fbpx
Wikipedia

Sleep

Sleep is a state of reduced mental and physical activity in which consciousness is altered and certain sensory activity is inhibited. During sleep, there is a marked decrease in muscle activity and interactions with the surrounding environment. While sleep differs from wakefulness in terms of the ability to react to stimuli, it still involves active brain patterns, making it more reactive than a coma or disorders of consciousness.[1]

Sleeping Girl, Domenico Fetti, c. 1615

Sleep occurs in repeating periods, during which the body alternates between two distinct modes: REM and non-REM sleep. Although REM stands for "rapid eye movement", this mode of sleep has many other aspects, including virtual paralysis of the body.[2] Dreams are a succession of images, ideas, emotions, and sensations that usually occur involuntarily in the mind during certain stages of sleep.

During sleep, most of the body's systems are in an anabolic state, helping to restore the immune, nervous, skeletal, and muscular systems;[3] these are vital processes that maintain mood, memory, and cognitive function, and play a large role in the function of the endocrine and immune systems.[4] The internal circadian clock promotes sleep daily at night. The diverse purposes and mechanisms of sleep are the subject of substantial ongoing research.[5] Sleep is a highly conserved behavior across animal evolution,[6] likely going back hundreds of millions of years.[7]

Humans may suffer from various sleep disorders, including dyssomnias such as insomnia, hypersomnia, narcolepsy, and sleep apnea; parasomnias such as sleepwalking and rapid eye movement sleep behavior disorder; bruxism; and circadian rhythm sleep disorders. The use of artificial light has substantially altered humanity's sleep patterns.[8] Common sources of artificial light include outdoor lighting and the screens of electronic devices such as smartphones and televisions, which emit large amounts of blue light, a form of light typically associated with daytime. This disrupts the release of the hormone melatonin needed to regulate the sleep cycle.[9]

Physiology

The most pronounced physiological changes in sleep occur in the brain.[10] The brain uses significantly less energy during sleep than it does when awake, especially during non-REM sleep. In areas with reduced activity, the brain restores its supply of adenosine triphosphate (ATP), the molecule used for short-term storage and transport of energy.[11] In quiet waking, the brain is responsible for 20% of the body's energy use, thus this reduction has a noticeable effect on overall energy consumption.[12]

Sleep increases the sensory threshold. In other words, sleeping persons perceive fewer stimuli, but can generally still respond to loud noises and other salient sensory events.[12][10]

During slow-wave sleep, humans secrete bursts of growth hormone. All sleep, even during the day, is associated with the secretion of prolactin.[13]

Key physiological methods for monitoring and measuring changes during sleep include electroencephalography (EEG) of brain waves, electrooculography (EOG) of eye movements, and electromyography (EMG) of skeletal muscle activity. Simultaneous collection of these measurements is called polysomnography, and can be performed in a specialized sleep laboratory.[14][15] Sleep researchers also use simplified electrocardiography (EKG) for cardiac activity and actigraphy for motor movements.[15]

Brain waves in sleep

The electrical activity seen on an EEG represents brain waves. The amplitude of EEG waves at a particular frequency corresponds to various points in the sleep-wake cycle, such as being asleep, being awake, or falling asleep.[16] Alpha, beta, theta, gamma, and delta waves are all seen in the different stages of sleep. Each waveform maintains a different frequency and amplitude. Alpha waves are seen when a person is in a resting state, but is still fully conscious. Their eyes may be closed and all of their body is resting and relatively still, where the body is starting to slow down. Beta waves take over alpha waves when a person is at attention, as they might be completing a task or concentrating on something. Beta waves consist of the highest of frequencies and the lowest of amplitude, and occur when a person is fully alert. Gamma waves are seen when a person is highly focused on a task or using all their concentration. Theta waves occur during the period of a person being awake, and they continue to transition into Stage 1 of sleep and in stage 2. Delta waves are seen in stages 3 and 4 of sleep when a person is in their deepest of sleep.[17]

Non-REM and REM sleep

Sleep is divided into two broad types: non-rapid eye movement (non-REM or NREM) sleep and rapid eye movement (REM) sleep. Non-REM and REM sleep are so different that physiologists identify them as distinct behavioral states. Non-REM sleep occurs first and after a transitional period is called slow-wave sleep or deep sleep. During this phase, body temperature and heart rate fall, and the brain uses less energy.[10] REM sleep, also known as paradoxical sleep, represents a smaller portion of total sleep time. It is the main occasion for dreams (or nightmares), and is associated with desynchronized and fast brain waves, eye movements, loss of muscle tone,[18] and suspension of homeostasis.[19]

The sleep cycle of alternate NREM and REM sleep takes an average of 90 minutes, occurring 4–6 times in a good night's sleep.[15][20] The American Academy of Sleep Medicine (AASM) divides NREM into three stages: N1, N2, and N3, the last of which is also called delta sleep or slow-wave sleep.[21] The whole period normally proceeds in the order: N1 → N2 → N3 → N2 → REM. REM sleep occurs as a person returns to stage 2 or 1 from a deep sleep.[18] There is a greater amount of deep sleep (stage N3) earlier in the night, while the proportion of REM sleep increases in the two cycles just before natural awakening.[15]

Awakening

 
"The Awakening", an illustration to writing by Leo Tolstoy

Awakening can mean the end of sleep, or simply a moment to survey the environment and readjust body position before falling back asleep. Sleepers typically awaken soon after the end of a REM phase or sometimes in the middle of REM. Internal circadian indicators, along with a successful reduction of homeostatic sleep need, typically bring about awakening and the end of the sleep cycle.[22] Awakening involves heightened electrical activation in the brain, beginning with the thalamus and spreading throughout the cortex.[22]

On a typical night of sleep, there is not much time that is spent in the waking state. In various sleep studies that have been conducted using the electroencephalography, it has been found that females are awake for 0-1% during their nightly sleep while males are awake for 0-2% during that time. In adults, wakefulness increases, especially in later cycles. One study found 3% awake time in the first ninety-minute sleep cycle, 8% in the second, 10% in the third, 12% in the fourth, and 13–14% in the fifth. Most of this awake time occurred shortly after REM sleep.[22]

Today, many humans wake up with an alarm clock;[23] however, people can also reliably wake themselves up at a specific time with no need for an alarm.[22] Many sleep quite differently on workdays versus days off, a pattern which can lead to chronic circadian desynchronization.[24][23] Many people regularly look at television and other screens before going to bed, a factor which may exacerbate disruption of the circadian cycle.[25][26] Scientific studies on sleep have shown that sleep stage at awakening is an important factor in amplifying sleep inertia.[27]

Determinants of alertness after waking up include quantity/quality of the sleep, physical activity the day prior, a carbohydrate-rich breakfast, and a low blood glucose response to it.[28]

Timing

Sleep timing is controlled by the circadian clock (Process C), sleep-wake homeostasis (Process S), and to some extent by the individual will.

Circadian clock

 
The human "biological clock"

Sleep timing depends greatly on hormonal signals from the circadian clock, or Process C, a complex neurochemical system which uses signals from an organism's environment to recreate an internal day–night rhythm. Process C counteracts the homeostatic drive for sleep during the day (in diurnal animals) and augments it at night.[29][24] The suprachiasmatic nucleus (SCN), a brain area directly above the optic chiasm, is presently considered the most important nexus for this process; however, secondary clock systems have been found throughout the body.

An organism whose circadian clock exhibits a regular rhythm corresponding to outside signals is said to be entrained; an entrained rhythm persists even if the outside signals suddenly disappear. If an entrained human is isolated in a bunker with constant light or darkness, he or she will continue to experience rhythmic increases and decreases of body temperature and melatonin, on a period that slightly exceeds 24 hours. Scientists refer to such conditions as free-running of the circadian rhythm. Under natural conditions, light signals regularly adjust this period downward, so that it corresponds better with the exact 24 hours of an Earth day.[23][30][31]

The circadian clock exerts constant influence on the body, affecting sinusoidal oscillation of body temperature between roughly 36.2 °C and 37.2 °C.[31][32] The suprachiasmatic nucleus itself shows conspicuous oscillation activity, which intensifies during subjective day (i.e., the part of the rhythm corresponding with daytime, whether accurately or not) and drops to almost nothing during subjective night.[33] The circadian pacemaker in the suprachiasmatic nucleus has a direct neural connection to the pineal gland, which releases the hormone melatonin at night.[33] Cortisol levels typically rise throughout the night, peak in the awakening hours, and diminish during the day.[13][34] Circadian prolactin secretion begins in the late afternoon, especially in women, and is subsequently augmented by sleep-induced secretion, to peak in the middle of the night. Circadian rhythm exerts some influence on the nighttime secretion of growth hormone.[13]

The circadian rhythm influences the ideal timing of a restorative sleep episode.[23][35] Sleepiness increases during the night. REM sleep occurs more during body temperature minimum within the circadian cycle, whereas slow-wave sleep can occur more independently of circadian time.[31]

The internal circadian clock is profoundly influenced by changes in light, since these are its main clues about what time it is. Exposure to even small amounts of light during the night can suppress melatonin secretion, and increase body temperature and wakefulness. Short pulses of light, at the right moment in the circadian cycle, can significantly 'reset' the internal clock.[32] Blue light, in particular, exerts the strongest effect,[24] leading to concerns that use of a screen before bed may interfere with sleep.[25]

Modern humans often find themselves desynchronized from their internal circadian clock, due to the requirements of work (especially night shifts), long-distance travel, and the influence of universal indoor lighting.[31] Even if they have sleep debt, or feel sleepy, people can have difficulty staying asleep at the peak of their circadian cycle. Conversely, they can have difficulty waking up in the trough of the cycle.[22] A healthy young adult entrained to the sun will (during most of the year) fall asleep a few hours after sunset, experience body temperature minimum at 6 a.m., and wake up a few hours after sunrise.[31]

Process S

Generally speaking, the longer an organism is awake, the more it feels a need to sleep ("sleep debt"). This driver of sleep is referred to as Process S. The balance between sleeping and waking is regulated by a process called homeostasis. Induced or perceived lack of sleep is called sleep deprivation.

Process S is driven by the depletion of glycogen and accumulation of adenosine in the forebrain that disinhibits the ventrolateral preoptic nucleus, allowing for inhibition of the ascending reticular activating system.[36]

Sleep deprivation tends to cause slower brain waves in the frontal cortex, shortened attention span, higher anxiety, impaired memory, and a grouchy mood. Conversely, a well-rested organism tends to have improved memory and mood.[37] Neurophysiological and functional imaging studies have demonstrated that frontal regions of the brain are particularly responsive to homeostatic sleep pressure.[38]

There is disagreement on how much sleep debt is possible to accumulate, and whether sleep debt is accumulated against an individual's average sleep or some other benchmark. It is also unclear whether the prevalence of sleep debt among adults has changed appreciably in the industrialized world in recent decades. Sleep debt does show some evidence of being cumulative. Subjectively, however, humans seem to reach maximum sleepiness 30 hours after waking.[31] It is likely that in Western societies, children are sleeping less than they previously have.[39]

One neurochemical indicator of sleep debt is adenosine, a neurotransmitter that inhibits many of the bodily processes associated with wakefulness. Adenosine levels increase in the cortex and basal forebrain during prolonged wakefulness, and decrease during the sleep-recovery period, potentially acting as a homeostatic regulator of sleep.[40][41] Coffee, tea, and other sources of caffeine temporarily block the effect of adenosine, prolong sleep latency, and reduce total sleep time and quality.[42]

Social timing

Humans are also influenced by aspects of social time, such as the hours when other people are awake, the hours when work is required, the time on clocks, etc. Time zones, standard times used to unify the timing for people in the same area, correspond only approximately to the natural rising and setting of the sun. An extreme example of the approximate nature of time zones is China, a country which used to span five time zones and now officially uses only one (UTC+8).[23]

Distribution

In polyphasic sleep, an organism sleeps several times in a 24-hour cycle, whereas in monophasic sleep this occurs all at once. Under experimental conditions, humans tend to alternate more frequently between sleep and wakefulness (i.e., exhibit more polyphasic sleep) if they have nothing better to do.[31] Given a 14-hour period of darkness in experimental conditions, humans tended towards bimodal sleep, with two sleep periods concentrated at the beginning and at the end of the dark time. Bimodal sleep in humans was more common before the industrial revolution.[34]

Different characteristic sleep patterns, such as the familiarly so-called "early bird" and "night owl", are called chronotypes. Genetics and sex have some influence on chronotype, but so do habits. Chronotype is also liable to change over the course of a person's lifetime. Seven-year-olds are better disposed to wake up early in the morning than are fifteen-year-olds.[24][23] Chronotypes far outside the normal range are called circadian rhythm sleep disorders.[43]

Naps

Naps are short periods of sleep that one might take during the daytime, often in order to get the necessary amount of rest. Napping is often associated with childhood, but around one-third of American adults partake in it daily. The optimal nap duration is around 10–20 minutes, as researchers have proven that it takes at least 30 minutes to enter slow-wave sleep, the deepest period of sleep.[44] Napping too long and entering the slow wave cycles can make it difficult to awake from the nap and leave one feeling unrested. This period of drowsiness is called sleep inertia.

 
Man napping in San Cristobal, Peru

The siesta habit has recently been associated with a 37% lower coronary mortality, possibly due to reduced cardiovascular stress mediated by daytime sleep.[45] Short naps at mid-day and mild evening exercise were found to be effective for improved sleep, cognitive tasks, and mental health in elderly people.[46]

Genetics

Monozygotic (identical) but not dizygotic (fraternal) twins tend to have similar sleep habits. Neurotransmitters, molecules whose production can be traced to specific genes, are one genetic influence on sleep that can be analyzed. The circadian clock has its own set of genes.[47] Genes which may influence sleep include ABCC9, DEC2, Dopamine receptor D2[48] and variants near PAX 8 and VRK2.[49] While the latter have been found in a GWAS study that primarily detects correlations (but not necessarily causation), other genes have been shown to have a more direct effect. For instance, mice lacking dihydropyrimidine dehydrogenase (Dpyd) had 78.4 min less sleep during the lights-off period than wild-type mice. Dpyd encodes the rate-limiting enzyme in the metabolic pathway that catabolizes uracil and thymidine to β-alanine, an inhibitory neurotransmitter. This also supports the role of β-alanine as a neurotransmitter that promotes sleep in mice.[50]

Genes for short sleep duration

 
This condition is inherited as an autosomal dominant trait

Familial natural short sleep is a rare, genetic, typically inherited trait where an individual sleeps for fewer hours than average without suffering from daytime sleepiness or other consequences of sleep deprivation. This process is entirely natural in this kind of individual, and it is caused by certain genetic mutations.[51][52][53][54] A person with this trait is known as a "natural short sleeper".[55]

This condition is not to be confused with intentional sleep deprivation, which leaves symptoms such as irritability or temporarily impaired cognitive abilities in people who are predisposed to sleep a normal amount of time but not in people with FNSS.[56][57][58]

This sleep type is not considered to be a genetic disorder, but rather, it is considered to be a genetic, benign trait.[59]

The genes DEC2, ADRB1, NPSR1 and GRM1 are implicated in enabling short sleep.[60]

Quality

The quality of sleep may be evaluated from an objective and a subjective point of view. Objective sleep quality refers to how difficult it is for a person to fall asleep and remain in a sleeping state, and how many times they wake up during a single night. Poor sleep quality disrupts the cycle of transition between the different stages of sleep.[61] Subjective sleep quality in turn refers to a sense of being rested and regenerated after awaking from sleep. A study by A. Harvey et al. (2002) found that insomniacs were more demanding in their evaluations of sleep quality than individuals who had no sleep problems.[62]

Homeostatic sleep propensity (the need for sleep as a function of the amount of time elapsed since the last adequate sleep episode) must be balanced against the circadian element for satisfactory sleep.[63][64] Along with corresponding messages from the circadian clock, this tells the body it needs to sleep.[65] The timing is correct when the following two circadian markers occur after the middle of the sleep episode and before awakening:[35] maximum concentration of the hormone melatonin, and minimum core body temperature.

Ideal duration

 
Centers for Disease Control and Prevention (CDC) recommendations for the amount of sleep needed decrease with age.[66]
 
The main health effects of sleep deprivation,[67] indicating impairment of normal maintenance by sleep

Human sleep-needs vary by age and amongst individuals;[68] sleep is considered to be adequate when there is no daytime sleepiness or dysfunction.[69] Moreover, self-reported sleep duration is only moderately correlated with actual sleep time as measured by actigraphy,[70] and those affected with sleep state misperception may typically report having slept only four hours despite having slept a full eight hours.[71][72][73]

Researchers have found that sleeping 6–7 hours each night correlates with longevity and cardiac health in humans, though many underlying factors may be involved in the causality behind this relationship.[74][75][76][77][49][78][79]

Sleep difficulties are furthermore associated with psychiatric disorders such as depression, alcoholism, and bipolar disorder.[80] Up to 90 percent of adults with depression are found to have sleep difficulties. Dysregulation detected by EEG includes disturbances in sleep continuity, decreased delta sleep and altered REM patterns with regard to latency, distribution across the night and density of eye movements.[81]

Sleep duration can also vary according to season. Up to 90% of people report longer sleep duration in winter, which may lead to more pronounced seasonal affective disorder.[82][83]

Children

 
Bronze statue of Eros sleeping, 3rd century BC–early 1st century AD

By the time infants reach the age of two, their brain size has reached 90 percent of an adult-sized brain;[84] a majority of this brain growth has occurred during the period of life with the highest rate of sleep. The hours that children spend asleep influence their ability to perform on cognitive tasks.[85][86] Children who sleep through the night and have few night waking episodes have higher cognitive attainments and easier temperaments than other children.[86][87][88]

Sleep also influences language development. To test this, researchers taught infants a faux language and observed their recollection of the rules for that language.[89] Infants who slept within four hours of learning the language could remember the language rules better, while infants who stayed awake longer did not recall those rules as well. There is also a relationship between infants' vocabulary and sleeping: infants who sleep longer at night at 12 months have better vocabularies at 26 months.[88]

Children can greatly benefit from a structured bedtime routine. This can look differently among families, but will generally consist of a set of rituals such as reading a bedtime story, a bath, brushing teeth, and can also include a show of affection from the parent to the child such a hug or kiss before bed. A bedtime routine will also include a consistent time that the child is expected to be in bed ready for sleep. Having a reliable bedtime routine can help improve a child's quality of sleep as well as prepare them to make and keep healthy sleep hygiene habits in the future.[90]

Recommended duration

 
World War II poster issued by the US government

Children need many hours of sleep per day in order to develop and function properly: up to 18 hours for newborn babies, with a declining rate as a child ages.[65] Early in 2015, after a two-year study,[91] the National Sleep Foundation in the US announced newly revised recommendations as shown in the table below.

