fbpx
Wikipedia

Plant disease

Plant diseases are diseases in plants caused by pathogens (infectious organisms) and environmental conditions (physiological factors).[1] Organisms that cause infectious disease include fungi, oomycetes, bacteria, viruses, viroids, virus-like organisms, phytoplasmas, protozoa, nematodes and parasitic plants.[2] Not included are ectoparasites like insects, mites, vertebrates, or other pests that affect plant health by eating plant tissues and causing injury that may admit plant pathogens. The study of plant disease is called plant pathology.

Life cycle of the black rot pathogen, the gram negative bacterium Xanthomonas campestris pathovar campestris

Plant pathogens edit

Fungi edit

 
Powdery mildew, a biotrophic Ascomycete fungus

Most phytopathogenic fungi are Ascomycetes or Basidiomycetes. They reproduce both sexually and asexually via the production of spores and other structures. Spores may be spread long distances by air or water, or they may be soil borne. Many soil inhabiting fungi are capable of living saprotrophically, carrying out the part of their life cycle in the soil. These are facultative saprotrophs.

Fungal diseases may be controlled through the use of fungicides and other agriculture practices. However, new races of fungi often evolve that are resistant to various fungicides.

Biotrophic fungal pathogens colonize living plant tissue and obtain nutrients from living host cells. Necrotrophic fungal pathogens infect and kill host tissue and extract nutrients from the dead host cells.[3]

Significant fungal plant pathogens include:

Ascomycetes edit

Basidiomycetes edit

 
Wheat leaf rust caused by the Basidiomycete Puccinia tricicina

Fungus-like organisms edit

Oomycetes edit

The oomycetes are fungus-like organisms among the Stramenopiles.[9] They include some of the most destructive plant pathogens, such as the causal agents of potato late blight[9] root rot,[10] and sudden oak death.[11][12]

Despite not being closely related to the fungi, the oomycetes have developed similar infection strategies, using effector proteins to turn off a plant's defenses.[13]

Phytomyxea edit

Some slime molds in Phytomyxea cause important diseases, including clubroot in cabbage and its relatives and powdery scab in potatoes. These are caused by species of Plasmodiophora and Spongospora, respectively.[14]

Bacteria edit

 
Crown gall disease caused by Agrobacterium

Most bacteria associated with plants are saprotrophic and do no harm to the plant itself. However, a small number, around 100 known species, cause disease, especially in subtropical and tropical regions of the world.[15][page needed]

Most plant pathogenic bacteria are bacilli. Erwinia uses cell wall–degrading enzymes to cause soft rot. Agrobacterium changes the level of auxins to cause tumours with phytohormones.

Significant bacterial plant pathogens include:

Mollicutes edit

 
Vitis vinifera with "Ca. Phytoplasma vitis" infection

Phytoplasma and Spiroplasma are obligate intracellular parasites, bacteria that lack cell walls and, like the mycoplasmas, which are human pathogens, they belong to the class Mollicutes. Their cells are extremely small, 1 to 2 micrometres across. They tend to have small genomes (roughly between 0.5 and 2 Mb). They are normally transmitted by leafhoppers (cicadellids) and psyllids, both sap-sucking insect vectors. These inject the bacteria into the plant's phloem, where it reproduces.[19]

 
Tobacco mosaic virus

Viruses edit

Many plant viruses cause only a loss of crop yield. Therefore, it is not economically viable to try to control them, except when they infect perennial species, such as fruit trees.[citation needed]

Most plant viruses have small, single-stranded RNA genomes. Some also have double stranded RNA or single or double stranded DNA. These may encode only three or four proteins: a replicase, a coat protein, a movement protein to facilitate cell to cell movement through plasmodesmata, and sometimes a protein that allows transmission by a vector.[citation needed]

Plant viruses are generally transmitted by a vector, but mechanical and seed transmission also occur. Vectors are often insects such as aphids; others are fungi, nematodes, and protozoa. In many cases, the insect and virus are specific for virus transmission such as the beet leafhopper that transmits the curly top virus causing disease in several crop plants.[20]

Nematodes edit

 
Root-knot nematode galls

Some nematodes parasitize plant roots. They are a problem in tropical and subtropical regions. Potato cyst nematodes (Globodera pallida and G. rostochiensis) are widely distributed in Europe and the Americas, causing $300 million worth of damage in Europe annually. Root knot nematodes have quite a large host range, they parasitize plant root systems and thus directly affect the uptake of water and nutrients needed for normal plant growth and reproduction,[21] whereas cyst nematodes tend to be able to infect only a few species. Nematodes are able to cause radical changes in root cells in order to facilitate their lifestyle.[22]

Protozoa edit

A few plant diseases are caused by protozoa such as Phytomonas, a kinetoplastid.[23] They are transmitted as durable zoospores that may be able to survive in a resting state in the soil for many years. Further, they can transmit plant viruses. When the motile zoospores come into contact with a root hair they produce a plasmodium which invades the roots.[citation needed]

Physiological plant disorders edit

Some abiotic disorders can be confused with pathogen-induced disorders. Abiotic causes include natural processes such as drought, frost, snow and hail; flooding and poor drainage; nutrient deficiency; deposition of mineral salts such as sodium chloride and gypsum; windburn and breakage by storms; and wildfires. [24]

 
Orchid leaves with viral infections

Epidemics edit

Plants are subject to disease epidemics.

