fbpx
Wikipedia

Max Born

Max Born FRS, FRSE (German pronunciation: [ˈmaks ˈbɔɐ̯n] (listen); 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a number of notable physicists in the 1920s and 1930s. Born won the 1954 Nobel Prize in Physics for his "fundamental research in quantum mechanics, especially in the statistical interpretation of the wave function".[1]

Max Born
Portrait c. 1930s
Born(1882-12-11)11 December 1882
Died5 January 1970(1970-01-05) (aged 87)
Resting placeStadtfriedhof, Göttingen
CitizenshipGerman, British
Alma materUniversity of Göttingen
Known forBorn approximation
Born coordinates
Born equation
Born probability
Born reciprocity
Born rigidity
Born rule
Born series
Born square
Born–Landé equation
Born–Infeld theory
Born–Haber cycle
Born–Huang approximation
Born–von Karman boundary condition
Born–Oppenheimer approximation
BBGKY hierarchy
Cauchy–Born rule
Adiabatic theorem
Canonical commutation relation
Spouse
Hedwig Ehrenberg
(m. 1913)
Children3, including Gustav Victor Rudolf Born
RelativesOlivia Newton-John (granddaughter)
Georgina Born (granddaughter)
AwardsNobel Prize in Physics (1954)
Hughes Medal (1950)
Max Planck Medal (1948)
Fellow of the Royal Society (1939)
Scientific career
FieldsTheoretical physics
InstitutionsUniversity of Frankfurt
University of Göttingen
University of Edinburgh
University of Cambridge
ThesisUntersuchungen über die Stabilität der elastischen Linie in Ebene und Raum unter verschiedenen Grenzbedingungen ("Investigations on the stability of the elastic line in plane and space under different boundary conditions") (1906)
Doctoral advisorCarl Runge
Other academic advisors
Doctoral students
Other notable students
Signature

Born entered the University of Göttingen in 1904, where he met the three renowned mathematicians Felix Klein, David Hilbert, and Hermann Minkowski. He wrote his PhD thesis on the subject of "Stability of Elastica in a Plane and Space", winning the university's Philosophy Faculty Prize. In 1905, he began researching special relativity with Minkowski, and subsequently wrote his habilitation thesis on the Thomson model of the atom. A chance meeting with Fritz Haber in Berlin in 1918 led to discussion of how an ionic compound is formed when a metal reacts with a halogen, which is today known as the Born–Haber cycle.

In World War I, after originally being placed as a radio operator, he was moved to research duties regarding sound ranging due to his specialist knowledge. In 1921, Born returned to Göttingen, arranging another chair for his long-time friend and colleague James Franck. Under Born, Göttingen became one of the world's foremost centres for physics. In 1925, Born and Werner Heisenberg formulated the matrix mechanics representation of quantum mechanics. The following year, he formulated the now-standard interpretation of the probability density function for ψ*ψ in the Schrödinger equation, for which he was awarded the Nobel Prize in 1954. His influence extended far beyond his own research. Max Delbrück, Siegfried Flügge, Friedrich Hund, Pascual Jordan, Maria Goeppert-Mayer, Lothar Wolfgang Nordheim, Robert Oppenheimer, and Victor Weisskopf all received their PhD degrees under Born at Göttingen, and his assistants included Enrico Fermi, Werner Heisenberg, Gerhard Herzberg, Friedrich Hund, Pascual Jordan, Wolfgang Pauli, Léon Rosenfeld, Edward Teller, and Eugene Wigner.

In January 1933, the Nazi Party came to power in Germany, and Born, who was Jewish, was suspended from his professorship at the University of Göttingen. He emigrated to the United Kingdom, where he took a job at St John's College, Cambridge, and wrote a popular science book, The Restless Universe, as well as Atomic Physics, which soon became a standard textbook. In October 1936, he became the Tait Professor of Natural Philosophy at the University of Edinburgh, where, working with German-born assistants E. Walter Kellermann and Klaus Fuchs, he continued his research into physics. Born became a naturalised British subject on 31 August 1939, one day before World War II broke out in Europe. He remained in Edinburgh until 1952. He retired to Bad Pyrmont, in West Germany, and died in hospital in Göttingen on 5 January 1970.[2]

Early life

Max Born was born on 11 December 1882 in Breslau (now Wrocław, Poland), which at the time of Born's birth was part of the Prussian Province of Silesia in the German Empire, to a family of Jewish descent.[3] He was one of two children born to Gustav Born, an anatomist and embryologist, who was a professor of embryology at the University of Breslau,[4] and his wife Margarethe (Gretchen) née Kauffmann, from a Silesian family of industrialists. She died when Max was four years old, on 29 August 1886.[5] Max had a sister, Käthe, who was born in 1884, and a half-brother, Wolfgang, from his father's second marriage, to Bertha Lipstein. Wolfgang later became Professor of Art History at the City College of New York.[6]

Initially educated at the König-Wilhelm-Gymnasium in Breslau, Born entered the University of Breslau in 1901. The German university system allowed students to move easily from one university to another, so he spent summer semesters at Heidelberg University in 1902 and the University of Zurich in 1903. Fellow students at Breslau, Otto Toeplitz and Ernst Hellinger, told Born about the University of Göttingen,[7] and Born went there in April 1904. At Göttingen he found three renowned mathematicians: Felix Klein, David Hilbert and Hermann Minkowski. Very soon after his arrival, Born formed close ties to the latter two men. From the first class he took with Hilbert, Hilbert identified Born as having exceptional abilities and selected him as the lecture scribe, whose function was to write up the class notes for the students' mathematics reading room at the University of Göttingen. Being class scribe put Born into regular, invaluable contact with Hilbert. Hilbert became Born's mentor after selecting him to be the first to hold the unpaid, semi-official position of assistant. Born's introduction to Minkowski came through Born's stepmother, Bertha, as she knew Minkowski from dancing classes in Königsberg. The introduction netted Born invitations to the Minkowski household for Sunday dinners. In addition, while performing his duties as scribe and assistant, Born often saw Minkowski at Hilbert's house.[8][9]

Born's relationship with Klein was more problematic. Born attended a seminar conducted by Klein and professors of applied mathematics, Carl Runge and Ludwig Prandtl, on the subject of elasticity. Although not particularly interested in the subject, Born was obliged to present a paper. Using Hilbert's calculus of variations, he presented one in which, using a curved configuration of a wire with both ends fixed, he demonstrated would be the most stable. Klein was impressed, and invited Born to submit a thesis on the subject of "Stability of Elastica in a Plane and Space" – a subject near and dear to Klein – which Klein had arranged to be the subject for the prestigious annual Philosophy Faculty Prize offered by the university. Entries could also qualify as doctoral dissertations. Born responded by turning down the offer, as applied mathematics was not his preferred area of study. Klein was greatly offended.[10][11]

Klein had the power to make or break academic careers, so Born felt compelled to atone by submitting an entry for the prize. Because Klein refused to supervise him, Born arranged for Carl Runge to be his supervisor. Woldemar Voigt and Karl Schwarzschild became his other examiners. Starting from his paper, Born developed the equations for the stability conditions. As he became more interested in the topic, he had an apparatus constructed that could test his predictions experimentally. On 13 June 1906, the rector announced that Born had won the prize. A month later, he passed his oral examination and was awarded his PhD in mathematics magna cum laude.[12]

On graduation, Born was obliged to perform his military service, which he had deferred while a student. He found himself drafted into the German army, and posted to the 2nd Guards Dragoons "Empress Alexandra of Russia", which was stationed in Berlin. His service was brief, as he was discharged early after an asthma attack in January 1907. He then travelled to England, where he was admitted to Gonville and Caius College, Cambridge, and studied physics for six months at the Cavendish Laboratory under J. J. Thomson, George Searle and Joseph Larmor. After Born returned to Germany, the Army re-inducted him, and he served with the elite 1st (Silesian) Life Cuirassiers "Great Elector" until he was again medically discharged after just six weeks' service. He then returned to Breslau, where he worked under the supervision of Otto Lummer and Ernst Pringsheim, hoping to do his habilitation in physics. A minor accident involving Born's black body experiment, a ruptured cooling water hose, and a flooded laboratory, led to Lummer telling him that he would never become a physicist.[13]

In 1905, Albert Einstein published his paper On the Electrodynamics of Moving Bodies about special relativity. Born was intrigued, and began researching the subject. He was devastated to discover that Minkowski was also researching special relativity along the same lines, but when he wrote to Minkowski about his results, Minkowski asked him to return to Göttingen and do his habilitation there. Born accepted. Toeplitz helped Born brush up on his matrix algebra so he could work with the four-dimensional Minkowski space matrices used in the latter's project to reconcile relativity with electrodynamics. Born and Minkowski got along well, and their work made good progress, but Minkowski died suddenly of appendicitis on 12 January 1909. The mathematics students had Born speak on their behalf at the funeral.[14]

A few weeks later, Born attempted to present their results at a meeting of the Göttingen Mathematics Society. He did not get far before he was publicly challenged by Klein and Max Abraham, who rejected relativity, forcing him to terminate the lecture. However, Hilbert and Runge were interested in Born's work, and, after some discussion with Born, they became convinced of the veracity of his results and persuaded him to give the lecture again. This time he was not interrupted, and Voigt offered to sponsor Born's habilitation thesis.[15] Born subsequently published his talk as an article on "The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity" (German: Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips),[16] which introduced the concept of Born rigidity. On 23 October Born presented his habilitation lecture on the Thomson model of the atom.[15]

Career

Berlin and Frankfurt

Born settled in as a young academic at Göttingen as a privatdozent. In Göttingen, Born stayed at a boarding house run by Sister Annie at Dahlmannstraße 17, known as El BoKaReBo. The name was derived from the first letters of the last names of its boarders: "El" for Ella Philipson (a medical student), "Bo" for Born and Hans Bolza (a physics student), "Ka" for Theodore von Kármán (a Privatdozent), and "Re" for Albrecht Renner (another medical student). A frequent visitor to the boarding house was Paul Peter Ewald, a doctoral student of Arnold Sommerfeld on loan to Hilbert at Göttingen as a special assistant for physics. Richard Courant, a mathematician and Privatdozent, called these people the "in group".[17]

In 1912, Born met Hedwig (Hedi) Ehrenberg, the daughter of a Leipzig University law professor, and a friend of Carl Runge's daughter Iris. She was of Jewish background on her father's side, although he had become a practising Lutheran when he got married, as did Max's sister Käthe. Despite never practising his religion, Born refused to convert, and his wedding on 2 August 1913 was a garden ceremony. However, he was baptised as a Lutheran in March 1914 by the same pastor who had performed his wedding ceremony. Born regarded "religious professions and churches as a matter of no importance".[18] His decision to be baptised was made partly in deference to his wife, and partly due to his desire to assimilate into German society.[18] The marriage produced three children: two daughters, Irene, born in 1914, and Margarethe (Gritli), born in 1915, and a son, Gustav, born in 1921.[19] Through marriage, Born is related to jurists Victor Ehrenberg, his father-in-law, and Rudolf von Jhering, his wife's maternal grandfather, as well as to philosopher and theologian Hans Ehrenberg, and is a great uncle of British comedian Ben Elton.[20]

