fbpx
Wikipedia

Mite

Mites are small arachnids (eight-legged arthropods). Mites span two large orders of arachnids, the Acariformes and the Parasitiformes, which were historically grouped together in the subclass Acari. However, most recent genetic analyses do not recover the two as each others closest relatives within Arachnida, rendering the group non-monophyletic. Most mites are tiny, less than 1 mm (0.04 in) in length, and have a simple, unsegmented body plan. The small size of most species makes them easily overlooked; some species live in water, many live in soil as decomposers, others live on plants, sometimes creating galls, while others again are predators or parasites. This last type includes the commercially destructive Varroa parasite of honey bees, as well as scabies mites of humans. Most species are harmless to humans, but a few are associated with allergies or may transmit diseases.

Mites
Temporal range: Early Devonian – Present, 410–0 Ma
Trombidium holosericeum mite (Acariformes)
Varroa destructor (Parasitiformes)
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Chelicerata
Class: Arachnida
Groups included

The scientific discipline devoted to the study of mites is called acarology.

Evolution and taxonomy

 
The microscopic mite Lorryia formosa (Tydeidae)

The mites are not a defined taxon, but is used for two distinct groups of arachnids, the Acariformes and the Parasitiformes. The phylogeny of the Acari has been relatively little studied, but molecular information from ribosomal DNA is being extensively used to understand relationships between groups. The 18 S rRNA gene provides information on relationships among phyla and superphyla, while the ITS2, and the 18S ribosomal RNA and 28S ribosomal RNA genes, provide clues at deeper levels.[1]

Taxonomy

Fossil record

 
Mite, cf Glaesacarus rhombeus, fossilised in Baltic amber, Upper Eocene

The mite fossil record is sparse, due to their small size and low preservation potential.[4] The oldest fossils of acariform mites are from the Rhynie Chert, Scotland, which dates to the early Devonian, around 410 million years ago[5][4] while the earliest fossils of Parasitiformes are known from amber specimens dating to the mid-Cretaceous, around 100 million years ago.[4][6] Most fossil acarids are no older than the Tertiary (up to 65 mya).[7]

Phylogeny

Members of the superorders Opilioacariformes and Acariformes (sometimes known as Actinotrichida) are mites, as well as some of the Parasitiformes (sometimes known as Anactinotrichida).[8] Recent genetic research has caused a change in the naming scheme, however, and recent publications have changed the superorder Parasitiformes to an order.[9] Other recent research has suggested that Acari is polyphyletic (of multiple origins), with ticks and spiders more closely related than ticks and mites.[10] The cladogram is based on Dabert et al. 2010, which used molecular data. It shows the Acariformes sister to the Solifugae (camel spiders), while the Parasitiformes are sister to the Pseudoscorpionida.[11]

part of Arachnida
Pseudoscorpionida

False scorpions  

Parasitiformes

Ixodida (ticks)  

Parasitic mites, inc. Varroa  

Acariformes

Trombidiformes (chiggers, velvet mites, etc)   

Sarcoptiformes (dust & fur mites, etc)  

Solifugae

Camel spiders  

"Acari"
(mites and ticks)

Anatomy

External

Mites are tiny members of the class Arachnida; most are in the size range 250 to 750 μm (0.01 to 0.03 in) but some are larger and some are no bigger than 100 μm (0.004 in) as adults. The body plan has two regions, a cephalothorax (with no separate head) or prosoma, and an opisthosoma or abdomen. Segmentation has almost entirely been lost and the prosoma and opisthosoma are fused, only the positioning of the limbs indicating the location of the segments.[12]

 
1 Chelicerae, 2 Palps, 3 Salivary glands, 4 Gut, 5 Excretory (Malpighian) tubules, 6 Anus, 7 Ovary or testes, 8 Air-breathing tubes (tracheae), 9 Central ganglion, 10 Legs, 11 Hypostome.[13]

At the front of the body is the gnathosoma or capitulum. This is not a head and does not contain the eyes or the brain, but is a retractable feeding apparatus consisting of the chelicerae, the pedipalps and the oral cavity. It is covered above by an extension of the body carapace and is connected to the body by a flexible section of cuticle. Two-segmented chelicerae is the ancestral condition in Acariformes, but in more derived groups they are single-segmented. And three-segmented chelicerae is the ancestral condition in Parasitiformes, but has been reduced to just two segments in more derived groups.[14] The pedipalps differ between taxa depending on diet; in some species the appendages resemble legs while in others they are modified into chelicerae-like structures. The oral cavity connects posteriorly to the mouth and pharynx.[12]

Most mites have four pairs of legs (two pairs in Eriophyoidea[15]), each with six segments, which may be modified for swimming or other purposes. The dorsal surface of the body is clad in hardened tergites and the ventral surface by hardened sclerites; sometimes these form transverse ridges. The gonopore (genital opening) is located on the ventral surface between the fourth pair of legs. Some species have one to five median or lateral eyes but many species are blind, and slit and pit sense organs are common. Both body and limbs bear setae (bristles) which may be simple, flattened, club-shaped or sensory. Mites are usually some shade of brown, but some species are red, orange, black or green, or some combination of these colours.[12]

Internal

Mite digestive systems have salivary glands that open into the preoral space rather than the foregut. Most species carry two to six pairs of salivary glands that empty at various points into the subcheliceral space.[16] A few mite species lack an anus: they do not defecate during their short lives.[17] The circulatory system consists of a network of sinuses and most mites lacks a heart, movement of fluid being driven by the contraction of body muscles. But ticks, and some of the larger species of mites, have a dorsal, longitudinal heart.[18] Gas exchange is carried out across the body surface, but many species additionally have between one and four pairs of tracheae, the spiracles being located in the front half of the body. The excretory system includes a nephridium and one or two pairs of Malpighian tubules.[12] Several families of mites, such as Tetranychidae, Eriophyidae, Camerobiidae, Cunaxidae, Trombidiidae, Trombiculidae, Erythraeidae and Bdellidae have silk glands used to produce silk for various purposes. Additionally, water mites (Hydrachnidia) produce long thin threads that may be silk.[19]

Reproduction and life cycle

 
Harvest mite (Trombiculidae) life cycle: the larvae and nymphs resemble small adults, though the larvae have only six legs.