Hours of sleep recommended for each age group[91]
Age and condition Sleep needs
Newborns (0–3 months) 14 to 17 hours
Infants (4–11 months) 12 to 15 hours
Toddlers (1–2 years) 11 to 14 hours
Preschoolers (3–4 years) 10 to 13 hours
School-age children (5–12 years)     9 to 11 hours
Teenagers (13–17 years) 8 to 10 hours
Adults (18–64 years) 7 to 9 hours
Older Adults (65 years and over) 7 to 8 hours

Functions

Restoration

Sleep may facilitate the synthesis of molecules that help repair and protect the brain from metabolic end products generated during waking.[92] Anabolic hormones, such as growth hormones, are secreted preferentially during sleep. The brain concentration of glycogen increases during sleep, and is depleted through metabolism during wakefulness.[93]

The human organism physically restores itself during sleep, occurring mostly during slow-wave sleep during which body temperature, heart rate, and brain oxygen consumption decrease. In both the brain and body, the reduced rate of metabolism enables countervailing restorative processes.[93] The brain requires sleep for restoration, whereas these processes can take place during quiescent waking in the rest of the body.[94] The essential function of sleep may be its restorative effect on the brain: "Sleep is of the brain, by the brain and for the brain."[95] This theory is strengthened by the fact that sleep is observed to be a necessary behavior across most of the animal kingdom, including some of the least evolved animals which have no need for other functions of sleep, such as memory consolidation or dreaming.[6]

Memory processing

It has been widely accepted that sleep must support the formation of long-term memory, and generally increasing previous learning and experiences recalls. However, its benefit seems to depend on the phase of sleep and the type of memory.[96] For example, declarative and procedural memory-recall tasks applied over early and late nocturnal sleep, as well as wakefulness controlled conditions, have been shown that declarative memory improves more during early sleep (dominated by SWS) while procedural memory during late sleep (dominated by REM sleep) does so.[97][98]

With regard to declarative memory, the functional role of SWS has been associated with hippocampal replays of previously encoded neural patterns that seem to facilitate long-term memory consolidation.[97][98] This assumption is based on the active system consolidation hypothesis, which states that repeated reactivations of newly encoded information in the hippocampus during slow oscillations in NREM sleep mediate the stabilization and gradual integration of declarative memory with pre-existing knowledge networks on the cortical level.[99] It assumes the hippocampus might hold information only temporarily and in a fast-learning rate, whereas the neocortex is related to long-term storage and a slow-learning rate.[97][98][100][101][102] This dialogue between the hippocampus and neocortex occurs in parallel with hippocampal sharp-wave ripples and thalamo-cortical spindles, synchrony that drives the formation of the spindle-ripple event which seems to be a prerequisite for the formation of long-term memories.[98][100][102][103]

Reactivation of memory also occurs during wakefulness and its function is associated with serving to update the reactivated memory with newly encoded information, whereas reactivations during SWS are presented as crucial for memory stabilization.[98] Based on targeted memory reactivation (TMR) experiments that use associated memory cues to triggering memory traces during sleep, several studies have been reassuring the importance of nocturnal reactivations for the formation of persistent memories in neocortical networks, as well as highlighting the possibility of increasing people's memory performance at declarative recalls.[97][101][102][103][104]

Furthermore, nocturnal reactivation seems to share the same neural oscillatory patterns as reactivation during wakefulness, processes which might be coordinated by theta activity.[105] During wakefulness, theta oscillations have been often related to successful performance in memory tasks, and cued memory reactivations during sleep have been showing that theta activity is significantly stronger in subsequent recognition of cued stimuli as compared to uncued ones, possibly indicating a strengthening of memory traces and lexical integration by cuing during sleep.[106] However, the beneficial effect of TMR for memory consolidation seems to occur only if the cued memories can be related to prior knowledge.[107]

Dreaming

 
Dreams often feel like waking life, yet with added surrealism.

During sleep, especially REM sleep, humans tend to experience dreams. These are elusive and mostly unpredictable first-person experiences which seem logical and realistic to the dreamer while they are in progress, despite their frequently bizarre, irrational, and/or surreal qualities that become apparent when assessed after waking. Dreams often seamlessly incorporate concepts, situations, people, and objects within a person's mind that would not normally go together. They can include apparent sensations of all types, especially vision and movement.[108]

Dreams tend to rapidly fade from memory after waking. Some people choose to keep a dream journal, which they believe helps them build dream recall and facilitate the ability to experience lucid dreams.

A lucid dream is a type of dream in which the dreamer becomes aware that they are dreaming while dreaming. In a preliminary study, dreamers were able to consciously communicate with experimenters via eye movements or facial muscle signals, and were able to comprehend complex questions and use working memory.[109]

People have proposed many hypotheses about the functions of dreaming. Sigmund Freud postulated that dreams are the symbolic expression of frustrated desires that have been relegated to the unconscious mind, and he used dream interpretation in the form of psychoanalysis in attempting to uncover these desires.[110]

Counterintuitively, penile erections during sleep are not more frequent during sexual dreams than during other dreams.[111] The parasympathetic nervous system experiences increased activity during REM sleep which may cause erection of the penis or clitoris. In males, 80% to 95% of REM sleep is normally accompanied by partial to full penile erection, while only about 12% of men's dreams contain sexual content.[112]

Disorders

Insomnia

Insomnia is a general term for difficulty falling asleep and/or staying asleep. Insomnia is the most common sleep problem, with many adults reporting occasional insomnia, and 10–15% reporting a chronic condition.[113] Insomnia can have many different causes, including psychological stress, a poor sleep environment, an inconsistent sleep schedule, or excessive mental or physical stimulation in the hours before bedtime. Insomnia is often treated through behavioral changes like keeping a regular sleep schedule, avoiding stimulating or stressful activities before bedtime, and cutting down on stimulants such as caffeine. The sleep environment may be improved by installing heavy drapes to shut out all sunlight, and keeping computers, televisions, and work materials out of the sleeping area.

A 2010 review of published scientific research suggested that exercise generally improves sleep for most people, and helps sleep disorders such as insomnia. The optimum time to exercise may be 4 to 8 hours before bedtime, though exercise at any time of day is beneficial, with the exception of heavy exercise taken shortly before bedtime, which may disturb sleep. However, there is insufficient evidence to draw detailed conclusions about the relationship between exercise and sleep.[114] Nonbenzodiazepine sleeping medications such as Ambien, Imovane, and Lunesta (also known as "Z-drugs"), while initially believed to be better and safer than earlier generations of sedativesin­clud­ing benzodiazepine drugsare now known to be almost entirely the same as benzodiazepines in terms of their pharmacodynamics, differing only at the molecular level in their chemical structure, and therefore exhibit similar benefits, side-effects, and risks.[115][116] White noise appears to be a promising treatment for insomnia.[117]

Sleep health

Low quality sleep has been linked with health conditions like cardiovascular disease, obesity, and mental illness. While poor sleep is common among those with cardiovascular disease, some research indicates that poor sleep can be a contributing cause. Short sleep duration of less than seven hours is correlated with coronary heart disease and increased risk of death from coronary heart disease. Sleep duration greater than nine hours is also correlated with coronary heart disease, as well as stroke and cardiovascular events.[118][119][120][121]

In both children and adults, short sleep duration is associated with an increased risk of obesity, with various studies reporting an increased risk of 45–55%. Other aspects of sleep health have been associated with obesity, including daytime napping, sleep timing, the variability of sleep timing, and low sleep efficiency. However, sleep duration is the most-studied for its impact on obesity.[118]

Sleep problems have been frequently viewed as a symptom of mental illness rather than a causative factor. However, a growing body of evidence suggests that they are both a cause and a symptom of mental illness. Insomnia is a significant predictor of major depressive disorder; a meta-analysis of 170,000 people showed that insomnia at the beginning of a study period indicated a more than the twofold increased risk for major depressive disorder. Some studies have also indicated correlation between insomnia and anxiety, post-traumatic stress disorder, and suicide. Sleep disorders can increase the risk of psychosis and worsen the severity of psychotic episodes.[118]

Sleep research also displays differences in race and class. Short sleep and poor sleep are observed more frequently in ethnic minorities than in whites. African-Americans report experiencing short durations of sleep five times more often than whites, possibly as a result of social and environmental factors. Black children and children in disadvantaged neighborhoods have much higher rates of sleep apnea than white children and respond more poorly to treatment.[122]

Sleep health can be improved through implementing good sleep hygiene habits. Having good sleep hygiene can help to improve your physical and mental health by providing your body with the necessary rejuvenation only restful sleep can provide.[123] Some ways to improve sleep health include going to sleep at consistent times every night, avoiding any electronic devices such as televisions in the bedroom, getting adequate exercise throughout your day, and avoiding caffeine in the hours before going to sleep. Another way to greatly improve sleep hygiene is by creating a peaceful and relaxing sleep environment. Sleeping in a dark and clean room with things like a white noise maker can help facilitate restful sleep.[124]

Drugs and diet

Drugs which induce sleep, known as hypnotics, include benzodiazepines (although these interfere with REM);[125] nonbenzodiazepine hypnotics such as eszopiclone (Lunesta), zaleplon (Sonata), and zolpidem (Ambien); antihistamines such as diphenhydramine (Benadryl) and doxylamine; alcohol (ethanol), (which exerts an excitatory rebound effect later in the night and intereferes with REM)[125] barbiturates (which have the same problem), melatonin (a component of the circadian clock)[126] and cannabis (which may also interfere with REM).[127] Some opioids (including morphine, codeine, heroin, and oxycodone) also induce sleep, and can disrupt sleep architecture and sleep stage distribution.[128] Interestingly, the endogenously produced drug gamma-hydroxybutyrate (GHB) is capable of producing high quality sleep that is indistinguishable from natural sleep architecture in humans.[129]

Stimulants, which inhibit sleep, include caffeine, an adenosine antagonist; amphetamine, methamphetamine, MDMA, empathogen-entactogens, and related drugs; cocaine, which can alter the circadian rhythm,[130][131] and methylphenidate, which acts similarly; and eugeroic drugs like modafinil and armodafinil with poorly understood mechanisms. Consuming high amounts of the stimulant caffeine can result in interrupted sleep patterns and sometimes sleep deprivation. This vicious cycle can result in drowsiness which can then result in a higher consumption of caffeine in order to stay awake the next day. This cycle can lead to decreased cognitive function and an overall feeling of fatigue.[132]

Some drugs may alter sleep architecture without inhibiting or inducing sleep. Drugs that amplify or inhibit endocrine and immune system secretions associated with certain sleep stages have been shown to alter sleep architecture.[133][134] The growth hormone releasing hormone receptor agonist MK-677 has been shown to increase REM in older adults as well as stage IV sleep in younger adults by approximately 50%.[135]

Diet

Dietary and nutritional choices may affect sleep duration and quality. One 2016 review indicated that a high-carbohydrate diet promoted a shorter onset to sleep and a longer duration of sleep than a high-fat diet.[136] A 2012 investigation indicated that mixed micronutrients and macronutrients are needed to promote quality sleep.[137] A varied diet containing fresh fruits and vegetables, low saturated fat, and whole grains may be optimal for individuals seeking to improve sleep quality.[136] High-quality clinical trials on long-term dietary practices are needed to better define the influence of diet on sleep quality.[136]

In culture

Anthropology

 
The Land of Cockaigne by Pieter Bruegel the Elder, 1567

Research suggests that sleep patterns vary significantly across cultures.[138][139][140] The most striking differences are observed between societies that have plentiful sources of artificial light and ones that do not. The primary difference appears to be that pre-light cultures have more broken-up sleep patterns. For example, people without artificial light might go to sleep far sooner after the sun sets, but then wake up several times throughout the night, punctuating their sleep with periods of wakefulness, perhaps lasting several hours.[138] During pre-industrial Europe, biphasic (bimodal) sleeping was considered the norm. Sleep onset was determined not by a set bedtime, but by whether there were things to do.[141]

The boundaries between sleeping and waking are blurred in these societies. Some observers believe that nighttime sleep in these societies is most often split into two main periods, the first characterized primarily by deep sleep and the second by REM sleep.[138]

Some societies display a fragmented sleep pattern in which people sleep at all times of the day and night for shorter periods. In many nomadic or hunter-gatherer societies, people sleep on and off throughout the day or night depending on what is happening. Plentiful artificial light has been available in the industrialized West since at least the mid-19th century, and sleep patterns have changed significantly everywhere that lighting has been introduced. In general, people sleep in a more concentrated burst through the night, going to sleep much later, although this is not always the case.[138]

Historian A. Roger Ekirch thinks that the traditional pattern of "segmented sleep," as it is called, began to disappear among the urban upper class in Europe in the late 17th century and the change spread over the next 200 years; by the 1920s "the idea of a first and second sleep had receded entirely from our social consciousness."[142][143] Ekirch attributes the change to increases in "street lighting, domestic lighting and a surge in coffee houses," which slowly made nighttime a legitimate time for activity, decreasing the time available for rest.[143] Today in most societies people sleep during the night, but in very hot climates they may sleep during the day.[144] During Ramadan, many Muslims sleep during the day rather than at night.[145]

In some societies, people sleep with at least one other person (sometimes many) or with animals. In other cultures, people rarely sleep with anyone except for an intimate partner. In almost all societies, sleeping partners are strongly regulated by social standards. For example, a person might only sleep with the immediate family, the extended family, a spouse or romantic partner, children, children of a certain age, children of a specific gender, peers of a certain gender, friends, peers of equal social rank, or with no one at all. Sleep may be an actively social time, depending on the sleep groupings, with no constraints on noise or activity.[138]

People sleep in a variety of locations. Some sleep directly on the ground; others on a skin or blanket; others sleep on platforms or beds. Some sleep with blankets, some with pillows, some with simple headrests, some with no head support. These choices are shaped by a variety of factors, such as climate, protection from predators, housing type, technology, personal preference, and the incidence of pests.[138]

In mythology and literature

 
Medieval manuscript illumination from the Menologion of Basil II (985 AD), showing the Seven Sleepers of Ephesus sleeping in their cave

Sleep has been seen in culture as similar to death since antiquity;[146] in Greek mythology, Hypnos (the god of sleep) and Thanatos (the god of death) were both said to be the children of Nyx (the goddess of night).[146] John Donne, Samuel Taylor Coleridge, Percy Bysshe Shelley, John Keats and other poets have all written poems about the relationship between sleep and death.[146] Shelley describes them as "both so passing, strange and wonderful!"[146] Keats similarly poses the question: "Can death be sleep, when life is but a dream".[147] Many people consider dying in one's sleep is the most peaceful way to die.[146] Phrases such as "big sleep" and "rest in peace" are often used in reference to death,[146] possibly in an effort to lessen its finality.[146] Sleep and dreaming have sometimes been seen as providing the potential for visionary experiences. In medieval Irish tradition, in order to become a filí, the poet was required to undergo a ritual called the imbas forosnai, in which they would enter a mantic, trancelike sleep.[148][149]

Many cultural stories have been told about people falling asleep for extended periods of time.[150][151] The earliest of these stories is the ancient Greek legend of Epimenides of Knossos.[150][152][153][154] According to the biographer Diogenes Laërtius, Epimenides was a shepherd on the Greek island of Crete.[150][155] One day, one of his sheep went missing and he went out to look for it, but became tired and fell asleep in a cave under Mount Ida.[150][155] When he awoke, he continued searching for the sheep, but could not find it,[150][155] so he returned to his old farm, only to discover that it was now under new ownership.[150][155] He went to his hometown, but discovered that nobody there knew him.[150] Finally, he met his younger brother, who was now an old man,[150][155] and learned that he had been asleep in the cave for fifty-seven years.[150][155]

A far more famous instance of a "long sleep" today is the Christian legend of the Seven Sleepers of Ephesus,[150] in which seven Christians flee into a cave during pagan times in order to escape persecution,[150] but fall asleep and wake up 360 years later to discover, to their astonishment, that the Roman Empire is now predominantly Christian.[150] The American author Washington Irving's short story "Rip Van Winkle", first published in 1819 in his collection of short stories The Sketch Book of Geoffrey Crayon, Gent.,[151][156] is about a man in colonial America named Rip Van Winkle who falls asleep on one of the Catskill Mountains and wakes up twenty years later after the American Revolution.[151] The story is now considered one of the greatest classics of American literature.[151]

In studies on consciousness and philosophy

As an altered state of consciousness, dreamless deep sleep has been used as a way to investigate animal/human consciousness and qualia. Insights about differences of the living sleeping brain to its wakeful state and the transition period may have implications for potential explanations of human subjective experience, the so-called hard problem of consciousness, often delegated to the realm of philosophy, including neurophilosophy[157][158][159][160] (or in some cases to religion and similar approaches).

