fbpx
Wikipedia

Timeline of gravitational physics and relativity

The following is a timeline of gravitational physics and general relativity.

Before 1500 Edit

  • 3rd century BC – Aristarchus of Samos proposes heliocentric model, measures the distance to the Moon and its size

1500s Edit

  • 1543 – Nicolaus Copernicus places the Sun at the gravitational center, starting a revolution in science
  • 1583 – Galileo Galilei induces the period relationship of a pendulum from observations (according to later biographer).
  • 1586 – Simon Stevin demonstrates that two objects of different mass accelerate at the same rate when dropped.[1]
  • 1589 – Galileo describes a hydrostatic balance for measuring specific gravity.
  • 1590 – Galileo formulates modified Aristotelean theory of motion (later retracted) based on density rather than weight of objects.

1600s Edit

 
Geometric diagram for Newton's proof of Kepler's second law.

1700s Edit

 
Lagrange points

1800s Edit

1900s Edit

 
The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964.

1910s Edit

 
Einstein's 1911 argument for gravitational redshift

1920s Edit

1930s Edit

 
The Einstein Cross, an example of gravitational lensing at work

1940s Edit

1950s Edit

1960s Edit

1970s Edit

 
Image of Cygnus X-1 by the Chandra X-ray Observatory (2009)

1980s Edit

1990s Edit

 
Parameter space of various approximation techniques in general relativity

2000s Edit

2010s Edit

 
Improving cosmological measurements by three different satellites

2020s Edit

 
The size of Sagittarius A* is smaller than the orbit of Mercury.