Port and border inspection and quarantine edit

The introduction of harmful nonnative organisms into a country van be reduced by controlling human traffic (e.g., the Australian Quarantine and Inspection Service). Global trade provides unprecedented opportunities for the introduction of plant pests.[McC 1] In the United States, even to get a better estimate of the number of such introductions would require a substantial increase in inspections.[McC 2] In Australia a similar shortcoming of understanding has a different origin: Port inspections are not very useful because inspectors know too little about taxonomy. There are often pests that the Australian Government has prioritised as harmful to be kept out of the country, but which have near taxonomic relatives that confuse the issue.[BH 1]

X-ray and electron-beam/E-beam irradiation of food has been trialed as a quarantine treatment for fruit commodities originating from Hawaii. The US FDA (Food and Drug Administration), USDA APHIS (Animal and Plant Health Inspection Service), producers, and consumers were all accepting of the results - more thorough pest eradication and lesser taste degradation than heat treatment.[25]

The International Plant Protection Convention (IPPC) anticipates that molecular diagnostics for inspections will continue to improve.[26] Between 2020 and 2030, IPPC expects continued technological improvement to lower costs and improve performance, albeit not for less developed countries unless funding changes.[26]

Chemical edit

Many natural and synthetic compounds can be employed to combat plant diseases. This method works by directly eliminating disease-causing organisms or curbing their spread; however, it has been shown to have too broad an effect, typically, to be good for the local ecosystem. From an economic standpoint, all but the simplest natural additives may disqualify a product from "organic" status, potentially reducing the value of the yield.

Biological edit

Crop rotation is a traditional and sometimes effective means of preventing pests and diseases from becoming well-established, alongside other benefits.[27]

Other biological methods include inoculation. Protection against infection by Agrobacterium tumefaciens, which causes gall diseases in many plants, can be provided by dipping cuttings in suspensions of Agrobacterium radiobacter before inserting them in the ground to take root.[28]

Economic impact edit

Plant diseases cause major economic losses for farmers worldwide. Across large regions and many crop species, it is estimated that diseases typically reduce plant yields by 10% every year in more developed settings, but yield loss to diseases often exceeds 20% in less developed settings. The Food and Agriculture Organization estimates that pests and diseases are responsible for about 25% of crop loss. To solve this, new methods are needed to detect diseases and pests early, such as novel sensors that detect plant odours and spectroscopy and biophotonics that are able to diagnose plant health and metabolism.[29]

As of 2018 the most costly diseases of the most produced crops worldwide are:[30]

Crop Disease Latin name Disease common name
Banana and plaintain banana bunchy top virus (BBTV) banana bunchy top
Mycosphaerella fijiensis black sigatoka
Fusarium oxysporum f.sp. cubense Panama disease
Barley Fusarium graminearum Fusarium head blight
Blumeria graminis f. sp. hordei powdery mildew
Puccinia graminis f. sp. hordei barley stem rust
Cassava African cassava mosaic virus (ACMVD) African cassava mosaic disease
Xanthomonas axonopodis pv. manihotis bacterial blight
cassava brown streak virus (CBSV) cassava brown streak disease
Cotton Xanthomonas citri pv. malvacearum bacterial blight
Fusarium oxysporum f. sp. vasinfectum Fusarium wilt
Verticillium dahliae Verticillium wilt
Maize/corn Aspergillus flavus Aspergillus ear rot
Fusarium graminearum Giberella stalk and ear rot
Cercospora zeae-maydis grey leaf spot
Palm fruit Ganoderma orbiforme/Ganoderma boninense Basal stem rot
Phytophthora palmivora bud rot
Peanut groundnut rosette virus (GNV) Groundnut rosette disease
GNV satellite RNA
groundnut rosette assistor virus (GRAV)
Potato Ralstonia solanacearum Potato brown rot
Phytophthora infestans late blight
Rapeseed and mustard Leptosphaeria maculans Phoma stem canker
Sclerotinia sclerotiorum Sclerotinia stem rot
Rice Magnaporthe oryzae rice blast
Xanthomonas oryzae pv. oryzae rice bacterial blight
Rhizoctonia solani sheath blight
Sorghum and millet Colletotrichum sublineolum Anthracnose
Exserohilum turcicum Turcicum leaf blight
Soybean Heterodera glycines soybean cyst nematode disease
Phakopsora pachyrhizi Asian soybean rust
Sugar beet Cercospora beticola Cercospora leaf spot
beet necrotic yellow vein virus (BNYVV) rhizomania
Sugarcane Leifsonia xyli subsp. xyli Ratoon stunting
Colletotrichum falcatum red rot
Sweet potato sweet potato feathery mottle virus (SPFMV) sweet potato virus disease (SPVD)
sweet potato chlorotic stunt virus (SPCSV)
Tomato Phytophthora infestans late blight
tomato yellow leaf curl virus (TYLCV) tomato yellow leaf curl
Wheat Fusarium graminearum Fusarium head blight
Puccinia graminis wheat stem rust
Puccinia striiformis wheat yellow rust
Yam Colletotrichum gloeosporioides anthracnose
yam mosaic virus (YMV) yam mosaic disease