By the end of 1913, Born had published 27 papers, including important work on relativity and the dynamics of crystal lattices (3 with Theodore von Karman),[21] which became a book.[22] In 1914, received a letter from Max Planck explaining that a new professor extraordinarius chair of theoretical physics had been created at the University of Berlin. The chair had been offered to Max von Laue, but he had turned it down. Born accepted.[23] The First World War was now raging. Soon after arriving in Berlin in 1915, he enlisted in an Army signals unit. In October, he joined the Artillerie-Prüfungs-Kommission, the Army's Berlin-based artillery research and development organisation, under Rudolf Ladenburg, who had established a special unit dedicated to the new technology of sound ranging. In Berlin, Born formed a lifelong friendship with Einstein, who became a frequent visitor to Born's home.[24] Within days of the armistice in November 1918, Planck had the Army release Born. A chance meeting with Fritz Haber that month led to discussion of the manner in which an ionic compound is formed when a metal reacts with a halogen, which is today known as the Born–Haber cycle.[25]

Even before Born had taken up the chair in Berlin, von Laue had changed his mind, and decided that he wanted it after all.[23] He arranged with Born and the faculties concerned for them to exchange jobs. In April 1919, Born became professor ordinarius and Director of the Institute of Theoretical Physics on the science faculty at the University of Frankfurt am Main.[22] While there, he was approached by the University of Göttingen, which was looking for a replacement for Peter Debye as Director of the Physical Institute.[26] "Theoretical physics," Einstein advised him, "will flourish wherever you happen to be; there is no other Born to be found in Germany today."[27] In negotiating for the position with the education ministry, Born arranged for another chair, of experimental physics, at Göttingen for his long-time friend and colleague James Franck.[26]

In 1919 Elisabeth Bormann joined the Institut für Theoretische Physik as his assistant.[28] She developed the first atomic beams. Working with Born, Bormann was the first to measure the free path of atoms in gases and the size of molecules.[29][30]

Göttingen

 
Solvay Conference, 1927. Born is second from the right in the second row, between Louis de Broglie and Niels Bohr.

For the 12 years Born and Franck were at the University of Göttingen (1921 to 1933), Born had a collaborator with shared views on basic scientific concepts—a benefit for teaching and research. Born's collaborative approach with experimental physicists was similar to that of Arnold Sommerfeld at the University of Munich, who was ordinarius professor of theoretical physics and Director of the Institute of Theoretical Physics—also a prime mover in the development of quantum theory. Born and Sommerfeld collaborated with experimental physicists to test and advance their theories. In 1922, when lecturing in the United States at the University of Wisconsin–Madison, Sommerfeld sent his student Werner Heisenberg to be Born's assistant. Heisenberg returned to Göttingen in 1923, where he completed his habilitation under Born in 1924, and became a privatdozent at Göttingen.[31][32]

In 1919 and 1920, Max Born became displeased about the large number of objections[33] against Einstein's relativity, and gave speeches in the winter of 1919 in support of Einstein. Born received pay for his relativity speeches which helped with expenses through the year of rapid inflation. The speeches in German language became a book published in 1920 of which Einstein received the proofs before publication.[34] A third edition was published in 1922 and an English translation was published in 1924. Born represented light speed as a function of curvature,[35] "the velocity of light is much greater for some directions of the light ray than its ordinary value c, and other bodies can also attain much greater velocities.[36]"

In 1925, Born and Heisenberg formulated the matrix mechanics representation of quantum mechanics. On 9 July, Heisenberg gave Born a paper entitled Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen ("Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations") to review, and submit for publication. In the paper, Heisenberg formulated quantum theory, avoiding the concrete, but unobservable, representations of electron orbits by using parameters such as transition probabilities for quantum jumps, which necessitated using two indexes corresponding to the initial and final states.[37][38] When Born read the paper, he recognized the formulation as one which could be transcribed and extended to the systematic language of matrices,[39] which he had learned from his study under Jakob Rosanes at Breslau University.[40]

Up until this time, matrices were seldom used by physicists; they were considered to belong to the realm of pure mathematics. Gustav Mie had used them in a paper on electrodynamics in 1912, and Born had used them in his work on the lattices theory of crystals in 1921. While matrices were used in these cases, the algebra of matrices with their multiplication did not enter the picture as they did in the matrix formulation of quantum mechanics.[41] With the help of his assistant and former student Pascual Jordan, Born began immediately to make a transcription and extension, and they submitted their results for publication; the paper was received for publication just 60 days after Heisenberg's paper.[42] A follow-on paper was submitted for publication before the end of the year by all three authors.[43] The result was a surprising formulation:

 

where p and q were matrices for location and momentum, and I is the identity matrix. Note that the left hand side of the equation is not zero because matrix multiplication is not commutative.[40] This formulation was entirely attributable to Born, who also established that all the elements not on the diagonal of the matrix were zero. Born considered that his paper with Jordan contained "the most important principles of quantum mechanics including its extension to electrodynamics."[40] The paper put Heisenberg's approach on a solid mathematical basis. [44]

Born was surprised to discover that Paul Dirac had been thinking along the same lines as Heisenberg. Soon, Wolfgang Pauli used the matrix method to calculate the energy values of the hydrogen atom and found that they agreed with the Bohr model. Another important contribution was made by Erwin Schrödinger, who looked at the problem using wave mechanics. This had a great deal of appeal to many at the time, as it offered the possibility of returning to deterministic classical physics. Born would have none of this, as it ran counter to facts determined by experiment.[40] He formulated the now-standard interpretation of the probability density function for ψ*ψ in the Schrödinger equation, which he published in July 1926.[45][44]

In a letter to Born on 4 December 1926, Einstein made his famous remark regarding quantum mechanics:

Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one'. I, at any rate, am convinced that He is not playing at dice.[46]

This quotation is often paraphrased as 'God does not play dice'.[47]

In 1928, Einstein nominated Heisenberg, Born, and Jordan for the Nobel Prize in Physics,[48] [49] but Heisenberg alone won the 1932 Prize "for the creation of quantum mechanics, the application of which has led to the discovery of the allotropic forms of hydrogen",[50] while Schrödinger and Dirac shared the 1933 Prize "for the discovery of new productive forms of atomic theory".[50] On 25 November 1933, Born received a letter from Heisenberg in which he said he had been delayed in writing due to a "bad conscience" that he alone had received the Prize "for work done in Göttingen in collaboration—you, Jordan and I."[51] Heisenberg went on to say that Born and Jordan's contribution to quantum mechanics cannot be changed by "a wrong decision from the outside."[51] In 1954, Heisenberg wrote an article honouring Planck for his insight in 1900, in which he credited Born and Jordan for the final mathematical formulation of matrix mechanics and Heisenberg went on to stress how great their contributions were to quantum mechanics, which were not "adequately acknowledged in the public eye."[52]

Those who received their PhD degrees under Born at Göttingen included Max Delbrück, Siegfried Flügge, Friedrich Hund, Pascual Jordan, Maria Goeppert-Mayer, Lothar Wolfgang Nordheim, Robert Oppenheimer, and Victor Weisskopf.[53][54] Born's assistants at the University of Göttingen's Institute for Theoretical Physics included Enrico Fermi, Werner Heisenberg, Gerhard Herzberg, Friedrich Hund, Pascual Jordan, Wolfgang Pauli, Léon Rosenfeld, Edward Teller, and Eugene Wigner.[55] Walter Heitler became an assistant to Born in 1928, and completed his habilitation under him in 1929. Born not only recognised talent to work with him, but he "let his superstars stretch past him; to those less gifted, he patiently handed out respectable but doable assignments."[56] Delbrück, and Goeppert-Mayer went on to win Nobel Prizes.[57][58]

Later life

In January 1933, the Nazi Party came to power in Germany. In May, Born became one of six Jewish professors at Göttingen who were suspended with pay; Franck had already resigned. In twelve years they had built Göttingen into one of the world's foremost centres for physics.[59] Born began looking for a new job, writing to Maria Göppert-Mayer at Johns Hopkins University and Rudi Ladenburg at Princeton University. He accepted an offer from St John's College, Cambridge.[60] At Cambridge, he wrote a popular science book, The Restless Universe, and a textbook, Atomic Physics, that soon became a standard text, going through seven editions. His family soon settled into life in England, with his daughters Irene and Gritli becoming engaged to Welshman Brinley (Bryn) Newton-John and Englishman Maurice Pryce respectively. Born's granddaughter Olivia Newton-John was the daughter of Irene.[61][62][63]

 
Max and Hedi Born in Indian clothes, Bangalore, India, c. 1937

Born's position at Cambridge was only a temporary one, and his tenure at Göttingen was terminated in May 1935. He therefore accepted an offer from C. V. Raman to go to Bangalore in 1935.[64] Born considered taking a permanent position there, but the Indian Institute of Science did not create an additional chair for him.[65] In November 1935, the Born family had their German citizenship revoked, rendering them stateless. A few weeks later Göttingen cancelled Born's doctorate.[66] Born considered an offer from Pyotr Kapitsa in Moscow, and started taking Russian lessons from Rudolf Peierls's Russian-born wife Genia. But then Charles Galton Darwin asked Born if he would consider becoming his successor as Tait Professor of Natural Philosophy at the University of Edinburgh, an offer that Born promptly accepted,[67] assuming the chair in October 1936.[62]

In Edinburgh, Born promoted the teaching of mathematical physics. He had two German assistants, E. Walter Kellermann and Klaus Fuchs, and one Scottish assistant, Robert Schlapp,[68] and together they continued to investigate the mysterious behaviour of electrons.[69] Born became a Fellow of the Royal Society of Edinburgh in 1937, and of the Royal Society of London in March 1939. During 1939, he got as many of his remaining friends and relatives still in Germany as he could out of the country, including his sister Käthe, in-laws Kurt and Marga, and the daughters of his friend Heinrich Rausch von Traubenberg. Hedi ran a domestic bureau, placing young Jewish women in jobs. Born received his certificate of naturalisation as a British subject on 31 August 1939, one day before the Second World War broke out in Europe.[70]

 
Born's gravestone in Göttingen is inscribed with the canonical commutation relation, which he put on rigid mathematical footing.