The sexes are separate in mites; males have a pair of testes in the mid-region of the body, each connected to the gonopore by a vas deferens, and in some species there is a chitinous penis; females have a single ovary connected to the gonopore by an oviduct, as well as a seminal receptacle for the storage of sperm. In most mites, sperm is transferred to the female indirectly; the male either deposits a spermatophore on a surface from which it is picked up by the female, or he uses his chelicerae or third pair of legs to insert it into the female's gonopore. In some of the Acariformes, insemination is direct using the male's penis.[12] The spermatophora in all mites are aflagellate.[20]

The eggs are laid in the substrate, or wherever the mite happens to live. They take up to six weeks to hatch, according to species, with the next stage being the six-legged larvae. After three moults, the larvae become nymphs, with eight legs, and after a further three moults, they become adults. Longevity varies between species, but the lifespan of mites is short compared to many other arachnids.[12]

Ecology

Niches

 
Russet mite, Aceria anthocoptes, is found on the invasive weed Cirsium arvense, the Canada thistle, across the world. It may be usable as a biological pest control agent for this weed.[21]

Mites occupy a wide range of ecological niches. For example, Oribatida mites are important decomposers in many habitats. They eat a wide variety of material including living and dead plant and fungal material, lichens and carrion; some are predatory, though no oribatid mites are parasitic.[22] Mites are among the most diverse and successful of all invertebrate groups. They have exploited a wide array of habitats, and because of their small size go largely unnoticed. They are found in freshwater (e.g. the water mites or Hydrachnidia[23]) and saltwater (most Halacaridae[24]), in the soil, in forests, pastures, agricultural crops, ornamental plants, thermal springs and caves. They inhabit organic debris of all kinds and are extremely numerous in leaf litter. They feed on animals, plants and fungi and some are parasites of plants and animals.[25] Some 48,200 species of mites have been described,[26] but there may be a million or more species as yet undescribed.[12] The tropical species Archegozetes longisetosus is one of the strongest animals in the world, relative to its mass (100 μg): It lifts up to 1,182 times its own weight, over five times more than would be expected of such a minute animal.[27] A mite also holds a speed record: for its length, Paratarsotomus macropalpis is the fastest animal on Earth.[28]

The mites living in soil consist of a range of taxa. Oribatida and Prostigmata are more numerous in soil than Mesostigmata, and have more soil-dwelling species.[29] When soil is affected by an ecological disturbance such as agriculture, most mites (Astigmata, Mesostigmata and Prostigmata) recolonise it within a few months, whereas Oribatida take multiple years.[30]

Parasitism

Many mites are parasitic on plants and animals. One family of mites, Pyroglyphidae, or nest mites, live primarily in the nests of birds and other animals. These mites are largely parasitic and consume blood, skin and keratin. Dust mites, which feed mostly on dead skin and hair shed from humans instead of consuming them from the organism directly, evolved from these parasitic ancestors.[31] Ticks are a prominent group of mites that are parasitic on vertebrates, mostly mammal and birds, feeding on blood with specialised mouthparts.[32]

Parasitic mites sometimes infest insects. Varroa destructor attaches to the body of honey bees, and Acarapis woodi (family Tarsonemidae) lives in their tracheae. Hundreds of species are associated with other bees, mostly poorly described. They attach to bees in a variety of ways. For example, Trigona corvina workers have been found with mites attached to the outer face of their hind tibiae.[33] Some are thought to be parasites, while others are beneficial symbionts. Mites also parasitize some ant species, such as Eciton burchellii.[34] Most larvae of Parasitengona are ectoparasites of arthropods, while later life stages in this group tend to shift to being predators.[35]

 
Lime nail galls on Tilia × europaea, caused by the mite Eriophyes tiliae

Plant pests include the so-called spider mites (family Tetranychidae), thread-footed mites (family Tarsonemidae), and the gall mites (family Eriophyidae).[36] Among the species that attack animals are members of the sarcoptic mange mites (family Sarcoptidae), which burrow under the skin. Demodex mites (family Demodecidae) are parasites that live in or near the hair follicles of mammals, including humans.[37]

Dispersal

Being unable to fly, mites need some other means of dispersal. On a small scale, walking is used to access other suitable locations in the immediate vicinity. Some species mount to a high point and adopt a dispersal posture and get carried away by the wind, while others waft a thread of silk aloft to balloon to a new position.[38]

Parasitic mites use their hosts to disperse, and spread from host to host by direct contact. Another strategy is phoresy; the mite, often equipped with suitable claspers or suckers, grips onto an insect or other animal, and gets transported to another place. A phoretic mite is just a hitch-hiker and does not feed during the time it is carried by its temporary host. These travelling mites are mostly species that reproduce rapidly and are quick to colonise new habitats.[38]

Relationship with humans

 
Public health worker Stefania Lanzia using a scabies mite to publicise scabies, an often overlooked condition especially among the elderly

Mites are tiny and apart from those that are of economic concern to humans, little studied. The majority are beneficial, living in the soil or aqueous environments and assisting in the decomposition of decaying organic material, as part of the carbon cycle.[25]

Medical significance

The majority of mite species are harmless to humans and domestic animals, but a few species can colonize mammals directly, acting as vectors for disease transmission, and causing or contributing to allergenic diseases. Mites which colonize human skin are the cause of several types of itchy skin rashes, such as gamasoidosis,[39] rodent mite dermatitis,[40] grain itch,[41] grocer's itch,[41] and scabies; Sarcoptes scabiei is a parasitic mite responsible for scabies, which is one of the three most common skin disorders in children.[42] Demodex mites, which are common cause of mange in dogs and other domesticated animals,[37] have also been implicated in the human skin disease rosacea, although the mechanism by which demodex contributes to the disease is unclear.[43] Ticks are well known for carrying diseases, such as Lyme disease[44] and Rocky Mountain spotted fever.[45]

 
Mites and their eggs, drawn by Robert Hooke, Micrographia, 1665

Chiggers are known primarily for their itchy bite, but they can also spread disease in some limited circumstances, such as scrub typhus.[46] The house-mouse mite is the only known vector of the disease rickettsialpox.[47] House dust mites, found in warm and humid places such as beds, cause several forms of allergic diseases, including hay fever, asthma and eczema, and are known to aggravate atopic dermatitis.[48]

Among domestic animals, sheep are affected by the mite Psoroptes ovis which lives on the skin, causing hypersensitivity and inflammation.[49] Hay mites are a suspected reservoir for scrapie, a prion disease of sheep.[50]

In beekeeping

The mite Varroa destructor is a serious pest of honey bees, contributing to colony collapse disorder in commercial hives. This organism is an obligate external parasite, able to reproduce only in bee colonies. It directly weakens its host by sucking up the bee's fat, and can spread RNA viruses including deformed wing virus. Heavy infestation causes the death of a colony, generally over the winter. Since 2006, over 10 million beehives have been lost.[51][52]

Biological pest control

Various mites prey on other invertebrates and can be used to control their populations. Phytoseiidae, especially members of Amblyseius, Metaseiulus, and Phytoseiulus, are used to control pests such as spider mites.[53] Among the Laelapidae, Gaeolaelaps aculeifer and Stratiolaelaps scimitus are used to control fungus gnats, poultry red mites and various soil pests.[54]

In culture

Mites were first observed under the microscope by the English polymath Robert Hooke. In his 1665 book Micrographia, he stated that far from being spontaneously generated from dirt, they were "very prettily shap'd Insects".[55] In 1898, Arthur Conan Doyle wrote a satirical poem, "A Parable", with the conceit of some cheese mites disputing the origin of the round cheddar cheese in which they all lived.[56] The world's first science documentary featured cheese mites, seen under the microscope; the short film was shown in London's Alhambra music hall in 1903, causing a boom in the sales of simple microscopes.[55]