See also edit

Notes edit

  1. ^ p. 17, "It is clear, however, that continuing increases in global trade and travel will provide opportunities for nonindigenous species to be transported into the U.S. at rates that are unprecedented in world history."
  2. ^ p. 17, " A more comprehensive estimate of the frequency and diversity of nonindigenous plants, particularly those introduced as contaminants in cargo, would likely require a substantial increase in inspection efforts by APHIS personnel."
  1. ^ p. 39, Table 2

References edit

  1. ^ Agrios GN (1972). Plant Pathology (3rd ed.). Academic Press.
  2. ^ Nazarov PA, Baleev DN, Ivanova MI, Sokolova LM, Karakozova MV (2020-10-27). "Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection". Acta Naturae. 12 (3): 46–59. doi:10.32607/actanaturae.11026. PMC 7604890. PMID 33173596.
  3. ^ Yu. T Dyakov, Chapter 0 - Overview on parasitism, Editors: Yu, T. Dyakov, V.G. Dzhavakhiya, T. Korpela, Studies in Plant Science, Comprehensive and Molecular Phytopathology, Elsevier, 2007, Pages 3-17, ISSN 0928-3420, ISBN 9780444521323, https://doi.org/10.1016/B978-044452132-3/50003-1.
  4. ^ Begerow, D.; Schäfer, A.M.; Kellner, R.; Yurkov, A.; Kemler, M.; Oberwinkler, F.; Bauer, R. (2014). "Ustilaginomycotina.". In McLaughlin, D.J.; Spatafora, J.W. (eds.). The Mycota. Vol. VII Part A. Systematics and Evolution (2 ed.). Berlin.: Springer-Verlag. pp. 295–329.
  5. ^ Roberts P. (1999). Rhizoctonia-forming fungi. Kew: Royal Botanic Gardens. p. 239. ISBN 1-900347-69-5.
  6. ^ "Soybean Rust". National Invasive Species Information Center. 2012-02-24. Retrieved 2020-12-06.
  7. ^ "Fungi", Lillian E Hawker, 1966, p. 167
  8. ^ Daley, Jason (15 October 2018). "This Humongous Fungus Is as Massive as Three Blue Whales". Smithsonian.com. Smithsonian Institution. Retrieved 21 October 2018.
  9. ^ a b Davis N (September 9, 2009). "Genome of Irish potato famine pathogen decoded". Haas et al. Broad Institute of MIT and Harvard. Retrieved 24 July 2012.
  10. ^ Sutton, John Clifford; Sopher, Coralie Rachelle; Owen-Going, Tony Nathaniel; Liu, Weizhong; Grodzinski, Bernard; Hall, John Christopher; Benchimol, Ruth Linda (1990-01-06). "Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives". Summa Phytopathologica. 32 (4): 307–321. doi:10.1590/S0100-54052006000400001. ISSN 0100-5405.
  11. ^ Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, et al. (May 2015). "The Top 10 oomycete pathogens in molecular plant pathology" (PDF). Molecular Plant Pathology. 16 (4): 413–434. doi:10.1111/mpp.12190. PMC 6638381. PMID 25178392.
  12. ^ Grünwald NJ, Goss EM, Press CM (November 2008). "Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals". Molecular Plant Pathology. 9 (6): 729–40. doi:10.1111/J.1364-3703.2008.00500.X. PMC 6640315. PMID 19019002.
  13. ^ "Scientists discover how deadly fungal microbes enter host cells". (VBI) at Virginia Tech affiliates. Physorg. July 22, 2010. Retrieved July 31, 2012.
  14. ^ Schwelm, Arne; Badstöber, Julia; Bulman, Simon; Desoignies, Nicolas; Etemadi, Mohammad; et al. (2018). "Not in your usual Top 10: protists that infect plants and algae". Molecular Plant Pathology. 19 (4): 1029–1044. doi:10.1111/mpp.12580. PMC 5772912. PMID 29024322.
  15. ^ Jackson RW, ed. (2009). Plant Pathogenic Bacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-37-0.
