fbpx
Wikipedia

Permafrost

Permafrost is ground that continuously remains below 0 °C (32 °F) for two or more years, located on land or under the ocean. Most common in the Northern Hemisphere, around 15% of the Northern Hemisphere or 11% of the global surface is underlain by permafrost,[1] with the total area of around 18 million km2.[2] This includes substantial areas of Alaska, Greenland, Canada and Siberia. It can also be located on mountaintops in the Southern Hemisphere and beneath ice-free areas in the Antarctic.

Permafrost
Map showing extent and types of permafrost in the Northern Hemisphere
Used inInternational Permafrost Association
ClimateHigh latitudes, alpine regions
Slope failure of permafrost soil, revealing the top of an ice wedge.

Permafrost does not have to be the first layer that is on the ground. It can be from several centimeters to several hundred meters deep under the Earth's surface. It frequently occurs in ground ice, but it can also be present in non-porous bedrock. Permafrost is formed from ice holding various types of soil, sand, and rock in combination.[3]

Permafrost contains large amounts of biomass and decomposed biomass that has been stored as methane and carbon dioxide, making tundra soil a carbon sink. As global warming heats the ecosystem and causes soil thawing, the permafrost carbon cycle accelerates and releases much of these soil-contained greenhouse gases into the atmosphere, creating a feedback cycle that increases climate change.[4] Thawing of permafrost is one of the effects of climate change. While emissions from thawing permafrost will be significant enough to lead to additional warming, they will likely not be enough to trigger a self-reinforcing feedback leading to "runaway warming".[5]

Study of permafrost

 
Southern limit of permafrost in Eurasia according to Karl Ernst von Baer (1843), and other authors.

In contrast to the relative dearth of reports on frozen ground in North America prior to World War II, a vast literature on basic permafrost science and the engineering aspects of permafrost was available in Russian. Some Russian authors relate permafrost research with the name Alexander von Middendorff (1815–1894). However, Russian scientists also realized, that Karl Ernst von Baer must be given the attribute "founder of scientific permafrost research". In 1843, Baer's original study “materials for the study of the perennial ground-ice” was ready to be printed. Baer's detailed study consists of 218 pages and was written in German language, as he was a Baltic German scientist. He was teaching at the University of Königsberg and became a member of the St Petersburg Academy of Sciences. This world's first permafrost textbook was conceived as a complete work and ready for printing in 1843. But it remained lost for around 150 years. However, from 1838 onwards, Baer published several individual publications on permafrost. The Russian Academy of Sciences honoured Baer with the publication of a tentative Russian translation of his study in 1942.[6]

These facts were completely forgotten after the Second World War. Thus in 2001 the discovery of the typescript from 1843 in the library archives of the University of Giessen and its annotated publication was a scientific sensation. The full text of Baer's original work is available online (234 pages).[6] The editor added to the facsimile reprint a preface in English, two colour permafrost maps of Eurasia and some figures of permafrost features. Baer's text is introduced with detailed comments and references on additional 66 pages written by the Estonian historian Erki Tammiksaar. The work is notable because Baer's observations on permafrost distribution and periglacial morphological descriptions are seen as largely correct to the present day.[6] With his compilation and analysis of all available data on ground ice and permafrost, Baer laid the foundation for the modern permafrost terminology. Baer's southern limit of permafrost in Eurasia drawn in 1843 corresponds well with the actual southern limit on the Circum-Arctic Map of Permafrost and Ground Ice Conditions of the International Permafrost Association (edited by J. Brown et al.).[7]

Beginning in 1942, Siemon William Muller delved into the relevant Russian literature held by the Library of Congress and the U.S. Geological Survey Library so that he was able to furnish the government an engineering field guide and a technical report about permafrost by 1943",[8] the year in which he coined the term as a contraction of permanently frozen ground.[9] Although originally classified (as U.S. Army. Office of the Chief of Engineers, Strategic Engineering Study, no. 62, 1943),[9][10][11][12] in 1947 a revised report was released publicly, which is regarded as the first North American treatise on the subject.[8][12]

Classification and extent

 
Red lines: Seasonal temperature extremes (dotted=average).

Permafrost is soil, rock or sediment that is frozen for more than two consecutive years. In areas not covered by ice, it exists beneath a layer of soil, rock or sediment, which freezes and thaws annually and is called the "active layer".[13] In practice, this means that permafrost occurs at an mean annual temperature of −2 °C (28.4 °F) or below. Active layer thickness varies with the season, but is 0.3 to 4 meters thick (shallow along the Arctic coast; deep in southern Siberia and the Qinghai-Tibetan Plateau).[citation needed]

The extent of permafrost is displayed in terms of permafrost zones, which are defined according to the area underlain by permafrost as continuous (90%–100%), discontinuous (50%–90%), sporadic (10%–50%), and isolated patches (10% or less).[7] These permafrost zones cover together approximately 22% of the Northern Hemisphere. Continuous permafrost zone covers slightly more than half of this area, discontinuous permafrost around 20 percent, and sporadic permafrost together with isolated patches little less than 30 percent.[14] Because permafrost zones are not entirely underlain by permafrost, only 15% of the ice-free area of the Northern Hemisphere is actually underlain by permafrost.[1] Most of this area is found in Siberia, northern Canada, Alaska and Greenland. Beneath the active layer annual temperature swings of permafrost become smaller with depth. The deepest depth of permafrost occurs where geothermal heat maintains a temperature above freezing. Above that bottom limit there may be permafrost with a consistent annual temperature—"isothermal permafrost".[15]

Continuity of coverage

Permafrost typically forms in any climate where the mean annual air temperature is lower than the freezing point of water. Exceptions are found in humid boreal forests, such as in Northern Scandinavia and the North-Eastern part of European Russia west of the Urals, where snow acts as an insulating blanket. Glaciated areas may also be exceptions. Since all glaciers are warmed at their base by geothermal heat, temperate glaciers, which are near the pressure-melting point throughout, may have liquid water at the interface with the ground and are therefore free of underlying permafrost.[16] "Fossil" cold anomalies in the Geothermal gradient in areas where deep permafrost developed during the Pleistocene persist down to several hundred metres. This is evident from temperature measurements in boreholes in North America and Europe.[17]

Discontinuous permafrost

The below-ground temperature varies less from season to season than the air temperature, with mean annual temperatures tending to increase with depth as a result of the geothermal crustal gradient. Thus, if the mean annual air temperature is only slightly below 0 °C (32 °F), permafrost will form only in spots that are sheltered—usually with a northern or southern aspect (in north and south hemispheres respectively) —creating discontinuous permafrost. Usually, permafrost will remain discontinuous in a climate where the mean annual soil surface temperature is between −5 and 0 °C (23 and 32 °F). In the moist-wintered areas mentioned before, there may not be even discontinuous permafrost down to −2 °C (28 °F). Discontinuous permafrost is often further divided into extensive discontinuous permafrost, where permafrost covers between 50 and 90 percent of the landscape and is usually found in areas with mean annual temperatures between −2 and −4 °C (28 and 25 °F), and sporadic permafrost, where permafrost cover is less than 50 percent of the landscape and typically occurs at mean annual temperatures between 0 and −2 °C (32 and 28 °F).[18] In soil science, the sporadic permafrost zone is abbreviated SPZ and the extensive discontinuous permafrost zone DPZ.[19] Exceptions occur in un-glaciated Siberia and Alaska where the present depth of permafrost is a relic of climatic conditions during glacial ages where winters were up to 11 °C (20 °F) colder than those of today.

Continuous permafrost

Estimated extent of alpine permafrost by region[20]
Locality Area
Qinghai-Tibet Plateau 1,300,000 km2 (500,000 sq mi)
Khangai-Altai Mountains 1,000,000 km2 (390,000 sq mi)
Brooks Range 263,000 km2 (102,000 sq mi)
Siberian Mountains 255,000 km2 (98,000 sq mi)
Greenland 251,000 km2 (97,000 sq mi)
Ural Mountains 125,000 km2 (48,000 sq mi)
Andes 100,000 km2 (39,000 sq mi)
Rocky Mountains (US and Canada) 100,000 km2 (39,000 sq mi)
Alps 80,000 km2 (31,000 sq mi)
Fennoscandian mountains 75,000 km2 (29,000 sq mi)
Remaining <50,000 km2 (19,000 sq mi)

At mean annual soil surface temperatures below −5 °C (23 °F) the influence of aspect can never be sufficient to thaw permafrost and a zone of continuous permafrost (abbreviated to CPZ) forms. A line of continuous permafrost in the Northern Hemisphere[21] represents the most southern border where land is covered by continuous permafrost or glacial ice. The line of continuous permafrost varies around the world northward or southward due to regional climatic changes. In the southern hemisphere, most of the equivalent line would fall within the Southern Ocean if there were land there. Most of the Antarctic continent is overlain by glaciers, under which much of the terrain is subject to basal melting.[22] The exposed land of Antarctica is substantially underlain with permafrost,[23] some of which is subject to warming and thawing along the coastline.[24]

Alpine permafrost

Alpine permafrost occurs at elevations with low enough average temperatures to sustain perennially frozen ground; much alpine permafrost is discontinuous.[25] Estimates of the total area of alpine permafrost vary. Bockheim and Munroe[20] combined three sources and made the tabulated estimates by region, totaling 3,560,000 km2 (1,370,000 sq mi).

Alpine permafrost in the Andes has not been mapped.[26] Its extent has been modeled to assess the amount of water bound up in these areas.[27] In 2009, a researcher from Alaska found permafrost at the 4,700 m (15,400 ft) level on Africa's highest peak, Mount Kilimanjaro, approximately 3° south of the equator.[28]

Subsea permafrost

Subsea permafrost occurs beneath the seabed and exists in the continental shelves of the polar regions.[29] These areas formed during the last ice age, when a larger portion of Earth's water was bound up in ice sheets on land and when sea levels were low. As the ice sheets melted to again become seawater, the permafrost became submerged shelves under relatively warm and salty boundary conditions, compared to surface permafrost. Therefore, subsea permafrost exists in conditions that lead to its diminishment. According to Osterkamp, subsea permafrost is a factor in the "design, construction, and operation of coastal facilities, structures founded on the seabed, artificial islands, sub-sea pipelines, and wells drilled for exploration and production."[30] It also contains gas hydrates in places, which are a "potential abundant source of energy" but may also destabilize as subsea permafrost warms and thaws, producing large amounts of methane gas, which is a potent greenhouse gas.[30][31][32] Scientists report with high confidence that the extent of subsea permafrost is decreasing, and 97% of permafrost under Arctic ice shelves is currently thinning.[33][5]: 1281 

Manifestations

Time required for permafrost to reach depth at Prudhoe Bay, Alaska[34]
Time (yr) Permafrost depth
1 4.44 m (14.6 ft)
350 79.9 m (262 ft)
3,500 219.3 m (719 ft)
35,000 461.4 m (1,514 ft)
100,000 567.8 m (1,863 ft)
225,000 626.5 m (2,055 ft)
775,000 687.7 m (2,256 ft)

Base depth

Permafrost extends to a base depth where geothermal heat from the Earth and the mean annual temperature at the surface achieve an equilibrium temperature of 0 °C.[35] The base depth of permafrost reaches 1,493 m (4,898 ft) in the northern Lena and Yana River basins in Siberia.[36] The geothermal gradient is the rate of increasing temperature with respect to increasing depth in the Earth's interior. Away from tectonic plate boundaries, it is about 25–30 °C/km (124–139 °F/mi) near the surface in most of the world.[37] It varies with the thermal conductivity of geologic material and is less for permafrost in soil than in bedrock.[35]

Calculations indicate that the time required to form the deep permafrost underlying Prudhoe Bay, Alaska was over a half-million years.[34][38] This extended over several glacial and interglacial cycles of the Pleistocene and suggests that the present climate of Prudhoe Bay is probably considerably warmer than it has been on average over that period. Such warming over the past 15,000 years is widely accepted.[34] The table to the right shows that the first hundred metres of permafrost forms relatively quickly but that deeper levels take progressively longer.

Massive ground ice

 
Massive blue ground ice exposure on the north shore of Herschel Island, Yukon, Canada.

When the ice content of a permafrost exceeds 250 percent (ice to dry soil by mass) it is classified as massive ice. Massive ice bodies can range in composition, in every conceivable gradation from icy mud to pure ice. Massive icy beds have a minimum thickness of at least 2 m and a short diameter of at least 10 m.[39] First recorded North American observations were by European scientists at Canning River, Alaska in 1919.[40] Russian literature provides an earlier date of 1735 and 1739 during the Great North Expedition by P. Lassinius and Kh. P. Laptev, respectively.[41] Two categories of massive ground ice are buried surface ice and intrasedimental ice[42] (also called constitutional ice).[41]

Buried surface ice may derive from snow, frozen lake or sea ice, aufeis (stranded river ice) and—probably the most prevalent—buried glacial ice.[43]

Intrasedimental ice forms by in-place freezing of subterranean waters and is dominated by segregational ice which results from the crystallizational differentiation taking place during the freezing of wet sediments, accompanied by water migrating to the freezing front.[41]

Intrasedimental or constitutional ice has been widely observed and studied across Canada and also includes intrusive and injection ice.[40][41]

Additionally, ice wedges—a separate type of ground ice—produce recognizable patterned ground or tundra polygons. Ice wedges form in a pre-existing geological substrate and were first described in 1919.[40][41]

 
Several types of massive ground ice, including ice wedges and intrasedimental ice within the cliff wall of a retrogressive thaw slump located on the southern coast of Herschel Island within an approximately 22-metre (72 ft) by 1,300-metre (4,300 ft) headwall.

Landforms

Permafrost processes manifest themselves in large-scale land forms, such as palsas and pingos[44] and smaller-scale phenomena, such as patterned ground found in arctic, periglacial and alpine areas.[45] In ice-rich permafrost areas, melting of ground ice initiates thermokarst landforms such as thermokarst lakes, thaw slumps, thermal-erosion gullies, and active layer detachments.[46][47]

Carbon cycle in permafrost

The permafrost carbon cycle (Arctic Carbon Cycle) deals with the transfer of carbon from permafrost soils to terrestrial vegetation and microbes, to the atmosphere, back to vegetation, and finally back to permafrost soils through burial and sedimentation due to cryogenic processes. Some of this carbon is transferred to the ocean and other portions of the globe through the global carbon cycle. The cycle includes the exchange of carbon dioxide and methane between terrestrial components and the atmosphere, as well as the transfer of carbon between land and water as methane, dissolved organic carbon, dissolved inorganic carbon, particulate inorganic carbon and particulate organic carbon.[48]

Effects of climate change

Arctic permafrost has been diminishing for decades. Globally, permafrost warmed by about 0.3 °C between 2007 and 2016, with stronger warming observed in the continuous permafrost zone relative to the discontinuous zone.[5]: 1280  The consequence is thawing soil, which may be weaker, and release of methane, which contributes to an increased rate of global warming as part of a feedback loop caused by microbial decomposition.[49][50] Wetlands drying out from drainage or evaporation compromises the ability of plants and animals to survive.[49] When permafrost continues to diminish, many climate change scenarios will be amplified. In areas where permafrost is high, nearby human infrastructure may be damaged severely by the thawing of permafrost.[51][52] It is believed that carbon storage in permafrost globally is approximately 1600 gigatons; equivalent to twice the atmospheric pool.[53]

Historical changes

 
Recently thawed Arctic permafrost and coastal erosion on the Beaufort Sea, Arctic Ocean, near Point Lonely, Alaska in 2013.

