten the trunk tip was not covered in fur but was used for foraging during winter and could have been heated by curling it into the expansion The expansion could be used to melt snow if a shortage of water to drink existed as melting it directly inside the mouth could disturb the thermal balance of the animal 41 As in reindeer and musk oxen the haemoglobin of the woolly mammoth was adapted to the cold with three mutations to improve oxygen delivery around the body and prevent freezing This feature may have helped the mammoths to live at high latitudes 56 In a 2015 study high quality genome sequences from three Asian elephants and two woolly mammoths were compared About 1 4 million DNA nucleotide differences were found between mammoths and elephants which affect the sequence of more than 1 600 proteins Differences were noted in genes for a number of aspects of physiology and biology that would be relevant to Arctic survival including development of skin and hair storage and metabolism of adipose tissue and perceiving temperature Genes related to both sensing temperature and transmitting that sensation to the brain were altered One of the heat sensing genes encodes a protein TRPV3 found in skin which affects hair growth When inserted into human cells the mammoth s version of the protein was found to be less sensitive to heat than the elephant s This is consistent with a previous observation that mice lacking active TRPV3 are likely to spend more time in cooler cage locations than wild type mice and have wavier hair Several alterations in circadian clock genes were found perhaps needed to cope with the extreme polar variation in length of daylight Similar mutations are known in other Arctic mammals such as reindeer 57 58 A 2019 study of the woolly mammoth mitogenome suggest that these had metabolic adaptations related to extreme environments 59 A genetic study from 2023 found that the woolly mammoth had already acquired a broad range of genes associated with the development of skin and hair fat storage metabolism and the immune system by the time the species appeared and that these continued to evolve within the last 700 000 years including a gene that resulted in mammoths of the Late Quaternary having small ears 60 Diet nbsp Mandibles and lower molars BarcelonaFood at various stages of digestion has been found in the intestines of several woolly mammoths giving a good picture of their diet Woolly mammoths sustained themselves on plant food mainly grasses and sedges which were supplemented with herbaceous plants flowering plants shrubs mosses and tree matter The composition and exact varieties differed from location to location Woolly mammoths needed a varied diet to support their growth like modern elephants An adult of 6 tons would need to eat 180 kg 397 lb daily and may have foraged as long as 20 hours every day The two fingered tip of the trunk was probably adapted for picking up the short grasses of the last ice age Quaternary glaciation 2 58 million years ago to present by wrapping around them whereas modern elephants curl their trunks around the longer grass of their tropical environments The trunk could be used for pulling off large grass tufts delicately picking buds and flowers and tearing off leaves and branches where trees and shrubs were present The Yukagir mammoth had ingested plant matter that contained spores of dung fungus 61 Isotope analysis shows that woolly mammoths fed mainly on C3 plants unlike horses and rhinos 62 Scientists identified milk in the stomach and faecal matter in the intestines of the mammoth calf Lyuba 63 The faecal matter may have been eaten by Lyuba to promote development of the intestinal microbes necessary for digestion of vegetation as is the case in modern elephants 64 An isotope analysis of woolly mammoths from Yukon showed that the young nursed for at least 3 years and were weaned and gradually changed to a diet of plants when they were 2 3 years old This is later than in modern elephants and may be due to a higher risk of predator attack or difficulty in obtaining food during the long periods of winter darkness at high latitudes 65 nbsp Male tusk with signs of wearThe molars were adapted to their diet of coarse tundra grasses with more enamel plates and a higher crown than their earlier southern relatives The woolly mammoth chewed its food by using its powerful jaw muscles to move the mandible forwards and close the mouth then backwards while opening the sharp enamel ridges thereby cut across each other grinding the food The ridges were wear resistant to enable the animal to chew large quantities of food which often contained grit Woolly mammoths may have used their tusks as shovels to clear snow from the ground and reach the vegetation buried below and to break ice to drink This is indicated on many preserved tusks by flat polished sections up to 30 centimetres 12 in long as well as scratches on the part of the surface that would have reached the ground especially at their outer curvature The tusks were used for obtaining food in other ways such as digging up plants and stripping off bark 66 67 Life history nbsp Cross sections of African elephant and woolly mammoth tusks growth rings can be used to determine ageThe lifespan of mammals is related to their size and since modern elephants can reach the age of 60 years the same is thought to be true for woolly mammoths which were of a similar size The age of a mammoth can be roughly determined by counting the growth rings of its tusks when viewed in cross section but this does not account for its early years as these are represented by the tips of the tusks which are usually worn away In the remaining part of the tusk each major line represents a year and weekly and daily ones can be found in between Dark bands correspond to summers so determining the season in which a mammoth died is possible The growth of the tusks slowed when foraging became harder for example during winter during disease or when a male was banished from the herd male elephants live with their herds until about the age of 10 Mammoth tusks dating to the harshest period of the last glaciation 25 20 000 years ago show slower growth rates 68 69 Woolly mammoths continued growing past adulthood like other elephants Unfused limb bones show that males grew until they reached the age of 40 and females grew until they were 25 The frozen calf Dima was 90 cm 35 in tall when it died at the age of 6 12 months At this age the second set of molars would be in the process of erupting and the first set would be worn out at 18 months of age The third set of molars lasted for 10 years and this process was repeated until the final sixth set emerged when the animal was 30 years old When the last set of molars was worn out the animal would be unable to chew and feed and it would die of starvation A study of North American mammoths found that they often died during winter or spring the hardest times for northern animals to survive 68 Examination of preserved calves shows that they were all born during spring and summer and since modern elephants have gestation periods of 21 22 months the mating season probably was from summer to autumn 70 d15N isotopic analysis of the teeth of Lyuba has demonstrated their prenatal development and indicates its gestation period was similar to that of a modern elephant and that it was born in spring 71 The best preserved head of a frozen adult specimen that of a male nicknamed the Yukagir mammoth shows that woolly mammoths had temporal glands between the ear and the eye 72 This feature indicates that like bull elephants male woolly mammoths entered musth a period of heightened aggressiveness The glands are used especially by males to produce an oily substance with a strong smell called temporin Their fur may have helped in spreading the scent further 73 This was confirmed by a 2023 study that compared the testosterone level in the dentine of an adult African elephant tusk with that of a male woolly mammoth 74 Palaeopathology Evidence of several different bone diseases has been found in woolly mammoths The most common of these was osteoarthritis found in 2 of specimens One specimen from Switzerland had several fused vertebrae as a result of this condition The Yukagir mammoth had suffered from spondylitis in two vertebrae and osteomyelitis is known from some specimens Several specimens have healed bone fractures showing that the animals had survived these injuries 75 An extra number of cervical vertebrae has been found in 33 of specimens from the North Sea region probably due to a drop in numbers and subsequent inbreeding 76 Parasitic flies and protozoa were identified in the gut of the calf Dima 77 Distortion in the molars is the most common health problem found in woolly mammoth fossils Sometimes the replacement was disrupted and the molars were pushed into abnormal positions but some animals are known to have survived this Teeth from Britain showed that 2 of specimens had periodontal disease with half of these containing caries 78 The teeth sometimes had cancerous growths 79 Distribution and habitat nbsp nbsp The Altai Sayan assemblages such as Khar Us Nuur and Ukok Sailiugem are similar to the mammoth steppe The habitat of the woolly mammoth is known as mammoth steppe or tundra steppe This environment stretched across northern Asia many parts of Europe and the northern part of North America during the last ice age It was similar to the grassy steppes of modern Russia but the flora was more diverse abundant and grew faster Grasses sedges shrubs and herbaceous plants were present and scattered trees were mainly found in southern regions This habitat was not dominated by ice and snow as is popularly believed since these regions are thought to have been high pressure areas at the time The habitat of the woolly mammoth supported other grazing herbivores such as the woolly rhinoceros wild horses and bison 78 The Altai Sayan assemblages are the modern biomes most similar to the mammoth steppe 80 A 2014 study concluded that forbs a group of herbaceous plants were more important in the steppe tundra than previously acknowledged and that it was a primary food source for the ice age megafauna 81 