  16. ^ Burkholder WH (October 1948). "Bacteria as plant pathogens". Annual Review of Microbiology. 2 (1 vol.): 389–412. doi:10.1146/annurev.mi.02.100148.002133. PMID 18104350.
  17. ^ An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, et al. (October 2019). "Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas". FEMS Microbiology Reviews. 44 (1): 1–32. doi:10.1093/femsre/fuz024. PMC 8042644. PMID 31578554.
  18. ^ "Research team unravels tomato pathogen's tricks of the trade". Virginia Tech. 2011.
  19. ^ Gasparich, Gail E. (2010). "Spiroplasmas and phytoplasmas: Microbes associated with plant hosts". Biologicals. 38 (2): 193–203. doi:10.1016/j.biologicals.2009.11.007. PMID 20153217. S2CID 23419581.
  20. ^ Creamer R, Hubble H, Lewis A (May 2005). "Curtovirus Infection of Chile Pepper in New Mexico". Plant Disease. 89 (5): 480–486. doi:10.1094/PD-89-0480. PMID 30795425.
  21. ^ Huynh BL, Matthews WC, Ehlers JD, Lucas MR, Santos JR, Ndeve A, et al. (January 2016). "A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.)". Theoretical and Applied Genetics. 129 (1): 87–95. doi:10.1007/s00122-015-2611-0. PMC 4703619. PMID 26450274.
  22. ^ Dos Santos JJ, de Brida AL, Jean-Baptiste MC, Bernardi D, Wilcken SR, Leite LG, Garcia FR (August 2022). Lee J (ed.). "Effectiveness of Steinernema rarum PAM 25 (Rhabditida: Steinernematidae) Against Drosophila suzukii (Diptera: Drosophilidae)". Journal of Economic Entomology. 115 (4): 967–971. doi:10.1093/jee/toac010. PMID 35187578.
  23. ^ Jankevicius JV, Itow-Jankevicius S, Maeda LA, Campaner M, Conchon I, et al. (1988). "Ciclo biológico de Phytomonas" [Biological cycle of Phytomonas]. Memórias do Instituto Oswaldo Cruz (in Portuguese). 83: 601–10. doi:10.1590/S0074-02761988000500073. PMID 3253512.
  24. ^ Schutzki, R.E.; Cregg, B. (2007). (PDF). Michigan State University Department of Horticulture. Michigan State University. Archived from the original (PDF) on 24 September 2015. Retrieved 10 April 2015.
  25. ^ Moy JH, Wong L (2002). "The efficacy and progress in using radiation as a quarantine treatment of tropical fruits — A case study in Hawaii". Radiation Physics and Chemistry. Elsevier BV. 63 (3–6): 397–401. Bibcode:2002RaPC...63..397M. doi:10.1016/s0969-806x(01)00557-6. ISSN 0969-806X. S2CID 93883640.
  26. ^ a b International Plant Protection Convention (IPPC) (2021). Strategic framework for the International Plant Protection Convention (IPPC) 2020–2030 : Protecting global plant resources and facilitating safe trade. Rome: UN FAO (Food and Agriculture Organization of the United Nations). pp. viii + 28.
  27. ^ Dufour, Rex (July 2015). Tipsheet: Crop Rotation in Organic Farming Systems (Report). National Center for Appropriate Technology. Retrieved 4 May 2016.
  28. ^ Ryder MH, Jones DA (1991-10-01). "Biological Control of Crown Gall Using Using Agrobacterium Strains K84 and K1026". Functional Plant Biology. 18 (5): 571–579. doi:10.1071/pp9910571.
  29. ^ Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, et al. (January 2015). "Advanced methods of plant disease detection. A review" (PDF). Agronomy for Sustainable Development. 35 (1): 1–25. doi:10.1007/s13593-014-0246-1. S2CID 18000844.
  30. ^ Velásquez AC, Castroverde CD, He SY (May 2018). "Plant-Pathogen Warfare under Changing Climate Conditions". Current Biology. Cell Press. 28 (10): R619–R634. doi:10.1016/j.cub.2018.03.054. PMC 5967643. PMID 29787730.