At the Last Glacial Maximum, continuous permafrost covered a much greater area than it does today, covering all of ice-free Europe south to about Szeged (southeastern Hungary) and the Sea of Azov (then dry land)[54] and East Asia south to present-day Changchun and Abashiri.[55] In North America, only an extremely narrow belt of permafrost existed south of the ice sheet at about the latitude of New Jersey through southern Iowa and northern Missouri, but permafrost was more extensive in the drier western regions where it extended to the southern border of Idaho and Oregon.[56] In the southern hemisphere, there is some evidence for former permafrost from this period in central Otago and Argentine Patagonia, but was probably discontinuous, and is related to the tundra. Alpine permafrost also occurred in the Drakensberg during glacial maxima above about 3,000 metres (9,840 ft).[57][58]

Thaw

By definition, permafrost is ground that remains frozen for two or more years.[3] The ground can consist of many substrate materials, including bedrock, sediment, organic matter, water or ice. Frozen ground is that which is below the freezing point of water, whether or not water is present in the substrate. Ground ice is not always present, as may be the case with nonporous bedrock, but it frequently occurs and may be present in amounts exceeding the potential hydraulic saturation of the thawed substrate.

During thaw, the ice content of the soil melts and, as the water drains or evaporates, causes the soil structure to weaken and sometimes become viscous until it regains strength with decreasing moisture content. Thawing can also influence the rate of change of soil gases with the atmosphere.[59] One visible sign of permafrost degradation is the random displacement of trees from their vertical orientation in permafrost areas.[60]

Effect on slope stability

Over the past century, an increasing number of alpine rock slope failure events in mountain ranges around the world have been recorded. It is expected that the high number of structural failures is due to permafrost thawing, which is thought to be linked to climate change. Permafrost thawing is thought to have contributed to the 1987 Val Pola landslide that killed 22 people in the Italian Alps.[62] In mountain ranges, much of the structural stability can be attributed to glaciers and permafrost. As climate warms, permafrost thaws, which results in a less stable mountain structure, and ultimately more slope failures.[63]

McSaveney[64] reported massive rock and ice falls (up to 11.8 million m3), earthquakes (up to 3.9 Richter), floods (up to 7.8 million m3 water), and rapid rock-ice flow to long distances (up to 7.5 km at 60 m/s) caused by “instability of slopes” in high mountain permafrost. Instability of slopes in permafrost at elevated temperatures near freezing point in warming permafrost is related to effective stress and buildup of pore-water pressure in these soils.[65] Kia and his co-inventors[66] invented a new filter-less rigid piezometer (FRP) for measuring pore-water pressure in partially frozen soils such as warming permafrost soils. They extended the use of effective stress concept to partially frozen soils for use in slope stability analysis of warming permafrost slopes. The use of effective stress concept has many advantages such as ability to extend the concepts of "Critical State Soil Mechanics" into frozen ground engineering.[citation needed]

In high mountains rockfalls may be caused by thawing of rock masses with permafrost.[67]

Frozen debris lobes

According to the University of Alaska Fairbanks, frozen debris lobes (FDLs) are "slow-moving landslides composed of soil, rocks, trees, and ice that occur in permafrost.[68] As of December 2021, there were 43 frozen debris lobes identified in the southern Brooks Range along the Trans Alaska Pipeline System (TAPS) corridor and the main highway linking Interior Alaska and the Alaska North Slope—the Dalton Highway.[69] By 2012, some FDLs measured over 100 m (110 yd) in width, 20 m (22 yd) in height, and 1,000 m (1,100 yd) in length.[70]: 1521  Based on measurements of a frozen debris-lobe southern Brooks Range in Alaska taken from 2008 to 2010, researchers found accelerated movement as ice in deeper layers of soil melted with rising temperatures. Ice within the soil melts, causing loss of soil strength, accelerated movement, and potential debris flows. They raised concerns of a future potential hazard of one debris lobe to both the Trans Alaska Pipeline System and the main highway linking Interior Alaska and the North Slope—Dalton Highway.[70][71]

Ecological consequences

In the northern circumpolar region, permafrost contains 1700 billion tons of organic material equaling almost half of all organic material in all soils.[72] This pool was built up over thousands of years and is only slowly degraded under the cold conditions in the Arctic. The amount of carbon sequestered in permafrost is four times the carbon that has been released to the atmosphere due to human activities in modern time.[73] One manifestation of this is yedoma, which is an organic-rich (about 2% carbon by mass) Pleistocene-age loess permafrost with ice content of 50–90% by volume.[74]

Formation of permafrost has significant consequences for ecological systems, primarily due to constraints imposed upon rooting zones, but also due to limitations on den and burrow geometries for fauna requiring subsurface homes. Secondary effects impact species dependent on plants and animals whose habitat is constrained by the permafrost. One of the most widespread examples is the dominance of black spruce in extensive permafrost areas, since this species can tolerate rooting pattern constrained to the near surface.[75]

The number of bacteria in permafrost soil varies widely, typically from 1 to 1000 million per gram of soil.[76] Most of these bacteria and fungi in permafrost soil cannot be cultured in the laboratory, but the identity of the microorganisms can be revealed by DNA-based techniques.

Global warming has been increasing permafrost slope disturbances and sediment supplies to fluvial systems, resulting in exceptional increases in river sediment. [77]

Climate change feedback

Carbon is continually cycling between soils, vegetation, and the atmosphere. As climate change increases mean annual air temperatures throughout the Arctic, it extends permafrost thaw and deepens the active layer, exposing old carbon that has been in storage for decades to millennia to biogenic processes which facilitate its entrance into the atmosphere. In general, the volume of permafrost in the upper 3 m of ground is expected to decrease by about 25% per 1 °C of global warming.[78]: 1283  According to the IPCC Sixth Assessment Report, there is high confidence that global warming over the last few decades has led to widespread increases in permafrost temperature.[78]: 1237  Observed warming was up to 3 °C in parts of Northern Alaska (early 1980s to mid-2000s) and up to 2 °C in parts of the Russian European North (1970-2020), and active layer thickness has increased in the European and Russian Arctic across the 21st century and at high elevation areas in Europe and Asia since the 1990s.[78]: 1237  In Yukon, the zone of continuous permafrost might have moved 100 kilometres (62 mi) poleward since 1899, but accurate records only go back 30 years. Based on high agreement across model projections, fundamental process understanding, and paleoclimate evidence, it is virtually certain that permafrost extent and volume will continue to shrink as global climate warms.[78]: 1283 

Carbon emissions from permafrost thaw contribute to the same warming which facilitates the thaw, making it a positive climate change feedback. The warming also intensifies Arctic water cycle, and the increased amounts of warmer rain are another factor which increases permafrost thaw depths.[79] The amount of carbon that will be released from warming conditions depends on depth of thaw, carbon content within the thawed soil, physical changes to the environment[80] and microbial and vegetation activity in the soil. Microbial respiration is the primary process through which old permafrost carbon is re-activated and enters the atmosphere. The rate of microbial decomposition within organic soils, including thawed permafrost, depends on environmental controls, such as soil temperature, moisture availability, nutrient availability, and oxygen availability.[81] In particular, sufficient concentrations of iron oxides in some permafrost soils can inhibit microbial respiration and prevent carbon mobilization: however, this protection only lasts until carbon is separated from the iron oxides by Fe-reducing bacteria, which is only a matter of time under the typical conditions.[82] Depending on the soil type, Iron(III) oxide can boost oxidation of methane to carbon dioxide in the soil, but it can also amplify methane production by acetotrophs: these soil processes are not yet fully understood.[83]

Altogether, the likelihood of the entire carbon pool mobilizing and entering the atmosphere is low despite the large volumes stored in the soil. Although temperatures will increase, this does not imply complete loss of permafrost and mobilization of the entire carbon pool. Much of the ground underlain by permafrost will remain frozen even if warming temperatures increase the thaw depth or increase thermokarsting and permafrost degradation.[84] Moreover, other elements such as iron and aluminum can adsorb some of the mobilized soil carbon before it reaches the atmosphere, and they are particularly prominent in the mineral sand layers which often overlay permafrost.[85] On the other hand, once the permafrost area thaws, it will not go back to being permafrost for centuries even if the temperature increase reversed, making it one of the best-known examples of tipping points in the climate system.


In 2011, preliminary computer analyses suggested that permafrost emissions could be equivalent to around 15% of anthropogenic emissions.[86]

A 2018 perspectives article discussing tipping points in the climate system activated around 2 degrees Celsius of global warming suggested that at this threshold, permafrost thaw would add a further 0.09 °C to global temperatures by 2100, with a range between 0.04 °C and 0.16 °C[87] In 2021, another study estimated that in a future where zero emissions were reached following a emission of a further 1000 Pg C into the atmosphere (a scenario where temperatures ordinarily stay stable after the last emission, or start to decline slowly) permafrost carbon would add 0.06 °C (with a range between 0.02 °C and 0.14 °C) 50 years after the last anthropogenic emission, 0.09 °C (with a range between 0.04 °C to 0.21 °C) 100 years later and 0.27 °C (ranging between 0.12 to 0.49 °C) 500 years later.[88] However, neither study was able to take abrupt thaw into account.

In 2020, a study of the northern permafrost peatlands (a smaller subset of the entire permafrost area, covering 3.7 million km2 out of the estimated 18 million km2[89]) would amount to ∼1% of anthropogenic radiative forcing by 2100, and that this proportion remains the same in all warming scenarios considered, from 1.5 °C to 6 °C. It had further suggested that after 200 more years, those peatlands would have absorbed more carbon than what they had emitted into the atmosphere.[90]

The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14–175 billion tonnes of carbon dioxide per 1 ºC of warming.[78]: 1237  For comparison, by 2019 the anthropogenic emission of all carbon dioxide into the atmosphere stood around 40 billion tonnes.[78]: 1237 

A 2021 assessment of the economic impact of climate tipping points estimated that permafrost carbon emissions would increase the social cost of carbon by about 8.4% [91] However, the methods of that assessment have attracted controversy: when researchers like Steve Keen and Timothy Lenton had accused it of underestimating the overall impact of tipping points and of higher levels of warming in general,[92] the authors have conceded some of their points.[93]

In 2021, a group of prominent permafrost researchers like Merritt Turetsky had presented their collective estimate of permafrost emissions, including the abrupt thaw processes, as part of an effort to advocate for a 50% reduction in anthropogenic emissions by 2030 as a necessary milestone to help reach net zero by 2050. Their figures for combined permafrost emissions by 2100 amounted to 150–200 billion tonnes of carbon dioxide equivalent under 1.5 degrees of warming, 220–300 billion tonnes under 2 degrees and 400–500 billion tonnes if the warming was allowed to exceed 4 degrees. They compared those figures to the extrapolated present-day emissions of Canada, the European Union and the United States or China, respectively. The 400–500 billion tonnes figure would also be equivalent to the today's remaining budget for staying within a 1.5 degrees target.[94] One of the scientists involved in that effort, Susan M. Natali of Woods Hole Research Centre, had also led the publication of a complementary estimate in a PNAS paper that year, which suggested that when the amplification of permafrost emissions by abrupt thaw and wildfires is combined with the foreseeable range of near-future anthropogenic emissions, avoiding the exceedance (or "overshoot") of 1.5 degrees warming is already implausible, and the efforts to attain it may have to rely on negative emissions to force the temperature back down.[95]

An updated 2022 assessment of climate tipping points concluded that abrupt permafrost thaw would add 50% to gradual thaw rates, and would add 14 billion tons of carbon dioxide equivalent emissions by 2100 and 35 by 2300 per every degree of warming. This would have a warming impact of 0.04 °C per every full degree of warming by 2100, and 0.11 °C per every full degree of warming by 2300. It also suggested that at between 3 and 6 degrees of warming (with the most likely figure around 4 degrees) a large-scale collapse of permafrost areas could become irreversible, adding between 175 and 350 billion tons of CO2 equivalent emissions, or 0.2–0.4 degrees, over about 50 years (with a range between 10 and 300 years).[96][97]

Preservation of organisms in permafrost

Microbes

Scientists predict that up to 1021 microbes, including fungi and bacteria in addition to viruses, will be released from melting ice per year. Often, these microbes will be released directly into the ocean. Due to the migratory nature of many species of fish and birds, it is possible that these microbes have a high transmission rate.[98]

Permafrost in eastern Switzerland was analyzed by researchers in 2016 at an alpine permafrost site called “Muot-da-Barba-Peider”.This site had a diverse microbial community with various bacteria and eukaryotic groups present. Prominent bacteria groups included phylum Acidobacteriota, Actinomycetota, AD3, Bacteroidota, Chloroflexota, Gemmatimonadota, OD1, Nitrospirota, Planctomycetota, Pseudomonadota, and Verrucomicrobiota. Prominent eukaryotic fungi included Ascomycota, Basidiomycota, and Zygomycota. In the present species, scientists observed a variety of adaptations for sub-zero conditions, including reduced and anaerobic metabolic processes.[99]

A 2016 outbreak of anthrax in the Yamal Peninsula is believed to be due to thawing permafrost.[100] Also present in Siberian permafrost are two species of virus: Pithovirus sibericum[101] and Mollivirus sibericum.[102] Both of these are approximately 30,000 years old and considered giant viruses due to the fact that they are larger in size than most bacteria and have genomes larger than other viruses. Both viruses are still infective, as seen by their ability to infect Acanthamoeba, a genus of amoebas.[102]

Freezing at low temperatures has been shown to preserve the infectivity of viruses. Caliciviruses, influenza A, and enteroviruses (ex. Polioviruses, echoviruses, Coxsackie viruses) have all been preserved in ice and/or permafrost. Scientists have determined three characteristics necessary for a virus to successfully preserve in ice: high abundance, ability to transport in ice, and ability to resume disease cycles upon being released from ice. A direct infection from permafrost or ice to humans has not been demonstrated; such viruses are typically spread through other organisms or abiotic mechanisms.[98]

A study of late Pleistocene Siberian permafrost samples from Kolyma Lowland (an east siberian lowland) used DNA isolation and gene cloning (specifically 16S rRNA genes) to determine which phyla these microorganisms belonged to. This technique allowed a comparison of known microorganisms to their newly discovered samples and revealed eight phylotypes, which belonged to the phyla Actinomycetota and Pseudomonadota.[103]

Plants

In 2012, Russian researchers proved that permafrost can serve as a natural repository for ancient life forms by reviving of Silene stenophylla from 30,000 year old tissue found in an Ice Age squirrel burrow in the Siberian permafrost. This is the oldest plant tissue ever revived. The plant was fertile, producing white flowers and viable seeds. The study demonstrated that tissue can survive ice preservation for tens of thousands of years.[104]

Extraterrestrial permafrost

Other issues

The International Permafrost Association (IPA) is an integrator of issues regarding permafrost. It convenes International Permafrost Conferences, undertakes special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinates international field programmes and networks. Among other issues addressed by the IPA are: Problems for construction on permafrost owing to the change of soil properties of the ground on which structures are placed and the biological processes in permafrost, e.g. the preservation of organisms frozen in situ.