See also

References

  1. ^ Dhooria MS (2016). "Molecular Biology and Acarology". Fundamentals of Applied Acarology. Springer. p. 176. ISBN 978-981-10-1594-6.
  2. ^ Ballesteros JA, Santibáñez López CE, Kováč Ľ, Gavish-Regev E, Sharma PP (December 2019). "Ordered phylogenomic subsampling enables diagnosis of systematic errors in the placement of the enigmatic arachnid order Palpigradi". Proceedings. Biological Sciences. 286 (1917): 20192426. doi:10.1098/rspb.2019.2426. PMC 6939912. PMID 31847768.
  3. ^ Vázquez MM, Herrera IM, Just P, Lerma AC, Chatzaki M, Heller T, Král J (2021-09-30). "A new opilioacarid species (Parasitiformes: Opilioacarida) from Crete (Greece) with notes on its karyotype". Acarologia. 61 (3): 548–563. doi:10.24349/acarologia/20214449. S2CID 236270478.
  4. ^ a b c Sidorchuk EA (2018-11-17). "Mites as fossils: forever small?". International Journal of Acarology. 44 (8): 349–359. doi:10.1080/01647954.2018.1497085. ISSN 0164-7954. S2CID 92357151.
  5. ^ Dunlop JA, Garwood RJ (2017-12-18). "Terrestrial invertebrates in the Rhynie chert ecosystem". Philosophical Transactions of the Royal Society B: Biological Sciences. 373 (1739): 20160493. doi:10.1098/rstb.2016.0493. ISSN 0962-8436. PMC 5745329. PMID 29254958.
  6. ^ Arribas P, Andújar C, Moraza ML, Linard B, Emerson BC, Vogler AP (March 2020). Teeling E (ed.). "Mitochondrial Metagenomics Reveals the Ancient Origin and Phylodiversity of Soil Mites and Provides a Phylogeny of the Acari". Molecular Biology and Evolution. 37 (3): 683–694. doi:10.1093/molbev/msz255. PMID 31670799.
  7. ^ de la Fuente J (2003). "The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida)". Experimental & Applied Acarology. 29 (3–4): 331–344. doi:10.1023/A:1025824702816. PMID 14635818. S2CID 11271627.
  8. ^ Walter DE, Krantz G, Lindquist E (13 December 1996). "Acari: The mites". Tree of Life Web Project. Retrieved 6 October 2017.
  9. ^ Barker SC, Murrell A (2004). "Systematics and evolution of ticks with a list of valid genus and species names". Parasitology. 129 (Suppl 7): S15–S36. doi:10.1017/S0031182004005207. PMID 15938503. S2CID 38865837.
  10. ^ Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, et al. (May 2014). "Spider genomes provide insight into composition and evolution of venom and silk". Nature Communications. 5: 3765. Bibcode:2014NatCo...5.3765S. doi:10.1038/ncomms4765. PMC 4273655. PMID 24801114.
  11. ^ Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J (July 2010). "Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts". Molecular Phylogenetics and Evolution. 56 (1): 222–241. doi:10.1016/j.ympev.2009.12.020. PMID 20060051.
  12. ^ a b c d e f g Ruppert EE, Fox RS, Barnes RD (2004). Invertebrate Zoology (7th ed.). Cengage Learning. pp. 590–595. ISBN 978-81-315-0104-7.
  13. ^ Balashov YS (1972). "Bloodsucking Ticks - Vectors of Diseases of Man and Animals". Miscellaneous Publications of the Entomological Society of America. 8: 161–376.
  14. ^ Parasite Diversity and Diversification
  15. ^ Hoy, Marjorie A. (2004), "Four-Legged Mites (Eriophyoidea or Tetrapodili)", Encyclopedia of Entomology, Dordrecht: Kluwer Academic Publishers, pp. 913–919, doi:10.1007/0-306-48380-7_1689, ISBN 978-0-7923-8670-4, retrieved 2023-02-08
  16. ^ Shatrov AB (January 2005). "Ultrastructural investigations of the salivary glands in adults of the microtrombidiid mite Platytrombidium fasciatum (CL Koch, 1836)(Acariformes: Microtrombidiidae)". Arthropod Structure & Development. 34 (1): 49–61. doi:10.1016/j.asd.2004.09.001.
  17. ^ Yong E (27 August 2014). "You Almost Certainly Have Mites On Your Face". National Geographic. Retrieved 23 November 2017.
  18. ^ Medical Entomology: A Textbook on Public Health and Veterinary Problems Caused by Arthropods
  19. ^ Observation on Silk Production and Morphology of Silk in Water Mites (Acariformes: Hydrachnidia)
  20. ^ How the sperm lost its tail: The evolution of aflagellate sperm
  21. ^ Magud BD, Stanisavljević LZ, Petanović RU (2007). "Morphological variation in different populations of Aceria anthocoptes (Acari: Eriophyoidea) associated with the Canada thistle, Cirsium arvense, in Serbia". Experimental & Applied Acarology. 42 (3): 173–183. doi:10.1007/s10493-007-9085-y. PMID 17611806. S2CID 25895062.
  22. ^ Arroyo J, Keith AM, Schmidt O, Bolger T (2013). "Mite abundance and richness in an Irish survey of soil biodiversith with comments on some newly recorded species". Irish Naturalists' Journal. 33: 19–27.
  23. ^ Di Sabatino, Antonio; Smit, Harry; Gerecke, Reinhard; Goldschmidt, Tom; Matsumoto, Noriko; Cicolani, Bruno (2008). "Global diversity of water mites (Acari, Hydrachnidia; Arachnida) in freshwater". Hydrobiologia. 595 (1): 303–315. doi:10.1007/s10750-007-9025-1. ISSN 0018-8158. S2CID 10262035.
  24. ^ Pepato, Almir R.; Vidigal, Teofânia H.D.A.; Klimov, Pavel B. (2018). "Molecular phylogeny of marine mites (Acariformes: Halacaridae), the oldest radiation of extant secondarily marine animals". Molecular Phylogenetics and Evolution. 129: 182–188. doi:10.1016/j.ympev.2018.08.012. PMID 30172010. S2CID 52145427.
  25. ^ a b Jeppson LR, Keifer HH, Baker EW (1975). Mites Injurious to Economic Plants. University of California Press. pp. 1–3. ISBN 978-0-520-02381-9.
  26. ^ Halliday RB, O'Connor BM, Baker AS (2000). "Global Diversity of Mites". In Raven PH, Williams T (eds.). Nature and human society: the quest for a sustainable world: proceedings of the 1997 Forum on Biodiversity. National Academies. pp. 192–212. ISBN 9780309065559.
  27. ^ Heethoff M, Koerner L (September 2007). "Small but powerful: the oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces". The Journal of Experimental Biology. 210 (Pt 17): 3036–3042. doi:10.1242/jeb.008276. PMID 17704078.
  28. ^ Rubin S, Young MH, Wright JC, Whitaker DL, Ahn AN (March 2016). "Exceptional running and turning performance in a mite". The Journal of Experimental Biology. 219 (Pt 5): 676–685. doi:10.1242/jeb.128652. PMID 26787481.
    • "Mite sets new record as world's fastest land animal". ScienceDaily (Press release). April 27, 2014.