External links edit

  • Pacific Northwest Fungi, online mycology journal with papers on fungal plant pathogens
  • The Pest and Pathogens Glossary

plant, disease, journal, plant, disease, journal, diseases, plants, caused, pathogens, infectious, organisms, environmental, conditions, physiological, factors, organisms, that, cause, infectious, disease, include, fungi, oomycetes, bacteria, viruses, viroids,. For the journal see Plant Disease journal Plant diseases are diseases in plants caused by pathogens infectious organisms and environmental conditions physiological factors 1 Organisms that cause infectious disease include fungi oomycetes bacteria viruses viroids virus like organisms phytoplasmas protozoa nematodes and parasitic plants 2 Not included are ectoparasites like insects mites vertebrates or other pests that affect plant health by eating plant tissues and causing injury that may admit plant pathogens The study of plant disease is called plant pathology Life cycle of the black rot pathogen the gram negative bacterium Xanthomonas campestris pathovar campestris Contents 1 Plant pathogens 1 1 Fungi 1 1 1 Ascomycetes 1 1 2 Basidiomycetes 1 2 Fungus like organisms 1 2 1 Oomycetes 1 2 2 Phytomyxea 1 3 Bacteria 1 3 1 Mollicutes 1 4 Viruses 1 5 Nematodes 1 6 Protozoa 2 Physiological plant disorders 3 Epidemics 3 1 Port and border inspection and quarantine 3 2 Chemical 3 3 Biological 4 Economic impact 5 See also 6 Notes 7 References 8 External linksPlant pathogens editFurther information Lists of plant diseases Fungi edit nbsp Powdery mildew a biotrophic Ascomycete fungusMost phytopathogenic fungi are Ascomycetes or Basidiomycetes They reproduce both sexually and asexually via the production of spores and other structures Spores may be spread long distances by air or water or they may be soil borne Many soil inhabiting fungi are capable of living saprotrophically carrying out the part of their life cycle in the soil These are facultative saprotrophs Fungal diseases may be controlled through the use of fungicides and other agriculture practices However new races of fungi often evolve that are resistant to various fungicides Biotrophic fungal pathogens colonize living plant tissue and obtain nutrients from living host cells Necrotrophic fungal pathogens infect and kill host tissue and extract nutrients from the dead host cells 3 Significant fungal plant pathogens include Ascomycetes edit Fusarium spp Fusarium wilt disease Thielaviopsis spp canker rot black root rot Thielaviopsis root rot Verticillium spp Magnaporthe grisea rice blast Sclerotinia sclerotiorum cottony rot Basidiomycetes edit nbsp Wheat leaf rust caused by the Basidiomycete Puccinia tricicinaUstilago spp smuts 4 Rhizoctonia spp 5 Phakospora pachyrhizi soybean rust 6 Puccinia spp severe rusts of cereals and grasses fungus rusts 7 Armillaria spp honey fungus species virulent pathogens of trees 8 Fungus like organisms edit Oomycetes edit The oomycetes are fungus like organisms among the Stramenopiles 9 They include some of the most destructive plant pathogens such as the causal agents of potato late blight 9 root rot 10 and sudden oak death 11 12 Despite not being closely related to the fungi the oomycetes have developed similar infection strategies using effector proteins to turn off a plant s defenses 13 Phytomyxea edit Some slime molds in Phytomyxea cause important diseases including clubroot in cabbage and its relatives and powdery scab in potatoes These are caused by species of Plasmodiophora and Spongospora respectively 14 Bacteria edit nbsp Crown gall disease caused by AgrobacteriumMost bacteria associated with plants are saprotrophic and do no harm to the plant itself However a small number around 100 known species cause disease especially in subtropical and tropical regions of the world 15 page needed Most plant pathogenic bacteria are bacilli Erwinia uses cell wall degrading enzymes to cause soft rot Agrobacterium changes the level of auxins to cause tumours with phytohormones Significant bacterial plant pathogens include Burkholderia 16 Pseudomonadota Xanthomonas spp 17 Pseudomonas spp Pseudomonas syringae pv tomato causes tomato plants to produce less fruit and it continues to adapt to the tomato by minimizing its recognition by the tomato immune system 18 Mollicutes edit nbsp Vitis vinifera with Ca Phytoplasma vitis infectionPhytoplasma and Spiroplasma are obligate intracellular parasites bacteria that lack cell walls and like the mycoplasmas which are human pathogens they belong to the class Mollicutes Their cells are extremely small 1 to 2 micrometres across They tend to have small genomes roughly between 0 5 and 2 Mb They are normally transmitted by leafhoppers cicadellids and psyllids both sap sucking insect vectors These inject the bacteria into the plant s