Born remained at Edinburgh until he reached the retirement age of 70 in 1952. He retired to Bad Pyrmont, in West Germany, in 1954.[71] In October, he received word that he was being awarded the Nobel Prize. His fellow physicists had never stopped nominating him. Franck and Fermi had nominated him in 1947 and 1948 for his work on crystal lattices, and over the years, he had also been nominated for his work on solid state physics, quantum mechanics and other topics.[72] In 1954, he received the prize for "fundamental research in Quantum Mechanics, especially in the statistical interpretation of the wave function"[1]—something that he had worked on alone.[72] In his Nobel lecture he reflected on the philosophical implications of his work:

I believe that ideas such as absolute certitude, absolute exactness, final truth, etc. are figments of the imagination which should not be admissible in any field of science. On the other hand, any assertion of probability is either right or wrong from the standpoint of the theory on which it is based. This loosening of thinking (Lockerung des Denkens) seems to me to be the greatest blessing which modern science has given to us. For the belief in a single truth and in being the possessor thereof is the root cause of all evil in the world.[73]

In retirement, he continued scientific work, and produced new editions of his books. In 1955 he became one of signatories to the Russell-Einstein Manifesto. He died at age 87 in hospital in Göttingen on 5 January 1970,[2] and is buried in the Stadtfriedhof there, in the same cemetery as Walther Nernst, Wilhelm Weber, Max von Laue, Otto Hahn, Max Planck, and David Hilbert.[74]

Personal life

Born's wife Hedwig (Hedi) Martha Ehrenberg (1891–1972) was a daughter of the jurist Victor Ehrenberg and Elise von Jhering (a daughter of the jurist Rudolf von Jhering). Born was survived by his wife Hedi and their children Irene, Gritli and Gustav.[71] Singer Olivia Newton-John was a daughter of Irene (1914-2003), while Gustav is the father of musician and academic Georgina Born and actor Max Born (Fellini Satyricon) who are thus also Max's grandchildren. His great-grandchildren include songwriter Brett Goldsmith, singer Tottie Goldsmith, racing car driver Emerson Newton-John,[75] and singer Chloe Rose Lattanzi.[76] Born helped his nephew, architect, Otto Königsberger (1908–1999) obtain commission in the Mysore State.[77]

Awards and honors

Bibliography

 
Einstein's theory of relativity, 1922 (US edition of Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen, 1920)

During his life, Born wrote several semi-popular and technical books. His volumes on topics like atomic physics and optics were very well received. They are considered classics in their fields, and are still in print. The following is a chronological listing of his major works:

  • Über das Thomson'sche Atommodell Habilitations-Vortrag (FAM, 1909) – The Habilitation was done at the University of Göttingen, on 23 October 1909.[90]
  • Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen (Springer, 1920) – Based on Born's lectures at the University of Frankfurt am Main.[91]
    • Available in English under the title Einstein's Theory of Relativity.[92]
  • Dynamik der Kristallgitter (Teubner, 1915)[93] – After its publication, the physicist Arnold Sommerfeld asked Born to write an article based on it for the 5th volume of the Mathematical Encyclopedia. The First World War delayed the start of work on this article, but it was taken up in 1919 and finished in 1922. It was published as a revised edition under the title Atomic Theory of Solid States.[94]
  • Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen (in German). Berlin. Springer. 1920.
    • Einstein's theory of relativity. New York. Dutton. 1922.
  • Vorlesungen über Atommechanik (Springer, 1925)[93]
  • Problems of Atomic Dynamics (MIT Press, 1926) – A first account of matrix mechanics being developed in Germany, based on two series of lectures given at MIT, over three months, in late 1925 and early 1926.[95][96]
  • Mechanics of the Atom (George Bell & Sons, 1927) – Translated by J. W. Fisher and revised by D. R. Hartree.[97]
  • Elementare Quantenmechanik (Zweiter Band der Vorlesungen über Atommechanik), with Pascual Jordan. (Springer, 1930) – This was the first volume of what was intended as a two-volume work. This volume was limited to the work Born did with Jordan on matrix mechanics. The second volume was to deal with Erwin Schrödinger's wave mechanics. However, the second volume was not even started by Born, as he believed his friend and colleague Hermann Weyl had written it before he could do so.[98][99]
  • Optik: Ein Lehrbuch der elektromagnetische Lichttheorie (Springer, 1933) – The book was released just as the Borns were emigrating to England.
  • Moderne Physik (1933) – Based on seven lectures given at the Technischen Hochschule Berlin.[100]
  • Atomic Physics (Blackie, London, 1935) – Authorized translation of Moderne Physik by John Dougall, with updates.[101]
  • The Restless Universe[102] (Blackie and Son Limited, 1935) – A popularised rendition of the workshop of nature, translated by Winifred Margaret Deans. Born's nephew, Otto Königsberger, whose successful career as an architect in Berlin was brought to an end when the Nazis took over, was temporarily brought to England to illustrate the book.[100]
  • Experiment and Theory in Physics (Cambridge University Press, 1943) – The address given King's College, Newcastle upon Tyne, at the request of the Durham Philosophical Society and the Pure Science Society. An expanded version of the lecture appeared in a 1956 Dover Publications edition.[103]
  • Natural Philosophy of Cause and Chance (Oxford University Press, 1949) – Based on Born's 1948 Waynflete lectures, given at the College of St. Mary Magdalen, Oxford University. A later edition (Dover, 1964) included two appendices: "Symbol and Reality" and Born's lecture given at the Nobel laureates 1964 meeting in Landau, Germany.[104]
  • A General Kinetic Theory of Liquids with H. S. Green (Cambridge University Press, 1949) – The six papers in this book were reproduced with permission from the Proceedings of the Royal Society.
  • Dynamical Theory of Crystal Lattices, with Kun Huang. (Oxford, Clarendon Press, 1954)[105]
  • Max Born The statistical interpretation of quantum mechanics. – 11 December 1954.
  • Physics in My Generation: A Selection of Papers (Pergamon, 1956)[106]
  • Physik im Wandel meiner Zeit (Vieweg, 1957)
  • Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light,[107] with Emil Wolf. (Pergamon, 1959) – This book is not an English translation of Optik, but rather a substantially new book. Shortly after World War II, a number of scientists suggested that Born update and translate his work into English. Since there had been many advances in optics in the intervening years, updating was warranted. In 1951, Wolf began as Born's private assistant on the book; it was eventually published in 1959 by Robert Maxwell's Pergamon Press.[108] – the delay being due to the lengthy time needed "to resolve all the financial and publishing tricks created by Maxwell."[109]
  • Physik und Politik (VandenHoeck und Ruprecht, 1960)
  • Zur Begründung der Matrizenmechanik, with Werner Heisenberg and Pascual Jordan (Battenberg, 1962) – Published in honor of Max Born's 80th birthday. This edition reprinted the authors' articles on matrix mechanics published in Zeitschrift für Physik, Volumes 26 and 3335, 1924–1926.[110]
  • My Life and My Views: A Nobel Prize Winner in Physics Writes Provocatively on a Wide Range of Subjects (Scribner, 1968) – Part II (pp. 63–206) is a translation of Von der Verantwortung des Naturwissenschaftlers.[111]
  • Briefwechsel 1916–1955, kommentiert von Max Born with Hedwig Born and Albert Einstein (Nymphenburger, 1969)
  • The Born–Einstein Letters: Correspondence between Albert Einstein and Max and Hedwig Born from 1916–1955, with commentaries by Max Born (Macmillan, 1971).[112]
  • Mein Leben: Die Erinnerungen des Nobelpreisträgers (Munich: Nymphenburger, 1975). Born's published memoirs.
  • My Life: Recollections of a Nobel Laureate (Scribner, 1978).[113] Translation of Mein Leben.

For a full list of his published papers, see HistCite. For his published works, see .