  29. ^ Coleman, David C.; Crossley, D.A.; Hendrix, Paul F. (2004), "Secondary Production: Activities of Heterotrophic Organisms—The Soil Fauna", Fundamentals of Soil Ecology, Elsevier, pp. 79–185, doi:10.1016/b978-012179726-3/50005-8, ISBN 978-0-12-179726-3, retrieved 2023-02-09
  30. ^ Behan-Pelletier, Valerie M. (1999), "Oribatid mite biodiversity in agroecosystems: role for bioindication", Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes, Elsevier, pp. 411–423, doi:10.1016/b978-0-444-50019-9.50023-6, ISBN 978-0-444-50019-9, retrieved 2023-02-09
  31. ^ Klimov PB, OConnor B (May 2013). "Is permanent parasitism reversible?--critical evidence from early evolution of house dust mites". Systematic Biology. 62 (3): 411–23. doi:10.1093/sysbio/syt008. PMID 23417682.
    • "Genetic study of house dust mites demonstrates reversible evolution". Michigan News. March 8, 2013.
  32. ^ Beati L, Klompen H (January 2019). "Phylogeography of Ticks (Acari: Ixodida)". Annual Review of Entomology. 64 (1): 379–397. doi:10.1146/annurev-ento-020117-043027. PMID 30354695. S2CID 53023797. Ticks (Acari: Ixodida) are large parasitiform mites characterized by mouthparts specialized for blood feeding
  33. ^ Schwarz HF, Bacon AL (1948). "Stingless bees (Meliponidae) of the Western Hemisphere: Lestrimelitta and the following subgenera of Trigona: Trigona, Paratrigona, Schwarziana, Parapartamona, Cephalotrigona, Oxytrigona, Scaura, and Mourella". Bulletin of the American Museum of Natural History. 90. hdl:2246/1231.
  34. ^ Berghoff SM, Wurst E, Ebermann E, Sendova-Franks AB, Rettenmeyer CW, Franks NR (2009). "Symbionts of societies that fission: Mites as guests or parasites of army ants". Ecological Entomology. 34 (6): 684–695. doi:10.1111/j.1365-2311.2009.01125.x. S2CID 84324830.
  35. ^ "Parasitengona - velvet mites (including chiggers) & water mites". bugguide.net. Retrieved 2023-02-09.
  36. ^ Fenemore PG (2016). "Chapter 7: Mites and other non-insect pests". Plant Pests and Their Control. Elsevier. p. 112. ISBN 978-1-4831-8286-5.
  37. ^ a b Harrison S, Knott H, Bergfeld WF (2009). "Infections of the Scalp". In Hall JC, Hall BJ (eds.). Skin Infections: Diagnosis and Treatment. Cambridge University Press. p. 260. ISBN 978-0-521-89729-7.
  38. ^ a b Ho CC (2008). "Mite Pests of Crops in Asia". In Capinera JL (ed.). Encyclopedia of Entomology. Springer Science & Business Media. p. 2425. ISBN 978-1-4020-6242-1.
  39. ^ Schulze KE, Cohen PR (February 1994). "Dove-associated gamasoidosis: a case of avian mite dermatitis". Journal of the American Academy of Dermatology. 30 (2 Pt 1): 278–280. doi:10.1016/S0190-9622(08)81930-5. PMID 8288795.
  40. ^ Theis J, Lavoipierre MM, LaPerriere R, Kroese H (June 1981). "Tropical rat mite dermatitis. Report of six cases and review of mite infestations". Archives of Dermatology. 117 (6): 341–343. doi:10.1001/archderm.1981.01650060031018. PMID 7247425.
  41. ^ a b James WD, Berger TG (2006). Andrews' Diseases of the Skin: Clinical Dermatology (10th ed.). Saunders Elsevier. p. 454. ISBN 978-0-7216-2921-6.
  42. ^ Andrews RM, McCarthy J, Carapetis JR, Currie BJ (December 2009). "Skin disorders, including pyoderma, scabies, and tinea infections". Pediatric Clinics of North America. 56 (6): 1421–1440. doi:10.1016/j.pcl.2009.09.002. PMID 19962029.
  43. ^ Mumcuoglu KY, Akilov OE (March 2010). Whitehead J, Barrows B (eds.). "The Role of Demodex Mites in the Pathogenesis of Rosacea and Blepharitis and Their Control". Journal of the Rosacea Research & Development Institute. 1 (1): 47–54. ISBN 9781450203449.
  44. ^ Shapiro ED (May 2014). (PDF). The New England Journal of Medicine. 370 (18): 1724–1731. doi:10.1056/NEJMcp1314325. PMC 4487875. PMID 24785207. Archived from the original (PDF) on 21 August 2016. Retrieved 5 July 2016.
  45. ^ "Rocky Mountain Spotted Fever (RMSF)". CDC. 15 November 2018. Retrieved 20 January 2019.
  46. ^ Pham XD, Otsuka Y, Suzuki H, Takaoka H (March 2001). "Detection of Orientia tsutsugamushi (Rickettsiales: rickettsiaceae) in unengorged chiggers (Acari: Trombiculidae) from Oita Prefecture, Japan, by nested polymerase chain reaction". Journal of Medical Entomology. 38 (2): 308–311. doi:10.1603/0022-2585-38.2.308. PMID 11296840. S2CID 8133110.
  47. ^ Diaz JH (2010). "Endemic mite-transmitted dermatoses and infectious diseases in the South". The Journal of the Louisiana State Medical Society. 162 (3): 140–145, 147–149. PMID 20666166.
  48. ^ Klenerman P, Lipworth B. "House dust mite allergy". NetDoctor. Retrieved February 20, 2008.
  49. ^ van den Broek AH, Huntley JF, MacHell J, Taylor M, Bates P, Groves B, Miller HR (August 2000). "Cutaneous and systemic responses during primary and challenge infestations of sheep with the sheep scab mite, Psoroptes ovis". Parasite Immunology. 22 (8): 407–414. doi:10.1046/j.1365-3024.2000.00318.x. PMID 10972847. S2CID 41549010.
  50. ^ Carp RI, Meeker HC, Rubenstein R, Sigurdarson S, Papini M, Kascsak RJ, et al. (April 2000). "Characteristics of scrapie isolates derived from hay mites". Journal of Neurovirology. 6 (2): 137–144. doi:10.3109/13550280009013157. PMID 10822327. S2CID 16441609.
  51. ^ Guzmán-Novoa E, Eccles L, Calvete Y, Mcgowan J, Kelly PG, Correa-Benítez A (2009). "Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada" (PDF). Apidologie. 41 (4): 443–450. doi:10.1051/apido/2009076. S2CID 10898654.
  52. ^ Benjamin A (2 May 2010). "Fears for crops as shock figures from America show scale of bee catastrophe". The Guardian. London.
  53. ^ "twospotted spider mite - Tetranychus urticae Koch". entnemdept.ufl.edu. Retrieved 2023-02-09.
  54. ^ Park, Jihye; Mostafiz, Md Munir; Hwang, Hwal-Su; Jung, Duck-Oung; Lee, Kyeong-Yeoll (2021-05-25). "Comparing the Life Table and Population Projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae) Based on the Age-Stage, Two-Sex Life Table Theory". Agronomy. 11 (6): 1062. doi:10.3390/agronomy11061062. ISSN 2073-4395.
  55. ^ a b Marren, Peter; Mabey, Richard (2010). Bugs Britannica. Chatto & Windus. pp. 122–125. ISBN 978-0-7011-8180-2.
  56. ^ Doyle, Arthur Conan (June 28, 1898). Pen and pencil: A souvenir of the Press Bazaar. London: Punch_(magazine). p. 58.