See also Edit

References Edit

  1. ^ Gribbin, John (2003). "Chapter 3: The First Scientists". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 76–7. ISBN 978-1-400-06013-9.
  2. ^ a b Dolnick, Edward (2011). "Timeline". The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World. New York: Harper Collins. ISBN 9780061719516.
  3. ^ a b Newton, Isaac (1999). The Principia: The Authoritative Translation and Guide. Translated by Cohen, I. Bernard; Whitman, Anne; Budenz, Julia. University of California Press. ISBN 978-0-520-29088-4.
  4. ^ Kleppner, Daniel; Kolenkow, Robert J. (1973). "8.4: The Principle of Equivalence". An Introduction to Mechanics. McGraw-Hill. pp. 353–54. ISBN 0-07-035048-5.
  5. ^ Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. Retrieved 16 June 2020 – via Internet Archive.
  6. ^ Sagan, Carl; Druyan, Ann (1997). Comet. New York: Random House. pp. 66–67. ISBN 978-0-3078-0105-0.
  7. ^ Maclaurin, Colin. A Treatise of Fluxions: In Two Books. 1. Vol. 1. Ruddimans, 1742.
  8. ^ Chandrasekhar, Subrahmanyan (1969). "5: The Maclaurin Spheroids". Ellipsoidal Figures of Equilibrium. New Haven: Yale University Press. ISBN 978-0-30001-116-6.
  9. ^ a b Woolfson, M.M. (1993). "Solar System – its origin and evolution". Q. J. R. Astron. Soc. 34: 1–20. Bibcode:1993QJRAS..34....1W. For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
  10. ^ Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D. (2006). . p. 9. Archived from the original on 2008-05-27. Retrieved 2008-06-09. (16MB)
  11. ^ Euler, Leonhard (1765). De motu rectilineo trium corporum se mutuo attrahentium (PDF).
  12. ^ Euler L, Nov. Comm. Acad. Imp. Petropolitanae, 10, pp. 207–242, 11, pp. 152–184; Mémoires de l'Acad. de Berlin, 11, 228–249.
  13. ^ Lagrange, Joseph-Louis (1867–92). "Tome 6, Chapitre II: Essai sur le problème des trois corps". Œuvres de Lagrange (in French). Gauthier-Villars. pp. 229–334.
  14. ^ Cavendish, Henry (1798). "Experiments to Determine the Density of Earth". Philosophical Transactions of the Royal Society. 88: 469–526. doi:10.1098/rstl.1798.0022. JSTOR 106988.
  15. ^ Clotfelter, B.E. (1987). "The Cavendish Experiment as Cavendish Knew It". American Journal of Physics. 55 (3): 210–213. Bibcode:1987AmJPh..55..210C. doi:10.1119/1.15214.
  16. ^ s:On the Space Theory of Matter
  17. ^ Michaelson, Albert A.; Morley, Edward W. (1887). "On the Relative Motion of the Earth and the Luminiferous Ether". American Journal of Science. 134 (333): 333–345. Bibcode:1887AmJS...34..333M. doi:10.2475/ajs.s3-34.203.333. S2CID 124333204.
  18. ^ French, A. P. (1968). "Chapter 2: Perplexities in the Propagation of Light". Special Relativity. New York: W. W. Norton & Company. pp. 52–58. ISBN 0-393-09793-5.
  19. ^ Bod, L.; Fischbach, E.; Marx, G.; Náray-Ziegler, Maria (31 Aug 1990). . Archived from the original on October 22, 2012.
  20. ^ Gerber, P. (1917) [1902]. "Die Fortpflanzungsgeschwindigkeit der Gravitation". Annalen der Physik. 52 (4): 415–444. Bibcode:1917AnP...357..415G. doi:10.1002/andp.19173570404. (Originally published in Programmabhandlung des städtischen Realgymnasiums zu Stargard i. Pomm., 1902)
  21. ^ Einstein, Albert (1905). "Zur Elektrodynamik bewegter Körper" [On the Electrodynamics of Moving Bodies] (PDF). Annalen der Physik. Series 4. 17 (10): 891–921. Bibcode:1905AnP...322..891E. doi:10.1002/andp.19053221004.
  22. ^ Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" [Does the Inertia of a Body Depend upon its Energy Content?] (PDF). Annalen der Physik. Series 4. 18 (13): 639–641. Bibcode:1905AnP...323..639E. doi:10.1002/andp.19053231314. S2CID 122309633.
  23. ^ Einstein, Albert (1935). "Elementary derivation of the equivalence of mass and energy" (PDF). Bulletin of the American Mathematical Society. 41 (4): 223–230. doi:10.1090/S0002-9904-1935-06046-X.
  24. ^ Hecht, Eugene (2011). "How Einstein Confirmed  ". American Journal of Physics. 79: 591–600. doi:10.1119/1.3549223.
  25. ^ Einstein, Albert (1907). "Relativitätsprinzip und die aus demselben gezogenen Folgerungen" [On the Relativity Principle and the Conclusions Drawn from It] (PDF). Jahrbuch der Radioaktivität (4): 411–462.
  26. ^ Eddington, A. S. (1926). "Einstein Shift and Doppler Shift". Nature. 117 (2933): 86. Bibcode:1926Natur.117...86E. doi:10.1038/117086a0. ISSN 1476-4687. S2CID 4092843.
  27. ^ Minkowski, Hermann (1915). "Das Relativitätsprinzip". Annalen der Physik. 352 (15): 927–938. Bibcode:1915AnP...352..927M. doi:10.1002/andp.19153521505.
  28. ^ Corry, Leo (1997). "Hermann Minkowski and the Postulate of Relativity" (PDF). Archive for History of Exact Sciences. 51 (4): 273–314. doi:10.1007/BF00518231. S2CID 27016039.
  29. ^ Gribbin, John (2004). "11. Let There be Light". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 440–1. ISBN 978-0-812-96788-3.
  30. ^ Born, Max (1909). "Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips" [The theory of the rigid electron in the kinematics of the principle of relativity]. Annalen der Physik (in German). 355 (11): 1–56. Bibcode:1909AnP...335....1B. doi:10.1002/andp.19093351102.
  31. ^ Born, Max (1909). "Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips". Physikalische Zeitschrift. 10: 814–17.
  32. ^ Ehrenfest, Paul (1909). "Gleichförmige Rotation starrer Körper und Relativitätstheorie" [Uniform Rotation of Rigid Bodies and Theory of Relativity]. Physikalische Zeitschrift (in German). 10 (918): 918. Bibcode:1909PhyZ...10..918E.
  33. ^ Weber, T. A. (1997). "A note on rotating coordinates in relativity". American Journal of Physics. 65 (6): 486–7. Bibcode:1997AmJPh..65..486W. doi:10.1119/1.18575.
  34. ^ Einstein, Albert (1911). "Einfluss der Schwerkraft auf die Ausbreitung des Lichtes" [On the Influence of Gravitation upon the Propagation of Light] (PDF). Annalen der Physik. Series 4 (in German). 35: 898–908. doi:10.1002/andp.19113401005.
  35. ^ Einstein, Albert (1915). "Feldgleichungen der Gravitation" [Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847.
  36. ^ Einstein, Albert (1915). "Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie" [Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 831–839. Bibcode:1915SPAW.......831E.
  37. ^ Einstein, Albert (1916). "Grundlage der allgemeinen Relativitätstheorie" [The Foundation of the General Theory of Relativity] (PDF). Annalen der Physik. 4 (7): 769–822. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702.
  38. ^ Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407
  39. ^ Marsden, Jerrold; Tromba, Anthony (2012). "7.7 Applications to Differential Geometry, Physics, and Forms of Life". Vector Calculus (6th ed.). New York: W. H. Freeman Company. p. 422. ISBN 978-1-4292-1508-4.
  40. ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie" [On the Gravitational Field of a Point Mass According to Einstein's Theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  41. ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit" [On the Gravitational Field of a Sphere of Incompressible Fluid]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  42. ^ Levy, Adam (January 11, 2021). "How black holes morphed from theory to reality". Knowable Magazine. doi:10.1146/knowable-010921-1. Retrieved 25 March 2022.
  43. ^ Eisenstaedt, "The Early Interpretation of the Schwarzschild Solution," in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
  44. ^ Einstein, Albert (1916). "Näherungsweise Integration der Feldgleichungen der Gravitation" [Approximate Integration of the Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 688–696. Bibcode:1916SPAW.......688E.
  45. ^ de Sitter, W (1916). "On Einstein's Theory of Gravitation and its Astronomical Consequences". Mon. Not. R. Astron. Soc. 77: 155–184. Bibcode:1916MNRAS..77..155D. doi:10.1093/mnras/77.2.155.
  46. ^ Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" [Cosmological Considerations in the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German). 1: 142–152.
  47. ^ The Internal Constitution of the Stars A. S. Eddington The Scientific Monthly Vol. 11, No. 4 (Oct., 1920), pp. 297–303 JSTOR 6491
  48. ^ Eddington, A. S. (1916). "On the radiative equilibrium of the stars". Monthly Notices of the Royal Astronomical Society. 77: 16–35. Bibcode:1916MNRAS..77...16E. doi:10.1093/mnras/77.1.16.
  49. ^ Einstein, Albert (1918). "Gravitationswellen" [Gravitational Waves]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 154–167.
  50. ^ Holz, Daniel; Hughes, Scott; Bernard, Schultz (December 2018). "Measuring cosmic distances with standard sirens". Physics Today. 71 (12): 34. Bibcode:2018PhT....71l..34H. doi:10.1063/PT.3.4090. S2CID 125545290.
  51. ^ Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 33. Bibcode:1918PhyZ...19...33T. [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
  52. ^ Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift. 22: 29. Bibcode:1921PhyZ...22...29T. [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
  53. ^ Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 156–163. Bibcode:1918PhyZ...19..156L. [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
  54. ^ Dyson, F.W.; Eddington, A.S.; Davidson, C.R. (1920). "A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Solar eclipse of May 29, 1919". Philosophical Transactions of the Royal Society A. 220 (571–581): 291–333. Bibcode:1920RSPTA.220..291D. doi:10.1098/rsta.1920.0009.
  55. ^ Kennefick, Daniel (1 March 2009). "Testing relativity from the 1919 eclipse – a question of bias". Physics Today. 62 (3): 37–42. Bibcode:2009PhT....62c..37K. doi:10.1063/1.3099578.
  56. ^ David Kaiser, "How Politics Shaped General Relativity", New York Times, November 6, 2015.
  57. ^ Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) (in German): 966–972. Bibcode:1921SPAW.......966K.
  58. ^ Friedman, Alexander (December 1922). "Über die Krümmung des Raumes". Zeitschrift für Physik (in German). 10 (1): 377–386. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID 125190902. Translated in: Friedmann, Alexander (December 1999). "On the Curvature of Space". General Relativity and Gravitation. 31 (12): 1991–2000. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741. S2CID 122950995.
  59. ^ Marzlin, Karl-Peter (1994). "The physical meaning of Fermi coordinates". General Relativity and Gravitation. 26 (6): 619–636. arXiv:gr-qc/9402010. Bibcode:1994GReGr..26..619M. doi:10.1007/BF02108003. S2CID 17918026.
  60. ^ Segrè, Gino; Hoerlin, Bettina (2016). "Chapter 4: Student Days". The Pope of Physics. Henry Holt and Co. p. 27. ISBN 978-1-627-79005-5.
  61. ^ Eddington, A. S. (1924). "On the relation between the masses and luminosities of the stars". Monthly Notices of the Royal Astronomical Society. 84 (5): 308–333. Bibcode:1924MNRAS..84..308E. doi:10.1093/mnras/84.5.308.
  62. ^ Adams, W. S. (1925). "The Relativity Displacement of the Spectral Lines in the Companion of Sirius". Proceedings of the National Academy of Sciences. 11 (7): 382–387. Bibcode:1925PNAS...11..382A. doi:10.1073/pnas.11.7.382. PMC 1086032. PMID 16587023.
  63. ^ "Big bang theory is introduced – 1927". A Science Odyssey. WGBH. Retrieved 31 July 2014.
  64. ^ Hubble, Edwin (15 March 1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences. 15 (3): 168–173. Bibcode:1929PNAS...15..168H. doi:10.1073/pnas.15.3.168. PMC 522427. PMID 16577160. from the original on 1 October 2006. Retrieved 28 November 2019.
  65. ^ Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine. 11 (70): 592–596. doi:10.1080/14786443109461710. S2CID 119906976.
  66. ^ Chandrasekhar, S. (1931). "The Maximum Mass of Ideal White Dwarfs". Astrophysical Journal. 74: 81–82. Bibcode:1931ApJ....74...81C. doi:10.1086/143324.
  67. ^ "Obituary: Georges Lemaitre". Physics Today. 19 (9): 119–121. September 1966. doi:10.1063/1.3048455.
  68. ^ Lemaître, Georges; Eddington, Stanley (March 1931). "The Expanding Universe". Monthly Notices of the Royal Astronomical Society. 91 (5): 490–501. doi:10.1093/mnras/91.5.490.
  69. ^ Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" [On the Cosmological Problem of the General Theory of Relativity]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 235–237.
  70. ^ Einstein; and De Sitter (1932). "On the relation between the expansion and the mean density of the universe". Proceedings of the National Academy of Sciences. 18 (3): 213–214. Bibcode:1932PNAS...18..213E. doi:10.1073/pnas.18.3.213. PMC 1076193. PMID 16587663.
  71. ^ Baade, Walter; Zwicky, Fritz (1934). "Remarks on Super-novae and Cosmic Rays" (PDF). Physical Review. 46 (1): 76–77. Bibcode:1934PhRv...46...76B. doi:10.1103/PHYSREV.46.76.2.
  72. ^ McCormick, Katie (July 18, 2023). "Ultracold Gases Can Probe Neutron Star Guts". Scientific American. Archived from the original on July 31, 2023. Retrieved July 31, 2023.
  73. ^ A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev. 48(73) (1935).
  74. ^ Einstein, Albert (1936). "Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field". Science. 84 (2188): 506–507. Bibcode:1936Sci....84..506E. doi:10.1126/science.84.2188.506. PMID 17769014.
  75. ^ F. Zwicky (1937). "Nebulae as Gravitational lenses" (PDF). Physical Review. 51 (4): 290. Bibcode:1937PhRv...51..290Z. doi:10.1103/PhysRev.51.290. (PDF) from the original on 2013-12-26.
  76. ^ Einstein, Albert & Rosen, Nathan (1937). "On Gravitational waves". Journal of the Franklin Institute. 223: 43–54. Bibcode:1937FrInJ.223...43E. doi:10.1016/S0016-0032(37)90583-0.
  77. ^ Einstein, Albert; Infeld, Leopold; Hoffmann, Banesh (1938). "The Gravitational Equations and the Problem of Motion". Annals of Mathematics. 39 (1): 65–100. doi:10.2307/1968714. JSTOR 1968714.
  78. ^ Lee, S.; Brown, G. E. (2007). "Hans Albrecht Bethe. 2 July 1906 — 6 March 2005: Elected ForMemRS 1957". Biographical Memoirs of Fellows of the Royal Society. 53: 1. doi:10.1098/rsbm.2007.0018.
  79. ^ Tolman, Richard C. (1939). "Static Solutions of Einstein's Field Equations for Spheres of Fluid". Physical Review. 55 (364): 364–373. Bibcode:1939PhRv...55..364T. doi:10.1103/PhysRev.55.364.
  80. ^ a b c Pais, Abraham; Crease, Robert (2006). J. Robert Oppenheimer: A Life. Oxford University Press. pp. 31–2. ISBN 978-0-195-32712-0.
  81. ^ Oppenheimer, J.R.; Serber, Robert (1938). "On the Stability of Stellar Neutron Cores". Physical Review. 54 (7): 540. Bibcode:1938PhRv...54..540O. doi:10.1103/PhysRev.54.540.
  82. ^ Oppenheimer, J.R.; Volkoff, G.M. (1939). "On Massive Neutron Cores" (PDF). Physical Review. 55 (4): 374–381. Bibcode:1939PhRv...55..374O. doi:10.1103/PhysRev.55.374. (PDF) from the original on January 16, 2014. Retrieved January 15, 2014.
  83. ^ Oppenheimer, J.R.; Snyder, H. (1939). "On Continued Gravitational Contraction". Physical Review. 56 (5): 455–459. Bibcode:1939PhRv...56..455O. doi:10.1103/PhysRev.56.455.
  84. ^ Bartels, Megan (July 21, 2023). "Oppenheimer Almost Discovered Black Holes Before He Became 'Destroyer of Worlds'". Scientific American. Retrieved July 26, 2023.
  85. ^ Alpher, R. A.; Herman, R. C. (1948). "On the Relative Abundance of the Elements". Physical Review. 74 (12): 1737–1742. Bibcode:1948PhRv...74.1737A. doi:10.1103/PhysRev.74.1737.
  86. ^ Alpher, R. A.; Herman, R. C. (1948). "Evolution of the Universe". Nature. 162 (4124): 774–775. Bibcode:1948Natur.162..774A. doi:10.1038/162774b0. S2CID 4113488.
  87. ^ Lanczos, Cornelius (1949-07-01). "Lagrangian Multiplier and Riemannian Spaces". Reviews of Modern Physics. American Physical Society (APS). 21 (3): 497–502. Bibcode:1949RvMP...21..497L. doi:10.1103/revmodphys.21.497. ISSN 0034-6861.
  88. ^ Gödel, K., "An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation", Rev. Mod. Phys. 21, 447, published July 1, 1949.
  89. ^ Gupta, Suraj N. (1952). "Quantization of Einstein's Gravitational Field: General Treatment". Proceedings of the Physical Society. Series A. 65 (8): 608–619. Bibcode:1952PPSA...65..608G. doi:10.1088/0370-1298/65/8/304.
  90. ^ Deser, Stanley (1970). "Self-interaction and gauge invariance". General Relativity and Gravitation. 1 (1): 9–18. arXiv:gr-qc/0411023. Bibcode:1970GReGr...1....9D. doi:10.1007/BF00759198. S2CID 14295121.
  91. ^ a b c d e Preskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002). PDF link
  92. ^ Kraichnan (1955). "Special-Relativistic Derivation of Generally Covariant Gravitation Theory". Physical Review. 98 (4): 1118–1122. Bibcode:1955PhRv...98.1118K. doi:10.1103/PhysRev.98.1118.
  93. ^ Kraichnan (1956). "Possibility of unequal gravitational and inertial masses". Physical Review. 101 (1): 482–488. Bibcode:1956PhRv..101..482K. doi:10.1103/PhysRev.101.482.
  94. ^ Bertotti, B. (1956-10-01). "On gravitational motion". Il Nuovo Cimento. 4 (4): 898–906. Bibcode:1956NCim....4..898B. doi:10.1007/BF02746175. ISSN 1827-6121. S2CID 120443098.