In art

Of the thematic representations of sleep in art, physician and sleep researcher Meir Kryger wrote, "[Artists] have intense fascination with mythology, dreams, religious themes, the parallel between sleep and death, reward, abandonment of conscious control, healing, a depiction of innocence and serenity, and the erotic."[161]

See also

References

  1. ^ "Brain Basics: Understanding Sleep | National Institute of Neurological Disorders and Stroke". www.ninds.nih.gov. Retrieved 15 February 2023.
  2. ^ Nelson, Ryan (20 June 2021). "The Dichotomy Of Sleep: REM And Non-REM Stages, And Their Impact On Human Health". Quantify Sleep. Retrieved 15 July 2023.
  3. ^ Krueger JM, Frank MG, Wisor JP, Roy S (August 2016). "Sleep function: Toward elucidating an enigma". Sleep Medicine Reviews. 28: 46–54. doi:10.1016/j.smrv.2015.08.005. PMC 4769986. PMID 26447948.
  4. ^ "Sleep-wake cycle: its physiology and impact on health" (PDF). National Sleep Foundation. 2006. (PDF) from the original on 30 August 2017. Retrieved 24 May 2017.
  5. ^ Bingham R, Terrence S, Siegel J, Dyken ME, Czeisler C (February 2007). "Waking Up To Sleep" (Several conference videos). The Science Network. from the original on 24 July 2011. Retrieved 25 January 2008.
  6. ^ a b Joiner WJ (October 2016). "Unraveling the Evolutionary Determinants of Sleep". Current Biology. 26 (20): R1073–R1087. doi:10.1016/j.cub.2016.08.068. PMC 5120870. PMID 27780049.
  7. ^ Keene, Alex C & Duboue, Erik R. (12 June 2018). "The origins and evolution of sleep". The Journal of Experimental Biology. 221 (11). doi:10.1242/jeb.159533. PMC 6515771. PMID 29895581. Retrieved 10 January 2023.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Randall DK (19 September 2012). "Book excerpt: How the lightbulb disrupted our sleeping patterns and changed the world". National Post. Archived from the original on 7 April 2019. Retrieved 31 August 2016. "... the sudden introduction of bright nights during hours when it should be dark threw a wrench into a finely choreographed system of life.
  9. ^ "How Blue Light Affects Sleep". Sleep Foundation. 4 November 2020. Retrieved 18 November 2021.
  10. ^ a b c Maquet PA, Sterpenich V, Albouy G, Dang-Vu T, Desseilles M, Boly M, et al. (2005). "Brain Imaging on Passing to Sleep". The Physiologic Nature of Sleep. pp. 123–137. doi:10.1142/9781860947186_0006. ISBN 978-1-86094-557-1.
  11. ^ Brown, pp. 1118–1119: "Compared with wakefulness, sleep reduces brain energy demands, as suggested by the 44% reduction in the cerebral metabolic rate (CMR) of glucose (791) and a 25% reduction in the CMR of O2 (774) during sleep."
  12. ^ a b Siegel JM (April 2008). "Do all animals sleep?". Trends in Neurosciences. 31 (4): 208–13. doi:10.1016/j.tins.2008.02.001. PMC 8765194. PMID 18328577. S2CID 6614359.
  13. ^ a b c Van Cauter E, Spiegel K (1999). "Circadian and Sleep Control of Hormonal Secretions". In Zee PC, Turek FW (eds.). Regulation of Sleep and Circadian Rhythms. pp. 397–425.
  14. ^ Brown, p. 1087.
  15. ^ a b c d Peraita-Adrados R (2005). "Electroencephalography, Polysomnography, and Other Sleep Recording Systems". The Physiologic Nature of Sleep. pp. 103–122. doi:10.1142/9781860947186_0005. ISBN 978-1-86094-557-1.
  16. ^ Borbély AA, Daan S, Wirz-Justice A, Deboer T (14 January 2016), "The two-process model of sleep regulation: a reappraisal" (PDF), J Sleep Res, 25 (2): 131–43, doi:10.1111/jsr.12371, PMID 26762182, S2CID 206156163
  17. ^ Posada-Quintero HF, Reljin N, Bolkhovsky JB, Orjuela-Cañón AD, Chon KH (19 September 2019), "Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.", Front. Neurosci., 13: 1001, doi:10.3389/fnins.2019.01001, PMC 6761229, PMID 31607847
  18. ^ a b "Brain Basics: Understanding Sleep". National Institute of Neurological Disorders and Stroke.
  19. ^ Parmeggiani PL, ed. (2011). Systemic Homeostasis and Poikilostasis in Sleep: Is REM Sleep a Physiological Paradox?. London: Imperial College Press. pp. 12–5. ISBN 978-1-94916-572-2.
  20. ^ McCarley RW (June 2007). "Neurobiology of REM and NREM sleep". Sleep Medicine. 8 (4): 302–30. doi:10.1016/j.sleep.2007.03.005. PMID 17468046.
  21. ^ Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, et al. (March 2007). "The visual scoring of sleep in adults". Journal of Clinical Sleep Medicine. 3 (2): 121–31. doi:10.5664/jcsm.26814. PMID 17557422.
  22. ^ a b c d e Akerstedt T, Billiard M, Bonnet M, Ficca G, Garma L, Mariotti M, et al. (August 2002). "Awakening from sleep". Sleep Medicine Reviews. 6 (4): 267–86. doi:10.1053/smrv.2001.0202. PMID 12531132.
  23. ^ a b c d e f Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M (December 2007). "Epidemiology of the human circadian clock" (PDF). Sleep Medicine Reviews. 11 (6): 429–38. doi:10.1016/j.smrv.2007.07.005. hdl:11370/65d6f03a-88cd-405c-a067-4afbc1b9ba9d. PMID 17936039. S2CID 11628329.
  24. ^ a b c d Waterhouse J, Fukuda Y, Morita T (March 2012). "Daily rhythms of the sleep-wake cycle". Journal of Physiological Anthropology. 31 (5): 5. doi:10.1186/1880-6805-31-5. PMC 3375033. PMID 22738268.
  25. ^ a b Chang AM, Aeschbach D, Duffy JF, Czeisler CA (January 2015). "Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness". Proceedings of the National Academy of Sciences of the United States of America. 112 (4): 1232–7. Bibcode:2015PNAS..112.1232C. doi:10.1073/pnas.1418490112. PMC 4313820. PMID 25535358.
  26. ^ Basner M, Dinges DF (June 2009). "Dubious bargain: trading sleep for Leno and Letterman". Sleep. 32 (6): 747–52. doi:10.1093/sleep/32.6.747. PMC 2690561. PMID 19544750.
  27. ^ Tassi P, Muzet A (August 2000). "Sleep inertia". Sleep Medicine Reviews. 4 (4): 341–353. doi:10.1053/smrv.2000.0098. PMID 12531174.
  28. ^ Vallat, Raphael; Berry, Sarah E.; Tsereteli, Neli; Capdevila, Joan; Khatib, Haya Al; Valdes, Ana M.; Delahanty, Linda M.; Drew, David A.; Chan, Andrew T.; Wolf, Jonathan; Franks, Paul W.; Spector, Tim D.; Walker, Matthew P. (19 November 2022). "How people wake up is associated with previous night's sleep together with physical activity and food intake". Nature Communications. 13 (1): 7116. Bibcode:2022NatCo..13.7116V. doi:10.1038/s41467-022-34503-2. ISSN 2041-1723. PMC 9675783. PMID 36402781.
  29. ^ Fuller PM, Gooley JJ, Saper CB (December 2006). "Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback". Journal of Biological Rhythms. 21 (6): 482–93. doi:10.1177/0748730406294627. PMID 17107938. S2CID 36572447.
  30. ^ Zee PC, Turek FW (1999). "Introduction to Sleep and Circadian Rhythms". In Zee PC, Turek FW (eds.). Regulation of Sleep and Circadian Rhythms. pp. 1–17.
  31. ^ a b c d e f g Derk-Jan D, Edgar DM (1999). "Circadian and Homeostatic Control of Wakefulness and Sleep". In Zee PC, Turek FW (eds.). Regulation of Sleep and Circadian Rhythms. pp. 111–147.
  32. ^ a b Czeisler CA, Wright Jr KP (1999). "Influence of Light on Circadian Rhythmicity in Humans". In Zee PC, Turek FW (eds.). Regulation of Sleep and Circadian Rhythms. pp. 149–180.
  33. ^ a b Zlomanczuk P, Schwartz WJ (1999). "Cellular and Molecular Mechanisms of Circadian Rhythms in Mammals". In Zee PC, Turek FW (eds.). Regulation of Sleep and Circadian Rhythms. pp. 309–342.
  34. ^ a b Wehr TA (1999). "The Impact of Changes in Nightlength (Scotoperiod) on Human Sleep". In Zee PC, Turek FW (eds.). Regulation of Sleep and Circadian Rhythms. pp. 263–285.
  35. ^ a b Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ (October 1999). "Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day". The American Journal of Physiology. 277 (4 Pt 2): R1152-63. doi:10.1152/ajpregu.1999.277.4.r1152. PMID 10516257. S2CID 4474347. ... significant homeostatic and circadian modulation of sleep structure, with the highest sleep efficiency occurring in sleep episodes bracketing the melatonin maximum and core body temperature minimum
  36. ^ Schwartz JR, Roth T (December 2008). "Neurophysiology of sleep and wakefulness: basic science and clinical implications". Current Neuropharmacology. 6 (4): 367–78. doi:10.2174/157015908787386050. PMC 2701283. PMID 19587857.
  37. ^ Brown, pp. 1134–1138.
  38. ^ Gottselig JM, Adam M, Rétey JV, Khatami R, Achermann P, Landolt HP (March 2006). "Random number generation during sleep deprivation: effects of caffeine on response maintenance and stereotypy". Journal of Sleep Research. 15 (1): 31–40. doi:10.1111/j.1365-2869.2006.00497.x. PMID 16490000. S2CID 10355305.
  39. ^ Iglowstein I, Jenni OG, Molinari L, Largo RH (February 2003). "Sleep duration from infancy to adolescence: reference values and generational trends". Pediatrics. 111 (2): 302–7. doi:10.1542/peds.111.2.302. PMID 12563055. S2CID 8727836. Thus, the shift in the evening bedtime across cohorts accounted for the substantial decrease in sleep duration in younger children between the 1970s and the 1990s... [A] more liberal parental attitude toward evening bedtime in the past decades is most likely responsible for the bedtime shift and for the decline of sleep duration...
  40. ^ Huang ZL, Zhang Z, Qu WM (2014). "Roles of adenosine and its receptors in sleep-wake regulation". International Review of Neurobiology. 119: 349–71. doi:10.1016/B978-0-12-801022-8.00014-3. ISBN 978-0-12-801022-8. PMID 25175972.
  41. ^ "The brain from top to bottom: Molecules that build up and make you sleep". McGill University, Montreal, Quebec, Canada. from the original on 7 February 2013. Retrieved 20 September 2012.
  42. ^ Clark I, Landolt HP (February 2017). "Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials" (PDF). Sleep Medicine Reviews. 31: 70–78. doi:10.1016/j.smrv.2016.01.006. PMID 26899133. (PDF) from the original on 4 November 2018. Retrieved 19 November 2018.
  43. ^ Dagan Y (February 2002). (PDF). Sleep Medicine Reviews. 6 (1): 45–54. doi:10.1053/smrv.2001.0190. PMID 12531141. Archived from the original (PDF: full text) on 27 February 2008. Retrieved 5 June 2016. Early onset of CRSD, the ease of diagnosis, the high frequency of misdiagnosis and erroneous treatment, the potentially harmful psychological and adjustment consequences, and the availability of promising treatments, all indicate the importance of greater awareness of these disorders.
  44. ^ Fry, A. (9 October 2020). Napping: Health Benefits & Tips for your best nap. Sleep Foundation. Retrieved 14 November 2021, from https://www.sleepfoundation.org/sleep-hygiene/napping .
  45. ^ Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D (February 2007). "Siesta in healthy adults and coronary mortality in the general population". Archives of Internal Medicine. 167 (3): 296–301. doi:10.1001/archinte.167.3.296. PMID 17296887.
  46. ^ Tanaka H, Tamura N (January 2016). "Sleep education with self-help treatment and sleep health promotion for mental and physical wellness in Japan". Sleep and Biological Rhythms. 14 (S1): 89–99. doi:10.1007/s41105-015-0018-6. PMC 4732678. PMID 26855610.
  47. ^ Brown, pp. 1138–1102.
  48. ^ Zhang L, Fu YH (January 2020). "The molecular genetics of human sleep". The European Journal of Neuroscience. 51 (1): 422–428. doi:10.1111/ejn.14132. PMC 6389443. PMID 30144347.
  49. ^ a b Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, et al. (August 2016). "Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci". PLOS Genetics. 12 (8): e1006125. doi:10.1371/journal.pgen.1006125. PMC 4975467. PMID 27494321.
  50. ^ Keenan BT, Galante RJ, Lian J, Zhang L, Guo X, Veatch OJ, et al. (December 2021). "The dihydropyrimidine dehydrogenase gene contributes to heritable differences in sleep in mice". Current Biology. 31 (23): 5238–5248.e7. doi:10.1016/j.cub.2021.09.049. PMC 8665053. PMID 34653361. S2CID 238754563.
  51. ^ "Short Sleeper Syndrome: What Causes Short Sleep Duration?". Circle Magazine | Health, Wellness & Genetics Blog. 30 September 2021. Retrieved 14 October 2022.
  52. ^ "Short Sleeper Syndrome: Symptoms, Causes, and Treatments". Sleep Foundation. 27 April 2022. Retrieved 15 October 2022.
  53. ^ Hancock, Jay (9 October 2022). "This easy, no-cost solution could help treat a super common sleep condition". Inverse. Retrieved 15 October 2022.
  54. ^ Yook, Ji Hyun; Rizwan, Muneeba; Shahid, Noor ul ain; Naguit, Noreen; Jakkoju, Rakesh; Laeeq, Sadia; Reghefaoui, Tiba; Zahoor, Hafsa; Mohammed, Lubna (25 October 2021). "Some Twist of Molecular Circuitry Fast Forwards Overnight Sleep Hours: A Systematic Review of Natural Short Sleepers' Genes". Cureus. 13 (10): e19045. doi:10.7759/cureus.19045. ISSN 2168-8184. PMC 8547374. PMID 34722012.
  55. ^ "Natural short sleeper: MedlinePlus Medical Encyclopedia". medlineplus.gov. Retrieved 14 October 2022.
  56. ^ "Is it Dangerous to Be a Chronic Short Sleeper?". healthcare.utah.edu. 8 August 2018. Retrieved 14 October 2022.
  57. ^ Panchin, Yuri; Kovalzon, Vladimir M. (2021). "Total Wake: Natural, Pathological, and Experimental Limits to Sleep Reduction". Frontiers in Neuroscience. 15: 643496. doi:10.3389/fnins.2021.643496. ISSN 1662-453X. PMC 8058214. PMID 33897357.
  58. ^ "The long and short of the 'short sleep' gene | Sleep Cycle". Sleep Cycle alarm clock. 3 February 2022. Retrieved 15 October 2022.
  59. ^ "Short sleep, familial natural, 1 - NIH Genetic Testing Registry (GTR) - NCBI". www.ncbi.nlm.nih.gov. Retrieved 13 October 2022.
  60. ^ Zheng, Liubin; Zhang, Luoying (September 2022). "The molecular mechanism of natural short sleep: A path towards understanding why we need to sleep". Brain Science Advances. 8 (3): 165–172. doi:10.26599/BSA.2022.9050003. ISSN 2096-5958. S2CID 250363367.
  61. ^ Barnes CM, Lucianetti L, Bhave DP, Christian MS (2015). "You wouldn't like me when I'm sleepy: Leaders' sleep, daily abusive supervision, and work unit engagement". Academy of Management Journal. 58 (5): 1419–1437. doi:10.5465/amj.2013.1063. S2CID 145056840.
  62. ^ Harvey AG, Payne S (March 2002). "The management of unwanted pre-sleep thoughts in insomnia: distraction with imagery versus general distraction". Behaviour Research and Therapy. 40 (3): 267–77. doi:10.1016/s0005-7967(01)00012-2. PMID 11863237. S2CID 16647017.
  63. ^ Zisapel N (May 2007). "Sleep and sleep disturbances: biological basis and clinical implications". Cellular and Molecular Life Sciences. 64 (10): 1174–86. doi:10.1007/s00018-007-6529-9. PMID 17364142. S2CID 2003308.
  64. ^ Dijk DJ, Lockley SW (February 2002). "Integration of human sleep-wake regulation and circadian rhythmicity". Journal of Applied Physiology. 92 (2): 852–62. doi:10.1152/japplphysiol.00924.2001. PMID 11796701. S2CID 2502686. Consolidation of sleep for 8 h or more is only observed when sleep is initiated ~6–8 h before the temperature nadir.
  65. ^ a b de Benedictis T, Larson H, Kemp G, Barston S, Segal R (2007). . Helpguide.org. Archived from the original on 24 January 2008. Retrieved 25 January 2008.
  66. ^ "How Much Sleep Do I Need?". CDC.gov. Centers for Disease Control and Prevention (CDC). 14 September 2022. from the original on 2 November 2023. Last Reviewed: September 14, 2022. Source: National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health.
  67. ^ Reference list is found on image page in Commons: Commons:File:Effects of sleep deprivation.svg#References
  68. ^ Hirshkowitz, Max; Whiton, Kaitlyn; Albert, Steven M.; Alessi, Cathy; Bruni, Oliviero; DonCarlos, Lydia; Hazen, Nancy; Herman, John; Katz, Eliot S.; Kheirandish-Gozal, Leila; Neubauer, David N.; O'Donnell, Anne E.; Ohayon, Maurice; Peever, John; Rawding, Robert (March 2015). "National Sleep Foundation's sleep time duration recommendations: methodology and results summary". Sleep Health. 1 (1): 40–43. doi:10.1016/j.sleh.2014.12.010. ISSN 2352-7226. PMID 29073412. S2CID 205190733.
  69. ^ Benbadis, S. R. (November 1998). "Daytime sleepiness: when is it normal? When to refer?". Cleveland Clinic Journal of Medicine. 65 (10): 543–549. doi:10.3949/ccjm.65.10.543. ISSN 0891-1150. PMID 9830788. S2CID 8222974.
  70. ^ Lauderdale DS, Knutson KL, Yan LL, Liu K, Rathouz PJ (November 2008). "Self-reported and measured sleep duration: how similar are they?". Epidemiology. 19 (6): 838–45. doi:10.1097/EDE.0b013e318187a7b0. PMC 2785092. PMID 18854708.
  71. ^ Insomnia Causes 22 October 2010 at the Wayback Machine. Healthcommunities.com. Original Publication: 1 December 2000, Updated: 1 December 2007.
  72. ^ Arditte Hall, Kimberly A.; Werner, Kimberly B.; Griffin, Michael G.; Galovski, Tara E. (10 January 2022). "Exploring Predictors of Sleep State Misperception in Women with Posttraumatic Stress Disorder". Behavioral Sleep Medicine. 21 (1): 22–32. doi:10.1080/15402002.2021.2024193. ISSN 1540-2010. PMC 9271136. PMID 35007171.
  73. ^ Truzzi, Giselle de Martin; Teixeira, Igor de Lima; do Prado, Lucila Bizari Fernandes; do Prado, Gilmar Fernandes; Tufik, Sergio; Coelho, Fernando Morgadinho (January 2021). "Sleep state misperception: is there a CNS structural source?". Sleep Science (Sao Paulo, Brazil). 14 (Spec 1): 94–96. doi:10.5935/1984-0063.20200039. ISSN 1984-0659. PMC 8663728. PMID 34917280.
  74. ^ Rowland R (15 February 2002). "Experts challenge study linking sleep, life span". CNN. from the original on 5 October 2012. Retrieved 29 October 2013.
  75. ^ Patel SR, Ayas NT, Malhotra MR, White DP, Schernhammer ES, Speizer FE, et al. (May 2004). "A prospective study of sleep duration and mortality risk in women". Sleep. 27 (3): 440–4. doi:10.1093/sleep/27.3.440. PMID 15164896.
  76. ^ Patel SR, Malhotra A, Gottlieb DJ, White DP, Hu FB (July 2006). "Correlates of long sleep duration". Sleep. 29 (7): 881–9. doi:10.1093/sleep/29.7.881. PMC 3500381. PMID 16895254.; cf. Irwin MR, Ziegler M (February 2005). "Sleep deprivation potentiates activation of cardiovascular and catecholamine responses in abstinent alcoholics". Hypertension. 45 (2): 252–7. CiteSeerX 10.1.1.535.7089. doi:10.1161/01.HYP.0000153517.44295.07. PMID 15642774. S2CID 2205895.