See also

Citations

  1. ^ a b "The Nobel Prize in Physics 1954". The Official Web Site of the Nobel Prize. Retrieved 10 March 2013.
  2. ^ a b "Nobel prize winner dies". Pittsburgh Post-Gazette. (Pennsylvania, U.S.). Associated Press. 6 January 1970. p. 26.
  3. ^ Born 2002.
  4. ^ Kemmer & Schlapp 1971, p. 17.
  5. ^ Greenspan 2005, pp. 5–7.
  6. ^ Born 2002, p. 231.
  7. ^ Kemmer & Schlapp 1971, pp. 16–18.
  8. ^ Greenspan 2005, pp. 22–28.
  9. ^ , Max Born Realschule, archived from the original on 13 November 2013, retrieved 5 March 2013
  10. ^ Greenspan 2005, pp. 30–31.
  11. ^ Kemmer & Schlapp 1971, pp. 18–19.
  12. ^ Greenspan 2005, pp. 33–36.
  13. ^ Greenspan 2005, pp. 36–41.
  14. ^ Greenspan 2005, pp. 42–43.
  15. ^ a b Greenspan 2005, pp. 45–49.
  16. ^ Born, M. (1909). "Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips". Annalen der Physik. 335 (11): 1–56. Bibcode:1909AnP...335....1B. doi:10.1002/andp.19093351102.
  17. ^ Greenspan 2005, pp. 49–55.
  18. ^ a b Greenspan 2005, pp. 61–62.
  19. ^ Born 2002, p. 225.
  20. ^ Born 2002, pp. 238–241.
  21. ^ Greenspan 2005, pp. 56–62.
  22. ^ a b Kemmer & Schlapp 1971, p. 20.
  23. ^ a b Greenspan 2005, pp. 63–67.
  24. ^ Greenspan 2005, pp. 70–75.
  25. ^ Greenspan 2005, pp. 83–86.
  26. ^ a b Kemmer & Schlapp 1971, p. 21.
  27. ^ Greenspan 2005, p. 96.
  28. ^ Biografien bedeutender österreichischer Wissenschafterinnen : "Die Neugier treibt mich, Fragen zu stellen". Ilse Erika Korotin, Nastasja Stupnicki. Wien. 2018. ISBN 978-3-205-20238-7. OCLC 1038390215.{{cite book}}: CS1 maint: others (link)
  29. ^ "Goethe-Universität — "Historic Site" Plaque for Frankfurt Physics". www.goethe-university-frankfurt.de. Retrieved 3 August 2021.
  30. ^ Toennies, J. Peter (June 2004). . Annual Review of Physical Chemistry. 55 (1): 1–33. Bibcode:2004ARPC...55....1T. doi:10.1146/annurev.physchem.55.081203.151413. ISSN 0066-426X. PMID 15117245. Archived from the original on 3 August 2021. Retrieved 4 August 2021.
  31. ^ Greenspan 2005, pp. 113, 120, 123.
  32. ^ Jungnickel & McCormmach 1986, pp. 274, 281–285, 350–354.
  33. ^ The Born Einstein Letters, Walker and Company, New York, 1971, page 72
  34. ^ The Born Einstein Letters, Walker and Company, New York, 1971, page 30
  35. ^ Einstein's Theory Of Relativity, Max Born, Dover, New York, 1965, page 357
  36. ^ Einstein's Theory Of Relativity, Max Born, E. P. Dutton and Company, New York, 1924 page 285
  37. ^ Heisenberg 1925, pp. 879–893.
  38. ^ Segrè 1980, pp. 153–157.
  39. ^ Pais 1991, pp. 275–279.
  40. ^ a b c d Born, Max (1954). (PDF). Official Web Site of the Nobel Prize. Archived from the original (PDF) on 19 October 2012. Retrieved 9 March 2013.
  41. ^ Jammer 1966, pp. 206–207.
  42. ^ Born & Jordan 1925.
  43. ^ Born, Heisenberg & Jordan 1925, pp. 557–615.
  44. ^ a b Kemmer & Schlapp 1971, p. 35.
  45. ^ Born 1926, pp. 863–867.
  46. ^ Born, Born & Einstein 1971, p. 91.
  47. ^ Born 1969, p. 113.
  48. ^ Bernstein 2005, p. 1004.
  49. ^ Greenspan 2005, p. 190.
  50. ^ a b "Nobel Prize in Physics 1933". Retrieved 9 March 2013.
  51. ^ a b Greenspan 2005, p. 191.
  52. ^ Greenspan 2005, pp. 285–286.
  53. ^ Max Born at the Mathematics Genealogy Project
  54. ^ Greenspan 2005, pp. 142, 262.
  55. ^ Greenspan 2005, pp. 178, 262.
  56. ^ Greenspan 2005, p. 143.
  57. ^ "Max Delbrück – Biography". The Official Web Site of the Nobel Prize. Retrieved 10 March 2013.
  58. ^ "Maria Goeppert-Mayer – Biography". The Official Web Site of the Nobel Prize. Retrieved 10 March 2013.
  59. ^ Greenspan 2005, pp. 174–177.
  60. ^ Greenspan 2005, pp. 180–184.
  61. ^ "Olivia had long road to stardom". Spokane Daily Chronicle. (Washington, U.S.). Associated Press. 15 April 1976. p. 19.
  62. ^ a b Kemmer & Schlapp 1971, p. 22.
  63. ^ Greenspan 2005, pp. 200–201.
  64. ^ Greenspan 2005, p. 199.
  65. ^ Greenspan 2005, pp. 205–208.
  66. ^ Greenspan 2005, p. 224.
  67. ^ Greenspan 2005, pp. 210–211.
  68. ^ Kemmer, Nicholas. "Robert Schlapp M.A.(Edin.), Ph.D.(Cantab.)". Retrieved 25 May 2018.
  69. ^ Greenspan 2005, pp. 218–220.
  70. ^ Greenspan 2005, pp. 225–226.
  71. ^ a b Kemmer & Schlapp 1971, pp. 23–24.
  72. ^ a b Greenspan 2005, p. 299.
  73. ^ Born 2002, p. 261.
  74. ^ "Stadtfriedhof, Göttingen, Germany". Librairie Immateriel. Retrieved 10 March 2013.
  75. ^ McMahon, Neil (25 May 2013). "Mother, model was much more than 'Olivia's older sister'". The Sydney Morning Herald. Retrieved 20 June 2015.
  76. ^ Sentinel Wire Services (18 January 1986). "People In The News - Baby Chloe is a first for Newton-John, Lattanzi". The Milwaukee Sentinel. Milwaukee, Wisconsin: Newspapers, Inc.
  77. ^ Lee, Rachel (2012). "Constructing a Shared Vision: Otto Koenigsberger and Tata & Sons". ABE Journal (2). doi:10.4000/abe.356. ISSN 2275-6639.
  78. ^ a b c d e f g Born Biographic Data
  79. ^ Kemmer & Schlapp 1971.
  80. ^ The award was presented for research on quantum mechanics of fields and shared with Born's collaborator H. W. Peng. See Greenspan, 2005, p. 257 and Born Biographic Data.
  81. ^ "Royal Society of Edinburgh. Awards to Professors". The Glasgow Herald. 2 May 1950. p. 3. Retrieved 1 May 2018.
  82. ^ Nobel Prize Banquet Speech
  83. ^ (PDF). Archived from the original (PDF) on 31 December 2006. Retrieved 22 November 2006.
  84. ^ Nobel Biographic Data
  85. ^ . Institute of Physics. Archived from the original on 8 March 2020. Retrieved 30 August 2011.
  86. ^ [Max Born Prize] (in German). German Physical Society. Archived from the original on 13 August 2011. Retrieved 30 August 2011.
  87. ^ James Franck und Max Born in Göttingen: Reden zur akademischen Feier aus Anlass der 100. Wiederkehr ihres Geburtsjahres. (Vandenhoeck & Ruprecht, 1983). Speeches by Norbert Kamp, Peter Haasen, Gerhart W. Rathenau, and Friedrich Hund. Franck was Director of the Second Institute for Experimental Physics at Göttingen, while Born was Director of the Institute of Theoretical Physics.
  88. ^ . Archived from the original on 6 October 2014. Retrieved 10 March 2009.
  89. ^ "Who is Max Born? Google doodle honours physicist for his contributions to quantum mechanics". Scroll.in. 11 December 2017. Retrieved 11 December 2017.
  90. ^ Greenspan, 2005, pp. 49, 51, and 353.
  91. ^ Greenspan, 2005, p. 100.
  92. ^ Einstein's Theory of Relativity, Dover Publications, 1962 edition, ISBN 0-486-60769-0.
  93. ^ a b Greenspan, 2005, p. 352.
  94. ^ Greenspan, 2005, pp. 66, 110, and 115.
  95. ^ Greenspan, 2005, p. 132.
  96. ^ Problems of Atomic Dynamics is available from MIT Press, ISBN 0-262-52019-2, and Dover Publications, ISBN 0-486-43873-2.
  97. ^ AIP Niels Bohr Library and AbeBooks: Search on Mechanics of the Atom.
  98. ^ Greenspan, 2005, pp. 159–160.
  99. ^ Jungnickel, Volume 2, 1990, p. 378.
  100. ^ a b Greenspan, 2005, p. 201.
  101. ^ The eighth edition was published in 1969, including revisions by R. J. Blin-Stoyle & J. M. Radcliffe. The 8th edition of Atomic Physics is available from Dover Publications in paper cover, ISBN 0-486-65984-4.
  102. ^ The Restless Universe was last published by Dover Publications, 1951, ISBN 0-486-20412-X, but it is no longer in print.
  103. ^ Greenspan, 2005, 245–246
  104. ^ Citations for Max Born Based on the Library of Congress 30 September 2007 at the Wayback Machine – See the entry for Natural Philosophy of Cause and Chance. Also see Greenspan, 2005, p. 352.
  105. ^ A new edition of Dynamical Theory of Crystal Lattices is available from Oxford University Press in hard cover ISBN 978-0-19-850369-9 and in soft cover ISBN 0-19-850369-5.
  106. ^ Physics in My Generation (Springer, 1969), ISBN 0-387-90008-X.
  107. ^ Principles of Optics is now in its 7th revised printing, ISBN 0-521-64222-1. The first 5 revised editions were done by Pergamon Press (1959–1975). The last 2 were done by Cambridge University Press in 1980 and 1999.
  108. ^ Paul Rosbaud, a former editor at Springer who remained in Germany during World War II and spied for the allies, was initially involved with Born and the endeavor to publish Optik in English, as Rosbaud was organizing a publishing company in England after the war. The publishing company did not materialize, and Rosbaud eventually joined Pergamon Press. (Greenspan, 2005, pp. 292–294.)
  109. ^ Greenspan, 2005, pp. 174, 292–294.
  110. ^ AIP Niels Bohr Library
  111. ^ AIP Niels Bohr Library
  112. ^ The Born–Einstein Letters, Macmillan Publishers, 2004, ISBN 1-4039-4496-2.
  113. ^ My Life: Recollections of a Nobel Laureate was also published by Taylor and Francis/Charles Scribner's Sons, ISBN 0-85066-174-9. No longer in print.

General references

External links

  • Encyclopædia Britannica, Max Born – full article
  • Freeview video of Gustav Born (son of Max) with conversation and film on Gustav's memories of his father by the Vega Science Trust
  • Max Born information from Nobel Winners site
  • Max Born on Nobelprize.org   including his Nobel Lecture, 11 December 1954 The Statistical Interpretations of Quantum Mechanics
  • Held at the Edinburgh University Library, Special Collections Division
  • The Papers of Professor Max Born held at Churchill Archives Centre, Cambridge
  • Recollections of Max Born[permanent dead link], by Emil Wolf, in Astrophysics and Space Science, Volume 227, Numbers 1–2. (Biographical tribute)
  • Kuhn, Thomas S., John L. Heilbron, Paul Forman, and Lini Allen (American Philosophical Society, 1967)
  • Oral history interview transcript for Max Born on 1 June 1960, American Institute of Physics, Niels Bohr Library & Archives - Session I
  • Oral history interview transcript for Max Born on 1 June 1960, American Institute of Physics, Niels Bohr Library & Archives - Session II
  • Oral history interview transcript for Max Born on 17 October 1962, American Institute of Physics, Niels Bohr Library & Archives - Session III
  • Oral history interview transcript for Max Born on 18 October 1962, American Institute of Physics, Niels Bohr Library & Archives - Session IV
  • "Video – Max Born (1959) : Optical Problems (German presentation)". Lindau Nobel Laureate Meetings. Retrieved 19 December 2014.
  • "Professor Max Born". Nature. 225 (5233): 669–671. 14 February 1970. Bibcode:1970Natur.225..669.. doi:10.1038/225669a0. ISSN 1476-4687. S2CID 4224915.