External links

mite, other, uses, disambiguation, small, arachnids, eight, legged, arthropods, span, large, orders, arachnids, acariformes, parasitiformes, which, were, historically, grouped, together, subclass, acari, however, most, recent, genetic, analyses, recover, each,. For other uses see Mite disambiguation Mites are small arachnids eight legged arthropods Mites span two large orders of arachnids the Acariformes and the Parasitiformes which were historically grouped together in the subclass Acari However most recent genetic analyses do not recover the two as each others closest relatives within Arachnida rendering the group non monophyletic Most mites are tiny less than 1 mm 0 04 in in length and have a simple unsegmented body plan The small size of most species makes them easily overlooked some species live in water many live in soil as decomposers others live on plants sometimes creating galls while others again are predators or parasites This last type includes the commercially destructive Varroa parasite of honey bees as well as scabies mites of humans Most species are harmless to humans but a few are associated with allergies or may transmit diseases MitesTemporal range Early Devonian Present 410 0 Ma PreꞒ Ꞓ O S D C P T J K Pg NTrombidium holosericeum mite Acariformes Varroa destructor Parasitiformes Scientific classificationKingdom AnimaliaPhylum ArthropodaSubphylum ChelicerataClass ArachnidaGroups includedAcariformes ParasitiformesThe scientific discipline devoted to the study of mites is called acarology Contents 1 Evolution and taxonomy 1 1 Taxonomy 1 2 Fossil record 1 3 Phylogeny 2 Anatomy 2 1 External 2 2 Internal 3 Reproduction and life cycle 4 Ecology 4 1 Niches 4 2 Parasitism 4 3 Dispersal 5 Relationship with humans 5 1 Medical significance 5 2 In beekeeping 5 3 Biological pest control 5 4 In culture 6 See also 7 References 8 External linksEvolution and taxonomy Edit The microscopic mite Lorryia formosa Tydeidae The mites are not a defined taxon but is used for two distinct groups of arachnids the Acariformes and the Parasitiformes The phylogeny of the Acari has been relatively little studied but molecular information from ribosomal DNA is being extensively used to understand relationships between groups The 18 S rRNA gene provides information on relationships among phyla and superphyla while the ITS2 and the 18S ribosomal RNA and 28S ribosomal RNA genes provide clues at deeper levels 1 Taxonomy Edit Superorder Parasitiformes ticks and a variety of mites Opilioacarida a small order of large mites that superficially resemble harvestmen Opiliones hence their name 2 3 Holothyrida small group of predatory mites native to former Gondwana landmasses Ixodida ticks Mesostigmata a large order of predatory and parasitic mites Trigynaspida large diverse order Monogynaspida diverse order of parasitic and predatory mites Superorder Acariformes the most diverse group of mites Endeostigmata probably paraphyletic Eriophyoidea gall mites and relatives Trombidiformes plant parasitic mites spider mites peacock mites red legged earth mites etc snout mites chiggers hair follicle mites velvet mites water mites etc Sphaerolichida small order of mites containing two families Prostigmata large order of sucking mites Sarcoptiformes Oribatida oribatid mites beetle mites armored mites formerly known as Cryptostigmata Astigmatina stored product fur feather dust and human itch mites etc Fossil record Edit Mite cf Glaesacarus rhombeus fossilised in Baltic amber Upper Eocene The mite fossil record is sparse due to their small size and low preservation potential 4 The oldest fossils of acariform mites are from the Rhynie Chert Scotland which dates to the early Devonian around 410 million years ago 5 4 while the earliest fossils of Parasitiformes are known from amber specimens dating to the mid Cretaceous around 100 million years ago 4 6 Most fossil acarids are no older than the Tertiary up to 65 mya 7 Phylogeny Edit Members of the superorders Opilioacariformes and Acariformes sometimes known as Actinotrichida are mites as well as some of the Parasitiformes sometimes known as Anactinotrichida 8 Recent genetic research has caused a change in the naming scheme however and recent publications have changed the superorder Parasitiformes to an order 9 Other recent research has suggested that Acari is polyphyletic of multiple origins with ticks and spiders more closely related than ticks and mites 10 The cladogram is based on Dabert et al 2010 which used molecular data It shows the Acariformes sister to the Solifugae camel spiders while the Parasitiformes are sister to the Pseudoscorpionida 11 part of Arachnida Pseudoscorpionida False scorpions Parasitiformes Ixodida ticks Parasitic mites inc Varroa Acariformes Trombidiformes chiggers velvet mites etc Sarcoptiformes dust amp fur mites etc Solifugae Camel spiders Acari mites and ticks Anatomy EditExternal Edit Mites are tiny members of the class Arachnida most are in the size range 250 to 750 mm 0 01 to 0 03 in but some are larger and some are no bigger than 100 mm 0 004 in as adults The body plan has two regions a cephalothorax with no separate head or prosoma and an opisthosoma or abdomen Segmentation has almost entirely been lost and the prosoma and opisthosoma are fused only the positioning of the limbs indicating the location of the segments 12 1 Chelicerae 2 Palps 3 Salivary glands 4 Gut 5 Excretory Malpighian tubules 6 Anus 7 Ovary or testes 8 Air breathing tubes tracheae 9 Central ganglion 10 Legs 11 Hypostome 13 At the front of the body is the gnathosoma or capitulum This is not a head and does not contain the eyes or the brain but is a retractable feeding apparatus consisting of the chelicerae the pedipalps and the oral cavity It is covered above by an extension of the body carapace and is connected to the body by a flexible section of cuticle Two segmented chelicerae is the ancestral condition in Acariformes but in more derived groups they are single segmented And three segmented chelicerae is the ancestral condition in Parasitiformes but has been reduced to just two segments in more derived groups 14 The pedipalps differ between taxa depending on diet in some species the appendages resemble legs while in others they are modified into chelicerae like structures The oral cavity connects posteriorly to the mouth and pharynx 12 Most mites have four pairs of legs two pairs in Eriophyoidea 15 each with six segments which may be modified for swimming or other purposes The dorsal surface of the body is clad in hardened tergites and the ventral surface by hardened sclerites sometimes these form transverse ridges The gonopore genital opening is located on the ventral surface between the fourth pair of legs Some species have one to five median or lateral eyes but many species are blind and slit and pit sense organs are common Both body and limbs bear setae bristles which may be simple flattened club shaped or sensory Mites are usually some shade of brown but some species are red orange black or green or some combination of these colours 12 Internal Edit Mite digestive systems have salivary glands that open into the preoral space rather than the foregut Most species carry two to six pairs of salivary