  95. ^ Dewitt, Cécile M.; Rickles, Dean (1957). An Expanded Version of the Remarks by R.P. Feynman on the Reality of Gravitational Waves. EOS – Sources. Wright-Patterson Air Force Base. ISBN 9783945561294. Retrieved 27 September 2016.
  96. ^ Finkelstein, David (1958). "Past-Future Asymmetry of the Gravitational Field of a Point Particle". Physical Review. 110 (4): 965–967. Bibcode:1958PhRv..110..965F. doi:10.1103/PhysRev.110.965.
  97. ^ Pound, Robert; Rebka, Glen (1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters. 3 (439): 439–441. Bibcode:1959PhRvL...3..439P. doi:10.1103/PhysRevLett.3.439.
  98. ^ Kruskal, Martin (1960). "Maximal Extension of Schwarzschild Metric". Physical Review Letters. 119 (1743): 1743–1745. Bibcode:1960PhRv..119.1743K. doi:10.1103/PhysRev.119.1743.
  99. ^ Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society. 64: 261–284. arXiv:1707.00139. doi:10.1098/rsbm.2017.0022. ISSN 0080-4606. S2CID 67365148.
  100. ^ Graves, John C.; Brill, Dieter R. (1960). "Oscillatory Character of Reissner-Nordström Metric for an Ideal Charged Wormhole". Physical Review Letters. 120 (4): 1507–1513. Bibcode:1960PhRv..120.1507G. doi:10.1103/PhysRev.120.1507.
  101. ^ Robinson, Ivor; Trautman, A. (1960). "Spherical Gravitational Waves". Physical Review Letters. Cdsads.u-strasbg.fr. 4 (8): 431. Bibcode:1960PhRvL...4..431R. doi:10.1103/PhysRevLett.4.431. Retrieved 2012-07-20.
  102. ^ Pound, Robert; Rebka, Glen (1960). "Apparent Weight of Photons". Physical Review Letters. 4 (337): 337–341. Bibcode:1960PhRvL...4..337P. doi:10.1103/PhysRevLett.4.337.
  103. ^ Tullio E. Regge (1961). "General relativity without coordinates". Nuovo Cimento. 19 (3): 558–571. Bibcode:1961NCim...19..558R. doi:10.1007/BF02733251. S2CID 120696638. Available (subscribers only) at Il Nuovo Cimento
  104. ^ Bran, Carl; Dicke, Robert (1961). "Mach's Principle and a Relativistic Theory of Gravitation". Physical Review Letters. 124 (925): 925–935. Bibcode:1961PhRv..124..925B. doi:10.1103/PhysRev.124.925.
  105. ^ Roll, P.G; Krotkov, R; Dicke, R.H (1964). "The equivalence of inertial and passive gravitational mass". Annals of Physics. Elsevier BV. 26 (3): 442–517. Bibcode:1964AnPhy..26..442R. doi:10.1016/0003-4916(64)90259-3. ISSN 0003-4916.
  106. ^ Dicke, Robert H. (December 1961). "The Eötvös Experiment". Scientific American. 205 (6): 84–95. Bibcode:1961SciAm.205f..84D. doi:10.1038/scientificamerican1261-84.
  107. ^ Wheeler, John; Fuller, Robert (1962). "Causality and Multiply Connected Space-Time". Physical Review Letters. 128 (919): 919–929. Bibcode:1962PhRv..128..919F. doi:10.1103/PhysRev.128.919.
  108. ^ Goldberg, J. N.; Sachs, R. K. (1962). "A theorem on Petrov types (republished January 2009)". General Relativity and Gravitation. 41 (2): 433–444. doi:10.1007/s10714-008-0722-5. S2CID 122155922.; originally published in Acta Phys. Pol. 22, 13–23 (1962).
  109. ^ Weinberg, Steven (1964). "Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix". Physics Letters. 9 (4): 357–359. Bibcode:1964PhL.....9..357W. doi:10.1016/0031-9163(64)90396-8.
  110. ^ Weinberg, Steven (1964). "Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass". Physical Review. 135 (4B): B1049–B1056. Bibcode:1964PhRv..135.1049W. doi:10.1103/PhysRev.135.B1049.
  111. ^ Kerr, Roy P. (1963). "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics". Physical Review Letters. 11 (5): 237–238. Bibcode:1963PhRvL..11..237K. doi:10.1103/PhysRevLett.11.237.
  112. ^ Penrose, Roger (1963). "Asymptotic Properties of Fields and Space-Times". Physical Review Letters. 10 (66): 66–68. Bibcode:1963PhRvL..10...66P. doi:10.1103/PhysRevLett.10.66.
  113. ^ Chandrasekhar, Subrahmanyan (1964). "Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity". Physical Review Letters. 12 (4): 114–116. Bibcode:1964PhRvL..12..114C. doi:10.1103/PhysRevLett.12.114.
  114. ^ Chiu, Hong-Yee (May 1964). "Gravitational collapse". Physics Today. 17 (5): 21–34. Bibcode:1964PhT....17e..21C. doi:10.1063/1.3051610. So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.
  115. ^ Refsdal, Sjur (1964). "On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect". Monthly Notices of the Royal Astronomical Society. 128 (4): 307–310. doi:10.1093/mnras/128.4.307.
  116. ^ Irwin I. Shapiro (1964). "Fourth Test of General Relativity". Physical Review Letters. 13 (26): 789–791. Bibcode:1964PhRvL..13..789S. doi:10.1103/PhysRevLett.13.789.
  117. ^ "Haystack marks physics milestone". MIT News. July 14, 2005. Retrieved May 2, 2023.
  118. ^ Penrose, Roger (1965). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters. 14 (57): 57–59. Bibcode:1965PhRvL..14...57P. doi:10.1103/PhysRevLett.14.57.
  119. ^ Newman, Ezra; Janis, Allen (1965). "Note on the Kerr Spinning-Particle Metric". Journal of Mathematical Physics. 6 (6): 915–917. Bibcode:1965JMP.....6..915N. doi:10.1063/1.1704350.
  120. ^ Newman, Ezra; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. (1965). "Metric of a Rotating, Charged Mass". Journal of Mathematical Physics. 6 (6): 918–919. Bibcode:1965JMP.....6..918N. doi:10.1063/1.1704351.
  121. ^ Penzias, A.A.; Wilson, R.W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal. 142: 419–421. Bibcode:1965ApJ...142..419P. doi:10.1086/148307.
  122. ^ a b Moskowitz, Clara (March 1, 2019). "Neutron Stars: Nature's Weirdest Form of Matter". Scientific American.
  123. ^ Deutsch, David; Isham, Christopher; Vilkovisky, Gregory (2005). "Bryce Seligman DeWitt". Physics Today. 58 (3): 84. Bibcode:2005PhT....58c..84D. doi:10.1063/1.1897570.
  124. ^ Israel, Werner (1967). "Event Horizons in Static Vacuum Space-Times". Phys. Rev. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776.
  125. ^ Israel, Werner (25 December 1967). "Event Horizons in Static Vacuum Space-Times". Physical Review. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776 – via American Physical Society.
  126. ^ Carter, Brandon (1968). "Global structure of the Kerr family of gravitational fields". Physical Review. 174 (5): 1559–1571. Bibcode:1968PhRv..174.1559C. doi:10.1103/PhysRev.174.1559.
  127. ^ Irwin I. Shapiro; Gordon H. Pettengill; Michael E. Ash; Melvin L. Stone; et al. (1968). "Fourth Test of General Relativity: Preliminary Results". Physical Review Letters. 20 (22): 1265–1269. Bibcode:1968PhRvL..20.1265S. doi:10.1103/PhysRevLett.20.1265.
  128. ^ Nordvedt, Kennet (1968). "Equivalence Principle for Massive Bodies. II. Theory". Physical Review Letters. 169 (1017): 1017–1025. Bibcode:1968PhRv..169.1017N. doi:10.1103/PhysRev.169.1017.
  129. ^ Bonnor, William B. (1969). "The Gravitational Field of Light" (PDF). Communications in Mathematical Physics. 13 (3): 163–174. Bibcode:1969CMaPh..13..163B. doi:10.1007/BF01645484. S2CID 123398946.
  130. ^ "Making Waves". TERP. 2016-08-18. Retrieved 2016-11-07.
  131. ^ Cho, Adrian (February 15, 2016). "Remembering Joseph Weber, the controversial pioneer of gravitational waves". Science.
  132. ^ David Kaiser, "Learning from Gravitational Waves", New York Times, October 3, 2017.
  133. ^ Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento. Rivista Serie. 1: 252–276. Bibcode:1969NCimR...1..252P.
  134. ^ Choquet-Bruhat, Yvonne; Geroch, Robert (1969). "Global aspects of the Cauchy problem in general relativity". Communications in Mathematical Physics. 14 (4): 329–335. Bibcode:1969CMaPh..14..329C. doi:10.1007/BF01645389. S2CID 121522405.
  135. ^ Chandrasekhar, S. (1965). "The post-Newtonian equations of hydrodynamics in General Relativity". The Astrophysical Journal. 142: 1488. Bibcode:1965ApJ...142.1488C. doi:10.1086/148432.
  136. ^ Chandrasekhar, S. (1967). "The post-Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the MacLaurin spheroids". The Astrophysical Journal. 147: 334. Bibcode:1967ApJ...147..334C. doi:10.1086/149003.
  137. ^ Chandrasekhar, S. (1969). "Conservation laws in general relativity and in the post-Newtonian approximations". The Astrophysical Journal. 158: 45. Bibcode:1969ApJ...158...45C. doi:10.1086/150170.
  138. ^ Chandrasekhar, S.; Nutku, Y. (1969). "The second post-Newtonian equations of hydrodynamics in General Relativity". Relativistic Astrophysics. 86: 55. Bibcode:1969ApJ...158...55C. doi:10.1086/150171.
  139. ^ Chandrasekhar, S.; Esposito, F.P. (1970). "The 2½-post-Newtonian equations of hydrodynamics and radiation reaction in General Relativity". The Astrophysical Journal. 160: 153. Bibcode:1970ApJ...160..153C. doi:10.1086/150414.
  140. ^ Hawking, Stephen W.; Ellis, George F. R. (April 1968). "The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe". The Astrophysical Journal. 152: 25. Bibcode:1968ApJ...152...25H. doi:10.1086/149520.
  141. ^ Hawking, Stephen W.; Penrose, Roger (27 January 1970). "The Singularities of Gravitational Collapse and Cosmology". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 314 (1519): 529–548. Bibcode:1970RSPSA.314..529H. doi:10.1098/rspa.1970.0021.
  142. ^ Goldhaber, Alfred; Nieto, Michael (1971). "Terrestrial and Extraterrestrial Limits on The Photon Mass". Reviews of Modern Physics. American Physical Society. 43 (3): 277–296. Bibcode:1971RvMP...43..277G. doi:10.1103/RevModPhys.43.277.
  143. ^ Jackson, John David (1999). "Section I.2: Inverse Square Law or Mass of the Photon". Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. pp. 5–9. ISBN 0-471-30932-X.
  144. ^ Hawking, Stephen (October 1971). "Black Holes in General Relativity". Communications in Mathematical Physics. 25 (2): 152–166. doi:10.1007/BF01877517. S2CID 121527613.
  145. ^ Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID 120254309.
  146. ^ Cho, Adrian (October 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved May 20, 2019.
  147. ^ Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains" (PDF). Science. 177 (4044): 166–168. Bibcode:1972Sci...177..166H. doi:10.1126/science.177.4044.166. PMID 17779917. S2CID 10067969.
  148. ^ Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Observed Relativistic Time Gains" (PDF). Science. 177 (4044): 168–170. Bibcode:1972Sci...177..168H. doi:10.1126/science.177.4044.168. PMID 17779918. S2CID 37376002.
  149. ^ Wick, Gerald (February 3, 1972). "The clock paradox resolved". New Scientist: 261–263.
  150. ^ Teukolsky, Saul (1972). "Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations" (PDF). Physical Review Letters. 29 (16): 1114–1118. Bibcode:1972PhRvL..29.1114T. doi:10.1103/PhysRevLett.29.1114. S2CID 122083437.
  151. ^ Bardeen, John M.; Carter, Brandon; Hawking, Stephen (June 1973). "The four laws of black hole mechanics" (PDF). Communications in Mathematical Physics. 31 (2): 161–170. Bibcode:1973CMaPh..31..161B. doi:10.1007/BF01645742. S2CID 54690354.
  152. ^ Bardeen, James M. (1973). "Timelike and null geodesics in the Kerr metric". Proceedings, École d'Été de Physique Théorique: Les Astres Occlus: Les Houches, France, August, 1972: 215–240. Bibcode:1973blho.conf..215B. ISBN 9780677156101.
  153. ^ Overbye, Dennis (July 3, 2022). "James Bardeen, an Expert on Unraveling Einstein's Equations, Dies at 83". The New York Times. Archived from the original on July 3, 2022. Retrieved May 8, 2023.
  154. ^ Kaiser, David (2012). "A Tale of Two Textooks". Isis. University of Chicago Press. 103 (1): 126–138. doi:10.1086/664983. hdl:1721.1/82907. PMID 22655343.
  155. ^ Dahn, Ryan (March 10, 2023). "Gravitation's attraction, 50 years later". Physics Today. Retrieved July 31, 2023.
  156. ^ H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics. 14 (1): 104–118. Bibcode:1973JMP....14..104E. doi:10.1063/1.1666161.
  157. ^ Matson, John (Oct 1, 2010). "Artificial event horizon emits laboratory analogue to theoretical black hole radiation". Sci. Am.
  158. ^ Hawking, Stephen (March 1, 1974). "Black Hole Explosions?". Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. S2CID 4290107.
  159. ^ Hawking, Stephen (1975). "Particle Creation by Black Holes". Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID 55539246.
  160. ^ Collela, Roberto; Overhauser, Albert; Werner, Samuel (1975). "Observation of Gravitationally Induced Quantum Interference". Physical Review Letters. 34 (1472): 1472–1474. Bibcode:1975PhRvL..34.1472C. doi:10.1103/PhysRevLett.34.1472.
  161. ^ Staudenmann, J. -L.; Collela, Roberto; Werner, Samuel; Overhauser, Albert (1980). "Gravity and Inertia in Quantum Mechanics". Physical Review A. 21 (1419): 1419–1438. Bibcode:1980PhRvA..21.1419S. doi:10.1103/PhysRevA.21.1419.
  162. ^ Abele, Hartmut; Leeb, Helmut (2012). "Gravitation and quantum interference experiments with neutrons". New Journal of Physics. 14 (5): 055010. arXiv:1207.2953. Bibcode:2012NJPh...14e5010A. doi:10.1088/1367-2630/14/5/055010. ISSN 1367-2630. S2CID 53653704.
  163. ^ Townsend, John S. (2012). "Section 8.7: Quantum Interference due to Gravity". A Modern Approach to Quantum Mechanics (2nd ed.). University Science Books. pp. 297–99. ISBN 978-1-891389-78-8.
  164. ^ D.Walsh; R.F.Carswell; R.J.Weymann (31 May 1979). "0957 + 561 A, B: twin quasistellar objects or gravitational lens?" (PDF). Nature. 279 (5712): 381–384. doi:10.1038/279381a0. PMID 16068158. S2CID 2142707.
  165. ^ Luminet, Jean-Pierre (1979). "Image of a spherical black hole with thin accretion disk". Astronomy and Astrophysics. 75 (1–2): 228–235. Bibcode:1979A&A....75..228L.
  166. ^ "First ever image of a black hole: a CNRS researcher had simulated it as early as 1979". Espace presse. CNRS. April 10, 2019. Retrieved May 24, 2023.
  167. ^ Schoen, Robert; Yau, Shing-Tung (1979). "On the proof of the positive mass conjecture in general relativity". Communications in Mathematical Physics. 65 (1): 45. Bibcode:1979CMaPh..65...45S. doi:10.1007/BF01940959. S2CID 54217085.
  168. ^ Schoen, Robert; Yau, Shing-Tung (1981). "Proof of the positive mass theorem. II". Communications in Mathematical Physics. 79 (2): 231. Bibcode:1981CMaPh..79..231S. doi:10.1007/BF01942062. S2CID 59473203.
  169. ^ Witten, Edward (1981). "A new proof of the positive energy theorem". Communications in Mathematical Physics. 80 (3): 381–402. Bibcode:1981CMaPh..80..381W. doi:10.1007/BF01208277. S2CID 1035111.
  170. ^ Rubin, Vera; et al. (June 1980). "Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". Astrophysical Journal. 238: 471–487. Bibcode:1980ApJ...238..471R. doi:10.1086/158003.
  171. ^ Nemiroff, Robert; Bonnell, Jerry (April 5, 2023). "Rubin's Galaxy". Astronomy Picture of the Day. NASA. Retrieved April 18, 2023.
  172. ^ Vessot, R. F. C.; et al. (1980). "Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser" (PDF). Physical Review Letters. 45 (26): 2081–2084. Bibcode:1980PhRvL..45.2081V. doi:10.1103/PhysRevLett.45.2081.
  173. ^ Bardeen, James M. (1980). "Gauge-invariant cosmological perturbations" (PDF). Physical Review D. 22 (8): 1882–1905. Bibcode:1980PhRvD..22.1882B. doi:10.1103/PhysRevD.22.1882.
  174. ^ Guth, Alan (15 January 1981). "Inflationary universe: A possible solution to the horizon and flatness problems". Physical Review D. 23 (2): 347–356. Bibcode:1981PhRvD..23..347G. doi:10.1103/PhysRevD.23.347.
  175. ^ Friedrich, Helmut (1986). "On the existence of  -geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure". Communications in Mathematical Physics. 107 (4): 587–609. Bibcode:1986CMaPh.107..587F. doi:10.1007/BF01205488. S2CID 121761845.
  176. ^ a b c Nadis, Steve (May 11, 2020). "New Math Proves That a Special Kind of Space-Time Is Unstable". Quanta Magazine. Retrieved January 6, 2023.
  177. ^ Schultz, Bernard (1986). "Determining the Hubble constant from gravitational wave observations". Nature. 323 (6086): 310–311. Bibcode:1986Natur.323..310S. doi:10.1038/323310a0. hdl:11858/00-001M-0000-0013-73C1-2. S2CID 4327285.
  178. ^ Morris, Mike; Thorne, Kip; Yurtsever, Ulvi (1986). "Wormholes, Time Machines, and the Weak Energy Condition". Physical Review Letters. 61 (1446): 1446–1449. doi:10.1103/PhysRevLett.61.1446. PMID 10038800.
  179. ^ Morris, Michael S. & Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics. 56 (5): 395–412. Bibcode:1988AmJPh..56..395M. doi:10.1119/1.15620.
  180. ^ Weinberg, Steven (1989). "The Cosmological Constant Problem". Physical Review Letters. 61 (1): 1–23. Bibcode:1989RvMP...61....1W. doi:10.1103/RevModPhys.61.1. hdl:2152/61094. S2CID 122259372.
  181. ^ Hawking, Stephen (1992). "Chronology Protection Conjecture". Physical Review D. 46 (603): 603–611. Bibcode:1992PhRvD..46..603H. doi:10.1103/PhysRevD.46.603. PMID 10014972.
  182. ^ Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press. ISBN 0-691-08777-6.
  183. ^ Donoghue, John F. (1994). "General relativity as an effective field theory: The leading quantum corrections". Physical Review D. 50 (3874): 3874–3888. arXiv:gr-qc/9405057. Bibcode:1994PhRvD..50.3874D. doi:10.1103/PhysRevD.50.3874. PMID 10018030. S2CID 14352660.
  184. ^ Goldberger, Walter; Rothstein, Ira (2004). "An Effective Field Theory of Gravity for Extended Objects". Physical Review D. 73 (10): 104029. arXiv:hep-th/0409156. doi:10.1103/PhysRevD.73.104029. S2CID 54188791.