born, frse, german, pronunciation, ˈmaks, ˈbɔɐ, listen, december, 1882, january, 1970, german, physicist, mathematician, instrumental, development, quantum, mechanics, also, made, contributions, solid, state, physics, optics, supervised, work, number, notable,. Max Born FRS FRSE German pronunciation ˈmaks ˈbɔɐ n listen 11 December 1882 5 January 1970 was a German physicist and mathematician who was instrumental in the development of quantum mechanics He also made contributions to solid state physics and optics and supervised the work of a number of notable physicists in the 1920s and 1930s Born won the 1954 Nobel Prize in Physics for his fundamental research in quantum mechanics especially in the statistical interpretation of the wave function 1 Max BornPortrait c 1930sBorn 1882 12 11 11 December 1882Breslau German EmpireDied5 January 1970 1970 01 05 aged 87 Gottingen West GermanyResting placeStadtfriedhof GottingenCitizenshipGerman BritishAlma materUniversity of GottingenKnown forBorn approximationBorn coordinatesBorn equationBorn probabilityBorn reciprocityBorn rigidityBorn ruleBorn seriesBorn square Born Lande equationBorn Infeld theoryBorn Haber cycleBorn Huang approximationBorn von Karman boundary conditionBorn Oppenheimer approximationBBGKY hierarchyCauchy Born ruleAdiabatic theoremCanonical commutation relationSpouseHedwig Ehrenberg m 1913 wbr Children3 including Gustav Victor Rudolf BornRelativesOlivia Newton John granddaughter Georgina Born granddaughter AwardsNobel Prize in Physics 1954 Hughes Medal 1950 Max Planck Medal 1948 Fellow of the Royal Society 1939 Scientific careerFieldsTheoretical physicsInstitutionsUniversity of FrankfurtUniversity of GottingenUniversity of EdinburghUniversity of CambridgeThesisUntersuchungen uber die Stabilitat der elastischen Linie in Ebene und Raum unter verschiedenen Grenzbedingungen Investigations on the stability of the elastic line in plane and space under different boundary conditions 1906 Doctoral advisorCarl RungeOther academic advisorsWoldemar Voigt Karl Schwarzschild Joseph Larmor J J ThomsonDoctoral studentsMary Bradburn Kaijia Cheng Max Delbruck Walter Elsasser Siegfried Flugge Maria Goeppert Mayer Herbert S Green Friedrich Hund Pascual Jordan Edgar Krahn J Robert Oppenheimer Lothar Wolfgang Nordheim Huanwu Peng Maurice Pryce Carl Hermann Bertha Swirles Victor Frederick Weisskopf Liming YangOther notable studentsEnrico Fermi Huang Kun Emil WolfSignatureBorn entered the University of Gottingen in 1904 where he met the three renowned mathematicians Felix Klein David Hilbert and Hermann Minkowski He wrote his PhD thesis on the subject of Stability of Elastica in a Plane and Space winning the university s Philosophy Faculty Prize In 1905 he began researching special relativity with Minkowski and subsequently wrote his habilitation thesis on the Thomson model of the atom A chance meeting with Fritz Haber in Berlin in 1918 led to discussion of how an ionic compound is formed when a metal reacts with a halogen which is today known as the Born Haber cycle In World War I after originally being placed as a radio operator he was moved to research duties regarding sound ranging due to his specialist knowledge In 1921 Born returned to Gottingen arranging another chair for his long time friend and colleague James Franck Under Born Gottingen became one of the world s foremost centres for physics In 1925 Born and Werner Heisenberg formulated the matrix mechanics representation of quantum mechanics The following year he formulated the now standard interpretation of the probability density function for ps ps in the Schrodinger equation for which he was awarded the Nobel Prize in 1954 His influence extended far beyond his own research Max Delbruck Siegfried Flugge Friedrich Hund Pascual Jordan Maria Goeppert Mayer Lothar Wolfgang Nordheim Robert Oppenheimer and Victor Weisskopf all received their PhD degrees under Born at Gottingen and his assistants included Enrico Fermi Werner Heisenberg Gerhard Herzberg Friedrich Hund Pascual Jordan Wolfgang Pauli Leon Rosenfeld Edward Teller and Eugene Wigner In January 1933 the Nazi Party came to power in Germany and Born who was Jewish was suspended from his professorship at the University of Gottingen He emigrated to the United Kingdom where he took a job at St John s College Cambridge and wrote a popular science book The Restless Universe as well as Atomic Physics which soon became a standard textbook In October 1936 he became the Tait Professor of Natural Philosophy at the University of Edinburgh where working with German born assistants E Walter Kellermann and Klaus Fuchs he continued his research into physics Born became a naturalised British subject on 31 August 1939 one day before World War II broke out in Europe He remained in Edinburgh until 1952 He retired to Bad Pyrmont in West Germany and died in hospital in Gottingen on 5 January 1970 2 Contents 1 Early life 2 Career 2 1 Berlin and Frankfurt 2 2 Gottingen 3 Later life 4 Personal life 5 Awards and honors 6 Bibliography 7 See also 8 Citations 9 General references 10 External linksEarly life EditMax Born was born on 11 December 1882 in Breslau now Wroclaw Poland which at the time of Born s birth was part of the Prussian Province of Silesia in the German Empire to a family of Jewish descent 3 He was one of two children born to Gustav Born an anatomist and embryologist who was a professor of embryology at the University of Breslau 4 and his wife Margarethe Gretchen nee Kauffmann from a Silesian family of industrialists She died when Max was four years old on 29 August 1886 5 Max had a sister Kathe who was born in 1884 and a half brother Wolfgang from his father s second marriage to Bertha Lipstein Wolfgang later became Professor of Art History at the City College of New York 6 Initially educated at the Konig Wilhelm Gymnasium in Breslau Born entered the University of Breslau in 1901 The German university system allowed students to move easily from one university to another so he spent summer semesters at Heidelberg University in 1902 and the University of Zurich in 1903 Fellow students at Breslau Otto Toeplitz and Ernst Hellinger told Born about the University of Gottingen 7 and Born went there in April 1904 At Gottingen he found three renowned mathematicians Felix Klein David Hilbert and Hermann Minkowski Very soon after his arrival Born formed close ties to the latter two men From the first class he took with Hilbert Hilbert identified Born as having exceptional abilities and selected him as the lecture scribe whose function was to write up the class notes for the students mathematics reading room at the University of Gottingen Being class scribe put Born into regular invaluable contact with Hilbert Hilbert became Born s mentor after selecting him to be the first to hold the unpaid semi official position of assistant Born s introduction to Minkowski came through Born s stepmother Bertha as she knew Minkowski from dancing classes in Konigsberg The introduction netted Born invitations to the Minkowski household for Sunday dinners In addition while performing his duties as scribe and assistant Born often saw Minkowski at Hilbert s house 8 9 Born s relationship with Klein was more problematic Born attended a seminar conducted by Klein and professors of applied mathematics Carl Runge and Ludwig Prandtl on the subject of elasticity Although not particularly interested in the subject Born was obliged to present a paper Using Hilbert s calculus of variations he presented one in which using a curved configuration of a wire with both ends fixed he demonstrated would be the most stable Klein was impressed and invited Born to submit a thesis on the subject of Stability of Elastica in a Plane and Space a subject near and dear to Klein which Klein had arranged to be the subject for the prestigious annual Philosophy Faculty Prize offered by the university Entries could also qualify as doctoral dissertations Born responded by turning down the offer as applied mathematics was not his preferred area of study Klein was greatly offended 10 11 Klein had the power to make or break academic careers so Born felt compelled to atone by submitting an entry for the prize Because Klein refused to supervise him Born arranged for Carl Runge to be his supervisor Woldemar Voigt and Karl Schwarzschild became his other examiners Starting from his paper Born developed the equations for the stability conditions As he became more interested in the topic he had an apparatus constructed that could test his predictions experimentally On 13 June 1906 the rector announced that Born had won the prize A month later he passed his oral examination and was awarded his PhD in mathematics magna cum laude 12 On graduation Born was obliged to perform his military service which he had deferred while a student He found himself drafted into the German army and posted to the 2nd Guards Dragoons Empress Alexandra of Russia which was stationed in Berlin His service was brief as he was discharged early after an asthma attack in January 1907 He then travelled to England where he was admitted to Gonville and Caius College Cambridge and studied physics for six months at the Cavendish Laboratory under J J Thomson George Searle and Joseph Larmor After Born returned to Germany the Army re inducted him and he served with the elite 1st Silesian Life Cuirassiers Great Elector until he was again medically discharged after just six weeks service He then returned to Breslau where he worked under the supervision of Otto Lummer and Ernst Pringsheim hoping to do his habilitation in physics A minor accident involving Born s black body experiment a ruptured cooling water hose and a flooded laboratory led to Lummer telling him that he would never become a physicist 13 In 1905 Albert Einstein published his paper On the Electrodynamics of Moving Bodies about special relativity Born was intrigued and began researching the subject He was devastated to discover that Minkowski was also researching special relativity along the same lines but when he wrote to Minkowski about his results Minkowski asked him to return to Gottingen and do his habilitation there Born accepted Toeplitz helped Born brush up on his matrix algebra so he could work with the four dimensional Minkowski space matrices used in the latter s project to reconcile relativity with electrodynamics Born and Minkowski got along well and their work made good progress but Minkowski died suddenly of appendicitis on 12 January 1909 The mathematics students had Born speak on their behalf at the funeral 14 A few weeks later Born attempted to present their results at a meeting of the Gottingen Mathematics Society He did not get far before he was publicly challenged by Klein and Max Abraham who rejected relativity forcing him to terminate the lecture However Hilbert and Runge were interested in Born s work and after some discussion with Born they became convinced of the veracity of his results and persuaded him to give the lecture again This time he was not interrupted and Voigt offered to sponsor Born s habilitation thesis 15 Born subsequently published his talk as an article on The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity German Die Theorie des starren Elektrons in der Kinematik des Relativitatsprinzips 16 which introduced the concept of Born rigidity On 23 October Born presented his habilitation lecture on the Thomson model of the atom 15 Career EditBerlin and Frankfurt Edit Born settled in as a young academic at Gottingen as a privatdozent In Gottingen Born stayed at a boarding house run by Sister Annie at Dahlmannstrasse 17 known as El