  77. ^ Ferrie JE, Shipley MJ, Cappuccio FP, Brunner E, Miller MA, Kumari M, Marmot MG (December 2007). "A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort". Sleep. 30 (12): 1659–66. doi:10.1093/sleep/30.12.1659. PMC 2276139. PMID 18246975.
  78. ^ Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, Miller MA (May 2008). "Meta-analysis of short sleep duration and obesity in children and adults". Sleep. 31 (5): 619–26. doi:10.1093/sleep/31.5.619. PMC 2398753. PMID 18517032.
  79. ^ Schmid SM, Hallschmid M, Schultes B (January 2015). "The metabolic burden of sleep loss". The Lancet. Diabetes & Endocrinology. 3 (1): 52–62. doi:10.1016/S2213-8587(14)70012-9. PMID 24731536.
  80. ^ Thase ME (2006). "Depression and sleep: pathophysiology and treatment". Dialogues in Clinical Neuroscience. 8 (2): 217–26. doi:10.31887/DCNS.2006.8.2/mthase. PMC 3181772. PMID 16889107.
  81. ^ Mann JJ, Kupfer DJ (1993). Biology of Depressive Disorders: Subtypes of depression and comorbid disorders, Part 2 (Google books). Springer. p. 49. ISBN 978-0-306-44296-4. from the original on 10 March 2017. Retrieved 24 July 2009.
  82. ^ Suzuki M, Taniguchi T, Furihata R, Yoshita K, Arai Y, Yoshiike N, Uchiyama M (18 April 2019). "Seasonal changes in sleep duration and sleep problems: A prospective study in Japanese community residents". PLOS ONE. 14 (4): e0215345. Bibcode:2019PLoSO..1415345S. doi:10.1371/journal.pone.0215345. PMC 6472875. PMID 30998709.
  83. ^ "Hate waking up when it's dark out? Find out how winter really affects your sleep habits". Sleep.org. 30 January 2023.[permanent dead link]
  84. ^ Dahl RE (2009). "The regulation of sleep and arousal: Development and psychopathology". Development and Psychopathology. 8 (1): 3–27. doi:10.1017/S0954579400006945. S2CID 143514600.
  85. ^ Jenni OG, Dahl RE (2008). "Sleep, cognition, and neuron, and emotion: A developmental review.". In Nelson CA, Luciana M (eds.). Handbook of developmental cognitive neuroscience (2nd ed.). Cambridge, Mass.: MIT Press. pp. 807–817. ISBN 978-0262141048.
  86. ^ a b Scher A (March 2005). "Infant sleep at 10 months of age as a window to cognitive development". Early Human Development. 81 (3): 289–92. doi:10.1016/j.earlhumdev.2004.07.005. PMID 15814211.
  87. ^ Spruyt K, Aitken RJ, So K, Charlton M, Adamson TM, Horne RS (May 2008). "Relationship between sleep/wake patterns, temperament and overall development in term infants over the first year of life". Early Human Development. 84 (5): 289–96. doi:10.1016/j.earlhumdev.2007.07.002. PMID 17707119.
  88. ^ a b Bernier A, Carlson SM, Bordeleau S, Carrier J (2010). "Relations between physiological and cognitive regulatory systems: infant sleep regulation and subsequent executive functioning". Child Development. 81 (6): 1739–52. doi:10.1111/j.1467-8624.2010.01507.x. PMID 21077861.
  89. ^ Hupbach A, Gomez RL, Bootzin RR, Nadel L (November 2009). "Nap-dependent learning in infants". Developmental Science. 12 (6): 1007–12. CiteSeerX 10.1.1.712.685. doi:10.1111/j.1467-7687.2009.00837.x. PMID 19840054.
  90. ^ Mindell JA, Williamson AA (August 2018). "Benefits of a bedtime routine in young children: Sleep, development, and beyond". Sleep Medicine Reviews. 40: 93–108. doi:10.1016/j.smrv.2017.10.007. PMC 6587181. PMID 29195725.
  91. ^ a b Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. (March 2015). "National Sleep Foundation's sleep time duration recommendations: methodology and results summary". Sleep Health. 1 (1): 40–43. doi:10.1016/j.sleh.2014.12.010. PMID 29073412. S2CID 205190733. from the original on 14 November 2017. Retrieved 4 February 2015.
  92. ^ Siegel JM (October 2005). "Clues to the functions of mammalian sleep". Nature. 437 (7063): 1264–71. Bibcode:2005Natur.437.1264S. doi:10.1038/nature04285. PMC 8760626. PMID 16251951. S2CID 234089.
  93. ^ a b Raymond Cespuglio, Damien Colas, & Sabine Gautier-Sauvigné, "Energy Processes Underlying the Sleep Wake Cycle"; Chapter 1 in Parmeggiani & Velluti (2005).
  94. ^ Eugene AR, Masiak J (March 2015). "The Neuroprotective Aspects of Sleep". MEDtube Science. 3 (1): 35–40. PMC 4651462. PMID 26594659.
  95. ^ Hobson JA (October 2005). "Sleep is of the brain, by the brain and for the brain". Nature. 437 (7063): 1254–1256. Bibcode:2005Natur.437.1254H. doi:10.1038/nature04283. PMID 16251949. S2CID 1055112.
  96. ^ Plihal W, Born J (July 1997). "Effects of early and late nocturnal sleep on declarative and procedural memory". Journal of Cognitive Neuroscience. 9 (4): 534–47. doi:10.1162/jocn.1997.9.4.534. PMID 23968216. S2CID 3300300.
  97. ^ a b c d Rasch B, Büchel C, Gais S, Born J (March 2007). "Odor cues during slow-wave sleep prompt declarative memory consolidation". Science. 315 (5817): 1426–9. Bibcode:2007Sci...315.1426R. doi:10.1126/science.1138581. PMID 17347444. S2CID 19788434.
  98. ^ a b c d e Born J, Wilhelm I (March 2012). "System consolidation of memory during sleep". Psychological Research. 76 (2): 192–203. doi:10.1007/s00426-011-0335-6. PMC 3278619. PMID 21541757.
  99. ^ Diekelmann S, Born J (February 2010). "The memory function of sleep". Nature Reviews. Neuroscience. 11 (2): 114–26. doi:10.1038/nrn2762. PMID 20046194. S2CID 1851910.
  100. ^ a b Rasch B, Born J (April 2013). "About sleep's role in memory". Physiological Reviews. 93 (2): 681–766. doi:10.1152/physrev.00032.2012. PMC 3768102. PMID 23589831.
  101. ^ a b Schreiner T, Rasch B (November 2015). "Boosting Vocabulary Learning by Verbal Cueing During Sleep". Cerebral Cortex. 25 (11): 4169–79. doi:10.1093/cercor/bhu139. PMID 24962994.
  102. ^ a b c Schreiner T, Rasch B (April 2017). "The beneficial role of memory reactivation for language learning during sleep: A review" (PDF). Brain and Language. 167: 94–105. doi:10.1016/j.bandl.2016.02.005. PMID 27036946. S2CID 3377186.
  103. ^ a b Ngo HV, Martinetz T, Born J, Mölle M (May 2013). "Auditory closed-loop stimulation of the sleep slow oscillation enhances memory". Neuron. 78 (3): 545–53. doi:10.1016/j.neuron.2013.03.006. PMID 23583623.
  104. ^ Klinzing JG, Kugler S, Soekadar SR, Rasch B, Born J, Diekelmann S (January 2018). "Odor cueing during slow-wave sleep benefits memory independently of low cholinergic tone". Psychopharmacology. 235 (1): 291–299. doi:10.1007/s00213-017-4768-5. PMC 5748395. PMID 29119218.
  105. ^ Schreiner T, Doeller CF, Jensen O, Rasch B, Staudigl T (October 2018). "Theta Phase-Coordinated Memory Reactivation Reoccurs in a Slow-Oscillatory Rhythm during NREM Sleep". Cell Reports. 25 (2): 296–301. doi:10.1016/j.celrep.2018.09.037. PMC 6198287. PMID 30304670.
  106. ^ Schreiner T, Göldi M, Rasch B (November 2015). "Cueing vocabulary during sleep increases theta activity during later recognition testing". Psychophysiology. 52 (11): 1538–43. doi:10.1111/psyp.12505. PMID 26235609.
  107. ^ Groch S, Schreiner T, Rasch B, Huber R, Wilhelm I (January 2017). "Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep". Scientific Reports. 7: 39763. Bibcode:2017NatSR...739763G. doi:10.1038/srep39763. PMC 5209656. PMID 28051138.
  108. ^ J. Alan Hobson, Edward F. Pace-Scott, & Robert Stickgold (2000), "Dreaming and the brain: Toward a cognitive neuroscience of conscious states", Behavioral and Brain Sciences 23.
  109. ^ Konkoly, Karen R.; Appel, Kristoffer; Chabani, Emma; et al. (18 February 2021). "Real-time dialogue between experimenters and dreamers during REM sleep". Current Biology. 31 (7): 1417–1427.e6. doi:10.1016/j.cub.2021.01.026. ISSN 0960-9822. PMC 8162929. PMID 33607035.   Available under CC BY 4.0 2017-10-16 at the Wayback Machine.
  110. ^ See Freud: The Interpretation of Dreams.
  111. ^ Pinel JP (2011). Biopsychology, 8th Edition. Pearson Education, Inc. p. 359. ISBN 978-0-205-83256-9.
  112. ^ Saladin KS (2012). Anatomy and Physiology: The Unity of Form and Function (6th ed.). McGraw-Hill. p. 537. ISBN 978-0-07-337825-1.
  113. ^ Brown, pp. 1146–1147.
  114. ^ Buman MP, King AC (2010). "Exercise as a Treatment to Enhance Sleep". American Journal of Lifestyle Medicine. 4 (6): 500–514. doi:10.1177/1559827610375532. S2CID 73314918.
  115. ^ Siriwardena AN, Qureshi Z, Gibson S, Collier S, Latham M (December 2006). "GPs' attitudes to benzodiazepine and 'Z-drug' prescribing: a barrier to implementation of evidence and guidance on hypnotics". The British Journal of General Practice. 56 (533): 964–7. PMC 1934058. PMID 17132386.
  116. ^ Wagner J, Wagner ML, Hening WA (June 1998). "Beyond benzodiazepines: alternative pharmacologic agents for the treatment of insomnia". The Annals of Pharmacotherapy. 32 (6): 680–91. doi:10.1345/aph.17111. PMID 9640488. S2CID 34250754.
  117. ^ López HH, Bracha AS, Bracha HS (September 2002). "Evidence based complementary intervention for insomnia" (PDF). Hawaii Medical Journal. 61 (9): 192, 213. PMID 12422383. (PDF) from the original on 1 May 2015. Retrieved 16 December 2010.
  118. ^ a b c Hale L, Troxel W, Buysse DJ (April 2020). "Sleep Health: An Opportunity for Public Health to Address Health Equity". Annual Review of Public Health. 41 (1): 81–99. doi:10.1146/annurev-publhealth-040119-094412. PMC 7944938. PMID 31900098.
  119. ^ Jackson CL, Redline S, Emmons KM (March 2015). "Sleep as a potential fundamental contributor to disparities in cardiovascular health". Annual Review of Public Health. 36 (1): 417–440. doi:10.1146/annurev-publhealth-031914-122838. PMC 4736723. PMID 25785893.
  120. ^ Cespedes Feliciano EM, Quante M, Rifas-Shiman SL, Redline S, Oken E, Taveras EM (July 2018). "Objective Sleep Characteristics and Cardiometabolic Health in Young Adolescents". Pediatrics. 142 (1): e20174085. doi:10.1542/peds.2017-4085. PMC 6260972. PMID 29907703.
  121. ^ St-Onge MP, Grandner MA, Brown D, Conroy MB, Jean-Louis G, Coons M, Bhatt DL (November 2016). "Sleep Duration and Quality: Impact on Lifestyle Behaviors and Cardiometabolic Health: A Scientific Statement From the American Heart Association". Circulation (Review). 134 (18): e367–e386. doi:10.1161/CIR.0000000000000444. PMC 5567876. PMID 27647451.
  122. ^ Wang R, Dong Y, Weng J, Kontos EZ, Chervin RD, Rosen CL, et al. (January 2017). "Associations among Neighborhood, Race, and Sleep Apnea Severity in Children. A Six-City Analysis". Annals of the American Thoracic Society. 14 (1): 76–84. doi:10.1513/AnnalsATS.201609-662OC. PMC 5291481. PMID 27768852.
  123. ^ "Mental Health and Sleep". Sleep Foundation. 18 September 2020. Retrieved 18 November 2021.
  124. ^ "CDC - Sleep Hygiene Tips - Sleep and Sleep Disorders". cdc.gov. 13 February 2019. Retrieved 18 November 2021.
  125. ^ a b Lee-chiong T (2008). Sleep Medicine: Essentials and Review. Oxford University Press, US. p. 52. ISBN 978-0-19-530659-0. from the original on 11 March 2017. Retrieved 25 September 2016.
  126. ^ Turek FW, Czeisler CA (1999). "Role of Melatonin in the Regulation of Sleep". In Zee PC, Turek FW (eds.). Regulation of Sleep and Circadian Rhythms. pp. 181–195.
  127. ^ Marijuana, Sleep and Dreams. psychologytoday.com. Retrieved on 10 February 2012.
  128. ^ Rosen, Ilene M.; Aurora, R. Nisha; Kirsch, Douglas B.; Carden, Kelly A.; Malhotra, Raman K.; Ramar, Kannan; Abbasi-Feinberg, Fariha; Kristo, David A.; Martin, Jennifer L.; Olson, Eric J.; Rosen, Carol L.; Rowley, James A.; Shelgikar, Anita V. (15 November 2019). "Chronic Opioid Therapy and Sleep: An American Academy of Sleep Medicine Position Statement". Journal of Clinical Sleep Medicine. 15 (11): 1671–1673. doi:10.5664/jcsm.8062. ISSN 1550-9389. PMC 6853382. PMID 31739858.
  129. ^ Mamelak, M.; Escriu, J. M.; Stokan, O. (April 1977). "The effects of gamma-hydroxybutyrate on sleep". Biological Psychiatry. 12 (2): 273–288. ISSN 0006-3223. PMID 192353.
  130. ^ Abarca C, Albrecht U, Spanagel R (June 2002). "Cocaine sensitization and reward are under the influence of circadian genes and rhythm". Proceedings of the National Academy of Sciences of the United States of America. 99 (13): 9026–30. Bibcode:2002PNAS...99.9026A. doi:10.1073/pnas.142039099. PMC 124417. PMID 12084940.
  131. ^ . mindsite.com
  132. ^ O'Callaghan F, Muurlink O, Reid N (7 December 2018). "Effects of caffeine on sleep quality and daytime functioning". Risk Management and Healthcare Policy. 11: 263–271. doi:10.2147/RMHP.S156404. PMC 6292246. PMID 30573997.
  133. ^ Shimatsu, Akira (September 2004). "[Ghrelin-related drugs: clinical perspectives]". Nihon Rinsho. Japanese Journal of Clinical Medicine. 62 (Suppl 9): 435–438. ISSN 0047-1852. PMID 15506422.
  134. ^ Murphy, P. J.; Badia, P.; Myers, B. L.; Boecker, M. R.; Wright, K. P. (June 1994). "Nonsteroidal anti-inflammatory drugs affect normal sleep patterns in humans". Physiology & Behavior. 55 (6): 1063–1066. doi:10.1016/0031-9384(94)90388-3. ISSN 0031-9384. PMID 8047572. S2CID 25887442.
  135. ^ Copinschi, G.; Leproult, R.; Van Onderbergen, A.; Caufriez, A.; Cole, K. Y.; Schilling, L. M.; Mendel, C. M.; De Lepeleire, I.; Bolognese, J. A.; Van Cauter, E. (October 1997). "Prolonged oral treatment with MK-677, a novel growth hormone secretagogue, improves sleep quality in man". Neuroendocrinology. 66 (4): 278–286. doi:10.1159/000127249. ISSN 0028-3835. PMID 9349662.
  136. ^ a b c St-Onge MP, Mikic A, Pietrolungo CE (September 2016). "Effects of Diet on Sleep Quality". Advances in Nutrition. 7 (5): 938–49. doi:10.3945/an.116.012336. PMC 5015038. PMID 27633109.
  137. ^ Peuhkuri K, Sihvola N, Korpela R (May 2012). "Diet promotes sleep duration and quality". Nutrition Research. 32 (5): 309–19. doi:10.1016/j.nutres.2012.03.009. PMID 22652369.
  138. ^ a b c d e f Worthman CM, Melby MK (2002). "6. Toward a comparative developmental ecology of human sleep". In Carskadon MA (ed.). Adolescent Sleep Patterns: Biological, Social, and Psychological Influences. Cambridge University Press. pp. 69–117. doi:10.1017/CBO9780511499999.009. ISBN 978-0521642910.
  139. ^ Jeon M, Dimitriou D, Halstead EJ (February 2021). "A Systematic Review on Cross-Cultural Comparative Studies of Sleep in Young Populations: The Roles of Cultural Factors". International Journal of Environmental Research and Public Health. 18 (4): 2005. doi:10.3390/ijerph18042005. PMC 7922907. PMID 33669583.
  140. ^ Samson DR (21 October 2021). "The Human Sleep Paradox: The Unexpected Sleeping Habits of Homo sapiens". Annual Review of Anthropology. 50 (1): 259–274. doi:10.1146/annurev-anthro-010220-075523. ISSN 0084-6570. S2CID 237845665. Retrieved 2 June 2022.
  141. ^ Jackson M, Banks S (4 April 2018). "Humans Used to Sleep in Two Shifts, And Maybe We Should Do It Again". Science Alert. Retrieved 7 February 2022.
  142. ^ Ekirch AR (2001). "Sleep we have lost: pre-industrial slumber in the British Isles". The American Historical Review. 106 (2): 343–86. doi:10.2307/2651611. JSTOR 2651611. PMID 18680884.
  143. ^ a b Hegarty S (22 February 2012). "The myth of the eight-hour sleep". BBC News. from the original on 22 February 2012. Retrieved 22 February 2012.
  144. ^ Huntington, Ellsworth (1915) Civilization and Climate 17 August 2016 at the Wayback Machine. Yale University Press. p. 126
  145. ^ Hafiz D, Hafiz I, Hafiz Y (2009). The American Muslim Teenager's Handbook. Simon & Schuster Children's. ISBN 978-1416986997.
  146. ^ a b c d e f g William SJ (2005). Sleep and Society: Sociological Ventures into the Un(known). New York City and London: Routledge. pp. 95–96. ISBN 978-0-415-35419-6.
  147. ^ "On Death - On Death Poem by John Keats". Poem Hunter. 29 March 2010.
  148. ^ Chadwick NK (1935). "Imbas Forosnai". Scottish Gaelic Studies. 4: 97–135.
  149. ^ MacKillop J (1998). A Dictionary of Celtic Mythology. Oxford: Oxford University Press. ISBN 0-19-280120-1.
  150. ^ a b c d e f g h i j k l Hansen W (2017). The Book of Greek & Roman Folktales, Legends & Myths. Princeton, New Jersey: Princeton University Press. pp. 132–133. ISBN 978-0691170152.
  151. ^ a b c d Burstein A (2007). The Original Knickerbocker: The Life of Washington Irving. New York: Basic Books. pp. 120–338. ISBN 978-0-465-00853-7. Rip Van Winkle.
  152. ^ Welch D (9 May 1887). The Theater. Vol. 3. New York City, New York: Theatre Publishing Company. p. 139. Retrieved 21 June 2017.
  153. ^ Thorn J. "Saint Rip". nyfolklore.org. Voices: The Journal of New York Folklore. from the original on 18 October 2017. Retrieved 21 June 2017.
  154. ^ Bates A (1906). The Drama; Its History, Literature and Influence on Civilization: American Drama. Vol. 20. London, England: Historical Publishing Company. p. 121. Retrieved 21 June 2017.
  155. ^ a b c d e f Rothschild CK (2014). Paul in Athens: The Popular Religious Context of Acts 17. Tübingen: Mohr Siebeck. pp. 40–42. ISBN 978-3-16-153260-3.
  156. ^ Jones BJ (2008). Washington Irving: An American Original. New York: Arcade Books. pp. 177–178. ISBN 978-1-55970-836-4.
  157. ^ Churchland, Patricia Smith (1 January 2005). A neurophilosophical slant on consciousness research. Progress in Brain Research. Vol. 149. Elsevier. pp. 285–293.
  158. ^ Doerig, Adrien; Schurger, Aaron; Hess, Kathryn; Herzog, Michael H. (1 July 2019). "The unfolding argument: Why IIT and other causal structure theories cannot explain consciousness". Consciousness and Cognition. 72: 49–59. doi:10.1016/j.concog.2019.04.002. ISSN 1053-8100. PMID 31078047. S2CID 147704603.
  159. ^ Tsytsarev, Vassiliy (February 2022). "Methodological aspects of studying the mechanisms of consciousness". Behavioural Brain Research. 419: 113684. doi:10.1016/j.bbr.2021.113684. PMID 34838578. S2CID 244570791.
  160. ^ Kerskens, Christian Matthias; López Pérez, David (1 October 2022). "Experimental indications of non-classical brain functions". Journal of Physics Communications. 6 (10): 105001. arXiv:1806.07998. Bibcode:2022JPhCo...6j5001K. doi:10.1088/2399-6528/ac94be. ISSN 2399-6528.
  161. ^ Frank P (24 June 2016). "Why Have Artists Always Found Sleep Such A Fascinating Subject?". HuffPost. from the original on 25 July 2017. Retrieved 14 July 2017.