nbsp Mural depicting a herd walking near the Somme River in France by Charles R Knight 1916The southernmost woolly mammoth specimen known is from the Shandong province of China and is 33 000 years old 82 The southernmost European remains are from the Depression of Granada in Spain and are of roughly the same age 83 84 DNA studies have helped determine the phylogeography of the woolly mammoth A 2008 DNA study showed two distinct groups of woolly mammoths one that became extinct 45 000 years ago and another one that became extinct 12 000 years ago The two groups are speculated to be divergent enough to be characterised as subspecies The group that became extinct earlier stayed in the middle of the high Arctic while the group with the later extinction had a much wider range 85 Recent stable isotope studies of Siberian and New World mammoths have shown there were differences in climatic conditions on either side of the Bering land bridge Beringia with Siberia being more uniformly cold and dry throughout the Late Pleistocene 86 During the Younger Dryas age woolly mammoths briefly expanded into north east Europe whereafter the mainland populations became extinct 87 A 2008 genetic study showed that some of the woolly mammoths that entered North America through the Bering land bridge from Asia migrated back about 300 000 years ago and had replaced the previous Asian population by about 40 000 years ago not long before the entire species became extinct 88 Fossils of woolly mammoths and Columbian mammoths have been found together in a few localities of North America including the Hot Springs sinkhole of South Dakota where their regions overlapped It is unknown whether the two species were sympatric and lived there simultaneously or if the woolly mammoths may have entered these southern areas during times when Columbian mammoth populations were absent there 78 Relationship with humans nbsp Woolly mammoth engraved on ivory found in 1864 the first known contemporary depiction of a prehistoric animalModern humans co existed with woolly mammoths during the Upper Palaeolithic period when the humans entered Europe from Africa between 30 000 and 40 000 years ago Before this Neanderthals had co existed with mammoths during the Middle Palaeolithic and already used mammoth bones for tool making and building materials Woolly mammoths were very important to ice age humans and human survival may have depended on the mammoth in some areas Evidence for such co existence was not recognised until the 19th century William Buckland published his discovery of the Red Lady of Paviland skeleton in 1823 which was found in a cave alongside woolly mammoth bones but he mistakenly denied that these were contemporaries In 1864 Edouard Lartet found an engraving of a woolly mammoth on a piece of mammoth ivory in the Abri de la Madeleine cave in Dordogne France The engraving was the first widely accepted evidence for the co existence of humans with prehistoric extinct animals and is the first contemporary depiction of such a creature known to modern science 89 nbsp nbsp nbsp nbsp Various prehistoric depictions of woolly mammoths including cave paintings above and sculptures The woolly mammoth is the third most depicted animal in ice age art after horses and bison and these images were produced between 35 000 and 11 500 years ago Today more than 500 depictions of woolly mammoths are known in media ranging from cave paintings and engravings on the walls of 46 caves in Russia France and Spain to engravings and sculptures termed portable art made from ivory antler stone and bone Cave paintings of woolly mammoths exist in several styles and sizes The French Rouffignac Cave has the most depictions 159 and some of the drawings are more than 2 metres 6 6 ft in length Other notable caves with mammoth depictions are the Chauvet Cave Les Combarelles Cave and Font de Gaume 90 A depiction in the Cave of El Castillo may instead show Palaeoloxodon the straight tusked elephant 91 Portable art can be more accurately dated than cave art since it is found in the same deposits as tools and other ice age artefacts The largest collection of portable mammoth art consisting of 62 depictions on 47 plaques was found in the 1960s at an excavated open air camp near Gonnersdorf in Germany A correlation between the number of mammoths depicted and the species that were most often hunted does not seem to exist since reindeer bones are the most frequently found animal remains at the site Two spear throwers shaped as woolly mammoths have been found in France 90 Some portable mammoth depictions may not have been produced where they were discovered but could have moved around by ancient trading 91 Exploitation nbsp Reconstructed bone hut based on finds in Mezhyrich exhibited in JapanWoolly mammoth bones were used as construction material for dwellings by both Neanderthals and modern humans during the ice age 92 More than 70 such dwellings are known mainly from the East European Plain The bases of the huts were circular and ranged from 8 to 24 square metres 86 to 258 sq ft The arrangement of dwellings varied and ranged from 1 to 20 m 3 3 to 65 6 ft apart depending on location Large bones were used as foundations for the huts tusks for the entrances and the roofs were probably skins held in place by bones or tusks Some huts had floors that extended 40 cm 16 in below ground Some of the bones used for materials may have come from mammoths killed by humans but the state of the bones and the fact that bones used to build a single dwelling varied by several thousands of years in age suggests that they were collected remains of long dead animals Woolly mammoth bones were made into various tools furniture and musical instruments Large bones such as shoulder blades were used to cover dead human bodies during burial 93 Woolly mammoth ivory was used to create art objects Several Venus figurines including the Venus of Brassempouy and the Venus of Lespugue were made from this material Weapons made from ivory such as daggers spears and a boomerang are known A 2019 study found that woolly mammoth ivory was the most suitable bony material for the production of big game projectile points during the Late Plesistocene To be able to process the ivory the large tusks had to be chopped chiseled and split into smaller more manageable pieces Some ivory artefacts show that tusks had been straightened and how this was achieved is unknown 94 67 nbsp nbsp nbsp Artifacts made from woolly mammoth ivory The Venus of Brassempouy the Venus of Moravany and the Lion Man Several woolly mammoth specimens show evidence of being butchered by humans which is indicated by breaks cut marks and associated stone tools How much prehistoric humans relied on woolly mammoth meat is unknown since many other large herbivores were available Many mammoth carcasses may have been scavenged by humans rather than hunted Some cave paintings show woolly mammoths in structures interpreted as pitfall traps Few specimens show direct unambiguous evidence of having been hunted by humans A Siberian specimen with a spearhead embedded in its shoulder blade shows that a spear had been thrown at it with great force 95 At a site in southern Poland that contains bones from over 100 mammoths stone spear tips have been found embedded in bones and many stone spear points in the site were damaged from impact against mammoth bones indicating that mammoths were the major prey for people at the time 96 A specimen from the Mousterian age of Italy shows evidence of spear hunting by Neanderthals 97 The juvenile specimen nicknamed Yuka is the first frozen mammoth with evidence of human interaction It shows evidence of having been killed by a large predator and of having been scavenged by humans shortly after Some of its bones had been removed and were found nearby 98 A site near the Yana River in Siberia has revealed several specimens with evidence of human hunting but the finds were interpreted to show that the animals were not hunted intensively but perhaps mainly when ivory was needed 99 Two woolly mammoths from Wisconsin the Schaefer and Hebior mammoths show evidence of having been butchered by Palaeoamericans 100 101 ExtinctionMost woolly mammoth populations disappeared during the late Pleistocene and mid Holocene 102 coinciding with the extinction of most North American Pleistocene megafauna including the Columbian mammoth as well as the extinctions or extirpations of steppe associated fauna of Eurasia that coexisted with the mammoth species such as the woolly rhinoceros the cave lion reindeer saiga the Arctic fox and the steppe lemming This extinction formed part of the Quaternary extinctions which began 40 000 years ago and peaked between 14 000 and 11 500 years ago Scientists are divided over whether hunting or climate change which led to the shrinkage of its habitat was the main factor that contributed to the extinction of the woolly mammoth or whether it was due to a combination of the two 103 104 nbsp Palaeolithic projectile points made from mammoth ivory Pekarna caveWhatever the cause large mammals are generally more vulnerable than smaller ones due to their smaller population size and low reproduction rates Climatic patterns of the Eemian interglacial period of Europe 130 116 kyr BP suggest that woolly mammoths and associated steppe faunas were sensitive to contractions of steppe tundra habitats since they were adapted to cold dry and open environments Genetic results and climatic models both indicate that habitats suitable for the woolly mammoth in Eurasia contracted during the interglacial period which wouldhave caused population bottleneck effects that restricted its range to a few northern areas As the climate favoured colder environments however woolly mammoth populations rebounded during later glacial periods 105 The last glacial period of the late Pleistocene is considered that of the maximum geographic distribution of the woolly mammoth occupying most of Europe northern Asia and northern North America although several barriers such as ice sheets high mountain chains deserts year round water surfaces and other grasslands prevented them from spreading farther 106 Different woolly mammoth