BoKaReBo The name was derived from the first letters of the last names of its boarders El for Ella Philipson a medical student Bo for Born and Hans Bolza a physics student Ka for Theodore von Karman a Privatdozent and Re for Albrecht Renner another medical student A frequent visitor to the boarding house was Paul Peter Ewald a doctoral student of Arnold Sommerfeld on loan to Hilbert at Gottingen as a special assistant for physics Richard Courant a mathematician and Privatdozent called these people the in group 17 In 1912 Born met Hedwig Hedi Ehrenberg the daughter of a Leipzig University law professor and a friend of Carl Runge s daughter Iris She was of Jewish background on her father s side although he had become a practising Lutheran when he got married as did Max s sister Kathe Despite never practising his religion Born refused to convert and his wedding on 2 August 1913 was a garden ceremony However he was baptised as a Lutheran in March 1914 by the same pastor who had performed his wedding ceremony Born regarded religious professions and churches as a matter of no importance 18 His decision to be baptised was made partly in deference to his wife and partly due to his desire to assimilate into German society 18 The marriage produced three children two daughters Irene born in 1914 and Margarethe Gritli born in 1915 and a son Gustav born in 1921 19 Through marriage Born is related to jurists Victor Ehrenberg his father in law and Rudolf von Jhering his wife s maternal grandfather as well as to philosopher and theologian Hans Ehrenberg and is a great uncle of British comedian Ben Elton 20 By the end of 1913 Born had published 27 papers including important work on relativity and the dynamics of crystal lattices 3 with Theodore von Karman 21 which became a book 22 In 1914 received a letter from Max Planck explaining that a new professor extraordinarius chair of theoretical physics had been created at the University of Berlin The chair had been offered to Max von Laue but he had turned it down Born accepted 23 The First World War was now raging Soon after arriving in Berlin in 1915 he enlisted in an Army signals unit In October he joined the Artillerie Prufungs Kommission the Army s Berlin based artillery research and development organisation under Rudolf Ladenburg who had established a special unit dedicated to the new technology of sound ranging In Berlin Born formed a lifelong friendship with Einstein who became a frequent visitor to Born s home 24 Within days of the armistice in November 1918 Planck had the Army release Born A chance meeting with Fritz Haber that month led to discussion of the manner in which an ionic compound is formed when a metal reacts with a halogen which is today known as the Born Haber cycle 25 Even before Born had taken up the chair in Berlin von Laue had changed his mind and decided that he wanted it after all 23 He arranged with Born and the faculties concerned for them to exchange jobs In April 1919 Born became professor ordinarius and Director of the Institute of Theoretical Physics on the science faculty at the University of Frankfurt am Main 22 While there he was approached by the University of Gottingen which was looking for a replacement for Peter Debye as Director of the Physical Institute 26 Theoretical physics Einstein advised him will flourish wherever you happen to be there is no other Born to be found in Germany today 27 In negotiating for the position with the education ministry Born arranged for another chair of experimental physics at Gottingen for his long time friend and colleague James Franck 26 In 1919 Elisabeth Bormann joined the Institut fur Theoretische Physik as his assistant 28 She developed the first atomic beams Working with Born Bormann was the first to measure the free path of atoms in gases and the size of molecules 29 30 Gottingen Edit Solvay Conference 1927 Born is second from the right in the second row between Louis de Broglie and Niels Bohr For the 12 years Born and Franck were at the University of Gottingen 1921 to 1933 Born had a collaborator with shared views on basic scientific concepts a benefit for teaching and research Born s collaborative approach with experimental physicists was similar to that of Arnold Sommerfeld at the University of Munich who was ordinarius professor of theoretical physics and Director of the Institute of Theoretical Physics also a prime mover in the development of quantum theory Born and Sommerfeld collaborated with experimental physicists to test and advance their theories In 1922 when lecturing in the United States at the University of Wisconsin Madison Sommerfeld sent his student Werner Heisenberg to be Born s assistant Heisenberg returned to Gottingen in 1923 where he completed his habilitation under Born in 1924 and became a privatdozent at Gottingen 31 32 In 1919 and 1920 Max Born became displeased about the large number of objections 33 against Einstein s relativity and gave speeches in the winter of 1919 in support of Einstein Born received pay for his relativity speeches which helped with expenses through the year of rapid inflation The speeches in German language became a book published in 1920 of which Einstein received the proofs before publication 34 A third edition was published in 1922 and an English translation was published in 1924 Born represented light speed as a function of curvature 35 the velocity of light is much greater for some directions of the light ray than its ordinary value c and other bodies can also attain much greater velocities 36 In 1925 Born and Heisenberg formulated the matrix mechanics representation of quantum mechanics On 9 July Heisenberg gave Born a paper entitled Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen Quantum Theoretical Re interpretation of Kinematic and Mechanical Relations to review and submit for publication In the paper Heisenberg formulated quantum theory avoiding the concrete but unobservable representations of electron orbits by using parameters such as transition probabilities for quantum jumps which necessitated using two indexes corresponding to the initial and final states 37 38 When Born read the paper he recognized the formulation as one which could be transcribed and extended to the systematic language of matrices 39 which he had learned from his study under Jakob Rosanes at Breslau University 40 Up until this time matrices were seldom used by physicists they were considered to belong to the realm of pure mathematics Gustav Mie had used them in a paper on electrodynamics in 1912 and Born had used them in his work on the lattices theory of crystals in 1921 While matrices were used in these cases the algebra of matrices with their multiplication did not enter the picture as they did in the matrix formulation of quantum mechanics 41 With the help of his assistant and former student Pascual Jordan Born began immediately to make a transcription and extension and they submitted their results for publication the paper was received for publication just 60 days after Heisenberg s paper 42 A follow on paper was submitted for publication before the end of the year by all three authors 43 The result was a surprising formulation p q q p h 2 p i I displaystyle pq qp h over 2 pi i I where p and q were matrices for location and momentum and I is the identity matrix Note that the left hand side of the equation is not zero because matrix multiplication is not commutative 40 This formulation was entirely attributable to Born who also established that all the elements not on the diagonal of the matrix were zero Born considered that his paper with Jordan contained the most important principles of quantum mechanics including its extension to electrodynamics 40 The paper put Heisenberg s approach on a solid mathematical basis 44 Born was surprised to discover that Paul Dirac had been thinking along the same lines as Heisenberg Soon Wolfgang Pauli used the matrix method to calculate the energy values of the hydrogen atom and found that they agreed with the Bohr model Another important contribution was made by Erwin Schrodinger who looked at the problem using wave mechanics This had a great deal of appeal to many at the time as it offered the possibility of returning to deterministic classical physics Born would have none of this as it ran counter to facts determined by experiment 40 He formulated the now standard interpretation of the probability density function for ps ps in the Schrodinger equation which he published in July 1926 45 44 In a letter to Born on 4 December 1926 Einstein made his famous remark regarding quantum mechanics Quantum mechanics is certainly imposing But an inner voice tells me that it is not yet the real thing The theory says a lot but does not really bring us any closer to the secret of the old one I at any rate am convinced that He is not playing at dice 46 This quotation is often paraphrased as God does not play dice 47 In 1928 Einstein nominated Heisenberg Born and Jordan for the Nobel Prize in Physics 48 49 but Heisenberg alone won the 1932 Prize for the creation of quantum mechanics the application of which has led to the discovery of the allotropic forms of hydrogen 50 while Schrodinger and Dirac shared the 1933 Prize for the discovery of new productive forms of atomic theory 50 On 25 November 1933 Born received a letter from Heisenberg in which he said he had been delayed in writing due to a bad conscience that he alone had received the Prize for work done in Gottingen in collaboration you Jordan and I 51 Heisenberg went on to say that Born and Jordan s contribution to quantum mechanics cannot be changed by a wrong decision from the outside 51 In 1954 Heisenberg wrote an article honouring Planck for his insight in 1900 in which he credited Born and Jordan for the final mathematical formulation of matrix mechanics and Heisenberg went on to stress how great their contributions were to quantum mechanics which were not adequately acknowledged in the public eye 52 Those who received their PhD degrees under Born at Gottingen included Max Delbruck Siegfried Flugge Friedrich Hund Pascual Jordan Maria Goeppert Mayer Lothar Wolfgang Nordheim Robert Oppenheimer and Victor Weisskopf 53 54 Born s assistants at the University of Gottingen s Institute for Theoretical Physics included Enrico Fermi Werner Heisenberg Gerhard Herzberg Friedrich Hund Pascual Jordan Wolfgang Pauli Leon Rosenfeld Edward Teller and Eugene Wigner 55 Walter Heitler became an assistant to Born in 1928 and completed his habilitation under him in 1929 Born not only recognised talent to work with him but he let his superstars stretch past him to those less gifted he patiently handed out respectable but doable assignments 56 Delbruck and Goeppert Mayer went on to win Nobel Prizes 57 58 Later life EditIn January 1933 the Nazi Party came to power in Germany In May Born became one of six Jewish professors at Gottingen who were suspended with pay Franck had already resigned In twelve years they had built Gottingen into one of the world s foremost centres for physics 59 Born began looking for a new job writing to Maria Goppert Mayer at Johns Hopkins University and Rudi Ladenburg at Princeton University He accepted an offer from St John s College Cambridge 60 At Cambridge he wrote a popular science book The Restless Universe and a textbook Atomic Physics that soon became a standard text going through seven editions His family soon settled into life in England with his daughters Irene and Gritli becoming engaged to Welshman Brinley Bryn Newton John and Englishman Maurice Pryce respectively Born s granddaughter Olivia Newton John was the daughter