Further reading

  • Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (July 2012). "Control of sleep and wakefulness". Physiological Reviews. 92 (3): 1087–187. doi:10.1152/physrev.00032.2011. PMC 3621793. PMID 22811426.

External links

  • Rethinking Sleep, David K. Randall, New York Times, September 2012
  • How to Sleep, James Hamblin, The Atlantic, January 2017

sleep, this, article, about, sleep, humans, human, sleep, animals, other, uses, disambiguation, asleep, slept, redirect, here, other, uses, asleep, disambiguation, slept, analysis, state, reduced, mental, physical, activity, which, consciousness, altered, cert. This article is about sleep in humans For non human sleep see Sleep in animals For other uses see Sleep disambiguation Asleep and Slept redirect here For other uses see Asleep disambiguation and SLEPT analysis Sleep is a state of reduced mental and physical activity in which consciousness is altered and certain sensory activity is inhibited During sleep there is a marked decrease in muscle activity and interactions with the surrounding environment While sleep differs from wakefulness in terms of the ability to react to stimuli it still involves active brain patterns making it more reactive than a coma or disorders of consciousness 1 Sleeping Girl Domenico Fetti c 1615Sleep occurs in repeating periods during which the body alternates between two distinct modes REM and non REM sleep Although REM stands for rapid eye movement this mode of sleep has many other aspects including virtual paralysis of the body 2 Dreams are a succession of images ideas emotions and sensations that usually occur involuntarily in the mind during certain stages of sleep During sleep most of the body s systems are in an anabolic state helping to restore the immune nervous skeletal and muscular systems 3 these are vital processes that maintain mood memory and cognitive function and play a large role in the function of the endocrine and immune systems 4 The internal circadian clock promotes sleep daily at night The diverse purposes and mechanisms of sleep are the subject of substantial ongoing research 5 Sleep is a highly conserved behavior across animal evolution 6 likely going back hundreds of millions of years 7 Humans may suffer from various sleep disorders including dyssomnias such as insomnia hypersomnia narcolepsy and sleep apnea parasomnias such as sleepwalking and rapid eye movement sleep behavior disorder bruxism and circadian rhythm sleep disorders The use of artificial light has substantially altered humanity s sleep patterns 8 Common sources of artificial light include outdoor lighting and the screens of electronic devices such as smartphones and televisions which emit large amounts of blue light a form of light typically associated with daytime This disrupts the release of the hormone melatonin needed to regulate the sleep cycle 9 Contents 1 Physiology 1 1 Brain waves in sleep 1 2 Non REM and REM sleep 1 3 Awakening 2 Timing 2 1 Circadian clock 2 2 Process S 2 3 Social timing 2 4 Distribution 2 4 1 Naps 2 5 Genetics 2 5 1 Genes for short sleep duration 2 6 Quality 3 Ideal duration 3 1 Children 3 2 Recommended duration 4 Functions 4 1 Restoration 4 2 Memory processing 4 3 Dreaming 5 Disorders 5 1 Insomnia 6 Sleep health 7 Drugs and diet 7 1 Diet 8 In culture 8 1 Anthropology 8 2 In mythology and literature 8 3 In studies on consciousness and philosophy 8 4 In art 9 See also 10 References 11 Further reading 12 External linksPhysiologyMain article Neuroscience of sleep The most pronounced physiological changes in sleep occur in the brain 10 The brain uses significantly less energy during sleep than it does when awake especially during non REM sleep In areas with reduced activity the brain restores its supply of adenosine triphosphate ATP the molecule used for short term storage and transport of energy 11 In quiet waking the brain is responsible for 20 of the body s energy use thus this reduction has a noticeable effect on overall energy consumption 12 Sleep increases the sensory threshold In other words sleeping persons perceive fewer stimuli but can generally still respond to loud noises and other salient sensory events 12 10 During slow wave sleep humans secrete bursts of growth hormone All sleep even during the day is associated with the secretion of prolactin 13 Key physiological methods for monitoring and measuring changes during sleep include electroencephalography EEG of brain waves electrooculography EOG of eye movements and electromyography EMG of skeletal muscle activity Simultaneous collection of these measurements is called polysomnography and can be performed in a specialized sleep laboratory 14 15 Sleep researchers also use simplified electrocardiography EKG for cardiac activity and actigraphy for motor movements 15 Brain waves in sleep The electrical activity seen on an EEG represents brain waves The amplitude of EEG waves at a particular frequency corresponds to various points in the sleep wake cycle such as being asleep being awake or falling asleep 16 Alpha beta theta gamma and delta waves are all seen in the different stages of sleep Each waveform maintains a different frequency and amplitude Alpha waves are seen when a person is in a resting state but is still fully conscious Their eyes may be closed and all of their body is resting and relatively still where the body is starting to slow down Beta waves take over alpha waves when a person is at attention as they might be completing a task or concentrating on something Beta waves consist of the highest of frequencies and the lowest of amplitude and occur when a person is fully alert Gamma waves are seen when a person is highly focused on a task or using all their concentration Theta waves occur during the period of a person being awake and they continue to transition into Stage 1 of sleep and in stage 2 Delta waves are seen in stages 3 and 4 of sleep when a person is in their deepest of sleep 17 Non REM and REM sleep Sleep is divided into two broad types non rapid eye movement non REM or NREM sleep and rapid eye movement REM sleep Non REM and REM sleep are so different that physiologists identify them as distinct behavioral states Non REM sleep occurs first and after a transitional period is called slow wave sleep or deep sleep During this phase body temperature and heart rate fall and the brain uses less energy 10 REM sleep also known as paradoxical sleep represents a smaller portion of total sleep time It is the main occasion for dreams or nightmares and is associated with desynchronized and fast brain waves eye movements loss of muscle tone 18 and suspension of homeostasis 19 The sleep cycle of alternate NREM and REM sleep takes an average of 90 minutes occurring 4 6 times in a good night s sleep 15 20 The American Academy of Sleep Medicine AASM divides NREM into three stages N1 N2 and N3 the last of which is also called delta sleep or slow wave sleep 21 The whole period normally proceeds in the order N1 N2 N3 N2 REM REM sleep occurs as a person returns to stage 2 or 1 from a deep sleep 18 There is a greater amount of deep sleep stage N3 earlier in the night while the proportion of REM sleep increases in the two cycles just before natural awakening 15 Awakening Waking up redirects here For other uses see Waking up disambiguation Further information Wakefulness and Ascending reticular activating system nbsp The Awakening an illustration to writing by Leo TolstoyAwakening can mean the end of sleep or simply a moment to survey the environment and readjust body position before falling back asleep Sleepers typically awaken soon after the end of a REM phase or sometimes in the middle of REM Internal circadian indicators along with a successful reduction of homeostatic sleep need typically bring about awakening and the end of the sleep cycle 22 Awakening involves heightened electrical activation in the brain beginning with the thalamus and spreading throughout the cortex 22 On a typical night of sleep there is not much time that is spent in the waking state In various sleep studies that have been conducted using the electroencephalography it has been found that females are awake for 0 1 during their nightly sleep while males are awake for 0 2 during that time In adults wakefulness increases especially in later cycles One study found 3 awake time in the first ninety minute sleep cycle 8 in the second 10 in the third 12 in the fourth and 13 14 in the fifth Most of this awake time occurred shortly after REM sleep 22 Today many humans wake up with an alarm clock 23 however people can also reliably wake themselves up at a specific time with no need for an alarm 22 Many sleep quite differently on workdays versus days off a pattern which can lead to chronic circadian desynchronization 24 23 Many people regularly look at television and other screens before going to bed a factor which may exacerbate disruption of the circadian cycle 25 26 Scientific studies on sleep have shown that sleep stage at awakening is an important factor in amplifying sleep inertia 27 Determinants of alertness after waking up include quantity quality of the sleep physical activity the day prior a carbohydrate rich breakfast and a low blood glucose response to it 28 TimingSleep timing is controlled by the circadian clock Process C sleep wake homeostasis Process S and to some extent by the individual will Circadian clock Main article Circadian rhythm Further information Circadian rhythm sleep disorder nbsp The human biological clock Sleep timing depends greatly on hormonal signals from the circadian clock or Process C a complex neurochemical system which uses signals from an organism s environment to recreate an internal day night rhythm Process C counteracts the homeostatic drive for sleep during the day in diurnal animals and augments it at night 29 24 The suprachiasmatic nucleus SCN a brain area directly above the optic chiasm is presently considered the most important nexus for this process however secondary clock systems have been found throughout the body An organism whose circadian clock exhibits a regular rhythm corresponding to outside signals is said to be entrained an entrained rhythm persists even if the outside signals suddenly disappear If an entrained human is isolated in a bunker with constant light or darkness he or she will continue to experience rhythmic increases and decreases of body temperature and melatonin on a period that slightly exceeds 24 hours Scientists refer to such conditions as free running of the circadian rhythm Under natural conditions light signals regularly adjust this period downward so that it corresponds better with the exact 24 hours of an Earth day 23 30 31 The circadian clock exerts constant influence on the body affecting sinusoidal oscillation of body temperature between roughly 36 2 C and 37 2 C 31 32 The suprachiasmatic nucleus itself shows conspicuous oscillation activity which intensifies during subjective day i e the part of the rhythm corresponding with daytime whether accurately or not and drops to almost nothing during subjective night 33 The circadian pacemaker in the suprachiasmatic nucleus has a direct neural connection to the pineal gland which releases the hormone melatonin at night 33 Cortisol levels typically rise throughout the night peak in the awakening hours and diminish during the day 13 34 Circadian prolactin secretion begins in the late afternoon especially in women and is subsequently augmented by sleep induced secretion to peak in the middle of the night Circadian rhythm exerts some influence on the nighttime secretion of growth hormone 13 The circadian rhythm influences the ideal timing of a restorative sleep episode 23 35 Sleepiness increases during the night REM sleep occurs more during body temperature minimum within the circadian cycle whereas slow wave sleep can occur more independently of circadian time 31 The internal circadian clock is profoundly influenced by changes in light since these are its main clues about what time it is Exposure to even small amounts of light during the night can suppress melatonin secretion and increase body temperature and wakefulness Short pulses of light at the right moment in the circadian cycle can significantly reset the internal clock 32 Blue light in particular exerts the strongest effect 24 leading to concerns that use of a screen before bed may interfere with sleep 25 Modern humans often find themselves desynchronized from their internal circadian clock due to the requirements of work especially night shifts long distance travel and the influence of universal indoor lighting 31 Even if they have sleep debt or feel sleepy people can have difficulty staying asleep at the peak of their circadian cycle Conversely they can have difficulty waking up in the trough of the cycle 22 A healthy young adult entrained to the sun will during most of the year fall asleep a few hours after sunset experience body temperature minimum at 6 a m and wake up a few hours after sunrise 31 Process S Main article Sleep debt Generally speaking the longer an organism is awake the more it feels a need to sleep sleep debt This driver of sleep is referred to as Process S The balance between sleeping and waking is regulated by a process called homeostasis Induced or perceived lack of sleep is called sleep deprivation Process S is driven by the depletion of glycogen and accumulation of adenosine in the forebrain that disinhibits the ventrolateral preoptic nucleus allowing for inhibition of the ascending reticular activating system 36 Sleep deprivation tends to cause slower brain waves in the frontal cortex shortened attention span higher anxiety impaired memory and a grouchy mood Conversely a well rested organism tends to have improved memory and mood 37 Neurophysiological and functional imaging studies have demonstrated that frontal regions of the brain are particularly responsive to homeostatic sleep pressure 38 There is disagreement on how much sleep debt is possible to accumulate and whether sleep debt is accumulated against an individual s average sleep or some other benchmark It is also unclear whether the prevalence of sleep debt among adults has changed appreciably in the industrialized world in recent decades Sleep debt does show some evidence of being cumulative Subjectively however humans seem to reach maximum sleepiness 30 hours after waking 31 It is likely that in Western societies children are sleeping less than they previously have 39 One neurochemical indicator of sleep debt is adenosine a neurotransmitter that inhibits many of the bodily processes associated with wakefulness Adenosine levels increase in the cortex and basal forebrain during prolonged wakefulness and decrease during the sleep recovery period potentially acting as a homeostatic regulator of sleep 40 41 Coffee tea and other sources of caffeine temporarily block the effect of adenosine prolong sleep latency and reduce total sleep time and quality 42 Social timing Humans are also influenced by aspects of social time such as the hours when other people are awake the hours when work is required the time on clocks etc Time zones standard times used to unify the timing for people in the same area correspond only approximately to the natural rising and setting of the sun An extreme example of the approximate nature of time zones is China a country which used to span five time zones and now officially uses only one UTC 8 23 Distribution In polyphasic sleep an organism sleeps several times in a 24 hour cycle whereas in monophasic sleep this occurs all at once Under experimental conditions humans tend to alternate more frequently between sleep and wakefulness i e exhibit more polyphasic sleep if they have nothing better to do 31 Given a 14 hour period of darkness in experimental conditions humans tended towards bimodal sleep with two sleep periods concentrated at the beginning and at the end of the dark time Bimodal sleep in humans was more common before the industrial revolution 34 Different characteristic sleep patterns such as the familiarly so called early bird and night owl are called chronotypes Genetics and sex have some influence on chronotype but so do habits Chronotype is also liable to change over the course of a person s lifetime Seven year olds are better disposed to wake up early in the morning than are fifteen year olds 24 23 Chronotypes far outside the normal range are called circadian rhythm sleep disorders 43 Naps Main article NapNaps are short periods of sleep that one might take during the daytime often in order to get the necessary amount of rest Napping is often associated with childhood but around one third of American adults partake in it daily The optimal nap duration is around 10 20 minutes as researchers have proven that it takes at least 30 minutes to enter slow wave sleep the deepest period of sleep 44 Napping too long and entering the slow wave cycles can make it difficult to awake from the nap and leave one feeling unrested This period of drowsiness is called sleep inertia nbsp Man napping in San Cristobal PeruThe siesta habit has recently been associated with a 37 lower coronary mortality possibly due to reduced cardiovascular stress mediated by daytime sleep 45 Short naps at mid day and mild evening exercise were found to be effective for improved sleep cognitive tasks and mental health in elderly people 46 Genetics Monozygotic identical but not dizygotic fraternal twins tend to have similar sleep habits Neurotransmitters molecules whose production can be traced to specific genes are one genetic influence on sleep that can be analyzed The circadian clock has its own set of genes 47 Genes which may influence sleep include ABCC9 DEC2 Dopamine receptor D2 48 and variants near PAX 8 and VRK2 49 While the latter have been found in a GWAS study that primarily detects correlations but not necessarily causation other genes have been shown to have a more direct effect For instance mice lacking dihydropyrimidine dehydrogenase Dpyd had 78 4 min less sleep during the lights off period than wild type mice Dpyd encodes the rate limiting enzyme in the metabolic pathway that catabolizes uracil and thymidine to b alanine an inhibitory neurotransmitter This also supports the role of b alanine as a neurotransmitter that promotes sleep in mice 50 Genes for short sleep duration This section is an excerpt from Familial natural short sleep edit nbsp This condition is inherited as an autosomal dominant traitFamilial natural short sleep is a rare genetic typically inherited trait where an individual sleeps for fewer hours than average without suffering from daytime sleepiness or other consequences of sleep deprivation This process is entirely natural in this kind of individual and it is caused by certain genetic mutations 51 52 53 54 A person with this trait is known as a natural short sleeper 55 This condition is not to be confused with intentional sleep deprivation which leaves symptoms such as irritability or temporarily impaired cognitive abilities in people who are predisposed to sleep a normal amount of time but not in people with FNSS 56 57 58 This sleep type is not considered to be a genetic disorder but rather it is considered to be a genetic benign trait 59 The genes DEC2 ADRB1 NPSR1 and GRM1 are implicated in enabling short sleep 60 Quality The quality of sleep may be evaluated from an objective and a subjective point of view Objective sleep quality refers to how difficult it is for a person to fall asleep and remain in a sleeping state and how many times they wake up