populations did not die out simultaneously across their range but gradually became extinct over time 107 The dynamics of different woolly mammoth populations varied as they experienced very different magnitudes of climatic and human impacts over time suggesting that extinction causes would have varied by population 108 Most populations disappeared between 14 000 and 10 000 years ago The youngest fossils of the mainland population are from the Kyttyk Peninsula of Siberia and date to 9 650 years ago 109 110 nbsp Woolly mammoth and muskox remains displayed on Wrangel Island where mammoths survived until 4 000 years agoA small population of woolly mammoths survived on St Paul Island Alaska well into the Holocene 111 112 113 with the most recently published date of extinction being 5 600 years B P 114 The last population known from fossils remained on Wrangel Island in the Arctic Ocean until 4 000 years ago well into the start of human civilization and concurrent with the construction of the Great Pyramid of ancient Egypt 115 116 117 118 However ancient genetic evidence supports the existence of small mainland populations that died out at around the same time as their island counterparts two studies in 2021 found that based on environmental DNA mammoths survived in the Yukon until about 5 700 years ago roughly concurrent with the St Paul population and on the Taymyr Peninsula of Siberia until 3 900 to 4 100 years ago roughly concurrent with the Wrangel population The Taymyr Peninsula with its drier habitat may have served as a refugium for the mammoth steppe supporting mammoths and other widespread Ice Age mammals such as wild horses Equus sp 102 119 However ancient environmental DNA in cold environments can be reworked from older sediments into younger sediments that clearly post date extinction raising doubt about validity of these dates 120 DNA sequencing of remains of two mammoths one from Siberia 44 800 years BP and one from Wrangel Island 4 300 years BP indicates two major population crashes one around 280 000 years ago from which the population recovered and a second about 12 000 years ago near the ice age s end from which it did not 121 The Wrangel Island mammoths were isolated for 5000 years by rising post ice age sea level and resultant inbreeding in their small population of about 300 to 1000 individuals 122 led to a 20 123 to 30 118 loss of heterozygosity and a 65 loss in mitochondrial DNA diversity 118 The population seems to have subsequently been stable without suffering further significant loss of genetic diversity 118 124 Genetic evidence thus implies the extinction of this final population was sudden rather than the culmination of a gradual decline 118 nbsp Map showing climatic suitability for woolly mammoths in the Late Pleistocene and Holocene of Eurasia red is increasing suitability green is decreasing suitability Black points are records of mammoths black lines are the northern limit of humansBefore their extinction the Wrangel Island mammoths had accumulated numerous genetic defects due to their small population in particular a number of genes for olfactory receptors and urinary proteins became nonfunctional possibly because they had lost their selective value on the island environment 125 It is not clear whether these genetic changes contributed to their extinction 126 It has been proposed that these changes are consistent with the concept of genomic meltdown 125 however the sudden disappearance of an apparently stable population may be more consistent with a catastrophic event possibly related to climate such as icing of the snowpack or a human hunting expedition 127 The disappearance coincides roughly in time with the first evidence for humans on the island 128 The woolly mammoths of eastern Beringia modern Alaska and Yukon had similarly died out about 13 300 years ago soon roughly 1000 years after the first appearance of humans in the area which parallels the fate of all the other late Pleistocene proboscids mammoths gomphotheres and mastodons as well as most of the rest of the megafauna of the Americas 129 In contrast the St Paul Island mammoth population apparently died out before human arrival because of habitat shrinkage resulting from the post ice age sea level rise 129 perhaps in large measure as a result of a consequent reduction in the freshwater supply 130 Changes in climate shrank suitable mammoth habitat from 7 700 000 km2 3 000 000 sq mi 42 000 years ago to 800 000 km2 310 000 sq mi 6 000 years ago 131 132 Woolly mammoths survived an even greater loss of habitat at the end of the Saale glaciation 125 000 years ago and humans likely hunted the remaining populations to extinction at the end of the last glacial period 133 134 Studies of an 11 300 11 000 year old trackway in south western Canada showed that M primigenius was in decline while coexisting with humans since far fewer tracks of juveniles were identified than would be expected in a normal herd 55 A 2021 study indicates however that although humans likely exerted a significant selective pressure on mammoths that led to them going extinct earlier than they otherwise would have 108 the final impetus for mammoth extinction was likely vegetation changes caused by a changed precipitation regime at the end of the Ice Age 119 The decline of the woolly mammoth could have increased temperatures by up to 0 2 C 0 36 F at high latitudes in the Northern Hemisphere Mammoths frequently ate birch trees creating a grassland habitat With the disappearance of mammoths birch forests which absorb more sunlight than grasslands expanded leading to regional warming 135 Fossil specimensFurther information List of mammoth specimens nbsp Mounted family group from TomskWoolly mammoth fossils have been found in many different types of deposits including former rivers and lakes and in Doggerland in the North Sea which was dry at times during the ice age Such fossils are usually fragmentary and contain no soft tissue Accumulations of modern elephant remains have been termed elephants graveyards as these sites were erroneously thought to be where old elephants went to die Similar accumulations of woolly mammoth bones have been found these are thought to be the result of individuals dying near or in the rivers over thousands of years and their bones eventually being brought together by the streams Some accumulations are thought to be the remains of herds that died together at the same time perhaps due to flooding Natural traps such as kettle holes sink holes and mud have trapped mammoths in separate events over time 136 nbsp Skull discovered by fishermen in the North Sea Doggerland at Celtic and Prehistoric Museum IrelandApart from frozen remains the only soft tissue known is from a specimen that was preserved in a petroleum seep in Starunia Poland Frozen remains of woolly mammoths have been found in the northern parts of Siberia and Alaska with far fewer finds in the latter Such remains are mostly found above the Arctic Circle in permafrost Soft tissue apparently was less likely to be preserved between 30 000 and 15 000 years ago perhaps because the climate was milder during that period Most specimens have partially degraded before discovery due to exposure or to being scavenged This natural mummification required the animal to have been buried rapidly in liquid or semisolids such as silt mud and icy water which then froze 137 The presence of undigested food in the stomach and seed pods still in the mouth of many of the specimens suggests neither starvation nor exposure is likely The maturity of this ingested vegetation places the time of death in autumn rather than in spring when flowers would be expected 138 The animals may have fallen through ice into small ponds or potholes entombing them Many are certainly known to have been killed in rivers perhaps through being swept away by floods In one location by the Byoryolyokh River in Yakutia in Siberia more than 8 000 bones from at least 140 mammoths have been found in a single spot apparently having been swept there by the current 139 Frozen specimens nbsp nbsp The Adams mammoth as illustrated in the 1800s left and on exhibit in Vienna skin can be seen on its head and feet Between 1692 and 1806 a handful of reports of frozen mammoth remains with soft tissue were published reached Europe though none were collected during that time 140 While frozen woolly mammoth carcasses had been excavated by Europeans as early as 1728 the first fully documented specimen was discovered near the delta of the Lena River in 1799 by Ossip Schumachov a Siberian hunter 141 While in Yakutsk in 1806 Michael Friedrich Adams heard about the frozen mammoth Adams recovered the entire skeleton apart from the tusks which Shumachov had already sold and one foreleg most of the skin and nearly 18 kg 40 lb of hair During his return voyage he purchased a pair of tusks that he believed were the ones that Shumachov had sold Adams brought all to the Zoological Museum of the Zoological Institute of the Russian Academy of Sciences and the task of mounting the skeleton was given to Wilhelm Gottlieb Tilesius 5 142 This was one of the first attempts at reconstructing the skeleton of an extinct animal Most of the reconstruction is correct but Tilesius placed each tusk in the opposite socket so that they curved outward instead of inward The error was not corrected until 1899 and the correct placement of mammoth tusks was still a matter of debate into the 20th century 143 144 nbsp nbsp The Berezovka mammoth during excavation in 1901 left and a model partially covered by its skin Museum of Zoology in St Petersburg The 1901 excavation of the Berezovka mammoth is the best documented of the early finds It was discovered at the Siberian Berezovka River after a dog had noticed its smell and the Russian authorities financed its excavation The entire expedition took 10 months and the specimen had to be cut to pieces before it could be transported to St Petersburg Most of the skin on the head as well as the trunk had been scavenged by predators and most of the internal organs had rotted away It was identified as a 35 to 40 year old male which had died 35 000 years ago The animal still had grass between