of Irene 61 62 63 Max and Hedi Born in Indian clothes Bangalore India c 1937 Born s position at Cambridge was only a temporary one and his tenure at Gottingen was terminated in May 1935 He therefore accepted an offer from C V Raman to go to Bangalore in 1935 64 Born considered taking a permanent position there but the Indian Institute of Science did not create an additional chair for him 65 In November 1935 the Born family had their German citizenship revoked rendering them stateless A few weeks later Gottingen cancelled Born s doctorate 66 Born considered an offer from Pyotr Kapitsa in Moscow and started taking Russian lessons from Rudolf Peierls s Russian born wife Genia But then Charles Galton Darwin asked Born if he would consider becoming his successor as Tait Professor of Natural Philosophy at the University of Edinburgh an offer that Born promptly accepted 67 assuming the chair in October 1936 62 In Edinburgh Born promoted the teaching of mathematical physics He had two German assistants E Walter Kellermann and Klaus Fuchs and one Scottish assistant Robert Schlapp 68 and together they continued to investigate the mysterious behaviour of electrons 69 Born became a Fellow of the Royal Society of Edinburgh in 1937 and of the Royal Society of London in March 1939 During 1939 he got as many of his remaining friends and relatives still in Germany as he could out of the country including his sister Kathe in laws Kurt and Marga and the daughters of his friend Heinrich Rausch von Traubenberg Hedi ran a domestic bureau placing young Jewish women in jobs Born received his certificate of naturalisation as a British subject on 31 August 1939 one day before the Second World War broke out in Europe 70 Born s gravestone in Gottingen is inscribed with the canonical commutation relation which he put on rigid mathematical footing Born remained at Edinburgh until he reached the retirement age of 70 in 1952 He retired to Bad Pyrmont in West Germany in 1954 71 In October he received word that he was being awarded the Nobel Prize His fellow physicists had never stopped nominating him Franck and Fermi had nominated him in 1947 and 1948 for his work on crystal lattices and over the years he had also been nominated for his work on solid state physics quantum mechanics and other topics 72 In 1954 he received the prize for fundamental research in Quantum Mechanics especially in the statistical interpretation of the wave function 1 something that he had worked on alone 72 In his Nobel lecture he reflected on the philosophical implications of his work I believe that ideas such as absolute certitude absolute exactness final truth etc are figments of the imagination which should not be admissible in any field of science On the other hand any assertion of probability is either right or wrong from the standpoint of the theory on which it is based This loosening of thinking Lockerung des Denkens seems to me to be the greatest blessing which modern science has given to us For the belief in a single truth and in being the possessor thereof is the root cause of all evil in the world 73 In retirement he continued scientific work and produced new editions of his books In 1955 he became one of signatories to the Russell Einstein Manifesto He died at age 87 in hospital in Gottingen on 5 January 1970 2 and is buried in the Stadtfriedhof there in the same cemetery as Walther Nernst Wilhelm Weber Max von Laue Otto Hahn Max Planck and David Hilbert 74 Personal life EditBorn s wife Hedwig Hedi Martha Ehrenberg 1891 1972 was a daughter of the jurist Victor Ehrenberg and Elise von Jhering a daughter of the jurist Rudolf von Jhering Born was survived by his wife Hedi and their children Irene Gritli and Gustav 71 Singer Olivia Newton John was a daughter of Irene 1914 2003 while Gustav is the father of musician and academic Georgina Born and actor Max Born Fellini Satyricon who are thus also Max s grandchildren His great grandchildren include songwriter Brett Goldsmith singer Tottie Goldsmith racing car driver Emerson Newton John 75 and singer Chloe Rose Lattanzi 76 Born helped his nephew architect Otto Konigsberger 1908 1999 obtain commission in the Mysore State 77 Awards and honors Edit1934 Stokes Medal of Cambridge 78 1939 Fellow of the Royal Society 78 79 1945 Makdougall Brisbane Prize of the Royal Society of Edinburgh 80 1945 Gunning Victoria Jubilee Prize of the Royal Society of Edinburgh 81 1948 Max Planck Medaille der Deutschen Physikalischen Gesellschaft 78 1950 Hughes Medal of the Royal Society of London 78 1953 Honorary citizen of the town of Gottingen 78 1954 Nobel Prize in Physics The award was for Born s fundamental research in quantum mechanics especially for his statistical interpretation of the wavefunction 78 1954 Nobel Prize Banquet Speech 82 1954 Born Nobel Prize Lecture 83 1956 Hugo Grotius Medal for International Law Munich 78 1959 Grand Cross of Merit with Star of the Order of Merit of the German Federal Republic 84 1972 Max Born Medal and Prize was created by the German Physical Society and the British Institute of Physics It is awarded annually 85 86 1982 Ceremony at the University of Gottingen in the 100th Birth Year of Max Born and James Franck Institute Directors 1921 1933 87 1991 Max Born Institut fur Nichtlineare Optik und Kurzzeitspektroskopie de Institute named in his honor 88 2017 On 11 December 2017 Google showed a Google doodle designed by Kati Szilagyi in honouring the 135th birth anniversary of Born 89 Bibliography Edit Einstein s theory of relativity 1922 US edition of Die Relativitatstheorie Einsteins und ihre physikalischen Grundlagen 1920 Main article Bibliography of Max Born During his life Born wrote several semi popular and technical books His volumes on topics like atomic physics and optics were very well received They are considered classics in their fields and are still in print The following is a chronological listing of his major works Uber das Thomson sche Atommodell Habilitations Vortrag FAM 1909 The Habilitation was done at the University of Gottingen on 23 October 1909 90 Die Relativitatstheorie Einsteins und ihre physikalischen Grundlagen Springer 1920 Based on Born s lectures at the University of Frankfurt am Main 91 Available in English under the title Einstein s Theory of Relativity 92 Dynamik der Kristallgitter Teubner 1915 93 After its publication the physicist Arnold Sommerfeld asked Born to write an article based on it for the 5th volume of the Mathematical Encyclopedia The First World War delayed the start of work on this article but it was taken up in 1919 and finished in 1922 It was published as a revised edition under the title Atomic Theory of Solid States 94 Die Relativitatstheorie Einsteins und ihre physikalischen Grundlagen in German Berlin Springer 1920 Einstein s theory of relativity New York Dutton 1922 Vorlesungen uber Atommechanik Springer 1925 93 Problems of Atomic Dynamics MIT Press 1926 A first account of matrix mechanics being developed in Germany based on two series of lectures given at MIT over three months in late 1925 and early 1926 95 96 Mechanics of the Atom George Bell amp Sons 1927 Translated by J W Fisher and revised by D R Hartree 97 Elementare Quantenmechanik Zweiter Band der Vorlesungen uber Atommechanik with Pascual Jordan Springer 1930 This was the first volume of what was intended as a two volume work This volume was limited to the work Born did with Jordan on matrix mechanics The second volume was to deal with Erwin Schrodinger s wave mechanics However the second volume was not even started by Born as he believed his friend and colleague Hermann Weyl had written it before he could do so 98 99 Optik Ein Lehrbuch der elektromagnetische Lichttheorie Springer 1933 The book was released just as the Borns were emigrating to England Moderne Physik 1933 Based on seven lectures given at the Technischen Hochschule Berlin 100 Atomic Physics Blackie London 1935 Authorized translation of Moderne Physik by John Dougall with updates 101 The Restless Universe 102 Blackie and Son Limited 1935 A popularised rendition of the workshop of nature translated by Winifred Margaret Deans Born s nephew Otto Konigsberger whose successful career as an architect in Berlin was brought to an end when the Nazis took over was temporarily brought to England to illustrate the book 100 Experiment and Theory in Physics Cambridge University Press 1943 The address given King s College Newcastle upon Tyne at the request of the Durham Philosophical Society and the Pure Science Society An expanded version of the lecture appeared in a 1956 Dover Publications edition 103 Natural Philosophy of Cause and Chance Oxford University Press 1949 Based on Born s 1948 Waynflete lectures given at the College of St Mary Magdalen Oxford University A later edition Dover 1964 included two appendices Symbol and Reality and Born s lecture given at the Nobel laureates 1964 meeting in Landau Germany 104 A General Kinetic Theory of Liquids with H S Green Cambridge University Press 1949 The six papers in this book were reproduced with permission from the Proceedings of the Royal Society Dynamical Theory of Crystal Lattices with Kun Huang Oxford Clarendon Press 1954 105 Max Born The statistical interpretation of quantum mechanics Nobel Lecture 11 December 1954 Physics in My Generation A Selection of Papers Pergamon 1956 106 Physik im Wandel meiner Zeit Vieweg 1957 Principles of Optics Electromagnetic Theory of Propagation Interference and Diffraction of Light 107 with Emil Wolf Pergamon 1959 This book is not an English translation of Optik but rather a substantially new book Shortly after World War II a number of scientists suggested that Born update and translate his work into English Since there had been many advances in optics in the intervening years updating was warranted In 1951 Wolf began as Born s private assistant on the book it was eventually published in 1959 by Robert Maxwell s Pergamon Press 108 the delay being due to the lengthy time needed to resolve all the financial and publishing tricks created by Maxwell 109 Physik und Politik VandenHoeck und Ruprecht 1960 Zur Begrundung der Matrizenmechanik with Werner Heisenberg and Pascual Jordan Battenberg 1962 Published in honor of Max Born s 80th birthday This edition reprinted the authors articles on matrix mechanics published in Zeitschrift fur Physik Volumes 26 and 33 35 1924 1926 110 My Life and My Views A Nobel Prize Winner in Physics Writes Provocatively on a Wide Range of Subjects Scribner 1968 Part II pp 63 206 is a translation of Von der Verantwortung des Naturwissenschaftlers 111 Briefwechsel 1916 1955 kommentiert von Max Born with Hedwig Born and Albert Einstein Nymphenburger 1969 The Born Einstein Letters Correspondence between Albert Einstein and Max and Hedwig Born from 1916 1955 with commentaries by Max Born Macmillan 1971 112 Mein Leben Die Erinnerungen des Nobelpreistragers Munich Nymphenburger 1975 Born s published memoirs My Life Recollections of a Nobel Laureate Scribner 1978 113 Translation of Mein Leben For a full list of his published papers see HistCite For his published works see Published Works Berlin Brandenburgische Akademie der Wissenschaften Akademiebibliothek See also EditList of things named after Max Born List of refugeesCitations Edit a b The Nobel Prize in Physics 1954 The Official Web Site of the Nobel Prize Retrieved 10 March 2013 a b Nobel prize winner dies Pittsburgh Post Gazette Pennsylvania U S Associated Press 6 January 1970 p 26 Born 2002 Kemmer amp Schlapp 1971 p 17 Greenspan 2005 pp 5 7 Born 2002 p 231 Kemmer amp Schlapp 1971 pp 16 18 Greenspan 2005 pp 22 28 Max Born s Life