Construction on permafrost

Yakutsk is one of two large cities in the world built in areas of continuous permafrost—that is, where the frozen soil forms an unbroken, below-zero sheet. The other is Norilsk, in Krasnoyarsk Krai, Russia.[105]

Building on permafrost is difficult because the heat of the building (or pipeline) can warm the permafrost and destabilize the structure. Warming can result in thawing of the soil and its consequent weakening of support for a structure as the ice content turns to water; alternatively, where structures are built on piles, warming can cause movement through creep because of the change of friction on the piles even as the soil remains frozen.[106]

Three common solutions include: using foundations on wood piles, a technique pioneered by Soviet engineer Mikhail Kim in Norilsk;[107] building on a thick gravel pad (usually 1–2 metres/3.3–6.6 feet thick); or using anhydrous ammonia heat pipes.[108] The Trans-Alaska Pipeline System uses heat pipes built into vertical supports to prevent the pipeline from sinking and the Qingzang railway in Tibet employs a variety of methods to keep the ground cool, both in areas with frost-susceptible soil. Permafrost may necessitate special enclosures for buried utilities, called "utilidors".[109]

The Melnikov Permafrost Institute in Yakutsk, found that the sinking of large buildings into the ground can be prevented by using pile foundations extending down to 15 metres (49 ft) or more. At this depth the temperature does not change with the seasons, remaining at about −5 °C (23 °F).[110]

Thawing permafrost represents a threat to industrial infrastructure. In May 2020 thawing permafrost at Norilsk-Taimyr Energy's Thermal Power Plant No. 3 caused an oil storage tank to collapse, spilling 6,000 tonnes of diesel into the land, 15,000 into the water. The rivers Ambarnaya, Daldykan and many smaller rivers were polluted. The pollution reached the lake Pyasino that is important to the water supply of the entire Taimyr Peninsula. State of emergency at the federal level was declared. Many buildings and infrastructure are built on permafrost, which cover 65% of Russian territory, and all those can be damaged as it thaws. [111][112] The 2020 Norilsk oil spill has been described as the second-largest oil spill in modern Russian history.[113] The thawing can also cause leakage of toxic elements from sites of buried toxic waste.[113][114]

There is no ground water available in an area underlain with permafrost. Any substantial settlement or installation needs to make some alternative arrangement to obtain water.[105]