its teeth and on the tongue showing that it had died suddenly One of its shoulder blades was broken which may have happened when it fell into a crevasse It may have died of asphyxiation as indicated by its erect penis One third of a replica of the mammoth in the Museum of Zoology of St Petersburg is covered in skin and hair of the Berezovka mammoth 137 138 By 1929 the remains of 34 mammoths with frozen soft tissues skin flesh or organs had been documented Only four of them were relatively complete Since then about that many more have been found In most cases the flesh showed signs of decay before its freezing and later desiccation 145 Since 1860 Russian authorities have offered rewards of up to 1000 for finds of frozen woolly mammoth carcasses Often such finds were kept secret due to superstition Several carcasses have been lost because they were not reported and one was fed to dogs 136 Despite the rewards native Yakuts were also reluctant to report mammoth finds to the authorities due to bad treatment of them in the past 140 In more recent years scientific expeditions have been devoted to finding carcasses instead of relying solely on chance encounters The most famous frozen specimen from Alaska is a calf nicknamed Effie which was found in 1948 It consists of the head trunk and a fore leg and is about 25 000 years old 136 nbsp nbsp Dima a frozen calf during excavation left and as exhibited in the Museum of Zoology note fur on the legs In 1977 the well preserved carcass of a seven to eight month old woolly mammoth calf named Dima was discovered This carcass was recovered near a tributary of the Kolyma River in northeastern Siberia This specimen weighed about 100 kg 220 lb at death and was 104 cm 41 in high and 115 cm 45 in long Radiocarbon dating determined that Dima died about 40 000 years ago Its internal organs are similar to those of modern elephants but its ears are only one tenth the size of those of an African elephant of similar age A less complete juvenile nicknamed Mascha was found on the Yamal Peninsula in 1988 It was 3 4 months old and a laceration on its right foot may have been the cause of death It is the westernmost frozen mammoth found 146 In 1997 a piece of mammoth tusk was discovered protruding from the tundra of the Taymyr Peninsula in Siberia Russia In 1999 this 20 380 year old carcass and 25 tons of surrounding sediment were transported by an Mi 26 heavy lift helicopter to an ice cave in Khatanga The specimen was nicknamed the Jarkov mammoth In October 2000 the careful defrosting operations in this cave began with the use of hair dryers to keep the hair and other soft tissues intact 147 148 nbsp nbsp The calf Lyuba in Royal BC Museum and IFC Mall In 2002 a well preserved carcass was discovered near the Maxunuokha River in northern Yakutia which was recovered during three excavations This adult male specimen was called the Yukagir mammoth and is estimated to have lived around 18 560 years ago and to have been 282 9 cm 9 2 ft tall at the shoulder and weighed between 4 and 5 tonnes It is one of the best preserved mammoths ever found due to the almost complete head covered in skin but without the trunk Some postcranial remains were found some with soft tissue 72 In 2007 the carcass of a female calf nicknamed Lyuba was discovered near the Yuribey River where it had been buried for 41 800 years 64 149 By cutting a section through a molar and analysing its growth lines they found that the animal had died at the age of one month 71 The mummified calf weighed 50 kg 110 lb was 85 cm 33 in high and 130 cm 51 in in length 150 151 At the time of discovery its eyes and trunk were intact and some fur remained on its body Its organs and skin are very well preserved 152 Lyuba is believed to have been suffocated by mud in a river that its herd was crossing 64 153 After death its body may have been colonised by bacteria that produce lactic acid which pickled it preserving the mammoth in a nearly pristine state 64 nbsp nbsp The frozen calf Yuka left and its skull and jaw which may have been extracted from the carcass by prehistoric humans In 2012 a juvenile was found in Siberia which had man made cut marks Scientists estimated its age at death to be 2 5 years and nicknamed it Yuka Its skull and pelvis had been removed prior to discovery but were found nearby 98 154 After being discovered the skin of Yuka was prepared to produce a taxidermy mount 41 In 2019 a group of researchers managed to obtain signs of biological activity after transferring nuclei of Yuka into mouse oocytes 155 In 2013 a well preserved carcass was found on Maly Lyakhovsky Island one of the islands in the New Siberian Islands archipelago a female between 50 and 60 years old at the time of death The carcass contained well preserved muscular tissue When it was extracted from the ice liquid blood spilled from the abdominal cavity The finders interpreted this as indicating woolly mammoth blood possessed antifreezing properties 156 In 2022 a complete female baby woolly mammoth was found by a miner in the Klondike gold fields of Yukon Canada The specimen is estimated to have died 30 000 years ago and was nicknamed Nun cho ga meaning big baby animal in the local Han language It is the best preserved woolly mammoth mummy found in North America and was the same size as Lyuba 157 158 Possible revivalFurther information Revival of the woolly mammoth nbsp nbsp Models of an adult and the calf Dima in State Museum of Natural History Stuttgart The existence of preserved soft tissue remains and DNA of woolly mammoths has led to the idea that the species could be resurrected by scientific means Several methods have been proposed to achieve this Cloning would involve removal of the DNA containing nucleus of the egg cell of a female elephant and replacement with a nucleus from woolly mammoth tissue The cell would then be stimulated into dividing and inserted back into a female elephant The resulting calf would have the genes of the woolly mammoth although its fetal environment would be different Most intact mammoths have had little usable DNA because of their conditions of preservation There is not enough to guide the production of an embryo 159 160 A second method involves artificially inseminating an elephant egg cell with sperm cells from a frozen woolly mammoth carcass The resulting offspring would be an elephant mammoth hybrid and the process would have to be repeated so more hybrids could be used in breeding After several generations of cross breeding these hybrids an almost pure woolly mammoth would be produced The fact that sperm cells of modern mammals are viable for 15 years at most after deep freezing makes this method unfeasible 160 nbsp Elephants are highly gregarious as shown by these Sri Lankan elephantsSeveral projects are working on gradually replacing the genes in elephant cells with mammoth genes 161 162 By 2015 and using the new CRISPR DNA editing technique one team led by George Church had some woolly mammoth genes edited into the genome of an Asian elephant focusing on cold resistance initially 163 the target genes are for the external ear size subcutaneous fat hemoglobin and hair attributes 164 165 If any method is ever successful a suggestion has been made to introduce the hybrids to a wildlife reserve in Siberia called the Pleistocene Park 166 Some researchers question the ethics of such recreation attempts In addition to the technical problems not much habitat is left that would be suitable for elephant mammoth hybrids Because the species was social and gregarious creating a few specimens would not be ideal The time and resources required would be enormous and the scientific benefits would be unclear suggesting these resources should instead be used to preserve extant elephant species which are endangered 160 167 168 The ethics of using elephants as surrogate mothers in hybridisation attempts has been questioned as most embryos would not survive and knowing the exact needs of a hybrid elephant mammoth calf would be impossible 169 Another concern is the introduction of unknown pathogens if de extinction efforts were to succeed 170 In 2021 an Austin based company raised funds to reintroduce the species in the Arctic tundra 171 Cultural significance nbsp nbsp A mammoth tusk with Inuit carvings of scenes on the Yukon River 19th century De Young Museum The woolly mammoth has remained culturally significant long after its extinction Indigenous peoples of Siberia had long found what are now known to be woolly mammoth remains collecting their tusks for the ivory trade Native Siberians believed woolly mammoth remains to be those of giant mole like animals that lived underground and died when burrowing to the surface 172 173 Woolly mammoth tusks had been articles of trade in Asia long before Europeans became acquainted with them Guyuk the 13th century Khan of the Mongols is reputed to have sat on a throne made from mammoth ivory 140 Inspired by the Siberian natives concept of the mammoth as an underground creature it was recorded in the 16th century Chinese pharmaceutical encyclopedia Ben Cao Gangmu as yin shu the hidden rodent 174 The indigenous peoples of North America used woolly mammoth ivory and bone for tools and art 175 As in Siberia North American natives had myths of observation explaining the remains of woolly mammoths and other elephants the Bering Strait Inupiat believed the bones came from burrowing creatures while other peoples associated them with primordial giants or great beasts 176 177 178 Observers have interpreted legends from several Native American peoples as containing folk memory of extinct elephants though other scholars are skeptical that folk memory could survive such a long time 176 178 179 nbsp nbsp Peter III and Elizabeth of Russia carved in mammoth ivory Siberian mammoth ivory is reported to have been exported to Russia and Europe in the 10th century The first Siberian ivory to reach western Europe was brought to London in 1611 When Russia occupied Siberia the ivory trade grew and it became a widely exported commodity with huge amounts being excavated From the 19th century and onwards woolly mammoth ivory became a highly prized commodity used as raw material