phloem where it reproduces 19 nbsp Tobacco mosaic virusViruses edit Main article Plant virus Many plant viruses cause only a loss of crop yield Therefore it is not economically viable to try to control them except when they infect perennial species such as fruit trees citation needed Most plant viruses have small single stranded RNA genomes Some also have double stranded RNA or single or double stranded DNA These may encode only three or four proteins a replicase a coat protein a movement protein to facilitate cell to cell movement through plasmodesmata and sometimes a protein that allows transmission by a vector citation needed Plant viruses are generally transmitted by a vector but mechanical and seed transmission also occur Vectors are often insects such as aphids others are fungi nematodes and protozoa In many cases the insect and virus are specific for virus transmission such as the beet leafhopper that transmits the curly top virus causing disease in several crop plants 20 Nematodes edit Main article Nematode nbsp Root knot nematode gallsSome nematodes parasitize plant roots They are a problem in tropical and subtropical regions Potato cyst nematodes Globodera pallida and G rostochiensis are widely distributed in Europe and the Americas causing 300 million worth of damage in Europe annually Root knot nematodes have quite a large host range they parasitize plant root systems and thus directly affect the uptake of water and nutrients needed for normal plant growth and reproduction 21 whereas cyst nematodes tend to be able to infect only a few species Nematodes are able to cause radical changes in root cells in order to facilitate their lifestyle 22 Protozoa edit A few plant diseases are caused by protozoa such as Phytomonas a kinetoplastid 23 They are transmitted as durable zoospores that may be able to survive in a resting state in the soil for many years Further they can transmit plant viruses When the motile zoospores come into contact with a root hair they produce a plasmodium which invades the roots citation needed Physiological plant disorders editMain article Physiological plant disorder Some abiotic disorders can be confused with pathogen induced disorders Abiotic causes include natural processes such as drought frost snow and hail flooding and poor drainage nutrient deficiency deposition of mineral salts such as sodium chloride and gypsum windburn and breakage by storms and wildfires 24 nbsp Orchid leaves with viral infectionsEpidemics editThis section needs expansion You can help by adding to it December 2023 Plants are subject to disease epidemics Port and border inspection and quarantine edit The introduction of harmful nonnative organisms into a country van be reduced by controlling human traffic e g the Australian Quarantine and Inspection Service Global trade provides unprecedented opportunities for the introduction of plant pests McC 1 In the United States even to get a better estimate of the number of such introductions would require a substantial increase in inspections McC 2 In Australia a similar shortcoming of understanding has a different origin Port inspections are not very useful because inspectors know too little about taxonomy There are often pests that the Australian Government has prioritised as harmful to be kept out of the country but which have near taxonomic relatives that confuse the issue BH 1 X ray and electron beam E beam irradiation of food has been trialed as a quarantine treatment for fruit commodities originating from Hawaii The US FDA Food and Drug Administration USDA APHIS Animal and Plant Health Inspection Service producers and consumers were all accepting of the results more thorough pest eradication and lesser taste degradation than heat treatment 25 The International Plant Protection Convention IPPC anticipates that molecular diagnostics for inspections will continue to improve 26 Between 2020 and 2030 IPPC expects continued technological improvement to lower costs and improve performance albeit not for less developed countries unless funding changes 26 Chemical edit See also Pesticide application Many natural and synthetic compounds can be employed to combat plant diseases This method works by directly eliminating disease causing organisms or curbing their spread however it has been shown to have too broad an effect typically to be good for the local ecosystem From an economic standpoint all but the simplest natural additives may disqualify a product from organic status potentially reducing the value of the yield Biological edit Crop rotation is a traditional and sometimes effective means of preventing pests and diseases from becoming well established alongside other benefits 27 Other biological methods include inoculation Protection against infection by Agrobacterium tumefaciens which causes