See also

References

  1. ^ a b Obu, J. (2021). "How Much of the Earth's Surface is Underlain by Permafrost?". Journal of Geophysical Research: Earth Surface. 126 (5): e2021JF006123. Bibcode:2021JGRF..12606123O. doi:10.1029/2021JF006123.
  2. ^ Sayedi, Sayedeh Sara; Abbott, Benjamin W; Thornton, Brett F; Frederick, Jennifer M; Vonk, Jorien E; Overduin, Paul; Schädel, Christina; Schuur, Edward A G; Bourbonnais, Annie; Demidov, Nikita; Gavrilov, Anatoly (1 December 2020). "Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment". Environmental Research Letters. 15 (12): B027-08. Bibcode:2020AGUFMB027...08S. doi:10.1088/1748-9326/abcc29. S2CID 234515282.
  3. ^ a b Doyle, Heather (9 April 2020). "What Is Permafrost?". NASA Climate Kids.
  4. ^ Koven, Charles D.; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles (6 September 2011). "Permafrost carbon-climate feedbacks accelerate global warming". Proceedings of the National Academy of Sciences. 108 (36): 14769–14774. Bibcode:2011PNAS..10814769K. doi:10.1073/pnas.1103910108. PMC 3169129. PMID 21852573.
  5. ^ a b c Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G.  Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362.
  6. ^ a b c King, Lorenz (2001). "Materialien zur Kenntniss des unvergänglichen Boden-Eises in Sibirien, compiled by Baer in 1843" (PDF). Berichte und Arbeiten aus der Universitätsbibliothek und dem Universitätsarchiv Giessen (in German). 51: 1–315. Retrieved 27 July 2021.
  7. ^ a b "Circum-Arctic map of permafrost and ground-ice conditions". 1997. doi:10.3133/cp45. {{cite journal}}: Cite journal requires |journal= (help)
  8. ^ a b Walker, H. Jesse (December 2010). "Frozen in Time. Permafrost and Engineering Problems Review". Arctic. 63 (4): 477. doi:10.14430/arctic3340.
  9. ^ a b Ray, Luis L. "Permafrost - USGS [=United States Geological Survey] Library Publications Warehouse" (PDF). (PDF) from the original on 2 May 2017. Retrieved 19 November 2018.
  10. ^ U.S. Geological Survey; United States. Army. Corps of Engineers. Strategic Intelligence Branch (1943). "Permafrost or permanently frozen ground and related engineering problems". Strategic Engineering Study (62): 231. OCLC 22879846.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Occurrences on Google Books.
  12. ^ a b Muller, Siemon William (1947). Permafrost. Or, Permanently Frozen Ground and Related Engineering Problems. Ann Arbor, Michigan: Edwards. ISBN 978-0-598-53858-1. OCLC 1646047.
  13. ^ Staff (2014). "What is Permafrost?". International Permafrost Association. from the original on 8 November 2014. Retrieved 28 February 2014.
  14. ^ Heginbottom, J. Alan, Brown, Jerry; Humlum, Ole and Svensson, Harald; ‘State of the Earth’s Cryosphere at the Beginning of the 21st Century: Glaciers, Global Snow Cover, Floating Ice, and Permafrost and Periglacial Environments’, p. A435
  15. ^ Delisle, G. (2007). "Near-surface permafrost degradation: How severe during the 21st century?". Geophysical Research Letters. 34 (L09503): 4. Bibcode:2007GeoRL..34.9503D. doi:10.1029/2007GL029323.
  16. ^ Sharp, Robert Phillip (1988). Living Ice: Understanding Glaciers and Glaciation. Cambridge University Press. p. 27. ISBN 978-0-521-33009-1.
  17. ^ Majorowicz, Jacek (2012), "Permafrost at the ice base of recent pleistocene glaciations – Inferences from borehole temperatures profiles", Bulletin of Geography. Physical Geography Series, Physical Geography Series, 5: 7–28, doi:10.2478/v10250-012-0001-x
  18. ^ Brown, Roger J.E.; Péwé, Troy L. (1973), "Distribution of permafrost in North America and its relationship to the environment: A review, 1963–1973", Permafrost: North American Contribution – Second International Conference, 2: 71–100, ISBN 978-0-309-02115-9
  19. ^ Robinson, S.D.; et al. (2003), "Permafrost and peatland carbon sink capacity with increasing latitude", in Phillips; et al. (eds.), Permafrost (PDF), Swets & Zeitlinger, pp. 965–970, ISBN 90-5809-582-7, (PDF) from the original on 2 March 2014, retrieved 2 March 2014
  20. ^ a b Bockheim, James G.; Munroe, Jeffrey S. (November 2014). "Organic Carbon Pools and Genesis of Alpine Soils with Permafrost: A Review". Arctic, Antarctic, and Alpine Research. 46 (4): 987–1006. doi:10.1657/1938-4246-46.4.987. S2CID 53400041.
  21. ^ Andersland, Orlando B.; Ladanyi, Branko (2004). Frozen ground engineering (2nd ed.). Wiley. p. 5. ISBN 978-0-471-61549-1.
  22. ^ Zoltikov, I.A. (1962), "Heat regime of the central Antarctic glacier", Antarctica, Reports of the Commission, 1961 (in Russian): 27–40
  23. ^ Campbell, Iain B.; Claridge, Graeme G. C. (2009), "Antarctic Permafrost Soils", in Margesin, Rosa (ed.), Permafrost Soils, Soil Biology, vol. 16, Berlin: Springer, pp. 17–31, doi:10.1007/978-3-540-69371-0_2, ISBN 978-3-540-69370-3
  24. ^ Heinrich, Holly (25 July 2013), "Permafrost Melting Faster Than Expected in Antarctica", National Public Radio, from the original on 3 May 2016, retrieved 23 April 2016
  25. ^ "Alpine permafrost". Encyclopedia Britannica. Retrieved 16 April 2020.
  26. ^ Azocar, Guillermo (2 January 2014). Modeling of Permafrost Distribution in the Semi-arid Chilean Andes (Thesis). hdl:10012/8109.
  27. ^ Ruiz, Lucas; Liaudat, Dario Trombotto (2012), Mountain Permafrost Distribution in the Andes of Chubut (Argentina) Based on a Statistical Model (PDF), Tenth International Conference on Permafrost, Mendoza, Argentina: Instituto Argentino de Nivología Glaciología y Ciencias Ambientales, pp. 365–370, (PDF) from the original on 13 May 2016, retrieved 24 April 2016
  28. ^ Rozell, Ned (18 November 2009), , Capitol City Weekly, Juneau, Alaska, archived from the original on 5 March 2018
  29. ^ "What is Permafrost?". International Permafrost Association. 2014. from the original on 8 November 2014. Retrieved 8 November 2014.
  30. ^ a b Osterkamp, T. E. (2001), "Sub-Sea Permafrost", Encyclopedia of Ocean Sciences, pp. 2902–12, doi:10.1006/rwos.2001.0008, ISBN 978-0-12-227430-5
  31. ^ IPCC AR4 (2007). . Archived from the original on 13 April 2014. Retrieved 12 April 2014.{{cite web}}: CS1 maint: uses authors parameter (link)
  32. ^ Sayedi, Sayedeh Sara; Abbott, Benjamin W; Thornton, Brett F; Frederick, Jennifer M; Vonk, Jorien E; Overduin, Paul; Schädel, Christina; Schuur, Edward A G; Bourbonnais, Annie; Demidov, Nikita; Gavrilov, Anatoly (1 December 2020). "Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment". Environmental Research Letters. 15 (12): 124075. Bibcode:2020AGUFMB027...08S. doi:10.1088/1748-9326/abcc29.
  33. ^ Overduin, P. P.; Schneider von Deimling, T.; Miesner, F.; Grigoriev, M. N.; Ruppel, C.; Vasiliev, A.; Lantuit, H.; Juhls, B.; Westermann, S. (June 2019). "Submarine Permafrost Map in the Arctic Modeled Using 1‐D Transient Heat Flux (SuPerMAP)" (PDF). Journal of Geophysical Research: Oceans. 124 (6): 3490–3507. Bibcode:2019JGRC..124.3490O. doi:10.1029/2018JC014675. hdl:1912/24566. S2CID 146331663.
  34. ^ a b c Lunardini 1995, p. 35 Table Dl. Freeze at Prudhoe Bay, Alaska.
  35. ^ a b Osterkamp, T.E.; Burn, C.R. (14 September 2014), "Permafrost", in North, Gerald R.; Pyle, John A.; Zhang, Fuqing (eds.), Encyclopedia of Atmospheric Sciences (PDF), vol. 4, Elsevier, pp. 1717–1729, ISBN 978-0-12-382226-0, (PDF) from the original on 30 November 2016, retrieved 8 March 2016
  36. ^ Desonie, Dana (2008). Polar Regions: Human Impacts. New York: Chelsea Press. ISBN 978-0-8160-6218-8.
  37. ^ Fridleifsson, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (11 February 2008). O. Hohmeyer and T. Trittin (ed.). (PDF). IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany: 59–80. Archived from the original (PDF) on 12 March 2013. Retrieved 3 November 2013. {{cite journal}}: Cite journal requires |journal= (help)
  38. ^ Lunardini, Virgil J. (April 1995). "Permafrost Formation Time". CRREL Report 95-8. Hanover NH: US Army Corps of Engineers Cold Regions Research and Engineering Laboratory. p. 18. DTIC ADA295515. {{cite web}}: Missing or empty |url= (help)
  39. ^ Mackay, J. Ross (1973), "Problems in the origins of massive icy beds, Western Arctic, Canada", Permafrost: North American Contribution – Second International Conference, 2: 223–8, ISBN 978-0-309-02115-9
  40. ^ a b c French, H.M. (2007). The Periglacial Environment (3 ed.). Chichester: Wiley.
  41. ^ a b c d e Shumskiy, P.A.; Vtyurin, B.I. (1963), "Underground ice", Permafrost International Conference (1287): 108–13
  42. ^ Mackay, J.R.; Dallimore, S.R. (1992), "Massive ice of Tuktoyaktuk area, Western Arctic coast, Canada", Canadian Journal of Earth Sciences, 29 (6): 1234–42, Bibcode:1992CaJES..29.1235M, doi:10.1139/e92-099
  43. ^ Astakhov, 1986; Kaplanskaya and Tarnogradskiy, 1986; Astakhov and Isayeva, 1988; French, 1990; Lacelle et al., 2009
  44. ^ Pidwirny, M (2006). "Periglacial Processes and Landforms". Fundamentals of Physical Geography.
  45. ^ Kessler MA, Werner BT (January 2003). "Self-organization of sorted patterned ground". Science. 299 (5605): 380–3. Bibcode:2003Sci...299..380K. doi:10.1126/science.1077309. PMID 12532013. S2CID 27238820.
  46. ^ Li, Dongfeng; Overeem, Irina; Kettner, Albert J.; Zhou, Yinjun; Lu, Xixi (February 2021). "Air Temperature Regulates Erodible Landscape, Water, and Sediment Fluxes in the Permafrost‐Dominated Catchment on the Tibetan Plateau". Water Resources Research. 57 (2): e2020WR028193. Bibcode:2021WRR....5728193L. doi:10.1029/2020WR028193. S2CID 234044271.
  47. ^ Zhang, Ting; Li, Dongfeng; Kettner, Albert J.; Zhou, Yinjun; Lu, Xixi (October 2021). "Constraining Dynamic Sediment‐Discharge Relationships in Cold Environments: The Sediment‐Availability‐Transport (SAT) Model". Water Resources Research. 57 (10): e2021WR030690. Bibcode:2021WRR....5730690Z. doi:10.1029/2021WR030690. S2CID 242360211.
  48. ^ McGuire, A.D., Anderson, L.G., Christensen, T.R., Dallimore, S., Guo, L., Hayes, D.J., Heimann, M., Lorenson, T.D., Macdonald, R.W., and Roulet, N. (2009). "Sensitivity of the carbon cycle in the Arctic to climate change". Ecological Monographs. 79 (4): 523–555. doi:10.1890/08-2025.1. hdl:11858/00-001M-0000-000E-D87B-C. S2CID 1779296.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. ^ a b Koven, Charles D.; Riley, William J.; Stern, Alex (1 October 2012). "Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models". Journal of Climate. 26 (6): 1877–1900. doi:10.1175/JCLI-D-12-00228.1. OSTI 1172703.
  50. ^ Armstrong McKay, David I.; Staal, Arie; Abrams, Jesse F.; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah E.; Rockström, Johan; Lenton, Timothy M. (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611): eabn7950. doi:10.1126/science.abn7950. hdl:10871/131584. PMID 36074831. S2CID 252161375.
  51. ^ Nelson, F. E.; Anisimov, O. A.; Shiklomanov, N. I. (1 July 2002). "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions". Natural Hazards. 26 (3): 203–225. doi:10.1023/A:1015612918401. S2CID 35672358.
  52. ^ Barry, Roger Graham; Gan, Thian-Yew (2021). The global cryosphere past, present and future (Second revised ed.). Cambridge, United Kingdom. ISBN 978-1-108-48755-9. OCLC 1256406954.[page needed]
  53. ^ Programme, United Nations Environment (2009). The Natural Fix? The Role of Ecosystems in Climate Mitigation: A UNEP Rapid Response Assessment. pp. 20, 55. hdl:20.500.11822/7852. ISBN 978-82-7701-057-1.
  54. ^ Sidorchuk, Aleksey, Borisova Olga and Panin; Andrey; “Fluvial response to the late Valdai/Holocene environmental change on the East European plain” 2013-12-26 at the Wayback Machine
  55. ^ Yugo Ono and Tomohisa Irino; “Southern migration of westerlies in the Northern Hemisphere PEP II transect during the Last Glacial Maximum” in Quaternary International 118–119 (2004); pp. 13–22
  56. ^ Malde, H.E.; “Patterned Ground in the Western Snake River Plain, Idaho, and Its Possible Cold-Climate Origin”; in Geological society of America Bulletin; v. 75 no. 3 (March 1964); pp. 191–208
  57. ^ Grab, Stefan; “Characteristics and palaeoenvironmental significance of relict sorted patterned ground, Drakensberg plateau, southern Africa” in Quaternary Science Reviews, vol. 21, issues 14–15, (August 2002), pp. 1729–1744
  58. ^ "Inventory of fossil cryogenic forms and structures in Patagonia and the mountains of Argentina beyond the Andes". South African Journal of Science, 98: 171–180, Review Articles, Pretoria, Sudáfrica.
  59. ^ Kim, D; Vargas, R; Bond-Lamberty, B; Turetsky, M (2012). "Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research". Biogeosciences. 9 (7): 2459–2483. Bibcode:2012BGeo....9.2459K. doi:10.5194/bg-9-2459-2012.
  60. ^ Huissteden, J. van (2020). Thawing Permafrost: Permafrost Carbon in a Warming Arctic. Springer Nature. p. 296. ISBN 978-3-030-31379-1.
  61. ^ Dyke, Larry D.; Sladen, Wendy E. (3 December 2010). "Permafrost and Peatland Evolution in the Northern Hudson Bay Lowland, Manitoba". Arctic. 63 (4): 429–441. doi:10.14430/arctic3332.
  62. ^ F., Dramis; M., Govi; M., Guglielmin; G., Mortara (1 January 1995). "Mountain permafrost and slope instability in the Italian Alps: The Val Pola Landslide". Permafrost and Periglacial Processes. 6 (1): 73–81. doi:10.1002/ppp.3430060108.
  63. ^ Huggel, C.; Allen, S.; Deline, P.; et al. (June 2012), "Ice thawing, mountains falling; are alpine rock slope failures increasing?", Geology Today, 28 (3): 98–104, doi:10.1111/j.1365-2451.2012.00836.x, S2CID 128619284
  64. ^ Catastrophic Landslides: Effects, Occurrence, and Mechanisms. Reviews in Engineering Geology. Vol. 15. 2002. doi:10.1130/REG15. ISBN 0-8137-4115-7.
  65. ^ Nater, P.; Arenson, L.U.; Springman, S.M. (2008). Choosing geotechnical parameters for slope stability assessments in alpine permafrost soils. In 9th international conference on permafrost. Fairbanks, USA: University of Alaska. pp. 1261–1266. ISBN 978-0-9800179-3-9.
  66. ^ Kia, Mohammadali; Sego, David Charles; Morgenstern, Norbert Rubin. "FRP: Filter-less Rigid Piezometer for Measuring Pore-Water Pressure in Partially Frozen Soils". Alpha Adroit Engineering Ltd. Alpha Adroit Engineering Ltd. from the original on 28 January 2018. Retrieved 27 January 2018.
  67. ^ Temme, Arnaud J. A. M. (2015). "Using Climber's Guidebooks to Assess Rock Fall Patterns Over Large Spatial and Decadal Temporal Scales: An Example from the Swiss Alps". Geografiska Annaler: Series A, Physical Geography. 97 (4): 793–807. doi:10.1111/geoa.12116. S2CID 55361904.
  68. ^ "FDL: Frozen Debris Lobes". University of Alaska Fairbanks. FDLs. 7 January 2022. Retrieved 7 January 2022.
  69. ^ Hasemyer, David (20 December 2021). "Unleashed by Warming, Underground Debris Fields Threaten to 'Crush' Alaska's Dalton Highway and the Alaska Pipeline". Inside Climate News. Retrieved 7 January 2022.
  70. ^ a b Daanen, Ronald; Grosse, Guido; Darrow, Margaret; Hamilton, T.; Jones, Benjamin (21 May 2012). "Rapid movement of frozen debris-lobes: Implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska". Natural Hazards and Earth System Sciences. 12 (5): 1521–1537. Bibcode:2012NHESS..12.1521D. doi:10.5194/nhess-12-1521-2012.
  71. ^ Darrow, Margaret M.; Gyswyt, Nora L.; Simpson, Jocelyn M.; Daanen, Ronald P.; Hubbard, Trent D. (12 May 2016). "Frozen debris lobe morphology and movement: an overview of eight dynamic features, southern Brooks Range, Alaska". The Cryosphere. 10 (3): 977–993. Bibcode:2016TCry...10..977D. doi:10.5194/tc-10-977-2016.
  72. ^ Tarnocai; et al. (2009). "Soil organic carbon pools in the northern circumpolar permafrost region". Global Biogeochemical Cycles. 23 (2): GB2023. Bibcode:2009GBioC..23.2023T. doi:10.1029/2008gb003327.
  73. ^ Schuur; et al. (2011). "High risk of permafrost thaw". Nature. 480 (7375): 32–33. Bibcode:2011Natur.480...32S. doi:10.1038/480032a. PMID 22129707. S2CID 4412175.
  74. ^ Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (September 2006). "Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming". Nature. 443 (7107): 71–5. Bibcode:2006Natur.443...71W. doi:10.1038/nature05040. PMID 16957728. S2CID 4415304.
  75. ^ C. Michael Hogan, Black Spruce: Picea mariana, GlobalTwitcher.com, ed. Nicklas Stromberg, November, 2008 2011-10-05 at the Wayback Machine
  76. ^ Hansen; et al. (2007). "Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway". Environmental Microbiology. 9 (11): 2870–2884. doi:10.1111/j.1462-2920.2007.01403.x. PMID 17922769. – and additional references in this paper. Yergeau; et al. (2010). "The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses". The ISME Journal. 4 (9): 1206–1214. doi:10.1038/ismej.2010.41. PMID 20393573.
  77. ^ Li, Dongfeng; Lu, Xixi; Overeem, Irina; Walling, Desmond E.; Syvitski, Jaia; Kettner, Albert J.; Bookhagen, Bodo; Zhou, Yinjun; Zhang, Ting (29 October 2021). "Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia". Science. 374 (6567): 599–603. Bibcode:2021Sci...374..599L. doi:10.1126/science.abi9649. PMID 34709922. S2CID 240152765.
  78. ^ a b c d e f Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G.  Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362, doi:10.1017/9781009157896.011.
  79. ^ Douglas, Thomas A.; Turetsky, Merritt R.; Koven, Charles D. (24 July 2020). "Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems". NPJ Climate and Atmospheric Science. 3 (1): 5626. doi:10.1038/s41467-022-33293-x. PMC 9512808. PMID 36163194.
  80. ^ Nowinski NS, Taneva L, Trumbore SE, Welker JM (January 2010). "Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment". Oecologia. 163 (3): 785–92. Bibcode:2010Oecol.163..785N. doi:10.1007/s00442-009-1556-x. PMC 2886135. PMID 20084398.
  81. ^ Schuur, E.A.G., Bockheim, J., Canadell, J.G., Euskirchen, E., Field, C.B., Goryachkin, S.V., Hagemann, S., Kuhry, P., Lafleur, P.M., Lee, H., Mazhitova, G., Nelson, F.E., Rinke, A., Romanovsky, V.E., Skiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J.G., and Zimov, S.A. (2008). "Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle". BioScience. 58 (8): 701–714. doi:10.1641/B580807.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  82. ^ Lim, Artem G.; Loiko, Sergey V.; Pokrovsky, Oleg S. (10 January 2023). "Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors". Science of the Total Environment. 3: 158710. Bibcode:2023ScTEn.855o8710L. doi:10.1016/j.scitotenv.2022.158710. PMID 36099954. S2CID 252221350.
  83. ^ Patzner, Monique S.; Mueller, Carsten W.; Malusova, Miroslava; Baur, Moritz; Nikeleit, Verena; Scholten, Thomas; Hoeschen, Carmen; Byrne, James M.; Borch, Thomas; Kappler, Andreas; Bryce, Casey (10 December 2020). "Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw". Nature Communications. 11 (1): 6329. Bibcode:2020NatCo..11.6329P. doi:10.1038/s41467-020-20102-6. PMC 7729879. PMID 33303752.
  84. ^ Bockheim, J.G. & Hinkel, K.M. (2007). . Soil Science Society of America Journal. 71 (6): 1889–92. Bibcode:2007SSASJ..71.1889B. doi:10.2136/sssaj2007.0070N. Archived from the original on 17 July 2009. Retrieved 5 June 2010.
  85. ^ Li, Qi; Hu, Weifang; Li, Linfeng; Li, Yichun (1 March 2022). "Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia". Geoderma. 3 (1): 5626. doi:10.1038/s41467-022-33293-x. PMC 9512808. PMID 36163194.
  86. ^ Gillis, Justin (16 December 2011). "As Permafrost Thaws, Scientists Study the Risks". The New York Times. from the original on 19 May 2017. Retrieved 11 February 2017.
  87. ^ Schellnhuber, Hans Joachim; Winkelmann, Ricarda; Scheffer, Marten; Lade, Steven J.; Fetzer, Ingo; Donges, Jonathan F.; Crucifix, Michel; Cornell, Sarah E.; Barnosky, Anthony D. (2018). "Trajectories of the Earth System in the Anthropocene". Proceedings of the National Academy of Sciences. 115 (33): 8252–8259. Bibcode:2018PNAS..115.8252S. doi:10.1073/pnas.1810141115. ISSN 0027-8424. PMC 6099852. PMID 30082409.
  88. ^ MacDougall, Andrew H. (10 September 2021). "Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change". Biogeosciences. 18 (17): 4937–4952. Bibcode:2021BGeo...18.4937M. doi:10.5194/bg-18-4937-2021.
  89. ^ Sayedi, Sayedeh Sara; Abbott, Benjamin W; Thornton, Brett F; Frederick, Jennifer M; Vonk, Jorien E; Overduin, Paul; Schädel, Christina; Schuur, Edward A G; Bourbonnais, Annie; Demidov, Nikita; Gavrilov, Anatoly (1 December 2020). "Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment". Environmental Research Letters. 15 (12): B027-08. Bibcode:2020AGUFMB027...08S. doi:10.1088/1748-9326/abcc29. ISSN 1748-9326. S2CID 234515282.
  90. ^ Hugelius, Gustaf; Loisel, Julie; Chadburn, Sarah; et al. (10 August 2020). "Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw". Earth, Atmospheric, and Planetary Sciences. 117 (34): 20438–20446. Bibcode:2020PNAS..11720438H. doi:10.1073/pnas.1916387117. PMC 7456150. PMID 32778585.
  91. ^ Dietz, Simon; Rising, James; Stoerk, Thomas; Wagner, Gernot (24 August 2021). "Economic impacts of tipping points in the climate system". Proceedings of the National Academy of Sciences. 118 (34): e2103081118. Bibcode:2021PNAS..11803081D. doi:10.1073/pnas.2103081118. PMC 8403967. PMID 34400500.
  92. ^ Keen, Steve; Lenton, Timothy M.; Garrett, Timothy J.; Rae, James W. B.; Hanley, Brian P.; Grasselli, Matheus (19 May 2022). "Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature". Proceedings of the National Academy of Sciences. 119 (21): e2117308119. Bibcode:2022PNAS..11917308K. doi:10.1073/pnas.2117308119. PMC 9173761. PMID 35588449. S2CID 248917625.
  93. ^ Dietz, Simon; Rising, James; Stoerk, Thomas; Wagner, Gernot (19 May 2022). "Reply to Keen et al.: Dietz et al. modeling of climate tipping points is informative even if estimates are a probable lower bound". Proceedings of the National Academy of Sciences. 119 (21): e2201191119. Bibcode:2022PNAS..11901191D. doi:10.1073/pnas.2201191119. PMC 9173815. PMID 35588452.
  94. ^ "Carbon Emissions from Permafrost". 50x30. 2021. Retrieved 8 October 2022.
  95. ^ Natali, Susan M.; Holdren, John P.; Rogers, Brendan M.; Treharne, Rachael; Duffy, Philip B.; Pomerance, Rafe; MacDonald, Erin (10 December 2020). "Permafrost carbon feedbacks threaten global climate goals". Biological Sciences. 118 (21). doi:10.1073/pnas.2100163118. PMC 8166174. PMID 34001617.
  96. ^ Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611): eabn7950. doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. PMID 36074831. S2CID 252161375.
  97. ^ Armstrong McKay, David (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer". climatetippingpoints.info. Retrieved 2 October 2022.
  98. ^ a b Smith, Alvin W.; Skilling, Douglas E.; Castello, John D.; Rogers, Scott O. (1 January 2004). "Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses". Medical Hypotheses. 63 (4): 560–566. doi:10.1016/j.mehy.2004.05.011. PMID 15324997.
  99. ^ Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin (March 2016). Margesin, Rosa (ed.). "Microbial diversity in European alpine permafrost and active layers". FEMS Microbiology Ecology. 92 (3): fiw018. doi:10.1093/femsec/fiw018. PMID 26832204.
  100. ^ "Anthrax Outbreak In Russia Thought To Be Result Of Thawing Permafrost". NPR.org. from the original on 22 September 2016. Retrieved 24 September 2016.
  101. ^ Legendre, Matthieu; Bartoli, Julia; Shmakova, Lyubov; Jeudy, Sandra; Labadie, Karine; Adrait, Annie; Lescot, Magali; Poirot, Olivier; Bertaux, Lionel; Bruley, Christophe; Couté, Yohann (2014). "Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology". Proceedings of the National Academy of Sciences of the United States of America. 111 (11): 4274–4279. Bibcode:2014PNAS..111.4274L. doi:10.1073/pnas.1320670111. JSTOR 23771019. PMC 3964051. PMID 24591590.
  102. ^ a b Legendre, Matthieu; Lartigue, Audrey; Bertaux, Lionel; Jeudy, Sandra; Bartoli, Julia; Lescot, Magali; Alempic, Jean-Marie; Ramus, Claire; Bruley, Christophe; Labadie, Karine; Shmakova, Lyubov (2015). "In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): E5327–E5335. Bibcode:2015PNAS..112E5327L. doi:10.1073/pnas.1510795112. JSTOR 26465169. PMC 4586845. PMID 26351664.
  103. ^ Kudryashova, E. B.; Chernousova, E. Yu.; Suzina, N. E.; Ariskina, E. V.; Gilichinsky, D. A. (1 May 2013). "Microbial diversity of Late Pleistocene Siberian permafrost samples". Microbiology. 82 (3): 341–351. doi:10.1134/S0026261713020082. S2CID 2645648.
  104. ^ Isachenkov, Vladimir (20 February 2012), "Russians revive Ice Age flower from frozen burrow", Phys.Org, from the original on 24 April 2016, retrieved 26 April 2016
  105. ^ a b Joshua Yaffa (20 January 2022). "The Great Siberian Thaw". The New Yorker. Retrieved 20 January 2022.
  106. ^ Fang, Hsai-Yang (31 December 1990). Foundation Engineering Handbook. Springer Science & Business Media. p. 735. ISBN 978-0-412-98891-2.
  107. ^ Yaffa, Joshua (7 January 2022). "The Great Siberian Thaw". The New Yorker. Retrieved 12 January 2022.
  108. ^ Clarke, Edwin S. (2007). Permafrost Foundations—State of the Practice. Monograph Series. American Society of Civil Engineers. ISBN 978-0-7844-0947-3.
  109. ^ Woods, Kenneth B. (1966). Permafrost International Conference: Proceedings. National Academies. pp. 418–57.
  110. ^ Sanger, Frederick J.; Hyde, Peter J. (1 January 1978). Permafrost: Second International Conference, July 13-28, 1973 : USSR Contribution. National Academies. p. 786. ISBN 978-0-309-02746-5.
  111. ^ "Diesel fuel spill in Norilsk in Russia's Arctic contained". TASS. Moscow, Russia. 5 June 2020. Retrieved 7 June 2020.
  112. ^ Max Seddon (4 June 2020), "Siberia fuel spill threatens Moscow's Arctic ambitions", Financial Times, archived from the original on 10 December 2022
  113. ^ a b Ivan Nechepurenko (5 June 2020), "Russia Declares Emergency After Arctic Oil Spill", New York Times
  114. ^ ANTONOVA, MARIA (5 June 2020). "Russia Says Melting Permafrost Is Behind The Massive Arctic Fuel Spill". Science Daily. Retrieved 19 July 2020.