for many products Today it is still in great demand as a replacement for the now banned export of elephant ivory and has been referred to as white gold 180 Local dealers estimate that 10 million mammoths are still frozen in Siberia and conservationists have suggested that this could help save the living species of elephants from extinction Elephants are hunted by poachers for their ivory but if this could instead be supplied by the already extinct mammoths the demand could instead be met by these Trade in elephant ivory has been forbidden in most places following the 1989 Lausanne Conference but dealers have been known to label it as mammoth ivory to get it through customs Mammoth ivory looks similar to elephant ivory but the former is browner and the Schreger lines are coarser in texture 180 In the 21st century global warming has made access to Siberian tusks easier since the permafrost thaws more quickly exposing the mammoths embedded within it 181 Stories abound about frozen woolly mammoth meat that was consumed once defrosted especially that of the Berezovka mammoth but most of these are considered dubious The carcasses were in most cases decayed and the stench so unbearable that only wild scavengers and the dogs accompanying the finders showed any interest in the flesh Such meat apparently was once recommended against illness in China and Siberian natives have occasionally cooked the meat of frozen carcasses they discovered 182 According to one of the more famous stories members of The Explorers Club dined on meat of a frozen mammoth from Alaska in 1951 In 2016 a group of researchers genetically examined a sample of the meal and found it to belong to a green sea turtle it had also been claimed to belong to Megatherium The researchers concluded that the dinner had been a publicity stunt 183 In 2011 the Chinese palaeontologist Lida Xing livestreamed while eating meat from a Siberian mammoth leg thoroughly cooked and flavoured with salt and told his audience it tasted bad and like soil This triggered controversy and gained mixed reactions but Xing stated he did it to promote science 184 Alleged survival nbsp nbsp nbsp Woolly mammoths represented in heraldry There have been occasional claims that the woolly mammoth is not extinct and that small isolated herds might survive in the vast and sparsely inhabited tundra of the Northern Hemisphere In the 19th century several reports of large shaggy beasts were passed on to the Russian authorities by Siberian tribesmen but no scientific proof ever surfaced A French charge d affairesworking in Vladivostok M Gallon said in 1946 that in 1920 he had met a Russian fur trapper who claimed to have seen living giant furry elephants deep into the taiga 185 Due to the large area of Siberia the possibility that woolly mammoths survived into more recent times cannot be completely ruled out but evidence indicates that they became extinct thousands of years ago These natives likely had gained their knowledge of woolly mammoths from carcasses they encountered and that this is the source for their legends of the animal 186 In the late 19th century rumours existed about surviving mammoths in Alaska 185 In 1899 Henry Tukeman detailed his killing of a mammoth in Alaska and his subsequent donation of the specimen to the Smithsonian Institution in Washington DC The museum denied the story 187 The Swedish writer Bengt Sjogren suggested in 1962 that the myth began when the American biologist Charles Haskins Townsend travelled in Alaska saw Inuit trading mammoth tusks asked if mammoths were still living in Alaska and provided them with a drawing of the animal 185 Bernard Heuvelmans included the possibility of residual populations of Siberian mammoths in his 1955 book On The Track Of Unknown Animals while his book was a systematic investigation into possible unknown species it became the basis of the cryptozoology movement 188 References a b c d e f Lister A M Sher A V Van Essen H Wei G 2005 The pattern and process of mammoth evolution in Eurasia Quaternary International 126 128 49 64 Bibcode 2005QuInt 126 49L doi 10 1016 j quaint 2004 04 014 a b Switek B 2010 Written in Stone Evolution the Fossil Record and Our Place in Nature Bellevue Literary Press pp 174 180 ISBN 978 1 934137 29 1 Sloane H 1727 1728 An Account of Elephants Teeth and Bones Found under Ground Philosophical Transactions 35 399 406 457 471 Bibcode 1727RSPT 35 457S doi 10 1098 rstl 1727 0042 Sloane H 1727 1728 Of Fossile Teeth and Bones of Elephants Part the Second Philosophical Transactions 35 399 406 497 514 Bibcode 1727RSPT 35 497S doi 10 1098 rstl 1727 0048 a b The Academy of Natural Sciences 2007 Woolly Mammoth Mammuthus primigenius The Academy of Natural Sciences Archived from the original on 27 September 2007 Retrieved 29 September 2007 Breyne J P s T Wolochowicz M 1737 A Letter from John Phil Breyne M D F R S To Sir Hans Sloane Bart Pres R S With Observations and a Description of Some Mammoth s Bones Dug up in Siberia Proving Them to Have Belonged to Elephants Philosophical Transactions of the Royal Society of London 40 445 451 124 138 Bibcode 1737RSPT 40 124P doi 10 1098 rstl 1737 0026 Cuvier G 1796 Memoire sur les epeces d elephans tant vivantes que fossils lu a la seance publique de l Institut National le 15 germinal an IV Magasin Encyclopedique 2e Anee in French 440 445 a b Reich M Gehler A Mohl D van der Plicht H Lister A M 2007 The rediscovery of type material of Mammuthus primigenius Mammalia Proboscidea International Mammoth Conference IV Poster 295 Brookes J 1828 A catalogue of the anatomical amp zoological museum of Joshua Brookes Vol 1 London Richard Taylor p 73 Archived from the original on 24 September 2015 Mammoth entry in Oxford English Dictionary 2000 Lister 2007 p 49 Simpson J 2009 Word Stories Mammoth Archived 22 May 2013 at the Wayback Machine Oxford English Dictionary Online Oxford University Press Accessed 5 June 2009 a b Osborn H F 1942 Percy M R ed Proboscidea A monograph of the discovery evolution migration and extinction of the mastodonts and elephants of the world Vol 2 New York J Pierpont Morgan Fund pp 1116 1169 Archived from the original on 13 March 2016 Maglio V J 1973 Origin and evolution of the Elephantidae Transactions of the American Philosophical Society 63 3 1 149 doi 10 2307 1379357 JSTOR 1379357 Garutt W E Gentry A Lister A M 1990 Mammuthus Brookes 1828 Mammalia Proboscidea proposed conservation and Elephas primigenius Blumenbach 1799 currently Mammuthus primigenius proposed designation as the type species of Mammuthus and designation of a neotype Bulletin of Zoological Nomenclature 47 38 44 doi 10 5962 bhl part 2651 Archived from the original on 13 July 2015 Reich M Gehler A 2008 Giants Bones and Unicorn Horns Ice Age Elephants Offer 21st Century Insights Collections Wisdom Insight Innovation 8 44 50 Lister 2007 pp 18 21 Shoshani J Ferretti M P Lister A M Agenbroad L D Saegusa H Mol D Takahashi K 2007 Relationships within the Elephantinae using hyoid characters Quaternary International 169 170 174 185 Bibcode 2007QuInt 169 174S doi 10 1016 j quaint 2007 02 003 Gross L 2006 Reading the Evolutionary History of the Woolly Mammoth in Its Mitochondrial Genome PLOS Biology 4 3 e74 doi 10 1371 journal pbio 0040074 PMC 1360100 PMID 20076539 Cooper A 2006 The year of the mammoth PLOS Biology 4 3 e78 doi 10 1371 journal pbio 0040078 PMC 1360097 PMID 16448215 Roca Alfred L Ishida Yasuko Brandt Adam L Benjamin Neal R Zhao Kai Georgiadis Nicholas J 2015 Elephant Natural History A Genomic Perspective Annual Review of Animal Biosciences 3 1 139 167 doi 10 1146 annurev animal 022114 110838 PMID 25493538 Krause J Dear P H Pollack J L Slatkin M Spriggs H Barnes I Lister A M Ebersberger I Paabo S Hofreiter M 2005 Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae Nature 439 7077 724 727 Bibcode 2006Natur 439 724K doi 10 1038 nature04432 PMID 16362058 S2CID 4318327 Rohland N Reich D Mallick S Meyer M Green R E Georgiadis N J Roca A L Hofreiter M 2010 Penny David ed Genomic DNA Sequences from Mastodon and Woolly Mammoth Reveal Deep Speciation of Forest and Savanna Elephants PLOS Biology 8 12 e1000564 doi 10 1371 journal pbio 1000564 PMC 3006346 PMID 21203580 Will findings recreate the woolly mammoth Archived 11 February 2009 at the Wayback Machine Pittsburgh Post Gazette 20 November 2008 Woolly Mammoth Genome Sequenced Science Daily 20 November 2008 Archived from the original on 11 January 2011 Retrieved 22 June 2010 Cappellini E Jensen L J Szklarczyk D Ginolhac A L Da Fonseca R A R Stafford T W Holen S R Collins M J Orlando L Willerslev E Gilbert M T P Olsen J V 2012 Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins Journal of Proteome Research 11 2 917 926 doi 10 1021 pr200721u PMID 22103443 Ferretti M P 2003 Structure and evolution of mammoth molar enamel Acta Palaeontologica Polonica 3 48 383 396 a b Lister 2007 pp 12 43 Foronova I V Zudin A N 2001 Discreteness of evolution and variability in mammoth lineage method for group study PDF The World of Elephants Proceedings of the 1st International Congress Rome pp 540 543 Archived PDF from the original on 24 October 2014 Foronova I V 2014 Mammuthus intermedius Proboscidea Elephantidae from the late Middle Pleistocene of the southern Western and Central Siberia Russia the problem of intermediate elements in the mammoth lineage PDF Russian Journal of Theriology 2 13 2 71 82 doi 10 15298 rusjtheriol 13 2 03 Archived PDF from the original on 4 March 2016 Enk J Devault A Debruyne R King C E Treangen T O Rourke D Salzberg S L Fisher D MacPhee R Poinar H 2011 Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths Genome Biology 12 5 R51 doi 10 1186 gb 2011 12 5 r51 PMC 3219973 PMID 21627792 Lister A M Sher A V 13 November 2015 Evolution and dispersal of mammoths across the Northern Hemisphere Science 350 6262 805 809 Bibcode 2015Sci 350 805L doi 10 1126 science aac5660 PMID 26564853 S2CID 206639522 van der Valk T Pecnerova P Diez del Molino D Bergstrom A Oppenheimer J Hartmann S Xenikoudakis G Thomas J A Dehasque M Saglican E Fidan F Rabia Barnes I Liu S Somel M Heintzman P D Nikolskiy P Shapiro B Skoglund P Hofreiter M Lister A M Gotherstrom A Dalen L 2021 Million year old DNA sheds