during a single night Poor sleep quality disrupts the cycle of transition between the different stages of sleep 61 Subjective sleep quality in turn refers to a sense of being rested and regenerated after awaking from sleep A study by A Harvey et al 2002 found that insomniacs were more demanding in their evaluations of sleep quality than individuals who had no sleep problems 62 Homeostatic sleep propensity the need for sleep as a function of the amount of time elapsed since the last adequate sleep episode must be balanced against the circadian element for satisfactory sleep 63 64 Along with corresponding messages from the circadian clock this tells the body it needs to sleep 65 The timing is correct when the following two circadian markers occur after the middle of the sleep episode and before awakening 35 maximum concentration of the hormone melatonin and minimum core body temperature Ideal duration nbsp Centers for Disease Control and Prevention CDC recommendations for the amount of sleep needed decrease with age 66 nbsp The main health effects of sleep deprivation 67 indicating impairment of normal maintenance by sleepHuman sleep needs vary by age and amongst individuals 68 sleep is considered to be adequate when there is no daytime sleepiness or dysfunction 69 Moreover self reported sleep duration is only moderately correlated with actual sleep time as measured by actigraphy 70 and those affected with sleep state misperception may typically report having slept only four hours despite having slept a full eight hours 71 72 73 Researchers have found that sleeping 6 7 hours each night correlates with longevity and cardiac health in humans though many underlying factors may be involved in the causality behind this relationship 74 75 76 77 49 78 79 Sleep difficulties are furthermore associated with psychiatric disorders such as depression alcoholism and bipolar disorder 80 Up to 90 percent of adults with depression are found to have sleep difficulties Dysregulation detected by EEG includes disturbances in sleep continuity decreased delta sleep and altered REM patterns with regard to latency distribution across the night and density of eye movements 81 Sleep duration can also vary according to season Up to 90 of people report longer sleep duration in winter which may lead to more pronounced seasonal affective disorder 82 83 Children See also Infant sleep and Adolescent sleep nbsp Bronze statue of Eros sleeping 3rd century BC early 1st century ADBy the time infants reach the age of two their brain size has reached 90 percent of an adult sized brain 84 a majority of this brain growth has occurred during the period of life with the highest rate of sleep The hours that children spend asleep influence their ability to perform on cognitive tasks 85 86 Children who sleep through the night and have few night waking episodes have higher cognitive attainments and easier temperaments than other children 86 87 88 Sleep also influences language development To test this researchers taught infants a faux language and observed their recollection of the rules for that language 89 Infants who slept within four hours of learning the language could remember the language rules better while infants who stayed awake longer did not recall those rules as well There is also a relationship between infants vocabulary and sleeping infants who sleep longer at night at 12 months have better vocabularies at 26 months 88 Children can greatly benefit from a structured bedtime routine This can look differently among families but will generally consist of a set of rituals such as reading a bedtime story a bath brushing teeth and can also include a show of affection from the parent to the child such a hug or kiss before bed A bedtime routine will also include a consistent time that the child is expected to be in bed ready for sleep Having a reliable bedtime routine can help improve a child s quality of sleep as well as prepare them to make and keep healthy sleep hygiene habits in the future 90 Recommended duration nbsp World War II poster issued by the US governmentChildren need many hours of sleep per day in order to develop and function properly up to 18 hours for newborn babies with a declining rate as a child ages 65 Early in 2015 after a two year study 91 the National Sleep Foundation in the US announced newly revised recommendations as shown in the table below Hours of sleep recommended for each age group 91 Age and condition Sleep needsNewborns 0 3 months 14 to 17 hoursInfants 4 11 months 12 to 15 hoursToddlers 1 2 years 11 to 14 hoursPreschoolers 3 4 years 10 to 13 hoursSchool age children 5 12 years 9 to 11 hoursTeenagers 13 17 years 8 to 10 hoursAdults 18 64 years 7 to 9 hoursOlder Adults 65 years and over 7 to 8 hoursFunctionsRestoration Sleep may facilitate the synthesis of molecules that help repair and protect the brain from metabolic end products generated during waking 92 Anabolic hormones such as growth hormones are secreted preferentially during sleep The brain concentration of glycogen increases during sleep and is depleted through metabolism during wakefulness 93 The human organism physically restores itself during sleep occurring mostly during slow wave sleep during which body temperature heart rate and brain oxygen consumption decrease In both the brain and body the reduced rate of metabolism enables countervailing restorative processes 93 The brain requires sleep for restoration whereas these processes can take place during quiescent waking in the rest of the body 94 The essential function of sleep may be its restorative effect on the brain Sleep is of the brain by the brain and for the brain 95 This theory is strengthened by the fact that sleep is observed to be a necessary behavior across most of the animal kingdom including some of the least evolved animals which have no need for other functions of sleep such as memory consolidation or dreaming 6 Memory processing Further information Sleep and memory Neuroscience of sleep and Sleep and learning It has been widely accepted that sleep must support the formation of long term memory and generally increasing previous learning and experiences recalls However its benefit seems to depend on the phase of sleep and the type of memory 96 For example declarative and procedural memory recall tasks applied over early and late nocturnal sleep as well as wakefulness controlled conditions have been shown that declarative memory improves more during early sleep dominated by SWS while procedural memory during late sleep dominated by REM sleep does so 97 98 With regard to declarative memory the functional role of SWS has been associated with hippocampal replays of previously encoded neural patterns that seem to facilitate long term memory consolidation 97 98 This assumption is based on the active system consolidation hypothesis which states that repeated reactivations of newly encoded information in the hippocampus during slow oscillations in NREM sleep mediate the stabilization and gradual integration of declarative memory with pre existing knowledge networks on the cortical level 99 It assumes the hippocampus might hold information only temporarily and in a fast learning rate whereas the neocortex is related to long term storage and a slow learning rate 97 98 100 101 102 This dialogue between the hippocampus and neocortex occurs in parallel with hippocampal sharp wave ripples and thalamo cortical spindles synchrony that drives the formation of the spindle ripple event which seems to be a prerequisite for the formation of long term memories 98 100 102 103 Reactivation of memory also occurs during wakefulness and its function is associated with serving to update the reactivated memory with newly encoded information whereas reactivations during SWS are presented as crucial for memory stabilization 98 Based on targeted memory reactivation TMR experiments that use associated memory cues to triggering memory traces during sleep several studies have been reassuring the importance of nocturnal reactivations for the formation of persistent memories in neocortical networks as well as highlighting the possibility of increasing people s memory performance at declarative recalls 97 101 102 103 104 Furthermore nocturnal reactivation seems to share the same neural oscillatory patterns as reactivation during wakefulness processes which might be coordinated by theta activity 105 During wakefulness theta oscillations have been often related to successful performance in memory tasks and cued memory reactivations during sleep have been showing that theta activity is significantly stronger in subsequent recognition of cued stimuli as compared to uncued ones possibly indicating a strengthening of memory traces and lexical integration by cuing during sleep 106 However the beneficial effect of TMR for memory consolidation seems to occur only if the cued memories can be related to prior knowledge 107 Dreaming Main article Dream nbsp Dreams often feel like waking life yet with added surrealism During sleep especially REM sleep humans tend to experience dreams These are elusive and mostly unpredictable first person experiences which seem logical and realistic to the dreamer while they are in progress despite their frequently bizarre irrational and or surreal qualities that become apparent when assessed after waking Dreams often seamlessly incorporate concepts situations people and objects within a person s mind that would not normally go together They can include apparent sensations of all types especially vision and movement 108 Dreams tend to rapidly fade from memory after waking Some people choose to keep a dream journal which they believe helps them build dream recall and facilitate the ability to experience lucid dreams A lucid dream is a type of dream in which the dreamer becomes aware that they are dreaming while dreaming In a preliminary study dreamers were able to consciously communicate with experimenters via eye movements or facial muscle signals and were able to comprehend complex questions and use working memory 109 People have proposed many hypotheses about the functions of dreaming Sigmund Freud postulated that dreams are the symbolic expression of frustrated desires that have been relegated to the unconscious mind and he used dream interpretation in the form of psychoanalysis in attempting to uncover these desires 110 Counterintuitively penile erections during sleep are not more frequent during sexual dreams than during other dreams 111 The parasympathetic nervous system experiences increased activity during REM sleep which may cause erection of the penis or clitoris In males 80 to 95 of REM sleep is normally accompanied by partial to full penile erection while only about 12 of men s dreams contain sexual content 112 DisordersInsomnia Main article Insomnia See also Psychological stress and sleep Insomnia is a general term for difficulty falling asleep and or staying asleep Insomnia is the most common sleep problem with many adults reporting occasional insomnia and 10 15 reporting a chronic condition 113 Insomnia can have many different causes including psychological stress a poor sleep environment an inconsistent sleep schedule or excessive mental or physical stimulation in the hours before bedtime Insomnia is often treated through behavioral changes like keeping a regular sleep schedule avoiding stimulating or stressful activities before bedtime and cutting down on stimulants such as caffeine The sleep environment may be improved by installing heavy drapes to shut out all sunlight and keeping computers televisions and work materials out of the sleeping area A 2010 review of published scientific research suggested that exercise generally improves sleep for most people and helps sleep disorders such as insomnia The optimum time to exercise may be 4 to 8 hours before bedtime though exercise at any time of day is beneficial with the exception of heavy exercise taken shortly before bedtime which may disturb sleep However there is insufficient evidence to draw detailed conclusions about the relationship between exercise and sleep 114 Nonbenzodiazepine sleeping medications such as Ambien Imovane and Lunesta also known as Z drugs while initially believed to be better and safer than earlier generations of sedatives in clud ing benzodiazepine drugs are now known to be almost entirely the same as benzodiazepines in terms of their pharmacodynamics differing only at the molecular level in their chemical structure and therefore exhibit similar benefits side effects and risks 115 116 White noise appears to be a promising treatment for insomnia 117 Sleep healthSee also Sleep hygiene Low quality sleep has been linked with health conditions like cardiovascular disease obesity and mental illness While poor sleep is common among those with cardiovascular disease some research indicates that poor sleep can be a contributing cause Short sleep duration of less than seven hours is correlated with coronary heart disease and increased risk of death from coronary heart disease Sleep duration greater than nine hours is also correlated with coronary heart disease as well as stroke and cardiovascular events 118 119 120 121 In both children and adults short sleep duration is associated with an increased risk of obesity with various studies reporting an increased risk of 45 55 Other aspects of sleep health have been associated with obesity including daytime napping sleep timing the variability of sleep timing and low sleep efficiency However sleep duration is the most studied for its impact on obesity 118 Sleep problems have been frequently viewed as a symptom of mental illness rather than a causative factor However a growing body of evidence suggests that they are both a cause and a symptom of mental illness Insomnia is a significant predictor of major depressive disorder a meta analysis of 170 000 people showed that insomnia at the beginning of a study period indicated a more than the twofold increased risk for major depressive disorder Some studies have also indicated correlation between insomnia and anxiety post traumatic stress disorder and suicide Sleep disorders can increase the risk of psychosis and worsen the severity of psychotic episodes 118 Sleep research also displays differences in race and class Short sleep and poor sleep are observed more frequently in ethnic minorities than in whites African Americans report experiencing short durations of sleep five times more often than whites possibly as a result of social and environmental factors Black children and children in disadvantaged neighborhoods have much higher rates of sleep apnea than white children and respond more poorly to treatment 122 Sleep health can be improved through implementing good sleep hygiene habits Having good sleep hygiene can help to improve your physical and mental health by providing your body with the necessary rejuvenation only restful sleep can provide 123 Some ways to improve sleep health include going to sleep at consistent times every night avoiding any electronic devices such as televisions in the bedroom getting adequate exercise throughout your day and avoiding caffeine in the hours before going to sleep Another way to greatly improve sleep hygiene is by creating a peaceful and relaxing sleep environment Sleeping in a dark and clean room with things like a white noise maker can help facilitate restful sleep 124 Drugs and dietSee also Alertness Drugs used to increase alertness Drugs which induce sleep known as hypnotics include benzodiazepines although these interfere with REM 125 nonbenzodiazepine hypnotics such as eszopiclone Lunesta zaleplon Sonata and zolpidem Ambien antihistamines such as diphenhydramine Benadryl and doxylamine alcohol ethanol which exerts an excitatory rebound effect later in the night and intereferes with REM 125 barbiturates which have the same problem melatonin a component of the circadian clock 126 and cannabis which may also interfere with REM 127 Some opioids including morphine codeine heroin and oxycodone also induce sleep and can disrupt sleep architecture and sleep stage distribution 128 Interestingly the endogenously produced drug gamma hydroxybutyrate GHB is capable of producing high quality sleep that is indistinguishable from natural sleep architecture in humans 129 Stimulants which inhibit sleep include caffeine an adenosine antagonist amphetamine methamphetamine MDMA empathogen entactogens and related drugs cocaine which can alter the circadian rhythm 130 131 and methylphenidate which acts similarly and eugeroic drugs like modafinil and armodafinil with poorly understood mechanisms Consuming high amounts of the stimulant caffeine can result in interrupted sleep patterns and sometimes sleep deprivation This vicious cycle can result in drowsiness which can then result in a higher consumption of caffeine in order to stay awake the next day This cycle can lead to decreased cognitive function and an overall feeling of fatigue 132 Some drugs may alter sleep architecture without inhibiting or inducing sleep Drugs that amplify or inhibit endocrine and immune system secretions associated with certain sleep stages have been shown to alter sleep architecture 133 134 The growth hormone releasing hormone receptor agonist MK 677 has been shown to increase REM in older adults as well as stage IV sleep in younger adults by approximately 50 135 Diet Dietary and nutritional choices may affect sleep duration and quality One 2016 review indicated that a high carbohydrate diet promoted a shorter onset to sleep and a longer duration of sleep than a high fat diet 136 A 2012 investigation indicated that mixed micronutrients and macronutrients are needed to promote quality sleep 137 A varied diet containing fresh fruits and vegetables low saturated fat and whole grains may be optimal for individuals seeking to improve sleep quality 136 High quality clinical trials on long term dietary practices are needed to better define the influence of diet on sleep quality 136 In cultureAnthropology nbsp The Land of Cockaigne by Pieter Bruegel the Elder 1567Research suggests that sleep patterns vary significantly across cultures 138 139 140 The most striking differences are observed between societies that have plentiful sources of artificial light and ones that do not The primary difference appears to be that pre light cultures have more broken up sleep patterns For example people without artificial light might go to sleep far sooner after the sun sets but then wake up several times throughout the night punctuating their sleep with periods of wakefulness perhaps lasting several hours 138 During pre industrial Europe biphasic bimodal sleeping was considered the norm Sleep onset was determined not by a set bedtime but by whether there were things to do 141 The boundaries between sleeping and waking are blurred in these societies Some observers believe that nighttime sleep in these societies is most often split into two main periods the first characterized primarily by deep sleep and the second by REM sleep 138 Some societies display a fragmented sleep pattern in which people sleep at all times of the day and night for shorter periods In many nomadic or hunter gatherer societies people sleep on and off throughout the day or night depending on what is happening Plentiful artificial light has been available in the industrialized West since at least the mid 19th century and sleep patterns have changed significantly everywhere that lighting has been introduced In general people sleep in a more concentrated