External links

  • Permafrostwatch University of Alaska Fairbanks
  • Infographics about permafrost
  • International Permafrost Association (IPA)
  • Alpine permafrost monitoring network - permanet 21 January 2022 at the Wayback Machine
  • Center for Permafrost
  • Map of permafrost in Antarctica.
  • Permafrost – what is it? – YouTube (Alfred Wegener Institute)

permafrost, this, article, about, frozen, ground, other, uses, disambiguation, ground, that, continuously, remains, below, more, years, located, land, under, ocean, most, common, northern, hemisphere, around, northern, hemisphere, global, surface, underlain, p. This article is about frozen ground For other uses see Permafrost disambiguation Permafrost is ground that continuously remains below 0 C 32 F for two or more years located on land or under the ocean Most common in the Northern Hemisphere around 15 of the Northern Hemisphere or 11 of the global surface is underlain by permafrost 1 with the total area of around 18 million km2 2 This includes substantial areas of Alaska Greenland Canada and Siberia It can also be located on mountaintops in the Southern Hemisphere and beneath ice free areas in the Antarctic PermafrostMap showing extent and types of permafrost in the Northern HemisphereUsed inInternational Permafrost AssociationClimateHigh latitudes alpine regionsSlope failure of permafrost soil revealing the top of an ice wedge Permafrost does not have to be the first layer that is on the ground It can be from several centimeters to several hundred meters deep under the Earth s surface It frequently occurs in ground ice but it can also be present in non porous bedrock Permafrost is formed from ice holding various types of soil sand and rock in combination 3 Permafrost contains large amounts of biomass and decomposed biomass that has been stored as methane and carbon dioxide making tundra soil a carbon sink As global warming heats the ecosystem and causes soil thawing the permafrost carbon cycle accelerates and releases much of these soil contained greenhouse gases into the atmosphere creating a feedback cycle that increases climate change 4 Thawing of permafrost is one of the effects of climate change While emissions from thawing permafrost will be significant enough to lead to additional warming they will likely not be enough to trigger a self reinforcing feedback leading to runaway warming 5 Contents 1 Study of permafrost 2 Classification and extent 2 1 Continuity of coverage 2 1 1 Discontinuous permafrost 2 1 2 Continuous permafrost 2 2 Alpine permafrost 2 3 Subsea permafrost 3 Manifestations 3 1 Base depth 3 2 Massive ground ice 3 3 Landforms 3 4 Carbon cycle in permafrost 4 Effects of climate change 4 1 Historical changes 4 2 Thaw 4 3 Effect on slope stability 4 3 1 Frozen debris lobes 4 4 Ecological consequences 4 5 Climate change feedback 5 Preservation of organisms in permafrost 5 1 Microbes 5 2 Plants 6 Extraterrestrial permafrost 7 Other issues 7 1 Construction on permafrost 8 See also 9 References 10 External linksStudy of permafrost Edit Southern limit of permafrost in Eurasia according to Karl Ernst von Baer 1843 and other authors In contrast to the relative dearth of reports on frozen ground in North America prior to World War II a vast literature on basic permafrost science and the engineering aspects of permafrost was available in Russian Some Russian authors relate permafrost research with the name Alexander von Middendorff 1815 1894 However Russian scientists also realized that Karl Ernst von Baer must be given the attribute founder of scientific permafrost research In 1843 Baer s original study materials for the study of the perennial ground ice was ready to be printed Baer s detailed study consists of 218 pages and was written in German language as he was a Baltic German scientist He was teaching at the University of Konigsberg and became a member of the St Petersburg Academy of Sciences This world s first permafrost textbook was conceived as a complete work and ready for printing in 1843 But it remained lost for around 150 years However from 1838 onwards Baer published several individual publications on permafrost The Russian Academy of Sciences honoured Baer with the publication of a tentative Russian translation of his study in 1942 6 These facts were completely forgotten after the Second World War Thus in 2001 the discovery of the typescript from 1843 in the library archives of the University of Giessen and its annotated publication was a scientific sensation The full text of Baer s original work is available online 234 pages 6 The editor added to the facsimile reprint a preface in English two colour permafrost maps of Eurasia and some figures of permafrost features Baer s text is introduced with detailed comments and references on additional 66 pages written by the Estonian historian Erki Tammiksaar The work is notable because Baer s observations on permafrost distribution and periglacial morphological descriptions are seen as largely correct to the present day 6 With his compilation and analysis of all available data on ground ice and permafrost Baer laid the foundation for the modern permafrost terminology Baer s southern limit of permafrost in Eurasia drawn in 1843 corresponds well with the actual southern limit on the Circum Arctic Map of Permafrost and Ground Ice Conditions of the International Permafrost Association edited by J Brown et al 7 Beginning in 1942 Siemon William Muller delved into the relevant Russian literature held by the Library of Congress and the U S Geological Survey Library so that he was able to furnish the government an engineering field guide and a technical report about permafrost by 1943 8 the year in which he coined the term as a contraction of permanently frozen ground 9 Although originally classified as U S Army Office of the Chief of Engineers Strategic Engineering Study no 62 1943 9 10 11 12 in 1947 a revised report was released publicly which is regarded as the first North American treatise on the subject 8 12 Classification and extent Edit Red lines Seasonal temperature extremes dotted average Permafrost is soil rock or sediment that is frozen for more than two consecutive years In areas not covered by ice it exists beneath a layer of soil rock or sediment which freezes and thaws annually and is called the active layer 13 In practice this means that permafrost occurs at an mean annual temperature of 2 C 28 4 F or below Active layer thickness varies with the season but is 0 3 to 4 meters thick shallow along the Arctic coast deep in southern Siberia and the Qinghai Tibetan Plateau citation needed The extent of permafrost is displayed in terms of permafrost zones which are defined according to the area underlain by permafrost as continuous 90 100 discontinuous 50 90 sporadic 10 50 and isolated patches 10 or less 7 These permafrost zones cover together approximately 22 of the Northern Hemisphere Continuous permafrost zone covers slightly more than half of this area discontinuous permafrost around 20 percent and sporadic permafrost together with isolated patches little less than 30 percent 14 Because permafrost zones are not entirely underlain by permafrost only 15 of the ice free area of the Northern Hemisphere is actually underlain by permafrost 1 Most of this area is found in Siberia northern Canada Alaska and Greenland Beneath the active layer annual temperature swings of permafrost become smaller with depth The deepest depth of permafrost occurs where geothermal heat maintains a temperature above freezing Above that bottom limit there may be permafrost with a consistent annual temperature isothermal permafrost 15 Continuity of coverage Edit Permafrost typically forms in any climate where the mean annual air temperature is lower than the freezing point of water Exceptions are found in humid boreal forests such as in Northern Scandinavia and the North Eastern part of European Russia west of the Urals where snow acts as an insulating blanket Glaciated areas may also be exceptions Since all glaciers are warmed at their base by geothermal heat temperate glaciers which are near the pressure melting point throughout may have liquid water at the interface with the ground and are therefore free of underlying permafrost 16 Fossil cold anomalies in the Geothermal gradient in areas where deep permafrost developed during the Pleistocene persist down to several hundred metres This is evident from temperature measurements in boreholes in North America and Europe 17 Discontinuous permafrost Edit The below ground temperature varies less from season to season than the air temperature with mean annual temperatures tending to increase with depth as a result of the geothermal crustal gradient Thus if the mean annual air temperature is only slightly below 0 C 32 F permafrost will form only in spots that are sheltered usually with a northern or southern aspect in north and south hemispheres respectively creating discontinuous permafrost Usually permafrost will remain discontinuous in a climate where the mean annual soil surface temperature is between 5 and 0 C 23 and 32 F In the moist wintered areas mentioned before there may not be even discontinuous permafrost down to 2 C 28 F Discontinuous permafrost is often further divided into extensive discontinuous permafrost where permafrost covers between 50 and 90 percent of the landscape and is usually found in areas with mean annual temperatures between 2 and 4 C 28 and 25 F and sporadic permafrost where permafrost cover is less than 50 percent of the landscape and typically occurs at mean annual temperatures between 0 and 2 C 32 and 28 F 18 In soil science the sporadic permafrost zone is abbreviated SPZ and the extensive discontinuous permafrost zone DPZ 19 Exceptions occur in un glaciated Siberia and Alaska where the present depth of permafrost is a relic of climatic conditions during glacial ages where winters were up to 11 C 20 F colder than those of today Continuous permafrost Edit Estimated extent of alpine permafrost by region 20 Locality AreaQinghai Tibet Plateau 1 300 000 km2 500 000 sq mi Khangai Altai Mountains 1 000 000 km2 390 000 sq mi Brooks Range 263 000 km2 102 000 sq mi Siberian Mountains 255 000 km2 98 000 sq mi Greenland 251 000 km2 97 000 sq mi Ural Mountains 125 000 km2 48 000 sq mi Andes 100 000 km2 39 000 sq mi Rocky Mountains US and Canada 100 000 km2 39 000 sq mi Alps 80 000 km2 31 000 sq mi Fennoscandian mountains 75 000 km2 29 000 sq mi Remaining lt 50 000 km2 19 000 sq mi At mean annual soil surface temperatures below 5 C 23 F the influence of aspect can never be sufficient to thaw permafrost and a zone of continuous permafrost abbreviated to CPZ forms A line of continuous permafrost in the Northern Hemisphere 21 represents the most southern border where land is covered by continuous permafrost or glacial ice The line of continuous permafrost varies around the world northward or southward due to regional climatic changes In the southern hemisphere most of the equivalent line would fall within the Southern Ocean if there were land there Most of the Antarctic continent is overlain by glaciers under which much of the terrain is subject to basal melting 22 The exposed land of Antarctica is substantially underlain with permafrost 23 some of which is subject to warming and thawing along the coastline 24 Alpine permafrost Edit Alpine permafrost occurs at elevations with low enough average temperatures to sustain perennially frozen ground much alpine permafrost is discontinuous 25 Estimates of the total area of alpine permafrost vary Bockheim and Munroe 20 combined three sources and made the tabulated estimates by region totaling 3 560 000 km2 1 370 000 sq mi Alpine permafrost in the Andes has not been mapped 26 Its extent has been modeled to assess the amount of water bound up in these areas 27 In 2009 a researcher from Alaska found permafrost at the 4 700 m 15 400 ft level on Africa s highest peak Mount Kilimanjaro approximately 3 south of the equator 28 Subsea permafrost Edit Subsea permafrost occurs beneath the seabed and exists in the continental shelves of the polar regions 29 These areas formed during the last ice age when a larger portion of Earth s water was bound up in ice sheets on land and when sea levels were low As the ice sheets melted to again become seawater the permafrost became submerged shelves under relatively warm and salty boundary conditions compared to surface permafrost Therefore subsea permafrost exists in conditions that lead to its diminishment According to Osterkamp subsea permafrost is a factor in the design construction and operation of coastal facilities structures founded on the seabed artificial islands sub sea pipelines and wells drilled for exploration and production 30 It also contains gas hydrates in places which are a potential abundant source of energy but may also destabilize as subsea permafrost warms and thaws producing large amounts of methane gas which is a potent greenhouse gas 30 31 32 Scientists report with high confidence that the extent of subsea permafrost is decreasing and 97 of permafrost under Arctic ice shelves is currently thinning 33 5 1281 Manifestations EditTime required for permafrost to reach depth at Prudhoe Bay Alaska 34 Time yr Permafrost depth1 4 44 m 14 6 ft 350 79 9 m 262 ft 3 500 219 3 m 719 ft 35 000 461 4 m 1 514 ft 100 000 567 8 m 1 863 ft 225 000 626 5 m 2 055 ft 775 000 687 7 m 2 256 ft Base depth Edit Permafrost extends to a base depth where geothermal heat from the Earth and the mean annual temperature at the surface achieve an equilibrium temperature of 0 C 35 The base depth of permafrost reaches 1 493 m 4 898 ft in the northern Lena and Yana River basins in Siberia 36 The geothermal gradient is the rate of increasing temperature with respect to increasing depth in the Earth s interior Away from tectonic plate boundaries it is about 25 30 C km 124 139 F mi near the surface in most of the world 37 It varies with the thermal conductivity of geologic material and is less for permafrost in soil than in bedrock 35 Calculations indicate that the time required to form the deep permafrost underlying Prudhoe Bay Alaska was over a half million years 34 38 This extended over several glacial and interglacial cycles of the Pleistocene and suggests that the present climate of Prudhoe Bay is probably considerably warmer than it has been on average over that period Such warming over the past 15 000 years is widely accepted 34 The table to the right shows that the first hundred metres of permafrost forms relatively quickly but that deeper levels take progressively longer Massive ground ice Edit Massive blue ground ice exposure on the north shore of Herschel Island Yukon Canada When the ice content of a permafrost exceeds 250 percent ice to dry soil by mass it is classified as massive ice Massive ice bodies can range in composition in every conceivable gradation from icy mud to pure ice Massive icy beds have a minimum thickness of at least 2 m and a short diameter of at least 10 m 39 First recorded North American observations were by European scientists at Canning River Alaska in 1919 40 Russian literature provides an earlier date of 1735 and 1739 during the Great North Expedition by P Lassinius and Kh P Laptev respectively 41 Two categories of massive ground ice are buried surface ice and intrasedimental ice 42 also called constitutional ice 41 Buried surface ice may derive from snow frozen lake or sea ice aufeis stranded river ice and probably the most prevalent buried glacial ice 43 Intrasedimental ice forms by in place freezing of subterranean waters and is dominated by segregational ice which results from the crystallizational differentiation taking place during the freezing of wet sediments accompanied by water migrating to the freezing front 41 Intrasedimental or constitutional ice has been widely observed and studied across Canada and also includes intrusive and injection ice 40 41 Additionally ice wedges a separate type of ground ice produce recognizable patterned ground or tundra polygons Ice wedges form in a pre existing geological substrate and were first described in 1919 40 41 Several types of massive ground ice including ice wedges and intrasedimental ice within the cliff wall of a retrogressive thaw slump located on the southern coast of Herschel Island within an approximately 22 metre 72 ft by 1 300 metre 4 300 ft headwall Landforms Edit See also Patterned ground Permafrost processes manifest themselves in large