light on the genomic history of mammoths Nature 591 7849 265 269 Bibcode 2021Natur 591 265V doi 10 1038 s41586 021 03224 9 ISSN 1476 4687 PMC 7116897 PMID 33597750 Callaway E 2021 Million year old mammoth genomes shatter record for oldest ancient DNA nature com Vol 590 no 7847 pp 537 538 doi 10 1038 d41586 021 00436 x Retrieved 17 February 2021 Lister A Bahn P 2007 Mammoths Giants of the Ice Age 3 ed London Frances Lincoln ISBN 978 0 520 26160 0 OCLC 30155747 Larramendi Asier 2015 Proboscideans Shoulder Height Body Mass and Shape Acta Palaeontologica Polonica 61 doi 10 4202 app 00136 2014 Lister 2007 pp 174 175 Vartanyan S L Arslanov K A Karhu J A Possnert G R Sulerzhitsky L D 2008 Collection of radiocarbon dates on the mammoths Mammuthus primigenius and other genera of Wrangel Island northeast Siberia Russia PDF Quaternary Research 70 1 51 59 Bibcode 2008QuRes 70 51V doi 10 1016 j yqres 2008 03 005 S2CID 111383180 Den Ouden N Reumer J W F Van Den Hoek Ostende L W 2012 Did mammoth end up a lilliput Temporal body size trends in Late Pleistocene Mammoths Mammuthus primigenius Blumenbach 1799 inferred from dental data Quaternary International 255 53 58 Bibcode 2012QuInt 255 53D doi 10 1016 j quaint 2011 07 038 a b c d Lister 2007 pp 82 87 a b c Plotnikov V V Maschenko E N Pavlov I S Protopopov A V Boeskorov G G Petrova E A 2015 New data on trunk morphology in the woolly mammoth Mammuthus primigenius Blumenbach Paleontological Journal 49 2 200 210 doi 10 1134 S0031030115020070 S2CID 84849714 a b Lister 2007 pp 83 84 Myhrvold C L Stone H A Bou Zeid E 10 October 2012 What is the use of elephant hair PLOS ONE 7 10 e47018 Bibcode 2012PLoSO 747018M doi 10 1371 journal pone 0047018 PMC 3468452 PMID 23071700 Valente A 1983 Hair structure of the woolly mammoth Mammuthus primigenius and the modern elephants Elephas maximus and Loxodonta africana Journal of Zoology 199 2 271 274 doi 10 1111 j 1469 7998 1983 tb02095 x Repin V E Taranov O S Ryabchikova E I Tikhonov A N Pugachev V G 2004 Sebaceous Glands of the Woolly Mammoth Mammothus primigenius Blum Histological Evidence Doklady Biological Sciences 398 1 6 382 384 doi 10 1023 B DOBS 0000046662 43270 66 PMID 15587793 S2CID 6401669 Rompler H Rohland N Lalueza Fox C Willerslev E Kuznetsova T Rabeder G Bertranpetit J Schoneberg T Hofreiter M 2006 Nuclear Gene Indicates Coat Color Polymorphism in Mammoths PDF Science 313 5783 62 doi 10 1126 science 1128994 PMID 16825562 S2CID 20153467 Workman C Dalen L Vartanyan S Shapiro B Kosintsev P Sher A Gotherstrom A Barnes I 2011 Population level genotyping of coat colour polymorphism in woolly mammoth Mammuthus primigenius Quaternary Science Reviews 30 17 18 2304 2308 Bibcode 2011QSRv 30 2304W doi 10 1016 j quascirev 2010 08 020 Tridico Silvana R Rigby Paul Kirkbride K Paul Haile James Bunce Michael 2014 Megafaunal split ends microscopical characterisation of hair structure and function in extinct woolly mammoth and woolly rhino Quaternary Science Reviews 83 68 75 Bibcode 2014QSRv 83 68T doi 10 1016 j quascirev 2013 10 032 Archived from the original on 2 November 2017 a b Lister 2007 pp 94 95 a b c Kurten B Anderson E 1980 Pleistocene Mammals of North America New York Columbia University Press pp 348 354 ISBN 978 0 231 03733 4 Boeskorov G Tikhonov A Shchelchkova M Ballard J P Mol D 2020 Big tuskers Maximum sizes of tusks in woolly mammoths Mammuthus primigenius Blumenbach from East Siberia Quaternary International 537 88 96 Bibcode 2020QuInt 537 88B doi 10 1016 j quaint 2019 12 023 S2CID 213262363 Lister 2007 pp 92 93 Lister 2007 pp 95 105 Lister 2007 pp 62 63 a b McNeil P Hills L Kooyman B Tolman S 2005 Mammoth tracks indicate a declining Late Pleistocene population in southwestern Alberta Canada Quaternary Science Reviews 24 10 11 1253 1259 Bibcode 2005QSRv 24 1253M doi 10 1016 j quascirev 2004 08 019 Campbell K L Roberts J E E Watson L N Stetefeld J R Sloan A M Signore A V Howatt J W Tame J R H Rohland N Shen T J Austin J J Hofreiter M Ho C Weber R E Cooper A 2010 Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance Nature Genetics 42 6 536 540 doi 10 1038 ng 574 PMID 20436470 S2CID 9670466 Lynch V Bedoya Reina O C Ratan A Sulak M Drautz Moses D I Perry G H Miller W Schuster S C 2015 Elephantid genomes reveal the molecular bases of Woolly Mammoth adaptations to the arctic Cell Reports 12 2 217 228 doi 10 1016 j celrep 2015 06 027 PMID 26146078 Ewen Callaway Nature magazine 4 May 2015 Mammoth Genomes Provide Recipe for Creating Arctic Elephants scientificamerican com Archived from the original on 5 May 2015 Ngatia J N Lan T M Dinh T D Zhang L Ahmed Ahmed Khalid Xu Yan Chun 2019 Signals of positive selection in mitochondrial protein coding genes of woolly mammoth Adaptation to extreme environments Ecology and Evolution 9 12 6821 6832 doi 10 1002 ece3 5250 PMC 6662336 PMID 31380018 Diez del Molino David Dehasque Marianne Chacon Duque J Camilo Pecnerova Patricia Tikhonov Alexei Protopopov Albert Plotnikov Valeri Kanellidou Foteini Nikolskiy Pavel Mortensen Peter Danilov Gleb K Vartanyan Sergey Gilbert M Thomas P Lister Adrian M Heintzman Peter D van der Valk Tom Dalen Love 2023 Genomics of adaptive evolution in the woolly mammoth Current Biology 33 9 1753 1764 e4 doi 10 1016 j cub 2023 03 084 PMID 37030294 Lister 2007 pp 88 91 Bocherens H Fizet M Mariotti A Gangloff R A Burns J A 1994 Contribution of isotopic biogeochemistry 13C 15N 18O to the paleoecology of mammoths Mammuthus primigenius Historical Biology 7 3 187 202 doi 10 1080 10292389409380453 Van Geel B Fisher D C Rountrey A N Van Arkel J Duivenvoorden J F Nieman A M Van Reenen G B A Tikhonov A N Buigues B Gravendeel B 2011 Palaeo environmental and dietary analysis of intestinal contents of a mammoth calf Yamal Peninsula northwest Siberia Quaternary Science Reviews 30 27 28 3935 3946 Bibcode 2011QSRv 30 3935V doi 10 1016 j quascirev 2011 10 009 a b c d Fisher D C Tikhonov A N Kosintsev P A Rountrey A N Buigues B Van Der Plicht J 2012 Anatomy death and preservation of a woolly mammoth Mammuthus primigenius calf Yamal Peninsula northwest Siberia PDF Quaternary International 255 94 105 Bibcode 2012QuInt 255 94F doi 10 1016 j quaint 2011 05 040 hdl 11370 a3961dcc 4eaf 47fb 9ad7 904d79a0f4f8 Metcalfe J Z Longstaffe F J Zazula G D 2010 Nursing weaning and tooth development in woolly mammoths from Old Crow Yukon Canada Implications for Pleistocene extinctions Palaeogeography Palaeoclimatology Palaeoecology 298 3 4 257 270 Bibcode 2010PPP 298 257M doi 10 1016 j palaeo 2010 09 032 Lister 2007 pp 92 95 a b Pfeifer S J Hartramph W L Kahlke R D Muller F A 2019 Mammoth ivory was the most suitable osseous raw material for the production of Late Pleistocene big game projectile points Scientific Reports 9 1 2303 doi 10 1038 s41598 019 38779 1 PMC 6381109 PMID 30783179 a b Lister 2007 pp 83 107 Herbert B Fisher D 5 May 2010 A Mammoth Find Clues to the Past Present and Future Helix Northwestern University Archived from the original on 18 August 2016 Retrieved 1 August 2016 Lister 2007 pp 104 105 a b Rountrey A N Fisher D C Tikhonov A N Kosintsev P A Lazarev P A Boeskorov G Buigues B 2012 Early tooth development gestation and season of birth in mammoths Quaternary International 255 196 205 Bibcode 2012QuInt 255 196R doi 10 1016 j quaint 2011 06 006 a b Mol D Shoshani J Tikhonov A van Geel B Sano S Lasarev P Agenbroad L 2006 The Yukagir mammoth brief history 14c dates individual age gender size physical and environmental conditions and storage Scientific Annals School of Geology Aristotle University of Thessaloniki 98 299 314 Lister 2007 pp 102 103 Cherney Michael D Fisher Daniel C Auchus Richard J Rountrey Adam N Selcer Perrin Shirley Ethan A Beld Scott G Buigues Bernard Mol Dick Boeskorov Gennady G Vartanyan Sergey L Tikhonov Alexei N 2023 Testosterone histories from tusks reveal woolly mammoth musth episodes Nature 617 7961 533 539 doi 10 1038 s41586 023 06020 9 PMID 37138076 Lister 2007 pp 108 111 Reumer J W F Ten Broek C M A Galis F 2014 Extraordinary incidence of cervical ribs indicates vulnerable condition in Late Pleistocene mammoths PeerJ 2 e318 doi 10 7717 peerj 318 PMC 3970796 PMID 24711969 Lister 2007 p 87 a b c Lister 2007 pp 88 89 Lister 2007 pp 108 109 Pavelkova Ricankova V Robovsky J Riegert J 13 January 2014 Ecological Structure of Recent and Last Glacial Mammalian Faunas in Northern Eurasia The Case of Altai Sayan Refugium PLOS ONE 9 1 e85056 Bibcode 2014PLoSO 985056P doi 10 1371 journal pone 0085056 PMC 3890305 PMID 24454791 Willerslev E Davison J Moora M Zobel M Coissac E Edwards M E Lorenzen E D Vestergard M Gussarova G Haile J Craine J Gielly L Boessenkool S Epp L S Pearman P B Cheddadi R Murray D Brathen K A Yoccoz N Binney H Cruaud C Wincker P Goslar T Alsos I G Bellemain E Brysting A K Elven R Sonstebo J R H Murton J et al 2014 Fifty thousand years of Arctic vegetation and megafaunal diet PDF Nature 506 7486 47 51 Bibcode 2014Natur 506 47W doi 10 1038 nature12921 PMID 24499916 S2CID 4461741 Takahashi K Wei G Uno H Yoneda M Jin C Sun C Zhang S Zhong B 2007 AMS 14C chronology of the world s southernmost woolly mammoth Mammuthus primigenius Blum Quaternary Science Reviews 26 7 8 954 957 Bibcode 2007QSRv 26 954T doi 10 1016 j quascirev 2006 12 001 Alvarez Lao D J Garcia N 2012 Comparative revision of the Iberian woolly mammoth Mammuthus primigenius record into a European context Quaternary Science Reviews 32 64 74 Bibcode 2012QSRv 32 64A doi 10 1016 j quascirev 2011 11 004 Diego J Alvarez Lao et al 2009 The Padul mammoth finds On the southernmost record of Mammuthus primigenius in Europe and its southern spread during the Late Pleistocene PDF Palaeogeography Palaeoclimatology Palaeoecology 278 1 4 57 70 Bibcode 2009PPP 278 57A doi 10 1016 j palaeo 2009 04 011 Gilbert M T P Drautz D I Lesk A M Ho S Y W Qi J Ratan A Hsu C H Sher A Dalen L Gotherstrom A Tomsho L P Rendulic S Packard M Campos P F Kuznetsova T V Shidlovskiy F Tikhonov A Willerslev E Iacumin P Buigues B Ericson P G P Germonpre M Kosintsev P Nikolaev V Nowak Kemp M Knight J R Irzyk G P Perbost C S Fredrikson K M Harkins T T 2008 Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes Proceedings of the National Academy of Sciences 105 24 8327 8332 Bibcode 