burst through the night going to sleep much later although this is not always the case 138 Historian A Roger Ekirch thinks that the traditional pattern of segmented sleep as it is called began to disappear among the urban upper class in Europe in the late 17th century and the change spread over the next 200 years by the 1920s the idea of a first and second sleep had receded entirely from our social consciousness 142 143 Ekirch attributes the change to increases in street lighting domestic lighting and a surge in coffee houses which slowly made nighttime a legitimate time for activity decreasing the time available for rest 143 Today in most societies people sleep during the night but in very hot climates they may sleep during the day 144 During Ramadan many Muslims sleep during the day rather than at night 145 In some societies people sleep with at least one other person sometimes many or with animals In other cultures people rarely sleep with anyone except for an intimate partner In almost all societies sleeping partners are strongly regulated by social standards For example a person might only sleep with the immediate family the extended family a spouse or romantic partner children children of a certain age children of a specific gender peers of a certain gender friends peers of equal social rank or with no one at all Sleep may be an actively social time depending on the sleep groupings with no constraints on noise or activity 138 People sleep in a variety of locations Some sleep directly on the ground others on a skin or blanket others sleep on platforms or beds Some sleep with blankets some with pillows some with simple headrests some with no head support These choices are shaped by a variety of factors such as climate protection from predators housing type technology personal preference and the incidence of pests 138 In mythology and literature nbsp Medieval manuscript illumination from the Menologion of Basil II 985 AD showing the Seven Sleepers of Ephesus sleeping in their caveSleep has been seen in culture as similar to death since antiquity 146 in Greek mythology Hypnos the god of sleep and Thanatos the god of death were both said to be the children of Nyx the goddess of night 146 John Donne Samuel Taylor Coleridge Percy Bysshe Shelley John Keats and other poets have all written poems about the relationship between sleep and death 146 Shelley describes them as both so passing strange and wonderful 146 Keats similarly poses the question Can death be sleep when life is but a dream 147 Many people consider dying in one s sleep is the most peaceful way to die 146 Phrases such as big sleep and rest in peace are often used in reference to death 146 possibly in an effort to lessen its finality 146 Sleep and dreaming have sometimes been seen as providing the potential for visionary experiences In medieval Irish tradition in order to become a fili the poet was required to undergo a ritual called the imbas forosnai in which they would enter a mantic trancelike sleep 148 149 Many cultural stories have been told about people falling asleep for extended periods of time 150 151 The earliest of these stories is the ancient Greek legend of Epimenides of Knossos 150 152 153 154 According to the biographer Diogenes Laertius Epimenides was a shepherd on the Greek island of Crete 150 155 One day one of his sheep went missing and he went out to look for it but became tired and fell asleep in a cave under Mount Ida 150 155 When he awoke he continued searching for the sheep but could not find it 150 155 so he returned to his old farm only to discover that it was now under new ownership 150 155 He went to his hometown but discovered that nobody there knew him 150 Finally he met his younger brother who was now an old man 150 155 and learned that he had been asleep in the cave for fifty seven years 150 155 A far more famous instance of a long sleep today is the Christian legend of the Seven Sleepers of Ephesus 150 in which seven Christians flee into a cave during pagan times in order to escape persecution 150 but fall asleep and wake up 360 years later to discover to their astonishment that the Roman Empire is now predominantly Christian 150 The American author Washington Irving s short story Rip Van Winkle first published in 1819 in his collection of short stories The Sketch Book of Geoffrey Crayon Gent 151 156 is about a man in colonial America named Rip Van Winkle who falls asleep on one of the Catskill Mountains and wakes up twenty years later after the American Revolution 151 The story is now considered one of the greatest classics of American literature 151 In studies on consciousness and philosophy As an altered state of consciousness dreamless deep sleep has been used as a way to investigate animal human consciousness and qualia Insights about differences of the living sleeping brain to its wakeful state and the transition period may have implications for potential explanations of human subjective experience the so called hard problem of consciousness often delegated to the realm of philosophy including neurophilosophy 157 158 159 160 or in some cases to religion and similar approaches In art Of the thematic representations of sleep in art physician and sleep researcher Meir Kryger wrote Artists have intense fascination with mythology dreams religious themes the parallel between sleep and death reward abandonment of conscious control healing a depiction of innocence and serenity and the erotic 161 nbsp The Sentry 1654 by Carel Fabritius nbsp The Sleep of Reason Produces Monsters 1799 by Francisco Goya nbsp The Second Class Carriage 1864 by Honore Daumier nbsp Sleep and his Half brother Death 1874 by John William Waterhouse nbsp Taking a Rest 1882 by Ilya Repin nbsp The Victory of Faith 1891 by Saint George Hare nbsp Zwei schlafende Madchen auf der Ofenbank 1895 by Albert Anker nbsp Flaming June c 1895 by Frederic Leighton nbsp Noon Rest from Work 1890 by Vincent van Gogh after Millet nbsp Sleeping Girl on a Wooden Bench by Albert AnkerSee also nbsp Biology portal nbsp Society portal nbsp Psychology portalCo sleeping Hypnogram Microsleep Morvan s syndrome Oleamide Power nap Rheum Sleep epidemiology Sleep in space Sleep learning Sleep medicine Sleep paralysis Sleeping positions Somnology Somnophilia Start school later movement Sudden infant death syndrome Sudden arrhythmic death syndrome Unconsciousness Yawn Yoga nidraReferences Brain Basics Understanding Sleep National Institute of Neurological Disorders and Stroke www ninds nih gov Retrieved 15 February 2023 Nelson Ryan 20 June 2021 The Dichotomy Of Sleep REM And Non REM Stages And Their Impact On Human Health Quantify Sleep Retrieved 15 July 2023 Krueger JM Frank MG Wisor JP Roy S August 2016 Sleep function Toward elucidating an enigma Sleep Medicine Reviews 28 46 54 doi 10 1016 j smrv 2015 08 005 PMC 4769986 PMID 26447948 Sleep wake cycle its physiology and impact on health PDF National Sleep Foundation 2006 Archived PDF from the original on 30 August 2017 Retrieved 24 May 2017 Bingham R Terrence S Siegel J Dyken ME Czeisler C February 2007 Waking Up To Sleep Several conference videos The Science Network Archived from the original on 24 July 2011 Retrieved 25 January 2008 a b Joiner WJ October 2016 Unraveling the Evolutionary Determinants of Sleep Current Biology 26 20 R1073 R1087 doi 10 1016 j cub 2016 08 068 PMC 5120870 PMID 27780049 Keene Alex C amp Duboue Erik R 12 June 2018 The origins and evolution of sleep The Journal of Experimental Biology 221 11 doi 10 1242 jeb 159533 PMC 6515771 PMID 29895581 Retrieved 10 January 2023 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Randall DK 19 September 2012 Book excerpt How the lightbulb disrupted our sleeping patterns and changed the world National Post Archived from the original on 7 April 2019 Retrieved 31 August 2016 the sudden introduction of bright nights during hours when it should be dark threw a wrench into a finely choreographed system of life How Blue Light Affects Sleep Sleep Foundation 4 November 2020 Retrieved 18 November 2021 a b c Maquet PA Sterpenich V Albouy G Dang Vu T Desseilles M Boly M et al 2005 Brain Imaging on Passing to Sleep The Physiologic Nature of Sleep pp 123 137 doi 10 1142 9781860947186 0006 ISBN 978 1 86094 557 1 Brown pp 1118 1119 Compared with wakefulness sleep reduces brain energy demands as suggested by the 44 reduction in the cerebral metabolic rate CMR of glucose 791 and a 25 reduction in the CMR of O2 774 during sleep a b Siegel JM April 2008 Do all animals sleep Trends in Neurosciences 31 4 208 13 doi 10 1016 j tins 2008 02 001 PMC 8765194 PMID 18328577 S2CID 6614359 a b c Van Cauter E Spiegel K 1999 Circadian and Sleep Control of Hormonal Secretions In Zee PC Turek FW eds Regulation of Sleep and Circadian Rhythms pp 397 425 Brown p 1087 a b c d Peraita Adrados R 2005 Electroencephalography Polysomnography and Other Sleep Recording Systems The Physiologic Nature of Sleep pp 103 122 doi 10 1142 9781860947186 0005 ISBN 978 1 86094 557 1 Borbely AA Daan S Wirz Justice A Deboer T 14 January 2016 The two process model of sleep regulation a reappraisal PDF J Sleep Res 25 2 131 43 doi 10 1111 jsr 12371 PMID 26762182 S2CID 206156163 Posada Quintero HF Reljin N Bolkhovsky JB Orjuela Canon AD Chon KH 19 September 2019 Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation Front Neurosci 13 1001 doi 10 3389 fnins 2019 01001 PMC 6761229 PMID 31607847 a b Brain Basics Understanding Sleep National Institute of Neurological Disorders and Stroke Parmeggiani PL ed 2011 Systemic Homeostasis and Poikilostasis in Sleep Is REM Sleep a Physiological Paradox London Imperial College Press pp 12 5 ISBN 978 1 94916 572 2 McCarley RW June 2007 Neurobiology of REM and NREM sleep Sleep Medicine 8 4 302 30 doi 10 1016 j sleep 2007 03 005 PMID 17468046 Silber MH Ancoli Israel S Bonnet MH Chokroverty S Grigg Damberger MM Hirshkowitz M et al March 2007 The visual scoring of sleep in adults Journal of Clinical Sleep Medicine 3 2 121 31 doi 10 5664 jcsm 26814 PMID 17557422 a b c d e Akerstedt T Billiard M Bonnet M Ficca G Garma L Mariotti M et al August 2002 Awakening from sleep Sleep Medicine Reviews 6 4 267 86 doi 10 1053 smrv 2001 0202 PMID 12531132 a b c d e f Roenneberg T Kuehnle T Juda M Kantermann T Allebrandt K Gordijn M Merrow M December 2007 Epidemiology of the human circadian clock PDF Sleep Medicine Reviews 11 6 429 38 doi 10 1016 j smrv 2007 07 005 hdl 11370 65d6f03a 88cd 405c a067 4afbc1b9ba9d PMID 17936039 S2CID 11628329 a b c d Waterhouse J Fukuda Y Morita T March 2012 Daily rhythms of the sleep wake cycle Journal of Physiological Anthropology 31 5 5 doi 10 1186 1880 6805 31 5 PMC 3375033 PMID 22738268 a b Chang AM Aeschbach D Duffy JF Czeisler CA January 2015 Evening use of light emitting eReaders negatively affects sleep circadian timing and next morning alertness Proceedings of the National Academy of Sciences of the United States of America 112 4 1232 7 Bibcode 2015PNAS 112 1232C doi 10 1073 pnas 1418490112 PMC 4313820 PMID 25535358 Basner M Dinges DF June 2009 Dubious bargain trading sleep for Leno and Letterman Sleep 32 6 747 52 doi 10 1093 sleep 32 6 747 PMC 2690561 PMID 19544750 Tassi P Muzet A August 2000 Sleep inertia Sleep Medicine Reviews 4 4 341 353 doi 10 1053 smrv 2000 0098 PMID 12531174 Vallat Raphael Berry Sarah E Tsereteli Neli Capdevila Joan Khatib Haya Al Valdes Ana M Delahanty Linda M Drew David A Chan Andrew T Wolf Jonathan Franks Paul W Spector Tim D Walker Matthew P 19 November 2022 How people wake up is associated with previous night s sleep together with physical activity and food intake Nature Communications 13 1 7116 Bibcode 2022NatCo 13 7116V doi 10 1038 s41467 022 34503 2 ISSN 2041 1723 PMC 9675783 PMID 36402781 Fuller PM Gooley JJ Saper CB December 2006 Neurobiology of the sleep wake cycle sleep architecture circadian regulation and regulatory feedback Journal of Biological Rhythms 21 6 482 93 doi 10 1177 0748730406294627 PMID 17107938 S2CID 36572447 Zee PC Turek FW 1999 Introduction to Sleep and Circadian Rhythms In Zee PC Turek FW eds Regulation of Sleep and Circadian Rhythms pp 1 17 a b c d e f g Derk Jan D Edgar DM 1999 Circadian and Homeostatic Control of Wakefulness and Sleep In Zee PC Turek FW eds Regulation of Sleep and Circadian Rhythms pp 111 147 a b Czeisler CA Wright Jr KP 1999 Influence of Light on Circadian Rhythmicity in Humans In Zee PC Turek FW eds Regulation of Sleep and Circadian Rhythms pp 149 180 a b Zlomanczuk P Schwartz WJ 1999 Cellular and Molecular Mechanisms of Circadian Rhythms in Mammals In Zee PC Turek FW eds Regulation of Sleep and Circadian Rhythms pp 309 342 a b Wehr TA 1999 The Impact of Changes in Nightlength Scotoperiod on Human Sleep In Zee PC Turek FW eds Regulation of Sleep and Circadian Rhythms pp 263 285 a b Wyatt JK Ritz De Cecco A Czeisler CA Dijk DJ October 1999 Circadian temperature and melatonin rhythms sleep and neurobehavioral function in humans living on a 20 h day The American Journal of Physiology 277 4 Pt 2 R1152 63 doi 10 1152 ajpregu 1999 277 4 r1152 PMID 10516257 S2CID 4474347 significant homeostatic and circadian modulation of sleep structure with the highest sleep efficiency occurring in sleep episodes bracketing the melatonin maximum and core body temperature minimum Schwartz JR Roth T December 2008 Neurophysiology of sleep and wakefulness basic science and clinical implications Current Neuropharmacology 6 4 367 78 doi 10 2174 157015908787386050 PMC 2701283 PMID 19587857 Brown pp 1134 1138 Gottselig JM Adam M Retey JV Khatami R Achermann P Landolt HP March 2006 Random number generation during sleep deprivation effects of caffeine on response maintenance and stereotypy Journal of Sleep Research 15 1 31 40 doi 10 1111 j 1365 2869 2006 00497 x PMID 16490000 S2CID 10355305 Iglowstein I Jenni OG Molinari L Largo RH February 2003 Sleep duration from infancy to adolescence reference values and generational trends Pediatrics 111 2 302 7 doi 10 1542 peds 111 2 302 PMID 12563055 S2CID 8727836 Thus the shift in the evening bedtime across cohorts accounted for the substantial decrease in sleep duration in younger children between the 1970s and the 1990s A more liberal parental attitude toward evening bedtime in the past decades is most likely responsible for the bedtime shift and for the decline of sleep duration Huang ZL Zhang Z Qu WM 2014 Roles of adenosine and its receptors in sleep wake regulation International Review of Neurobiology 119 349 71 doi 10 1016 B978 0 12 801022 8 00014 3 ISBN 978 0 12 801022 8 PMID 25175972 The brain from top to bottom Molecules that build up and make you sleep McGill University Montreal Quebec Canada Archived from the original on 7 February 2013 Retrieved 20 September 2012 Clark I Landolt HP February 2017 Coffee caffeine and sleep A systematic review of epidemiological studies and randomized controlled trials PDF Sleep Medicine Reviews 31 70 78 doi 10 1016 j smrv 2016 01 006 PMID 26899133 Archived PDF from the original on 4 November 2018 Retrieved 19 November 2018 Dagan Y February 2002 Circadian rhythm sleep disorders CRSD PDF Sleep Medicine Reviews 6 1 45 54 doi 10 1053 smrv 2001 0190 PMID 12531141 Archived from the original PDF full text on 27 February 2008 Retrieved 5 June 2016 Early onset of CRSD the ease of diagnosis the high frequency of misdiagnosis and erroneous treatment the potentially harmful psychological and adjustment consequences and the availability of promising treatments all indicate the importance of greater awareness of these disorders Fry A 9 October 2020 Napping Health Benefits amp Tips for your best nap Sleep Foundation Retrieved 14 November 2021 from https www sleepfoundation org sleep hygiene napping Naska A Oikonomou E Trichopoulou A Psaltopoulou T Trichopoulos D February 2007 Siesta in healthy adults and coronary mortality in the general population Archives of Internal Medicine 167 3 296 301 doi 10 1001 archinte 167 3 296 PMID 17296887 Tanaka H Tamura N January 2016 Sleep education with self help treatment and sleep health promotion for mental and physical wellness in Japan Sleep and Biological Rhythms 14 S1 89 99 doi 10 1007 s41105 015 0018 6 PMC 4732678 PMID 26855610 Brown pp 1138 1102 Zhang L Fu YH January 2020 The molecular genetics of human sleep The European Journal of Neuroscience 51 1 422 428 doi 10 1111 ejn 14132 PMC 6389443 PMID 30144347 a b Jones SE Tyrrell J Wood AR Beaumont RN Ruth KS Tuke MA et al August 2016 Genome Wide Association Analyses in 128 266 Individuals Identifies New Morningness and Sleep Duration Loci PLOS Genetics 12 8 e1006125 doi 10 1371 journal pgen 1006125 PMC 4975467 PMID 27494321 Keenan BT Galante RJ Lian J Zhang L Guo X Veatch OJ et al December 2021 The dihydropyrimidine dehydrogenase gene contributes to heritable differences in sleep in mice Current Biology 31 23 5238 5248 e7 doi 10 1016 j cub 2021 09 049 PMC 8665053 PMID 34653361 S2CID 238754563 Short Sleeper Syndrome What Causes Short Sleep Duration Circle Magazine Health Wellness amp Genetics Blog 30 September 2021 Retrieved 14 October 2022 Short Sleeper Syndrome Symptoms Causes and Treatments Sleep Foundation 27 April 2022 Retrieved 15 October 2022 Hancock Jay 9 October 2022 This easy no cost solution could help treat a super common sleep condition Inverse Retrieved 15 October 2022 Yook Ji Hyun Rizwan Muneeba Shahid Noor ul ain Naguit Noreen Jakkoju Rakesh Laeeq Sadia Reghefaoui Tiba Zahoor Hafsa Mohammed Lubna 25 October 2021 Some Twist of Molecular Circuitry Fast Forwards Overnight Sleep Hours A Systematic Review of Natural Short Sleepers Genes Cureus 13 10 e19045 doi 10 7759 cureus 19045 ISSN 2168 8184 PMC 8547374 PMID 34722012 Natural short sleeper MedlinePlus Medical Encyclopedia medlineplus gov Retrieved 14 October 2022 Is it Dangerous to Be a Chronic Short Sleeper healthcare utah edu 8 August 2018 Retrieved 14 October 2022 Panchin Yuri Kovalzon Vladimir M 2021 Total Wake Natural Pathological and Experimental Limits to Sleep Reduction Frontiers in Neuroscience 15 643496 doi 10 3389 fnins 2021 643496 ISSN 1662 453X PMC 8058214 PMID 33897357 The long and short of the short sleep gene Sleep Cycle Sleep Cycle alarm clock 3 February 2022 Retrieved 15 October 2022 Short sleep familial natural 1 NIH Genetic Testing Registry GTR NCBI www ncbi nlm nih gov Retrieved 13 October 2022 Zheng Liubin Zhang Luoying September 2022 The molecular mechanism of natural short sleep A path towards understanding why we need to sleep Brain Science Advances 8 3 165 172 doi 10 26599 BSA 2022 9050003 ISSN 2096 5958 S2CID 250363367 Barnes CM Lucianetti L Bhave DP Christian MS 2015 You wouldn t like me when I m sleepy Leaders sleep daily abusive supervision and work unit engagement Academy of Management Journal 58 5 1419 1437 doi 10 5465 amj 2013 1063 S2CID 145056840 Harvey AG Payne S March 2002 The management of unwanted pre sleep thoughts in insomnia distraction with imagery versus general distraction Behaviour Research and Therapy 40 3 267 77 doi 10 1016 s0005 7967 01 00012 2 PMID 11863237 S2CID 16647017 Zisapel N May 2007 Sleep and sleep disturbances biological basis and clinical implications Cellular and Molecular Life Sciences 64 10 1174 86 doi 10 1007 s00018 007 6529 9 PMID 17364142 S2CID 2003308 Dijk DJ Lockley SW February 2002 Integration of human sleep wake regulation and circadian rhythmicity Journal of Applied Physiology 92 2 852 62 doi 10 1152 japplphysiol 00924 2001 PMID 11796701 S2CID 2502686 Consolidation of sleep for 8 h or more is only observed when sleep is initiated 6 8 h before the temperature nadir a b de Benedictis T Larson