Max Born Realschule archived from the original on 13 November 2013 retrieved 5 March 2013 Greenspan 2005 pp 30 31 Kemmer amp Schlapp 1971 pp 18 19 Greenspan 2005 pp 33 36 Greenspan 2005 pp 36 41 Greenspan 2005 pp 42 43 a b Greenspan 2005 pp 45 49 Born M 1909 Die Theorie des starren Elektrons in der Kinematik des Relativitatsprinzips Annalen der Physik 335 11 1 56 Bibcode 1909AnP 335 1B doi 10 1002 andp 19093351102 Greenspan 2005 pp 49 55 a b Greenspan 2005 pp 61 62 Born 2002 p 225 Born 2002 pp 238 241 Greenspan 2005 pp 56 62 a b Kemmer amp Schlapp 1971 p 20 a b Greenspan 2005 pp 63 67 Greenspan 2005 pp 70 75 Greenspan 2005 pp 83 86 a b Kemmer amp Schlapp 1971 p 21 Greenspan 2005 p 96 Biografien bedeutender osterreichischer Wissenschafterinnen Die Neugier treibt mich Fragen zu stellen Ilse Erika Korotin Nastasja Stupnicki Wien 2018 ISBN 978 3 205 20238 7 OCLC 1038390215 a href Template Cite book html title Template Cite book cite book a CS1 maint others link Goethe Universitat Historic Site Plaque for Frankfurt Physics www goethe university frankfurt de Retrieved 3 August 2021 Toennies J Peter June 2004 Serendipitous Meanderings and Adventures with Molecular Beams Annual Review of Physical Chemistry 55 1 1 33 Bibcode 2004ARPC 55 1T doi 10 1146 annurev physchem 55 081203 151413 ISSN 0066 426X PMID 15117245 Archived from the original on 3 August 2021 Retrieved 4 August 2021 Greenspan 2005 pp 113 120 123 Jungnickel amp McCormmach 1986 pp 274 281 285 350 354 The Born Einstein Letters Walker and Company New York 1971 page 72 The Born Einstein Letters Walker and Company New York 1971 page 30 Einstein s Theory Of Relativity Max Born Dover New York 1965 page 357 Einstein s Theory Of Relativity Max Born E P Dutton and Company New York 1924 page 285 Heisenberg 1925 pp 879 893 Segre 1980 pp 153 157 Pais 1991 pp 275 279 a b c d Born Max 1954 The Statistical Interpretation of Quantum Mechanics Nobel Lecture PDF Official Web Site of the Nobel Prize Archived from the original PDF on 19 October 2012 Retrieved 9 March 2013 Jammer 1966 pp 206 207 Born amp Jordan 1925 Born Heisenberg amp Jordan 1925 pp 557 615 a b Kemmer amp Schlapp 1971 p 35 Born 1926 pp 863 867 Born Born amp Einstein 1971 p 91 Born 1969 p 113 Bernstein 2005 p 1004 Greenspan 2005 p 190 a b Nobel Prize in Physics 1933 Retrieved 9 March 2013 a b Greenspan 2005 p 191 Greenspan 2005 pp 285 286 Max Born at the Mathematics Genealogy Project Greenspan 2005 pp 142 262 Greenspan 2005 pp 178 262 Greenspan 2005 p 143 Max Delbruck Biography The Official Web Site of the Nobel Prize Retrieved 10 March 2013 Maria Goeppert Mayer Biography The Official Web Site of the Nobel Prize Retrieved 10 March 2013 Greenspan 2005 pp 174 177 Greenspan 2005 pp 180 184 Olivia had long road to stardom Spokane Daily Chronicle Washington U S Associated Press 15 April 1976 p 19 a b Kemmer amp Schlapp 1971 p 22 Greenspan 2005 pp 200 201 Greenspan 2005 p 199 Greenspan 2005 pp 205 208 Greenspan 2005 p 224 Greenspan 2005 pp 210 211 Kemmer Nicholas Robert Schlapp M A Edin Ph D Cantab Retrieved 25 May 2018 Greenspan 2005 pp 218 220 Greenspan 2005 pp 225 226 a b Kemmer amp Schlapp 1971 pp 23 24 a b Greenspan 2005 p 299 Born 2002 p 261 Stadtfriedhof Gottingen Germany Librairie Immateriel Retrieved 10 March 2013 McMahon Neil 25 May 2013 Mother model was much more than Olivia s older sister The Sydney Morning Herald Retrieved 20 June 2015 Sentinel Wire Services 18 January 1986 People In The News Baby Chloe is a first for Newton John Lattanzi The Milwaukee Sentinel Milwaukee Wisconsin Newspapers Inc Lee Rachel 2012 Constructing a Shared Vision Otto Koenigsberger and Tata amp Sons ABE Journal 2 doi 10 4000 abe 356 ISSN 2275 6639 a b c d e f g Born Biographic Data Kemmer amp Schlapp 1971 The award was presented for research on quantum mechanics of fields and shared with Born s collaborator H W Peng See Greenspan 2005 p 257 and Born Biographic Data Royal Society of Edinburgh Awards to Professors The Glasgow Herald 2 May 1950 p 3 Retrieved 1 May 2018 Nobel Prize Banquet Speech Born Nobel Prize Lecture PDF Archived from the original PDF on 31 December 2006 Retrieved 22 November 2006 Nobel Biographic Data The Born medal and prize Institute of Physics Archived from the original on 8 March 2020 Retrieved 30 August 2011 Max Born Preis Max Born Prize in German German Physical Society Archived from the original on 13 August 2011 Retrieved 30 August 2011 James Franck und Max Born in Gottingen Reden zur akademischen Feier aus Anlass der 100 Wiederkehr ihres Geburtsjahres Vandenhoeck amp Ruprecht 1983 Speeches by Norbert Kamp Peter Haasen Gerhart W Rathenau and Friedrich Hund Franck was Director of the Second Institute for Experimental Physics at Gottingen while Born was Director of the Institute of Theoretical Physics Max Born Institute for Nonlinear Optics and Short Pulse Spectroskopy Developement sic of the MBI Archived from the original on 6 October 2014 Retrieved 10 March 2009 Who is Max Born Google doodle honours physicist for his contributions to quantum mechanics Scroll in 11 December 2017 Retrieved 11 December 2017 Greenspan 2005 pp 49 51 and 353 Greenspan 2005 p 100 Einstein s Theory of Relativity Dover Publications 1962 edition ISBN 0 486 60769 0 a b Greenspan 2005 p 352 Greenspan 2005 pp 66 110 and 115 Greenspan 2005 p 132 Problems of Atomic Dynamics is available from MIT Press ISBN 0 262 52019 2 and Dover Publications ISBN 0 486 43873 2 AIP Niels Bohr Library and AbeBooks Search on Mechanics of the Atom Greenspan 2005 pp 159 160 Jungnickel Volume 2 1990 p 378 a b Greenspan 2005 p 201 The eighth edition was published in 1969 including revisions by R J Blin Stoyle amp J M Radcliffe The 8th edition of Atomic Physics is available from Dover Publications in paper cover ISBN 0 486 65984 4 The Restless Universe was last published by Dover Publications 1951 ISBN 0 486 20412 X but it is no longer in print Greenspan 2005 245 246 Citations for Max Born Based on the Library of Congress Archived 30 September 2007 at the Wayback Machine See the entry for Natural Philosophy of Cause and Chance Also see Greenspan 2005 p 352 A new edition of Dynamical Theory of Crystal Lattices is available from Oxford University Press in hard cover ISBN 978 0 19 850369 9 and in soft cover ISBN 0 19 850369 5 Physics in My Generation Springer 1969 ISBN 0 387 90008 X Principles of Optics is now in its 7th revised printing ISBN 0 521 64222 1 The first 5 revised editions were done by Pergamon Press 1959 1975 The last 2 were done by Cambridge University Press in 1980 and 1999 Paul Rosbaud a former editor at Springer who remained in Germany during World War II and spied for the allies was initially involved with Born and the endeavor to publish Optik in English as Rosbaud was organizing a publishing company in England after the war The publishing company did not materialize and Rosbaud eventually joined Pergamon Press Greenspan 2005 pp 292 294 Greenspan 2005 pp 174 292 294 AIP Niels Bohr Library AIP Niels Bohr Library The Born Einstein Letters Macmillan Publishers 2004 ISBN 1 4039 4496 2 My Life Recollections of a Nobel Laureate was also published by Taylor and Francis Charles Scribner s Sons ISBN 0 85066 174 9 No longer in print General references EditBernstein Jeremy 2005 Max Born and the Quantum Theory American Journal of Physics 73 11 999 1008 Bibcode 2005AmJPh 73 999B doi 10 1119 1 2060717 Reprinted as chapter 7 in Bernstein Jeremy 2014 A Chorus of Bells and Other Scientific Inquiries Born M Heisenberg W Jordan P 1925 Zur Quantenmechanik II Zeitschrift fur Physik 35 557 615 557 Bibcode 1926ZPhy 35 557B doi 10 1007 BF01379806 S2CID 186237037 Born M Jordan P 1925 Zur Quantenmechanik PDF Zeitschrift fur Physik 34 1 858 888 Bibcode 1925ZPhy 34 858B doi 10 1007 BF01328531 S2CID 186114542 Archived from the original PDF on 4 October 2013 Born M 1926 Zur Quantenmechanik der Stossvorgange Zeitschrift fur Physik 37 12 863 867 Bibcode 1926ZPhy 37 863B doi 10 1007 BF01397477 S2CID 119896026 Born Max 1969 Physics in my Generation New York Springer Verlag OCLC 53116 Born M Born M E H amp Einstein A 1971 The Born Einstein Letters Correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955 with commentaries by Max Born I Born trans London UK Macmillan ISBN 978 0 8027 0326 2 Born G V R May 2002 The Wide Ranging Family History of Max Born Notes and Records of the Royal Society of London 56 2 219 262 doi 10 1098 rsnr 2002 0180 JSTOR 3557669 S2CID 72026412 Greenspan Nancy Thorndike 2005 The End of the Certain World The Life and Science of Max Born New York Basic Books ISBN 978 0 7382 0693 6 OCLC 56534998 Also published in Germany Max Born Baumeister der Quantenwelt Eine Biographie Spektrum Akademischer Verlag 2005 ISBN 3 8274 1640 X Heisenberg W 1925 Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen Zeitschrift fur Physik 33 1 879 893 Bibcode 1925ZPhy 33 879H doi 10 1007 BF01328377 S2CID 186238950 Jammer Max 1966 The Conceptual Development of Quantum Mechanics New York McGraw Hill OCLC 534562 Jungnickel Christa McCormmach Russell 1986 Intellectual Mastery of Nature Theoretical Physics from Ohm to Einstein Volume 2 The Now Mighty Theoretical Physics 1870 to 1925 Chicago University of Chicago Press ISBN 978 0 226 41585 7 OCLC 489992471 Kemmer N Schlapp R 1971 Max Born 1882 1970 Biographical Memoirs of Fellows of the Royal Society 17 17 52 doi 10 1098 rsbm 1971 0002 S2CID 73330505 Pais Abraham 1991 Niels Bohr s Times In Physics Philosophy and Polity Oxford Clarendon Press ISBN 978 0 19 852049 8 Segre Emilio 1980 From X Rays to Quarks Modern Physicists and their Discoveries San Francisco W H Freeman and Company ISBN 978 0 7167 1147 6 OCLC 5946636 External links EditMax Born at Wikipedia s sister projects Media from Commons Quotations from Wikiquote Texts from Wikisource American Institute of Physics History Search Max Born Encyclopaedia Britannica Max Born full article Annotated bibliography for Max Born from the Alsos Digital Library for Nuclear Issues Freeview video of Gustav Born son of Max with conversation and film on Gustav s memories of his father by the Vega Science Trust Max Born information from Nobel Winners site Max Born on Nobelprize org including his Nobel Lecture 11 December 1954 The Statistical Interpretations of Quantum Mechanics Papers of Professor Max Born 1882 1970 Held at the Edinburgh University Library Special Collections Division The Papers of Professor Max Born held at Churchill Archives Centre Cambridge Recollections of Max Born permanent dead link by Emil Wolf in Astrophysics and Space Science Volume 227 Numbers 1 2 Biographical tribute Kuhn Thomas S John L Heilbron Paul Forman and Lini Allen Sources for History of Quantum Physics American Philosophical Society 1967 Oral history interview transcript for Max Born on 1 June 1960 American Institute of Physics Niels Bohr Library amp Archives Session I Oral history interview transcript for Max Born on 1 June 1960 American Institute of Physics Niels Bohr Library amp Archives Session II Oral history interview transcript for Max Born on 17 October 1962 American Institute of Physics Niels Bohr Library amp Archives Session III Oral history interview transcript for Max Born on 18 October 1962 American Institute of Physics Niels Bohr Library amp Archives Session IV Video Max Born 1959 Optical Problems German presentation Lindau Nobel Laureate Meetings Retrieved 19 December 2014 Professor Max Born Nature 225 5233 669 671 14 February 1970 Bibcode 1970Natur 225 669 doi 10 1038 225669a0 ISSN 1476 4687 S2CID 4224915 Retrieved from https en wikipedia org w index php title Max Born amp oldid 1130521986, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.