2008PNAS 105 8327G doi 10 1073 pnas 0802315105 PMC 2423413 PMID 18541911 Szpak P Grocke D R Debruyne R MacPhee R D E Guthrie R D Froese D Zazula G D Patterson W P Poinar H N 2010 Regional differences in bone collagen d13C and d15N of Pleistocene mammoths Implications for paleoecology of the mammoth steppe Palaeogeography Palaeoclimatology Palaeoecology 286 1 2 88 96 Bibcode 2010PPP 286 88S doi 10 1016 j palaeo 2009 12 009 Stuart A J 2005 The extinction of woolly mammoth Mammuthus primigenius and straight tusked elephant Palaeoloxodon antiquus in Europe PDF Quaternary International 126 128 171 177 Bibcode 2005QuInt 126 171S doi 10 1016 j quaint 2004 04 021 Debruyne R Chu G King C E Bos K Kuch M Schwarz C Szpak P Grocke D R Matheus P Zazula G Guthrie D Froese D Buigues B De Marliave C Flemming C Poinar D Fisher D Southon J Tikhonov A N MacPhee R D E Poinar H N 2008 Out of America Ancient DNA Evidence for a New World Origin of Late Quaternary Woolly Mammoths Current Biology 18 17 1320 1326 doi 10 1016 j cub 2008 07 061 PMID 18771918 S2CID 18663366 Lister 2007 pp 116 117 a b Lister 2007 pp 118 125 a b Braun I M Palombo M R 2012 Mammuthus primigenius in the cave and portable art An overview with a short account on the elephant fossil record in Southern Europe during the last glacial Quaternary International 276 277 61 76 Bibcode 2012QuInt 276 61B doi 10 1016 j quaint 2012 07 010 Demay L Pean S Patou Mathis M October 2012 Mammoths used as food and building resources by Neanderthals Zooarchaeological study applied to layer 4 Molodova I Ukraine PDF Quaternary International 276 277 212 226 Bibcode 2012QuInt 276 212D doi 10 1016 j quaint 2011 11 019 hdl 2268 190618 Lister 2007 pp 128 132 Lister 2007 pp 131 137 Lister 2007 pp 151 155 Wojtal Piotr 2019 The earliest direct evidence of mammoth hunting in Central Europe Quaternary Science Reviews 213 162 166 doi 10 1016 j quascirev 2019 04 004 S2CID 149647112 Mussi M Villa P 2008 Single carcass of Mammuthus primigenius with lithic artifacts in the Upper Pleistocene of northern Italy PDF Journal of Archaeological Science 35 9 2606 2613 doi 10 1016 j jas 2008 04 014 a b Aviss B 4 April 2012 Woolly mammoth carcass may have been cut into by humans BBC Archived from the original on 6 April 2012 Retrieved 9 April 2012 Nikolskiy P Pitulko V 2013 Evidence from the Yana Palaeolithic site Arctic Siberia yields clues to the riddle of mammoth hunting Journal of Archaeological Science 40 12 4189 4197 doi 10 1016 j jas 2013 05 020 Overstreet D F Kolb M F 2003 Geoarchaeological contexts for Late Pleistocene archaeological sites with human modified woolly mammoth remains in southeastern Wisconsin U S A Geoarchaeology 18 91 114 doi 10 1002 gea 10052 S2CID 129431648 Joyce D J 2006 Chronology and new research on the Schaefer mammoth Mammuthus primigenius site Kenosha County Wisconsin USA Quaternary International 142 143 44 57 Bibcode 2006QuInt 142 44J doi 10 1016 j quaint 2005 03 004 a b Murchie Tyler J Monteath Alistair J Mahony Matthew E Long George S Cocker Scott Sadoway Tara Karpinski Emil Zazula Grant MacPhee Ross D E Froese Duane Poinar Hendrik N 2021 Collapse of the mammoth steppe in central Yukon as revealed by ancient environmental DNA Nature Communications 12 7120 2021 2031 Bibcode 2007QSRv 26 2031B doi 10 1038 s41467 021 27439 6 PMC 8654998 PMID 34880234 Nogues Bravo David Rodriguez Jesus Hortal Joaquin Batra Persaram Araujo Miguel B 1 April 2008 Climate Change Humans and the Extinction of the Woolly Mammoth PLOS Biology 6 4 e79 doi 10 1371 journal pbio 0060079 ISSN 1545 7885 PMC 2276529 PMID 18384234 Stuart Anthony J Lister Adrian M 2007 Patterns of Late Quaternary megafaunal extinctions in Europe and northern Asia CFS Courier Forschungsinstitut Senckenberg 259 289 299 Palkopoulou Eleftheria Dalen Love Lister Adrian M Vartanyan Sergey Sablin Mikhail Sher Andrei Edmark Veronica Nystrom Brandstrom Mikael D Germonpre Mietje Barnes Ian Thomas Jessica A 2013 Holarctic genetic structure and range dynamics in the woolly mammoth Proceedings of the Royal Society B 280 1770 1 10 doi 10 1098 rspb 2013 1910 PMC 3779339 PMID 24026825 Kahlke Ralk Dietrich 2015 The maximum geographic extension of Late Pleistocene Mammuthus primigenius Proboscidea Mammalia and its limiting factors Quaternary International 379 147 154 doi 10 1016 j quaint 2015 03 023 Murchie Tyler J Monteath Alistair J Mahony Matthew E Long George S Cocker Scott Sadoway Tara Karpinski Emil Zazula Grant MacPhee Ross D E Froese Duane Poinar Hendrik N 8 December 2021 Collapse of the mammoth steppe in central Yukon as revealed by ancient environmental DNA Nature Communications 12 1 7120 Bibcode 2021NatCo 12 7120M doi 10 1038 s41467 021 27439 6 ISSN 2041 1723 PMC 8654998 PMID 34880234 a b Fordham Damien A Brown Stuart C Akcakaya H Resit Brook Barry W Haythorne Sean Manica Andrea Shoemaker Kevin T Austin Jeremy J Blonder Benjamin Pilowsky Julia Rahbek Carsten 2022 Process explicit models reveal pathway to extinction for woolly mammoth using pattern oriented validation Ecology Letters 25 1 125 137 doi 10 1111 ele 13911 hdl 11343 299174 ISSN 1461 0248 PMID 34738712 Lister 2007 pp 146 148 Stuart A J Sulerzhitsky L D Orlova L A Kuzmin Y V Lister A M 2002 The latest woolly mammoths Mammuthus primigenius Blumenbach in Europe and Asia A review of the current evidence PDF Quaternary Science Reviews 21 14 15 1559 1569 Bibcode 2002QSRv 21 1559S doi 10 1016 S0277 3791 02 00026 4 Dale Guthrie R 2004 Radiocarbon evidence of mid Holocene mammoths stranded on an Alaskan Bering Sea island Nature 429 6993 746 749 Bibcode 2004Natur 429 746D doi 10 1038 nature02612 PMID 15201907 S2CID 186242235 Yesner D R Veltre D W Crossen K J Graham R W 5 700 year old Mammoth Remains from Qagnax Cave Pribilof Islands Alaska Second World of Elephants Congress Hot Springs Mammoth Site 2005 200 203 Crossen K S 2005 5 700 Year Old Mammoth Remains from the Pribilof Islands Alaska Last Outpost of North America Megafauna Geological Society of America 37 463 Archived from the original on 3 March 2016 Retrieved 13 February 2020 Graham R W Belmecheri S Choy K Culleton B J Davies L J Froese D Heintzman P D Hritz C Kapp J D Newsom L A Rawcliffe R Saulnier Talbot E Shapiro B Wang Y Williams J W Wooller M J 1 August 2016 Timing and causes of mid Holocene mammoth extinction on St Paul Island Alaska Proceedings of the National Academy of Sciences 113 33 9310 4 Bibcode 2016PNAS 113 9310G doi 10 1073 pnas 1604903113 PMC 4995940 PMID 27482085 Markus Milligan Mammoths still walked the earth when the Great Pyramid was being built HeritageDaily Heritage amp Archaeology News Archived from the original on 30 June 2015 Retrieved 5 July 2015 Stuart A J Kosintsev P A Higham T F G Lister A M 2004 Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth PDF Nature 431 7009 684 689 Bibcode 2004Natur 431 684S doi 10 1038 nature02890 PMID 15470427 S2CID 4415073 Vartanyan S L et al 1995 Radiocarbon Dating Evidence for Mammoths on Wrangel Island Arctic Ocean until 2000 BC Radiocarbon 37 1 1 6 doi 10 1017 S0033822200014703 ISSN 0033 8222 Archived from the original on 2 April 2012 a b c d e Nystrom V Humphrey J Skoglund P McKeown N J Vartanyan S Shaw P W Liden K Jakobsson M Barnes I A N Angerbjorn A Lister A Dalen L 2012 Microsatellite genotyping reveals end Pleistocene decline in mammoth autosomal genetic variation Molecular Ecology 21 14 3391 3402 doi 10 1111 j 1365 294X 2012 05525 x PMID 22443459 a b Wang Y Pedersen M W Alsos I g et al 2021 Late Quaternary dynamics of Arctic biota from ancient environmental genomics Nature 600 7887 86 92 Bibcode 2021Natur 600 86W doi 10 1038 s41586 021 04016 x PMC 8636272 PMID 34671161 Seeber Pa Batke L Dvornikov Y Schmidt A Wang Y Stoof Leichsenring Kr Moon Kl Shapiro B Epp Ls 1 September 2023 Mitochondrial genomes of Pleistocene megafauna retrieved from recent sediment layers of two Siberian lakes Report elife doi 10 7554 elife 89992 1 Palkopoulou Eleftheria Mallick Swapan Skoglund Pontus Enk Jacob Rohland Nadin Li Heng Omrak Ayca Vartanyan Sergey Poinar Hendrik Gotherstrom Anders Reich David Dalen Love 2015 Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly Mammoth Current Biology 25 10 1395 1400 doi 10 1016 j cub 2015 04 007 PMC 4439331 PMID 25913407 Dunham W 24 April 2015 Lonely end for the world s last woolly mammoths ABC Science Reuters Archived from the original on 26 April 2015 Retrieved 24 April 2015 Palkopoulou E Mallick S Skoglund P Enk J Rohland N Li H Omrak A Vartanyan S Poinar H Gotherstrom A Reich D Dalen L 23 April 2015 Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly Mammoth Current Biology 25 10 1395 1400 doi 10 1016 j cub 2015 04 007 PMC 4439331 PMID 25913407 Nystrom V Dalen L Vartanyan S Liden K Ryman N Angerbjorn A 2010 Temporal genetic change in the last remaining population of woolly mammoth Proceedings of the Royal Society B Biological Sciences 277 1692 2331 2337 doi 10 1098 rspb 2010 0301 PMC 2894910 PMID 20356891 a b Barsh G S Rogers R L Slatkin M 2 March 2017 Excess of genomic defects in a woolly mammoth on Wrangel Island PLOS Genetics 13 3 e1006601 doi 10 1371 journal pgen 1006601 PMC 5333797 PMID 28253255 Switek B 2 March 2017 Dying woolly mammoths were in genetic meltdown Nature doi 10 1038 nature 2017 21575 S2CID 184732688 Arppe L Karhu J A Vartanyan S Drucker D G Etu Sihvola H Bocherens H 2019 Thriving or surviving The isotopic record of the Wrangel Island woolly mammoth population Quaternary Science Reviews 222 105884 Bibcode 2019QSRv 22205884A doi 10 1016 j quascirev 2019 105884 Ackerman R E 1998 Early maritime traditions in the Bering Chukchi and East Siberian seas Arctic Anthropology 35 1 247 262 JSTOR 40316468 a b Fiedel Stuart 2009 Sudden Deaths The Chronology of Terminal Pleistocene Megafaunal Extinction In Haynes G ed American Megafaunal Extinctions at the End of the Pleistocene Vertebrate Paleobiology and Paleoanthropology Springer pp 21 37 doi 10 1007 978 1 4020 8793 6 2 ISBN 978 1 4020 8792 9 Graham R W Belmecheri S Choy K Culleton B J Davies L J Froese D Heintzman P D Hritz C Kapp J D Newsom L A Rawcliffe R Saulnier Talbot E Shapiro B Wang Y Williams J W Wooller M J 1 August 2016 Timing and causes of mid Holocene mammoth extinction on St Paul Island Alaska