scale land forms such as palsas and pingos 44 and smaller scale phenomena such as patterned ground found in arctic periglacial and alpine areas 45 In ice rich permafrost areas melting of ground ice initiates thermokarst landforms such as thermokarst lakes thaw slumps thermal erosion gullies and active layer detachments 46 47 A group of palsas as seen from above formed by the growth of ice lenses A peat plateau complex south of Fort Simpson Northwest Territories Pingos near Tuktoyaktuk Northwest Territories Canada Ground polygons Stone rings on Spitsbergen Ice wedges seen from top Solifluction on Svalbard Contraction crack ice wedge polygons on Arctic sediment Cracks forming at the edges of the Storflaket permafrost bog in Sweden Carbon cycle in permafrost Edit The permafrost carbon cycle Arctic Carbon Cycle deals with the transfer of carbon from permafrost soils to terrestrial vegetation and microbes to the atmosphere back to vegetation and finally back to permafrost soils through burial and sedimentation due to cryogenic processes Some of this carbon is transferred to the ocean and other portions of the globe through the global carbon cycle The cycle includes the exchange of carbon dioxide and methane between terrestrial components and the atmosphere as well as the transfer of carbon between land and water as methane dissolved organic carbon dissolved inorganic carbon particulate inorganic carbon and particulate organic carbon 48 Effects of climate change EditFurther information Permafrost carbon cycle Arctic permafrost has been diminishing for decades Globally permafrost warmed by about 0 3 C between 2007 and 2016 with stronger warming observed in the continuous permafrost zone relative to the discontinuous zone 5 1280 The consequence is thawing soil which may be weaker and release of methane which contributes to an increased rate of global warming as part of a feedback loop caused by microbial decomposition 49 50 Wetlands drying out from drainage or evaporation compromises the ability of plants and animals to survive 49 When permafrost continues to diminish many climate change scenarios will be amplified In areas where permafrost is high nearby human infrastructure may be damaged severely by the thawing of permafrost 51 52 It is believed that carbon storage in permafrost globally is approximately 1600 gigatons equivalent to twice the atmospheric pool 53 Historical changes Edit Recently thawed Arctic permafrost and coastal erosion on the Beaufort Sea Arctic Ocean near Point Lonely Alaska in 2013 At the Last Glacial Maximum continuous permafrost covered a much greater area than it does today covering all of ice free Europe south to about Szeged southeastern Hungary and the Sea of Azov then dry land 54 and East Asia south to present day Changchun and Abashiri 55 In North America only an extremely narrow belt of permafrost existed south of the ice sheet at about the latitude of New Jersey through southern Iowa and northern Missouri but permafrost was more extensive in the drier western regions where it extended to the southern border of Idaho and Oregon 56 In the southern hemisphere there is some evidence for former permafrost from this period in central Otago and Argentine Patagonia but was probably discontinuous and is related to the tundra Alpine permafrost also occurred in the Drakensberg during glacial maxima above about 3 000 metres 9 840 ft 57 58 Thaw Edit See also Thermokarst By definition permafrost is ground that remains frozen for two or more years 3 The ground can consist of many substrate materials including bedrock sediment organic matter water or ice Frozen ground is that which is below the freezing point of water whether or not water is present in the substrate Ground ice is not always present as may be the case with nonporous bedrock but it frequently occurs and may be present in amounts exceeding the potential hydraulic saturation of the thawed substrate During thaw the ice content of the soil melts and as the water drains or evaporates causes the soil structure to weaken and sometimes become viscous until it regains strength with decreasing moisture content Thawing can also influence the rate of change of soil gases with the atmosphere 59 One visible sign of permafrost degradation is the random displacement of trees from their vertical orientation in permafrost areas 60 Thawing permafrost in Herschel Island Canada 2013 Permafrost and ice in Herschel Island Canada 2012 Permafrost thaw ponds on peatland in Hudson Bay Canada in 2008 61 Effect on slope stability Edit Over the past century an increasing number of alpine rock slope failure events in mountain ranges around the world have been recorded It is expected that the high number of structural failures is due to permafrost thawing which is thought to be linked to climate change Permafrost thawing is thought to have contributed to the 1987 Val Pola landslide that killed 22 people in the Italian Alps 62 In mountain ranges much of the structural stability can be attributed to glaciers and permafrost As climate warms permafrost thaws which results in a less stable mountain structure and ultimately more slope failures 63 McSaveney 64 reported massive rock and ice falls up to 11 8 million m3 earthquakes up to 3 9 Richter floods up to 7 8 million m3 water and rapid rock ice flow to long distances up to 7 5 km at 60 m s caused by instability of slopes in high mountain permafrost Instability of slopes in permafrost at elevated temperatures near freezing point in warming permafrost is related to effective stress and buildup of pore water pressure in these soils 65 Kia and his co inventors 66 invented a new filter less rigid piezometer FRP for measuring pore water pressure in partially frozen soils such as warming permafrost soils They extended the use of effective stress concept to partially frozen soils for use in slope stability analysis of warming permafrost slopes The use of effective stress concept has many advantages such as ability to extend the concepts of Critical State Soil Mechanics into frozen ground engineering citation needed In high mountains rockfalls may be caused by thawing of rock masses with permafrost 67 Frozen debris lobes Edit According to the University of Alaska Fairbanks frozen debris lobes FDLs are slow moving landslides composed of soil rocks trees and ice that occur in permafrost 68 As of December 2021 there were 43 frozen debris lobes identified in the southern Brooks Range along the Trans Alaska Pipeline System TAPS corridor and the main highway linking Interior Alaska and the Alaska North Slope the Dalton Highway 69 By 2012 some FDLs measured over 100 m 110 yd in width 20 m 22 yd in height and 1 000 m 1 100 yd in length 70 1521 Based on measurements of a frozen debris lobe southern Brooks Range in Alaska taken from 2008 to 2010 researchers found accelerated movement as ice in deeper layers of soil melted with rising temperatures Ice within the soil melts causing loss of soil strength accelerated movement and potential debris flows They raised concerns of a future potential hazard of one debris lobe to both the Trans Alaska Pipeline System and the main highway linking Interior Alaska and the North Slope Dalton Highway 70 71 Ecological consequences Edit In the northern circumpolar region permafrost contains 1700 billion tons of organic material equaling almost half of all organic material in all soils 72 This pool was built up over thousands of years and is only slowly degraded under the cold conditions in the Arctic The amount of carbon sequestered in permafrost is four times the carbon that has been released to the atmosphere due to human activities in modern time 73 One manifestation of this is yedoma which is an organic rich about 2 carbon by mass Pleistocene age loess permafrost with ice content of 50 90 by volume 74 Formation of permafrost has significant consequences for ecological systems primarily due to constraints imposed upon rooting zones but also due to limitations on den and burrow geometries for fauna requiring subsurface homes Secondary effects impact species dependent on plants and animals whose habitat is constrained by the permafrost One of the most widespread examples is the dominance of black spruce in extensive permafrost areas since this species can tolerate rooting pattern constrained to the near surface 75 The number of bacteria in permafrost soil varies widely typically from 1 to 1000 million per gram of soil 76 Most of these bacteria and fungi in permafrost soil cannot be cultured in the laboratory but the identity of the microorganisms can be revealed by DNA based techniques Global warming has been increasing permafrost slope disturbances and sediment supplies to fluvial systems resulting in exceptional increases in river sediment 77 Climate change feedback Edit See also Arctic methane emissions This section is an excerpt from Permafrost carbon cycle Carbon release from the permafrost edit Carbon is continually cycling between soils vegetation and the atmosphere As climate change increases mean annual air temperatures throughout the Arctic it extends permafrost thaw and deepens the active layer exposing old carbon that has been in storage for decades to millennia to biogenic processes which facilitate its entrance into the atmosphere In general the volume of permafrost in the upper 3 m of ground is expected to decrease by about 25 per 1 C of global warming 78 1283 According to the IPCC Sixth Assessment Report there is high confidence that global warming over the last few decades has led to widespread increases in permafrost temperature 78 1237 Observed warming was up to 3 C in parts of Northern Alaska early 1980s to mid 2000s and up to 2 C in parts of the Russian European North 1970 2020 and active layer thickness has increased in the European and Russian Arctic across the 21st century and at high elevation areas in Europe and Asia since the 1990s 78 1237 In Yukon the zone of continuous permafrost might have moved 100 kilometres 62 mi poleward since 1899 but accurate records only go back 30 years Based on high agreement across model projections fundamental process understanding and paleoclimate evidence it is virtually certain that permafrost extent and volume will continue to shrink as global climate warms 78 1283 Carbon emissions from permafrost thaw contribute to the same warming which facilitates the thaw making it a positive climate change feedback The warming also intensifies Arctic water cycle and the increased amounts of warmer rain are another factor which increases permafrost thaw depths 79 The amount of carbon that will be released from warming conditions depends on depth of thaw carbon content within the thawed soil physical changes to the environment 80 and microbial and vegetation activity in the soil Microbial respiration is the primary process through which old permafrost carbon is re activated and enters the atmosphere The rate of microbial decomposition within organic soils including thawed permafrost depends on environmental controls such as soil temperature moisture availability nutrient availability and oxygen availability 81 In particular sufficient concentrations of iron oxides in some permafrost soils can inhibit microbial respiration and prevent carbon mobilization however this protection only lasts until carbon is separated from the iron oxides by Fe reducing bacteria which is only a matter of time under the typical conditions 82 Depending on the soil type Iron III oxide can boost oxidation of methane to carbon dioxide in the soil but it can also amplify methane production by acetotrophs these soil processes are not yet fully understood 83 Altogether the likelihood of the entire carbon pool mobilizing and entering the atmosphere is low despite the large volumes stored in the soil Although temperatures will increase this does not imply complete loss of permafrost and mobilization of the entire carbon pool Much of the ground underlain by permafrost will remain frozen even if warming temperatures increase the thaw depth or increase thermokarsting and permafrost degradation 84 Moreover other elements such as iron and aluminum can adsorb some of the mobilized soil carbon before it reaches the atmosphere and they are particularly prominent in the mineral sand layers which often overlay permafrost 85 On the other hand once the permafrost area thaws it will not go back to being permafrost for centuries even if the temperature increase reversed making it one of the best known examples of tipping points in the climate system This section is an excerpt from Permafrost carbon cycle Cumulative edit In 2011 preliminary computer analyses suggested that permafrost emissions could be equivalent to around 15 of anthropogenic emissions 86 A 2018 perspectives article discussing tipping points in the climate system activated around 2 degrees Celsius of global warming suggested that at this threshold permafrost thaw would add a further 0 09 C to global temperatures by 2100 with a range between 0 04 C and 0 16 C 87 In 2021 another study estimated that in a future where zero emissions were reached following a emission of a further 1000 Pg C into the atmosphere a scenario where temperatures ordinarily stay stable after the last emission or start to decline slowly permafrost carbon would add 0 06 C with a range between 0 02 C and 0 14 C 50 years after the last anthropogenic emission 0 09 C with a range between 0 04 C to 0 21 C 100 years later and 0 27 C ranging between 0 12 to 0 49 C 500 years later 88 However neither study was able to take abrupt thaw into account In 2020 a study of the northern permafrost peatlands a smaller subset of the entire permafrost area covering 3 7 million km2 out of the estimated 18 million km2 89 would amount to 1 of anthropogenic radiative forcing by 2100 and that this proportion remains the same in all warming scenarios considered from 1 5 C to 6 C It had further suggested that after 200 more years those peatlands would have absorbed more carbon than what they had emitted into the atmosphere 90 The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14 175 billion tonnes of carbon dioxide per 1 ºC of warming 78 1237 For comparison by 2019 the anthropogenic emission of all carbon dioxide into the atmosphere stood around 40 billion tonnes 78 1237 A 2021 assessment of the economic impact of climate tipping points estimated that permafrost carbon emissions would increase the social cost of carbon by about 8 4 91 However the methods of that assessment have attracted controversy when researchers like Steve Keen and Timothy Lenton had accused it of underestimating the overall impact of tipping points and of higher levels of warming in general 92 the authors have conceded some of their points 93 In 2021 a group of prominent permafrost researchers like Merritt Turetsky had presented their collective estimate of permafrost emissions including the abrupt thaw processes as part of an effort to advocate for a 50 reduction in anthropogenic emissions by 2030 as a necessary milestone to help reach net zero by 2050 Their figures for combined permafrost emissions by 2100 amounted to 150 200 billion tonnes of carbon dioxide equivalent under 1 5 degrees of warming 220 300 billion tonnes under 2 degrees and 400 500 billion tonnes if the warming was allowed to exceed 4 degrees They compared those figures to the extrapolated present day emissions of Canada the European Union and the United States or China respectively The 400 500 billion tonnes figure would also be equivalent to the today s remaining budget for staying within a 1 5 degrees target 94 One of the scientists involved in that effort Susan M Natali of Woods Hole Research Centre had also led the publication of a complementary estimate in a PNAS paper that year which suggested that when the amplification of permafrost emissions by abrupt thaw and wildfires is combined with the foreseeable range of near future anthropogenic emissions avoiding the exceedance or overshoot of 1 5 degrees warming is already implausible and the efforts to attain it may have to rely on negative emissions to force the temperature back down 95 An updated 2022 assessment of climate tipping points concluded that abrupt permafrost thaw would add 50 to gradual thaw rates and would add 14 billion tons of carbon dioxide equivalent emissions by 2100 and 35 by 2300 per every degree of warming This would have a warming impact of 0 04 C per every full degree of warming by 2100 and 0 11 C per every full degree of