glands that empty at various points into the subcheliceral space 16 A few mite species lack an anus they do not defecate during their short lives 17 The circulatory system consists of a network of sinuses and most mites lacks a heart movement of fluid being driven by the contraction of body muscles But ticks and some of the larger species of mites have a dorsal longitudinal heart 18 Gas exchange is carried out across the body surface but many species additionally have between one and four pairs of tracheae the spiracles being located in the front half of the body The excretory system includes a nephridium and one or two pairs of Malpighian tubules 12 Several families of mites such as Tetranychidae Eriophyidae Camerobiidae Cunaxidae Trombidiidae Trombiculidae Erythraeidae and Bdellidae have silk glands used to produce silk for various purposes Additionally water mites Hydrachnidia produce long thin threads that may be silk 19 Reproduction and life cycle Edit Harvest mite Trombiculidae life cycle the larvae and nymphs resemble small adults though the larvae have only six legs The sexes are separate in mites males have a pair of testes in the mid region of the body each connected to the gonopore by a vas deferens and in some species there is a chitinous penis females have a single ovary connected to the gonopore by an oviduct as well as a seminal receptacle for the storage of sperm In most mites sperm is transferred to the female indirectly the male either deposits a spermatophore on a surface from which it is picked up by the female or he uses his chelicerae or third pair of legs to insert it into the female s gonopore In some of the Acariformes insemination is direct using the male s penis 12 The spermatophora in all mites are aflagellate 20 The eggs are laid in the substrate or wherever the mite happens to live They take up to six weeks to hatch according to species with the next stage being the six legged larvae After three moults the larvae become nymphs with eight legs and after a further three moults they become adults Longevity varies between species but the lifespan of mites is short compared to many other arachnids 12 Ecology EditNiches Edit Russet mite Aceria anthocoptes is found on the invasive weed Cirsium arvense the Canada thistle across the world It may be usable as a biological pest control agent for this weed 21 Mites occupy a wide range of ecological niches For example Oribatida mites are important decomposers in many habitats They eat a wide variety of material including living and dead plant and fungal material lichens and carrion some are predatory though no oribatid mites are parasitic 22 Mites are among the most diverse and successful of all invertebrate groups They have exploited a wide array of habitats and because of their small size go largely unnoticed They are found in freshwater e g the water mites or Hydrachnidia 23 and saltwater most Halacaridae 24 in the soil in forests pastures agricultural crops ornamental plants thermal springs and caves They inhabit organic debris of all kinds and are extremely numerous in leaf litter They feed on animals plants and fungi and some are parasites of plants and animals 25 Some 48 200 species of mites have been described 26 but there may be a million or more species as yet undescribed 12 The tropical species Archegozetes longisetosus is one of the strongest animals in the world relative to its mass 100 mg It lifts up to 1 182 times its own weight over five times more than would be expected of such a minute animal 27 A mite also holds a speed record for its length Paratarsotomus macropalpis is the fastest animal on Earth 28 The mites living in soil consist of a range of taxa Oribatida and Prostigmata are more numerous in soil than Mesostigmata and have more soil dwelling species 29 When soil is affected by an ecological disturbance such as agriculture most mites Astigmata Mesostigmata and Prostigmata recolonise it within a few months whereas Oribatida take multiple years 30 Parasitism Edit Many mites are parasitic on plants and animals One family of mites Pyroglyphidae or nest mites live primarily in the nests of birds and other animals These mites are largely parasitic and consume blood skin and keratin Dust mites which feed mostly on dead skin and hair shed from humans instead of consuming them from the organism directly evolved from these parasitic ancestors 31 Ticks are a prominent group of mites that are parasitic on vertebrates mostly mammal and birds feeding on blood with specialised mouthparts 32 Parasitic mites sometimes infest insects Varroa destructor attaches to the body of honey bees and Acarapis woodi family Tarsonemidae lives in their tracheae Hundreds of species are associated with other bees mostly poorly described They attach to bees in a variety of ways For example Trigona corvina workers have been found with mites attached to the outer face of their hind tibiae 33 Some are thought to be parasites while others are beneficial symbionts Mites also parasitize some ant species such as Eciton burchellii 34 Most larvae of Parasitengona are ectoparasites of arthropods while later life stages in this group tend to shift to being predators 35 Lime nail galls on Tilia europaea caused by the mite Eriophyes tiliae Plant pests include the so called spider mites family Tetranychidae thread footed mites family Tarsonemidae and the gall mites family Eriophyidae 36 Among the species that attack animals are members of the sarcoptic mange mites family Sarcoptidae which burrow under the skin Demodex mites family Demodecidae are parasites that live in or near the hair follicles of mammals including humans 37 Dispersal Edit Being unable to fly mites need some other means of dispersal On a small scale walking is used to access other suitable locations in the immediate vicinity Some species mount to a high point and adopt a dispersal posture and get carried away by the wind while others waft a thread of silk aloft to balloon to a new position 38 Parasitic mites use their hosts to disperse and spread from host to host by direct contact Another strategy is phoresy the mite often equipped with suitable claspers or suckers grips onto an insect or other animal and gets transported to another place A phoretic mite is just a hitch hiker and does not feed during the time it is carried by its temporary host These travelling mites are mostly species that reproduce rapidly and are quick to colonise new habitats 38 Relationship with humans Edit Public health worker Stefania Lanzia using a scabies mite to publicise scabies an often overlooked condition especially among the elderly Mites are tiny and apart from those that are of economic concern to humans little studied The majority are beneficial living in the soil or aqueous environments and assisting in the decomposition of decaying organic material as part of the carbon cycle 25 Medical significance Edit Further information Acariasis The majority of mite species are harmless to humans and domestic animals but a few species can colonize mammals directly acting as vectors for disease transmission and causing or contributing to allergenic diseases Mites which colonize human skin are the cause of several types of itchy skin rashes