  185. ^ "Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years". NASA. 1995. Retrieved January 12, 2009.
  186. ^ "A Bull's Eye for MERLIN and the Hubble". University of Manchester. 27 March 1998.
  187. ^ Browne, Malcolm W. (1998-03-31). "'Einstein Ring' Caused by Space Warping Is Found". The New York Times. Retrieved 2010-05-01.
  188. ^ Smoot, G. F.; et al. (1992). "Structure in the COBE differential microwave radiometer first-year maps". Astrophysical Journal Letters. 396 (1): L1–L5. Bibcode:1992ApJ...396L...1S. doi:10.1086/186504. S2CID 120701913.
  189. ^ Bennett, C.L.; et al. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". Astrophysical Journal Letters. 464: L1–L4. arXiv:astro-ph/9601067. Bibcode:1996ApJ...464L...1B. doi:10.1086/310075. S2CID 18144842.
  190. ^ Reiss, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John (1998). "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant". The Astronomical Journal. 116 (3): 1009–1038. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499. S2CID 15640044.
  191. ^ Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.M.; Couch, W.J. (1999). "Measurements of Omega and Lambda from 42 High-Redshift Supernovae". The Astrophysical Journal. 517 (2): 565–586. arXiv:astro-ph/9812133. Bibcode:1999ApJ...517..565P. doi:10.1086/307221. S2CID 118910636.
  192. ^ Buonanno, A.; Damour, T. (1999-03-08). "Effective one-body approach to general relativistic two-body dynamics". Physical Review D. American Physical Society (APS). 59 (8): 084006. arXiv:gr-qc/9811091. Bibcode:1999PhRvD..59h4006B. doi:10.1103/physrevd.59.084006. ISSN 0556-2821. S2CID 14951569.
  193. ^ Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016-06-07). "GW150914: First results from the search for binary black hole coalescence with Advanced LIGO". Physical Review D. 93 (12): 122003. arXiv:1602.03839. Bibcode:2016PhRvD..93l2003A. doi:10.1103/physrevd.93.122003. ISSN 2470-0010. PMC 7430253. PMID 32818163. S2CID 217628912.
  194. ^ Borde, Arvind; Guth, Alan H.; Vilenkin, Alexander (15 April 2003). "Inflationary space-times are incomplete in past directions". Physical Review Letters. 90 (15): 151301. arXiv:gr-qc/0110012. Bibcode:2003PhRvL..90o1301B. doi:10.1103/PhysRevLett.90.151301. PMID 12732026. S2CID 46902994.
  195. ^ Perlov, Delia; Vilenkin, Alexander (7 August 2017). Cosmology for the Curious. Cham, Switzerland: Springer. pp. 330–31. ISBN 978-3319570402.
  196. ^ Williams, James G.; Turyshev, Slava G.; Boggs, Dale H. (2004). "Progress in Lunar Laser Ranging Tests of Relativistic Gravity". Physical Review Letters. 93 (261101): 261101. arXiv:gr-qc/0411113. Bibcode:2004PhRvL..93z1101W. doi:10.1103/PhysRevLett.93.261101. PMID 15697965. S2CID 33664768.
  197. ^ Holz, Daniel; Hughes, Scott (2005). "Using Gravitational-Wave Standard Sirens". Astrophysical Journal. 629 (1): 15–22. arXiv:astro-ph/0504616. Bibcode:2005ApJ...629...15H. doi:10.1086/431341. hdl:1721.1/101190. S2CID 12017349.
  198. ^ Everitt, C.W.F.; Parkinson, B.W. (2009). "Gravity Probe B Science Results—NASA Final Report" (PDF). Retrieved 2 May 2009.
  199. ^ Everitt; et al. (2011). "Gravity Probe B: Final Results of a Space Experiment to Test General Relativity". Physical Review Letters. 106 (22): 221101. arXiv:1105.3456. Bibcode:2011PhRvL.106v1101E. doi:10.1103/PhysRevLett.106.221101. PMID 21702590. S2CID 11878715.
  200. ^ Bennett, C. L.; et al. (2011). "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?". Astrophysical Journal Supplement Series. 192 (2): 17. arXiv:1001.4758. Bibcode:2011ApJS..192...17B. doi:10.1088/0067-0049/192/2/17. S2CID 53521938.
  201. ^ "Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe". NASA. September 25, 2012. Retrieved September 26, 2012.
  202. ^ "NASA's NuSTAR Helps Solve Riddle of Black Hole Spin". NASA. 27 February 2013. Retrieved 3 March 2013.   This article incorporates text from this source, which is in the public domain.
  203. ^ LIGO-VIRGO Collaboration (2016). "Tests of general relativity with GW150914". Physical Review Letters. 116 (22): 22110. arXiv:1602.03841. Bibcode:2016PhRvL.116v1101A. doi:10.1103/PhysRevLett.116.221101. PMID 27314708. S2CID 217275338.
  204. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters. 116 (24): 241103. arXiv:1606.04855. Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID 27367379. S2CID 118651851.
  205. ^ Naeye, Robert (11 February 2016). "Gravitational Wave Detection Heralds New Era of Science". Sky and Telescope. Retrieved 11 February 2016.
  206. ^ Pretorius, Frans (May 31, 2016). "Relativity Gets Thorough Vetting from LIGO". Physics. Vol. 9, no. 52. American Physical Society. Retrieved May 12, 2023.
  207. ^ Chu, Jennifer (June 15, 2016). "For second time, LIGO detects gravitational waves". MIT News. Retrieved June 16, 2016.
  208. ^ a b Abbott, B. P.; et al. (October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225. S2CID 217163611.
  209. ^ a b Goldstein, A.; et al. (October 2017). "An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A". Astrophysical Review Letters. 848 (2): L14. arXiv:1710.05446. Bibcode:2017ApJ...848L..14G. doi:10.3847/2041-8213/aa8f41. S2CID 89613132.
  210. ^ Savchenko, V.; et al. (October 2017). "INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817". Astrophysical Review Letters. 848 (2): L15. arXiv:1710.05449. Bibcode:2017ApJ...848L..15S. doi:10.3847/2041-8213/aa8f94. S2CID 54078722.
  211. ^ Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (2017). "Gravitational waves and gamma-rays from a binary neutron star merger: GW 170817 and GRB 170817A". The Astrophysical Journal Letters. 848 (2): L13. arXiv:1710.05834. Bibcode:2017ApJ...848L..13A. doi:10.3847/2041-8213/aa920c.
  212. ^ Abbott, B. P.; et al. (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger". The Astrophysical Journal Letters. 848 (2). L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9. S2CID 217162243.
  213. ^ McLaughlin, Maura (October 16, 2017). "Neutron Star Merger Seen and Heard". Physics. Vol. 10, no. 114. American Physical Society. Retrieved May 12, 2023.
  214. ^ Cho A (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. doi:10.1126/science.aar2149.
  215. ^ Landau E, Chou F, Washington D, Porter M (16 October 2017). "NASA missions catch first light from a gravitational-wave event". NASA. Retrieved 16 October 2017.
  216. ^ Johnson, Jennifer (2019). "Populating the periodic table: Nucleosynthesis of the elements". Science. 363 (6426): 474–478. Bibcode:2019Sci...363..474J. doi:10.1126/science.aau9540. PMID 30705182. S2CID 59565697.
  217. ^ Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (October 25, 2021). "The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers". Astrophysical Review Letters. 920 (1): L3. arXiv:2107.02714. Bibcode:2021ApJ...920L...3C. doi:10.3847/2041-8213/ac26c6. S2CID 238198587.
  218. ^ Watson, Darach; et al. (2019). "Identification of strontium in the merger of two neutron stars". Nature. 574 (7779): 497–500. arXiv:1910.10510. Bibcode:2019Natur.574..497W. doi:10.1038/s41586-019-1676-3. PMID 31645733. S2CID 204837882.
  219. ^ Curtis, Sanjana (January 2023). "How Star Collisions Forge the Universe's Heaviest Elements". Scientific American.
  220. ^ Touboul, Pierre; et al. (8 December 2017). "MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle". Physical Review Letters. 119 (23). 231101. arXiv:1712.01176. Bibcode:2017PhRvL.119w1101T. doi:10.1103/PhysRevLett.119.231101. PMID 29286705. S2CID 6211162.
  221. ^ MICROSCOPE Collaboration (2022). "MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle". Physical Review Letters. 129 (12): 121102. arXiv:2209.15487. Bibcode:2022PhRvL.129l1102T. doi:10.1103/PhysRevLett.129.121102. PMID 36179190. S2CID 252468544.
  222. ^ Brax, Philippe (September 14, 2022). "Satellite Confirms the Principle of Falling". Physics. American Physical Society (APS). 15 (94): 94. Bibcode:2022PhyOJ..15...94B. doi:10.1103/Physics.15.94. S2CID 252801272.
  223. ^ Tino, G. M.; et al. (2017). "Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states". Nature Communications. 8 (15529): 15529. arXiv:1704.02296. Bibcode:2017NatCo...815529R. doi:10.1038/ncomms15529. PMC 5461482. PMID 28569742.
  224. ^ LIGO-VIRGO Collaboration; 1M2H Collaboration; et al. (2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696. S2CID 205261622.
  225. ^ Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (November 2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696. S2CID 205261622.
  226. ^ Chen HY, Fishbach M, Holz DE (October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv:1712.06531. Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID 30333628. S2CID 52987203.
  227. ^ Akrami, Y.; et al. (Planck Collaboration) (2020). "Planck 2018 results. I. Overview, and the comological legacy of Planck". Astronomy & Astrophysics. 641: A1. arXiv:1807.06205. Bibcode:2020A&A...641A...1P. doi:10.1051/0004-6361/201833880. S2CID 119185252.
  228. ^ Hartnett, Kevin (17 May 2018). "Mathematicians Disprove Conjecture Made to Save Black Holes". Quanta Magazine. Retrieved 29 March 2020.
  229. ^ Advanced LIGO-VIRGO Collaboration (2018). "GW170817: Measurements of Neutron Star Radii and Equation of State". Physical Review Letters. 121 (161101): 161101. arXiv:1805.11581. Bibcode:2018PhRvL.121p1101A. doi:10.1103/PhysRevLett.121.161101. PMID 30387654. S2CID 53235598.
  230. ^ Sokol, Joshua (June 5, 2018). "Gravitational Waves Reveal the Hearts of Neutron Stars". Scientific American.
  231. ^ Rezzolla, L.; Most, E. R.; Weih, L. R. (2018). "Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars". Astrophysical Journal. 852 (2): L25. arXiv:1711.00314. Bibcode:2018ApJ...852L..25R. doi:10.3847/2041-8213/aaa401. S2CID 119359694.
  232. ^ Pardo, Kris; Fishbach, Maya; Holz, Daniel E.; Spergel, David N. (2018). "Limits on the number of spacetime dimensions from GW170817". Journal of Cosmology and Astroparticle Physics. 2018 (7): 048. arXiv:1801.08160. Bibcode:2018JCAP...07..048P. doi:10.1088/1475-7516/2018/07/048. S2CID 119197181.
  233. ^ Lerner, Louise (September 13, 2018). "Gravitational waves provide dose of reality about extra dimensions". UChicago News. Retrieved January 3, 2023.
  234. ^ Lombriser L, Lima N (2017). "Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure". Phys. Lett. B. 765: 382–385. arXiv:1602.07670. Bibcode:2017PhLB..765..382L. doi:10.1016/j.physletb.2016.12.048. S2CID 118486016.
  235. ^ Bettoni D, Ezquiaga JM, Hinterbichler K, Zumalacárregui M (14 April 2017). "Speed of gravitational waves and the fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv:1608.01982. Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010. S2CID 119186001.
  236. ^ Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (December 2017). "Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A". Physical Review Letters. 119 (25): 251301. arXiv:1710.06394. Bibcode:2017PhRvL.119y1301B. doi:10.1103/PhysRevLett.119.251301. PMID 29303333. S2CID 36160359.
  237. ^ LIGO-VIRGO Collaboration (2018). "Tests of General Relativity with GW170817". Physical Review Letters. 123 (1): 011102. doi:10.1103/PhysRevLett.123.011102. PMID 31386391. S2CID 119214541.
  238. ^ Creminelli P, Vernizzi F (December 2017). "Dark Energy after GW170817 and GRB170817A". Physical Review Letters. 119 (25): 251302. arXiv:1710.05877. Bibcode:2017PhRvL.119y1302C. doi:10.1103/PhysRevLett.119.251302. PMID 29303308. S2CID 206304918.
  239. ^ Boran S, Desai S, Kahya E, Woodard R (2018). "GW 170817 falsifies dark matter emulators". Phys. Rev. D. 97 (4): 041501. arXiv:1710.06168. Bibcode:2018PhRvD..97d1501B. doi:10.1103/PhysRevD.97.041501. S2CID 119468128.
  240. ^ Ezquiaga JM, Zumalacárregui M (December 2017). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters. 119 (25): 251304. arXiv:1710.05901. Bibcode:2017PhRvL.119y1304E. doi:10.1103/PhysRevLett.119.251304. PMID 29303304. S2CID 38618360.
  241. ^ Sakstein J, Jain B (December 2017). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters. 119 (25): 251303. arXiv:1710.05893. Bibcode:2017PhRvL.119y1303S. doi:10.1103/PhysRevLett.119.251303. PMID 29303345. S2CID 39068360.
  242. ^ Kitching, Thomas (December 12, 2017). "How crashing neutron stars killed off some of our best ideas about what 'dark energy' is". The Conversation. Retrieved January 5, 2023.
  243. ^ Li, Qing; et al. (2018). "Measurements of the gravitational constant using two independent methods". Nature. 560 (7720): 582–588. Bibcode:2018Natur.560..582L. doi:10.1038/s41586-018-0431-5. PMID 30158607. S2CID 256770086.
  244. ^ Schlamminger, Stephan (August 29, 2018). "Gravity measured with record precision". Nature. 560 (7720): 562–563. Bibcode:2018Natur.560..562S. doi:10.1038/d41586-018-06028-6. PMID 30158612.
  245. ^ Temming, Maria (August 29, 2018). "The strength of gravity has been measured to new precision". Science News. Retrieved August 3, 2023.
  246. ^ Event Horizon Telescope Collaboration (April 10, 2019). "First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole". Astrophysical Review Letters. 875 (1): L6. arXiv:1906.11243. Bibcode:2019ApJ...875L...6E. doi:10.3847/2041-8213/ab1141. S2CID 145969867.
  247. ^ Landau, Elizabeth (April 10, 2019). "Black Hole Image Makes History". Jet Propulsion Laboratory, California Institute of Technology. Retrieved May 17, 2023.
  248. ^ Staff (2020). "GW190814 Factsheet: Lowest mass ratio to date: Strongest evidence of higher order modes" (PDF). LIGO. Retrieved 26 June 2020.
  249. ^ Abbott, R.; et al. (23 June 2020). "GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object". The Astrophysical Journal Letters. 896 (2): L44. arXiv:2006.12611. Bibcode:2020ApJ...896L..44A. doi:10.3847/2041-8213/ab960f.
  250. ^ Asenbaum, Peter; Overstreet, Chris; Kim, Minjeong; Curti, Joseph; Kasevich, Mark A. (2020). "Atom-Interferometric Test of the Equivalence Principle at the 10−12 Level". Physical Review Letters. 125 (19): 191101. arXiv:2005.11624. Bibcode:2020PhRvL.125s1101A. doi:10.1103/PhysRevLett.125.191101. PMID 33216577. S2CID 218869931.
  251. ^ Conover, Emily (October 28, 2020). "Galileo's famous gravity experiment holds up, even with individual atoms". Science News. Retrieved August 6, 2023.
  252. ^ Bothwell, Tobias; Kennedy, Colin J.; Aeppli, Alexander; Kedar, Dhruv; Robinson, John M.; Oelker, Eric; Staron, Alexander; Ye, Jun (2022). "Resolving the gravitational redshift across a millimetre-scale atomic sample" (PDF). Nature. 602 (7897): 420–424. arXiv:2109.12238. Bibcode:2022Natur.602..420B. doi:10.1038/s41586-021-04349-7. PMID 35173346. S2CID 237940816.
  253. ^ McCormick, Katie (2021-10-25). "An Ultra-Precise Clock Shows How to Link the Quantum World With Gravity". Quanta Magazine. Retrieved 2021-10-29.
  254. ^ Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VII. Polarization of the Ring". Astrophysical Journal Letters. 910 (1): L12. arXiv:2105.01169. Bibcode:2021ApJ...910L..12E. doi:10.3847/2041-8213/abe71d. S2CID 233715159.
  255. ^ Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon". Astrophysical Journal Letters. 910 (1): L13. arXiv:2105.01173. Bibcode:2021ApJ...910L..13E. doi:10.3847/2041-8213/abe4de. S2CID 233659565.
  256. ^ Bower, Geoffrey C. (May 2022). "Focus on First Sgr A* Results from the Event Horizon Telescope". The Astrophysical Journal. Retrieved May 12, 2022.
  257. ^ Overbye, Dennis (May 12, 2022). "The Milky Way's Black Hole Comes to Light". The New York Times. ISSN 0362-4331. Retrieved May 12, 2022.
  258. ^ Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way". Astrophysical Journal Letters. 930 (2): L12. Bibcode:2022ApJ...930L..12E. doi:10.3847/2041-8213/ac6674. hdl:10261/278882. S2CID 248744791.
  259. ^ Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric". Astrophysical Journal Letters. 930 (2): L17. Bibcode:2022ApJ...930L..17E. doi:10.3847/2041-8213/ac6756. hdl:10261/279267. S2CID 248744741.
  260. ^ Overstreet, Chris; Asenbaum, Peter; Curti, Joseph; Kim, Minjeong; Kasevich, Mark A. (January 14, 2022). "Observation of a gravitational Aharonov-Bohm effect". Science. 375 (6577): 226–229. Bibcode:2022Sci...375..226O. doi:10.1126/science.abl7152. ISSN 0036-8075. PMID 35025635. S2CID 245932980.
  261. ^ Seigel, Ethan (January 18, 2022). "Has a new experiment just proven the quantum nature of gravity?". Big Think. Retrieved August 5, 2023.
  262. ^ Conover, Emily (January 13, 2022). "Quantum particles can feel the influence of gravitational fields they never touch". Science News. Retrieved August 5, 2023.
  263. ^ Hohensee, Michael A.; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger (June 7, 2012). "Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm Experiment". Physical Review Letters. 108 (23): 230404. arXiv:1109.4887. Bibcode:2012PhRvL.108w0