Proceedings of the National Academy of Sciences 113 33 9310 4 Bibcode 2016PNAS 113 9310G doi 10 1073 pnas 1604903113 PMC 4995940 PMID 27482085 Nogues Bravo D Rodriguez J S Hortal J N Batra P Araujo M B 2008 Barnosky Anthony ed Climate Change Humans and the Extinction of the Woolly Mammoth PLOS Biology 6 4 e79 doi 10 1371 journal pbio 0060079 PMC 2276529 PMID 18384234 Sedwick C 2008 What Killed the Woolly Mammoth PLOS Biology 6 4 e99 doi 10 1371 journal pbio 0060099 PMC 2276526 PMID 20076709 Martin P S 2005 Twilight of the Mammoths Ice Age Extinctions and the Rewilding of America University of California Press pp 165 173 ISBN 978 0 520 23141 2 Burney D Flannery T 2005 Fifty millennia of catastrophic extinctions after human contact PDF Trends in Ecology amp Evolution 20 7 395 401 doi 10 1016 j tree 2005 04 022 PMID 16701402 Archived from the original PDF on 10 June 2010 Doughty C E Wolf A Field C B 2010 Biophysical feedbacks between the Pleistocene megafauna extinction and climate the first human induced global warming Geophysical Research Letters 37 15 L15703 Bibcode 2010GeoRL 3715703D doi 10 1029 2010GL043985 a b c Lister 2007 pp 45 75 a b Lister 2007 pp 50 53 a b Pfizenmayer E W 1939 Siberian Man and Mammoth London Blackie and Son pp 46 61 Vereshchagin N K 2009 The mammoth cemeteries of north east Siberia Polar Record 17 106 3 12 doi 10 1017 S0032247400031296 S2CID 129654739 a b c Tolmachoff I P 1929 The carcasses of the mammoth and rhinoceros found in the frozen ground of Siberia Transactions of the American Philosophical Society 23 1 11 23 doi 10 2307 1005437 JSTOR 1005437 Adams M 1808 Some Account of a Journey to the Frozen Sea and of the Discovery of the Remains of a Mammoth The Philadelphia Medical and Physical Journal 3 120 137 Tilesio W G 1815 De skeleto mammonteo Sibirico ad maris glacialis littora anno 1807 effosso cui praemissae Elephantini generis specierum distinctiones Memoires de l Academie Imperiale des Sciences de St Petersbourg in Latin 5 406 514 Cohen C 2002 The Fate of the Mammoth Fossils Myth and History University of Chicago Press p 113 ISBN 978 0 226 11292 3 Pfizenmayer E 1907 A Contribution to the Morphology of the Mammoth Elephas Primigenius Blumenbach With an Explanation of My Attempt at a Restoration Annual Report of the Board of Regents of the Smithsonian Institution 326 334 Farrand W R 1961 Frozen Mammoths and Modern Geology The death of the giants can be explained as a hazard of tundra life without evoking catastrophic events Science 133 3455 729 735 Bibcode 1961Sci 133 729F doi 10 1126 science 133 3455 729 PMID 17777646 Lister 2007 pp 57 58 Mol D et al 2001 The Jarkov Mammoth 20 000 Year Old carcass of a Siberian woolly mammoth Mammuthus primigenius Blumenbach 1799 The World of Elephants Proceedings of the 1st International Congress 16 20 October 2001 Rome 305 309 Full text pdf Debruyne R G Barriel V R Tassy P 2003 Mitochondrial cytochrome b of the Lyakhov mammoth Proboscidea Mammalia New data and phylogenetic analyses of Elephantidae Molecular Phylogenetics and Evolution 26 3 421 434 doi 10 1016 S1055 7903 02 00292 0 PMID 12644401 Kosintsev P A Lapteva E G Trofimova S S Zanina O G Tikhonov A N Van Der Plicht J 2012 Environmental reconstruction inferred from the intestinal contents of the Yamal baby mammoth Lyuba Mammuthus primigenius Blumenbach 1799 PDF Quaternary International 255 231 238 Bibcode 2012QuInt 255 231K doi 10 1016 j quaint 2011 03 027 S2CID 129303118 Rincon P 10 July 2007 Baby mammoth discovery unveiled news bbc co uk BBC News Archived from the original on 11 August 2007 Retrieved 13 July 2007 Solovyov D 11 July 2007 Baby mammoth find promises breakthrough reuters com Reuters Archived from the original on 13 July 2007 Retrieved 13 July 2007 Smith O 21 April 2009 Baby mammoth Lyuba pristinely preserved offers scientists rare look into mysteries of Ice Age Daily News New York Archived from the original on 15 August 2009 Fisher Daniel C 2014 X ray computed tomography of two mammoth calf mummies Journal of Paleontology 88 4 664 675 doi 10 1666 13 092 S2CID 28393815 Mashchenko E N Protopopov A V Plotnikov V V Pavlov I S 2013 Specific characters of the mammoth calf Mammuthus primigenius from the Khroma River Yakutia Biology Bulletin 40 7 626 641 doi 10 1134 S1062359013070042 S2CID 16675371 Yamagata K Nagai K Miyamoto H Anzai M Kato H Miyamoto K Kurosaka S Azuma R Kolodeznikov I I Protopopov A V Plotnikov V V Kobayashi H Kawahara Miki R Kono T Uchida M Shibata Y Handa T Kimura H Hosoi Y Mitani T Matsumoto K Iritani A 2019 Signs of biological activities of 28 000 year old mammoth nuclei in mouse oocytes visualized by live cell imaging Scientific Reports 9 1 4050 Bibcode 2019NatSR 9 4050Y doi 10 1038 s41598 019 40546 1 PMC 6411884 PMID 30858410 Wong K 2013 Can a mammoth carcass really preserve flowing blood and possibly live cells Nature doi 10 1038 nature 2013 13103 S2CID 87298066 Reardon Sophie 2022 Rare mummified baby woolly mammoth with skin and hair found in Canada www cbsnews com Retrieved 26 June 2022 Proulx Michel 24 June 2022 She s perfect and she s beautiful Frozen baby woolly mammoth discovered in Yukon gold fields Canadian Broadcasting Corporation Retrieved 8 November 2022 Bringing them Back to Life Archived 29 March 2017 at the Wayback Machine Carl Zimmer National Geographic April 2013 a b c Lister 2007 pp 42 43 Ghosh Pallab 23 April 2015 Mammoth genome sequence completed BBC News Archived from the original on 24 April 2015 The Long Now Foundation Revive and Restore Archived 24 April 2015 at the Wayback Machine Can scientists bring mammoths back to life by cloning Archived 8 October 2017 at the Wayback Machine Jackson Landers 9 February 2015 The Washington Post Webster Ben 23 March 2015 Scientist takes mammoth cloning a step closer The Sunday Times Sarah Fecht 24 March 2014 Woolly Mammoth DNA Successfully Spliced Into Elephant Cells Popular Science archived from the original on 26 March 2015 Zimov S A 2005 Essays on Science and Society Pleistocene Park Return of the Mammoth s Ecosystem Science 308 5723 796 798 doi 10 1126 science 1113442 PMID 15879196 Rohwer Y Marris E 2018 An analysis of potential ethical justifications for mammoth de extinction and a call for empirical research Ethics Policy amp Environment 21 1 127 142 doi 10 1080 21550085 2018 1448043 S2CID 158056898 Griffin A 23 March 2015 Woolly mammoth could be revived after scientists paste DNA into elephant s genetic code The Independent Archived from the original on 25 September 2015 Loi Pasqualino Saragusty Joseph Ptak Grazyna 2014 Cloning the Mammoth A Complicated Task or Just a Dream Reproductive Sciences in Animal Conservation Advances in Experimental Medicine and Biology Vol 753 pp 489 502 doi 10 1007 978 1 4939 0820 2 19 ISBN 978 1 4939 0819 6 PMID 25091921 Woolly mammoths are being brought back from extinction by scientists euronews 17 September 2021 Retrieved 19 September 2021 Carlson Kara Could Austin entrepreneur s company help bring back the woolly mammoth Austin American Statesman Retrieved 19 September 2021 Newcomb Raymond Lee 1888 Our lost explorers the narrative of the Jeannette Arctic Expedition as related by the survivors and in the records and last journals of Lieutenant De Long Archived 17 March 2016 at the Wayback Machine p 96 Patkanov S 1897 Die lrtysch Ostjaken und ihre Volkspoesie vol I St Petersburg St Petersburg pp 123 124 archived from the original on 7 November 2018 Here the belief is attested among the Khanty people of the Irtysh River basin Laufer Berthold 1913 Arabic and Chinese Trade in Walrus and Narwhal Ivory T oung Pao Second Series 14 3 329 doi 10 1163 156853213X00213 hdl 2027 hvd 32044009725912 JSTOR 4526349 Bertholds s source for the Irtysh Ostyaks belief is Patkanov 1897 pp 123 124 Cohen C 2002 The Fate of the Mammoth Fossils Myth and History University of Chicago Press pp 197 198 ISBN 978 0 226 11292 3 Retrieved 10 August 2015 eskimo mammoth ivory a b Strong W D 1934 North American Indian traditions suggesting a knowledge of the mammoth American Anthropologist 36 81 88 doi 10 1525 aa 1934 36 1 02a00060 Lankford G E 1980 Pleistocene Animals in Folk Memory The Journal of American Folklore 93 369 294 296 doi 10 2307 540573 JSTOR 540573 subscription required a b Mayor A 2005 Fossil Legends of the First Americans Princeton Princeton University Press p 97 ISBN 978 0 691 11345 6 Lankford G E 1980 Pleistocene Animals in Folk Memory The Journal of American Folklore 93 369 293 304 doi 10 2307 540573 JSTOR 540573 subscription required a b Lister 2007 pp 137 139 Larmer B April 2013 Mammoth Tusk Hunters nationalgeographic com Archived from the original on 2 April 2013 Lister 2007 p 54 Glass J R Davis M Walsh T J Sargis E J Caccone A Fiorillo A 2016 Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club PLOS ONE 11 2 e0146825 Bibcode 2016PLoSO 1146825G doi 10 1371 journal pone 0146825 PMC 4740485 PMID 26840445 Weiyun T 2011 Lucky Hands in pursuit of dinosaurs SHINE Retrieved 4 July 2019 a b c Sjogren B 1962 Farliga djur och djur som inte finns in Swedish Prisma p 168 Lister 2007 p 55 Murray M 1960 Henry Tukeman Mammoth s Roar was Heard All The Way to the Smithsonian Tacoma Public Library Archived from the original on 18 January 2012 Retrieved 17 January 2008 McCarthy Michael 28 September 2009 The Big Question Are so called extinct species really extinct and will we rediscover any retrieved 5 August 2019 Bibliography Lister A Bahn P 2007 Mammoths Giants of the Ice Age 3 ed London Frances Lincoln ISBN 978 0 520 26160 0 OCLC 30155747 Shapiro Beth 5 April 2015 How to Clone a Mammoth The Science of De Extinction Princeton University Press ISBN 978 1 4008 6548 2 OCLC 965621402 External links nbsp Wikimedia Commons has media related to Mammuthus primigenius nbsp Paleontology portal nbsp Data related to Mammuthus primigenius at Wikispecies Natural History Museum The last of the mammoths three minute video about the extinction of the woolly mammoth presented by Adrian Lister National Geographic Mammoth tusk treasure hunt two minute video about mammoth tusk collecting in modern Siberia Retrieved from https en wikipedia org w index php title Woolly mammoth amp oldid 1181934730, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.