such as gamasoidosis 39 rodent mite dermatitis 40 grain itch 41 grocer s itch 41 and scabies Sarcoptes scabiei is a parasitic mite responsible for scabies which is one of the three most common skin disorders in children 42 Demodex mites which are common cause of mange in dogs and other domesticated animals 37 have also been implicated in the human skin disease rosacea although the mechanism by which demodex contributes to the disease is unclear 43 Ticks are well known for carrying diseases such as Lyme disease 44 and Rocky Mountain spotted fever 45 Mites and their eggs drawn by Robert Hooke Micrographia 1665 Chiggers are known primarily for their itchy bite but they can also spread disease in some limited circumstances such as scrub typhus 46 The house mouse mite is the only known vector of the disease rickettsialpox 47 House dust mites found in warm and humid places such as beds cause several forms of allergic diseases including hay fever asthma and eczema and are known to aggravate atopic dermatitis 48 Among domestic animals sheep are affected by the mite Psoroptes ovis which lives on the skin causing hypersensitivity and inflammation 49 Hay mites are a suspected reservoir for scrapie a prion disease of sheep 50 In beekeeping Edit The mite Varroa destructor is a serious pest of honey bees contributing to colony collapse disorder in commercial hives This organism is an obligate external parasite able to reproduce only in bee colonies It directly weakens its host by sucking up the bee s fat and can spread RNA viruses including deformed wing virus Heavy infestation causes the death of a colony generally over the winter Since 2006 over 10 million beehives have been lost 51 52 Biological pest control Edit Various mites prey on other invertebrates and can be used to control their populations Phytoseiidae especially members of Amblyseius Metaseiulus and Phytoseiulus are used to control pests such as spider mites 53 Among the Laelapidae Gaeolaelaps aculeifer and Stratiolaelaps scimitus are used to control fungus gnats poultry red mites and various soil pests 54 In culture Edit Mites were first observed under the microscope by the English polymath Robert Hooke In his 1665 book Micrographia he stated that far from being spontaneously generated from dirt they were very prettily shap d Insects 55 In 1898 Arthur Conan Doyle wrote a satirical poem A Parable with the conceit of some cheese mites disputing the origin of the round cheddar cheese in which they all lived 56 The world s first science documentary featured cheese mites seen under the microscope the short film was shown in London s Alhambra music hall in 1903 causing a boom in the sales of simple microscopes 55 See also Edit Arthropods portalChigger bite Copra itch Gamasoidosis Grain itch Grocer s itch List of mites associated with cutaneous reactionsReferences Edit Dhooria MS 2016 Molecular Biology and Acarology Fundamentals of Applied Acarology Springer p 176 ISBN 978 981 10 1594 6 Ballesteros JA Santibanez Lopez CE Kovac Ľ Gavish Regev E Sharma PP December 2019 Ordered phylogenomic subsampling enables diagnosis of systematic errors in the placement of the enigmatic arachnid order Palpigradi Proceedings Biological Sciences 286 1917 20192426 doi 10 1098 rspb 2019 2426 PMC 6939912 PMID 31847768 Vazquez MM Herrera IM Just P Lerma AC Chatzaki M Heller T Kral J 2021 09 30 A new opilioacarid species Parasitiformes Opilioacarida from Crete Greece with notes on its karyotype Acarologia 61 3 548 563 doi 10 24349 acarologia 20214449 S2CID 236270478 a b c Sidorchuk EA 2018 11 17 Mites as fossils forever small International Journal of Acarology 44 8 349 359 doi 10 1080 01647954 2018 1497085 ISSN 0164 7954 S2CID 92357151 Dunlop JA Garwood RJ 2017 12 18 Terrestrial invertebrates in the Rhynie chert ecosystem Philosophical Transactions of the Royal Society B Biological Sciences 373 1739 20160493 doi 10 1098 rstb 2016 0493 ISSN 0962 8436 PMC 5745329 PMID 29254958 Arribas P Andujar C Moraza ML Linard B Emerson BC Vogler AP March 2020 Teeling E ed Mitochondrial Metagenomics Reveals the Ancient Origin and Phylodiversity of Soil Mites and Provides a Phylogeny of the Acari Molecular Biology and Evolution 37 3 683 694 doi 10 1093 molbev msz255 PMID 31670799 de la Fuente J 2003 The fossil record and the origin of ticks Acari Parasitiformes Ixodida Experimental amp Applied Acarology 29 3 4 331 344 doi 10 1023 A 1025824702816 PMID 14635818 S2CID 11271627 Walter DE Krantz G Lindquist E 13 December 1996 Acari The mites Tree of Life Web Project Retrieved 6 October 2017 Barker SC Murrell A 2004 Systematics and evolution of ticks with a list of valid genus and species names Parasitology 129 Suppl 7 S15 S36 doi 10 1017 S0031182004005207 PMID 15938503 S2CID 38865837 Sanggaard KW Bechsgaard JS Fang X Duan J Dyrlund TF Gupta V et al May 2014 Spider genomes provide insight into composition and evolution of venom and silk Nature Communications 5 3765 Bibcode 2014NatCo 5 3765S doi 10 1038 ncomms4765 PMC 4273655 PMID 24801114 Dabert M Witalinski W Kazmierski A Olszanowski Z Dabert J July 2010 Molecular phylogeny of acariform mites Acari Arachnida strong conflict between phylogenetic signal and long branch attraction artifacts Molecular Phylogenetics and Evolution 56 1 222 241 doi 10 1016 j ympev 2009 12 020 PMID 20060051 a b c d e f g Ruppert EE Fox RS Barnes RD 2004 Invertebrate Zoology 7th ed Cengage Learning pp 590 595 ISBN 978 81 315 0104 7 Balashov YS 1972 Bloodsucking Ticks Vectors of Diseases of Man and Animals Miscellaneous Publications of the Entomological Society of America 8 161 376 Parasite Diversity and Diversification Hoy Marjorie A 2004 Four Legged Mites Eriophyoidea or Tetrapodili Encyclopedia of Entomology Dordrecht Kluwer Academic Publishers pp 913 919 doi 10 1007 0 306 48380 7 1689 ISBN 978 0 7923 8670 4 retrieved 2023 02 08 Shatrov AB January 2005 Ultrastructural investigations of the salivary glands in adults of the microtrombidiid mite Platytrombidium fasciatum CL Koch 1836 Acariformes Microtrombidiidae Arthropod Structure amp Development 34 1 49 61 doi 10 1016 j asd 2004 09 001 Yong E 27 August 2014 You Almost Certainly Have Mites On Your Face National Geographic Retrieved 23 November 2017 Medical Entomology A Textbook on Public Health and Veterinary Problems Caused by Arthropods Observation on Silk Production and Morphology of Silk in Water Mites Acariformes Hydrachnidia How the sperm lost its tail The evolution of aflagellate sperm Magud BD Stanisavljevic LZ Petanovic RU 2007 Morphological variation in different populations of Aceria anthocoptes Acari Eriophyoidea associated with the Canada thistle Cirsium arvense in Serbia Experimental amp Applied Acarology 42 3 173 183 doi 10 1007 s10493 007 9085 y PMID 17611806 S2CID 25895062 Arroyo J Keith AM Schmidt O Bolger T 2013 Mite abundance and richness in an Irish survey of soil biodiversith with comments on some newly recorded species Irish Naturalists Journal 33 19 27 Di Sabatino Antonio Smit Harry Gerecke Reinhard Goldschmidt Tom Matsumoto Noriko Cicolani Bruno 2008 Global diversity of water mites Acari Hydrachnidia Arachnida in freshwater Hydrobiologia 595 1 303 315 doi 10 1007 s10750 007 9025 1 ISSN 0018 8158 S2CID 10262035 Pepato Almir R Vidigal