timeline, gravitational, physics, relativity, following, timeline, gravitational, physics, general, relativity, contents, before, 1500, 1500s, 1600s, 1700s, 1800s, 1900s, 1910s, 1920s, 1930s, 1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s, 2010s, 2020s, also,. The following is a timeline of gravitational physics and general relativity Contents 1 Before 1500 2 1500s 3 1600s 4 1700s 5 1800s 6 1900s 6 1 1910s 6 2 1920s 6 3 1930s 6 4 1940s 6 5 1950s 6 6 1960s 6 7 1970s 6 8 1980s 6 9 1990s 7 2000s 7 1 2010s 7 2 2020s 8 See also 9 References 10 External linksBefore 1500 Edit3rd century BC Aristarchus of Samos proposes heliocentric model measures the distance to the Moon and its size1500s Edit1543 Nicolaus Copernicus places the Sun at the gravitational center starting a revolution in science 1583 Galileo Galilei induces the period relationship of a pendulum from observations according to later biographer 1586 Simon Stevin demonstrates that two objects of different mass accelerate at the same rate when dropped 1 1589 Galileo describes a hydrostatic balance for measuring specific gravity 1590 Galileo formulates modified Aristotelean theory of motion later retracted based on density rather than weight of objects 1600s Edit nbsp Geometric diagram for Newton s proof of Kepler s second law 1602 Galileo conducts experiments on pendulum motion 1604 Galileo conducts experiments with inclined planes and induces the law of falling objects 1607 Galileo derives a mathematical formulation of the law of falling objects based on his earlier experiments 1608 Galileo discovers the parabolic arc of projectiles through experiment 1609 Johannes Kepler his first two laws of planetary motion 2 1619 Johannes Kepler publishes his third law of planetary motion 2 1665 Isaac Newton introduces an inverse square universal law of gravitation uniting terrestrial and celestial theories of motion and uses it to predict the orbit of the Moon and the parabolic arc of projectiles 1684 Newton proves that planets moving under an inverse square force law will obey Kepler s laws in a letter to Edmond Halley 1686 Newton uses a fixed length pendulum with weights of varying composition to test the weak equivalence principle to 1 part in 1000 3 4 1686 Newton publishes his Mathematical Principles of Natural Philosophy where he develops his calculus states his laws of motion and gravitation proves the shell theorem explains the tides and calculates the figure of the Earth 3 1700s Edit nbsp Lagrange points1705 Edmond Halley predicts the return of Halley s comet in 1758 5 the first use of Newton s laws by someone other than Newton himself 6 1742 Colin Maclaurin studies a self gravitating uniform liquid drop at equilibrium the Maclaurin spheroid 7 8 1755 Immanuel Kant advances Emanuel Swedenborg s nebular hypothesis on the origin of the Solar System 9 1765 Leonhard Euler discovers the first three Lagrange points 10 11 1767 Leonhard Euler solves Euler s restricted three body problem 12 1772 Joseph Louis Lagrange discovers the two remaining Lagrange points 13 1796 Pierre Simon de Laplace independently introduces the nebular hypothesis 9 1798 Henry Cavendish tests Newton s law of universal gravitation using a torsion balance leading to the first accurate value for the gravitational constant and the mean density of the Earth 14 15 1800s Edit1846 Urbain Le Verrier and John Couch Adams studying Uranus orbit independently prove that another farther planet must exist Neptune was found at the predicted moment and position 1855 Le Verrier observes a 35 arcsecond per century excess precession of Mercury s orbit and attributes it to another planet inside Mercury s orbit The planet was never found See Vulcan 1876 William Kingdon Clifford suggests that the motion of matter may be due to changes in the geometry of space 16 1882 Simon Newcomb observes a 43 arcsecond per century excess precession of Mercury s orbit 1887 Albert A Michelson and Edward W Morley in their famous experiment do not detect the ether drift 17 18 1889 Lorand Eotvos uses a torsion balance to test the weak equivalence principle to 1 part in one billion 19 1893 Ernst Mach states Mach s principle first constructive attack on the idea of Newtonian absolute space 1898 Henri Poincare states that simultaneity is relative 1899 Hendrik Antoon Lorentz published the Lorentz transformations 1900s Edit nbsp The U S Navy s nuclear powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean 1964 1902 Paul Gerber explains the movement of the perihelion of Mercury using finite speed of gravity 20 His formula at least approximately matches the later model from Einstein s general relativity but Gerber s theory was incorrect 1904 Henri Poincare presents the principle of relativity for electromagnetism 1905 Albert Einstein completes his special theory of relativity 21 and discovers the equivalence of mass and energy 22 E m c 2 displaystyle E mc 2 nbsp in modern form 23 24 1907 Albert Einstein introduces the principle of equivalence of gravitational and inertial mass and uses it to predict gravitational lensing and gravitational redshift 25 historically known as the Einstein shift 26 1907 9 Hermann Minkowski introduces the Minkowski spacetime His paper was published posthumously 27 28 29 1909 Max Born proposes his notion of rigidity 30 31 1909 Paul Ehrenfest states the Ehrenfest paradox 32 33 1910s Edit nbsp Einstein s 1911 argument for gravitational redshift1911 Albert Einstein explains the need to replace both special relativity and Newton s theory of gravity he realizes that the principle of equivalence only holds locally not globally 34 1915 16 Albert Einstein completes his general theory of relativity 35 He explains the perihelion of Mercury and calculates gravitational lensing correctly and introduces the post Newtonian approximation 36 37 1915 David Hilbert introduces Hilbert s action principle 38 another way of deriving the Einstein field equations of general relativity Hilbert also recognizes the connection between the Einstein equations and the Gauss Bonnet theorem 39 1916 Karl Schwarzschild publishes the Schwarzschild metric about a month after Einstein published his general theory of relativity 40 41 This was the first solution to the Einstein field equations other than the trivial flat space solution 42 43 1916 Albert Einstein predicts gravitational waves 44 1916 Willem de Sitter predicts the geodetic effect 45 1917 Albert Einstein applies his field equations to the entire Universe 46 Physical cosmology is born 1916 20 Arthur Eddington studies the internal constitution of the stars 47 48 1918 Albert Einstein derives the quadrupole formula for gravitational radiation 49 50 1918 Josef Lense and Hans Thirring find the gravitomagnetic frame dragging of gyroscopes in the equations of general relativity 51 52 53 1919 Arthur Eddington leads a solar eclipse expedition which detects gravitational deflection of light by the Sun 54 which despite opinion to the contrary survives modern scrutiny 55 Other teams failed for reasons of war and politics 56 1920s Edit 1921 Theodor Kaluza demonstrates that a five dimensional version of Einstein s equations unifies gravitation and electromagnetism 57 1922 Alexander Friedmann derives the Friedmann equations 58 1922 Enrico Fermi introduces the Fermi coordinates 59 60 1923 George David Birkhoff proves Birkhoff s theorem on the uniqueness of the Schwarzschild solution 1924 Arthur Eddington calculates the Eddington limit 61 1925 Walter Adams measures the gravitational redshift of the light emitted by the companion of Sirius B a white dwarf 62 1927 Georges Lemaitre publishes his hypothesis of the primeval atom 63 1929 Edwin Hubble published the law later named for him 64 1930s Edit nbsp The Einstein Cross an example of gravitational lensing at work1931 Subrahmanyan Chandrasekhar studies the stability of white dwarfs 65 66 1931 Georges Lemaitre and Arthur Eddington predict the expansion of the Universe 67 68 1931 Albert Einstein introduces his cosmological constant 69 1932 Albert Einstein and Willem de Sitter propose the Einstein de Sitter cosmological model 70 1934 Walter Baade and Fritz Zwicky predict the existence of neutron stars 71 Although their details are wrong their basic idea is now accepted 72 1935 Albert Einstein and Nathan Rosen derive the Einstein Rosen bridge the first wormhole solution 73 1936 Albert Einstein predicts that a gravitational lens brightens the light coming from a distant object to the observer 74 1937 Fritz Zwicky states that galaxies could act as gravitational lenses 75 1937 Albert Einstein and Nathan Rosen obtain the Einstein Rosen metric the first exact solution describing gravitational waves 76 1938 Albert Einstein Leopold Infeld and Banesh Hoffmann obtain the Einstein Infeld Hoffmann equations of motion 77 1939 Hans Bethe shows that nuclear fusion is responsible for energy production inside stars 78 building upon the Kelvin Helmholtz mechanism 1939 Richard Tolman solves the Einstein field equations in the case of a spherical fluid drop 79 80 1939 Robert Serber George Volkoff Richard Tolman and J Robert Oppenheimer study the stability of neutron stars obtaining the Tolman Oppenheimer Volkoff limit 81 82 80 1939 J Robert Oppenheimer and Hartland Snyder publish the Oppenheimer Snyder model for the continued gravitational contraction of a star 83 80 84 1940s Edit 1948 Ralph Alpher and Robert Herman predict the cosmic microwave background 85 86 1949 Cornelius Lanczos introduces the Lanczos potential for the Weyl tensor 87 1949 Kurt Godel discovers Godel s solution 88 1950s Edit 1953 P C Vaidya Newtonian time in general relativity Nature 171 p260 1954 Suraj Gupta sketches how to derive the equations of general relativity from quantum field theory for a massless spin 2 particle the graviton 89 His procedure was later carried out by Stanley Deser in 1970 90 91 1955 56 Robert Kraichnan shows that under the appropriate assumptions Einstein s field equations of gravitation arise from the quantum field theory of a massless spin 2 particle coupled to the stress energy tensor 92 93 This follows from his unpublished work as an undergraduate in 1947 91 1956 Bruno Berlotti develops the post Minkowskian expansion 94 1956 John Lighton Synge publishes the first relativity text emphasizing spacetime diagrams and geometrical methods 1957 Felix A E Pirani uses Petrov classification to understand gravitational radiation 1957 Richard Feynman introduces his sticky bead argument 91 95 He later derives the quadrupole formula in a letter to Victor Weisskopf 1961 91 1957 John Wheeler discusses the breakdown of classical general relativity near singularities and the need for quantum gravity 1958 David Finkelstein presents a new coordinate system that eliminates the Schwarzschild radius as a singularity 96 1959 Robert Pound and Glen Rebka propose the Pound Rebka experiment first precision test of gravitational redshift The experiment relies on the Mossbauer effect 97 1959 Lluis Bel introduces Bel Robinson tensor and the Bel decomposition of the Riemann tensor 1959 Arthur Komar introduces the Komar mass 1959 Richard Arnowitt Stanley Deser and Charles W Misner developed ADM formalism 1960s Edit 1960 Martin Kruskal and George Szekeres independently introduce the Kruskal Szekeres coordinates for the Schwarzschild vacuum 98 99 1960 John Graves and Dieter Brill study the causal structure of an electrically charged black hole 100 1960 Thomas Matthews and Allan R Sandage associate 3C 48 with a point like optical image show radio source can be at most 15 light minutes in diameter 1960 Ivor M Robinson and Andrzej Trautman discover the Robinson Trautman null dust solution 101 1960 Robert Pound and Glen Rebka test the gravitational redshift predicted by the equivalence principle to approximately 1 102 1961 Tullio Regge introduces the Regge calculus 103 1961 Carl H Brans and Robert H Dicke introduce Brans Dicke theory the first viable alternative theory with a clear physical motivation 104 1961 Pascual Jordan and Jurgen Ehlers develop the kinematic decomposition of a timelike congruence 1961 Robert Dicke Peter Roll and R Krotkov refine the Eotvos experiment to an accuracy of 10 11 105 106 1962 John Wheeler and Robert Fuller show that the Einstein Rosen bridge is unstable 107 1962 Roger Penrose and Ezra T Newman introduce the Newman Penrose formalism 1962 Ehlers and Wolfgang Kundt classify the symmetries of Pp wave spacetimes 1962 Joshua Goldberg and Rainer K Sachs prove the Goldberg Sachs theorem 108 1962 Ehlers introduces Ehlers transformations a new solution generating method 1962 Richard Arnowitt Stanley Deser and Charles W Misner introduce the ADM reformulation and global hyperbolicity 1962 Istvan Ozsvath and Englbert Schucking rediscover the circularly polarized monochromomatic gravitational wave 1962 Hans Adolph Buchdahl discovers Buchdahl s theorem 1962 Hermann Bondi introduces Bondi mass 1962 Hermann Bondi M G van der Burg A W Metzner and Rainer K Sachs introduce the asymptotic symmetry group of asymptotically flat Lorentzian spacetimes at null i e light like infinity 1964 Steven Weinberg shows that a quantum field theory of interacting massless spin 2 particles is Lorentz invariant only if it satisfies the principle of equivalence 109 110 91 1963 Roy Kerr discovers the Kerr vacuum solution of Einstein s field equations 111 1963 Redshifts of 3C 273 and other quasars show they are very distant hence very luminous 1963 Newman T Unti and L A Tamburino introduce the NUT vacuum solution 1963 Roger Penrose introduces Penrose diagrams and Penrose limits 112 1963 First Texas Symposium on Relativistic Astrophysics held in Dallas 16 18 December 1964 Subrahmanyan Chandrasekhar determines a stability criterion 113 1964 R W Sharp and Misner introduce the Misner Sharp mass 1964 Hong Yee Chiu coins the term quasar for quasi stellar radio sources 114 1964 Sjur Refsdal suggests that the Hubble constant could be determined using gravitational lensing 115 1964 Irwin Shapiro predicts a gravitational time delay of radiation travel as a test of general relativity 116 117 1965 Roger Penrose proves first of the singularity theorems 118 1965 Newman and others discover the Kerr Newman electrovacuum solution 1965 Penrose discovers the structure of the light cones in gravitational plane wave spacetimes 1965 Ezra Newman and others introduce Kerr Newman metric 119 120 1965 Arno Penzias and Robert Wilson discover the cosmic microwave background radiation 121 1965 Joseph Weber puts the first Weber bar gravitational wave detector into operation 1966 Sachs and Ronald Kantowski discover the Kantowski Sachs dust solution 1967 Jocelyn Bell and Antony Hewish discover pulsars 122 1967 Robert H Boyer and R W Lindquist introduce Boyer Lindquist coordinates for the Kerr vacuum 1967 Bryce DeWitt publishes on canonical quantum gravity 123 1967 Werner Israel proves the no hair theorem 124 and the converse of Birkhoff s theorem 125 1967 Kenneth Nordtvedt develops PPN formalism 1967 Mendel Sachs publishes factorization of Einstein s field equations 1967 Hans Stephani discovers the Stephani dust solution 1968 F J Ernst discovers the Ernst equation 1968 B Kent Harrison discovers the Harrison transformation a solution generating method 1968 Brandon Carter solves the geodesic equations for Kerr Newmann electrovacuum with Carter s constant 126 1968 Hugo D Wahlquist discovers the Wahlquist fluid 1968 Irwin Shapiro and his colleagues present the first detection of the Shapiro delay 127 1968 Kenneth Nordtvedt studies a possible violation of the weak equivalence principle for self gravitating bodies and proposes a new test of the weak equivalence principle based on observing the relative motion of the Earth and Moon in the Sun s gravitational field 128 1969 William B Bonnor introduces the Bonnor beam 129 1969 Joseph Weber reports observation of gravitational waves 130 a claim now generally discounted 131 132 1969 Penrose proposes the weak cosmic censorship hypothesis and the Penrose process 133 1969 Misner introduces the mixmaster universe 1969 Yvonne Choquet Bruhat and Robert Geroch discuss global aspects of the Cauchy problem in general relativity 134 1965 70 Subrahmanyan Chandrasekhar and colleagues develops the post Newtonian expansions 135 136 137 138 139 1968 70 Roger Penrose Stephen Hawking and George Ellis prove that singularities must arise in the Big Bang models 140 141 1970s Edit nbsp Image of Cygnus X 1 by the Chandra X ray Observatory 2009 1970 Vladimir A Belinskiǐ Isaak Markovich Khalatnikov and Evgeny Lifshitz introduce the BKL conjecture 1970 Hawking and Penrose prove trapped surfaces must arise in black holes 1970 the Kinnersley Walker photon rocket 1970 Peter Szekeres introduces colliding plane waves 1971 Alfred Goldhaber and Michael Nieto give stringent limits on the photon mass 142 The strictest one is m g 4 10 51 kg displaystyle m gamma leq 4 times 10 51 text kg nbsp 143 1971 Stephen W Hawking proves the area theorem for black holes 144 1971 Peter C Aichelburg and Roman U Sexl introduce the Aichelburg Sexl ultraboost 1971 Introduction of the Khan Penrose vacuum a simple explicit colliding plane wave spacetime 1971 Robert H Gowdy introduces the Gowdy vacuum solutions cosmological models containing circulating gravitational waves 1971 Cygnus X 1 the first solid black hole candidate discovered by Uhuru satellite 1971 William H Press discovers black hole ringing by numerical simulation 1971 Harrison and Estabrook algorithm for solving systems of PDEs 1971 James W York introduces conformal method generating initial data for ADM initial value formulation 1971 Robert Geroch introduces Geroch group and a solution generating method 1972 Jacob Bekenstein proposes that black holes have a non decreasing entropy which can be identified with the area 145 1972 Sachs introduces optical scalars and proves peeling theorem 1972 Rainer Weiss proposes concept of interferometric gravitational wave detector in an unpublished manuscript 146 1972 Joseph Hafele and Richard Keating perform the Hafele Keating experiment 147 148 149 1972 Richard H Price studies gravitational collapse with numerical simulations 1972 Saul Teukolsky derives the Teukolsky equation 150 1972 Yakov B Zel dovich predicts the transmutation of electromagnetic and gravitational radiation 1972 Brandon Carter Stephen Hawking and James M Bardeen propose the four laws of black hole mechanics 151 1972 James Bardeen calculates the shadow of a black hole 152 This was later verified by the Event Horizon Telescope 153 1973 Charles W Misner Kip S Thorne and John A Wheeler publish the treatise Gravitation a textbook that remains in use in the twenty first century 154 155 1973 Stephen W Hawking and George Ellis publish the monograph The Large Scale Structure of Space Time 1973 Robert Geroch introduces the GHP formalism 1973 Homer Ellis obtains the Ellis drainhole 156 the first traversable wormhole 1974 Russell Hulse and Joseph Hooton Taylor Jr discover the Hulse Taylor binary pulsar 1974 James W York and Niall o Murchadha present the analysis of the initial value formulation and examine the stability of its solutions 1974 R O Hansen introduces Hansen Geroch multipole moments 1974 Stephen Hawking discovers Hawking radiation 157 158 1974 Stephen Hawking shows that the area of a black hole is proportional to its entropy as previously conjectured by Jacob Bekenstein 159 1975 Roberto Colella Albert Overhauser and Samuel Werner observe the quantum mechanical phase shift of neutrons due to gravity 160 Neutron interferometry was later used to test the principle of equivalence 161 162 163 1975 Chandrasekhar and Steven Detweiler compute