gall diseases in many plants can be provided by dipping cuttings in suspensions of Agrobacterium radiobacter before inserting them in the ground to take root 28 Economic impact editPlant diseases cause major economic losses for farmers worldwide Across large regions and many crop species it is estimated that diseases typically reduce plant yields by 10 every year in more developed settings but yield loss to diseases often exceeds 20 in less developed settings The Food and Agriculture Organization estimates that pests and diseases are responsible for about 25 of crop loss To solve this new methods are needed to detect diseases and pests early such as novel sensors that detect plant odours and spectroscopy and biophotonics that are able to diagnose plant health and metabolism 29 As of 2018 update the most costly diseases of the most produced crops worldwide are 30 Crop Disease Latin name Disease common nameBanana and plaintain banana bunchy top virus BBTV banana bunchy topMycosphaerella fijiensis black sigatokaFusarium oxysporum f sp cubense Panama diseaseBarley Fusarium graminearum Fusarium head blightBlumeria graminis f sp hordei powdery mildewPuccinia graminis f sp hordei barley stem rustCassava African cassava mosaic virus ACMVD African cassava mosaic diseaseXanthomonas axonopodis pv manihotis bacterial blightcassava brown streak virus CBSV cassava brown streak diseaseCotton Xanthomonas citri pv malvacearum bacterial blightFusarium oxysporum f sp vasinfectum Fusarium wiltVerticillium dahliae Verticillium wiltMaize corn Aspergillus flavus Aspergillus ear rotFusarium graminearum Giberella stalk and ear rotCercospora zeae maydis grey leaf spotPalm fruit Ganoderma orbiforme Ganoderma boninense Basal stem rotPhytophthora palmivora bud rotPeanut groundnut rosette virus GNV Groundnut rosette diseaseGNV satellite RNAgroundnut rosette assistor virus GRAV Potato Ralstonia solanacearum Potato brown rotPhytophthora infestans late blightRapeseed and mustard Leptosphaeria maculans Phoma stem cankerSclerotinia sclerotiorum Sclerotinia stem rotRice Magnaporthe oryzae rice blastXanthomonas oryzae pv oryzae rice bacterial blightRhizoctonia solani sheath blightSorghum and millet Colletotrichum sublineolum AnthracnoseExserohilum turcicum Turcicum leaf blightSoybean Heterodera glycines soybean cyst nematode diseasePhakopsora pachyrhizi Asian soybean rustSugar beet Cercospora beticola Cercospora leaf spotbeet necrotic yellow vein virus BNYVV rhizomaniaSugarcane Leifsonia xyli subsp xyli Ratoon stuntingColletotrichum falcatum red rotSweet potato sweet potato feathery mottle virus SPFMV sweet potato virus disease SPVD sweet potato chlorotic stunt virus SPCSV Tomato Phytophthora infestans late blighttomato yellow leaf curl virus TYLCV tomato yellow leaf curlWheat Fusarium graminearum Fusarium head blightPuccinia graminis wheat stem rustPuccinia striiformis wheat yellow rustYam Colletotrichum gloeosporioides anthracnoseyam mosaic virus YMV yam mosaic diseaseSee also editBurl Common names of plant diseases Plant disease forecasting StuntingNotes edit p 17 It is clear however that continuing increases in global trade and travel will provide opportunities for nonindigenous species to be transported into the U S at rates that are unprecedented in world history p 17 A more comprehensive estimate of the frequency and diversity of nonindigenous plants particularly those introduced as contaminants in cargo would likely require a substantial increase in inspection efforts by APHIS personnel p 39 Table 2References edit Agrios GN 1972 Plant Pathology 3rd ed Academic Press Nazarov PA Baleev DN Ivanova MI Sokolova LM Karakozova MV 2020 10 27 Infectious Plant Diseases Etiology Current Status Problems and Prospects in Plant Protection Acta Naturae 12 3 46 59 doi 10 32607 actanaturae 11026 PMC 7604890 PMID 33173596 Yu T Dyakov Chapter 0 Overview on parasitism Editors Yu T Dyakov V G Dzhavakhiya T Korpela Studies in Plant Science Comprehensive and Molecular Phytopathology Elsevier 2007 Pages 3 17 ISSN 0928 3420 ISBN 9780444521323 https doi org 10 1016 B978 044452132 3 50003 1 Begerow D Schafer A M Kellner R Yurkov A Kemler M Oberwinkler F Bauer R 2014 Ustilaginomycotina In McLaughlin D J Spatafora J W eds The Mycota Vol VII Part A Systematics and Evolution 2 ed Berlin Springer Verlag pp 295 329 Roberts P 1999 Rhizoctonia forming fungi Kew Royal Botanic Gardens p 239 ISBN 1 900347 69 5 Soybean Rust National Invasive Species Information Center 2012 02 24 Retrieved 2020 12 06 Fungi Lillian E Hawker 1966 p 167 Daley Jason 15 October 2018 This Humongous Fungus Is as Massive as Three Blue Whales Smithsonian com Smithsonian Institution Retrieved 21 October 2018 a b Davis N September 9 2009 Genome of Irish potato famine pathogen decoded Haas et al Broad Institute of MIT and Harvard