Teofania H D A Klimov Pavel B 2018 Molecular phylogeny of marine mites Acariformes Halacaridae the oldest radiation of extant secondarily marine animals Molecular Phylogenetics and Evolution 129 182 188 doi 10 1016 j ympev 2018 08 012 PMID 30172010 S2CID 52145427 a b Jeppson LR Keifer HH Baker EW 1975 Mites Injurious to Economic Plants University of California Press pp 1 3 ISBN 978 0 520 02381 9 Halliday RB O Connor BM Baker AS 2000 Global Diversity of Mites In Raven PH Williams T eds Nature and human society the quest for a sustainable world proceedings of the 1997 Forum on Biodiversity National Academies pp 192 212 ISBN 9780309065559 Heethoff M Koerner L September 2007 Small but powerful the oribatid mite Archegozetes longisetosus Aoki Acari Oribatida produces disproportionately high forces The Journal of Experimental Biology 210 Pt 17 3036 3042 doi 10 1242 jeb 008276 PMID 17704078 Rubin S Young MH Wright JC Whitaker DL Ahn AN March 2016 Exceptional running and turning performance in a mite The Journal of Experimental Biology 219 Pt 5 676 685 doi 10 1242 jeb 128652 PMID 26787481 Mite sets new record as world s fastest land animal ScienceDaily Press release April 27 2014 Coleman David C Crossley D A Hendrix Paul F 2004 Secondary Production Activities of Heterotrophic Organisms The Soil Fauna Fundamentals of Soil Ecology Elsevier pp 79 185 doi 10 1016 b978 012179726 3 50005 8 ISBN 978 0 12 179726 3 retrieved 2023 02 09 Behan Pelletier Valerie M 1999 Oribatid mite biodiversity in agroecosystems role for bioindication Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes Elsevier pp 411 423 doi 10 1016 b978 0 444 50019 9 50023 6 ISBN 978 0 444 50019 9 retrieved 2023 02 09 Klimov PB OConnor B May 2013 Is permanent parasitism reversible critical evidence from early evolution of house dust mites Systematic Biology 62 3 411 23 doi 10 1093 sysbio syt008 PMID 23417682 Genetic study of house dust mites demonstrates reversible evolution Michigan News March 8 2013 Beati L Klompen H January 2019 Phylogeography of Ticks Acari Ixodida Annual Review of Entomology 64 1 379 397 doi 10 1146 annurev ento 020117 043027 PMID 30354695 S2CID 53023797 Ticks Acari Ixodida are large parasitiform mites characterized by mouthparts specialized for blood feeding Schwarz HF Bacon AL 1948 Stingless bees Meliponidae of the Western Hemisphere Lestrimelitta and the following subgenera of Trigona Trigona Paratrigona Schwarziana Parapartamona Cephalotrigona Oxytrigona Scaura and Mourella Bulletin of the American Museum of Natural History 90 hdl 2246 1231 Berghoff SM Wurst E Ebermann E Sendova Franks AB Rettenmeyer CW Franks NR 2009 Symbionts of societies that fission Mites as guests or parasites of army ants Ecological Entomology 34 6 684 695 doi 10 1111 j 1365 2311 2009 01125 x S2CID 84324830 Parasitengona velvet mites including chiggers amp water mites bugguide net Retrieved 2023 02 09 Fenemore PG 2016 Chapter 7 Mites and other non insect pests Plant Pests and Their Control Elsevier p 112 ISBN 978 1 4831 8286 5 a b Harrison S Knott H Bergfeld WF 2009 Infections of the Scalp In Hall JC Hall BJ eds Skin Infections Diagnosis and Treatment Cambridge University Press p 260 ISBN 978 0 521 89729 7 a b Ho CC 2008 Mite Pests of Crops in Asia In Capinera JL ed Encyclopedia of Entomology Springer Science amp Business Media p 2425 ISBN 978 1 4020 6242 1 Schulze KE Cohen PR February 1994 Dove associated gamasoidosis a case of avian mite dermatitis Journal of the American Academy of Dermatology 30 2 Pt 1 278 280 doi 10 1016 S0190 9622 08 81930 5 PMID 8288795 Theis J Lavoipierre MM LaPerriere R Kroese H June 1981 Tropical rat mite dermatitis Report of six cases and review of mite infestations Archives of Dermatology 117 6 341 343 doi 10 1001 archderm 1981 01650060031018 PMID 7247425 a b James WD Berger TG 2006 Andrews Diseases of the Skin Clinical Dermatology 10th ed Saunders Elsevier p 454 ISBN 978 0 7216 2921 6 Andrews RM McCarthy J Carapetis JR Currie BJ December 2009 Skin disorders including pyoderma scabies and tinea infections Pediatric Clinics of North America 56 6 1421 1440 doi 10 1016 j pcl 2009 09 002 PMID 19962029 Mumcuoglu KY Akilov OE March 2010 Whitehead J Barrows B eds The Role of Demodex Mites in the Pathogenesis of Rosacea and Blepharitis and Their Control Journal of the Rosacea Research amp Development Institute 1 1 47 54 ISBN 9781450203449 Shapiro ED May 2014 Clinical practice Lyme disease PDF The New England Journal of Medicine 370 18 1724 1731 doi 10 1056 NEJMcp1314325 PMC 4487875 PMID 24785207 Archived from the original PDF on 21 August 2016 Retrieved 5 July 2016 Rocky Mountain Spotted Fever RMSF CDC 15 November 2018 Retrieved 20 January 2019 Pham XD Otsuka Y Suzuki H Takaoka H March 2001 Detection of Orientia tsutsugamushi Rickettsiales rickettsiaceae in unengorged chiggers Acari Trombiculidae from Oita Prefecture Japan by nested polymerase chain reaction Journal of Medical Entomology 38 2 308 311 doi 10 1603 0022 2585 38 2 308 PMID 11296840 S2CID 8133110 Diaz JH 2010 Endemic mite transmitted dermatoses and infectious diseases in the South The Journal of the Louisiana State Medical Society 162 3 140 145 147 149 PMID 20666166 Klenerman P Lipworth B House dust mite allergy NetDoctor Retrieved February 20 2008 van den Broek AH Huntley JF MacHell J Taylor M Bates P Groves B Miller HR August 2000 Cutaneous and systemic responses during primary and challenge infestations of sheep with the sheep scab mite Psoroptes ovis Parasite Immunology 22 8 407 414 doi 10 1046 j 1365 3024 2000 00318 x PMID 10972847 S2CID 41549010 Carp RI Meeker HC Rubenstein R Sigurdarson S Papini M Kascsak RJ et al April 2000 Characteristics of scrapie isolates derived from hay mites Journal of Neurovirology 6 2 137 144 doi 10 3109 13550280009013157 PMID 10822327 S2CID 16441609 Guzman Novoa E Eccles L Calvete Y Mcgowan J Kelly PG Correa Benitez A 2009 Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee Apis mellifera colonies in Ontario Canada PDF Apidologie 41 4 443 450 doi 10 1051 apido 2009076 S2CID 10898654 Benjamin A 2 May 2010 Fears for crops as shock figures from America show scale of bee catastrophe The Guardian London twospotted spider mite Tetranychus urticae Koch entnemdept ufl edu Retrieved 2023 02 09 Park Jihye Mostafiz Md Munir Hwang Hwal Su Jung Duck Oung Lee Kyeong Yeoll 2021 05 25 Comparing the Life Table and Population Projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus Acari Laelapidae Based on the Age Stage Two Sex Life Table Theory Agronomy 11 6 1062 doi 10 3390 agronomy11061062 ISSN 2073 4395 a b Marren Peter Mabey Richard 2010 Bugs Britannica Chatto amp Windus pp 122 125 ISBN 978 0 7011 8180 2 Doyle Arthur Conan June 28 1898 Pen and pencil A souvenir of the Press Bazaar London Punch magazine p 58 External links EditBitingmites org What s biting you Mites and Ticks chapter in United States Environmental Protection Agency and University of Florida Institute of Food and Agricultural Sciences National Public Health Pesticide Applicator Training Manual Mites at the U S National Library of Medicine Medical Subject Headings MeSH Retrieved from https en wikipedia org w index php title Mite amp oldid 1148062714, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.