quasinormal modes 1975 Szekeres and D A Szafron discover the Szekeres Szafron dust solutions 1976 Penrose introduces Penrose limits every null geodesic in a Lorentzian spacetime behaves like a plane wave 1978 Penrose introduces the notion of a thunderbolt 1978 Belinskiǐ and Zakharov show how to solve Einstein s field equations using the inverse scattering transform the first gravitational solitons 1979 Dennis Walsh Robert Carswell and Ray Weymann discover the gravitationally lensed quasar Q0957 561 164 1979 Jean Pierre Luminet creates an image of a black hole with an accretion disk using computer simulation 165 166 1979 81 Richard Schoen and Shing Tung Yau prove the positive mass theorem 167 168 Edward Witten independently proves the same thing 169 1980s Edit 1980 Vera Rubin and colleagues study the rotational properties of UGC 2885 demonstrating the prevalence of dark matter 170 171 1980 Gravity Probe A verifies gravitational redshift to approximately 0 007 using a space born hydrogen maser 172 1980 James Bardeen explains structure in the Universe using cosmological perturbation theory 173 1981 Alan Guth proposes cosmic inflation in order to solve the flatness and horizon problems 174 1982 Joseph Taylor and Joel Weisberg show that the rate of energy loss from the binary pulsar PSR B1913 16 agrees with that predicted by the general relativistic quadrupole formula to within 5 1986 Helmut Friedrich proves that the de Sitter spacetime is stable 175 176 1986 Bernard Schutz shows that cosmic distances can be determined using sources of gravitational waves without references to the cosmic distance ladder 177 Standard siren astronomy is born 1988 Mike Morris Kip Thorne and Yurtsever Ulvi obtain the Morris Thorne wormhole 178 Morris and Thorne argue for its pedagogical value 179 1989 Steven Weinberg discusses the cosmological constant problem the discrepancy between the measured value and those predicted by modern theories of elementary particles 180 1990s Edit nbsp Parameter space of various approximation techniques in general relativity1992 Stephen Hawking states his chronology protection conjecture 181 1993 Demetrios Christodoulou and Sergiu Klainerman prove the non linear stability of the Minkowski spacetime 182 176 1995 John F Donoghue show that general relativity is a quantum effective field theory 183 This framework could be used to analyze binary systems observed by gravitational wave observatories 184 1995 Hubble Deep Field image taken 185 It is a landmark in the study of cosmology 1998 The first complete Einstein ring B1938 666 discovered using the Hubble Space Telescope and MERLIN 186 187 1996 98 RELIKT 1 and COBE identify anisotropy in the cosmic microwave background 188 189 1998 99 Scientists discover that the expansion of the Universe is accelerating 190 191 1999 Alessandra Buonanno and Thibault Damour introduce the effective one body formalism 192 This was later used to analyze data collected by gravitational wave observatories 193 2000s Edit2003 Arvind Borde Alan Guth and Alexander Vilenkin prove the Borde Guth Vilenkin theorem 194 195 2002 First data collection of the Laser Interferometer Gravitational Wave Observatory LIGO 2002 James Williams Slava Turyshev and Dale Boggs conduct stringent lunar test of violations of the principle of equivalence 196 2005 Daniel Holz and Scott Hughes coin the term standard sirens 197 2009 Gravity Probe B experiment verifies the geodetic effect to 0 5 198 199 2010s Edit nbsp Improving cosmological measurements by three different satellites2011 Wilkinson Microwave Anisotropy Probe WMAP finds no statistically significant deviations from the LCDM model of cosmology 200 2012 Hubble Ultra Deep Field image released It was created using data collected by the Hubble Space Telescope between 2003 2004 201 2013 NuSTAR and XMM Newton measure the spin of the supermassive black hole at the center of the galaxy NGC 1365 202 2015 Advanced LIGO reports the first direct detections of gravitational waves GW150914 203 and GW151226 204 mergers of stellar mass black holes Gravitational wave astronomy is born 205 No deviations from general relativity were found 206 207 2017 LIGO VIRGO collaboration detects gravitational waves emitted by a neutron star binary GW170817 208 The Fermi Gamma ray Space Telescope and the International Gamma ray Astrophysics Laboratory INTEGRAL unambiguously detect the corresponding gamma ray burst 209 210 LIGO VIRGO and Fermi constrain the difference between the speed of gravity and the speed of light in vacuum to 10 15 211 This marks the first time electromagnetic and gravitational waves are detected from a single source 212 213 and give direct evidence that some short gamma ray bursts are due to colliding neutron stars 208 209 2017 Multi messenger astronomy reveals neutron star mergers to be responsible for the nucleosynthesis of some heavy elements 214 215 216 217 such as strontium 218 via the rapid neutron capture or r process 219 2017 MICROSCOPE satellite experiment verifies the principle of equivalence to 10 15 in terms of the Eotvos ratio h displaystyle eta nbsp 220 The final report is published in 2022 221 222 2017 Principle of equivalence tested to 10 9 for atoms in a coherent state of superposition 223 2017 Scientists begin using gravitational wave sources as standard sirens to measure the Hubble constant finding its value to be broadly in line with the best estimates of the time 224 225 Refinements of this technique will help resolve discrepancies between the different methods of measurements 226 2017 Neutron Star Interior Composition Explorer NICER arrives on the International Space Station 122 2017 18 Georgios Moschidis proves the instability of the anti de Sitter spacetime 176 2018 Final paper by the Planck satellite collaboration 227 Planck operated between 2009 and 2013 2018 Mihalis Dafermos and Jonathan Luk disprove the strong cosmic censorship hypothesis for the Cauchy horizon of a uncharged rotating black hole 228 2018 Advanced LIGO VIRGO collaboration constrains equations of state for a neutron star using GW170817 229 230 2018 Luciano Rezzolla Elias R Most and Lukas R Weih used gravitational wave data from GW170817 constrain the possible maximum mass for a neutron star to around 2 17 solar masses 231 2018 Kris Pardo Maya Fishbach Daniel Holz and David Spergel limit the number of spacetime dimensions through which gravitational waves can propagate to 3 1 in line with general relativity and ruling out models that allow for leakage to higher dimensions of space 232 233 Analyses of GW170817 have also ruled out many other alternatives to general relativity 234 235 236 237 and proposals for dark energy 238 239 240 241 242 2018 Two different experimental teams report highly precise values of Newton s gravitational constant G displaystyle G nbsp that slightly disagree 243 244 245 2019 Event Horizon Telescope EHT releases an image of supermassive black hole M87 and measures its mass and shadow 246 247 2019 Advanced LIGO and VIRGO detect GW190814 the collision of a 26 solar mass black hole and a 2 6 solar mass object either an extremely heavy neutron star or a very light black hole 248 249 This is the largest mass gap seen in a gravitational wave source to date 2020s Edit nbsp The size of Sagittarius A is smaller than the orbit of Mercury 2020 Principle of equivalence tested for individual atoms using atomic interferometry to 10 12 250 251 2021 Jun Ye and his team measure gravitational redshift with an accuracy of 7 6 10 21 using an ultracold cloud of 100 000 strontium atoms in an optical lattice 252 253 2021 EHT measures the polarization of the ring of M87 254 and other properties of the magnetic field in its vicinity 255 2021 EHT releases an image of Sagittarius A the central supermassive black hole of the Milky Way 256 257 measures its shadow 258 and shows that it is accurately described by the Kerr metric 259 2022 Chris Overstreet and his team observe the gravitational Aharonov Bohm effect 260 261 262 using an experimental design from 2012 263 264 2022 James Webb Space Telescope JWST publishes its first image a deep field photograph of the SMACS 0723 galaxy cluster 265 2022 Neil Gehrels Swift Observatory detects GRB 221009A the brightest gamma ray burst recorded 266 267 268 2022 JWST identifies several candidate high redshift objects corresponding to just a few hundred million years after the Big Bang 269 270 2023 James Nightingale and colleagues detect Abell 1201 an ultramassive black hole 33 billion solar masses using strong gravitational lensing 271 2023 Matteo Bachetti and colleagues confirm that neutron star M82 X 2 is violating the Eddington limit making it an ultraluminous X ray source ULX 272 273 2023 Team led by Dong Sheng and Zheng Tian Lu found a null result for the coupling between quantum spin and gravity to 10 9 274 275 2023 The North American Nanohertz Observatory for Gravitational Waves NANOGrav the European Pulsar Timing Array EPTA the Parkes Pulsar Timing Array Australia and the Chinese Pulsar Timing Array report detection of a gravitational wave background 276 277 278 279 280 2023 Geraint F Lewis and Brendon Brewer present evidence of cosmological time dilation in quasars 281 282 See also Edit nbsp Astronomy portal nbsp Mathematics portal nbsp History of Science portal nbsp Physics portalTimeline of black hole physics Timeline of special relativity and the speed of light List of contributors to general relativityReferences Edit Gribbin John 2003 Chapter 3 The First Scientists The Scientists A History of Science Told Through the Lives of Its Greatest Inventors Random House pp 76 7 ISBN 978 1 400 06013 9 a b Dolnick Edward 2011 Timeline The Clockwork Universe Isaac Newton the Royal Society and the Birth of the Modern World New York Harper Collins ISBN 9780061719516 a b Newton Isaac 1999 The Principia The Authoritative Translation and Guide Translated by Cohen I Bernard Whitman Anne Budenz Julia University of California Press ISBN 978 0 520 29088 4 Kleppner Daniel Kolenkow Robert J 1973 8 4 The Principle of Equivalence An Introduction to Mechanics McGraw Hill pp 353 54 ISBN 0 07 035048 5 Halley Edmund 1705 A synopsis of the astronomy of comets Oxford John Senex Retrieved 16 June 2020 via Internet Archive Sagan Carl Druyan Ann 1997 Comet New York Random House pp 66 67 ISBN 978 0 3078 0105 0 Maclaurin Colin A Treatise of Fluxions In Two Books 1 Vol 1 Ruddimans 1742 Chandrasekhar Subrahmanyan 1969 5 The Maclaurin Spheroids Ellipsoidal Figures of Equilibrium New Haven Yale University Press ISBN 978 0 30001 116 6 a b Woolfson M M 1993 Solar System its origin and evolution Q J R Astron Soc 34 1 20 Bibcode 1993QJRAS 34 1W For details of Kant s position see Stephen Palmquist Kant s Cosmogony Re Evaluated Studies in History and Philosophy of Science 18 3 September 1987 pp 255 269 Koon W S Lo M W Marsden J E Ross S D 2006 Dynamical Systems the Three Body Problem and Space Mission Design p 9 Archived from the original on 2008 05 27 Retrieved 2008 06 09 16MB Euler Leonhard 1765 De motu rectilineo trium corporum se mutuo attrahentium PDF Euler L Nov Comm Acad Imp Petropolitanae 10 pp 207 242 11 pp 152 184 Memoires de l Acad de Berlin 11 228 249 Lagrange Joseph Louis 1867 92 Tome 6 Chapitre II Essai sur le probleme des trois corps Œuvres de Lagrange in French Gauthier Villars pp 229 334 Cavendish Henry 1798 Experiments to Determine the Density of Earth Philosophical Transactions of the Royal Society 88 469 526 doi 10 1098 rstl 1798 0022 JSTOR 106988 Clotfelter B E 1987 The Cavendish Experiment as Cavendish Knew It American Journal of Physics 55 3 210 213 Bibcode 1987AmJPh 55 210C doi 10 1119 1 15214 s On the Space Theory of Matter Michaelson Albert A Morley Edward W 1887 On the Relative Motion of the Earth and the Luminiferous Ether American Journal of Science 134 333 333 345 Bibcode 1887AmJS 34 333M doi 10 2475 ajs s3 34 203 333 S2CID 124333204 French A P 1968 Chapter 2 Perplexities in the Propagation of Light Special Relativity New York W W Norton amp Company pp 52 58 ISBN 0 393 09793 5 Bod L Fischbach E Marx G Naray Ziegler Maria 31 Aug 1990 One Hundred Years of the Eotvos Experiment Archived from the original on October 22 2012 Gerber P 1917 1902 Die Fortpflanzungsgeschwindigkeit der Gravitation Annalen der Physik 52 4 415 444 Bibcode 1917AnP 357 415G doi 10 1002 andp 19173570404 Originally published in Programmabhandlung des stadtischen Realgymnasiums zu Stargard i Pomm 1902 Einstein Albert 1905 Zur Elektrodynamik bewegter Korper On the Electrodynamics of Moving Bodies PDF Annalen der Physik Series 4 17 10 891 921 Bibcode 1905AnP 322 891E doi 10 1002 andp 19053221004 Einstein Albert 1905 Ist die Tragheit eines Korpers von seinem Energieinhalt abhangig Does the Inertia of a Body Depend upon its Energy Content PDF Annalen der Physik Series 4 18 13 639 641 Bibcode 1905AnP 323 639E doi 10 1002 andp 19053231314 S2CID 122309633 Einstein Albert 1935 Elementary derivation of the equivalence of mass and energy PDF Bulletin of the American Mathematical Society 41 4 223 230 doi 10 1090 S0002 9904 1935 06046 X Hecht Eugene 2011 How Einstein Confirmed E 0 m c 2 displaystyle E 0 mc 2 nbsp American Journal of Physics 79 591 600 doi 10 1119 1 3549223 Einstein Albert 1907 Relativitatsprinzip und die aus demselben gezogenen Folgerungen On the Relativity Principle and the Conclusions Drawn from It PDF Jahrbuch der Radioaktivitat 4 411 462 Eddington A S 1926 Einstein Shift and Doppler Shift Nature 117 2933 86 Bibcode 1926Natur 117 86E doi 10 1038 117086a0 ISSN 1476 4687 S2CID 4092843 Minkowski Hermann 1915 Das Relativitatsprinzip Annalen der Physik 352 15 927 938 Bibcode 1915AnP 352 927M doi 10 1002 andp 19153521505 Corry Leo 1997 Hermann Minkowski and the Postulate of Relativity PDF Archive for History of Exact Sciences 51 4 273 314 doi 10 1007 BF00518231 S2CID 27016039 Gribbin John 2004 11 Let There be Light The Scientists A History of Science Told Through the Lives of Its Greatest Inventors Random House pp 440 1 ISBN 978 0 812 96788 3 Born Max 1909 Die Theorie des starren Elektrons in der Kinematik des Relativitatsprinzips The theory of the rigid electron in the kinematics of the principle of relativity Annalen der Physik in German 355 11 1 56 Bibcode 1909AnP 335 1B doi 10 1002 andp 19093351102 Born Max 1909 Uber die Dynamik des Elektrons in der Kinematik des Relativitatsprinzips Physikalische Zeitschrift 10 814 17 Ehrenfest Paul 1909 Gleichformige Rotation starrer Korper und Relativitatstheorie Uniform Rotation of Rigid Bodies and Theory of Relativity Physikalische Zeitschrift in German 10 918 918 Bibcode 1909PhyZ 10 918E Weber T A 1997 A note on rotating coordinates in relativity American Journal of Physics 65 6 486 7 Bibcode 1997AmJPh 65 486W doi 10 1119 1 18575 Einstein Albert 1911 Einfluss der Schwerkraft auf die Ausbreitung des Lichtes On the Influence of Gravitation upon the Propagation of Light PDF Annalen der Physik Series 4 in German 35 898 908 doi 10 1002 andp 19113401005 Einstein Albert 1915 Feldgleichungen der Gravitation Field Equations of Gravitation Preussische Akademie der Wissenschaften Sitzungsberichte 844 847 Einstein Albert 1915 Erklarung der Perihelbewegung des Merkur aus der allgemeinen Relativitatstheorie Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity Preussische Akademie der Wissenschaften Sitzungsberichte 831 839 Bibcode 1915SPAW 831E Einstein Albert 1916 Grundlage der allgemeinen Relativitatstheorie The Foundation of the General Theory of Relativity PDF Annalen der Physik 4 7 769 822 Bibcode 1916AnP 354 769E doi 10 1002 andp 19163540702 Hilbert David 1915 Die Grundlagen der Physik Foundations of Physics Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen Mathematisch Physikalische Klasse in German 3 395 407 Marsden Jerrold Tromba Anthony 2012 7 7 Applications to Differential Geometry Physics and Forms of Life Vector Calculus 6th ed New York W H Freeman Company p 422 ISBN 978 1 4292 1508 4 Schwarzschild Karl 1916 Uber das Gravitationsfeld eines Massenpunktes nach der Einstein schen Theorie On the Gravitational Field of a Point Mass According to Einstein s Theory Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften Schwarzschild Karl 1916 Uber das Gravitationsfeld einer Kugel aus inkompressibler Flussigkeit On the Gravitational Field of a Sphere of Incompressible Fluid Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften Levy Adam January 11 2021 How black holes morphed from theory to reality Knowable Magazine doi 10 1146 knowable 010921 1 Retrieved 25 March 2022 Eisenstaedt The Early Interpretation of the Schwarzschild Solution in D Howard and J Stachel eds Einstein and the History of General Relativity Einstein Studies Vol 1 pp 213 234 Boston Birkhauser 1989 Einstein Albert 1916 Naherungsweise Integration der Feldgleichungen der Gravitation Approximate Integration of the Field Equations of Gravitation Preussische Akademie der Wissenschaften Sitzungsberichte in German 688 696 Bibcode 1916SPAW 688E de Sitter W 1916 On Einstein s Theory of Gravitation and its Astronomical Consequences Mon Not R Astron Soc 77 155 184 Bibcode 1916MNRAS 77 155D doi 10 1093 mnras 77 2 155 Einstein Albert 1917 Kosmologische Betrachtungen zur allgemeinen Relativitatstheorie Cosmological Considerations in the General Theory of Relativity Preussische Akademie der Wissenschaften Sitzungsberichte in German 1 142 152 The Internal Constitution of the Stars A S Eddington The Scientific Monthly Vol 11 No 4 Oct 1920 pp 297 303 JSTOR 6491 Eddington A S 1916 On the radiative equilibrium of the stars Monthly Notices of the Royal Astronomical Society 77 16 35 Bibcode 1916MNRAS 77 16E doi 10 1093 mnras 77 1 16 Einstein Albert 1918 Gravitationswellen Gravitational Waves Preussische Akademie der Wissenschaften Sitzungsberichte in German 154 167 Holz Daniel Hughes Scott Bernard Schultz December 2018 Measuring cosmic distances with standard sirens Physics Today 71 12 34 Bibcode 2018PhT 71l 34H doi 10 1063 PT 3 4090 S2CID 125545290 Thirring H 1918 Uber die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie Physikalische Zeitschrift 19 33 Bibcode 1918PhyZ 19 33T On the Effect of Rotating Distant Masses in Einstein s Theory of Gravitation Thirring H 1921 Berichtigung zu meiner Arbeit Uber die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie Physikalische Zeitschrift 22 29 Bibcode 1921PhyZ 22 29T Correction to my paper On the Effect of Rotating Distant Masses in Einstein s Theory of Gravitation Lense J Thirring H 1918 Uber den Einfluss der Eigenrotation der Zentralkorper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie Physikalische Zeitschrift 19 156 163 Bibcode 1918PhyZ 19 156L On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein s Theory of Gravitation Dyson F W Eddington A S Davidson C R 1920 A Determination of the Deflection of Light by the Sun s Gravitational Field from Observations Made at the Solar eclipse of May 29 1919 Philosophical Transactions of the Royal Society A 220 571 581 291 333 Bibcode 1920RSPTA 220 291D doi 10 1098 rsta 1920 0009 Kennefick Daniel 1 March 2009 Testing relativity from the 1919 eclipse a question of bias Physics Today 62 3 37 42 Bibcode 2009PhT 62c 37K doi 10 1063 1 3099578 David Kaiser How Politics Shaped General Relativity New York Times November 6 2015 Kaluza Theodor 1921 Zum Unitatsproblem in der Physik Sitzungsber Preuss Akad Wiss Berlin Math Phys in German 966 972 Bibcode 1921SPAW 966K Friedman Alexander December 1922 Uber die Krummung des Raumes Zeitschrift fur Physik in German 10 1 377 386 Bibcode 1922ZPhy 10 377F doi 10 1007 BF01332580 S2CID 125190902 Translated in Friedmann Alexander December 1999 On the Curvature of Space General