H Kemp G Barston S Segal R 2007 Understanding Sleep Sleep Needs Cycles and Stages Helpguide org Archived from the original on 24 January 2008 Retrieved 25 January 2008 How Much Sleep Do I Need CDC gov Centers for Disease Control and Prevention CDC 14 September 2022 Archived from the original on 2 November 2023 Last Reviewed September 14 2022 Source National Center for Chronic Disease Prevention and Health Promotion Division of Population Health Reference list is found on image page in Commons Commons File Effects of sleep deprivation svg References Hirshkowitz Max Whiton Kaitlyn Albert Steven M Alessi Cathy Bruni Oliviero DonCarlos Lydia Hazen Nancy Herman John Katz Eliot S Kheirandish Gozal Leila Neubauer David N O Donnell Anne E Ohayon Maurice Peever John Rawding Robert March 2015 National Sleep Foundation s sleep time duration recommendations methodology and results summary Sleep Health 1 1 40 43 doi 10 1016 j sleh 2014 12 010 ISSN 2352 7226 PMID 29073412 S2CID 205190733 Benbadis S R November 1998 Daytime sleepiness when is it normal When to refer Cleveland Clinic Journal of Medicine 65 10 543 549 doi 10 3949 ccjm 65 10 543 ISSN 0891 1150 PMID 9830788 S2CID 8222974 Lauderdale DS Knutson KL Yan LL Liu K Rathouz PJ November 2008 Self reported and measured sleep duration how similar are they Epidemiology 19 6 838 45 doi 10 1097 EDE 0b013e318187a7b0 PMC 2785092 PMID 18854708 Insomnia Causes Archived 22 October 2010 at the Wayback Machine Healthcommunities com Original Publication 1 December 2000 Updated 1 December 2007 Arditte Hall Kimberly A Werner Kimberly B Griffin Michael G Galovski Tara E 10 January 2022 Exploring Predictors of Sleep State Misperception in Women with Posttraumatic Stress Disorder Behavioral Sleep Medicine 21 1 22 32 doi 10 1080 15402002 2021 2024193 ISSN 1540 2010 PMC 9271136 PMID 35007171 Truzzi Giselle de Martin Teixeira Igor de Lima do Prado Lucila Bizari Fernandes do Prado Gilmar Fernandes Tufik Sergio Coelho Fernando Morgadinho January 2021 Sleep state misperception is there a CNS structural source Sleep Science Sao Paulo Brazil 14 Spec 1 94 96 doi 10 5935 1984 0063 20200039 ISSN 1984 0659 PMC 8663728 PMID 34917280 Rowland R 15 February 2002 Experts challenge study linking sleep life span CNN Archived from the original on 5 October 2012 Retrieved 29 October 2013 Patel SR Ayas NT Malhotra MR White DP Schernhammer ES Speizer FE et al May 2004 A prospective study of sleep duration and mortality risk in women Sleep 27 3 440 4 doi 10 1093 sleep 27 3 440 PMID 15164896 Patel SR Malhotra A Gottlieb DJ White DP Hu FB July 2006 Correlates of long sleep duration Sleep 29 7 881 9 doi 10 1093 sleep 29 7 881 PMC 3500381 PMID 16895254 cf Irwin MR Ziegler M February 2005 Sleep deprivation potentiates activation of cardiovascular and catecholamine responses in abstinent alcoholics Hypertension 45 2 252 7 CiteSeerX 10 1 1 535 7089 doi 10 1161 01 HYP 0000153517 44295 07 PMID 15642774 S2CID 2205895 Ferrie JE Shipley MJ Cappuccio FP Brunner E Miller MA Kumari M Marmot MG December 2007 A prospective study of change in sleep duration associations with mortality in the Whitehall II cohort Sleep 30 12 1659 66 doi 10 1093 sleep 30 12 1659 PMC 2276139 PMID 18246975 Cappuccio FP Taggart FM Kandala NB Currie A Peile E Stranges S Miller MA May 2008 Meta analysis of short sleep duration and obesity in children and adults Sleep 31 5 619 26 doi 10 1093 sleep 31 5 619 PMC 2398753 PMID 18517032 Schmid SM Hallschmid M Schultes B January 2015 The metabolic burden of sleep loss The Lancet Diabetes amp Endocrinology 3 1 52 62 doi 10 1016 S2213 8587 14 70012 9 PMID 24731536 Thase ME 2006 Depression and sleep pathophysiology and treatment Dialogues in Clinical Neuroscience 8 2 217 26 doi 10 31887 DCNS 2006 8 2 mthase PMC 3181772 PMID 16889107 Mann JJ Kupfer DJ 1993 Biology of Depressive Disorders Subtypes of depression and comorbid disorders Part 2 Google books Springer p 49 ISBN 978 0 306 44296 4 Archived from the original on 10 March 2017 Retrieved 24 July 2009 Suzuki M Taniguchi T Furihata R Yoshita K Arai Y Yoshiike N Uchiyama M 18 April 2019 Seasonal changes in sleep duration and sleep problems A prospective study in Japanese community residents PLOS ONE 14 4 e0215345 Bibcode 2019PLoSO 1415345S doi 10 1371 journal pone 0215345 PMC 6472875 PMID 30998709 Hate waking up when it s dark out Find out how winter really affects your sleep habits Sleep org 30 January 2023 permanent dead link Dahl RE 2009 The regulation of sleep and arousal Development and psychopathology Development and Psychopathology 8 1 3 27 doi 10 1017 S0954579400006945 S2CID 143514600 Jenni OG Dahl RE 2008 Sleep cognition and neuron and emotion A developmental review In Nelson CA Luciana M eds Handbook of developmental cognitive neuroscience 2nd ed Cambridge Mass MIT Press pp 807 817 ISBN 978 0262141048 a b Scher A March 2005 Infant sleep at 10 months of age as a window to cognitive development Early Human Development 81 3 289 92 doi 10 1016 j earlhumdev 2004 07 005 PMID 15814211 Spruyt K Aitken RJ So K Charlton M Adamson TM Horne RS May 2008 Relationship between sleep wake patterns temperament and overall development in term infants over the first year of life Early Human Development 84 5 289 96 doi 10 1016 j earlhumdev 2007 07 002 PMID 17707119 a b Bernier A Carlson SM Bordeleau S Carrier J 2010 Relations between physiological and cognitive regulatory systems infant sleep regulation and subsequent executive functioning Child Development 81 6 1739 52 doi 10 1111 j 1467 8624 2010 01507 x PMID 21077861 Hupbach A Gomez RL Bootzin RR Nadel L November 2009 Nap dependent learning in infants Developmental Science 12 6 1007 12 CiteSeerX 10 1 1 712 685 doi 10 1111 j 1467 7687 2009 00837 x PMID 19840054 Mindell JA Williamson AA August 2018 Benefits of a bedtime routine in young children Sleep development and beyond Sleep Medicine Reviews 40 93 108 doi 10 1016 j smrv 2017 10 007 PMC 6587181 PMID 29195725 a b Hirshkowitz M Whiton K Albert SM Alessi C Bruni O DonCarlos L et al March 2015 National Sleep Foundation s sleep time duration recommendations methodology and results summary Sleep Health 1 1 40 43 doi 10 1016 j sleh 2014 12 010 PMID 29073412 S2CID 205190733 Archived from the original on 14 November 2017 Retrieved 4 February 2015 Siegel JM October 2005 Clues to the functions of mammalian sleep Nature 437 7063 1264 71 Bibcode 2005Natur 437 1264S doi 10 1038 nature04285 PMC 8760626 PMID 16251951 S2CID 234089 a b Raymond Cespuglio Damien Colas amp Sabine Gautier Sauvigne Energy Processes Underlying the Sleep Wake Cycle Chapter 1 in Parmeggiani amp Velluti 2005 Eugene AR Masiak J March 2015 The Neuroprotective Aspects of Sleep MEDtube Science 3 1 35 40 PMC 4651462 PMID 26594659 Hobson JA October 2005 Sleep is of the brain by the brain and for the brain Nature 437 7063 1254 1256 Bibcode 2005Natur 437 1254H doi 10 1038 nature04283 PMID 16251949 S2CID 1055112 Plihal W Born J July 1997 Effects of early and late nocturnal sleep on declarative and procedural memory Journal of Cognitive Neuroscience 9 4 534 47 doi 10 1162 jocn 1997 9 4 534 PMID 23968216 S2CID 3300300 a b c d Rasch B Buchel C Gais S Born J March 2007 Odor cues during slow wave sleep prompt declarative memory consolidation Science 315 5817 1426 9 Bibcode 2007Sci 315 1426R doi 10 1126 science 1138581 PMID 17347444 S2CID 19788434 a b c d e Born J Wilhelm I March 2012 System consolidation of memory during sleep Psychological Research 76 2 192 203 doi 10 1007 s00426 011 0335 6 PMC 3278619 PMID 21541757 Diekelmann S Born J February 2010 The memory function of sleep Nature Reviews Neuroscience 11 2 114 26 doi 10 1038 nrn2762 PMID 20046194 S2CID 1851910 a b Rasch B Born J April 2013 About sleep s role in memory Physiological Reviews 93 2 681 766 doi 10 1152 physrev 00032 2012 PMC 3768102 PMID 23589831 a b Schreiner T Rasch B November 2015 Boosting Vocabulary Learning by Verbal Cueing During Sleep Cerebral Cortex 25 11 4169 79 doi 10 1093 cercor bhu139 PMID 24962994 a b c Schreiner T Rasch B April 2017 The beneficial role of memory reactivation for language learning during sleep A review PDF Brain and Language 167 94 105 doi 10 1016 j bandl 2016 02 005 PMID 27036946 S2CID 3377186 a b Ngo HV Martinetz T Born J Molle M May 2013 Auditory closed loop stimulation of the sleep slow oscillation enhances memory Neuron 78 3 545 53 doi 10 1016 j neuron 2013 03 006 PMID 23583623 Klinzing JG Kugler S Soekadar SR Rasch B Born J Diekelmann S January 2018 Odor cueing during slow wave sleep benefits memory independently of low cholinergic tone Psychopharmacology 235 1 291 299 doi 10 1007 s00213 017 4768 5 PMC 5748395 PMID 29119218 Schreiner T Doeller CF Jensen O Rasch B Staudigl T October 2018 Theta Phase Coordinated Memory Reactivation Reoccurs in a Slow Oscillatory Rhythm during NREM Sleep Cell Reports 25 2 296 301 doi 10 1016 j celrep 2018 09 037 PMC 6198287 PMID 30304670 Schreiner T Goldi M Rasch B November 2015 Cueing vocabulary during sleep increases theta activity during later recognition testing Psychophysiology 52 11 1538 43 doi 10 1111 psyp 12505 PMID 26235609 Groch S Schreiner T Rasch B Huber R Wilhelm I January 2017 Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep Scientific Reports 7 39763 Bibcode 2017NatSR 739763G doi 10 1038 srep39763 PMC 5209656 PMID 28051138 J Alan Hobson Edward F Pace Scott amp Robert Stickgold 2000 Dreaming and the brain Toward a cognitive neuroscience of conscious states Behavioral and Brain Sciences 23 Konkoly Karen R Appel Kristoffer Chabani Emma et al 18 February 2021 Real time dialogue between experimenters and dreamers during REM sleep Current Biology 31 7 1417 1427 e6 doi 10 1016 j cub 2021 01 026 ISSN 0960 9822 PMC 8162929 PMID 33607035 nbsp Available under CC BY 4 0 Archived 2017 10 16 at the Wayback Machine See Freud The Interpretation of Dreams Pinel JP 2011 Biopsychology 8th Edition Pearson Education Inc p 359 ISBN 978 0 205 83256 9 Saladin KS 2012 Anatomy and Physiology The Unity of Form and Function 6th ed McGraw Hill p 537 ISBN 978 0 07 337825 1 Brown pp 1146 1147 Buman MP King AC 2010 Exercise as a Treatment to Enhance Sleep American Journal of Lifestyle Medicine 4 6 500 514 doi 10 1177 1559827610375532 S2CID 73314918 Siriwardena AN Qureshi Z Gibson S Collier S Latham M December 2006 GPs attitudes to benzodiazepine and Z drug prescribing a barrier to implementation of evidence and guidance on hypnotics The British Journal of General Practice 56 533 964 7 PMC 1934058 PMID 17132386 Wagner J Wagner ML Hening WA June 1998 Beyond benzodiazepines alternative pharmacologic agents for the treatment of insomnia The Annals of Pharmacotherapy 32 6 680 91 doi 10 1345 aph 17111 PMID 9640488 S2CID 34250754 Lopez HH Bracha AS Bracha HS September 2002 Evidence based complementary intervention for insomnia PDF Hawaii Medical Journal 61 9 192 213 PMID 12422383 Archived PDF from the original on 1 May 2015 Retrieved 16 December 2010 a b c Hale L Troxel W Buysse DJ April 2020 Sleep Health An Opportunity for Public Health to Address Health Equity Annual Review of Public Health 41 1 81 99 doi 10 1146 annurev publhealth 040119 094412 PMC 7944938 PMID 31900098 Jackson CL Redline S Emmons KM March 2015 Sleep as a potential fundamental contributor to disparities in cardiovascular health Annual Review of Public Health 36 1 417 440 doi 10 1146 annurev publhealth 031914 122838 PMC 4736723 PMID 25785893 Cespedes Feliciano EM Quante M Rifas Shiman SL Redline S Oken E Taveras EM July 2018 Objective Sleep Characteristics and Cardiometabolic Health in Young Adolescents Pediatrics 142 1 e20174085 doi 10 1542 peds 2017 4085 PMC 6260972 PMID 29907703 St Onge MP Grandner MA Brown D Conroy MB Jean Louis G Coons M Bhatt DL November 2016 Sleep Duration and Quality Impact on Lifestyle Behaviors and Cardiometabolic Health A Scientific Statement From the American Heart Association Circulation Review 134 18 e367 e386 doi 10 1161 CIR 0000000000000444 PMC 5567876 PMID 27647451 Wang R Dong Y Weng J Kontos EZ Chervin RD Rosen CL et al January 2017 Associations among Neighborhood Race and Sleep Apnea Severity in Children A Six City Analysis Annals of the American Thoracic Society 14 1 76 84 doi 10 1513 AnnalsATS 201609 662OC PMC 5291481 PMID 27768852 Mental Health and Sleep Sleep Foundation 18 September 2020 Retrieved 18 November 2021 CDC Sleep Hygiene Tips Sleep and Sleep Disorders cdc gov 13 February 2019 Retrieved 18 November 2021 a b Lee chiong T 2008 Sleep Medicine Essentials and Review Oxford University Press US p 52 ISBN 978 0 19 530659 0 Archived from the original on 11 March 2017 Retrieved 25 September 2016 Turek FW Czeisler CA 1999 Role of Melatonin in the Regulation of Sleep In Zee PC Turek FW eds Regulation of Sleep and Circadian Rhythms pp 181 195 Marijuana Sleep and Dreams psychologytoday com Retrieved on 10 February 2012 Rosen Ilene M Aurora R Nisha Kirsch Douglas B Carden Kelly A Malhotra Raman K Ramar Kannan Abbasi Feinberg Fariha Kristo David A Martin Jennifer L Olson Eric J Rosen Carol L Rowley James A Shelgikar Anita V 15 November 2019 Chronic Opioid Therapy and Sleep An American Academy of Sleep Medicine Position Statement Journal of Clinical Sleep Medicine 15 11 1671 1673 doi 10 5664 jcsm 8062 ISSN 1550 9389 PMC 6853382 PMID 31739858 Mamelak M Escriu J M Stokan O April 1977 The effects of gamma hydroxybutyrate on sleep Biological Psychiatry 12 2 273 288 ISSN 0006 3223 PMID 192353 Abarca C Albrecht U Spanagel R June 2002 Cocaine sensitization and reward are under the influence of circadian genes and rhythm Proceedings of the National Academy of Sciences of the United States of America 99 13 9026 30 Bibcode 2002PNAS 99 9026A doi 10 1073 pnas 142039099 PMC 124417 PMID 12084940 Primary hypersomnia Diagnostic Features mindsite com O Callaghan F Muurlink O Reid N 7 December 2018 Effects of caffeine on sleep quality and daytime functioning Risk Management and Healthcare Policy 11 263 271 doi 10 2147 RMHP S156404 PMC 6292246 PMID 30573997 Shimatsu Akira September 2004 Ghrelin related drugs clinical perspectives Nihon Rinsho Japanese Journal of Clinical Medicine 62 Suppl 9 435 438 ISSN 0047 1852 PMID 15506422 Murphy P J Badia P Myers B L Boecker M R Wright K P June 1994 Nonsteroidal anti inflammatory drugs affect normal sleep patterns in humans Physiology amp Behavior 55 6 1063 1066 doi 10 1016 0031 9384 94 90388 3 ISSN 0031 9384 PMID 8047572 S2CID 25887442 Copinschi G Leproult R Van Onderbergen A Caufriez A Cole K Y Schilling L M Mendel C M De Lepeleire I Bolognese J A Van Cauter E October 1997 Prolonged oral treatment with MK 677 a novel growth hormone secretagogue improves sleep quality in man Neuroendocrinology 66 4 278 286 doi 10 1159 000127249 ISSN 0028 3835 PMID 9349662 a b c St Onge MP Mikic A Pietrolungo CE September 2016 Effects of Diet on Sleep Quality Advances in Nutrition 7 5 938 49 doi 10 3945 an 116 012336 PMC 5015038 PMID 27633109 Peuhkuri K Sihvola N Korpela R May 2012 Diet promotes sleep duration and quality Nutrition Research 32 5 309 19 doi 10 1016 j nutres 2012 03 009 PMID 22652369 a b c d e f Worthman CM Melby MK 2002 6 Toward a comparative developmental ecology of human sleep In Carskadon MA ed Adolescent Sleep Patterns Biological Social and Psychological Influences Cambridge University Press pp 69 117 doi 10 1017 CBO9780511499999 009 ISBN 978 0521642910 Jeon M Dimitriou D Halstead EJ February 2021 A Systematic Review on Cross Cultural Comparative Studies of Sleep in Young Populations The Roles of Cultural Factors International Journal of Environmental Research and Public Health 18 4 2005 doi 10 3390 ijerph18042005 PMC 7922907 PMID 33669583 Samson DR 21 October 2021 The Human Sleep Paradox The Unexpected Sleeping Habits of Homo sapiens Annual Review of Anthropology 50 1 259 274 doi 10 1146 annurev anthro 010220 075523 ISSN 0084 6570 S2CID 237845665 Retrieved 2 June 2022 Jackson M Banks S 4 April 2018 Humans Used to Sleep in Two Shifts And Maybe We Should Do It Again Science Alert Retrieved 7 February 2022 Ekirch AR 2001 Sleep we have lost pre industrial slumber in the British Isles The American Historical Review 106 2 343 86 doi 10 2307 2651611 JSTOR 2651611 PMID 18680884 a b Hegarty S 22 February 2012 The myth of the eight hour sleep BBC News Archived from the original on 22 February 2012 Retrieved 22 February 2012 Huntington Ellsworth 1915 Civilization and Climate Archived 17 August 2016 at the Wayback Machine Yale University Press p 126 Hafiz D Hafiz I Hafiz Y 2009 The American Muslim Teenager s Handbook Simon amp Schuster Children s ISBN 978 1416986997 a b c d e f g William SJ 2005 Sleep and Society Sociological Ventures into the Un known New York City and London Routledge pp 95 96 ISBN 978 0 415 35419 6 On Death On Death Poem by John Keats Poem Hunter 29 March 2010 Chadwick NK 1935 Imbas Forosnai Scottish Gaelic Studies 4 97 135 MacKillop J 1998 A Dictionary of Celtic Mythology Oxford Oxford University Press ISBN 0 19 280120 1 a b c d e f g h i j k l Hansen W 2017 The Book of Greek amp Roman Folktales Legends amp Myths Princeton New Jersey Princeton University Press pp 132 133 ISBN 978 0691170152 a b c d Burstein A 2007 The Original Knickerbocker The Life of Washington Irving New York Basic Books pp 120 338 ISBN 978 0 465 00853 7 Rip Van Winkle Welch D 9 May 1887 The Theater Vol 3 New York City New York Theatre Publishing Company p 139 Retrieved 21 June 2017 Thorn J Saint Rip nyfolklore org Voices The Journal of New York Folklore Archived from the original on 18 October 2017 Retrieved 21 June 2017 Bates A 1906 The Drama Its History Literature and Influence on Civilization American Drama Vol 20 London England Historical Publishing Company p 121 Retrieved 21 June 2017 a b c d e f Rothschild CK 2014 Paul in Athens The Popular Religious Context of Acts 17 Tubingen Mohr Siebeck pp 40 42 ISBN 978 3 16 153260 3 Jones BJ 2008 Washington Irving An American Original New York Arcade Books pp 177 178 ISBN 978 1 55970 836 4 Churchland Patricia Smith 1 January 2005 A neurophilosophical slant on consciousness research Progress in Brain Research Vol 149 Elsevier pp 285 293 Doerig Adrien Schurger Aaron Hess Kathryn Herzog Michael H 1 July 2019 The unfolding argument Why IIT and other causal structure theories cannot explain consciousness Consciousness and Cognition 72 49 59 doi 10 1016 j concog 2019 04 002 ISSN 1053 8100 PMID 31078047 S2CID 147704603 Tsytsarev Vassiliy February 2022 Methodological aspects of studying the mechanisms of consciousness Behavioural Brain Research 419 113684 doi 10 1016 j bbr 2021 113684 PMID 34838578 S2CID 244570791 Kerskens Christian Matthias Lopez Perez David 1 October 2022 Experimental indications of non classical brain functions Journal of Physics Communications 6 10 105001 arXiv 1806 07998 Bibcode 2022JPhCo 6j5001K doi 10 1088 2399 6528 ac94be ISSN 2399 6528 Frank P 24 June 2016 Why Have Artists Always Found Sleep Such A Fascinating Subject HuffPost Archived from the original on 25 July 2017 Retrieved 14 July 2017 Further readingBrown RE Basheer R McKenna JT Strecker RE McCarley RW July 2012 Control of sleep and wakefulness Physiological Reviews 92 3 1087 187 doi 10 1152 physrev 00032 2011 PMC 3621793 PMID 22811426 External links nbsp Wikimedia Commons has media related to Sleep nbsp Wikiquote has quotations related to Sleep nbsp Look up sleep in Wiktionary the free dictionary Rethinking Sleep David K Randall New York Times September 2012 How to Sleep James Hamblin The Atlantic January 2017 Retrieved from https en wikipedia org w index php title Sleep amp oldid 1203246651, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.