warming by 2300 It also suggested that at between 3 and 6 degrees of warming with the most likely figure around 4 degrees a large scale collapse of permafrost areas could become irreversible adding between 175 and 350 billion tons of CO2 equivalent emissions or 0 2 0 4 degrees over about 50 years with a range between 10 and 300 years 96 97 Preservation of organisms in permafrost EditMicrobes Edit Scientists predict that up to 1021 microbes including fungi and bacteria in addition to viruses will be released from melting ice per year Often these microbes will be released directly into the ocean Due to the migratory nature of many species of fish and birds it is possible that these microbes have a high transmission rate 98 Permafrost in eastern Switzerland was analyzed by researchers in 2016 at an alpine permafrost site called Muot da Barba Peider This site had a diverse microbial community with various bacteria and eukaryotic groups present Prominent bacteria groups included phylum Acidobacteriota Actinomycetota AD3 Bacteroidota Chloroflexota Gemmatimonadota OD1 Nitrospirota Planctomycetota Pseudomonadota and Verrucomicrobiota Prominent eukaryotic fungi included Ascomycota Basidiomycota and Zygomycota In the present species scientists observed a variety of adaptations for sub zero conditions including reduced and anaerobic metabolic processes 99 A 2016 outbreak of anthrax in the Yamal Peninsula is believed to be due to thawing permafrost 100 Also present in Siberian permafrost are two species of virus Pithovirus sibericum 101 and Mollivirus sibericum 102 Both of these are approximately 30 000 years old and considered giant viruses due to the fact that they are larger in size than most bacteria and have genomes larger than other viruses Both viruses are still infective as seen by their ability to infect Acanthamoeba a genus of amoebas 102 Freezing at low temperatures has been shown to preserve the infectivity of viruses Caliciviruses influenza A and enteroviruses ex Polioviruses echoviruses Coxsackie viruses have all been preserved in ice and or permafrost Scientists have determined three characteristics necessary for a virus to successfully preserve in ice high abundance ability to transport in ice and ability to resume disease cycles upon being released from ice A direct infection from permafrost or ice to humans has not been demonstrated such viruses are typically spread through other organisms or abiotic mechanisms 98 A study of late Pleistocene Siberian permafrost samples from Kolyma Lowland an east siberian lowland used DNA isolation and gene cloning specifically 16S rRNA genes to determine which phyla these microorganisms belonged to This technique allowed a comparison of known microorganisms to their newly discovered samples and revealed eight phylotypes which belonged to the phyla Actinomycetota and Pseudomonadota 103 Plants Edit In 2012 Russian researchers proved that permafrost can serve as a natural repository for ancient life forms by reviving of Silene stenophylla from 30 000 year old tissue found in an Ice Age squirrel burrow in the Siberian permafrost This is the oldest plant tissue ever revived The plant was fertile producing white flowers and viable seeds The study demonstrated that tissue can survive ice preservation for tens of thousands of years 104 Extraterrestrial permafrost Edit Permafrost polygons on Mars imaged by the Phoenix lander False color Mars Reconnaissance Orbiter image of polygonal surface pattern Patterned ground on earth Other issues EditThe International Permafrost Association IPA is an integrator of issues regarding permafrost It convenes International Permafrost Conferences undertakes special projects such as preparing databases maps bibliographies and glossaries and coordinates international field programmes and networks Among other issues addressed by the IPA are Problems for construction on permafrost owing to the change of soil properties of the ground on which structures are placed and the biological processes in permafrost e g the preservation of organisms frozen in situ Construction on permafrost Edit Yakutsk is one of two large cities in the world built in areas of continuous permafrost that is where the frozen soil forms an unbroken below zero sheet The other is Norilsk in Krasnoyarsk Krai Russia 105 Building on permafrost is difficult because the heat of the building or pipeline can warm the permafrost and destabilize the structure Warming can result in thawing of the soil and its consequent weakening of support for a structure as the ice content turns to water alternatively where structures are built on piles warming can cause movement through creep because of the change of friction on the piles even as the soil remains frozen 106 Three common solutions include using foundations on wood piles a technique pioneered by Soviet engineer Mikhail Kim in Norilsk 107 building on a thick gravel pad usually 1 2 metres 3 3 6 6 feet thick or using anhydrous ammonia heat pipes 108 The Trans Alaska Pipeline System uses heat pipes built into vertical supports to prevent the pipeline from sinking and the Qingzang railway in Tibet employs a variety of methods to keep the ground cool both in areas with frost susceptible soil Permafrost may necessitate special enclosures for buried utilities called utilidors 109 The Melnikov Permafrost Institute in Yakutsk found that the sinking of large buildings into the ground can be prevented by using pile foundations extending down to 15 metres 49 ft or more At this depth the temperature does not change with the seasons remaining at about 5 C 23 F 110 Thawing permafrost represents a threat to industrial infrastructure In May 2020 thawing permafrost at Norilsk Taimyr Energy s Thermal Power Plant No 3 caused an oil storage tank to collapse spilling 6 000 tonnes of diesel into the land 15 000 into the water The rivers Ambarnaya Daldykan and many smaller rivers were polluted The pollution reached the lake Pyasino that is important to the water supply of the entire Taimyr Peninsula State of emergency at the federal level was declared Many buildings and infrastructure are built on permafrost which cover 65 of Russian territory and all those can be damaged as it thaws 111 112 The 2020 Norilsk oil spill has been described as the second largest oil spill in modern Russian history 113 The thawing can also cause leakage of toxic elements from sites of buried toxic waste 113 114 There is no ground water available in an area underlain with permafrost Any substantial settlement or installation needs to make some alternative arrangement to obtain water 105 Modern buildings in permafrost zones may be built on piles to avoid permafrost thaw foundation failure from the heat of the building Heat pipes in vertical supports maintain a frozen bulb around portions of the Trans Alaska Pipeline that are at risk of thawing Pile foundations in Yakutsk a city underlain with continuous permafrost District heating pipes run above ground in Yakutsk to avoid thawing permafrost See also EditGlobal Terrestrial Network for Permafrost Pleistocene amp Permafrost FoundationPortals Geography Alaska Canada SiberiaReferences Edit a b Obu J 2021 How Much of the Earth s Surface is Underlain by Permafrost Journal of Geophysical Research Earth Surface 126 5 e2021JF006123 Bibcode 2021JGRF 12606123O doi 10 1029 2021JF006123 Sayedi Sayedeh Sara Abbott Benjamin W Thornton Brett F Frederick Jennifer M Vonk Jorien E Overduin Paul Schadel Christina Schuur Edward A G Bourbonnais Annie Demidov Nikita Gavrilov Anatoly 1 December 2020 Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment Environmental Research Letters 15 12 B027 08 Bibcode 2020AGUFMB027 08S doi 10 1088 1748 9326 abcc29 S2CID 234515282 a b Doyle Heather 9 April 2020 What Is Permafrost NASA Climate Kids Koven Charles D Ringeval Bruno Friedlingstein Pierre Ciais Philippe Cadule Patricia Khvorostyanov Dmitry Krinner Gerhard Tarnocai Charles 6 September 2011 Permafrost carbon climate feedbacks accelerate global warming Proceedings of the National Academy of Sciences 108 36 14769 14774 Bibcode 2011PNAS 10814769K doi 10 1073 pnas 1103910108 PMC 3169129 PMID 21852573 a b c Fox Kemper B H T Hewitt C Xiao G Adalgeirsdottir S S Drijfhout T L Edwards N R Golledge M Hemer R E Kopp G Krinner A Mix D Notz S Nowicki I S Nurhati L Ruiz J B Sallee A B A Slangen and Y Yu 2021 Chapter 9 Ocean Cryosphere and Sea Level Change In Climate Change 2021 The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson Delmotte V P Zhai A Pirani S L Connors C Pean S Berger N Caud Y Chen L Goldfarb M I Gomis M Huang K Leitzell E Lonnoy J B R Matthews T K Maycock T Waterfield O Yelekci R Yu and B Zhou eds Cambridge University Press Cambridge United Kingdom and New York NY USA pp 1211 1362 a b c King Lorenz 2001 Materialien zur Kenntniss des unverganglichen Boden Eises in Sibirien compiled by Baer in 1843 PDF Berichte und Arbeiten aus der Universitatsbibliothek und dem Universitatsarchiv Giessen in German 51 1 315 Retrieved 27 July 2021 a b Circum Arctic map of permafrost and ground ice conditions 1997 doi 10 3133 cp45 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b Walker H Jesse December 2010 Frozen in Time Permafrost and Engineering Problems Review Arctic 63 4 477 doi 10 14430 arctic3340 a b Ray Luis L Permafrost USGS United States Geological Survey Library Publications Warehouse PDF Archived PDF from the original on 2 May 2017 Retrieved 19 November 2018 U S Geological Survey United States Army Corps of Engineers Strategic Intelligence Branch 1943 Permafrost or permanently frozen ground and related engineering problems Strategic Engineering Study 62 231 OCLC 22879846 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Occurrences on Google Books a b Muller Siemon William 1947 Permafrost Or Permanently Frozen Ground and Related Engineering Problems Ann Arbor Michigan Edwards ISBN 978 0 598 53858 1 OCLC 1646047 Staff 2014 What is Permafrost International Permafrost Association Archived from the original on 8 November 2014 Retrieved 28 February 2014 Heginbottom J Alan Brown Jerry Humlum Ole and Svensson Harald State of the Earth s Cryosphere at the Beginning of the 21st Century Glaciers Global Snow Cover Floating Ice and Permafrost and Periglacial Environments p A435 Delisle G 2007 Near surface permafrost degradation How severe during the 21st century Geophysical Research Letters 34 L09503 4 Bibcode 2007GeoRL 34 9503D doi 10 1029 2007GL029323 Sharp Robert Phillip 1988 Living Ice Understanding Glaciers and Glaciation Cambridge University Press p 27 ISBN 978 0 521 33009 1 Majorowicz Jacek 2012 Permafrost at the ice base of recent pleistocene glaciations Inferences from borehole temperatures profiles Bulletin of Geography Physical Geography Series Physical Geography Series 5 7 28 doi 10 2478 v10250 012 0001 x Brown Roger J E Pewe Troy L 1973 Distribution of permafrost in North America and its relationship to the environment A review 1963 1973 Permafrost North American Contribution Second International Conference 2 71 100 ISBN 978 0 309 02115 9 Robinson S D et al 2003 Permafrost and peatland carbon sink capacity with increasing latitude in Phillips et al eds Permafrost PDF Swets amp Zeitlinger pp 965 970 ISBN 90 5809 582 7 archived PDF from the original on 2 March 2014 retrieved 2 March 2014 a b Bockheim James G Munroe Jeffrey S November 2014 Organic Carbon Pools and Genesis of Alpine Soils with Permafrost A Review Arctic Antarctic and Alpine Research 46 4 987 1006 doi 10 1657 1938 4246 46 4 987 S2CID 53400041 Andersland Orlando B Ladanyi Branko 2004 Frozen ground engineering 2nd ed Wiley p 5 ISBN 978 0 471 61549 1 Zoltikov I A 1962 Heat regime of the central Antarctic glacier Antarctica Reports of the Commission 1961 in Russian 27 40 Campbell Iain B Claridge Graeme G C 2009 Antarctic Permafrost Soils in Margesin Rosa ed Permafrost Soils Soil Biology vol 16 Berlin Springer pp 17 31 doi 10 1007 978 3 540 69371 0 2 ISBN 978 3 540 69370 3 Heinrich Holly 25 July 2013 Permafrost Melting Faster Than Expected in Antarctica National Public Radio archived from the original on 3 May 2016 retrieved 23 April 2016 Alpine permafrost Encyclopedia Britannica Retrieved 16 April 2020 Azocar Guillermo 2 January 2014 Modeling of Permafrost Distribution in the Semi arid Chilean Andes Thesis hdl 10012 8109 Ruiz Lucas Liaudat Dario Trombotto 2012 Mountain Permafrost Distribution in the Andes of Chubut Argentina Based on a Statistical Model PDF Tenth International Conference on Permafrost Mendoza Argentina Instituto Argentino de Nivologia Glaciologia y Ciencias Ambientales pp 365 370 archived PDF from the original on 13 May 2016 retrieved 24 April 2016 Rozell Ned 18 November 2009 Permafrost near equator hummingbirds near subarctic Capitol City Weekly Juneau Alaska archived from the original on 5 March 2018 What is Permafrost International Permafrost Association 2014 Archived from the original on 8 November 2014 Retrieved 8 November 2014 a b Osterkamp T E 2001 Sub Sea Permafrost Encyclopedia of Ocean Sciences pp 2902 12 doi 10 1006 rwos 2001 0008 ISBN 978 0 12 227430 5 IPCC AR4 2007 Climate Change 2007 Working Group I The Physical Science Basis Archived from the original on 13 April 2014 Retrieved 12 April 2014 a href Template Cite web html title Template Cite web cite web a CS1 maint uses authors parameter link Sayedi Sayedeh Sara Abbott Benjamin W Thornton Brett F Frederick Jennifer M Vonk Jorien E Overduin Paul Schadel Christina Schuur Edward A G Bourbonnais Annie Demidov Nikita Gavrilov Anatoly 1 December 2020 Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment Environmental Research Letters 15 12 124075 Bibcode 2020AGUFMB027 08S doi 10 1088 1748 9326 abcc29 Overduin P P Schneider von Deimling T Miesner F Grigoriev M N Ruppel C Vasiliev A Lantuit H Juhls B Westermann S June 2019 Submarine Permafrost Map in the Arctic Modeled Using 1 D Transient Heat Flux SuPerMAP PDF Journal of Geophysical Research Oceans 124 6 3490 3507 Bibcode 2019JGRC 124 3490O doi 10 1029 2018JC014675 hdl 1912 24566 S2CID 146331663 a b c Lunardini 1995 p 35 Table Dl Freeze at Prudhoe Bay Alaska a b Osterkamp T E Burn C R 14 September 2014 Permafrost in North Gerald R Pyle John A Zhang Fuqing eds Encyclopedia of Atmospheric Sciences PDF vol 4 Elsevier pp 1717 1729 ISBN 978 0 12 382226 0 archived PDF from the original on 30 November 2016 retrieved 8 March 2016 Desonie Dana 2008 Polar Regions Human Impacts New York Chelsea Press ISBN 978 0 8160 6218 8 Fridleifsson Ingvar B Bertani Ruggero Huenges Ernst Lund John W Ragnarsson Arni Rybach Ladislaus 11 February 2008 O Hohmeyer and T Trittin ed The possible role and contribution of geothermal energy to the mitigation of climate change PDF IPCC Scoping Meeting on Renewable Energy Sources Luebeck Germany 59 80 Archived from the original PDF on 12 March 2013 Retrieved 3 November 2013 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Lunardini Virgil J April 1995 Permafrost Formation Time CRREL Report 95 8 Hanover NH US Army Corps of Engineers Cold Regions Research and Engineering Laboratory p 18 DTIC ADA295515 a href Template Cite web html title Template Cite web cite web a Missing or empty url help Mackay J Ross 1973 Problems in the origins of massive icy beds Western Arctic Canada Permafrost North American Contribution Second International Conference 2 223 8 ISBN 978 0 309 02115 9 a b c French H M 2007 The Periglacial Environment 3 ed Chichester Wiley a b c d e Shumskiy P A Vtyurin B I 1963 Underground ice Permafrost International Conference 1287 108 13 Mackay J R Dallimore S R 1992 Massive ice of Tuktoyaktuk area Western Arctic coast Canada Canadian Journal of Earth Sciences 29 6 1234 42 Bibcode 1992CaJES 29 1235M doi 10 1139 e92 099 Astakhov 1986 Kaplanskaya and Tarnogradskiy 1986 Astakhov and Isayeva 1988 French 1990 Lacelle et al 2009 Pidwirny M 2006 Periglacial Processes and Landforms Fundamentals of Physical Geography Kessler MA Werner BT January 2003 Self organization of sorted patterned ground Science 299 5605 380 3 Bibcode 2003Sci 299 380K doi 10 1126 science 1077309 PMID 12532013 S2CID 27238820 Li Dongfeng Overeem Irina Kettner Albert J Zhou Yinjun Lu Xixi February 2021 Air Temperature Regulates Erodible Landscape Water and Sediment Fluxes in the Permafrost Dominated Catchment on the Tibetan Plateau Water Resources Research 57 2 e2020WR028193 Bibcode 2021WRR 5728193L doi 10 1029 2020WR028193 S2CID 234044271 Zhang Ting Li Dongfeng Kettner Albert J Zhou Yinjun Lu Xixi October 2021 Constraining