Relativity and Gravitation 31 12 1991 2000 Bibcode 1999GReGr 31 1991F doi 10 1023 A 1026751225741 S2CID 122950995 Marzlin Karl Peter 1994 The physical meaning of Fermi coordinates General Relativity and Gravitation 26 6 619 636 arXiv gr qc 9402010 Bibcode 1994GReGr 26 619M doi 10 1007 BF02108003 S2CID 17918026 Segre Gino Hoerlin Bettina 2016 Chapter 4 Student Days The Pope of Physics Henry Holt and Co p 27 ISBN 978 1 627 79005 5 Eddington A S 1924 On the relation between the masses and luminosities of the stars Monthly Notices of the Royal Astronomical Society 84 5 308 333 Bibcode 1924MNRAS 84 308E doi 10 1093 mnras 84 5 308 Adams W S 1925 The Relativity Displacement of the Spectral Lines in the Companion of Sirius Proceedings of the National Academy of Sciences 11 7 382 387 Bibcode 1925PNAS 11 382A doi 10 1073 pnas 11 7 382 PMC 1086032 PMID 16587023 Big bang theory is introduced 1927 A Science Odyssey WGBH Retrieved 31 July 2014 Hubble Edwin 15 March 1929 A Relation Between Distance and Radial Velocity Among Extra Galactic Nebulae Proceedings of the National Academy of Sciences 15 3 168 173 Bibcode 1929PNAS 15 168H doi 10 1073 pnas 15 3 168 PMC 522427 PMID 16577160 Archived from the original on 1 October 2006 Retrieved 28 November 2019 Chandrasekhar S 1931 The Density of White Dwarf Stars Philosophical Magazine 11 70 592 596 doi 10 1080 14786443109461710 S2CID 119906976 Chandrasekhar S 1931 The Maximum Mass of Ideal White Dwarfs Astrophysical Journal 74 81 82 Bibcode 1931ApJ 74 81C doi 10 1086 143324 Obituary Georges Lemaitre Physics Today 19 9 119 121 September 1966 doi 10 1063 1 3048455 Lemaitre Georges Eddington Stanley March 1931 The Expanding Universe Monthly Notices of the Royal Astronomical Society 91 5 490 501 doi 10 1093 mnras 91 5 490 Einstein Albert 1931 Zum kosmologischen Problem der allgemeinen Relativitatstheorie On the Cosmological Problem of the General Theory of Relativity Sitzungsberichte der Preussischen Akademie der Wissenschaften Physikalisch mathematische Klasse in German 235 237 Einstein and De Sitter 1932 On the relation between the expansion and the mean density of the universe Proceedings of the National Academy of Sciences 18 3 213 214 Bibcode 1932PNAS 18 213E doi 10 1073 pnas 18 3 213 PMC 1076193 PMID 16587663 Baade Walter Zwicky Fritz 1934 Remarks on Super novae and Cosmic Rays PDF Physical Review 46 1 76 77 Bibcode 1934PhRv 46 76B doi 10 1103 PHYSREV 46 76 2 McCormick Katie July 18 2023 Ultracold Gases Can Probe Neutron Star Guts Scientific American Archived from the original on July 31 2023 Retrieved July 31 2023 A Einstein and N Rosen The Particle Problem in the General Theory of Relativity Phys Rev 48 73 1935 Einstein Albert 1936 Lens Like Action of a Star by the Deviation of Light in the Gravitational Field Science 84 2188 506 507 Bibcode 1936Sci 84 506E doi 10 1126 science 84 2188 506 PMID 17769014 F Zwicky 1937 Nebulae as Gravitational lenses PDF Physical Review 51 4 290 Bibcode 1937PhRv 51 290Z doi 10 1103 PhysRev 51 290 Archived PDF from the original on 2013 12 26 Einstein Albert amp Rosen Nathan 1937 On Gravitational waves Journal of the Franklin Institute 223 43 54 Bibcode 1937FrInJ 223 43E doi 10 1016 S0016 0032 37 90583 0 Einstein Albert Infeld Leopold Hoffmann Banesh 1938 The Gravitational Equations and the Problem of Motion Annals of Mathematics 39 1 65 100 doi 10 2307 1968714 JSTOR 1968714 Lee S Brown G E 2007 Hans Albrecht Bethe 2 July 1906 6 March 2005 Elected ForMemRS 1957 Biographical Memoirs of Fellows of the Royal Society 53 1 doi 10 1098 rsbm 2007 0018 Tolman Richard C 1939 Static Solutions of Einstein s Field Equations for Spheres of Fluid Physical Review 55 364 364 373 Bibcode 1939PhRv 55 364T doi 10 1103 PhysRev 55 364 a b c Pais Abraham Crease Robert 2006 J Robert Oppenheimer A Life Oxford University Press pp 31 2 ISBN 978 0 195 32712 0 Oppenheimer J R Serber Robert 1938 On the Stability of Stellar Neutron Cores Physical Review 54 7 540 Bibcode 1938PhRv 54 540O doi 10 1103 PhysRev 54 540 Oppenheimer J R Volkoff G M 1939 On Massive Neutron Cores PDF Physical Review 55 4 374 381 Bibcode 1939PhRv 55 374O doi 10 1103 PhysRev 55 374 Archived PDF from the original on January 16 2014 Retrieved January 15 2014 Oppenheimer J R Snyder H 1939 On Continued Gravitational Contraction Physical Review 56 5 455 459 Bibcode 1939PhRv 56 455O doi 10 1103 PhysRev 56 455 Bartels Megan July 21 2023 Oppenheimer Almost Discovered Black Holes Before He Became Destroyer of Worlds Scientific American Retrieved July 26 2023 Alpher R A Herman R C 1948 On the Relative Abundance of the Elements Physical Review 74 12 1737 1742 Bibcode 1948PhRv 74 1737A doi 10 1103 PhysRev 74 1737 Alpher R A Herman R C 1948 Evolution of the Universe Nature 162 4124 774 775 Bibcode 1948Natur 162 774A doi 10 1038 162774b0 S2CID 4113488 Lanczos Cornelius 1949 07 01 Lagrangian Multiplier and Riemannian Spaces Reviews of Modern Physics American Physical Society APS 21 3 497 502 Bibcode 1949RvMP 21 497L doi 10 1103 revmodphys 21 497 ISSN 0034 6861 Godel K An Example of a New Type of Cosmological Solutions of Einstein s Field Equations of Gravitation Rev Mod Phys 21 447 published July 1 1949 Gupta Suraj N 1952 Quantization of Einstein s Gravitational Field General Treatment Proceedings of the Physical Society Series A 65 8 608 619 Bibcode 1952PPSA 65 608G doi 10 1088 0370 1298 65 8 304 Deser Stanley 1970 Self interaction and gauge invariance General Relativity and Gravitation 1 1 9 18 arXiv gr qc 0411023 Bibcode 1970GReGr 1 9D doi 10 1007 BF00759198 S2CID 14295121 a b c d e Preskill John and Kip S Thorne Foreword to Feynman Lectures On Gravitation Feynman et al Westview Press 1st ed June 20 2002 PDF link Kraichnan 1955 Special Relativistic Derivation of Generally Covariant Gravitation Theory Physical Review 98 4 1118 1122 Bibcode 1955PhRv 98 1118K doi 10 1103 PhysRev 98 1118 Kraichnan 1956 Possibility of unequal gravitational and inertial masses Physical Review 101 1 482 488 Bibcode 1956PhRv 101 482K doi 10 1103 PhysRev 101 482 Bertotti B 1956 10 01 On gravitational motion Il Nuovo Cimento 4 4 898 906 Bibcode 1956NCim 4 898B doi 10 1007 BF02746175 ISSN 1827 6121 S2CID 120443098 Dewitt Cecile M Rickles Dean 1957 An Expanded Version of the Remarks by R P Feynman on the Reality of Gravitational Waves EOS Sources Wright Patterson Air Force Base ISBN 9783945561294 Retrieved 27 September 2016 Finkelstein David 1958 Past Future Asymmetry of the Gravitational Field of a Point Particle Physical Review 110 4 965 967 Bibcode 1958PhRv 110 965F doi 10 1103 PhysRev 110 965 Pound Robert Rebka Glen 1959 Gravitational Red Shift in Nuclear Resonance Physical Review Letters 3 439 439 441 Bibcode 1959PhRvL 3 439P doi 10 1103 PhysRevLett 3 439 Kruskal Martin 1960 Maximal Extension of Schwarzschild Metric Physical Review Letters 119 1743 1743 1745 Bibcode 1960PhRv 119 1743K doi 10 1103 PhysRev 119 1743 Gibbon John D Cowley Steven C Joshi Nalini MacCallum Malcolm A H 2017 Martin David Kruskal 28 September 1925 26 December 2006 Biographical Memoirs of Fellows of the Royal Society 64 261 284 arXiv 1707 00139 doi 10 1098 rsbm 2017 0022 ISSN 0080 4606 S2CID 67365148 Graves John C Brill Dieter R 1960 Oscillatory Character of Reissner Nordstrom Metric for an Ideal Charged Wormhole Physical Review Letters 120 4 1507 1513 Bibcode 1960PhRv 120 1507G doi 10 1103 PhysRev 120 1507 Robinson Ivor Trautman A 1960 Spherical Gravitational Waves Physical Review Letters Cdsads u strasbg fr 4 8 431 Bibcode 1960PhRvL 4 431R doi 10 1103 PhysRevLett 4 431 Retrieved 2012 07 20 Pound Robert Rebka Glen 1960 Apparent Weight of Photons Physical Review Letters 4 337 337 341 Bibcode 1960PhRvL 4 337P doi 10 1103 PhysRevLett 4 337 Tullio E Regge 1961 General relativity without coordinates Nuovo Cimento 19 3 558 571 Bibcode 1961NCim 19 558R doi 10 1007 BF02733251 S2CID 120696638 Available subscribers only at Il Nuovo Cimento Bran Carl Dicke Robert 1961 Mach s Principle and a Relativistic Theory of Gravitation Physical Review Letters 124 925 925 935 Bibcode 1961PhRv 124 925B doi 10 1103 PhysRev 124 925 Roll P G Krotkov R Dicke R H 1964 The equivalence of inertial and passive gravitational mass Annals of Physics Elsevier BV 26 3 442 517 Bibcode 1964AnPhy 26 442R doi 10 1016 0003 4916 64 90259 3 ISSN 0003 4916 Dicke Robert H December 1961 The Eotvos Experiment Scientific American 205 6 84 95 Bibcode 1961SciAm 205f 84D doi 10 1038 scientificamerican1261 84 Wheeler John Fuller Robert 1962 Causality and Multiply Connected Space Time Physical Review Letters 128 919 919 929 Bibcode 1962PhRv 128 919F doi 10 1103 PhysRev 128 919 Goldberg J N Sachs R K 1962 A theorem on Petrov types republished January 2009 General Relativity and Gravitation 41 2 433 444 doi 10 1007 s10714 008 0722 5 S2CID 122155922 originally published in Acta Phys Pol 22 13 23 1962 Weinberg Steven 1964 Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S matrix Physics Letters 9 4 357 359 Bibcode 1964PhL 9 357W doi 10 1016 0031 9163 64 90396 8 Weinberg Steven 1964 Photons and gravitons in S matrix theory derivation of charge conservation and equality of gravitational and inertial mass Physical Review 135 4B B1049 B1056 Bibcode 1964PhRv 135 1049W doi 10 1103 PhysRev 135 B1049 Kerr Roy P 1963 Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics Physical Review Letters 11 5 237 238 Bibcode 1963PhRvL 11 237K doi 10 1103 PhysRevLett 11 237 Penrose Roger 1963 Asymptotic Properties of Fields and Space Times Physical Review Letters 10 66 66 68 Bibcode 1963PhRvL 10 66P doi 10 1103 PhysRevLett 10 66 Chandrasekhar Subrahmanyan 1964 Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity Physical Review Letters 12 4 114 116 Bibcode 1964PhRvL 12 114C doi 10 1103 PhysRevLett 12 114 Chiu Hong Yee May 1964 Gravitational collapse Physics Today 17 5 21 34 Bibcode 1964PhT 17e 21C doi 10 1063 1 3051610 So far the clumsily long name quasi stellar radio sources is used to describe these objects Because the nature of these objects is entirely unknown it is hard to prepare a short appropriate nomenclature for them so that their essential properties are obvious from their name For convenience the abbreviated form quasar will be used throughout this paper Refsdal Sjur 1964 On the Possibility of Determining Hubble s Parameter and the Masses of Galaxies from the Gravitational Lens Effect Monthly Notices of the Royal Astronomical Society 128 4 307 310 doi 10 1093 mnras 128 4 307 Irwin I Shapiro 1964 Fourth Test of General Relativity Physical Review Letters 13 26 789 791 Bibcode 1964PhRvL 13 789S doi 10 1103 PhysRevLett 13 789 Haystack marks physics milestone MIT News July 14 2005 Retrieved May 2 2023 Penrose Roger 1965 Gravitational Collapse and Space Time Singularities Physical Review Letters 14 57 57 59 Bibcode 1965PhRvL 14 57P doi 10 1103 PhysRevLett 14 57 Newman Ezra Janis Allen 1965 Note on the Kerr Spinning Particle Metric Journal of Mathematical Physics 6 6 915 917 Bibcode 1965JMP 6 915N doi 10 1063 1 1704350 Newman Ezra Couch E Chinnapared K Exton A Prakash A Torrence R 1965 Metric of a Rotating Charged Mass Journal of Mathematical Physics 6 6 918 919 Bibcode 1965JMP 6 918N doi 10 1063 1 1704351 Penzias A A Wilson R W 1965 A Measurement of Excess Antenna Temperature at 4080 Mc s Astrophysical Journal 142 419 421 Bibcode 1965ApJ 142 419P doi 10 1086 148307 a b Moskowitz Clara March 1 2019 Neutron Stars Nature s Weirdest Form of Matter Scientific American Deutsch David Isham Christopher Vilkovisky Gregory 2005 Bryce Seligman DeWitt Physics Today 58 3 84 Bibcode 2005PhT 58c 84D doi 10 1063 1 1897570 Israel Werner 1967 Event Horizons in Static Vacuum Space Times Phys Rev 164 5 1776 1779 Bibcode 1967PhRv 164 1776I doi 10 1103 PhysRev 164 1776 Israel Werner 25 December 1967 Event Horizons in Static Vacuum Space Times Physical Review 164 5 1776 1779 Bibcode 1967PhRv 164 1776I doi 10 1103 PhysRev 164 1776 via American Physical Society Carter Brandon 1968 Global structure of the Kerr family of gravitational fields Physical Review 174 5 1559 1571 Bibcode 1968PhRv 174 1559C doi 10 1103 PhysRev 174 1559 Irwin I Shapiro Gordon H Pettengill Michael E Ash Melvin L Stone et al 1968 Fourth Test of General Relativity Preliminary Results Physical Review Letters 20 22 1265 1269 Bibcode 1968PhRvL 20 1265S doi 10 1103 PhysRevLett 20 1265 Nordvedt Kennet 1968 Equivalence Principle for Massive Bodies II Theory Physical Review Letters 169 1017 1017 1025 Bibcode 1968PhRv 169 1017N doi 10 1103 PhysRev 169 1017 Bonnor William B 1969 The Gravitational Field of Light PDF Communications in Mathematical Physics 13 3 163 174 Bibcode 1969CMaPh 13 163B doi 10 1007 BF01645484 S2CID 123398946 Making Waves TERP 2016 08 18 Retrieved 2016 11 07 Cho Adrian February 15 2016 Remembering Joseph Weber the controversial pioneer of gravitational waves Science David Kaiser Learning from Gravitational Waves New York Times October 3 2017 Penrose Roger 1969 Gravitational collapse The role of general relativity Nuovo Cimento Rivista Serie 1 252 276 Bibcode 1969NCimR 1 252P Choquet Bruhat Yvonne Geroch Robert 1969 Global aspects of the Cauchy problem in general relativity Communications in Mathematical Physics 14 4 329 335 Bibcode 1969CMaPh 14 329C doi 10 1007 BF01645389 S2CID 121522405 Chandrasekhar S 1965 The post Newtonian equations of hydrodynamics in General Relativity The Astrophysical Journal 142 1488 Bibcode 1965ApJ 142 1488C doi 10 1086 148432 Chandrasekhar S 1967 The post Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies II The deformed figures of the MacLaurin spheroids The Astrophysical Journal 147 334 Bibcode 1967ApJ 147 334C doi 10 1086 149003 Chandrasekhar S 1969 Conservation laws in general relativity and in the post Newtonian approximations The Astrophysical Journal 158 45 Bibcode 1969ApJ 158 45C doi 10 1086 150170 Chandrasekhar S Nutku Y 1969 The second post Newtonian equations of hydrodynamics in General Relativity Relativistic Astrophysics 86 55 Bibcode 1969ApJ 158 55C doi 10 1086 150171 Chandrasekhar S Esposito F P 1970 The 2 post Newtonian equations of hydrodynamics and radiation reaction in General Relativity The Astrophysical Journal 160 153 Bibcode 1970ApJ 160 153C doi 10 1086 150414 Hawking Stephen W Ellis George F R April 1968 The Cosmic Black Body Radiation and the Existence of Singularities in our Universe The Astrophysical Journal 152 25 Bibcode 1968ApJ 152 25H doi 10 1086 149520 Hawking Stephen W Penrose Roger 27 January 1970 The Singularities of Gravitational Collapse and Cosmology Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 314 1519 529 548 Bibcode 1970RSPSA 314 529H doi 10 1098 rspa 1970 0021 Goldhaber Alfred Nieto Michael 1971 Terrestrial and Extraterrestrial Limits on The Photon Mass Reviews of Modern Physics American Physical Society 43 3 277 296 Bibcode 1971RvMP 43 277G doi 10 1103 RevModPhys 43 277 Jackson John David 1999 Section I 2 Inverse Square Law or Mass of the Photon Classical Electrodynamics 3rd ed New York John Wiley amp Sons pp 5 9 ISBN 0 471 30932 X Hawking Stephen October 1971 Black Holes in General Relativity Communications in Mathematical Physics 25 2 152 166 doi 10 1007 BF01877517 S2CID 121527613 Bekenstein A 1972 Black holes and the second law Lettere al Nuovo Cimento 4 15 99 104 doi 10 1007 BF02757029 S2CID 120254309 Cho Adrian October 3 2017 Ripples in space U S trio wins physics Nobel for discovery of gravitational waves Science Retrieved May 20 2019 Hafele J C Keating R E July 14 1972 Around the World Atomic Clocks Predicted Relativistic Time Gains PDF Science 177 4044 166 168 Bibcode 1972Sci 177 166H doi 10 1126 science 177 4044 166 PMID 17779917 S2CID 10067969 Hafele J C Keating R E July 14 1972 Around the World Atomic Clocks Observed Relativistic Time Gains PDF Science 177 4044 168 170 Bibcode 1972Sci 177 168H doi 10 1126 science 177 4044 168 PMID 17779918 S2CID 37376002 Wick Gerald February 3 1972 The clock paradox resolved New Scientist 261 263 Teukolsky Saul 1972 Rotating black holes Separable wave equations for gravitational and electromagnetic perturbations PDF Physical Review Letters 29 16 1114 1118 Bibcode 1972PhRvL 29 1114T doi 10 1103 PhysRevLett 29 1114 S2CID 122083437 Bardeen John M Carter Brandon Hawking Stephen June 1973 The four laws of black hole mechanics PDF Communications in Mathematical Physics 31 2 161 170 Bibcode 1973CMaPh 31 161B doi 10 1007 BF01645742 S2CID 54690354 Bardeen James M 1973 Timelike and null geodesics in the Kerr metric Proceedings Ecole d Ete de Physique Theorique Les Astres Occlus Les Houches France August 1972 215 240 Bibcode 1973blho conf 215B ISBN 9780677156101 Overbye Dennis July 3 2022 James Bardeen an Expert on Unraveling Einstein s Equations Dies at 83 The New York Times Archived from the original on July 3 2022 Retrieved May 8 2023 Kaiser David 2012 A Tale of Two Textooks Isis University of Chicago Press 103 1 126 138 doi 10 1086 664983 hdl 1721 1 82907 PMID 22655343 Dahn Ryan March 10 2023 Gravitation s attraction 50 years later Physics Today Retrieved July 31 2023 H G Ellis 1973 Ether flow through a drainhole A particle model in general relativity Journal of Mathematical Physics 14 1 104 118 Bibcode 1973JMP 14 104E doi 10 1063 1 1666161 Matson John Oct 1 2010 Artificial event horizon emits laboratory analogue to theoretical black hole radiation Sci Am Hawking Stephen March 1 1974 Black Hole Explosions Nature 248 5443 30 31 Bibcode 1974Natur 248 30H doi 10 1038 248030a0 S2CID 4290107 Hawking Stephen 1975 Particle Creation by Black Holes Communications in Mathematical Physics 43 3 199 220 Bibcode 1975CMaPh 43 199H doi 10 1007 BF02345020 S2CID 55539246 Collela Roberto Overhauser Albert Werner Samuel 1975 Observation of Gravitationally Induced Quantum Interference Physical Review Letters 34 1472 1472 1474 Bibcode 1975PhRvL 34 1472C doi 10 1103 PhysRevLett 34 1472 Staudenmann J L Collela Roberto Werner Samuel Overhauser Albert 1980 Gravity and Inertia in Quantum Mechanics Physical Review A 21 1419 1419 1438 Bibcode 1980PhRvA 21 1419S doi 10 1103 PhysRevA 21 1419 Abele Hartmut Leeb Helmut 2012 Gravitation and quantum interference experiments with neutrons New Journal of Physics 14 5 055010 arXiv 1207 2953 Bibcode 2012NJPh 14e5010A doi 10 1088 1367 2630 14 5 055010 ISSN 1367 2630 S2CID 53653704 Townsend John S 2012 Section 8 7 Quantum Interference due to Gravity A Modern Approach to Quantum Mechanics 2nd ed University Science Books pp 297 99 ISBN 978 1 891389 78 8 D Walsh R F Carswell R J Weymann 31 May 1979 0957 561 A B twin quasistellar objects or gravitational lens PDF Nature 279 5712 381 384 doi 10 1038 279381a0 PMID 16068158 S2CID 2142707 Luminet Jean Pierre 1979 Image of a spherical black hole with thin accretion disk Astronomy and Astrophysics 75 1 2 228 235 Bibcode 1979A amp A 75 228L First ever image of a black hole a CNRS researcher had simulated it as early as 1979 Espace presse CNRS April 10 2019 Retrieved May 24 2023 Schoen Robert Yau Shing Tung 1979 On the proof of the positive mass conjecture in general relativity Communications in Mathematical Physics 65 1 45 Bibcode 1979CMaPh 65 45S doi 10 1007 BF01940959 S2CID 54217085 Schoen Robert Yau Shing Tung 1981 Proof of the positive mass theorem II Communications in Mathematical Physics 79 2 231 Bibcode 1981CMaPh 79 231S doi 10 1007 BF01942062 S2CID 59473203 Witten Edward 1981 A new proof of the positive energy theorem Communications in Mathematical Physics 80 3 381 402 Bibcode 1981CMaPh 80 381W doi 10 1007 BF01208277 S2CID 1035111 Rubin Vera et al June 1980 Rotational properties of 21 SC galaxies with a large range of luminosities and radii from NGC 4605 R 4kpc to UGC 2885 R 122kpc Astrophysical Journal 238 471 487 Bibcode 1980ApJ 