Retrieved 24 July 2012 Sutton John Clifford Sopher Coralie Rachelle Owen Going Tony Nathaniel Liu Weizhong Grodzinski Bernard Hall John Christopher Benchimol Ruth Linda 1990 01 06 Etiology and epidemiology of Pythium root rot in hydroponic crops current knowledge and perspectives Summa Phytopathologica 32 4 307 321 doi 10 1590 S0100 54052006000400001 ISSN 0100 5405 Kamoun S Furzer O Jones JD Judelson HS Ali GS Dalio RJ et al May 2015 The Top 10 oomycete pathogens in molecular plant pathology PDF Molecular Plant Pathology 16 4 413 434 doi 10 1111 mpp 12190 PMC 6638381 PMID 25178392 Grunwald NJ Goss EM Press CM November 2008 Phytophthora ramorum a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals Molecular Plant Pathology 9 6 729 40 doi 10 1111 J 1364 3703 2008 00500 X PMC 6640315 PMID 19019002 Scientists discover how deadly fungal microbes enter host cells VBI at Virginia Tech affiliates Physorg July 22 2010 Retrieved July 31 2012 Schwelm Arne Badstober Julia Bulman Simon Desoignies Nicolas Etemadi Mohammad et al 2018 Not in your usual Top 10 protists that infect plants and algae Molecular Plant Pathology 19 4 1029 1044 doi 10 1111 mpp 12580 PMC 5772912 PMID 29024322 Jackson RW ed 2009 Plant Pathogenic Bacteria Genomics and Molecular Biology Caister Academic Press ISBN 978 1 904455 37 0 Burkholder WH October 1948 Bacteria as plant pathogens Annual Review of Microbiology 2 1 vol 389 412 doi 10 1146 annurev mi 02 100148 002133 PMID 18104350 An SQ Potnis N Dow M Vorholter FJ He YQ Becker A et al October 2019 Mechanistic insights into host adaptation virulence and epidemiology of the phytopathogen Xanthomonas FEMS Microbiology Reviews 44 1 1 32 doi 10 1093 femsre fuz024 PMC 8042644 PMID 31578554 Research team unravels tomato pathogen s tricks of the trade Virginia Tech 2011 Gasparich Gail E 2010 Spiroplasmas and phytoplasmas Microbes associated with plant hosts Biologicals 38 2 193 203 doi 10 1016 j biologicals 2009 11 007 PMID 20153217 S2CID 23419581 Creamer R Hubble H Lewis A May 2005 Curtovirus Infection of Chile Pepper in New Mexico Plant Disease 89 5 480 486 doi 10 1094 PD 89 0480 PMID 30795425 Huynh BL Matthews WC Ehlers JD Lucas MR Santos JR Ndeve A et al January 2016 A major QTL corresponding to the Rk locus for resistance to root knot nematodes in cowpea Vigna unguiculata L Walp Theoretical and Applied Genetics 129 1 87 95 doi 10 1007 s00122 015 2611 0 PMC 4703619 PMID 26450274 Dos Santos JJ de Brida AL Jean Baptiste MC Bernardi D Wilcken SR Leite LG Garcia FR August 2022 Lee J ed Effectiveness of Steinernema rarum PAM 25 Rhabditida Steinernematidae Against Drosophila suzukii Diptera Drosophilidae Journal of Economic Entomology 115 4 967 971 doi 10 1093 jee toac010 PMID 35187578 Jankevicius JV Itow Jankevicius S Maeda LA Campaner M Conchon I et al 1988 Ciclo biologico de Phytomonas Biological cycle of Phytomonas Memorias do Instituto Oswaldo Cruz in Portuguese 83 601 10 doi 10 1590 S0074 02761988000500073 PMID 3253512 Schutzki R E Cregg B 2007 Abiotic plant disorders Symptoms signs and solutions A diagnostic guide to problem solving PDF Michigan State University Department of Horticulture Michigan State University Archived from the original PDF on 24 September 2015 Retrieved 10 April 2015 Moy JH Wong L 2002 The efficacy and progress in using radiation as a quarantine treatment of tropical fruits A case study in Hawaii Radiation Physics and Chemistry Elsevier BV 63 3 6 397 401 Bibcode 2002RaPC 63 397M doi 10 1016 s0969 806x 01 00557 6 ISSN 0969 806X S2CID 93883640 a b International Plant Protection Convention IPPC 2021 Strategic framework for the International Plant Protection Convention IPPC 2020 2030 Protecting global plant resources and facilitating safe trade Rome UN FAO Food and Agriculture Organization of the United Nations pp viii 28 Dufour Rex July 2015 Tipsheet Crop Rotation in Organic Farming Systems Report National Center for Appropriate Technology Retrieved 4 May 2016 Ryder MH Jones DA 1991 10 01 Biological Control of Crown Gall Using Using Agrobacterium Strains K84 and K1026 Functional Plant Biology 18 5 571 579 doi 10 1071 pp9910571 Martinelli F Scalenghe R Davino S Panno S Scuderi G et al January 2015 Advanced methods of plant disease detection A review PDF Agronomy for Sustainable Development 35 1 1 25 doi 10 1007 s13593 014 0246 1 S2CID 18000844 Velasquez AC Castroverde CD He SY May 2018 Plant Pathogen Warfare under Changing Climate Conditions Current Biology Cell Press 28 10 R619 R634 doi 10 1016 j cub 2018 03 054 PMC 5967643 PMID 29787730 External links editPacific Northwest Fungi online mycology journal with papers on fungal plant pathogens The Pest and Pathogens Glossary Retrieved from https en wikipedia org w index php title Plant disease amp oldid 1192238791, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.