Dynamic Sediment Discharge Relationships in Cold Environments The Sediment Availability Transport SAT Model Water Resources Research 57 10 e2021WR030690 Bibcode 2021WRR 5730690Z doi 10 1029 2021WR030690 S2CID 242360211 McGuire A D Anderson L G Christensen T R Dallimore S Guo L Hayes D J Heimann M Lorenson T D Macdonald R W and Roulet N 2009 Sensitivity of the carbon cycle in the Arctic to climate change Ecological Monographs 79 4 523 555 doi 10 1890 08 2025 1 hdl 11858 00 001M 0000 000E D87B C S2CID 1779296 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Koven Charles D Riley William J Stern Alex 1 October 2012 Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models Journal of Climate 26 6 1877 1900 doi 10 1175 JCLI D 12 00228 1 OSTI 1172703 Armstrong McKay David I Staal Arie Abrams Jesse F Winkelmann Ricarda Sakschewski Boris Loriani Sina Fetzer Ingo Cornell Sarah E Rockstrom Johan Lenton Timothy M 9 September 2022 Exceeding 1 5 C global warming could trigger multiple climate tipping points Science 377 6611 eabn7950 doi 10 1126 science abn7950 hdl 10871 131584 PMID 36074831 S2CID 252161375 Nelson F E Anisimov O A Shiklomanov N I 1 July 2002 Climate Change and Hazard Zonation in the Circum Arctic Permafrost Regions Natural Hazards 26 3 203 225 doi 10 1023 A 1015612918401 S2CID 35672358 Barry Roger Graham Gan Thian Yew 2021 The global cryosphere past present and future Second revised ed Cambridge United Kingdom ISBN 978 1 108 48755 9 OCLC 1256406954 page needed Programme United Nations Environment 2009 The Natural Fix The Role of Ecosystems in Climate Mitigation A UNEP Rapid Response Assessment pp 20 55 hdl 20 500 11822 7852 ISBN 978 82 7701 057 1 Sidorchuk Aleksey Borisova Olga and Panin Andrey Fluvial response to the late Valdai Holocene environmental change on the East European plain Archived 2013 12 26 at the Wayback Machine Yugo Ono and Tomohisa Irino Southern migration of westerlies in the Northern Hemisphere PEP II transect during the Last Glacial Maximum in Quaternary International 118 119 2004 pp 13 22 Malde H E Patterned Ground in the Western Snake River Plain Idaho and Its Possible Cold Climate Origin in Geological society of America Bulletin v 75 no 3 March 1964 pp 191 208 Grab Stefan Characteristics and palaeoenvironmental significance of relict sorted patterned ground Drakensberg plateau southern Africa in Quaternary Science Reviews vol 21 issues 14 15 August 2002 pp 1729 1744 Inventory of fossil cryogenic forms and structures in Patagonia and the mountains of Argentina beyond the Andes South African Journal of Science 98 171 180 Review Articles Pretoria Sudafrica Kim D Vargas R Bond Lamberty B Turetsky M 2012 Effects of soil rewetting and thawing on soil gas fluxes a review of current literature and suggestions for future research Biogeosciences 9 7 2459 2483 Bibcode 2012BGeo 9 2459K doi 10 5194 bg 9 2459 2012 Huissteden J van 2020 Thawing Permafrost Permafrost Carbon in a Warming Arctic Springer Nature p 296 ISBN 978 3 030 31379 1 Dyke Larry D Sladen Wendy E 3 December 2010 Permafrost and Peatland Evolution in the Northern Hudson Bay Lowland Manitoba Arctic 63 4 429 441 doi 10 14430 arctic3332 F Dramis M Govi M Guglielmin G Mortara 1 January 1995 Mountain permafrost and slope instability in the Italian Alps The Val Pola Landslide Permafrost and Periglacial Processes 6 1 73 81 doi 10 1002 ppp 3430060108 Huggel C Allen S Deline P et al June 2012 Ice thawing mountains falling are alpine rock slope failures increasing Geology Today 28 3 98 104 doi 10 1111 j 1365 2451 2012 00836 x S2CID 128619284 Catastrophic Landslides Effects Occurrence and Mechanisms Reviews in Engineering Geology Vol 15 2002 doi 10 1130 REG15 ISBN 0 8137 4115 7 Nater P Arenson L U Springman S M 2008 Choosing geotechnical parameters for slope stability assessments in alpine permafrost soils In 9th international conference on permafrost Fairbanks USA University of Alaska pp 1261 1266 ISBN 978 0 9800179 3 9 Kia Mohammadali Sego David Charles Morgenstern Norbert Rubin FRP Filter less Rigid Piezometer for Measuring Pore Water Pressure in Partially Frozen Soils Alpha Adroit Engineering Ltd Alpha Adroit Engineering Ltd Archived from the original on 28 January 2018 Retrieved 27 January 2018 Temme Arnaud J A M 2015 Using Climber s Guidebooks to Assess Rock Fall Patterns Over Large Spatial and Decadal Temporal Scales An Example from the Swiss Alps Geografiska Annaler Series A Physical Geography 97 4 793 807 doi 10 1111 geoa 12116 S2CID 55361904 FDL Frozen Debris Lobes University of Alaska Fairbanks FDLs 7 January 2022 Retrieved 7 January 2022 Hasemyer David 20 December 2021 Unleashed by Warming Underground Debris Fields Threaten to Crush Alaska s Dalton Highway and the Alaska Pipeline Inside Climate News Retrieved 7 January 2022 a b Daanen Ronald Grosse Guido Darrow Margaret Hamilton T Jones Benjamin 21 May 2012 Rapid movement of frozen debris lobes Implications for permafrost degradation and slope instability in the south central Brooks Range Alaska Natural Hazards and Earth System Sciences 12 5 1521 1537 Bibcode 2012NHESS 12 1521D doi 10 5194 nhess 12 1521 2012 Darrow Margaret M Gyswyt Nora L Simpson Jocelyn M Daanen Ronald P Hubbard Trent D 12 May 2016 Frozen debris lobe morphology and movement an overview of eight dynamic features southern Brooks Range Alaska The Cryosphere 10 3 977 993 Bibcode 2016TCry 10 977D doi 10 5194 tc 10 977 2016 Tarnocai et al 2009 Soil organic carbon pools in the northern circumpolar permafrost region Global Biogeochemical Cycles 23 2 GB2023 Bibcode 2009GBioC 23 2023T doi 10 1029 2008gb003327 Schuur et al 2011 High risk of permafrost thaw Nature 480 7375 32 33 Bibcode 2011Natur 480 32S doi 10 1038 480032a PMID 22129707 S2CID 4412175 Walter KM Zimov SA Chanton JP Verbyla D Chapin FS September 2006 Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming Nature 443 7107 71 5 Bibcode 2006Natur 443 71W doi 10 1038 nature05040 PMID 16957728 S2CID 4415304 C Michael Hogan Black Spruce Picea mariana GlobalTwitcher com ed Nicklas Stromberg November 2008 Archived 2011 10 05 at the Wayback Machine Hansen et al 2007 Viability diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen Northern Norway Environmental Microbiology 9 11 2870 2884 doi 10 1111 j 1462 2920 2007 01403 x PMID 17922769 and additional references in this paper Yergeau et al 2010 The functional potential of high Arctic permafrost revealed by metagenomic sequencing qPCR and microarray analyses The ISME Journal 4 9 1206 1214 doi 10 1038 ismej 2010 41 PMID 20393573 Li Dongfeng Lu Xixi Overeem Irina Walling Desmond E Syvitski Jaia Kettner Albert J Bookhagen Bodo Zhou Yinjun Zhang Ting 29 October 2021 Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia Science 374 6567 599 603 Bibcode 2021Sci 374 599L doi 10 1126 science abi9649 PMID 34709922 S2CID 240152765 a b c d e f Fox Kemper B H T Hewitt C Xiao G Adalgeirsdottir S S Drijfhout T L Edwards N R Golledge M Hemer R E Kopp G Krinner A Mix D Notz S Nowicki I S Nurhati L Ruiz J B Sallee A B A Slangen and Y Yu 2021 Chapter 9 Ocean Cryosphere and Sea Level Change In Climate Change 2021 The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Masson Delmotte V P Zhai A Pirani S L Connors C Pean S Berger N Caud Y Chen L Goldfarb M I Gomis M Huang K Leitzell E Lonnoy J B R Matthews T K Maycock T Waterfield O Yelekci R Yu and B Zhou eds Cambridge University Press Cambridge United Kingdom and New York NY USA pp 1211 1362 doi 10 1017 9781009157896 011 Douglas Thomas A Turetsky Merritt R Koven Charles D 24 July 2020 Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems NPJ Climate and Atmospheric Science 3 1 5626 doi 10 1038 s41467 022 33293 x PMC 9512808 PMID 36163194 Nowinski NS Taneva L Trumbore SE Welker JM January 2010 Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment Oecologia 163 3 785 92 Bibcode 2010Oecol 163 785N doi 10 1007 s00442 009 1556 x PMC 2886135 PMID 20084398 Schuur E A G Bockheim J Canadell J G Euskirchen E Field C B Goryachkin S V Hagemann S Kuhry P Lafleur P M Lee H Mazhitova G Nelson F E Rinke A Romanovsky V E Skiklomanov N Tarnocai C Venevsky S Vogel J G and Zimov S A 2008 Vulnerability of Permafrost Carbon to Climate Change Implications for the Global Carbon Cycle BioScience 58 8 701 714 doi 10 1641 B580807 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Lim Artem G Loiko Sergey V Pokrovsky Oleg S 10 January 2023 Interactions between organic matter and Fe oxides at soil micro interfaces Quantification associations and influencing factors Science of the Total Environment 3 158710 Bibcode 2023ScTEn 855o8710L doi 10 1016 j scitotenv 2022 158710 PMID 36099954 S2CID 252221350 Patzner Monique S Mueller Carsten W Malusova Miroslava Baur Moritz Nikeleit Verena Scholten Thomas Hoeschen Carmen Byrne James M Borch Thomas Kappler Andreas Bryce Casey 10 December 2020 Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw Nature Communications 11 1 6329 Bibcode 2020NatCo 11 6329P doi 10 1038 s41467 020 20102 6 PMC 7729879 PMID 33303752 Bockheim J G amp Hinkel K M 2007 The importance of Deep organic carbon in permafrost affected soils of Arctic Alaska Soil Science Society of America Journal 71 6 1889 92 Bibcode 2007SSASJ 71 1889B doi 10 2136 sssaj2007 0070N Archived from the original on 17 July 2009 Retrieved 5 June 2010 Li Qi Hu Weifang Li Linfeng Li Yichun 1 March 2022 Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands western Siberia Geoderma 3 1 5626 doi 10 1038 s41467 022 33293 x PMC 9512808 PMID 36163194 Gillis Justin 16 December 2011 As Permafrost Thaws Scientists Study the Risks The New York Times Archived from the original on 19 May 2017 Retrieved 11 February 2017 Schellnhuber Hans Joachim Winkelmann Ricarda Scheffer Marten Lade Steven J Fetzer Ingo Donges Jonathan F Crucifix Michel Cornell Sarah E Barnosky Anthony D 2018 Trajectories of the Earth System in the Anthropocene Proceedings of the National Academy of Sciences 115 33 8252 8259 Bibcode 2018PNAS 115 8252S doi 10 1073 pnas 1810141115 ISSN 0027 8424 PMC 6099852 PMID 30082409 MacDougall Andrew H 10 September 2021 Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change Biogeosciences 18 17 4937 4952 Bibcode 2021BGeo 18 4937M doi 10 5194 bg 18 4937 2021 Sayedi Sayedeh Sara Abbott Benjamin W Thornton Brett F Frederick Jennifer M Vonk Jorien E Overduin Paul Schadel Christina Schuur Edward A G Bourbonnais Annie Demidov Nikita Gavrilov Anatoly 1 December 2020 Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment Environmental Research Letters 15 12 B027 08 Bibcode 2020AGUFMB027 08S doi 10 1088 1748 9326 abcc29 ISSN 1748 9326 S2CID 234515282 Hugelius Gustaf Loisel Julie Chadburn Sarah et al 10 August 2020 Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw Earth Atmospheric and Planetary Sciences 117 34 20438 20446 Bibcode 2020PNAS 11720438H doi 10 1073 pnas 1916387117 PMC 7456150 PMID 32778585 Dietz Simon Rising James Stoerk Thomas Wagner Gernot 24 August 2021 Economic impacts of tipping points in the climate system Proceedings of the National Academy of Sciences 118 34 e2103081118 Bibcode 2021PNAS 11803081D doi 10 1073 pnas 2103081118 PMC 8403967 PMID 34400500 Keen Steve Lenton Timothy M Garrett Timothy J Rae James W B Hanley Brian P Grasselli Matheus 19 May 2022 Estimates of economic and environmental damages from tipping points cannot be reconciled with the scientific literature Proceedings of the National Academy of Sciences 119 21 e2117308119 Bibcode 2022PNAS 11917308K doi 10 1073 pnas 2117308119 PMC 9173761 PMID 35588449 S2CID 248917625 Dietz Simon Rising James Stoerk Thomas Wagner Gernot 19 May 2022 Reply to Keen et al Dietz et al modeling of climate tipping points is informative even if estimates are a probable lower bound Proceedings of the National Academy of Sciences 119 21 e2201191119 Bibcode 2022PNAS 11901191D doi 10 1073 pnas 2201191119 PMC 9173815 PMID 35588452 Carbon Emissions from Permafrost 50x30 2021 Retrieved 8 October 2022 Natali Susan M Holdren John P Rogers Brendan M Treharne Rachael Duffy Philip B Pomerance Rafe MacDonald Erin 10 December 2020 Permafrost carbon feedbacks threaten global climate goals Biological Sciences 118 21 doi 10 1073 pnas 2100163118 PMC 8166174 PMID 34001617 Armstrong McKay David Abrams Jesse Winkelmann Ricarda Sakschewski Boris Loriani Sina Fetzer Ingo Cornell Sarah Rockstrom Johan Staal Arie Lenton Timothy 9 September 2022 Exceeding 1 5 C global warming could trigger multiple climate tipping points Science 377 6611 eabn7950 doi 10 1126 science abn7950 hdl 10871 131584 ISSN 0036 8075 PMID 36074831 S2CID 252161375 Armstrong McKay David 9 September 2022 Exceeding 1 5 C global warming could trigger multiple climate tipping points paper explainer climatetippingpoints info Retrieved 2 October 2022 a b Smith Alvin W Skilling Douglas E Castello John D Rogers Scott O 1 January 2004 Ice as a reservoir for pathogenic human viruses specifically caliciviruses influenza viruses and enteroviruses Medical Hypotheses 63 4 560 566 doi 10 1016 j mehy 2004 05 011 PMID 15324997 Frey Beat Rime Thomas Phillips Marcia Stierli Beat Hajdas Irka Widmer Franco Hartmann Martin March 2016 Margesin Rosa ed Microbial diversity in European alpine permafrost and active layers FEMS Microbiology Ecology 92 3 fiw018 doi 10 1093 femsec fiw018 PMID 26832204 Anthrax Outbreak In Russia Thought To Be Result Of Thawing Permafrost NPR org Archived from the original on 22 September 2016 Retrieved 24 September 2016 Legendre Matthieu Bartoli Julia Shmakova Lyubov Jeudy Sandra Labadie Karine Adrait Annie Lescot Magali Poirot Olivier Bertaux Lionel Bruley Christophe Coute Yohann 2014 Thirty thousand year old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology Proceedings of the National Academy of Sciences of the United States of America 111 11 4274 4279 Bibcode 2014PNAS 111 4274L doi 10 1073 pnas 1320670111 JSTOR 23771019 PMC 3964051 PMID 24591590 a b Legendre Matthieu Lartigue Audrey Bertaux Lionel Jeudy Sandra Bartoli Julia Lescot Magali Alempic Jean Marie Ramus Claire Bruley Christophe Labadie Karine Shmakova Lyubov 2015 In depth study of Mollivirus sibericum a new 30 000 y old giant virus infecting Acanthamoeba Proceedings of the National Academy of Sciences of the United States of America 112 38 E5327 E5335 Bibcode 2015PNAS 112E5327L doi 10 1073 pnas 1510795112 JSTOR 26465169 PMC 4586845 PMID 26351664 Kudryashova E B Chernousova E Yu Suzina N E Ariskina E V Gilichinsky D A 1 May 2013 Microbial diversity of Late Pleistocene Siberian permafrost samples Microbiology 82 3 341 351 doi 10 1134 S0026261713020082 S2CID 2645648 Isachenkov Vladimir 20 February 2012 Russians revive Ice Age flower from frozen burrow Phys Org archived from the original on 24 April 2016 retrieved 26 April 2016 a b Joshua Yaffa 20 January 2022 The Great Siberian Thaw The New Yorker Retrieved 20 January 2022 Fang Hsai Yang 31 December 1990 Foundation Engineering Handbook Springer Science amp Business Media p 735 ISBN 978 0 412 98891 2 Yaffa Joshua 7 January 2022 The Great Siberian Thaw The New Yorker Retrieved 12 January 2022 Clarke Edwin S 2007 Permafrost Foundations State of the Practice Monograph Series American Society of Civil Engineers ISBN 978 0 7844 0947 3 Woods Kenneth B 1966 Permafrost International Conference Proceedings National Academies pp 418 57 Sanger Frederick J Hyde Peter J 1 January 1978 Permafrost Second International Conference July 13 28 1973 USSR Contribution National Academies p 786 ISBN 978 0 309 02746 5 Diesel fuel spill in Norilsk in Russia s Arctic contained TASS Moscow Russia 5 June 2020 Retrieved 7 June 2020 Max Seddon 4 June 2020 Siberia fuel spill threatens Moscow s Arctic ambitions Financial Times archived from the original on 10 December 2022 a b Ivan Nechepurenko 5 June 2020 Russia Declares Emergency After Arctic Oil Spill New York Times ANTONOVA MARIA 5 June 2020 Russia Says Melting Permafrost Is Behind The Massive Arctic Fuel Spill Science Daily Retrieved 19 July 2020 External links Edit Look up permafrost in Wiktionary the free dictionary Wikimedia Commons has media related to Permafrost Permafrostwatch University of Alaska Fairbanks Infographics about permafrost International Permafrost Association IPA Alpine permafrost monitoring network permanet Archived 21 January 2022 at the Wayback Machine Center for Permafrost Map of permafrost in Antarctica Permafrost what is it YouTube Alfred Wegener Institute Retrieved from https en wikipedia org w index php title Permafrost amp oldid 1130762497, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.