238 471R doi 10 1086 158003 Nemiroff Robert Bonnell Jerry April 5 2023 Rubin s Galaxy Astronomy Picture of the Day NASA Retrieved April 18 2023 Vessot R F C et al 1980 Test of Relativistic Gravitation with a Space Borne Hydrogen Maser PDF Physical Review Letters 45 26 2081 2084 Bibcode 1980PhRvL 45 2081V doi 10 1103 PhysRevLett 45 2081 Bardeen James M 1980 Gauge invariant cosmological perturbations PDF Physical Review D 22 8 1882 1905 Bibcode 1980PhRvD 22 1882B doi 10 1103 PhysRevD 22 1882 Guth Alan 15 January 1981 Inflationary universe A possible solution to the horizon and flatness problems Physical Review D 23 2 347 356 Bibcode 1981PhRvD 23 347G doi 10 1103 PhysRevD 23 347 Friedrich Helmut 1986 On the existence of n displaystyle n nbsp geodesically complete or future complete solutions of Einstein s field equations with smooth asymptotic structure Communications in Mathematical Physics 107 4 587 609 Bibcode 1986CMaPh 107 587F doi 10 1007 BF01205488 S2CID 121761845 a b c Nadis Steve May 11 2020 New Math Proves That a Special Kind of Space Time Is Unstable Quanta Magazine Retrieved January 6 2023 Schultz Bernard 1986 Determining the Hubble constant from gravitational wave observations Nature 323 6086 310 311 Bibcode 1986Natur 323 310S doi 10 1038 323310a0 hdl 11858 00 001M 0000 0013 73C1 2 S2CID 4327285 Morris Mike Thorne Kip Yurtsever Ulvi 1986 Wormholes Time Machines and the Weak Energy Condition Physical Review Letters 61 1446 1446 1449 doi 10 1103 PhysRevLett 61 1446 PMID 10038800 Morris Michael S amp Thorne Kip S 1988 Wormholes in spacetime and their use for interstellar travel A tool for teaching general relativity American Journal of Physics 56 5 395 412 Bibcode 1988AmJPh 56 395M doi 10 1119 1 15620 Weinberg Steven 1989 The Cosmological Constant Problem Physical Review Letters 61 1 1 23 Bibcode 1989RvMP 61 1W doi 10 1103 RevModPhys 61 1 hdl 2152 61094 S2CID 122259372 Hawking Stephen 1992 Chronology Protection Conjecture Physical Review D 46 603 603 611 Bibcode 1992PhRvD 46 603H doi 10 1103 PhysRevD 46 603 PMID 10014972 Christodoulou Demetrios Klainerman Sergiu 1993 The global nonlinear stability of the Minkowski space Princeton Princeton University Press ISBN 0 691 08777 6 Donoghue John F 1994 General relativity as an effective field theory The leading quantum corrections Physical Review D 50 3874 3874 3888 arXiv gr qc 9405057 Bibcode 1994PhRvD 50 3874D doi 10 1103 PhysRevD 50 3874 PMID 10018030 S2CID 14352660 Goldberger Walter Rothstein Ira 2004 An Effective Field Theory of Gravity for Extended Objects Physical Review D 73 10 104029 arXiv hep th 0409156 doi 10 1103 PhysRevD 73 104029 S2CID 54188791 Hubble s Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years NASA 1995 Retrieved January 12 2009 A Bull s Eye for MERLIN and the Hubble University of Manchester 27 March 1998 Browne Malcolm W 1998 03 31 Einstein Ring Caused by Space Warping Is Found The New York Times Retrieved 2010 05 01 Smoot G F et al 1992 Structure in the COBE differential microwave radiometer first year maps Astrophysical Journal Letters 396 1 L1 L5 Bibcode 1992ApJ 396L 1S doi 10 1086 186504 S2CID 120701913 Bennett C L et al 1996 Four Year COBE DMR Cosmic Microwave Background Observations Maps and Basic Results Astrophysical Journal Letters 464 L1 L4 arXiv astro ph 9601067 Bibcode 1996ApJ 464L 1B doi 10 1086 310075 S2CID 18144842 Reiss Adam G Filippenko Alexei V Challis Peter Clocchiatti Alejandro Diercks Alan Garnavich Peter M Gilliland Ron L Hogan Craig J Jha Saurabh Kirshner Robert P Leibundgut B Phillips M M Reiss David Schmidt Brian P Schommer Robert A Smith R Chris Spyromilio J Stubbs Christopher Suntzeff Nicholas B Tonry John 1998 Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant The Astronomical Journal 116 3 1009 1038 arXiv astro ph 9805201 Bibcode 1998AJ 116 1009R doi 10 1086 300499 S2CID 15640044 Perlmutter S Aldering G Goldhaber G Knop R A Nugent P Castro P G Deustua S Fabbro S Goobar A Groom D E Hook I M Kim A G Kim M Y Lee J C Nunes N J Pain R Pennypacker C R Quimby R Lidman C Ellis R S Irwin M McMahon R G Ruiz Lapuente P Walton N Schaefer B Boyle B J Filippenko A V Matheson T Fruchter A S Panagia N Newberg H J M Couch W J 1999 Measurements of Omega and Lambda from 42 High Redshift Supernovae The Astrophysical Journal 517 2 565 586 arXiv astro ph 9812133 Bibcode 1999ApJ 517 565P doi 10 1086 307221 S2CID 118910636 Buonanno A Damour T 1999 03 08 Effective one body approach to general relativistic two body dynamics Physical Review D American Physical Society APS 59 8 084006 arXiv gr qc 9811091 Bibcode 1999PhRvD 59h4006B doi 10 1103 physrevd 59 084006 ISSN 0556 2821 S2CID 14951569 Abbott B P Abbott R Abbott T D Abernathy M R Acernese F et al LIGO Scientific Collaboration and Virgo Collaboration 2016 06 07 GW150914 First results from the search for binary black hole coalescence with Advanced LIGO Physical Review D 93 12 122003 arXiv 1602 03839 Bibcode 2016PhRvD 93l2003A doi 10 1103 physrevd 93 122003 ISSN 2470 0010 PMC 7430253 PMID 32818163 S2CID 217628912 Borde Arvind Guth Alan H Vilenkin Alexander 15 April 2003 Inflationary space times are incomplete in past directions Physical Review Letters 90 15 151301 arXiv gr qc 0110012 Bibcode 2003PhRvL 90o1301B doi 10 1103 PhysRevLett 90 151301 PMID 12732026 S2CID 46902994 Perlov Delia Vilenkin Alexander 7 August 2017 Cosmology for the Curious Cham Switzerland Springer pp 330 31 ISBN 978 3319570402 Williams James G Turyshev Slava G Boggs Dale H 2004 Progress in Lunar Laser Ranging Tests of Relativistic Gravity Physical Review Letters 93 261101 261101 arXiv gr qc 0411113 Bibcode 2004PhRvL 93z1101W doi 10 1103 PhysRevLett 93 261101 PMID 15697965 S2CID 33664768 Holz Daniel Hughes Scott 2005 Using Gravitational Wave Standard Sirens Astrophysical Journal 629 1 15 22 arXiv astro ph 0504616 Bibcode 2005ApJ 629 15H doi 10 1086 431341 hdl 1721 1 101190 S2CID 12017349 Everitt C W F Parkinson B W 2009 Gravity Probe B Science Results NASA Final Report PDF Retrieved 2 May 2009 Everitt et al 2011 Gravity Probe B Final Results of a Space Experiment to Test General Relativity Physical Review Letters 106 22 221101 arXiv 1105 3456 Bibcode 2011PhRvL 106v1101E doi 10 1103 PhysRevLett 106 221101 PMID 21702590 S2CID 11878715 Bennett C L et al 2011 Seven Year Wilkinson Microwave Anisotropy Probe WMAP Observations Are There Cosmic Microwave Background Anomalies Astrophysical Journal Supplement Series 192 2 17 arXiv 1001 4758 Bibcode 2011ApJS 192 17B doi 10 1088 0067 0049 192 2 17 S2CID 53521938 Hubble Goes to the eXtreme to Assemble Farthest Ever View of the Universe NASA September 25 2012 Retrieved September 26 2012 NASA s NuSTAR Helps Solve Riddle of Black Hole Spin NASA 27 February 2013 Retrieved 3 March 2013 nbsp This article incorporates text from this source which is in the public domain LIGO VIRGO Collaboration 2016 Tests of general relativity with GW150914 Physical Review Letters 116 22 22110 arXiv 1602 03841 Bibcode 2016PhRvL 116v1101A doi 10 1103 PhysRevLett 116 221101 PMID 27314708 S2CID 217275338 Abbott B P et al LIGO Scientific Collaboration and Virgo Collaboration 15 June 2016 GW151226 Observation of Gravitational Waves from a 22 Solar Mass Binary Black Hole Coalescence Physical Review Letters 116 24 241103 arXiv 1606 04855 Bibcode 2016PhRvL 116x1103A doi 10 1103 PhysRevLett 116 241103 PMID 27367379 S2CID 118651851 Naeye Robert 11 February 2016 Gravitational Wave Detection Heralds New Era of Science Sky and Telescope Retrieved 11 February 2016 Pretorius Frans May 31 2016 Relativity Gets Thorough Vetting from LIGO Physics Vol 9 no 52 American Physical Society Retrieved May 12 2023 Chu Jennifer June 15 2016 For second time LIGO detects gravitational waves MIT News Retrieved June 16 2016 a b Abbott B P et al October 2017 GW170817 Observation of Gravitational Waves from a Binary Neutron Star Inspiral Physical Review Letters 119 16 161101 arXiv 1710 05832 Bibcode 2017PhRvL 119p1101A doi 10 1103 PhysRevLett 119 161101 PMID 29099225 S2CID 217163611 a b Goldstein A et al October 2017 An Ordinary Short Gamma Ray Burst with Extraordinary Implications Fermi GBM Detection of GRB 170817A Astrophysical Review Letters 848 2 L14 arXiv 1710 05446 Bibcode 2017ApJ 848L 14G doi 10 3847 2041 8213 aa8f41 S2CID 89613132 Savchenko V et al October 2017 INTEGRAL Detection of the First Prompt Gamma Ray Signal Coincident with the Gravitational wave Event GW170817 Astrophysical Review Letters 848 2 L15 arXiv 1710 05449 Bibcode 2017ApJ 848L 15S doi 10 3847 2041 8213 aa8f94 S2CID 54078722 Abbott BP Abbott R Abbott TD Acernese F Ackley K Adams C et al 2017 Gravitational waves and gamma rays from a binary neutron star merger GW 170817 and GRB 170817A The Astrophysical Journal Letters 848 2 L13 arXiv 1710 05834 Bibcode 2017ApJ 848L 13A doi 10 3847 2041 8213 aa920c Abbott B P et al October 2017 Multi messenger Observations of a Binary Neutron Star Merger The Astrophysical Journal Letters 848 2 L12 arXiv 1710 05833 Bibcode 2017ApJ 848L 12A doi 10 3847 2041 8213 aa91c9 S2CID 217162243 McLaughlin Maura October 16 2017 Neutron Star Merger Seen and Heard Physics Vol 10 no 114 American Physical Society Retrieved May 12 2023 Cho A 16 October 2017 Merging neutron stars generate gravitational waves and a celestial light show Science doi 10 1126 science aar2149 Landau E Chou F Washington D Porter M 16 October 2017 NASA missions catch first light from a gravitational wave event NASA Retrieved 16 October 2017 Johnson Jennifer 2019 Populating the periodic table Nucleosynthesis of the elements Science 363 6426 474 478 Bibcode 2019Sci 363 474J doi 10 1126 science aau9540 PMID 30705182 S2CID 59565697 Chen Hsin Yu Vitale Salvatore Foucart Francois October 25 2021 The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star Black Hole Mergers Astrophysical Review Letters 920 1 L3 arXiv 2107 02714 Bibcode 2021ApJ 920L 3C doi 10 3847 2041 8213 ac26c6 S2CID 238198587 Watson Darach et al 2019 Identification of strontium in the merger of two neutron stars Nature 574 7779 497 500 arXiv 1910 10510 Bibcode 2019Natur 574 497W doi 10 1038 s41586 019 1676 3 PMID 31645733 S2CID 204837882 Curtis Sanjana January 2023 How Star Collisions Forge the Universe s Heaviest Elements Scientific American Touboul Pierre et al 8 December 2017 MICROSCOPE Mission First Results of a Space Test of the Equivalence Principle Physical Review Letters 119 23 231101 arXiv 1712 01176 Bibcode 2017PhRvL 119w1101T doi 10 1103 PhysRevLett 119 231101 PMID 29286705 S2CID 6211162 MICROSCOPE Collaboration 2022 MICROSCOPE Mission Final Results of the Test of the Equivalence Principle Physical Review Letters 129 12 121102 arXiv 2209 15487 Bibcode 2022PhRvL 129l1102T doi 10 1103 PhysRevLett 129 121102 PMID 36179190 S2CID 252468544 Brax Philippe September 14 2022 Satellite Confirms the Principle of Falling Physics American Physical Society APS 15 94 94 Bibcode 2022PhyOJ 15 94B doi 10 1103 Physics 15 94 S2CID 252801272 Tino G M et al 2017 Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states Nature Communications 8 15529 15529 arXiv 1704 02296 Bibcode 2017NatCo 815529R doi 10 1038 ncomms15529 PMC 5461482 PMID 28569742 LIGO VIRGO Collaboration 1M2H Collaboration et al 2017 A gravitational wave standard siren measurement of the Hubble constant Nature 551 7678 85 88 arXiv 1710 05835 Bibcode 2017Natur 551 85A doi 10 1038 nature24471 PMID 29094696 S2CID 205261622 Abbott BP Abbott R Abbott TD Acernese F Ackley K Adams C et al November 2017 A gravitational wave standard siren measurement of the Hubble constant Nature 551 7678 85 88 arXiv 1710 05835 Bibcode 2017Natur 551 85A doi 10 1038 nature24471 PMID 29094696 S2CID 205261622 Chen HY Fishbach M Holz DE October 2018 A two per cent Hubble constant measurement from standard sirens within five years Nature 562 7728 545 547 arXiv 1712 06531 Bibcode 2018Natur 562 545C doi 10 1038 s41586 018 0606 0 PMID 30333628 S2CID 52987203 Akrami Y et al Planck Collaboration 2020 Planck 2018 results I Overview and the comological legacy of Planck Astronomy amp Astrophysics 641 A1 arXiv 1807 06205 Bibcode 2020A amp A 641A 1P doi 10 1051 0004 6361 201833880 S2CID 119185252 Hartnett Kevin 17 May 2018 Mathematicians Disprove Conjecture Made to Save Black Holes Quanta Magazine Retrieved 29 March 2020 Advanced LIGO VIRGO Collaboration 2018 GW170817 Measurements of Neutron Star Radii and Equation of State Physical Review Letters 121 161101 161101 arXiv 1805 11581 Bibcode 2018PhRvL 121p1101A doi 10 1103 PhysRevLett 121 161101 PMID 30387654 S2CID 53235598 Sokol Joshua June 5 2018 Gravitational Waves Reveal the Hearts of Neutron Stars Scientific American Rezzolla L Most E R Weih L R 2018 Using Gravitational wave Observations and Quasi universal Relations to Constrain the Maximum Mass of Neutron Stars Astrophysical Journal 852 2 L25 arXiv 1711 00314 Bibcode 2018ApJ 852L 25R doi 10 3847 2041 8213 aaa401 S2CID 119359694 Pardo Kris Fishbach Maya Holz Daniel E Spergel David N 2018 Limits on the number of spacetime dimensions from GW170817 Journal of Cosmology and Astroparticle Physics 2018 7 048 arXiv 1801 08160 Bibcode 2018JCAP 07 048P doi 10 1088 1475 7516 2018 07 048 S2CID 119197181 Lerner Louise September 13 2018 Gravitational waves provide dose of reality about extra dimensions UChicago News Retrieved January 3 2023 Lombriser L Lima N 2017 Challenges to self acceleration in modified gravity from gravitational waves and large scale structure Phys Lett B 765 382 385 arXiv 1602 07670 Bibcode 2017PhLB 765 382L doi 10 1016 j physletb 2016 12 048 S2CID 118486016 Bettoni D Ezquiaga JM Hinterbichler K Zumalacarregui M 14 April 2017 Speed of gravitational waves and the fate of Scalar Tensor Gravity Physical Review D 95 8 084029 arXiv 1608 01982 Bibcode 2017PhRvD 95h4029B doi 10 1103 PhysRevD 95 084029 ISSN 2470 0010 S2CID 119186001 Baker T Bellini E Ferreira PG Lagos M Noller J Sawicki I December 2017 Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A Physical Review Letters 119 25 251301 arXiv 1710 06394 Bibcode 2017PhRvL 119y1301B doi 10 1103 PhysRevLett 119 251301 PMID 29303333 S2CID 36160359 LIGO VIRGO Collaboration 2018 Tests of General Relativity with GW170817 Physical Review Letters 123 1 011102 doi 10 1103 PhysRevLett 123 011102 PMID 31386391 S2CID 119214541 Creminelli P Vernizzi F December 2017 Dark Energy after GW170817 and GRB170817A Physical Review Letters 119 25 251302 arXiv 1710 05877 Bibcode 2017PhRvL 119y1302C doi 10 1103 PhysRevLett 119 251302 PMID 29303308 S2CID 206304918 Boran S Desai S Kahya E Woodard R 2018 GW 170817 falsifies dark matter emulators Phys Rev D 97 4 041501 arXiv 1710 06168 Bibcode 2018PhRvD 97d1501B doi 10 1103 PhysRevD 97 041501 S2CID 119468128 Ezquiaga JM Zumalacarregui M December 2017 Dark Energy After GW170817 Dead Ends and the Road Ahead Physical Review Letters 119 25 251304 arXiv 1710 05901 Bibcode 2017PhRvL 119y1304E doi 10 1103 PhysRevLett 119 251304 PMID 29303304 S2CID 38618360 Sakstein J Jain B December 2017 Implications of the Neutron Star Merger GW170817 for Cosmological Scalar Tensor Theories Physical Review Letters 119 25 251303 arXiv 1710 05893 Bibcode 2017PhRvL 119y1303S doi 10 1103 PhysRevLett 119 251303 PMID 29303345 S2CID 39068360 Kitching Thomas December 12 2017 How crashing neutron stars killed off some of our best ideas about what dark energy is The Conversation Retrieved January 5 2023 Li Qing et al 2018 Measurements of the gravitational constant using two independent methods Nature 560 7720 582 588 Bibcode 2018Natur 560 582L doi 10 1038 s41586 018 0431 5 PMID 30158607 S2CID 256770086 Schlamminger Stephan August 29 2018 Gravity measured with record precision Nature 560 7720 562 563 Bibcode 2018Natur 560 562S doi 10 1038 d41586 018 06028 6 PMID 30158612 Temming Maria August 29 2018 The strength of gravity has been measured to new precision Science News Retrieved August 3 2023 Event Horizon Telescope Collaboration April 10 2019 First M87 Event Horizon Telescope Results VI The Shadow and Mass of the Central Black Hole Astrophysical Review Letters 875 1 L6 arXiv 1906 11243 Bibcode 2019ApJ 875L 6E doi 10 3847 2041 8213 ab1141 S2CID 145969867 Landau Elizabeth April 10 2019 Black Hole Image Makes History Jet Propulsion Laboratory California Institute of Technology Retrieved May 17 2023 Staff 2020 GW190814 Factsheet Lowest mass ratio to date Strongest evidence of higher order modes PDF LIGO Retrieved 26 June 2020 Abbott R et al 23 June 2020 GW190814 Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2 6 Solar Mass Compact Object The Astrophysical Journal Letters 896 2 L44 arXiv 2006 12611 Bibcode 2020ApJ 896L 44A doi 10 3847 2041 8213 ab960f Asenbaum Peter Overstreet Chris Kim Minjeong Curti Joseph Kasevich Mark A 2020 Atom Interferometric Test of the Equivalence Principle at the 10 12 Level Physical Review Letters 125 19 191101 arXiv 2005 11624 Bibcode 2020PhRvL 125s1101A doi 10 1103 PhysRevLett 125 191101 PMID 33216577 S2CID 218869931 Conover Emily October 28 2020 Galileo s famous gravity experiment holds up even with individual atoms Science News Retrieved August 6 2023 Bothwell Tobias Kennedy Colin J Aeppli Alexander Kedar Dhruv Robinson John M Oelker Eric Staron Alexander Ye Jun 2022 Resolving the gravitational redshift across a millimetre scale atomic sample PDF Nature 602 7897 420 424 arXiv 2109 12238 Bibcode 2022Natur 602 420B doi 10 1038 s41586 021 04349 7 PMID 35173346 S2CID 237940816 McCormick Katie 2021 10 25 An Ultra Precise Clock Shows How to Link the Quantum World With Gravity Quanta Magazine Retrieved 2021 10 29 Event Horizon Telescope Collaboration 2021 First M87 Event Horizon Telescope Results VII Polarization of the Ring Astrophysical Journal Letters 910 1 L12 arXiv 2105 01169 Bibcode 2021ApJ 910L 12E doi 10 3847 2041 8213 abe71d S2CID 233715159 Event Horizon Telescope Collaboration 2021 First M87 Event Horizon Telescope Results VIII Magnetic Field Structure near The Event Horizon Astrophysical Journal Letters 910 1 L13 arXiv 2105 01173 Bibcode 2021ApJ 910L 13E doi 10 3847 2041 8213 abe4de S2CID 233659565 Bower Geoffrey C May 2022 Focus on First Sgr A Results from the Event Horizon Telescope The Astrophysical Journal Retrieved May 12 2022 Overbye Dennis May 12 2022 The Milky Way s Black Hole Comes to Light The New York Times ISSN 0362 4331 Retrieved May 12 2022 Event Horizon Telescope Collaboration 2022 First Sagittarius A Event Horizon Telescope Results I The Shadow of the Supermassive Black Hole in the Center of the Milky Way Astrophysical Journal Letters 930 2 L12 Bibcode 2022ApJ 930L 12E doi 10 3847 2041 8213 ac6674 hdl 10261 278882 S2CID 248744791 Event Horizon Telescope Collaboration 2022 First Sagittarius A Event Horizon Telescope Results VI Testing the Black Hole Metric Astrophysical Journal Letters 930 2 L17 Bibcode 2022ApJ 930L 17E doi 10 3847 2041 8213 ac6756 hdl 10261 279267 S2CID 248744741 Overstreet Chris Asenbaum Peter Curti Joseph Kim Minjeong Kasevich Mark A January 14 2022 Observation of a gravitational Aharonov Bohm effect Science 375 6577 226 229 Bibcode 2022Sci 375 226O doi 10 1126 science abl7152 ISSN 0036 8075 PMID 35025635 S2CID 245932980 Seigel Ethan January 18 2022 Has a new experiment just proven the quantum nature of gravity Big Think Retrieved August 5 2023 Conover Emily January 13 2022 Quantum particles can feel the influence of gravitational fields they never touch Science News Retrieved August 5 2023 Hohensee Michael A Estey Brian Hamilton Paul Zeilinger Anton Muller Holger June 7 2012 Force Free Gravitational Redshift Proposed Gravitational Aharonov Bohm Experiment Physical Review Letters 108 23 230404 arXiv 1109 4887 Bibcode 2012PhRvL 108w0, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.